WO2022138963A1 - 成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法 - Google Patents

成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法 Download PDF

Info

Publication number
WO2022138963A1
WO2022138963A1 PCT/JP2021/048393 JP2021048393W WO2022138963A1 WO 2022138963 A1 WO2022138963 A1 WO 2022138963A1 JP 2021048393 W JP2021048393 W JP 2021048393W WO 2022138963 A1 WO2022138963 A1 WO 2022138963A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
resin
material composition
resin raw
powder
Prior art date
Application number
PCT/JP2021/048393
Other languages
English (en)
French (fr)
Inventor
譲 榊原
優花 佐藤
亘祐 溝渕
隼士 松山
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP21911100.2A priority Critical patent/EP4269476A1/en
Priority to US18/269,071 priority patent/US20240117163A1/en
Priority to JP2022571716A priority patent/JPWO2022138963A1/ja
Priority to CN202180087246.5A priority patent/CN116710507A/zh
Priority to KR1020237020912A priority patent/KR20230111218A/ko
Publication of WO2022138963A1 publication Critical patent/WO2022138963A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/163Coating, i.e. applying a layer of liquid or solid material on the granule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0543Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer

Definitions

  • the present disclosure relates to a resin raw material composition for molding, a resin raw material composition for a microporous membrane, and a method for producing these.
  • general-purpose plastics such as polyethylene, engineering plastics such as polyester, synthetic resins such as elastomers, especially polyolefin resins such as polyethylene and polypropylene have a good balance of molded product properties, molding processability, weather resistance, etc., and packaging films.
  • Industrial films such as agriculture, blow molding of bottle containers, structural materials, injection molding applications of large containers, and the production of microporous films.
  • pellets and powdered resin raw materials used for these purposes are generally molded by an extrusion molding method. These resin raw materials are used as a single resin or mixed with an inorganic filler other than the resin, a fiber material, or the like.
  • a filler is mixed with the resin raw material to impart a function, a liquid raw material such as a plasticizer of mineral oil (mineral oil) such as liquid paraffin is added in liquid form, an antifogging agent such as glycerin ester, and an antistatic agent.
  • additives such as are mixed.
  • Patent Document 1 describes the extrusion molding of pellets
  • Patent Document 2 describes the extrusion molding of powder.
  • resin raw materials are generally sold in the form of pellets having a particle size of about 2 mm to 5 mm, but some are sold as powders having a particle size of about 50 ⁇ m to 500 ⁇ m.
  • metal oxides of alumina, silica, zirconia, and titanium oxide, and fillers such as talc, boehmite, and kaolin are generally sold in the form of powder of about 10 nm to 500 ⁇ m.
  • Patent Document 3 it is possible to produce a raw material obtained by pulverizing a film or a microporous film without melting into chips.
  • Patent Document 2 also discloses a method for producing a separator for such a lithium ion secondary battery.
  • a separator for a lithium ion secondary battery in which a plasticizer such as liquid paraffin is mixed with a resin powder such as polyethylene or polypropylene, extruded, stretched, and then the plasticizer is extracted with a solvent to make it porous.
  • the general technique is to add a plasticizer such as mineral oil for softening to polyethylene, elastomer, or polypropylene pellets.
  • an ultra-high molecular weight polyethylene resin having a high molecular weight having a viscosity average molecular weight of more than 300,000 can be molded to obtain a molded product or a microporous film having extremely high strength, but on the other hand, since the molecular weight is high, the melt viscosity is extremely high and extrusion is performed. Since it is difficult to mold, it is not generally sold in the form of pellets, but in the form of polymerized powder. When this ultra-high molecular weight polyethylene powder is mixed with general polyethylene or polypropylene pellets to increase the strength, it is necessary to mix the pellets and the powder.
  • pellets and powders are basically put into an extruder alone or by blending them in advance as needed, and this method is widely and generally used.
  • ⁇ Problems of molding processability> In the production of a resin raw material composition for molding, a method of blending pellets and powder in a large amount in advance with a tumbler mixer, a Henschel mixer or the like is generally adopted. In this method, a large amount of processing can be performed, so that the production cost can be suppressed. At this time, the pellets and powder were first classified during transportation by piping or in the static hopper, and the composition distribution was liable to be uneven. The reason for this is that the powder is generally as small as several ⁇ m to several hundred ⁇ m compared to pellets with a particle size of several mm, so the pellet and powder are classified during piping transportation or in a static hopper, and the composition distribution tends to be uneven. rice field.
  • the powder raw material is light, it easily flies in the air as dust, and in particular, it tends to deteriorate the working environment around the resin raw material supply port of the extruder (hereinafter, it may be referred to as "dust generation” or the like).
  • an extrusion molding method in which a single or a plurality of resin raw materials are kneaded and put into an extruder is generally used.
  • Extrusion molding is widely used in film molding, blow molding, fiber molding, injection molding and the like because a molded product can be easily obtained at low cost.
  • classification occurs in a general dry blend due to the difference in size, and the distribution of each raw material component tends to be insufficient.
  • the dispersion and mixing in the extruder become non-uniform, and the film thickness tends to fluctuate due to the fluctuation of the extrusion state.
  • silica for opening the mouth of a bubble and an anti-blocking agent such as calcium carbonate are used.
  • this method also requires kneading the pellets with silica, calcium carbonate, or the like in advance, which increases the production cost.
  • a resin powder having a small particle size is generally used as a raw material in order to swell the resin with a plasticizer.
  • pellet raw materials are used for various purposes.
  • pellets have more types and distribution volumes than powders, so it is expected that pellets will be used more often in the future for the purpose of cost reduction and the like.
  • master batches containing various functional master batches such as slip agents, antistatic agents, fillers and the like can be used together with pellets.
  • the powder is generally as small as several ⁇ m to several hundred ⁇ m as compared with the pellet having a particle size of several mm, the pellet and the powder are classified during piping transportation or in a static hopper, and the composition distribution becomes uneven. It was easy to get out.
  • a resin pellet of about 3 mm and an inorganic filler of about 5 ⁇ m or less are mixed in a weight ratio (resin pellet: inorganic filler) of about 8: 2 to form a hopper having a diameter of 500 mm, a height of 1000 mm, and an effective capacity of about 100 liters. When filled, the powder is gradually classified and settled during operation.
  • the composition distribution is uneven due to classification as described above, the film thickness is likely to fluctuate due to the fluctuation of the extrusion state as described above. Therefore, the obtained extruded product such as a film and the obtained microporous film, for example, In separators and the like, fish eyes and unmelted gels tend to occur due to insufficient kneading, thickness unevenness in the film surface worsens, and strength unevenness tends to occur. Even if the uneven composition distribution is eliminated to the permissible range, the difference in the shape of the pellet and the powder, especially the difference in the particle size, causes a difference in the melting rate (time until melting) in the extruder, and the large pellet remains undissolved.
  • any of the above methods has a problem of molding processability and / or a problem of product physical properties, and the conventional solution not only increases the manufacturing cost but also the difference in the size of the pellet and the powder, and the difference in the size of the pellet and the powder.
  • the range of combinations of applicable components is narrow, and fine adjustment is required for each component.
  • the present disclosure provides a molded product or a microporous film having good dispersibility, pipe transportability, and moldability, low dust generation and classification, and good physical properties, and is a resin raw material for molding.
  • a composition, a resin raw material composition for a microporous film , and a method for producing the same are provided.
  • the present inventors can solve the above-mentioned problems by using a resin raw material composition satisfying a specific requirement, and such a resin raw material composition. I found a manufacturing method.
  • the resin raw material composition is a molding resin raw material composition.
  • the liquid component is coated on at least a part of the surface of the resin pellet, and the resin pellet coated with the liquid component is a single grain or agglomerates of a plurality of grains, and the powder adheres to the liquid component.
  • Containing granules Containing granules
  • the ratio (PL / PW) of the mass% of the resin pellets to the mass% of the powder is 0.01 or more and 100 or less based on the total mass of the resin raw material composition, and the above is the above with respect to the mass% of the liquid component.
  • the mass% ratio (PL / LQ) of the resin pellets is 1 or more and 199 or less.
  • the resin raw material composition is a resin raw material composition for a microporous membrane.
  • the liquid component is coated on at least a part of the surface of the resin pellet, and the resin pellet coated with the liquid component is a single grain or agglomerates of a plurality of grains, and the powder adheres to the liquid component.
  • the ratio (PL / PW) of the mass% of the resin pellets to the mass% of the powder is 0.01 or more and 100 or less based on the total mass of the resin raw material composition, and the above is the above with respect to the mass% of the liquid component.
  • the mass% ratio (PL / LQ) of the resin pellets is 1 or more and 199 or less.
  • a resin raw material composition in which the number of granules containing 10 or more aggregates of the resin pellets is 20% or less based on the total number of granules.
  • the number of granules containing a single grain of the resin pellets or agglomerates of 2 to 9 grains is 95% or more based on the total number of the granules, and the granules having a particle size of 10 mm or more are the resin raw materials.
  • the resin raw material composition according to any one of items 1 to 3, which is 1% by mass or less based on the total mass of the composition.
  • the number of granules containing a single grain of the resin pellet is 70% or more based on the total number of granules, and the maximum diameter of the granules containing a single grain of the resin pellet is equal to or larger than the particle size of the resin pellet.
  • the number of granules containing a plurality of aggregates of the resin pellets is less than 30% based on the total number of granules, and When the resin raw material composition further contains granules composed of the powder and the liquid component that do not contain the resin pellets, the number of the granules that do not contain the resin pellets is 20% based on the total number of the granules.
  • Item 6 The resin according to any one of items 1 to 7, wherein the resin pellet contains at least one selected from the group consisting of polyolefin, PET, polyamide, aramid, polyvinyl chloride, synthetic rubber, ABS, and PPE.
  • Raw material composition [9] The resin raw material composition according to any one of items 1 to 8, wherein the powder comprises at least one selected from the group consisting of polyethylene, elastomer, PET, polyamide, aramid, and inorganic particles.
  • the resin raw material composition is a molding resin raw material composition.
  • a resin raw material composition comprising a bonding step of adding powder to the blender after the coating step, further kneading, and adhering the powder to the liquid component of the resin pellet coated with the liquid component.
  • Production method [15] The method for producing a resin raw material composition according to item 14, wherein the torque rise time is 150 seconds or less.
  • a method for producing a resin raw material composition is a resin raw material composition for a microporous membrane.
  • a resin raw material composition comprising a bonding step of adding powder to the blender after the coating step, further kneading, and adhering the powder to the liquid component of the resin pellet coated with the liquid component.
  • Production method [17] The method for producing a resin raw material composition according to item 16, wherein the torque rise time is 150 seconds or less.
  • a mixed composition comprising the step of further mixing the resin pellet (PL) and / or the powder (PW) which is the same as or different from the resin pellet (PL) and the powder (PW) into the resin raw material composition. Production method.
  • a product having excellent physical properties such as strength, optical property, and foreign matter can be obtained in molding processing, and is excellent in moldability and handleability, particularly when used for films and microporous membrane applications.
  • a resin raw material composition for molding is provided.
  • a microporous membrane having excellent physical properties can be obtained, and a resin raw material composition for a microporous membrane having excellent moldability and handleability is also provided. Therefore, the molding resin raw material composition of the present disclosure is particularly favorably used for molding films and microporous films.
  • FIG. 1 is a photograph of granules of the resin raw material composition of the present disclosure.
  • FIG. 2 is a photograph of granules of a conventional resin raw material composition.
  • FIG. 3 is a graph showing the relationship between the kneading time and the average torque (torque rise time) of the resin raw material composition of Example 1.1 and the resin raw material composition of Comparative Example 1.1.
  • the resin raw material composition of the present disclosure contains pellets, powders, and liquid components (hereinafter, may be referred to as "PL”, “PW”, and “LQ", respectively).
  • the resin raw material composition is a molding resin raw material composition or a microporous film resin raw material composition.
  • the resin raw material composition contains a large number of granules, the granules having one pellet or an aggregate of a plurality of pellets, and the surface of all or a part of the pellets is coated with a liquid material, and further. It contains a granular material (hereinafter, may be referred to as “PWL” in the present specification) to which powder is attached to the liquid material.
  • PWL granular material
  • the granules having one (single grain) resin pellet are referred to as "PWL1", and the granules having agglomerates of a plurality of resin pellets are referred to as “PWL2" and “PWL3” based on the number of resin pellets. "... etc. may be described.
  • Granules containing no resin pellets, consisting of powder and liquid components, and having a sieve diameter of 1 mm or more and 10 mm or less may be referred to as "PWL0".
  • the “total number of granules” means the total number of granules having PWL0 and PWL1 or more.
  • the resin raw material composition preferably contains pellets, powder and liquid components as main components.
  • the "main component” here means that the total mass of the pellets, powder and liquid component is 50% by mass or more, preferably 70% by mass or more, based on the total mass of the resin raw material composition. It is preferably 90% by mass or more, and may be substantially 100% by mass.
  • the resin raw material composition may also contain components such as other additives and modifiers as described later.
  • the resin pellet (PL) As the resin pellet (PL), a commercially available resin pellet that is generally used may be used.
  • the resin in the resin pellets can be any resin, for example, polyolefin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyacrylonitrile (PAN), polyamide, aramid, polyvinyl chloride, synthetic rubber, acrylonitrile-butadiene. -Selected from styrene copolymer resin (ABS), polyphenylene benzobisoxazole (PPE) and the like.
  • ABS styrene copolymer resin
  • PPE polyphenylene benzobisoxazole
  • the material of the resin pellet is preferably at least one selected from the group consisting of polyolefin, PET, polyamide, aramid, polyvinyl chloride, synthetic rubber, ABS, and PPE.
  • the resin pellets preferably contain polyolefin as a main component.
  • the "main component” means 50% by mass or more with respect to the total mass of the resin pellets, preferably 70% by mass or more, more preferably 90% by mass or more, and substantially 100% by mass. There may be.
  • the polyolefin include polypropylene (PP), polyethylene (PE), and olefin-based elastomers.
  • the polypropylene is not particularly limited, and is, for example, a homopolymer of propylene such as isotactic polypropylene (IPP), syndiotactic polypropylene, and atactic polypropylene; propylene, ethylene, butene, and having 5 or more carbon atoms.
  • examples thereof include a random copolymer (RPP) obtained by copolymerizing with a comonomer such as ⁇ -olefin, a block copolymer (BPP), and a tarpolymer. These may be alone or in admixture.
  • the viscosity average molecular weight (Mv) of the resin of the resin pellets melt-kneading becomes easy, and as a result, fisheye-like defects tend to be improved when the resin raw material composition is made into a film or a microporous film. It is preferably 1 million or less, more preferably 700,000 or less, and further preferably 600,000 or less. From the viewpoint of strength, the resin pellet has a viscosity average molecular weight of 100,000 or more, more preferably 200,000 or more.
  • the viscosity average molecular weight (Mv) of polypropylene is preferably 1 million or less, more preferably 700,000 or less, still more preferably 600,000 or less, preferably 100,000 or more. More preferably, it is 200,000 or more.
  • fisheye is a film-shaped or sheet-shaped molded product as defined in "Polymer Dictionary", Taiseisha, 2000, Reprint 6th Edition, 337 pages, etc. by the Polymer Editorial Committee. Or, it refers to a small spherical mass formed in a microporous film, and is given such a name because many of them show transparency like the eyes of a fish. Fish eyes are distinguished from their formation factors, such as unmelted lumps caused by insufficient kneading of the molding material, lumps in which a part of the raw material is gelled, lumps due to partial deterioration of the material during molding, and foreign substances as nuclei. And so on.
  • the fish eye is derived from the material of the resin raw material composition used as the raw material of the molded product, and the one having a foreign substance as a core is excluded.
  • the foreign matter include cellulose, dust, metal pieces, carbides of resin, different types of plastics, lint, and pieces of paper.
  • polypropylene whose stereoregularity is controlled by using a metallocene catalyst or the like, or a resin obtained by blending BPP and RPP in an amount of 0.5 to 30% by mass with respect to IPP is also preferable.
  • a resin obtained by blending BPP and RPP in an amount of 0.5 to 30% by mass with respect to IPP is also preferable.
  • the resin of the resin pellet may be a mixture of polyethylene and polypropylene.
  • polyethylene include high-density polyethylene, ultra-high molecular weight polyethylene, linear low-density polyethylene, high-pressure low-density polyethylene, and a mixture thereof.
  • polyethylene having a narrow molecular weight distribution using a metallocene catalyst, high-density polyethylene, or polyethylene obtained by multistage polymerization may be used.
  • the ultra-high molecular weight polyethylene referred to here refers to polyethylene having a viscosity average molecular weight of 500,000 or more.
  • the ratio of the ultra-high molecular weight polyethylene to the total polyethylene is preferably 5 to 50% by mass, and more preferably 9 to 40% by mass from the viewpoint of dispersibility.
  • ultra-high molecular weight polyethylene is generally used in the form of powder, and in that case, it is classified as "powder".
  • Polyethylene preferably contains a polyethylene component having a molecular weight of less than 10,000.
  • the polyethylene component having a molecular weight of less than 10,000 here is a portion having a molecular weight of less than 10,000 in the chart of the molecular weight distribution measured by the gel permeation chromatography (GPC) method, and the ratio is based on the area ratio on the chart. Can be asked.
  • GPC gel permeation chromatography
  • the polymerization conditions may be set so as to contain a large amount of low molecular weight components at the time of polymerization of polyethylene, or ordinary polyethylene may be weight-averaged. It may be produced by mixing polyethylene components having a molecular weight of less than 10,000.
