WO2022138929A1 - 標的rnaのポリアデニル化シグナル配列を編集するためのガイドrna - Google Patents

標的rnaのポリアデニル化シグナル配列を編集するためのガイドrna Download PDF

Info

Publication number
WO2022138929A1
WO2022138929A1 PCT/JP2021/048231 JP2021048231W WO2022138929A1 WO 2022138929 A1 WO2022138929 A1 WO 2022138929A1 JP 2021048231 W JP2021048231 W JP 2021048231W WO 2022138929 A1 WO2022138929 A1 WO 2022138929A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
rna
guide rna
adar
region
Prior art date
Application number
PCT/JP2021/048231
Other languages
English (en)
French (fr)
Inventor
理智 新井
まりこ 萬田
Original Assignee
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US18/269,531 priority Critical patent/US20240150754A1/en
Application filed by アステラス製薬株式会社 filed Critical アステラス製薬株式会社
Priority to JP2022571689A priority patent/JPWO2022138929A1/ja
Priority to CN202180087262.4A priority patent/CN116981773A/zh
Priority to EP21911066.5A priority patent/EP4269585A1/en
Publication of WO2022138929A1 publication Critical patent/WO2022138929A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)

Definitions

  • the present invention relates to a guide RNA for recruiting ADAR and editing a polyadenylation signal sequence.
  • Gene expression control is an important function for maintaining cell homeostasis and adapting to changes in the environment inside and outside the cell. As shown in the basic principle of the central dogma, genetic information is basically transmitted in the order of DNA, mRNA, and protein. Expression and translational control at each stage is important in determining the final amount of protein.
  • precursor mRNA pre-mRNA
  • messenger RNA mRNA
  • mRNA messenger RNA
  • mRNA messenger RNA
  • Mature mRNA is synthesized and transported from the nucleus to the cytoplasm through a process called polyadenylation.
  • the polyadenylation signal For polyadenylation of the 3'end of mRNA, the polyadenylation signal (PAS) present 10 to 30 bases upstream to which polyadenylate (poly (A)) is added and 20 to 40 bases downstream of PAS. A region with a high content of the existing GU sequence is required. PAS is a conserved motif of 6 bases, and AAUAAA and its 1-base substituent AUUAAA are known as typical examples.
  • This process involves at least 20 factors in addition to cleavage-polyadenylation specific factor (CPSF) containing endonucleases and polyadenylate polymerase (PAP), which is a polyA adenylase. Is known as a reaction involving (Mol. Cell, 2009, Vol. 33, p. 365-376).
  • CPSF cleavage-polyadenylation specific factor
  • PAP polyadenylate polymerase
  • mRNA The control of translation efficiency is generally known as the role of the poly A chain of mRNA.
  • mRNA is produced by the interaction of eukaryotic initiation factor 4E (eIF4E) that binds to the 5'-terminal cap structure and poly A binding protein (Poly (A) binding protein: Pub1p) that binds to the poly A chain. It forms a cyclic structure (EMBO J., 1996, Vol. 15, p. 7168-7177). It is believed that this cyclic structure facilitates the recruitment of ribosomes dissociated from mRNA to the 5'end of mRNA again after the end of translation, improving translation efficiency (eLife, 2017, Vol. 6, p.e25237).
  • factors having a long poly A chain even with the same mRNA show high translation efficiency, indicating the importance of poly A chain length in controlling translation efficiency (RNA, 1998, Vol. 4, p. 1321-1331).
  • mRNA degradation pathway in eukaryotes is widely conserved, and removal of poly A by deadenylating enzyme is considered to be the first step and the rate-determining step. It is known that there are multiple types of de-adenylation enzymes, and they are roughly divided into two families, Asp-Glu-Asp-Asp (DEDD) and Exoneurase-endonuclease-phosphatase (EEP), based on the structure of the enzyme active domain. are categorized.
  • DEDD Asp-Glu-Asp-Asp
  • EEP Exoneurase-endonuclease-phosphatase
  • the mRNA from which the poly A chain has been removed is subsequently capped by the decapping enzyme Decapping 1 / Decapping 2 (DCP1 / DCP2) complex (Nature, 1996, Vol. 382, p.642-646). , Nucleic Acids Research, 2014, Vol. 42, p. 5217-5233).