  • the content of the polyethylene component having a molecular weight of less than 10,000 is preferably 5% by mass or more with respect to the total amount of polyethylene, and if it is within this range, friction is reduced during film formation of a film or a microporous film, and production is performed.
  • the sex tends to improve. More preferably, it is 10% by mass or more, and if it is within this range, the take-up processability tends to be improved in the secondary processing step of these films and microporous films. Further, when it is 20% by mass or more, higher speed processing becomes possible and productivity tends to be improved.
  • the resin of the resin pellet may contain a polybutene-1 resin, a propylene-based elastomer, an ethylene-based elastomer, and particularly a random copolymer elastomer of propylene and ethylene for the purpose of improving film forming properties. good. It is also possible to use a polymethylpentene-1 resin, and one having a melt flow rate (MFR) of 0.01 to 30 g / 10 minutes is preferably used. Particularly preferably, it is in the range of 0.1 to 5 g / 10 minutes.
  • MFR melt flow rate
  • the resin of the resin pellets includes engineering plastic resins such as polyphenylene ether, polyamide resins such as nylon 6, nylon 6-12 and aramid resins, polyimide resins, polyester resins such as PET and PBT, and polycarbonate resins.
  • Engineering plastic resins such as polyphenylene ether, polyamide resins such as nylon 6, nylon 6-12 and aramid resins, polyimide resins, polyester resins such as PET and PBT, and polycarbonate resins.
  • Fluorine-based resin such as polyvinylidene fluoride (PVDF), copolymer of ethylene and vinyl alcohol, copolymer of ⁇ -olefin and carbon monoxide of C2-C12 and its hydrogenated product, hydrogenated styrene-based polymer.
  • PVDF polyvinylidene fluoride
  • the particle size of the resin pellet is preferably in the range of about 1 mm to 10 mm, more preferably 2 mm to 6 mm, and further preferably 3 mm to 5 mm from the viewpoint of extrusion moldability.
  • the method for producing pellets is not limited, but in the case of high-density polyethylene, for example, polyethylene powder having a particle size of several tens to several hundreds of ⁇ m polymerized by a low-pressure method is melt-kneaded with an extruder heated to about 200 ° C. It is cut into a size of about 1 mm to 5 mm in particle size by strand cutting or underwater cutting. Pellets made by crimping and cutting a film once formed by the method shown in Patent Document 4 can also be used.
  • the ratio of the resin pellets to the total mass of the resin raw material composition is preferably 5% by mass to 98% by mass, and more preferably 30% by mass to 98% by mass.
  • the powder (PW) means fine particles having a particle size of several nm to several hundred ⁇ m.
  • the proportion of the powder in the total mass of the resin raw material composition is preferably 5% by mass to 90% by mass, and more preferably 8% by mass to 50% by mass.
  • the powder is preferably resin particles, inorganic particles and the like, but may be crushed fibers, naturally derived powder such as wood chips, metal fine particles and the like.
  • the resin particles for example, the resin mentioned as the above-mentioned resin pellet can be used. Since the type and molecular weight of the resin are as described in the column of resin pellets, the description is omitted here.
  • the method for producing the resin particles include pulverizing the polymerized resin and its pellets.
  • the resin particles include powders such as polyethylene, polypropylene, elastomer, PET, polyamide and aramid among the resins listed as resin pellets.
  • the resin particles preferably contain polyolefin as a main component.
  • the "main component” means 50% by mass or more with respect to the total mass of the resin pellets, preferably 70% by mass or more, more preferably 90% by mass or more, and substantially 100% by mass. There may be.
  • the polyolefin include polyethylene, polypropylene, and olefin-based elastomers, and more preferably polyethylene.
  • the viscosity average molecular weight (Mv) of the resin particles is preferably 200,000 or more, more preferably 300,000 or more, from the viewpoint of improving the strength of the film or the microporous film.
  • the upper limit of the viscosity average molecular weight (Mv) is preferably 10 million or less, more preferably 5 million or less, from the viewpoint of extrusion moldability and stretchability.
  • the viscosity average molecular weight (Mv) of the polyethylene powder (in the case of using a plurality of types of polyethylene, the overall viscosity average molecular weight) is preferably 200,000 or more from the viewpoint of improving the strength of the film or the microporous film. , More preferably 300,000 or more.
  • the upper limit of the viscosity average molecular weight (Mv) is preferably 10 million or less, more preferably 5 million or less, from the viewpoint of extrusion moldability and stretchability.
  • the molecular weight distribution (Mw / Mn) of the polyethylene powder improves the kneading property when the inorganic filler and the like are mixed and kneaded, and from the viewpoint of suppressing the occurrence of granular defects in which the inorganic filler is secondarily aggregated. , It is preferably 5 or more, and more preferably 8 or more.
  • ultra-high molecular weight polyethylene powder may be used from the viewpoint of reducing heat shrinkage when forming a film or a microporous film.
  • the diameter of the resin particles is smaller than the size of the pellets, and the average diameter is preferably 300 ⁇ m or less. When it is 300 ⁇ m or less, in the case of a polymerized powder, the reaction time is shortened during the production thereof, and the productivity is excellent.
  • the diameter of the resin particles is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the lower limit is not particularly limited, but is appropriately prepared from the viewpoint of dust explosion in air transportation during molding, and may be, for example, 10 ⁇ m or more, 50 ⁇ m or more, or 100 ⁇ m or more.
  • the ratio of the resin particles to the total mass of the resin raw material composition is preferably 5% by mass to 90% by mass, and more preferably 10% by mass to 50% by mass.
  • the inorganic particles include oxide-based ceramics such as alumina (for example, ⁇ -alumina, etc.), silica, titania, zirconia (including ittoria-modified zirconia), magnesia, ceria, ittria, zinc oxide, iron oxide, etc .; silicon nitride.
  • oxide-based ceramics such as alumina (for example, ⁇ -alumina, etc.), silica, titania, zirconia (including ittoria-modified zirconia), magnesia, ceria, ittria, zinc oxide, iron oxide, etc .; silicon nitride.
  • the inorganic particles at least one selected from the group consisting of silica, alumina, zeolite, kaolin, talc, zirconia and titania is preferable.
  • the proportion of the inorganic particles in the total mass of the resin raw material composition is preferably 3% by mass to 90% by mass, and more preferably 5% by mass to 55% by mass.
  • the particle size of the inorganic particles is not particularly limited, but is, for example, 10 nm or more and 50 ⁇ m or less. Further, various particle sizes can be used depending on the purpose. For example, when hydrophobic inorganic particles are used in order to improve the wettability with an organic solvent, those having a relatively small average particle size, for example, 5 nm to 1 ⁇ m, are preferable in order to improve the dispersibility in the resin and the surface area. May be 5 nm to 100 nm.
  • inorganic particles having an average particle diameter of 1 ⁇ m to 10 ⁇ m when used, the strength of the film or the microporous film tends to be improved, and further, inorganic particles having an average particle diameter of 1.5 ⁇ m to 5 ⁇ m can be obtained. When used, the uneven thickness at the time of film formation tends to be improved.
  • the bulk specific gravity (bulk density) of the inorganic particles is about 0.05 g / cm 3 to 10 g / cm 3 , preferably 0.1 to 5 g / cm 3 .
  • the liquid component (LQ) is not particularly limited as long as it is liquid and can suppress dust generation, and is preferably a lubricating oil or a mineral oil used as a plasticizer in the production of a molded product or a microporous film.
  • Phthalate esters such as dioctyl phthalate (DOP) and dibutyl phthalate (DBP), liquid paraffin, other plasticizers, softeners, antifogging agents, etc. that contribute to the performance development of products obtained by extrusion molding. May be.
  • the liquid component (LQ) is preferably at least one selected from the group consisting of lubricating oils, mineral oils and liquid paraffins.
  • the plasticizer such as liquid paraffin is removed from the final product. Due to the action of this liquid component, a powder that is generally easy to classify as pellets and has a characteristic of flying up as dust in a work place, for example, a nanofiller having a particle size of about 5 nm to 50 nm can be satisfactorily used.
  • the viscosity of the liquid component is not particularly limited, and when a relatively large resin powder having a particle size of 100 ⁇ m or more is used, the viscosity is preferably relatively high, and the kinematic viscosity at 40 ° C. is preferable. It is desirable that JIS K 2283) is 50 mm 2 / S or more, more preferably 60 mm 2 / S or more. If the viscosity is high, the adhesion to the pellets is good, and it is difficult for the pellets and powder to separate during transportation.
  • the ratio of the liquid component to the total mass of the resin raw material composition is preferably 0.1% by mass to 30% by mass, and more preferably 2% by mass to 7% by mass.
  • ⁇ Granular body> In the granular material, at least a part of the surface of the resin pellet is coated with a liquid component, and the resin pellet coated with the liquid component is in the state of a single grain or agglomerates of a plurality of grains, and powder adheres to the liquid component. Is formed.
  • the number of granules (PWL10 or more) containing 10 or more aggregates of the resin pellets is 20% or less based on the total number of granules. Since the number of PWL10 or more is small, it is possible to provide a resin raw material composition having less classification and excellent dispersibility, pipe transportability, moldability, and various physical characteristics obtained.
  • the weight mixing ratio of PL, LQ, and PW is appropriate.
  • the ratio (PL / PW) of the mass% of the resin pellets to the mass% of the powder is preferably an upper limit of about 99.01 / 0.99 to a lower limit of 1/99 (0.01 to 100), more preferably.
  • the upper limit is 99/1 to the lower limit 1/99 (0.01 to 99), more preferably the upper limit 95/5 to the lower limit 10/90 (0.11 to 19), and even more preferably the upper limit 95/5 to the lower limit 50.
  • the PL / PW is preferably 2 or more and 100 or less. In the range exceeding the upper limit, the adhesiveness of the resin raw material composition increases, and it tends to be difficult to transport by piping. If the value is less than the lower limit, the pellets and the powder are not sufficiently adhered to each other, and classification is likely to occur, and dust tends to be generated by the powder.
  • the ratio (PL / LQ) of the mass% of the resin pellet to the mass% of the liquid component is an upper limit of 99.5 / 0.5 to a lower limit of 50/50 (1 to 199), preferably an upper limit of 99/1. ⁇ Lower limit 50/50 (1 to 99), more preferably upper limit 99/1 to lower limit 70/30 (2.3 to 99), still more preferably upper limit 98/2 to lower limit 70/30 (2.3 to 49). ), More preferably the upper limit is 97/3 to the lower limit of 80/20 (4 to 32.3). Within this range, the dispersibility is stable. If the upper limit is exceeded, PL is less likely to be covered with LQ, and dust and classification are likely to occur. If it is less than the lower limit, the LQ becomes excessive and stickiness occurs, and the pipe transportability tends to deteriorate.
  • the ratio (PW / LQ) of the mass% of the powder to the mass% of the liquid component is preferably in the range of the upper limit 99/1 to the lower limit 20/80 (0.25 to 99), and more preferably the upper limit 95/5 to.
  • the lower limit is 30/70 (0.43 to 19), more preferably the upper limit is 90/10 to the lower limit of 40/60 (0.67 to 9).
  • the maximum diameter of the granular material (PWL1) containing a single grain of the resin pellet is preferably larger than the particle size of the resin pellet, more preferably larger than the particle size of the resin pellet, and preferably the particle size of the resin pellet.
  • the particle size of the resin pellet is +5 mm or less, more preferably the particle size of the resin pellet is +4 mm or less, further preferably the particle size of the resin pellet is +3 mm or less, further preferably the particle size of the resin pellet is +2 mm or less, and further preferably the particle size of the resin pellet is +1 mm or less. ..
  • the resin raw material composition preferably contains a granular material in which powder is adhered to the liquid component of the resin pellet coated with the liquid component as the main component.
  • the "main component” here means that the above-mentioned granular material is 50% by mass or more with respect to the total mass of the resin raw material composition, preferably 70% by mass or more, and more preferably 90% by mass. As mentioned above, it may be substantially 100% by mass.
  • the number of single granules (PWL1) and 2 to 9 granules (PWL2 to 9) is preferably 95 based on the total number of granules. % Or more; and the granular material having a particle size of 10 mm or more is preferably 1% by mass or less based on the total mass of the resin raw material composition.
  • the number of granules containing a plurality of resin pellets is preferably less than 30%, more preferably less than 20% based on the total number of granules; and the resin raw material composition comprises resin pellets.
  • the number of PWL0 is preferably less than 20%, more preferably less than 10% based on the total number of granular materials.
  • PWL0 means a sieve diameter of 1 mm or more and 10 mm or less. If there are many lumps having a size of less than 1 mm or more than 10 mm, the dispersed state deteriorates.
  • the number of granules (PWL10 or more) containing 10 or more resin pellets is 20% or less, preferably 1% or less, more preferably substantially, based on the total number of granules. do not have.
  • the number of PWL1 is 70% or more based on the total number of granules, and the maximum diameter of the granules (PWL1) containing a single grain of the resin pellet is equal to or larger than the particle size of the resin pellet and the particle size of the resin pellet. It is particularly preferable that it is +5 mm or less.
  • the bulk density of the resin raw material composition is greatly affected by its specific gravity, especially when an inorganic filler is used, but it is preferably 0.1 g / cm 3 to 2 g / cm 3 and more preferably used as a general raw material. Is 0.3 g / cm 3 to 1.5 g / cm 3 , more preferably 0.5 g / cm 3 to 1.2 g / cm 3 .
  • the variation in bulk density is preferably 10% or less, more preferably 5% or less, still more preferably 3% or less.
  • the resin raw material composition preferably has an angle of repose of 30 ° or more and 55 ° or less. When the angle of repose is within the above range, it can be satisfactorily used in a general extrusion molding apparatus raw material hopper or supply feeder.
  • the resin raw material composition preferably has a torque rise time of 150 seconds or less by a plast mill kneader (manufactured by Toyo Seiki Co., Ltd.).
  • the "torque rise time” means the time from the start of kneading until the torque of the plast mill kneader rises and eventually reaches its peak.
  • the short torque rise time means that the resin pellets and the liquid component were sufficiently kneaded in the step (a), and the liquid component could be substantially uniformly adhered to almost the entire surface of the resin pellet. As a result, it is easy to obtain a stable structure as PWL1 in which the maximum diameter of PWL1 is the particle size of the resin pellet + 5 mm or less.
  • resin raw material compositions include resin components other than these forms, inorganic fillers, antioxidants, dispersion aids, and antistatic agents for the purpose of modification and cost reduction. It may contain an agent, a processing stabilizer, an additive such as a crystal nucleating agent, an additive such as an organic filler, and the like.
  • the proportion of each of these components in the resin raw material composition is preferably 5% by mass or less, more preferably 2% by mass or less, and may be substantially 0% by mass.
  • Antioxidants include, for example, phenolic antioxidants such as “Irganox 1010”, “Irganox 1076", and “BHT” (all trademarked by Cibas Specialty Chemicals); phosphorus-based and sulfur-based. Examples thereof include secondary antioxidants; and hinderedamine-based weather resistant agents, which may be used alone or in combination depending on the purpose. In particular, a combination of a phenol-based antioxidant and a phosphorus-based antioxidant is preferably used.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] and octadecyl-3- (3,5-di-t-butylhydroxyphenyl) propionate.
  • 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butylhydroxybenzyl) benzene, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2) , 4-Di-t-butylphenyl) -4,4'-biphenylene phosphite and the like are preferable.
  • the blending amount of the antioxidant is preferably 100 ppm to 10000 ppm with respect to the total mass of the resin pellets of the resin raw material composition.
  • the mass ratio of the phenol-based / phosphorus-based agent is preferably 1/3 to 3/1.
  • the resin raw material composition When the resin raw material composition is used for molding a microporous film, particularly when the microporous film is produced by extrusion molding, the resin raw material composition contains polypropylene resin pellets as resin pellets and exhibits the crystallinity of the polypropylene. It is preferable to include a crystal nucleating agent for the purpose of controlling and controlling the formation of microporous.
  • the type of crystal nucleating agent is not particularly limited, but is general benzyl sorbitol type (“Gelol” (trademark: manufactured by Shin Nihon Rika Co., Ltd.)), metal phosphate, carboxylic acid metal salt such as t-butyl benzoate aluminum, etc. Can be mentioned.
  • the amount of the crystal nucleating agent to be blended depends on the desired crystallization conditions, but is preferably 100 ppm or more with respect to the amount of polypropylene, and is excessive, from the viewpoint of rapid crystallization and easy moldability. From the viewpoint of preventing excessive bleeding due to the crystal nucleating agent, the amount is preferably 10,000 ppm or less.
  • a more preferable blending amount of the crystal nucleating agent is 100 ppm to 2,000 ppm with respect to polypropylene.
  • the microporous film using polyethylene tends to exhibit permeability, but polypropylene is polyethylene.
  • the pores are smaller than those of the above, and the permeability tends to be inferior.
  • a method of adjusting the pores to an appropriate size is effective. For example, the phase separation rate is adjusted by using a crystal nucleating agent, and an appropriate pore structure can be easily formed. ..
  • a dispersant aid for polypropylene and polyethylene for example, a hydrogenated styrene-butadiene-based elastomer, an elastomer obtained by copolymerizing ethylene and propylene, and the like can be used as needed.
  • the blending amount of these dispersion aids is not particularly limited, but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of polypropylene and polyethylene.
  • the antistatic agent examples include amines such as alkyldiethanolamine and hydroxyalkylethanolamine, amine esters such as stearyldiethanolamine monofatty acid esters, alkiloamides such as lauric acid diethanolamide and stearic acid diethanolamide, and glycerin and diglycerin. Examples thereof include monofatty acid esters, anionic antistatic agents such as alkylbenzene sulfonic acid, and polyoxyethylene alkyl ethers, which may be used alone or in combination of two or more.
  • the blending amount of the antistatic agent is not particularly limited, but is preferably about 500 to 10000 ppm with respect to the total mass of the resin pellets of the resin raw material composition.
  • the resin raw material composition of the present disclosure is a resin raw material composition for a microporous film
  • the resin raw material composition for a microporous film may be used by itself for molding a microporous film, or may be used alone for molding a microporous film, or pellets (PL). And / or may be used for molding a microporous membrane as a mixed composition blended with powder (PW). That is, a desired mixed composition can be produced by using the resin raw material composition for a microporous membrane of the present disclosure as a masterbatch.
  • the PL and / or PW to be additionally blended may be the same material as the PL and PW contained in the resin raw material composition for a microporous membrane, or may be different materials.
  • polypropylene pellets are used as PL
  • polyethylene powder is used as PW
  • mineral oil is used as LQ.
  • a mixed composition may be obtained by further adding and blending a polyethylene powder (raw material B) that is the same as or different from the polyethylene powder used in the raw material A.
  • raw material B polyethylene powder
  • the desired composition can be adjusted by a simple method called the dry blend method, so that the productivity can be extremely improved.