  • the mRNA is then degraded by Exoribonculase (XRN) from the 5'end or by exosomes from the 3'end (Gene, 1990, Vol. 95, p. 85-90, Mol. Cell, 2004, Vol. 15, p.173-183, Cell, 1997, Vol.91, p.457-466, Cell, 2007, Vol.131, p.1340-1353).
  • XRN Exoribonculase
  • Non-Patent Document 1 oligonucleotides that prevent polyadenylation of the KCNH2 gene at intron 9 using antisense oligonucleotides designed for PAS sequences
  • Patent Document 1 antisense oligonucleotides designed for HIVPAS
  • RNA editing by single nucleotide mutation. In many cases, the mechanism is edited site-specifically and accurately.
  • an adenosine deaminase enzyme (adenosine deaminase acting on RNA: ADAR) that converts adenosine (A) to inosine (I) is known.
  • ADAR2dd a variant of ADAR2 which is a subtype of ADAR, has cytidine deaminase activity for converting cytidine (C) to uridine (U) (Science, 2019, Vol. 365, p. 382). -386).
  • ADAR is a multi-domain protein, having a double-stranded RNA-binding domain at the N-terminus and a deaminase domain at the C-terminus.
  • the recognition domain recognizes a specific double-stranded RNA (dsRNA) sequence and / or structure, and the deaminase domain inosines adenosine (A) at a specific position in the target by the deamination reaction of the nucleobase. Convert to (I). Inosine converted from adenosine is recognized as guanine by the translation mechanism of cells.
  • ADAR1 and ADAR2 are expressed systemically, and ADAR2 in particular is expressed in nerve cells.
  • ADAR3 is expressed only in nerve cells, has a single-stranded RNA-binding domain rich in arginine on the N-terminal side, but does not have RNA editing activity, and conversely suppresses RNA editing activity. (RNA, 2000, Vol. 6, p. 755-767).
  • antisense oligonucleotides of 35 bases or more complementary to mRNA containing adenosine, which is the target of editing are used to generate double strands of mRNA and incomplete helix structure.
  • Techniques for editing target RNA by forming and recruiting ADAR have been reported (International Publication No. 2017/220751, International Publication No. 2018/041973, International Publication No. 2018/134301, Nat. Biotechnol., 2019, Vol.37, p.1059-1069, Protein Eng.Des.Sel., 2018, Vol.1, p.471-478, Chem.Commun., 2018, Vol.54, p.2377-2380). It has also been reported that target RNA is edited in an ADAR-dependent manner using artificial RNA of 100 bases or more (Nat. Biotechnol., 2019, Vol. 37, p. 1059-1069).
  • ADAR is recruited to the target RNA by linking the ADAR fusion protein and the guide RNA using the linkage system between the protein and RNA, and the target RNA is edited.
  • a target RNA editing technique Protein Eng. Des. Ser., 2018, Vol. 1 using a linkage system between a fusion protein of ADAR1 deaminase domain-MS2 coated protein (MS2 coat protein: MCP) and antisense-MS2 RNA.
  • MCP mobility protein
  • Target RNA editing technology using a linkage system between a ⁇ phage-derived BoxB sequence and a ⁇ N protein (Nucleic Acids Research, 2016, Vol.44, p.e157).
  • International Publication No. 2017/050306, International Publication No. 2019/071274 have been reported.
  • RNA editing technique using the dCas13-ADAR fusion protein International Publication No. 2019/005884, International Publication No. 2019/071048, and the like have been reported.
  • the polyadenylation signal sequence of the antisense nucleotide and the target RNA must bind 1: 1. There was a problem in the efficiency of suppressing the expression of target RNA. Therefore, a technique for controlling the expression of target RNA with high efficiency has been required. It is an object of the present invention to provide a guide RNA for editing the polyadenylation signal sequence of the target RNA, which is expected to be useful for controlling the expression of the target RNA with high efficiency, and a nucleic acid encoding the same. ..
  • the present inventors have obtained a guide RNA for editing the target RNA by ADAR, and the guide RNA is a target containing a polyadenylation signal sequence.
  • the present invention was completed by discovering a guide RNA containing an antisense region complementary to a part of RNA.
  • the present invention relates to the following [1] to [14].
  • [1] A guide RNA for editing a target RNA by ADAR, wherein the guide RNA contains an antisense region complementary to a part of the target RNA containing a polyadenylation signal sequence.
  • [2] The guide RNA according to [1], wherein the polyadenylation signal sequence is a base sequence consisting of AAUAAA or a modified sequence thereof.
  • the polyadenylation signal sequence is a base sequence consisting of AAUAAA.
  • RNA Described in any of [1] to [3], wherein the antisense region complementary to a part of the target RNA contains a base pairing with adenosine contained in the polyadenylation signal sequence of the target RNA.
  • Guide RNA [5] The guide RNA according to any one of [1] to [4], wherein the ADAR is a naturally occurring ADAR, a modified ADAR, or an ADAR or a fusion protein of the modified ADAR and another factor. .. [6] A system for editing a target RNA, which comprises the guide RNA according to any one of [1] to [5] and ADAR. [7] A nucleic acid encoding the guide RNA according to any one of [1] to [5].
  • a guide RNA for editing a target RNA by ADAR which comprises an antisense region complementary to a portion of the target RNA containing a polyadenylation signal sequence, is a guide RNA that edits the polyadenylation signal sequence of the target RNA. It can be used to control the expression of target RNA.
  • the guide RNA for editing the target RNA by ADAR can suppress the function of the polyadenylation signal sequence by binding to the polyadenylation signal sequence of the target RNA and editing, and after editing, it can be re-intracellular. Since it is available, it is expected to be useful for controlling the expression of target RNA with high efficiency.
  • FIG. 1 shows the relative expression level of the reniral luciferase of each guide RNA with respect to the condition that ADAR2 is not expressed.
  • the vertical axis represents the relative expression level of renial luciferase compared to the control.
  • the horizontal axis represents each guided RNA expressed (BoxB-ASR, ASR-Gq, U6-ASR-STL, BoxB-Con).
  • the present invention is a guide RNA for editing a target RNA by ADAR, wherein the guide RNA contains an antisense region complementary to a part of the target RNA containing a polyadenylation signal sequence (hereinafter, "" Also referred to as “guide RNA of the present invention”).
  • the "guide RNA for editing a target RNA by ADAR” has a region that is complementary to a part of the target RNA and forms a double strand with a part of the target RNA, and the ADAR is defined.
  • An RNA molecule that recruits to the target RNA is defined.
  • the target RNA refers to RNA that is the target of editing by the guide RNA of the present invention.
  • a part of the target RNA includes a polyadenylation signal sequence.
  • the target RNA is a pre-mRNA, in some embodiments an mRNA, in some embodiments a viral genomic RNA, in some embodiments a viral anti-genomic RNA, and in some embodiments a viral origin. It is a pre-mRNA (pgRNA).
  • the target RNA can be present in RNA contained in eukaryotic cells, mammalian cells, viruses, prokaryotic cells, bacteria, phages and the like.
  • the target RNA includes a polyadenylation signal sequence.
  • the "polyadenylation signal sequence” is a sequence known to those skilled in the art, and is a conserved motif of 6 bases existing 10 to 30 bases upstream of the polyadenylation (poly (A)) site of the target RNA. To say.
  • the polyadenylation signal sequence includes adenosine converted to inosine.
  • the polyadenylation signal sequence is a base sequence consisting of AAUAAA or a modified sequence thereof.
  • the modified sequence of AAUAAA is a base sequence in which one or two bases are deleted, substituted, inserted and / or added in the base sequence consisting of AAUAAA, and is a base recognized by CPSF (clearage-polyadenylation specialty factor). It is an array.
  • the modified sequence of AAUAAA includes a modified sequence of naturally occurring AAUAAA or an artificially modified modified sequence of AAUAAA.
  • the polyadenylation signal sequence is a base sequence consisting of a base sequence consisting of AAUAAA and a base sequence consisting of a modified sequence thereof.
  • the modified sequence of AAUAAA is AUUAAA, AGUAAA, or UAUAAA (Gene & Development, 2011, Vol.
  • the polyadenylation signal sequence is a base sequence consisting of AAUAAA, AUUAAA, AGUAAA, or UAUAAA, in some embodiments a base sequence consisting of AAUAAA or AUUAAA, and in some embodiments a base sequence consisting of AAUAAA. ..