  • the method for producing a resin raw material composition of the present disclosure includes the following steps (a) and (b) when the resin raw material composition is a molding resin raw material composition.
  • each component may be added at once or divided into several times. Further, in this step (a) and / or (b), additives other than the above-mentioned components may be added.
  • the addition of pellets and powder may be appropriately added not only in (a) but also in (b).
  • a blender such as a tumbler mixer or a Henschel mixer is preferably used as the blender in the steps (a) and (b). These can be used at room temperature.
  • a tumbler mixer is used in the step (b)
  • a large amount of powder or pellets adhere to the inside of the blender due to the liquid component after blending, but the raw material in the central portion to which the liquid component does not adhere may be used as it is, or the deposits may be used.
  • the method for producing the resin raw material composition for a microporous membrane is large after any of the steps (a) and (b), preferably after the step (b), using a sieve having an opening diameter of about 10 mm. A lump of particle size may be removed.
  • the method for producing a resin raw material composition of the present disclosure includes the following steps (a') and (b') when the resin raw material composition is a resin raw material composition for a microporous membrane.
  • Step (a') A coating step of mixing the resin pellet and the liquid component with a blender to coat at least a part of the surface of the resin pellet with the liquid component.
  • Step (b') After the coating step, the powder is put into a blender, further mixed, and the powder is attached to the liquid component of the resin pellet coated with the liquid component.
  • each component may be added at once or divided into several times.
  • additives other than the above components may be added.
  • the pellets and powder may be added not only in (a') but also in (b') as appropriate.
  • a blender such as a tumbler mixer or a Henschel mixer is preferably used as the blender in the steps (a') and (b'). These can be used at room temperature.
  • a tumbler mixer is used in the step (b')
  • a large amount of powder or pellets adhere to the inside of the blender due to the liquid component after blending, but the raw material in the central part where it does not adhere may be used as it is, or attached.
  • the kimono may be scraped off with a spatula or the like, and further blending may be continued and mixed with the raw material in the central portion.
  • the method for producing the resin raw material composition for a microporous membrane is a sieve having an opening diameter of about 10 mm after any of the steps (a') and (b'), preferably after the step (b'). May remove lumps having a large particle size.
  • the weight mixing ratio of PL, LQ, and PW is appropriate in order to obtain a stable PWL1 having a maximum diameter of the particle size of the resin pellet + 5 mm or less. Since the weight mixing ratio is described in the column of "granular body", the description is omitted here.
  • the obtained resin raw material composition preferably has a torque rise time of 150 seconds or less by a plast mill. Since the details of the torque rise time have been described above, the description thereof will be omitted here.
  • step (a) the resin pellets and the liquid component are put into a blender and kneaded.
  • step (b) powder is added to the blender and further stirred. Separate blenders may be used in step (a) and step (b), or powder is added to the same blender containing the resin pellets coated with the liquid component produced in step (a) and step (b). ) May be performed.
  • the powder adheres to the liquid component on the surface of the resin pellet, and the resin raw material composition of the present disclosure can be obtained.
  • the obtained granular material of the resin raw material composition preferably has a maximum diameter of PWL1 of the particle size of the resin pellet + 5 mm or less, and has a stable structure as PWL1.
  • the resin raw material composition is charged into an arbitrary molding device, for example, a hopper of an extruder.
  • the resin raw material composition of the present disclosure is excellent in handleability and low dust property because it is less likely to be classified by a hopper and less dust is generated.
  • the pellet and the powder are integrated, it is difficult for the two to be classified.
  • each material is quickly and uniformly dispersed and melted. Therefore, the resin raw material composition of the present disclosure is also excellent in moldability.
  • step (a) a case where a commercially available polyethylene pellet (PL1) is blended with a commercially available blocking inhibitor (PW1) as a powder and a mineral oil (LQ1) is kneaded as a liquid component will be described.
  • step (a) first, 20 kg of PL1 is weighed, LQ1 is added thereto, and the mixture is stirred with an 80 liter tumbler mixer for 10 minutes. As a result, the surface of PL1 is appropriately moistened with LQ1.
  • the resin raw material composition thus produced may be sieved with an opening of about 10 mm to remove large particles.
  • FIG. 1 is an example of a granular material of the resin raw material composition (10) of the present disclosure.
  • a granule having only one pellet PWL1 grain
  • the resin raw material composition may also contain granules having a plurality of pellets of PWL2 to 10, but the amount is relatively small.
  • granules consisting only of powder and liquid components and dust of powder are hardly confirmed or substantially not contained. As a result, it is excellent in handleability, low dust generation and moldability.
  • the liquid component integrates a plurality of resin pellets and a large amount of powder.
  • the obtained resin raw material composition for a microporous membrane contains large granules formed by a liquid component and powder, and large granules formed by a large amount of powder gathering around the resin pellets. This is because the liquid component adheres to the powdery part or the wall of the blender before the liquid component adheres uniformly to the surface of the resin pellet, and a large mass of powder grows on the wall of the blender. It is presumed that it is formed by collapsing.
  • FIG. 2 is an example of a granular material of the conventional resin raw material composition (30) produced by the above dry blending method.
  • classification is likely to occur due to the difference in size between the resin pellets and the dust of the powder, and that the dust generation is high because the dust of the powder is abundant.
  • step (c') It is also possible to further blend the powder and / or pellet with the resin raw material composition for microporous membrane of the present disclosure produced in the steps (a') and (b') and use it as a mixed composition (.
  • a step (c') can be performed using a general blender such as a Henschel mixer or a tumbler mixer.
  • step (c') powder and / or pellets may be added to the blender used in step (b') following step (b'), or is different from step (b').
  • a blender can also be used.
  • ⁇ Measurement and evaluation method >> ⁇ Contents (% by mass) of PL, PW and LQ in the resin raw material composition, and a ratio of PWL> It was measured by the following procedure. 1. 1. The number of PWL0, PWL1, PWL2 and PWL10 or more, and the ratio of PWL1 to 9 5 g of the resin raw material composition was sampled in a container (about 250 to 500 grains). The number of PWL0, 1, 2, and 10 or more was counted, and the ratio (number%) of each was calculated. Moreover, the total weight of PWL1 to 9 was measured, and the ratio (mass%) to the total weight (5 g) was measured. 2. 2.
  • Measurement of the proportion (mass%) of particles having a particle size of 10 mm or more 50 g of the resin raw material composition was sampled (about 2500 to 5000 particles) in a container, and this was classified by sieving with a mesh opening of 10 mm. The weight of the particles having a particle size of 10 mm or more was measured, and the ratio (mass%) to the total weight (50 g) was measured.
  • ⁇ Particle size The particle size of all the powders, pellets and granules having a size of about 0.05 mm (50 ⁇ m) or more was measured with a KEYENCE microvideoscope, and those smaller than that were measured with a scanning electron microscope. The diameter (maximum diameter) of the circle circumscribing the particles to be measured was taken as the particle diameter, 100 particles were randomly selected, and the average thereof was calculated.
  • the time required for the kneading torque of the plast mill to rise and eventually reach its peak was measured.
  • This measuring method is an index of ease of kneading (dispersity) in an actual extruder.
  • the resin raw material In general extrusion molding, it is necessary for the resin raw material to start melting in a short time in the extruder and to increase the screw torque. If this torque rises slowly, the kneading capacity of the extruder will not be fully exerted, resulting in poor dispersion.
  • the dispersibility was evaluated based on the torque rise time according to the following criteria. A 150 seconds or less B 150 seconds or more and 200 seconds or less C 200 seconds or more and 300 seconds or less D 300 seconds or less
  • the bulk density ratio (first bulk density / second bulk density) was used as the variation in bulk density. It was evaluated as follows. A The bulk density ratio is within the range of 0.95 or more and 1.05 or less. B The bulk density ratio is in the range of more than 0.90 and less than 0.95, or more than 1.05 and less than 1.10. C The bulk density ratio is less than 0.90 or more than 1.10.
  • ⁇ Classification> 200 g of the resin raw material composition according to the present disclosure was sampled and randomly placed in a cylindrical polyethylene sample bottle having an outer diameter of 79 mm and a capacity of 500 cc. This was shaken for 5 minutes with a commercially available small shaker (KENIS mini shaker 3D 33180556, shaking width of about 7 degrees, shaking number of 30 rpm). After that, 10 g of each resin raw material composition was collected from the upper part of the bottle (range of about 1/10 in height) and the bottom of the bottle (range of about 1/10 in height), and the number of pellet grains in the bottle was collected. Was counted, and the number ratio (top / bottom) was measured. In this case, the number ratio of those having good classification is close to 1.0.
  • a The number ratio is 0.9 or more and less than 1.1.
  • B The number ratio is 0.85 or more, less than 0.9, or more than 1.1, and within the range of 1.15 or less.
  • C The number ratio is less than 0.85 or more than 1.15.
  • the ratio of bulk density before and after transportation (before / after transportation) was measured in the same manner as the above-mentioned measuring method of ⁇ bulk density>.
  • a The bulk density ratio is within the range of 0.95 or more and 1.05 or less.
  • B The bulk density ratio is in the range of more than 0.90 and less than 0.95, or more than 1.05 and less than 1.10.
  • C Bulk density ratio is less than 0.90 or more than 1.10.
  • the resin raw material composition for molding is put into a twin-screw extruder having a shaft diameter of 30 mm and an L / D35, kneaded at a predetermined temperature (230 ° C.), extruded with a 300 mm T-die, cooled with a cast roll, and thickened.
  • An unstretched raw material having a diameter of 1 mm was obtained.
  • This raw fabric was cut into 8 mm ⁇ 8 mm and stretched 4 times ⁇ 4 times with a batch type biaxial stretching machine to form a film.
  • the stretched film was cut into 20 cm ⁇ 20 cm, and fish eyes having a diameter of 0.5 mm or more were counted.
  • the evaluation was converted into a value per 10 g of film.
  • a Number of fish eyes is 5 / 10g or less
  • B Number of fish eyes is 6 to 20 / 10g C
  • This raw fabric was cut into 8 mm ⁇ 8 mm and stretched 7 times ⁇ 7 times with a batch type biaxial stretching machine to form a film. Further, this stretched film was dipped in an excess amount of dichloromethane and dried to extract and remove the plasticizer to obtain a microporous film.
  • the obtained microporous membrane was cut into 20 cm ⁇ 20 cm, and fish eyes having a diameter of 0.5 mm or more were counted.
  • the evaluation was converted into a value per 10 g of microporous membrane. A Number of fish eyes is 5 / 10g or less B Number of fish eyes is 6 to 20 / 10g C The number of fish eyes exceeds 20 / 10g.
  • ⁇ Porosity (%) of microporous membrane From the mass of the sample of the microporous membrane of 100 mm square, the tint W (g / cm 2 ) and the average density ⁇ (g / cm 3 ) of the components (resin and additive) constituting the microporous membrane are calculated, and the microporous membrane is calculated. It was calculated by the following formula from the thickness d (cm) of.
  • Porosity (W / (d ⁇ ⁇ )) ⁇ 100 (%)
  • the ratio of the porosity of each layer (the porosity of the A layer / the porosity of the B layer)
  • a resin raw material composition for molding was prepared by the following steps.
  • a predetermined amount of pellets were put into an 80-liter tumbler mixer, and the liquid component was put from above. When the liquid component was put into the mixer wall, it was put into the center so as not to adhere to the mixer wall. Then, the mixture was stirred for 10 minutes.
  • the PL / PW / LQ was added at the composition ratios shown in Tables 4 and 5 so that the total amount was 20 kg.
  • the solid line in FIG. 3 shows the torque rise time in Example 1.1. It can be seen that the average torque reaches the peak about 100 seconds after the raw material is dropped (start of kneading), and the dispersibility is better than that of Comparative Example 1.1 (about 180 seconds).
  • Comparative Examples 1.1 to 1.5 In Comparative Example 1.1, the powder and pellets had the same composition as in Example 1.4 without adding LQ, and a resin raw material composition for molding was prepared by a dry blending method. Due to the absence of LQ, the powder and pellets were completely separated, classified during transport and in the hopper, and dust was also flying.
  • the production method of Comparative Example 1.2 was based on the same method as that of Example 1.1, but the composition was outside the scope of the present disclosure, and therefore the performance was insufficient.
  • the broken line in FIG. 3 indicates the torque rise time in Comparative Example 1.2.
  • Comparative Examples 1.3 and 1.4 are the same methods as in Example 1.1 except for the composition. Comparative Example 1.5 has the same composition as that of Example 1.4, but all the raw materials were added at once in step a and stirred for 20 minutes, and step b was not performed. In Comparative Example 1.3, the binding between the powder and the pellet was insufficient, and classification and dust were generated. In Comparative Example 1.4, the liquid component was excessive and had adhesiveness. Therefore, a large amount of PWL 10 grains and PWL 0 grains were generated. In Comparative Example 1.5, since all the raw materials of the pellet, the powder, and the liquid component were stirred at once, all of them had a PWL of 10 or more without generating single grains. As a result, the dispersibility and pipe transportability were extremely poor.
  • LDPE Low density polyethylene (viscosity average molecular weight 70,000)
  • HDPE1 High-density polyethylene (viscosity average molecular weight 200,000)
  • PP Polypropylene (viscosity average molecular weight 950,000)
  • EL Elastomer (viscosity average molecular weight 60,000)
  • a resin raw material composition for a microporous membrane was prepared by the following steps.
  • the PL / PW / LQ was added at the composition ratios shown in Tables 9 and 10 so that the total amount was 20 kg.
  • Example 2.1, 2.2 and 2.4 to 2.10 the resin raw material compositions for microporous membranes shown in Tables 9 and 10 were used as they were.
  • Examples 2.3 and 2.11 to 2.22 after obtaining the resin raw material compositions for microporous membranes shown in Tables 9 and 10, the powders shown in Tables 11 and 12 are used as the step (c'). Was additionally added and blended to obtain a mixed composition. Even in the step (c'), good blending was possible.
  • the resin raw material composition or mixed composition for a microporous membrane prepared above was put into a twin-screw extruder having a screw diameter of 44 mm.
  • the pellets are already coated with powder, the pellets are also classified when further powder is added in the step (c') and charged into the twin-screw extruder. It kept a good mixing condition without any problems.
  • Liquid paraffin as a plasticizer was added from the middle of the cylinder of the extruder.
  • the polymer content at the time of extrusion after the addition of liquid paraffin is the following formula: ⁇ total mass (g) of resin component / total mass (g) of composition after addition of liquid paraffin ⁇ ⁇ 100 (mass%). It was calculated and prepared to be 33% by mass.
  • Extruded at an extrusion temperature of 200 ° C. a sheet-shaped molten resin extruded from a T-die at the tip of the extruder was guided to a cast roll having a roll temperature of 90 ° C. and cooled and solidified to obtain an unstretched raw fabric having a predetermined thickness.
  • this unstretched raw fabric was guided to a biaxial stretching machine and simultaneously biaxially stretched 7 times in length and 7 times in width at a temperature of 120 ° C., and then the plasticizer was extracted and removed with methylene chloride. Further, this was introduced into a heat treatment apparatus to obtain a microporous membrane.
  • the heat treatment temperature was adjusted in the range of 130 to 135 ° C.
  • the thickness was adjusted to approximately 9 ⁇ m.
  • the dispersion of the resin was good, and the air permeability and piercing strength of the microporous membrane were also good.
  • Tables 11 and 12 The results of the film formation of Examples 2.1 to 2.22 show that the resin raw material composition for the microporous film of the present disclosure has no problem in the film-forming property and the product property of the microporous film.
  • Comparative Examples 2.1 to 2.5 In Comparative Example 2.1, the powder and the pellet had the same composition as in Example 2.4 without adding LQ, and a resin raw material composition for a microporous membrane was prepared by a dry blending method. Due to the absence of LQ, the powder and pellets were completely separated, classified during transport and in the hopper, and dust was also flying. The production methods of Comparative Examples 2.2 to 2.4 were based on the same method as in Example 2.1, but the performance was insufficient.
  • Comparative Examples 2.3 and 2.4 are the same methods as in Example 2.1 except for the composition.
  • Comparative Example 2.5 all the raw materials were added at once in step a and stirred for 20 minutes, and step b was not performed.
  • Comparative Example 2.3 the powder did not bind well to the pellets, and classification and dust were generated.
  • Comparative Examples 2.4 and 2.5 the liquid component was excessive and the adhesive was sticky. Therefore, a large amount of PWL 10 grains and PWL 0 grains were generated.
  • Comparative Example 2.5 since all the raw materials of the pellet, the powder, and the liquid component were stirred at once, all of them had a PWL of 10 or more without generating single grains. As a result, the dispersibility and pipe transportability were extremely poor.
  • Comparative Examples 2.1 to 2.5 the resin raw material compositions for microporous membranes shown in Tables 9 and 10 were used as they were, and the film-forming properties and physical properties of the microporous membranes were confirmed. Since these had problems in the dispersion of the raw material composition, etc., they were devised to be put into an extruder to form a film. In each case, poor dispersion was confirmed. In particular, in Comparative Example 2.4, poor dispersion was severe, fish eyes occurred frequently, and the puncture strength was significantly reduced as compared with the others.
  • a resin raw material composition for a microporous film was prepared using only the powder (PW2) shown in Table 7, and the dispersibility, pipe transportability, classibility, dust generation, variation in bulk density, angle of repose and fish eye were evaluated. ..
  • HDPE1 High-density polyethylene (viscosity average molecular weight 200,000)
  • PP Polypropylene (viscosity average molecular weight 950,000)
  • EL Elastomer (viscosity average molecular weight 60,000)
  • the resin raw material composition of the present disclosure has good dispersibility, pipe transportability, and moldability, and a molded product having low dust generation and classification and good physical properties can be obtained.
  • the powder and pellets are used for extrusion molding at the same time. It can be transported well without being classified during transportation or adhering to pipes, no classification occurs even in the hopper, extrusion molding is good, and the resulting film or microporous film is molded with extremely little fish eye generation. Goods are obtained. Thereby, for example, it has industrial applicability as a separator for a packaging film having excellent moldability and dispersibility, a lithium ion secondary battery, and the like.
  • Resin raw material composition of the present disclosure 20 Conventional resin raw material composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示によれば、樹脂ペレット、パウダー及び液状成分を含む、樹脂原料組成物が提供される。樹脂原料組成物は、成形用樹脂原料組成物又は微多孔膜用樹脂原料組成物である。樹脂原料組成物は、上記樹脂ペレットの表面の少なくとも一部に上記液状成分が被覆され、その液状成分に上記パウダーが付着した粒状体を含む。樹脂原料組成物の全質量を基準として、上記パウダーの質量%に対する上記樹脂ペレットの質量%の比が、0.01以上100以下であり、上記液状成分の質量%に対する上記樹脂ペレットの質量%の比が、1以上199以下である。そして、上記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として20%以下である。