  • the guide RNA of the present invention comprises an antisense region.
  • the "antisense region” refers to a region having a base sequence complementary to a part of a target RNA containing a polyadenylation signal sequence and consisting of a sequence forming a double strand with the target RNA.
  • the antisense region refers to a region comprising a base pairing with adenosine contained in the polyadenylation signal sequence of the target RNA and consisting of a sequence forming a double strand with the target RNA.
  • the length of the base sequence constituting the antisense region is, in one embodiment, 10 bases to 100 bases, 10 bases to 80 bases, 10 bases to 60 bases, 10 bases to 40 bases, and in some embodiments, 15 bases to 40 bases. It is 40 bases, in some embodiments 10 to 38 bases, in some embodiments 15 to 38 bases, and in some embodiments 18 to 38 bases.
  • the antisense region may comprise a base that forms a mismatched base pair or a wobble base pair with a portion of the target RNA.
  • the antisense region may comprise a base that forms a mismatched base pair or a wobble base pair with the polyadenylation signal sequence of the target RNA.
  • the antisense region may contain a base that forms a mismatched base pair with the polyadenylation signal sequence of the target RNA.
  • mismatched base pairs are GA, CA, U-C, AA, GG, CC, and U-U base pairs.
  • the term “wobble base pair” refers to GU, IU, IA, and IC base pairs.
  • the antisense region is, in one embodiment, a region having a base forming a mismatch base pair with adenosine contained in a part of the target RNA and consisting of a base sequence forming a double strand with the target RNA.
  • the antisense region is a region consisting of a base sequence that has a base pair that forms a mismatch base pair with adenosine contained in the polyadenylation signal sequence of the target RNA and that forms a double strand with the target RNA.
  • the antisense region comprises a cytidine, which is a base pairing mismatch with adenosine contained in the polyadenylation signal sequence of the target RNA, and consists of a base sequence forming a double strand with the target RNA. Is.
  • the base sequence constituting the antisense region can be appropriately designed by those skilled in the art in consideration of the sequence of the target RNA, the base length, the position of the mismatched base formed with the target RNA, the off-target effect, and the like.
  • the base sequence constituting the antisense region is used to improve the editing efficiency of adenosine in the polyadenylation signal sequence of the target RNA by adenosine deaminase acting on RNA (ADAR) (RNA, 2001, Vol. 7, p. .846-858, Nat. Biotechnol., 2019, Vol. 37, p. 1059-1069), can also be designed to form mismatched or fluctuating base pairs with the adenosine or citidine.
  • ADAR adenosine deaminase acting on RNA
  • ASR means an antisense region.
  • guide RNA for editing target RNA with ADAR Various forms of guide RNA are known to those of skill in the art as guide RNAs for editing the target RNA by ADAR. As long as the guide RNA of the present invention contains an antisense region complementary to a part of the target RNA containing a polyadenylation signal sequence, a guide RNA known to those skilled in the art for editing the target RNA by ADAR can be used. can.
  • the guide RNA of the invention comprises any of the following guide RNAs 1) -5) as a guide RNA for editing the target RNA sequence by ADAR; 1) Guide RNA consisting of antisense regions (International Publication No. 2017/220751, International Publication No. 2018/041973, International Publication No.
  • the guide RNA of the present invention is a guide RNA consisting of the antisense region, the functional region, and a linker sequence arbitrarily contained in 2) above.
  • the guide RNA of the present invention is a guide RNA consisting of the antisense region of 1) above, in some embodiments, the guide RNA of the present invention is the guide RNA of ⁇ the guide RNA of the present invention>. It is a guide RNA consisting of the region described in the antisense region.
  • the guide RNA of the present invention is a guide RNA consisting of the antisense region, the functional region and a linker sequence arbitrarily contained in 2) above, in some embodiments, the guide RNA of the present invention has an antisense region as the functional region.
  • a guide RNA linked to and substantially free of the ADAR recruitment sequence in the present invention, “substantially free" of the ADAR recruitment base sequence (described later) means that the ADAR recruitment base sequence is not contained in the same molecule of the guide RNA.
  • the “functional region” is the stabilization of the guide RNA, the localization of the guide RNA to the nucleus, the localization of the guide RNA to the cytoplasm, the promotion of double-strand formation between the target RNA and the antisense region, and the non-sense region.
  • a region consisting of a base sequence having one or more functions such as specific inhibition of double-strand formation and stabilization of a complex formed by a target RNA and an antisense region.
  • the guide RNA of the present invention comprises, as a functional region, (a) a region consisting of a base sequence that promotes stabilization of the guide RNA, and (b) a base sequence that promotes the localization of the guide RNA to the nucleus.
  • Region region consisting of a base sequence that promotes the localization of the guide RNA to the cytoplasm, (d) a region consisting of a base sequence that promotes double-strand formation of the target RNA and the antisense region, (e) anti.
  • A Includes a region consisting of a base sequence having two or more of the functions described in (f).
  • promoting the stabilization of guide RNA means conferring resistance to RNA-degrading enzymes.
  • the function is to determine the residual amount of guide RNA in the presence of RNA degrading enzyme, the residual amount of guide RNA in cells under transcription inhibition after introduction of the nucleic acid encoding the guide RNA into cells, etc. by a known method. It can be evaluated by measuring.
  • Promoted the localization of guide RNA to the nucleus means promoting the translocation and localization of guide RNA introduced into cells to the nucleus.
  • the function can be evaluated by detecting the intracellular distribution and amount of guide RNA by a known method. For example, it can be confirmed by in situ hybridization (Mol. Ther., 2003, Vol. 7, p.
  • “Promoting the localization of guide RNA to the cytoplasm” means promoting the retention of the guide RNA introduced into the cell in the cytoplasm.
  • the function can be evaluated by detecting the intracellular distribution and amount of guide RNA by a known method. For example, it can be confirmed by in situ hybridization (Mol. Ther., 2003, Vol. 7, p. 237-247).
  • “Promoting double-strand formation between the target RNA and the antisense region” means improving the affinity between the target RNA and the antisense region.
  • the function can be evaluated by an affinity assay by a known method (BMC Biotech. 2008, Vol. 8, article number 48).
  • “Inhibiting non-specific double-strand formation by an antisense region” means reducing non-specific double-strand formation (also referred to herein as “off-target effect”).
  • the function can be evaluated by a known method such as RNA sequencing (Nat. Biotechnol., 2019, Vol. 37, p. 657-666).
  • “Promoting the stabilization of the complex formed in the target RNA and the antisense region” means that the state of the complex containing the double strand formed in the target RNA and the antisense region is maintained.
  • the function is evaluated by measuring the residual amount of the double strand formed in the target RNA and the antisense region in the presence of an RNA-degrading enzyme that degrades RNA of the DNA / RNA hybrid strand by a known method. Can be done. For example, it can be evaluated by measuring the residual amount of a double strand formed by a guide RNA consisting of a target RNA and a DNA sequence in the presence of RNase H (Antiviral Chemistry & Chemotherapy, 1996, Vol. 7, p. .86-93).
  • the region consisting of a base sequence that promotes stabilization of the guide RNA is a region consisting of a base sequence that forms a higher order structure that is thermodynamically stabilized.
  • the thermodynamically stabilized higher-order structure is not particularly limited as long as it is a structure resistant to nuclease activity, and in one embodiment, the region consisting of the base sequence that promotes the stabilization of the guide RNA is a small molecule in the nucleus.
  • RNA small nuclear RNA
  • rRNA ribosomal RNA
  • the region consisting of a base sequence that promotes stabilization of the guide RNA is a region consisting of a snRNA sequence, a region consisting of a base sequence forming a guanine quadruplex (Gq: G-quadruplex) structure, or a stem-loop structure. It is a region consisting of the base sequence to be formed.
  • the region consisting of a base sequence that promotes the localization of the guide RNA to the nucleus is a region consisting of a base sequence derived from small RNA (small RNA).
  • the region consisting of the base sequence that promotes the localization of the guide RNA to the nucleus is the region consisting of the snRNA sequence.
  • the region consisting of a base sequence that promotes the localization of the guide RNA to the cytoplasm is a region consisting of a base sequence derived from small RNA. In one embodiment, the region consisting of the base sequence that promotes the localization of the guide RNA to the cytoplasm is the region consisting of the base sequence that promotes the localization of the guide RNA to the ribosome, and in some embodiments, the region consisting of the rRNA sequence. Is. In some embodiments, the region consisting of a base sequence that promotes the localization of the guide RNA to the cytoplasm is a region consisting of a transfer RNA (tRNA: transfer RNA) sequence.