Description

成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法
 本開示は、成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法に関する。
 従来、ポリエチレン等の汎用プラスチック、ポリエステル等のエンジニアリングプラスチック等、エラストマー等の合成樹脂、特にポリエチレンやポリプロピレン等のポリオレフィン系樹脂は、成形品物性、成形加工性及び耐候性等のバランスが良く、包装フィルム、農業などの産業用フィルム、ボトル容器等のブロー成形、構造材料、及び大型コンテナー等の射出成形用途、並びに微多孔膜の製造等に広く使われている。
 これらの用途に用いられるペレットやパウダー状の樹脂原料は、一般的に、押出成形法にて成形することが広く知られている。これら樹脂原料は、樹脂単体で使われたり、樹脂以外の無機フィラーや繊維材料等を混合したりして使われる。また、樹脂原料に機能付与の為にフィラーを混合したり、液状原料、例えば流動パラフィン等のミネラルオイル(鉱油)の可塑剤を液状で添加したり、グリセリンエステル等の防曇剤、帯電防止剤等の添加剤を混合する場合も多い。ペレットの押出成形については特許文献1、パウダーの押出成形については特許文献2に記載されている。
 これらの樹脂原料の多くは、一般には粒子の大きさがおよそ2mm~5mm程度のペレットの状態で販売されているが、粒子径50μm~500μm程度のパウダーで販売されているものもある。また、アルミナ、シリカ、ジルコニア、及び酸化チタンの金属酸化物、並びにタルク、ベーマイト、及びカオリン等のフィラーは、一般には10nm~500μm程度のパウダー状で販売されている。昨今は、特許文献3に記載されているように、フィルムや微多孔膜を非溶融で粉砕してチップ化した原料も作成できる。
 微多孔膜の用途として、昨今では、特に電気自動車用途でリチウムイオン2次電池用途の微多孔膜状のセパレータの市場も増大しつつある。特許文献2は、このようなリチウムイオン2次電池用途のセパレータの生産方法も開示されている。
 成形品の高機能化の為、ペレット、パウダーに液状物を混合して成形するケースも増えてきている。これらのケースとしては、ポリエチレンやポリプロピレン等の樹脂パウダーに、流動パラフィン等の可塑剤を混合して押出し、延伸後、溶剤にて可塑剤を抽出して多孔化するリチウムイオン2次電池用セパレータが挙げられ、ポリエチレンやエラストマー、ポリプロピレンのペレットに柔軟化の為のミネラルオイル等の可塑剤を添加する技術が一般的である。
 また、粘度平均分子量30万を超える分子量の高い超高分子量ポリエチレン樹脂は、成形すれば非常に強度の高い成形品又は微多孔膜が得られるが、一方分子量が高いゆえに溶融粘度が著しく高く、押出成形が難しいため、一般にはペレットの状態では販売されておらず、重合パウダーの状態で販売されている。この超高分子量ポリエチレンパウダーを一般のポリエチレンやポリプロピレンのペレットと混合し、高強度化を図る際には、ペレットとパウダーを混合して使用する必要がある。
 これらの従来技術では、ペレットやパウダーを単独で、もしくは必要に応じて事前にブレンドするなどして押出機に投入することを基本としており、この方法は広く一般に用いられている。
特開昭59-39536号公報 特開2002-194132号公報 特開2006-21519号公報 特開2019-142002号公報
 しかしながら従来技術では、特にペレットとパウダーをブレンドして同時に押出成形、特にフィルム成形に使用する際、並びにペレットとパウダーをブレンドして同時に押出成形し、微多孔膜の製造に使用する際には、成形加工性、製品物性上の問題があった。
〈成形加工性の課題〉
 成形用樹脂原料組成物の製造において、一般には、ペレットとパウダーをタンブラーミキサーやヘンシェルミキサー等で事前に大量にブレンドする方法がとられる。この方法では、大量処理ができるため、生産コストを抑えられる。この際、まず配管輸送時や静置ホッパー内でペレットとパウダーが分級し、組成分布にむらが出やすかった。この原因は、数mmの粒子径のペレットに比べ、パウダーは一般に数μm~数百μmと小さいため、配管輸送時や静置ホッパー内でペレットとパウダーが分級し、組成分布にむらが出やすかった。例えば、3mm程度の樹脂ペレットと5μm以下程度の無機フィラーとを、重量比(樹脂ペレット:無機フィラー)で8:2程度に混合し、直径500mm、高さ1000mm、容量100リットルのホッパーに充填すると、運転中徐々に分級しパウダーが沈降する。この対策として、工程の各所に撹拌機(アジテーター)を設置する等の対策は取れても、設置個所のすぐ下流では再び分級するので、根本的な解決にはならなかった。また、パウダー原料は軽いので粉塵として空気中に舞いやすく、特に押出機の樹脂原料供給口周りの作業環境を悪化させやすかった(以下、「発塵性」等と表記する場合がある。)。
 セパレータなどの微多孔膜用樹脂原料組成物の製造において、一般に、単一もしくは複数の樹脂原料等を混錬し、押出機に投入する押出成形法が用いられる。押出成形は、低コストで簡便に成形品が得られるため、フィルム成形、ブロー成形、繊維成形、射出成形等に広く利用されている。しかしながら、ペレットと、フィラーや樹脂パウダーとを同時に押出機に投入する際、その大きさの違いから、一般のドライブレンドでは分級が起こり、各原料成分の分配が不十分になりやすい。したがって、そのまま押出機に投入すると、押出機中の分散及び混合が不均一になり、押出状態の変動によって膜厚みの変動が起こりやすい。例えば、インフレーション法のフィルム成形では、バブルの口開きの為のシリカや、炭酸カルシウム等のブロッキング防止剤が用いられる。しかしながら、この方法も、事前にペレットと、シリカや炭酸カルシウム等とを混練することが必要で、製造コストが増大する。
 特に、現在リチウムイオン2次電池用セパレータとして広く用いられる湿式法によるセパレータでは、可塑剤により樹脂を膨潤させるために、一般には粒子径の小さい樹脂パウダーを原料として用いることが多かった。しかしながら、昨今は、様々な目的でペレット原料を用いるケースも増えてきている。主原料である市販ポリオレフィンは、パウダーに比べ、ペレットの方が種類も流通量も多いため、今後はコストダウン等の目的でペレットを用いる場合が増えると考えられる。また、ペレットであれば、種々の機能性のマスターバッチ、例えばスリップ剤、帯電防止剤、及びフィラー等を含むマスターバッチを、ペレットと共に用いることが可能である。また、昨今は地球環境保全等の機運が高まり、押出成形用途でも原料のリサイクルが推進されてきている。リサイクル原料は、フィルムや成形品を粉砕し、押出機にて溶融ペレタイズされる場合が多く、従ってリサイクル原料を使用するにはペレットとして使用する必要がある。このように、セパレータ用途においても、今後これらペレット状の樹脂原料をパウダーと共に使用する必要性が高まると見込まれる。
 ペレットとパウダーを同時に押出機に投入し、高度の品質で成形する一つの一般的な方法は、押出機のスクリュー形状を最適化したり、スクリューの軸長を長大化し、混練の為の時間を増大させたりする。これらの方法は、混練のエネルギーを増大させるので、設備の大型化や特殊化が必要であり、製造コストが増大する。また、パウダーとペレットの粒子径が大きく異なることなどから、その押出機に投入する直前の段階、例えばフィードホッパー内で分級が起こり、良好な成形ができなかった。このように、従来技術では、押出混練機に投入する際に、ペレットとパウダーとが分級しない原料組成物は得られず、ペレットとパウダーとを良好に混合する方法はなかった。
 より具体的には、数mmの粒子径のペレットに比べ、パウダーは一般に数μm~数百μmと小さいため、配管輸送時や静置ホッパー内でペレットとパウダーが分級し、組成分布にむらが出やすかった。例えば、3mm程度の樹脂ペレットと5μm以下程度の無機フィラーとを、重量比(樹脂ペレット:無機フィラー)で8:2程度に混合し、直径500mm、高さ1000mm、有効容量100リットル程度のホッパーに充填すると、運転中徐々に分級しパウダーが沈降する。この対策として、工程の各所に撹拌機(アジテーター)を設置する等の対策は取れても、設置個所のすぐ下流では再び分級するので、根本的な解決にはならなかった。また、パウダー原料は軽いので粉塵として空気中に舞いやすく、特に押出機の樹脂原料供給口周りの作業環境を悪化させやすかった(以下、「発塵性」等と表記する場合がある。)。
〈製品物性の課題〉
 上記のように分級による組成分布ムラができると、上述のように、押出状態の変動によって膜厚みの変動が起こりやすいため、得られる押出成形物、例えばフィルム等、及び得られる微多孔膜、例えばセパレータ等では、混練が不十分なことによるフィッシュアイや未溶融ゲルが発生したり、フィルム面内の厚みムラが悪化したり、また、強度ムラが発生する傾向にある。仮に組成分布ムラが許容範囲まで解消されても、ペレットとパウダーの形状の違い、特にその粒子径の違いにより押出機内での融解速度(融解迄の時間)に違いが生じ、大きなペレットが溶け残ったり、逆にペレットの表面が早期に溶出して、パウダーにまとわりつき、パウダーへ混練エネルギーが伝達されなくなり、パウダーが溶け残るケースもあった。このような現象が発生すると、押出圧変動や押出量変動にもつながる。上記課題の解決には事前に必要な原料を2軸混練機等で事前に溶融ペレタイズしておけば改善はされるものの、当該2軸混練機に投入する際には同じ現象が起こり、根本的な解決にはならなかった。また、製造工数が増大し、生産コストが大幅に増加し、さらに複数の押出機を通すことによる熱劣化やせん断による劣化が大きくなり、全体的に強度が低下する傾向にある。
 このように上記のいずれの方法においても、成形加工性の課題及び/又は製品物性の課題があり、従来の解決手段では、製造コストが増大するばかりか、ペレットと粉体のサイズの違いや、混合量により、適用できる成分の組み合わせ範囲が狭く、成分ごとのその都度の微調整が必要である。これらの課題は、特に、最近薄膜化が進む、リチウムイオン2次電池用セパレータの微多孔膜では重要な課題である。
 上記事情に鑑み、本開示は、分散性、配管輸送性、及び成形性がよく、発塵性及び分級が少なく、かつ諸物性が良好な成形品又は微多孔膜が得られる、成形用樹脂原料組成物、微多孔膜用樹脂原料組成物及びその製造方法を提供する。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定の要件を満たす樹脂原料組成物を用いることで、上記課題を解決できること、また、そのような樹脂原料組成物の製造方法を見出した。
 本開示の実施形態の例を以下に列記する。
[1]
 樹脂ペレット(PL)、パウダー(PW)及び液状成分(LQ)を含む樹脂原料組成物であって、
 上記樹脂原料組成物は、成形用樹脂原料組成物であり、
 上記樹脂ペレットの表面の少なくとも一部に上記液状成分が被覆され、上記液状成分で被覆された上記樹脂ペレットは単独粒であり又は複数粒の凝集体であり、その液状成分に上記パウダーが付着した、粒状体を含み、
 上記樹脂原料組成物の全質量を基準として、上記パウダーの質量%に対する上記樹脂ペレットの質量%の比(PL/PW)が、0.01以上100以下であり、上記液状成分の質量%に対する上記樹脂ペレットの質量%の比(PL/LQ)が、1以上199以下であり、
 上記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として20%以下である、樹脂原料組成物。
[2]
 樹脂ペレット(PL)、パウダー(PW)及び液状成分(LQ)を含む樹脂原料組成物であって、
 上記樹脂原料組成物は、微多孔膜用樹脂原料組成物であり、
 上記樹脂ペレットの表面の少なくとも一部に上記液状成分が被覆され、上記液状成分で被覆された上記樹脂ペレットは単独粒であり又は複数粒の凝集体であり、その液状成分に上記パウダーが付着した、粒状体を含み、
 上記樹脂原料組成物の全質量を基準として、上記パウダーの質量%に対する上記樹脂ペレットの質量%の比(PL/PW)が、0.01以上100以下であり、上記液状成分の質量%に対する上記樹脂ペレットの質量%の比(PL/LQ)が、1以上199以下であり、
 上記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として20%以下である、樹脂原料組成物。
[3]
 上記液状成分で被覆された上記樹脂ペレットの上記液状成分に上記パウダーが付着された粒状体を主成分とする、項目1又は2に記載の樹脂原料組成物。
[4]
 上記樹脂ペレットの単独粒又は2~9粒の凝集体を含む粒状体の個数が、粒状体の全個数を基準として95%以上であり、かつ粒径が10mm以上の粒状体が、上記樹脂原料組成物の全質量を基準として1質量%以下である、項目1~3のいずれか一項に記載の樹脂原料組成物。
[5]
 上記樹脂ペレットの単独粒を含む粒状体の個数が、粒状体の全個数を基準として70%以上であり、上記樹脂ペレットの単独粒を含む粒状体の最大径が、上記樹脂ペレットの粒径以上、上記樹脂ペレットの粒径+5mm以下である、項目1~4のいずれか一項に記載の樹脂原料組成物。
[6]
 上記樹脂ペレットの複数粒の凝集体を含む粒状体の個数が、粒状体の全個数を基準として30%未満であり、かつ、
 上記樹脂原料組成物は、上記樹脂ペレットを含まない上記パウダー及び上記液状成分からなる粒状体を更に含む場合、上記樹脂ペレットを含まない粒状体の個数が、粒状体の全個数を基準として20%未満である、項目1~5のいずれか一項に記載の樹脂原料組成物。
[7]
 上記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として1%以下である、項目1~6のいずれか一項に記載の樹脂原料組成物。
[8]
 上記樹脂ペレットが、ポリオレフィン、PET、ポリアミド、アラミド、ポリ塩化ビニル、合成ゴム、ABS、及びPPEからなる群から選択される少なくとも一つを含む、項目1~7のいずれか一項に記載の樹脂原料組成物。
[9]
 上記パウダーが、ポリエチレン、エラストマー、PET、ポリアミド、アラミド、及び無機粒子からなる群から選択される少なくとも一つを含む、項目1~8のいずれか一項に記載の樹脂原料組成物。
[10]
 上記パウダーの粒子径が10nm以上50μm以下である、項目1~9のいずれか一項に記載の樹脂原料組成物。
[11]
 上記液状成分が潤滑油、鉱油及び流動パラフィンからなる群から選択される少なくとも一つである、項目1~10のいずれか一項に記載の樹脂原料組成物。
[12]
 上記樹脂原料組成物の嵩密度のばらつきが10%以下である、項目1~11のいずれか一項に記載の樹脂原料組成物。
[13]
 上記樹脂原料組成物の安息角が30°以上55°以下である、項目1~12のいずれか一項に記載の樹脂原料組成物。
[14]
 樹脂原料組成物の製造方法であって、
 上記樹脂原料組成物は、成形用樹脂原料組成物であり、
 樹脂ペレット及び液状成分をブレンダーで混錬して、上記樹脂ペレットの表面の少なくとも一部に上記液状成分を被覆する、被覆工程と、
 上記被覆工程の後に、上記ブレンダーにパウダーを投入して、更に混練し、上記液状成分で被覆された上記樹脂ペレットの上記液状成分にパウダーを付着させる、付着工程と
を含む、樹脂原料組成物の製造方法。
[15]
 トルク立上り時間が150秒以内である、項目14に記載の樹脂原料組成物の製造方法。
[16]
 樹脂原料組成物の製造方法であって、
 上記樹脂原料組成物は、微多孔膜用樹脂原料組成物であり、
 樹脂ペレット及び液状成分をブレンダーで混錬して、上記樹脂ペレットの表面の少なくとも一部に上記液状成分を被覆する、被覆工程と、
 上記被覆工程の後に、上記ブレンダーにパウダーを投入して、更に混練し、上記液状成分で被覆された上記樹脂ペレットの上記液状成分にパウダーを付着させる、付着工程と
を含む、樹脂原料組成物の製造方法。
[17]
 トルク立上り時間が150秒以内である、項目16に記載の樹脂原料組成物の製造方法。
[18]
 項目16又は17に記載の樹脂原料組成物の製造方法によって、樹脂原料組成物を製造する工程と、
 上記樹脂原料組成物に、上記樹脂ペレット(PL)及び上記パウダー(PW)と同一の又は異なる、樹脂ペレット(PL)及び/又はパウダー(PW)をさらに混合する工程と
を含む、混合組成物の製造方法。
 本開示によれば、特にフィルムや微多孔膜用途に利用した際に、成形加工において強度、光学性、異物等の諸物性に優れた製品が得られ、かつその成形性、取扱性に優れた成形用樹脂原料組成物が提供される。本開示によれば、諸物性に優れた微多孔膜が得られ、かつその成形性、取扱性に優れた微多孔膜用樹脂原料組成物もまた提供される。そのため、本開示の成形用樹脂原料組成物は、特にフィルムや微多孔膜の成形に良好に使用される。
図1は、本開示の樹脂原料組成物の粒状体の写真である。 図2は、従来の樹脂原料組成物の粒状体の写真である。 図3は、実施例1.1の樹脂原料組成物、及び比較例1.1の樹脂原料組成物の、混練時間と平均トルクの関係(トルク立上り時間)を示すグラフである。
《樹脂原料組成物》
 本開示の樹脂原料組成物は、ペレット、パウダー、及び液状成分を含む(以下、それぞれ、「PL」、「PW」及び「LQ」と記載することがある。)。樹脂原料組成物は、成形用樹脂原料組成物、又は微多孔膜用樹脂原料組成物である。樹脂原料組成物は、多数の粒状体を含み、その粒状体は、一つのペレット、又は複数のペレットの凝集体を有し、そのペレットの全部または一部の表面が液状物に被覆され、さらにその液状物にパウダーが付着されている粒状体(以下、本願明細書において「PWL」と記載することがある。)を含む。本願明細書において、一つの(単独粒の)樹脂ペレットを有する粒状体を「PWL1」、複数の樹脂ペレットの凝集体を有する粒状体を、樹脂ペレットの個数に基づいて、「PWL2」、「PWL3」・・・等と記載することがある。樹脂ペレットを含まず、パウダー及び液状成分からなり、かつ篩い径1mm以上10mm以下の粒状体を、「PWL0」と記載することがある。「粒状体の全個数」とは、PWL0及びPWL1以上の粒状体の全個数を意味する。