  • tRNA transfer RNA
  • the region of the base sequence that promotes the localization of the guide RNA to the cytoplasm is a region consisting of a 7SL RNA sequence that is an RNA sequence derived from a signal recognition particle (SRP).
  • a region consisting of a base sequence that promotes double-stranded formation of a target RNA and an antisense region is a base that promotes the formation of a double-stranded and double-stranded complex thermodynamically and three-dimensionally. It is a region consisting of a sequence (Nat. Biotechnol., 2019, Vol. 37, p. 657-666).
  • the region consisting of a base sequence that promotes double-strand formation of the target RNA and the antisense region is a region consisting of a snRNA sequence, a region consisting of a base sequence forming a stem-loop structure, or any of them. It is a combination.
  • the region consisting of the base sequence that promotes double-strand formation of the target RNA and the antisense region is a region consisting of a U6 snRNA sequence, a region consisting of a U1 snRNA sequence, a region consisting of a U7 snRNA sequence, or a stem-loop structure.
  • the region consisting of a base sequence that inhibits non-specific double-strand formation by the antisense region is a region consisting of a base sequence that thermodynamically and sterically mitigates the off-target effect.
  • the region consisting of a base sequence that inhibits non-specific double-strand formation by the antisense region is a region consisting of a base sequence forming a stem-loop structure (Chem.Commun., 2018, Vol. 54). , P.2377-2380).
  • the region consisting of the base sequence that promotes the stabilization of the complex formed by the target RNA and the antisense region is thermodynamically and stereostructuredly stable for the double-stranded and double-stranded complex.
  • the region consisting of the base sequence that promotes stabilization of the complex formed by the target RNA and the antisense region is the region consisting of the base sequence forming the stem-loop structure.
  • the guide RNA of the present invention has, as a functional region, a region consisting of a snRNA sequence, a region consisting of an rRNA sequence, a region consisting of a base sequence forming a guanine quadruplex (Gq: G-quadruplex) structure, and a stem.
  • the guide RNA of the present invention comprises, as a functional region, a region consisting of a snRNA sequence, a region consisting of an rRNA sequence, a region consisting of a base sequence forming a Gq structure, or a base sequence forming a stem-loop structure. Includes regions, or a combination of any of them.
  • the guide RNA of the present invention comprises, as a functional region, a region consisting of snRNA sequences. In some embodiments, the guide RNA of the present invention comprises, as a functional region, a region consisting of a snRNA sequence and a region consisting of a base sequence forming a stem-loop structure.
  • the region consisting of a base sequence forming a stem-loop structure that can be used in combination with the region consisting of a snRNA sequence is, in one embodiment, a region consisting of an artificial stem-loop sequence.
  • the artificial stem-loop sequence is a sequence that forms an artificially produced stem-loop structure, and is, for example, Gene Ther., 1997, Vol. 4, p.
  • STL sequence an artificial stem-loop sequence contained in an expression cassette containing a sequence encoding U6 described in 237-247 (hereinafter, the expression cassette described in these documents is also referred to as "U6 cassette").
  • U6 cassette a sequence encoding U6 described in 237-247
  • the region consisting of a base sequence forming a stem-loop structure that can be used in combination with the region consisting of a snRNA sequence is, in one embodiment, a region consisting of an STL sequence.
  • the guide RNA of the invention comprises, as a functional region, a region consisting of a snRNA sequence and a region consisting of an artificial stem-loop sequence. In some embodiments, the guide RNA of the invention comprises, as a functional region, a region consisting of a snRNA sequence and a region consisting of an STL sequence.
  • the region consisting of the snRNA sequence used in the present invention is a region composed of the base sequence of snRNA well known to those skilled in the art, and is partially modified in the base sequence of natural snRNA as long as it has the function of the snRNA sequence.
  • the guide RNA of the present invention has, as a functional region, a region consisting of a U1 snRNA sequence, a U2 snRNA sequence, a U4 snRNA sequence, a U5 snRNA sequence, a U6 snRNA sequence, a U7 snRNA sequence, or a combination thereof.