 樹脂原料組成物は、ペレット、パウダー及び液状成分を主成分として含むことが好ましい。ここでの「主成分」とは、ペレット、パウダー及び液状成分の合計質量が、樹脂原料組成物の全質量に対して50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上であり、実質的に100質量%であってもよい。樹脂原料組成物は、主成分以外には、後述するようにその他の添加剤等や改質剤等の成分を含有することもできる。
〈樹脂ペレット〉
 樹脂ペレット(PL)としては、一般に用いられる市販の樹脂ペレットを用いればよい。樹脂ペレットの樹脂はどのような樹脂でも使用でき、たとえば、ポリオレフィン、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアクリロニトリル(PAN)、ポリアミド、アラミド、ポリ塩化ビニル、合成ゴム、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS)、及びポリフェニレンベンゾビスオキサゾール(PPE)等から選ばれる。樹脂ペレットの材料は、好ましくは、ポリオレフィン、PET、ポリアミド、アラミド、ポリ塩化ビニル、合成ゴム、ABS、及びPPEからなる群から選択される少なくとも一つである。樹脂ペレットは、好ましくは、ポリオレフィンを主成分として含有することが好ましい。「主成分」とは、樹脂ペレットの全質量に対して50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上であり、実質的に100質量%であってもよい。ポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン(PE)及びオレフィン系エラストマー等が挙げられる。
 ポリプロピレンとしては、特に限定されるものではなく、例えば、アイソタクティックポリプロピレン(IPP)、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等のプロピレンのホモ重合体;プロピレンと、エチレン、ブテン、炭素数5以上のα-オレフィン等のコモノマーとを共重合させて得られるランダム共重合体(RPP)、ブロック共重合体(BPP)、及びターポリマー等が挙げられる。これらは単独でも混合物でもよい。
 樹脂ペレットの樹脂の粘度平均分子量(Mv)としては、溶融混練が容易となり、その結果、樹脂原料組成物をフィルムや微多孔膜としたときにフィッシュアイ状の欠陥が改善される傾向にあるため、好ましくは100万以下、より好ましくは70万以下、さらに好ましくは60万以下である。また強度の観点から、樹脂ペレットの樹脂の粘度平均分子量は10万以上、より好ましくは20万以上である。樹脂ペレットがポリプロピレンである場合、同様の観点から、ポリプロピレンの粘度平均分子量(Mv)としては、好ましくは100万以下、より好ましくは70万以下、さらに好ましくは60万以下、好ましくは10万以上、より好ましくは20万以上である。
 ここで、フィッシュアイとは、ポリマー編集委員会著、「ポリマー辞典」、大成社、平成12年、増刷6版、337頁等に定義されているように、フィルム状若しくはシート状の成形品中に、又は微多孔膜中に生じる小さな球状の塊をいい、魚の眼のような透明性を示すものが多いことからこのような名前が付けられた。フィッシュアイは、その生成要因から区別して、成形材料の混練不足から来る未溶融の塊、原料の一部がゲル化した塊、成形中の材料の部分的劣化による塊、異物を核としたものなど、種々のものが挙げられる。ただし、本明細書においてフィッシュアイは、成形品の原料として用いた樹脂原料組成物の材料に起因するものであり、異物を核にしたものは除外する。なお、その異物とは、例えば、セルロース、塵、金属片、樹脂の炭化物、種類の異なるプラスチック、糸屑、及び紙切れ等が挙げられる。
 樹脂ペレットの樹脂は、メタロセン触媒等を利用して立体規則性を制御したポリプロピレンや、BPP、RPPを、IPPに対して0.5~30質量%ブレンドした樹脂も好ましい。このようなポリプロピレンを用いることにより、例えば微多孔膜用途では、透過性が改良される傾向にある。
 樹脂ペレットの樹脂は、ポリエチレンとポリプロピレンとの混合物でもよい。ポリエチレンとしては、例えば、高密度ポリエチレン、超高分子量ポリエチレン、線状低密度ポリエチレン、高圧法低密度ポリエチレン、及びこれらの混合物等が挙げられる。また、メタロセン触媒を利用した分子量分布の狭いポリエチレンや、高密度ポリエチレンでも多段重合によるポリエチレンでもよい。上記の中でも、フィルムや微多孔膜を成形する場合の熱収縮を低減する観点から、イオン重合による線状の高密度ポリエチレン、超高分子量ポリエチレン、あるいはこれらの混合物を使用することが好ましい。ここでいう超高分子量ポリエチレンとは、粘度平均分子量が50万以上のポリエチレンを指す。超高分子量ポリエチレンが全ポリエチレン中に占める割合としては、好ましくは5~50質量%であり、分散性の観点から、より好ましくは9~40質量%である。ただし、この場合超高分子量ポリエチレンは、一般的にはパウダー状で用いるため、その場合、「パウダー」に分類される。
 ポリエチレンは、分子量が1万未満のポリエチレン成分を含むことが好ましい。ここでいう分子量1万未満のポリエチレン成分とはゲルパーミエーションクロマトグラフィー(GPC)法にて測定される分子量分布のチャートにおける分子量1万未満の部分であって、その割合はチャート上の面積比から求めることができる。分子量1万未満のポリエチレン成分は、特定の条件で製膜すると、その一部が微多孔膜の表面に移動し、その結果、表面のポリプロピレン量を低下させる作用を持つ。このような分子量1万未満のポリエチレン成分をポリエチレンへ含有させる方法としては、ポリエチレンの重合時に低分子量成分を多く含むように重合条件を設定して作製してもよいし、通常のポリエチレンに重量平均分子量が1万未満のポリエチレン成分を混合して作製してもよい。
 分子量1万未満のポリエチレン成分の含有量は、全ポリエチレン量に対して好ましくは5質量%以上であり、この範囲内であると、フィルムや微多孔膜の製膜中に摩擦が軽減され、生産性が向上する傾向にある。より好ましくは10質量%以上であり、この範囲内であると、これらのフィルムや微多孔膜の2次加工工程において巻取り加工性が向上する傾向にある。さらに20質量%以上であると、より一層高速の加工が可能となり、生産性が向上する傾向にある。一方、フィルムや微多孔膜の強度を改善する観点からは、50質量%以下であることが好ましい。また、摩擦低減をさらに改善する観点からは、分子量が1000未満のポリエチレン成分を1質量%以上で含むことが好ましい。
 樹脂ペレットの樹脂は、ポリプロピレン、ポリエチレン以外の樹脂として、製膜性を改善する目的で、ポリブテン-1樹脂、プロピレン系エラストマー、エチレン系エラストマー、特にプロピレンとエチレンとのランダム共重合体エラストマーを含んでもよい。ポリメチルペンテン-1樹脂を用いることも可能であり、メルトフローレート(MFR)が0.01~30g/10分のものが好適に用いられる。特に好ましくは0.1~5g/10分の範囲内である。
 樹脂ペレットの樹脂は、上記以外にも、ポリフェニレンエーテル等のエンジニアリングプラスチック樹脂、ナイロン6、ナイロン6-12、アラミド樹脂等のポリアミド樹脂、ポリイミド系樹脂、PET、PBT等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、エチレンとビニルアルコールの共重合体、C2~C12のα-オレフィンと一酸化炭素の共重合体及びその水添物、スチレン系重合体の水添物、スチレンとα-オレフィンとの共重合体及びその水添物、スチレンと脂肪族モノ不飽和脂肪酸との共重合体、アクリル酸及び同誘導体系重合体、スチレンと共役ジエン系不飽和単量体との共重合体及びこれらの水添物から選択される熱可塑性樹脂等を用いることができる。
 樹脂ペレットの粒子径は、押出成形性の観点から、好ましくは1mm~10mm程度の範囲であり、より好ましくは2mm~6mm、更に好ましくは3mm~5mmである。ペレットの製造方法は、限定されないが、例えば高密度ポリエチレンであれば、低圧法で重合された粒径数十~数百μmのポリエチレンパウダーを、200℃程度に加熱した押出機で溶融混練後、ストランドカット、もしく水中カットにて粒子径1mm~5mm程度のサイズに切断される。特許文献4に示す方法にて作成された、一旦製膜したフィルムを圧着切断したペレットも利用できる。
 樹脂ペレットが、樹脂原料組成物の全質量中に占める割合としては、好ましくは5質量%~98質量%、より好ましくは30質量%~98質量%である。
〈パウダー〉
 パウダー(PW)は、粒子径数nmから数百μmの微細粒子を意味する。パウダーが、樹脂原料組成物の全質量中に占める割合としては、好ましくは5質量%~90質量%、より好ましくは8質量%~50質量%である。パウダーは、好ましくは樹脂粒子、無機粒子等であるが、繊維を粉砕したものや、木材チップ等の天然由来のもの、金属微粒子等でもよい。
 樹脂粒子とは、例えば、前述の樹脂ペレットとして挙げた樹脂を用いることができる。樹脂の種類及び分子量等は樹脂ペレットの欄に記載したとおりであるのでここでは記載を省略する。樹脂粒子の製法としては、重合された樹脂や、そのペレットを粉砕することが挙げられる。
 樹脂粒子としては、樹脂ペレットとして挙げた樹脂のなかでも、例えば、ポリエチレン、ポリプロピレン、エラストマー、PET、ポリアミド及びアラミド等のパウダーが挙げられる。樹脂粒子は、好ましくは、ポリオレフィンを主成分として含有することが好ましい。「主成分」とは、樹脂ペレットの全質量に対して50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上であり、実質的に100質量%であってもよい。ポリオレフィンとしては、好ましくはポリエチレン、ポリプロピレン及びオレフィン系エラストマー等が挙げられ、より好ましくはポリエチレンである。
 樹脂粒子の粘度平均分子量(Mv)としては、フィルムや微多孔膜の強度を向上させる観点から、好ましくは20万以上であり、より好ましくは30万以上である。粘度平均分子量(Mv)の上限としては、押出成形性、延伸性の観点から、好ましくは1000万以下、より好ましくは500万以下である。ポリエチレンパウダーの粘度平均分子量(Mv)(複数種のポリエチレンを用いる場合には、その全体の粘度平均分子量)としては、フィルムや微多孔膜の強度を向上させる観点から、好ましくは20万以上であり、より好ましくは30万以上である。粘度平均分子量(Mv)の上限としては、押出成形性、延伸性の観点から、好ましくは1000万以下、より好ましくは500万以下である。ポリエチレンパウダーの分子量分布(Mw/Mn)は、無機フィラー等を混合して混練する場合にその混練性を向上させ、無機フィラーが二次凝集した粒状の欠点が発生することを抑制する観点からは、好ましくは5以上であり、より好ましくは8以上である。前述のように、フィルムや微多孔膜を成形する場合の熱収縮を低減する観点から、超高分子量ポリエチレンのパウダーを用いてもよい。
 樹脂粒子の径はペレットの大きさよりも小さく、好ましくは、平均径が300μm以下である。300μm以下であると、重合パウダーの場合は、その製造の際に反応時間が短くなり、生産性に優れる。樹脂粒子の径は、好ましくは200μm以下、更に好ましくは100μm以下である。下限値は特に限定されないが、成形時の空気輸送等での粉塵爆発の観点で適宜調製され、例えば10μm以上、50μm以上又は100μm以上とすることができる。
 樹脂粒子が、樹脂原料組成物の全質量中に占める割合としては、好ましくは5質量%~90質量%、より好ましくは10質量%~50質量%である。
 無機粒子としては、例えば、アルミナ(例えば、α-アルミナ等)、シリカ、チタニア、ジルコニア(イットリア変性ジルコニアを含む)、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト(カオリン)、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維等が挙げられ、これらを単独で用いてもよいし、複数を混合して用いてもよい。これらの中でも、無機粒子としては、シリカ、アルミナ、ゼオライト、カオリン、タルク、ジルコニア及びチタニアからなる群から選択される少なくとも一つが好ましい。
 無機粒子が、樹脂原料組成物の全質量中に占める割合としては、好ましくは3質量%~90質量%、より好ましくは5質量%~55質量%である。
 無機粒子の粒子径としては特に限定されないが、例えば、10nm以上50μm以下である。また、目的によって種々の粒子径を用いることができる。例えば、有機溶媒との濡れ性を高めるために、疎水性の無機粒子を用いる場合は、樹脂への分散性や表面積を向上させるため、比較的平均粒子径の小さいもの、例えば5nm~1μm、好ましくは5nm~100nm程度のものを用いてもよい。一方、平均粒子径が1μm~10μmの平均粒子径を有する無機粒子を用いると、フィルムや微多孔膜の強度が向上する傾向にあり、さらに1.5μm~5μmの平均粒子径を有する無機粒子を用いると、製膜時の偏肉が向上する傾向にある。無機粒子の嵩比重(嵩密度)は、0.05g/cm~10g/cm程度であり、好ましくは0.1~5g/cmである。これらのパウダーは単独で用いてもよいし、複数種を混合して用いてもよい。
〈液状成分〉
 樹脂原料組成物は、液状成分を含むことにより、ペレットとパウダーが一体化され、パウダーによる発塵を抑えることができる。液状成分(LQ)とは、液状であって発塵性を抑えることができれば特に限定されず、好ましくは、成形品や微多孔膜の製造の際、可塑剤として用いられる潤滑油又は鉱油であり、押出成形により得られる製品の性能発現に寄与する、フタル酸ジオクチル(DOP)及びフタル酸ジブチル(DBP)などのフタル酸エステル類、流動パラフィン、その他の可塑剤、柔軟剤、及び防曇剤等であってもよい。液状成分(LQ)は、潤滑油、鉱油及び流動パラフィンからなる群から選択される少なくとも一つであることが好ましい。なお、成形品が微多孔膜用途の場合、流動パラフィン等の可塑剤は、最終製品からはその大部分または全部が除去される。この液状成分の働きにより、一般にはペレットと分級しやすく、また粉塵として作業場所で舞い上がる特性のあるパウダー、例えば、粒径が5nm~50nm程度のナノフィラーも良好に用いることができる。
 液状成分の粘度は特に限定されず、比較的大きな、例えば100μm以上の粒子径をもつ樹脂パウダーを使用する場合には比較的高粘度であることが好ましく、好ましくは40℃に於ける動粘度(JIS K 2283)が50mm/S以上、更に好ましくは60mm/S以上であることが望ましい。高粘度であるとペレットへの付着性がよく、輸送時等にペレットとパウダーが分離しにくい。
 液状成分が、樹脂原料組成物の全質量中に占める割合としては、好ましくは0.1質量%~30質量%、より好ましくは2質量%~7質量%である。
〈粒状体〉
 粒状体は、樹脂ペレットの表面の少なくとも一部に液状成分が被覆され、液状成分で被覆された当該樹脂ペレットが、単独粒又は複数粒の凝集体の状態であり、その液状成分にパウダーが付着して形成されている。そして、樹脂ペレットの10粒以上の凝集体を含む粒状体(PWL10以上)の個数が、粒状体の全個数を基準として20%以下である。PWL10以上の個数が少ないことにより、分級が少なく、分散性、配管輸送性、成形性、及び得られる諸物性に優れた樹脂原料組成物を提供することができる。
 このような、PWL10以上の個数が少ない樹脂原料組成物を得るには、PL、LQ、及びPWの重量混合比が適当であることが望ましい。まず、パウダーの質量%に対する樹脂ペレットの質量%の比(PL/PW)は、好ましくは上限約99.01/0.99~下限1/99(0.01~100)であり、より好ましくは上限99/1~下限1/99(0.01~99)であり、更に好ましくは上限95/5~下限10/90(0.11~19)、より更に好ましくは上限95/5~下限50/50(1~19)、特に好ましくは上限95/5~下限66.7/33.3(2~19)、特に好ましくは上限90/10~下限70/30(2.3~9)である。例えば、PL/PWは2以上100以下であることが好ましい。上限値を超える範囲では樹脂原料組成物の粘着性があがり、配管輸送が困難になる傾向になる。また下限値未満ではペレットとパウダーの付着が不十分で分級が起きやすく、パウダーによる粉塵が発生する傾向にある。
 また、液状成分の質量%に対する樹脂ペレットの質量%の比(PL/LQ)は、上限99.5/0.5~下限50/50(1~199)であり、好ましくは、上限99/1~下限50/50(1~99)、より好ましくは、上限99/1~下限70/30(2.3~99)、更に好ましくは上限98/2~下限70/30(2.3~49)、より更に好ましくは上限97/3~下限80/20(4~32.3)である。この範囲であれば分散性が安定する。上限値を超えるとPLがLQで被覆されにくくなり、粉塵や分級が発生しやすい。下限値未満であるとLQが過剰となりべとつきが発生し、配管輸送性が悪化する傾向にある。
 液状成分の質量%に対するパウダーの質量%の比(PW/LQ)は、好ましくは上限99/1~下限20/80(0.25~99)の範囲が好ましく、より好ましくは上限95/5~下限30/70(0.43~19)、更に好ましくは上限90/10~下限40/60(0.67~9)である。この範囲の混合比で混合し、タンブラーミキサーやヘンシェルミキサー等適当な手段で混練すると、ペレットの外表面が液状成分で被覆され、樹脂ペレットにパウダーを適度に付着させやすい。0.25以上であることによりパウダーの付着性が向上し、99以下であることにより液状成分による樹脂原料組成物のべたつきが抑制され、配管輸送性が向上する傾向にある。
 樹脂原料組成物は、樹脂ペレットの単独粒を含む粒状体(PWL1)の最大径が、好ましくは樹脂ペレットの粒径以上、より好ましくは樹脂ペレットの粒径より大きく、好ましくは樹脂ペレットの粒径+5mm以下、より好ましくは樹脂ペレットの粒径+4mm以下、更に好ましくは樹脂ペレットの粒径+3mm以下、より更に好ましくは樹脂ペレットの粒径+2mm以下、より更に好ましくは樹脂ペレットの粒径+1mm以下である。樹脂ペレットの単独粒を含む粒状体(PWL1)の最大径が上記の範囲内であると、樹脂ペレットの表面にパウダーが過剰に付着した粒状体が少なく、分級を更に抑えることができ、配管輸送性が更に向上する傾向にある。