  • the guide RNA of the present invention comprises, as a functional region, a region consisting of a U6 snRNA sequence.
  • the region consisting of the U6 snRNA sequence used in the present invention is a region composed of the base sequence of U6 snRNA, and as long as it has the function of the snRNA sequence, even if it contains a partial modification in the base sequence of the natural U6 snRNA. It may be a partial sequence of a natural U6 snRNA as long as it has the function of a well and / or snRNA sequence.
  • the region consisting of the U6 snRNA sequence used in the present invention is a region consisting of a partial sequence of the U6 snRNA base sequence, and in one embodiment, from the transcription start point to the 27th base of the U6 snRNA base sequence.
  • the region consisting of the U6 snRNA sequence may be used in combination with the region consisting of the artificial stem-loop sequence as long as it has the function of the snRNA sequence.
  • an antisense region is inserted between the region consisting of the U6 snRNA sequence and the region consisting of the artificial stem-loop sequence.
  • the region consisting of the U6 snRNA sequence used in the present invention is deleted, substituted, inserted and deleted with 1 to 3 bases in the base sequence shown in SEQ ID NO: 3 or the base sequence shown in SEQ ID NO: 3. / Or it is an added base sequence and consists of a base sequence having the function of a snRNA sequence.
  • the region consisting of the artificial stem-loop sequence used in the present invention is, in some embodiments, an STL sequence, and in some embodiments, 1 to 1 in the base sequence shown in SEQ ID NO: 5 or the base sequence shown in SEQ ID NO: 5. It is a base sequence in which three bases are deleted, substituted, inserted and / or added, and consists of a base sequence forming a stem-loop structure.
  • the guide RNA of the present invention contains, as a functional region, a region consisting of a base sequence forming a guanine quadruple chain structure, a region consisting of a base sequence forming a stem-loop structure, or a combination thereof.
  • the guide RNA of the invention comprises, as a functional region, a region consisting of a base sequence forming a guanine quadruplex structure.
  • the guide RNA of the invention comprises, as a functional region, a region consisting of a base sequence forming a stem-loop structure.
  • the region consisting of the base sequence forming the guanine quadruple chain structure (Gq structure) used in the present invention contains the Gq sequence.
  • the Gq sequence is a sequence containing four repeating units consisting of consecutive guanines, and the four guanines form a quadruple chain (Gq) structure on a plane.
  • a base other than guanine may be contained between the repeating units composed of guanine as long as the Gq structure is maintained.
  • the Gq sequence comprises repeating units consisting of 1, 2, 3, or 4 consecutive guanines, forming 1, 2, 3, or 4 layers of Gq, respectively.
  • the Gq sequence comprises a repeating unit consisting of three consecutive guanines to form three layers of Gq.
  • the guide RNA of the present invention comprises, as a functional region, a region consisting of a base sequence forming 3 Gq, and in some embodiments, the base sequence forming 3 Gq is the base sequence shown in SEQ ID NO: 9, or , 1 to 3 bases are deleted, substituted, inserted and / or added in the base sequence shown in SEQ ID NO: 9, and consists of a base sequence forming a Gq structure.
  • the stem-loop structure is also referred to as a hairpin structure and is well known in the art.
  • the base sequence forming the stem-loop structure is derived from the aptamer sequence (Int. J. Biochem. Mol. Biol., 2013, Vol. 4, p. 27-40, International Publication No. 2016/143700), Box B sequence. Sequence, sequence derived from MS2 sequence, sequence derived from PP7 sequence (Integr. Biol., 2009, Vol. 1, p. 499-505, Nucleic Acids Research, 2016, Vol. 44, p. 9555-9564), artificial stem Loop sequence (eg, artificial stem-loop sequence (STL sequence) contained in U6 cassette) (Gene Ther., 1997, Vol.
  • the guide RNA of the present invention contains, as a functional region, a region consisting of a base sequence forming a stem-loop structure, and the region consisting of a base sequence forming the stem-loop structure is a sequence derived from a BoxB sequence.