 樹脂原料組成物は、液状成分で被覆された樹脂ペレットの液状成分にパウダーが付着された粒状体を主成分とすることが好ましい。ここでの「主成分」とは、上記の粒状体が、樹脂原料組成物の全質量に対して50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上であり、実質的に100質量%であってもよい。
 取扱性、低発塵性及び成形性の観点から、単独粒の粒状体(PWL1)及び2~9粒の粒状体(PWL2~9)の個数は、粒状体の全個数を基準として好ましくは95%以上であり;かつ、粒径が10mm以上の粒状体は、樹脂原料組成物の全質量を基準として、好ましくは1質量%以下である。同観点から、複数粒の樹脂ペレットを含む粒状体の個数が、粒状体の全個数を基準として好ましくは30%未満、より好ましくは20%未満であり;かつ、樹脂原料組成物が樹脂ペレットを含まないパウダー及び液状成分からなる粒状体(PWL0)を更に含む場合、PWL0の個数が、粒状体の全個数を基準として好ましくは20%未満、より好ましくは10%未満である。但しPWL0は、篩い径1mm以上10mm以下のものを意味する。大きさが1mm未満、または10mmを超える塊が多く存在すると、分散状態が悪化する。同観点から、10粒以上の樹脂ペレットを含む粒状体(PWL10以上)の個数が、粒状体の全個数を基準として、20%以下であり、好ましくは1%以下、より好ましくは実質的に含まない。
 PWL1の個数が、粒状体の全個数を基準として70%以上であり、かつ、樹脂ペレットの単独粒を含む粒状体(PWL1)の最大径が、樹脂ペレットの粒径以上、樹脂ペレットの粒径+5mm以下であることが特に好ましい。PWL1の個数が一定割合以上であり、かつその最大径を小さくすることにより、取扱性、低発塵性及び成形性において特に優れる樹脂原料組成物を得ることができる。
〈嵩密度〉
 樹脂原料組成物の嵩密度は、特に無機フィラーを使用する際は、その比重に大きく左右されるが、一般の原料として用いるには好ましくは0.1g/cm~2g/cm、より好ましくは0.3g/cm~1.5g/cm、更に好ましくは0.5g/cm~1.2g/cmである。また、嵩密度のばらつきは、好ましくは10%以下、より好ましくは5%以下、更に好ましくは3%以下である。嵩密度及びそのばらつきが上記範囲内であると、押出機への供給量が安定しフィルム製品又は微多孔膜の均一性が改善される。
〈安息角〉
 樹脂原料組成物は、安息角が30°以上55°以下であることが好ましい。安息角が上記範囲内であると、一般の押出成形装置原料ホッパーや供給フィーダーで良好に使用できる。
〈トルク立上り時間〉
 樹脂原料組成物は、プラストミル混練機(東洋精機社製)によるトルク立上り時間が150秒以内であることが好ましい。本願明細書において、「トルク立上り時間」とは、混練開始からプラストミル混練機のトルクが立上り、やがてピークに達するまでの時間を意味する。トルク立上り時間が短いことは、工程(a)における樹脂ペレット及び液状成分の混練が十分であり、液状成分が樹脂ペレットの表面のほぼ全体に、ほぼ均一に付着できたことを意味する。これによって、PWL1の最大径が樹脂ペレットの粒径+5mm以下の、PWL1として安定な構造が得られやすい。
〈その他の成分〉
 樹脂原料組成物には、ペレット、パウダー及び液状成分に加えて、改質やコストダウン等の目的で、これらの形態以外の他の樹脂成分、無機フィラー、酸化防止剤、分散助剤、帯電防止剤、加工安定剤、結晶核剤等の添加剤、有機フィラー等の添加物等を含有してもよい。これらの各成分が樹脂原料組成物中に占める割合としては、好ましくは5質量%以下、より好ましくは2質量%以下であり、実質的に0質量%であってもよい。
 酸化防止剤としては、例えば、「イルガノックス1010」、「イルガノックス1076」、及び「BHT」(いずれも商標、チバスペシャリティーケミカルズ社製)等のフェノール系酸化防止剤;リン系、及びイオウ系の二次酸化防止剤;並びにヒンダードアミン系の耐候剤等が挙げられ、これらを単独又は目的に応じて複数用いることができる。特にフェノール系酸化防止剤とリン系酸化防止剤の組合せが好適に用いられる。具体的には、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチルヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチルヒドロキシベンジル)ベンゼン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンフォスファイト等が好ましい。また、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキシフォスフェピン等も好適である。酸化防止剤の配合量は、樹脂原料組成物の樹脂ペレットの全質量に対して、好ましくは100ppm~10000ppmである。フェノール系酸化防止剤とリン系酸化防止剤を併用する場合には、フェノール系/リン系の質量比は、好ましくは1/3~3/1である。
 樹脂原料組成物を微多孔膜の成形に用いる場合、特に押出成形により微多孔膜を製造する場合、樹脂原料組成物は、樹脂ペレットとしてポリプロピレンの樹脂ペレットを含み、かつ、当該ポリプロピレンの結晶性を制御し微多孔の形成を制御することを目的として、結晶核剤を含むことが好ましい。結晶核剤の種類としては、特に限定されないが、一般のベンジルソルビトール系(「ゲルオール」(商標 新日本理化社製))、リン酸金属塩、t-ブチル安息香酸アルミニウム等のカルボン酸金属塩等が挙げられる。その具体例としては、ビス(p-エチルベンジリデン)ソルビトール、ビス(4-メチルベンジリデン)ソルビトール、ビス(3,4-ジメチルベンジリデン)ソルビトール、ビスベンジリデンソルビトール等である。結晶核剤の配合量としては、所望の結晶化条件にもよるが、結晶化が迅速に進み、成形性が容易となる観点から、ポリプロピレンの量に対して100ppm以上であることが好ましく、過剰の結晶核剤によるブリード過多を防止する観点から、10,000ppm以下であることが好ましい。より好ましい結晶核剤の配合量は、ポリプロピレンに対して100ppm~2,000ppmである。通常の可塑剤を用いた微多孔膜の製造においては、流動パラフィンや、フタル酸エステル系の可塑剤を用いた場合、ポリエチレンを用いた微多孔膜は透過性が発揮されやすいが、ポリプロピレンはポリエチレンに比べ孔が小さくなり、透過性が劣る傾向にある。このポリプロピレンの透過性を高める手段として、孔を適当な大きさに調整する方法が効果的であり、例えば結晶核剤の利用により相分離速度が調整され、適当な孔構造の形成が容易となる。
 その他、ポリプロピレンとポリエチレンの分散助剤として、例えば、水添したスチレン-ブタジエン系エラストマーや、エチレンとプロピレンを共重合したエラストマー等も必要に応じて用いることができる。これらの分散助剤の配合量としては、特には限定されないが、ポリプロピレンとポリエチレンの合計量100質量部に対して、好ましくは1~10質量部である。
 帯電防止剤としては、アルキルジエタノールアミンやヒドロキシアルキルエタノールアミン等のアミン系、ステアリルジエタノールアミンモノ脂肪酸エステル等のアミンエステル類、ラウリン酸ジエタノールアミドやステアリン酸ジエタノールアミド等のアルキローアミド類、グリセリンやジグリセリンのモノ脂肪酸エステル類、アルキルベンゼンスルホン酸等のアニオン系帯電防止剤、及びポリオキシエチレンアルキルエーテル類等が挙げられ、これらは単独で用いても、複数用いてもよい。帯電防止剤の配合量としては、特に限定されないが、好ましくは樹脂原料組成物の樹脂ペレットの全質量に対して500~10000ppm程度である。
《樹脂原料組成物を含む混合組成物》
 本開示の樹脂原料組成物が微多孔膜用樹脂原料組成物である場合、微多孔膜用樹脂原料組成物は、それ単独で微多孔膜の成形に用いてもよいし、更にペレット(PL)及び/又はパウダー(PW)とブレンドした混合組成物として微多孔膜の成形に用いてもよい。すなわち、本開示の微多孔膜用樹脂原料組成物をマスターバッチとして、所望の混合組成物を製造することができる。追加でブレンドされるPL及び/又はPWは、微多孔膜用樹脂原料組成物に含まれるPL及びPWと同一の材料であってもよく、異なる材料であってもよい。例えば、PLとしてポリプロピレンペレット、PWとしてポリエチレンパウダー、LQとしてミネラルオイルを用い、例えばPL/PW/LQ=85/10/5(重量配合比)の微多孔膜用樹脂原料組成物(原料A)を製造し、これに原料Aで用いたポリエチレンパウダーと同一又は異なるポリエチレンパウダー(原料B)を更に追加してブレンドし、混合組成物を得てもよい。このとき、原料AのPLにはすでにPWが付着しているため、原料BのPWとドライブレンドした際に、混合組成物が分級しにくいという利点がある。この方法によれば、所望の組成をドライブレンド法という簡便な方法で調整できるため、生産性を極めて向上することができる。
《樹脂原料組成物の製造方法》
 本開示の樹脂原料組成物の製造方法は、樹脂原料組成物が成型用樹脂原料組成物である場合、下記の工程(a)及び(b)を含む。
 (a)樹脂ペレット及び液状成分をブレンダーで混錬して、樹脂ペレットの表面の少なくとも一部に液状成分を被覆する、被覆工程。
 (b)被覆工程の後に、ブレンダーにパウダーを投入して、更に混練し、液状成分で被覆された樹脂ペレットの液状成分にパウダーを付着させる、付着工程。
 各成分の添加は、一度に添加しても、数回にわけて添加してもよい。またこの工程(a)及び/又は(b)にて、上記の成分以外の添加剤を添加してもよい。ペレットとパウダーの添加は、(a)だけでなく、(b)で適宜追加してもよい。工程(a)及び(b)でいうブレンダーには、タンブラーミキサーやヘンシェルミキサー等のブレンダーが良好に使用される。これらは常温で使用することができる。工程(b)においてタンブラーミキサーを用いると、ブレンド後、ブレンダーの内部に、液状成分によりパウダーやペレットが多く付着するが、付着していない中央部の原料をそのまま使用してもいいし、付着物をへら等で掻き落とし、更にブレンドを続け中央部の原料と混合してもよい。工程(b)にヘンシェルミキサーを用いる場合も同様である。なお、微多孔膜用樹脂原料組成物の製造方法は、工程(a)及び(b)のいずれかの過程の後に、好ましくは工程(b)の後に、10mm程度の開口径の篩にて大きな粒径の塊を除去してもよい。
 本開示の樹脂原料組成物の製造方法は、樹脂原料組成物が微多孔膜用樹脂原料組成物である場合、下記の工程(a’)及び(b’)を含む。
 工程(a’)樹脂ペレット及び液状成分をブレンダーで混合して、樹脂ペレットの表面の少なくとも一部に液状成分を被覆する、被覆工程。
 工程(b’)被覆工程の後に、ブレンダーにパウダーを投入して、更に混合し、液状成分で被覆された樹脂ペレットの液状成分にパウダーを付着させる、付着工程。
 各成分の添加は、一度に添加しても、数回にわけて添加してもよい。この工程(a’)及び/又は(b’)にて、上記の成分以外の添加剤を添加してもよい。ペレットとパウダーの添加は、(a’)だけでなく、(b’)で適宜追加してもよい。工程(a’)及び(b’)でいうブレンダーには、タンブラーミキサーやヘンシェルミキサー等のブレンダーが良好に使用される。これらは常温で使用することができる。工程(b’)においてタンブラーミキサーを用いると、ブレンド後、ブレンダーの内部に、液状成分によりパウダーやペレットが多く付着するが、付着していない中央部の原料をそのまま使用してもいいし、付着物をへら等で掻き落とし、更にブレンドを続け中央部の原料と混合してもよい。工程(b’)にヘンシェルミキサーを用いる場合も同様である。なお、微多孔膜用樹脂原料組成物の製造方法は、工程(a’)及び(b’)のいずれかの過程の後に、好ましくは工程(b’)の後に、10mm程度の開口径の篩にて大きな粒径の塊を除去してもよい。
 本開示の樹脂原料組成物の製造方法において、最大径が樹脂ペレットの粒径+5mm以下の、安定なPWL1を得るには、PL、LQ、及びPWの重量混合比が適当であることが望ましい。重量混合比については「粒状体」の欄で記載したのでここでは記載を省略する。
 得られる樹脂原料組成物は、プラストミルによるトルク立上り時間が150秒以内であることが好ましい。トルク立上り時間について、詳細は上述記載したのでここでは記載を省略する。
 樹脂原料組成物の製造方法の例を説明する。工程(a)として、樹脂ペレット及び液状成分とを、ブレンダーに投入して混錬する。これによって、樹脂ペレットの表面が液状成分で適度に湿潤する。好ましくは、樹脂ペレットの表面全体を均一に液状成分で被覆する。次に、工程(b)として、ブレンダーにパウダーを添加して更に撹拌する。工程(a)と工程(b)では別々のブレンダーを用いてもよく、又は、工程(a)でできた液状成分で被覆された樹脂ペレットを含む同一のブレンダーにパウダーを追加して工程(b)を行ってもよい。工程(b)によって、樹脂ペレットの表面の液状成分にパウダーが付着し、本開示の樹脂原料組成物を得ることができる。得られる樹脂原料組成物の粒状体は、好ましくはPWL1の最大径が樹脂ペレットの粒径+5mm以下であり、PWL1として安定な構造である。次に、樹脂原料組成物を、任意の成形装置、例えば押出機のホッパーに投入する。本開示の樹脂原料組成物は、ホッパーで分級することが少なく、粉塵の発生が少ないため、取扱性、及び低粉塵性に優れている。また、ペレットとパウダーが一体化しているため両者の分級が起こりにくい。押出機のホッパー直下のバレル内で混練を開始すると、素早く各材料が均一に分散及び溶融する。そのため、本開示の樹脂原料組成物は成形性にも優れている。
 工程(a)及び(b)の例として、市販ポリエチレンペレット(PL1)に、パウダーとして市販のブロッキング防止剤(PW1)をブレンドし、液状成分としてミネラルオイル(LQ1)を混練する場合を説明する。工程(a)として、まず、PL1を20kg秤量し、これにLQ1を添加し、80リットルのタンブラーミキサーにて10分間撹拌する。これにより、PL1の表面がLQ1で適度に湿潤する。工程(b):次にPW1を添加し、更に5分間撹拌する。混合後の組成比(wt%)は、例えばPL1/PW1/LQ1=92/5/3になるように投入量を調整することができる。このようにして製造した樹脂原料組成物を、目開き10mm程度の篩いにかけて、大粒の粒状体を取り除いてもよい。
 図1は、本開示の樹脂原料組成物(10)の粒状体の一例である。この例では、ペレットが1粒のみの粒状体(PWL1粒)を主成分として含む。樹脂原料組成物には、PWL2~10のペレットを複数個有する粒状体も含まれていてもよいが、比較的少量である。また、パウダーと液状成分のみからなる粒状体や、パウダーの粉塵はほとんど確認されないか、実質的に含まれない。これによって、取扱性、低発塵性及び成形性に優れている。
 従来の樹脂原料組成物の製造方法の例を説明する。この方法では、先に樹脂ペレット及びパウダーをブレンダーに投入して混錬し、その後、液状成分をブレンダーに投入して混錬する。そのため、樹脂ペレットの表面全体を均一に液状成分で被覆することができず、得られる樹脂原料組成物は、液状成分とパウダーとで形成された大きな粒状体、及び樹脂ペレットの周りに大量のパウダーが集まって形成された大きな粒状体を含む。これは、樹脂ペレットの表面に均一に液状成分が付着する前に、パウダーの多い部分や、ブレンダーの壁に液状成分が付着してしまい、ブレンダーの壁上でパウダーの大きな塊が成長し、それが崩れ落ちることにより形成されると推測される。次に、樹脂原料組成物を、押出機のホッパーに投入すると、分級が起こりやすく、取扱性が悪い。これを押出機のホッパー直下のバレルで混練を開始しても、各材料が均一に分散及び溶融しにくいため、従来の樹脂原料組成物は成形性に劣る。
 従来の樹脂原料組成物の製造方法の他の例を説明する。この方法では、樹脂ペレット及びパウダーをブレンダーに一度に投入して、ドライブレンドの樹脂原料組成物を製造する。次に、得られた樹脂原料組成物を、押出機のホッパーに投入するが、分級が起こりやすく取扱性が悪いことに加え、パウダーの粉塵が発生してしまう。
 従来の微多孔膜用樹脂原料組成物の製造方法の例を説明する。この方法では、一般に複数種のパウダーのみをドライブレンドした原料組成物を使用していた。しかしながら、湿式法で、パウダーとペレットとを混合して用いる例はなかった。従って、湿式法にてパウダーとペレットを同時に用いるには、ペレットとパウダーをヘンシェルミキサーなどのブレンダー(撹拌機)に投入して、ドライブレンドすることになる。しかし、パウダーとペレットはその粒子径の差が大きく分級しやすい。その分級を低減するため、これに液状成分を加えることが考えられるが、液状成分は、複数の樹脂ペレットと多量のパウダーを一体化させてしまう。その結果、得られる微多孔膜用樹脂原料組成物は、液状成分とパウダーとで形成された大きな粒状体、及び樹脂ペレットの周りに大量のパウダーが集まって形成された大きな粒状体を含む。これは、樹脂ペレットの表面に均一に液状成分が付着する前に、パウダーの多い部分や、ブレンダーの壁に液状成分が付着してしまい、ブレンダーの壁上でパウダーの大きな塊が成長し、それが崩れ落ちることにより形成されると推測される。次に、微多孔膜用樹脂原料組成物を、押出機のホッパーに投入すると、分級が起こりやすく、取扱性が悪い。これを押出機に投入し混練を開始しても、各材料が均一に分散及び溶融しにくいため、フィッシュアイが多発し従来の微多孔膜用樹脂原料組成物は成形性に劣る。
 従来の微多孔膜用樹脂原料組成物の製造方法の他の例を説明する。この方法では、樹脂ペレット及びパウダーをブレンダーに一度に投入して、ドライブレンドの微多孔膜用樹脂原料組成物を製造する。次に、得られた微多孔膜用樹脂原料組成物を、押出機のホッパーに投入するが、分級が起こりやすく取扱性が悪いことに加え、パウダーの粉塵が発生してしまう。
 図2は、上記ドライブレンドの方法で製造した、従来の樹脂原料組成物(30)の粒状体の一例である。この例では、樹脂ペレットとパウダーの粉塵との大きさの違いから、分級が起こりやすく、また、パウダーの粉塵を多く含むため発塵性が高いことがうかがえる。
《混合組成物の製造方法》
 工程(a’)及び(b’)で製造された本開示の微多孔膜用樹脂原料組成物に、パウダー及び/又はペレットを更にブレンドして、混合組成物として使用することも可能である(以下、工程(c’)という。)。工程(c’)は、ヘンシェルミキサーやタンブラーミキサー等の一般のブレンダーを用いて行うことができる。工程(c’)は、工程(b’)で用いたブレンダーに、工程(b’)に引き続いて、パウダー及び/又はペレットを添加してもよく、又は、工程(b’)とは別のブレンダーを用いることもできる。
《測定及び評価方法》
〈樹脂原料組成物中のPL、PW及びLQの含有量(質量%)、並びにPWLの割合〉
 下記の手順で測定した。
1.PWL0、PWL1、PWL2及びPWL10以上の個数、並びにPWL1~9の割合
 樹脂原料組成物を容器に5gサンプリングした(約250~500粒)。PWL0、1、2、及び10以上の個数を数え、それぞれの割合(個数%)を算出した。また、PWL1~9の合計重量を測定し、全重量(5g)に対する割合(質量%)を測定した。
2.PL、PW及びLQの割合(質量%)の測定
 PWL1を100粒採取し、重量を測った(W)。これを液状成分のみが溶ける溶剤(液状成分が流動パラフィンの場合は塩化メチレン等)で洗浄し、PL及びPWをろ過し、その重量を測った(WPL+PW)。W-WPL+PWから、LQの重量(WLQ)及び重量比(質量%)を算出した。次に、PLとPWを篩い分けし、それぞれの重量(WPL、WPW)、及び重量比(質量%)を算出した。
3.粒径が10mm以上の粒子の割合(質量%)の測定
 樹脂原料組成物を容器に50gサンプリング(約2500~5000粒)し、これを目開き10mmのふるいにかけて分級した。粒径が10mm以上の粒子の重量を測定し、全重量(50g)に対する割合(質量%)を測定した。
〈粒子径〉
 パウダー、ペレット及び粒状体ともに、約0.05mm(50μm)以上の大きさのものは、キーエンス社製のマイクロビデオスコープにて、それ以下のものは走査型電子顕微鏡にて粒子径を測定した。測定対象の粒子に外接する円の直径(最大径)を粒子径とし、無作為に100個の粒子を選定し、その平均を求めた。
〈分散性(トルク立上り時間)〉
 装置 東洋精機社製プラストミル R-60 ローター径30mmにて、以下の手順で測定した。
 手順
1.樹脂原料組成物と流動パラフィンを準備した。流動パラフィン量は両者の混合後に30質量%となるようにし、カップ内で撹拌棒で混合した。両者の合計は48gとした。
2.東洋精機社製プラストミルを、空気雰囲気下、温度200℃、回転数30rpmに設定した。
3.手順1で準備した樹脂原料組成物を速やかに投入し、直ちに混練開始した。原料投下完了の時間を0分とした。
4.プラストミルの混練トルクが立上り、やがてピークに達するまでの時間を測定した。
 本測定法は、実際の押出機中での混練の容易性(分散性)の指標となる。一般の押出成形では樹脂原料では、押出機中、短時間で溶融を開始し、スクリュートルクが立ち上がる必要がある。このトルクの立ち上がりが遅いと、押出機の混練能力が十分に発揮されず、分散不良となる。
 以下の基準で、トルク立上り時間をもって分散性を評価した。
A 150秒以下
B 150秒を超え200秒以下
C 200秒を超え300秒以下
D 300秒を超える
〈嵩密度のばらつき〉
 JIS-Z2504に準ずる以下の方法にて測定した。高さ600mm、上部の直径が400mm、下部の直径が250mmの円錐台状で、下部には半球状のドームになっており、そのドームの最下端より原料を抜き出すための開口を持つ原料ホッパーに、本開示による樹脂原料組成物を20kg投入した。投入直後にその原料の上面より200ccのカップにて5回樹脂を抜き出し、その平均重量から第1の嵩密度を求めた。続いて、ホッパーの下部の開孔より原料を15kg抜き出し、その後同様の方法で第2の嵩密度を求めた。この際、嵩密度の比(第1の嵩密度/第2の嵩密度)をもって嵩密度のばらつきとした。下記の様に評価した。
A 嵩密度の比が0.95以上、1.05以下の範囲内である。
B 嵩密度の比が0.90を超え、0.95未満、または1.05を超え1.10以下の範囲内である。
C 嵩密度の比が0.90未満、または1.10を超える。
〈分級性〉
 本開示による樹脂原料組成物200gサンプリングし、外形79mm、容量500ccの円筒状のポリエチレンサンプル瓶に無作為に投入した。これを市販の小型シェーカー(ケニス社製、ケニスミニシェーカー 3D 33180556、振とう幅7度程度、振とう数30rpm)で5分間振とうした。その後瓶中の上部(高さで1/10程度の範囲)とビンの底部(高さで1/10程度の範囲)からそれぞれ樹脂原料組成物を10gずつ採取し、その中のペレット粒の個数を数え、個数比(上部/底部)を測定した。このでは分級性のよいものは個数比が1.0に近くなる。下記のように評した。
A  個数比が0.9以上1.1未満である。
B  個数比が0.85以上、0.9未満または1.1を超え、1.15以下の範囲内である。
C  個数比が0.85未満または1.15を超える。
〈安息角〉
 JIS9301-2-2に準拠した装置にて求めた。試料200gを漏斗の上縁から約40mmの高さから毎分20g~60gの速さで供給した。この時、落下速度は一定に保った。試料200gを漏斗から供給し、試料の作る斜面と水平面がなす角度を分度器で測定した。下記の様に評価した。
A 角度が30°以上、55°以下の範囲内である。
B 角度が30°未満、または55°を超える。
〈発塵性(粉塵の発生)〉
 500ccの樹脂原料組成物を計量カップに取り、30cmの高さから、1辺が30cm以上の長方形の黒色の紙の上に落下させ、落下5秒後の際の粉塵の舞い上がりを、真横から目視で観察して判定した。なお背景に黒い板を配し舞い上がりを見やすくした。下記の基準で評価した。
A 舞い上がりが全くないか、舞い上がっても高さが15cm以下である。
B 舞い上がりが15cmを超える高さで発生する。
〈配管輸送性〉
 測定対象の樹脂原料組成物を5kg準備し、長さ10mのポリ塩化ビニル製のホースをつないだ空気輸送オートローダーにて高さ2mまで輸送した。前述の<嵩密度>の測定方法と同様で、輸送前後の嵩密度の比(輸送前/輸送後)を測定した。
A 嵩密度の比が0.95以上、1.05以下の範囲内である。
B 嵩密度の比が0.90を超え、0.95未満、または1.05を超え1.10以下の範囲内である。
C 嵩密度の比が0.90未満、または1.10を超える
〈成形用樹脂原料組成物のフィッシュアイ〉
 成形用樹脂原料組成物を軸径30mm、L/D35の2軸押出機に投入し、所定温度(230℃)で混練し、300mmのTダイスにて押出し、キャストロールにて冷却して、厚さ1mmの無延伸原反を得た。この原反を8mm×8mmに切り出し、バッチ式2軸延伸機にて4倍×4倍に延伸してフィルム化した。延伸したフィルムを20cm×20cmに切り出し、直径0.5mm以上のフィッシュアイをカウントした。なお、評価はフィルム10gあたりの値に換算した。
A フィッシュアイ数が5個/10g以下
B フィッシュアイ数が6~20個/10g
C フィッシュアイ数が20個/10gを超える。
〈微多孔膜用樹脂原料組成物のフィッシュアイ〉
 可塑剤としての流動パラフィンを含む微多孔膜用樹脂原料組成物に、更に可塑剤としての流動パラフィンを追加して混合し、流動パラフィンの量が混合後に65重量%になるように調整した原料を軸径30mm、L/D35の2軸押出機に投入し、所定温度(230℃)で混練し、300mmのTダイスにて押出し、キャストロールにて冷却して、厚さ0.5mmの無延伸原反を得る。この原反を8mm×8mmに切り出し、バッチ式2軸延伸機にて7倍×7倍に延伸してフィルム化した。さらにこの延伸フィルムを過剰量のジクロロメタンに浸漬後乾燥し、可塑剤を抽出除去し、微多孔膜を得た。得られた微多孔膜を20cm×20cmに切り出し、直径0.5mm以上のフィッシュアイをカウントした。なお、評価は微多孔膜10gあたりの値に換算した。
A フィッシュアイ数が5個/10g以下
B フィッシュアイ数が6~20個/10g
C フィッシュアイ数が20個/10gを超える。
〈微多孔膜の厚み(μm)〉
 東洋精機製の微少測厚器(タイプKBN、端子径Φ5mm、測定圧62.47kPa)を用いて、雰囲気温度23±2℃で、サンプルの厚みを測定した。
〈微多孔膜の気孔率(%)〉
 100mm四方の微多孔膜のサンプルの質量から目付けW(g/cm)及び微多孔膜を構成する成分(樹脂及び添加剤)の平均密度ρ(g/cm)を算出し、微多孔膜の厚みd(cm)から下記式にて計算した。
 気孔率=(W/(d×ρ))×100(%)
 なお、各層の気孔率の比(A層の気孔率/B層の気孔率)
 例えばA層/B層/A層の3層フィルムでは、剥離できる場合は、剥離して上記方法で求めた。湿式法の場合、剥離できない場合があるが、その際は、各層の仕込み溶剤の体積濃度P(A層をP、B層をPとする。)、SEMによる断面観察による厚みD(A層厚みをD、B層厚みをDとする。)を測定し、さらにA層の気孔率をV、B層の気孔率をVとし、下記2つの式を連立して解くことにより求めた。
   式1・・・全層気孔率=(P×D×層数2+P×D×層数1)/全層厚み
   式2・・・(V/V)=(P/P
〈微多孔膜の透気度(秒/100cc)〉
 JIS P-8117に準拠し、ガーレー式透気度計「G-B2」(東洋精機製作所(株)製、商標)で測定した。なお、表中の値は、合計厚みを基準とした比例計算により算出した20μm換算の透気度である。
〈微多孔膜の突刺し強度(g)〉
 ハンディー圧縮試験器「KES-G5」(カトーテック製、商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行うことにより求めた。
《実施例1.1~1.18》
 表1、2及び3のペレット、パウダー及び液状物を、表4の組み合わせで用い、下記工程にて成形用樹脂原料組成物を作成した。
(a)80リットルのタンブラーミキサーに、所定量のペレットを投入し、その上から液状成分を投入した、この液状成分投入の際はミキサー壁になるたけ付着させないように、中心部に投入した。その後10分間撹拌した。
(b)そののち所定量のパウダーを添加し、更に10分間撹拌した。なおPL/PW/LQは、合計量が20kgになるように、表4及び5の組成比にて投入した。
 実施例1.1~1.18では、いずれもべとつきはなく、樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が20%以下であった。この成形用樹脂原料組成物の分散性、配管輸送性、分級性、及び発塵性はいずれも良好であった。嵩密度のばらつき(分級性)、安息角及びフィッシュアイもすべて良好であった。
 図3の実線は、実施例1.1におけるトルク立上り時間を示す。原料投下(混練開始)から約100秒で平均トルクがピークに達しており、比較例1.1(約180秒)に比べて分散性が良好であることが分かる。
《比較例1.1~1.5》
 比較例1.1は、LQを投入せずに、パウダーとペレットは実施例1.4と同一組成にて、ドライブレンドの方法で、成形用樹脂原料組成物を作成した。LQがないため、パウダーとペレットは完全に分離しており、輸送中及びホッパー内で分級し、粉塵も舞っていた。比較例1.2の製造方法は、実施例1.1と同様の方法に基づくが、本開示の範囲外の組成であるため、性能が不十分であった。図3の破線は、比較例1.2におけるトルク立上り時間を示す。原料投下(混練開始)から約180秒で平均トルクがピークに達しており、実施例1.1(約100秒)に比べて分散性が悪いことが分かる。比較例1.3及び1.4は、組成以外は実施例1.1と同様の方法である。比較例1.5は、実施例1.4と同じ組成であるが、工程aにおいてすべての原料を一度に投入し、20分撹拌したものであり、工程bは行わなかった。比較例1.3ではパウダーとペレットの結着が不十分で分級や粉塵が発生した。比較例1.4においては、液状成分が過多となり粘着性を有していた。そのため、PWL10粒やPWL0粒が大量に発生した。比較例1.5においては、ペレット、パウダー、液状成分のすべての原料を一度に撹拌したため、単独粒が発生せずにすべてがPWL10以上であった。その結果、分散性、配管輸送性が著しく悪かった。
Figure JPOXMLDOC01-appb-T000001
LDPE:低密度ポリエチレン(粘度平均分子量 7万)
HDPE1:高密度ポリエチレン(粘度平均分子量 20万)
PP:ポリプロピレン(粘度平均分子量  95万)
EL:エラストマー(粘度平均分子量 6万)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
《実施例2.1~2.22》
 表6、7及び8のペレット、パウダー(樹脂パウダー、フィラー)及び液状物を、表9及び10の組み合わせで用い、下記工程にて微多孔膜用樹脂原料組成物を作成した。
工程(a’):タンブラーミキサーに、所定量のペレットを投入し、その上から液状成分を投入した、この液状成分投入の際はミキサー壁になるたけ付着させないように、中央部に投入した。その後15rpmにて10分間撹拌した。
工程(b’):そののち所定量のパウダーを添加し、更に10分間撹拌した。なおPL/PW/LQは、合計量が20kgになるように、表9及び10の組成比にて投入した。ここで一旦ミキサーの蓋を開けると、ミキサーの壁に多くのペレットが付着していたが、これをへら等でミキサー内に落とし、更に5分間撹拌すると、全体的に均一な微多孔膜用樹脂原料組成物が得られた。この微多孔膜用樹脂原料組成物の分散性、配管輸送性、分級性、及び発塵性はいずれも良好であった。嵩密度のばらつき(分級性)、安息角及びフィッシュアイもすべて良好であった。結果を表9及び10に示す。
 実施例2.1、2.2及び2.4~2.10では、表9及び10に記載の微多孔膜用樹脂原料組成物をそのまま使用した。実施例2.3及び2.11~2.22では、表9及び10に記載の微多孔膜用樹脂原料組成物を得た後、工程(c’)として、表11及び12に記載のパウダーを追加で添加及びブレンドし、混合組成物を得た。工程(c’)においても、良好にブレンドができた。
 上記で作成した微多孔膜用樹脂原料組成物又は混合組成物をスクリュー径44mmの2軸押出機に投入した。実施例2.3及び2.11~2.22に関しては、すでにペレットがパウダーで被覆されているので、工程(c’)でさらにパウダーを追加して2軸押出機に投入する際も分級することなく、良好な混合状態を保っていた。
 押出機のシリンダーの途中から可塑剤としての流動パラフィンを添加した。流動パラフィンを添加した後の押出時のポリマー含有量は、下記式:{樹脂成分の全質量(g)/流動パラフィン追添後の組成物の全質量(g)}×100(質量%)で計算され、33質量%となるように調製した。押出温度200℃で押出し、押出機先端のTダイスより押出されたシート状の溶融樹脂をロール温度90度のキャストロールに導き、冷却固化させ、所定厚みの未延伸原反を得た。さらにこの未延伸原反を、2軸延伸機に導き、温度120℃で縦7倍に横7倍に同時2軸延伸し、その後、可塑剤を塩化メチレンにて抽出除去した。さらにこれを熱処理装置に導入して、微多孔膜を得た。熱処理温度は130~135℃の範囲で調整した。厚みは概ね9μmに調整した。この微多孔膜は、樹脂の分散が良好で、微多孔膜としての透気度、突刺強度等も良好であった。結果を表11及び12に示す。実施例2.1~2.22の製膜の結果は、本開示の微多孔膜用樹脂原料組成物が、微多孔膜の製膜性及び製品物性に問題がないことを示す。
《比較例2.1~2.5》
 比較例2.1は、LQを投入せずに、パウダーとペレットは実施例2.4と同一組成にて、ドライブレンドの方法で、微多孔膜用樹脂原料組成物を作成した。LQがないため、パウダーとペレットは完全に分離しており、輸送中及びホッパー内で分級し、粉塵も舞っていた。比較例2.2~2.4の製造方法は、実施例2.1と同様の方法に基づくが、性能が不十分であった。
 比較例2.3及び2.4は、組成以外は実施例2.1と同様の方法である。比較例2.5は、工程aにおいてすべての原料を一度に投入し、20分撹拌したものであり、工程bは行わなかった。比較例2.3ではパウダーがペレットの結着が不十分で分級や粉塵が発生した。比較例2.4及び2.5においては、いずれも、液状成分が過多となり粘着性を有していた。そのため、PWL10粒やPWL0粒が大量に発生した。比較例2.5においては、ペレット、パウダー、液状成分のすべての原料を一度に撹拌したため、単独粒が発生せずにすべてがPWL10以上であった。その結果、分散性、配管輸送性が著しく悪かった。
 比較例2.1~2.5について、表9及び10に記載の微多孔膜用樹脂原料組成物をそのまま使用し、微多孔膜の製膜性及び物性を確認した。これらは原料組成物の分散等に問題があったため、押出機への投入を工夫して製膜した。いずれも分散不良が確認され、特に比較例2.4は分散不良が甚だしく、フィッシュアイが多発し突刺強度が他のものに比べ著しく低下した。
《参考例》
 表7に記載のパウダー(PW2)のみを用いて微多孔膜用樹脂原料組成物とし、分散性、配管輸送性、分級性、発塵性、嵩密度のばらつき、安息角及びフィッシュアイを評価した。
Figure JPOXMLDOC01-appb-T000006
HDPE1:高密度ポリエチレン(粘度平均分子量 20万)
PP:ポリプロピレン(粘度平均分子量 95万)
EL:エラストマー(粘度平均分子量 6万)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本開示の樹脂原料組成物は、分散性、配管輸送性、及び成形性がよく、発塵性及び分級が少なく、かつ諸物性が良好な成形品が得られる。例えば、包装用フィルムや微多孔膜の製造において、パウダーとペレットを同時に押出成形に供する用途で、ペレットとパウダーの成分の分散性がよく、パウダー、ペレットのブレンド後も粉塵の発生がなく、配管輸送時に分級したり、配管に付着したりせず良好に輸送でき、ホッパーにおいても分級が発生せず、押出成形も良好で、得られたフィルムや微多孔膜にフィッシュアイの発生が極めて少ない成形品が得られる。これにより、例えば、成形加工性、分散性に優れた包装フィルム、リチウムイオン二次電池等のセパレータとしての産業上利用可能性を有する。
  10 本開示の樹脂原料組成物
  20 従来の樹脂原料組成物

Claims (18)

  1.  樹脂ペレット(PL)、パウダー(PW)及び液状成分(LQ)を含む樹脂原料組成物であって、
     前記樹脂原料組成物は、成形用樹脂原料組成物であり、
     前記樹脂ペレットの表面の少なくとも一部に前記液状成分が被覆され、前記液状成分で被覆された前記樹脂ペレットは単独粒であり又は複数粒の凝集体であり、その液状成分に前記パウダーが付着した、粒状体を含み、
     前記樹脂原料組成物の全質量を基準として、前記パウダーの質量%に対する前記樹脂ペレットの質量%の比(PL/PW)が、0.01以上100以下であり、前記液状成分の質量%に対する前記樹脂ペレットの質量%の比(PL/LQ)が、1以上199以下であり、
     前記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として20%以下である、樹脂原料組成物。
  2.  樹脂ペレット(PL)、パウダー(PW)及び液状成分(LQ)を含む樹脂原料組成物であって、
     前記樹脂原料組成物は、微多孔膜用樹脂原料組成物であり、
     前記樹脂ペレットの表面の少なくとも一部に前記液状成分が被覆され、前記液状成分で被覆された前記樹脂ペレットは単独粒であり又は複数粒の凝集体であり、その液状成分に前記パウダーが付着した、粒状体を含み、
     前記樹脂原料組成物の全質量を基準として、前記パウダーの質量%に対する前記樹脂ペレットの質量%の比(PL/PW)が、0.01以上100以下であり、前記液状成分の質量%に対する前記樹脂ペレットの質量%の比(PL/LQ)が、1以上199以下であり、
     前記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として20%以下である、樹脂原料組成物。
  3.  前記液状成分で被覆された前記樹脂ペレットの前記液状成分に前記パウダーが付着された粒状体を主成分とする、請求項1又は2に記載の樹脂原料組成物。
  4.  前記樹脂ペレットの単独粒又は2~9粒の凝集体を含む粒状体の個数が、粒状体の全個数を基準として95%以上であり、かつ粒径が10mm以上の粒状体が、前記樹脂原料組成物の全質量を基準として1質量%以下である、請求項1~3のいずれか一項に記載の樹脂原料組成物。
  5.  前記樹脂ペレットの単独粒を含む粒状体の個数が、粒状体の全個数を基準として70%以上であり、前記樹脂ペレットの単独粒を含む粒状体の最大径が、前記樹脂ペレットの粒径以上、前記樹脂ペレットの粒径+5mm以下である、請求項1~4のいずれか一項に記載の樹脂原料組成物。
  6.  前記樹脂ペレットの複数粒の凝集体を含む粒状体の個数が、粒状体の全個数を基準として30%未満であり、かつ、
     前記樹脂原料組成物は、前記樹脂ペレットを含まない前記パウダー及び前記液状成分からなる粒状体を更に含む場合、前記樹脂ペレットを含まない粒状体の個数が、粒状体の全個数を基準として20%未満である、請求項1~5のいずれか一項に記載の樹脂原料組成物。
  7.  前記樹脂ペレットの10粒以上の凝集体を含む粒状体の個数が、粒状体の全個数を基準として1%以下である、請求項1~6のいずれか一項に記載の樹脂原料組成物。
  8.  前記樹脂ペレットが、ポリオレフィン、PET、ポリアミド、アラミド、ポリ塩化ビニル、合成ゴム、ABS、及びPPEからなる群から選択される少なくとも一つを含む、請求項1~7のいずれか一項に記載の樹脂原料組成物。
  9.  前記パウダーが、ポリエチレン、エラストマー、PET、ポリアミド、アラミド、及び無機粒子からなる群から選択される少なくとも一つを含む、請求項1~8のいずれか一項に記載の樹脂原料組成物。
  10.  前記パウダーの粒子径が10nm以上50μm以下である、請求項1~9のいずれか一項に記載の樹脂原料組成物。
  11.  前記液状成分が潤滑油、鉱油及び流動パラフィンからなる群から選択される少なくとも一つである、請求項1~10のいずれか一項に記載の樹脂原料組成物。
  12.  前記樹脂原料組成物の嵩密度のばらつきが10%以下である、請求項1~11のいずれか一項に記載の樹脂原料組成物。
  13.  前記樹脂原料組成物の安息角が30°以上55°以下である、請求項1~12のいずれか一項に記載の樹脂原料組成物。
  14.  樹脂原料組成物の製造方法であって、
     前記樹脂原料組成物は、成形用樹脂原料組成物であり、
     樹脂ペレット及び液状成分をブレンダーで混錬して、前記樹脂ペレットの表面の少なくとも一部に前記液状成分を被覆する、被覆工程と、
     前記被覆工程の後に、前記ブレンダーにパウダーを投入して、更に混練し、前記液状成分で被覆された前記樹脂ペレットの前記液状成分にパウダーを付着させる、付着工程と
    を含む、樹脂原料組成物の製造方法。
  15.  トルク立上り時間が150秒以内である、請求項14に記載の樹脂原料組成物の製造方法。
  16.  樹脂原料組成物の製造方法であって、
     前記樹脂原料組成物は、微多孔膜用樹脂原料組成物であり、
     樹脂ペレット及び液状成分をブレンダーで混錬して、前記樹脂ペレットの表面の少なくとも一部に前記液状成分を被覆する、被覆工程と、
     前記被覆工程の後に、前記ブレンダーにパウダーを投入して、更に混練し、前記液状成分で被覆された前記樹脂ペレットの前記液状成分にパウダーを付着させる、付着工程と
    を含む、樹脂原料組成物の製造方法。
  17.  トルク立上り時間が150秒以内である、請求項16に記載の樹脂原料組成物の製造方法。
  18.  請求項16又は17に記載の樹脂原料組成物の製造方法によって、樹脂原料組成物を製造する工程と、
     前記樹脂原料組成物に、前記樹脂ペレット(PL)及び前記パウダー(PW)と同一の又は異なる、樹脂ペレット(PL)及び/又はパウダー(PW)をさらに混合する工程と
    を含む、混合組成物の製造方法。
PCT/JP2021/048393 2020-12-25 2021-12-24 成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法 WO2022138963A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21911100.2A EP4269476A1 (en) 2020-12-25 2021-12-24 Resin raw material composition for molding use, resin raw material composition for microporous membranes, and methods respective for producing those products
US18/269,071 US20240117163A1 (en) 2020-12-25 2021-12-24 Resin Raw Material Composition for Molding Use, Resin Raw Material Composition for Microporous Membranes, and Methods Respective for Producing those Products
JP2022571716A JPWO2022138963A1 (ja) 2020-12-25 2021-12-24
CN202180087246.5A CN116710507A (zh) 2020-12-25 2021-12-24 成形用树脂原料组合物、微多孔膜用树脂原料组合物及它们的制造方法
KR1020237020912A KR20230111218A (ko) 2020-12-25 2021-12-24 성형용 수지 원료 조성물, 미다공막용 수지 원료 조성물 및 이것들의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020217337 2020-12-25
JP2020-217337 2020-12-25
JP2020217226 2020-12-25
JP2020-217226 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138963A1 true WO2022138963A1 (ja) 2022-06-30

Family

ID=82158263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048393 WO2022138963A1 (ja) 2020-12-25 2021-12-24 成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法

Country Status (5)

Country Link
US (1) US20240117163A1 (ja)
EP (1) EP4269476A1 (ja)
JP (1) JPWO2022138963A1 (ja)
KR (1) KR20230111218A (ja)
WO (1) WO2022138963A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095363A (ja) * 1973-12-25 1975-07-29
JPS5939536A (ja) 1982-08-31 1984-03-03 Modern Mach Kk 溶融樹脂の押出し機
JPS61188424A (ja) * 1985-02-15 1986-08-22 Asahi Chem Ind Co Ltd 液状添加剤含有熱可塑性樹脂の製造方法
JPS63147609A (ja) * 1986-12-11 1988-06-20 Fuji Photo Film Co Ltd 混練方法
JP2002194132A (ja) 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2006021519A (ja) 2004-06-11 2006-01-26 Maruyasu:Kk 紐・ペレットおよび紐・ペレットの製造方法並びにそれらの製造装置
WO2007052839A1 (ja) * 2005-11-02 2007-05-10 Asahi Kasei Kabushiki Kaisha スキンレス多孔膜とその製造方法
JP2010006885A (ja) * 2008-06-25 2010-01-14 Achilles Corp 液状可塑剤を含有する熱可塑性樹脂組成物及びその製造方法、並びに上記熱可塑性樹脂組成物を用いた生分解性押出成形シートまたはフィルム
JP2017101191A (ja) * 2015-12-04 2017-06-08 旭化成株式会社 粉体物の混合方法および樹脂組成物の製造方法
JP2019142002A (ja) 2018-02-15 2019-08-29 旭化成株式会社 樹脂ペレット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095363A (ja) * 1973-12-25 1975-07-29
JPS5939536A (ja) 1982-08-31 1984-03-03 Modern Mach Kk 溶融樹脂の押出し機
JPS61188424A (ja) * 1985-02-15 1986-08-22 Asahi Chem Ind Co Ltd 液状添加剤含有熱可塑性樹脂の製造方法
JPS63147609A (ja) * 1986-12-11 1988-06-20 Fuji Photo Film Co Ltd 混練方法
JP2002194132A (ja) 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2006021519A (ja) 2004-06-11 2006-01-26 Maruyasu:Kk 紐・ペレットおよび紐・ペレットの製造方法並びにそれらの製造装置
WO2007052839A1 (ja) * 2005-11-02 2007-05-10 Asahi Kasei Kabushiki Kaisha スキンレス多孔膜とその製造方法
JP2010006885A (ja) * 2008-06-25 2010-01-14 Achilles Corp 液状可塑剤を含有する熱可塑性樹脂組成物及びその製造方法、並びに上記熱可塑性樹脂組成物を用いた生分解性押出成形シートまたはフィルム
JP2017101191A (ja) * 2015-12-04 2017-06-08 旭化成株式会社 粉体物の混合方法および樹脂組成物の製造方法
JP2019142002A (ja) 2018-02-15 2019-08-29 旭化成株式会社 樹脂ペレット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"DICTIONARY OF POLYMER TECHNOLOGY", 2000, BOARD OF DICTIONARY OF POLYMER TECHNOLOGY, TAISEISHA, LTD, pages: 337

Also Published As

Publication number Publication date
US20240117163A1 (en) 2024-04-11
JPWO2022138963A1 (ja) 2022-06-30
EP4269476A1 (en) 2023-11-01
KR20230111218A (ko) 2023-07-25

Similar Documents

Publication Publication Date Title
JP5954443B2 (ja) 微多孔膜、その製造方法、電池用セパレータおよび非水電解質二次電池セパレータ用樹脂組成物
JP5998526B2 (ja) ポリプロピレン系樹脂組成物およびそのフィルム
EP2480389B1 (en) Process for making thermoplastic polymer pellets
CA3015359A1 (en) Highly filled polymeric concentrates
EP3434468B1 (en) Fuel container and production method therefor
CN112795067A (zh) 一种高透气高耐渗透聚烯烃透气膜专用料及其制备方法和应用
CN107107435A (zh) 清洗剂
CN102838866A (zh) 聚氨酯与聚丙烯纳米改性材料
WO2022138963A1 (ja) 成形用樹脂原料組成物、微多孔膜用樹脂原料組成物およびこれらの製造方法
JP7010721B2 (ja) 樹脂ペレット
AU2014350455A1 (en) Direct feeding of carbon black in the production of black compounds for pipe and wire and cable applications/polymer composition with improved properties for pressure pipe applications
WO2010137718A1 (ja) 押出成形時のメヤニ発生を抑制するポリマー微粒子
CN116710507A (zh) 成形用树脂原料组合物、微多孔膜用树脂原料组合物及它们的制造方法
JP7206697B2 (ja) ポリオレフィン樹脂組成物
WO2022210961A1 (ja) 樹脂ペレット組成物及びその製造方法、並びに微多孔膜の製造方法
JP7176358B2 (ja) ポリオレフィン樹脂組成物
JP2003026866A (ja) オレフィン系樹脂シート用添加剤、及びそれを配合してなるシート用樹脂組成物
Supri et al. Effect of filler loading and benzyl urea on tensile, water absorption, and morphological properties of recycled high-density polyethylene/ethylene vinyl acetate/calcium carbonate (rHDPE/EVA/CaCO3) composites
CN116199958A (zh) 聚乙烯树脂组合物及其制备方法
JP2022094212A (ja) ポリオレフィン系樹脂組成物及びフィルムそれぞれの製造方法
JP2023013692A (ja) 樹脂成形体
CN114437450A (zh) 一种消光聚烯烃用母粒
JP2020128462A (ja) 米ぬか充填フィルムおよびそれを用いた袋、ならびにフィルムの製造方法
JPH0264134A (ja) ポリウレタンフイルム又はシート及びその製造法
JP2007211124A (ja) ポリオレフィン組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571716

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237020912

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18269071

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180087246.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911100

Country of ref document: EP

Effective date: 20230725