  • the guide RNA of the invention comprises, as a functional region, a region consisting of a sequence derived from the BoxB sequence. In some embodiments, the guide RNA of the invention comprises, as a functional region, a region consisting of STL sequences. In some embodiments, the region consisting of the sequence derived from the BoxB sequence used in the present invention is deleted or substituted with 1 to 3 bases in the base sequence shown in SEQ ID NO: 11 or the base sequence shown in SEQ ID NO: 11. It is an inserted and / or added base sequence and consists of a base sequence that forms a stem loop structure.
  • the functional region is linked to the antisense region.
  • linkage includes direct binding and binding via a linker.
  • at least one functional region is directly linked to the antisense region.
  • the guide RNA of the present invention has at least one functional region linked to the antisense region via a linker.
  • the length of the linker is 1-10 bases, in some embodiments 1-6 bases, in some embodiments 1-3 bases, in some embodiments 3-6 bases, in some embodiments 3 Bases, in some embodiments 6 bases.
  • the base sequence of the linker can be appropriately designed by those skilled in the art based on the sequences constituting the guide RNA.
  • the base sequence of the linker used in the present invention may be designed so as not to form a complementary strand with the target RNA.
  • the linker consists of the base sequence "UCU", the restriction enzyme SalI site sequence "GUCGAC", or the restriction enzyme XbaI site sequence "UCUAGA”.
  • the guide RNA of the present invention when the guide RNA of the present invention contains a region consisting of a sequence derived from a BoxB sequence as a functional region, a linker-mediated linkage is used between the region consisting of a sequence derived from the BoxB sequence and the antisense region.
  • the linker is the base sequence "UCU”.
  • the guide RNA of the present invention when the guide RNA of the present invention contains a region consisting of a U6 snRNA sequence and a region consisting of a base sequence arbitrarily contained to form a stem-loop structure as a functional region, the functional region is converted to a functional region via a linker.
  • the antisense region can be ligated, and in some embodiments, the linker is the base sequence "GUCGAC" or "UCUAGA".
  • the guide RNA of the invention comprises at least one functional region and an antisense region that is complementary to a portion of the target RNA comprising a polyadenylation signal sequence and forms a double strand with the target RNA.
  • the guide RNA consists of a functional region consisting of a U6 snRNA sequence, an antisense region, an optionally contained linker, and a region consisting of an artificial stem-loop sequence, and a functional region consisting of a U6 snRNA sequence, antisense.
  • the region and the functional region consisting of the base sequence forming the artificial stem-loop sequence structure are connected from the 5'side to the 3'side in this order.
  • the guide RNA consists of an antisense region, a functional region consisting of a base sequence forming a guanine quadruple chain structure, and an optionally contained linker, and forms an antisense region and a guanine quadruple chain structure.
  • the functional region consisting of the base sequence is linked from the 5'side to the 3'side in this order, or (a-3) the functional region consisting of the base sequence in which the guide RNA forms a stem-loop structure, the antisense region.
  • a functional region and an antisense region consisting of a base sequence forming a stem-loop structure, which are optionally contained, are linked from the 5'side to the 3'side in this order.
  • the "region for recruiting ADAR” is a region consisting of a base sequence capable of recruiting a naturally occurring or modified ADAR.
  • the base sequence capable of recruiting ADAR is a base sequence capable of forming a stem-loop structure within the same molecule, binding ADAR to the stem-loop structure, and recruiting the ADAR to a target RNA. ..
  • a base sequence capable of recruiting ADAR a base sequence designed based on a stem-loop structure derived from an ADAR substrate such as an mRNA precursor of GluR2 (International Publication No. 2016/0972121, International Publication No. 2017/050306, German Patent No.
  • dCas13 is a modified Cas13 protein and is a modified Cas13 having no double-stranded DNA cleavage activity. It is a protein.
  • the "region for recruiting a fusion protein of ADAR and dCas13 protein" is a region consisting of a base sequence capable of recruiting a naturally occurring ADAR or a modified fusion protein of ADAR and dCas13 protein.
  • the region for recruiting the fusion protein of ADAR and the dCas13 protein is a base sequence capable of recruiting dCas13.
  • the base sequence capable of recruiting dCas13 is a sequence known to those skilled in the art, for example, the sequence described in International Publication No. 2019/005884 or International Publication No. 2019/071048.
  • the region for recruiting the fusion protein of ADAR and the dCas13 protein is a region consisting of a base sequence capable of recruiting the dCas13 protein, the sequence of which is known to those of skill in the art, and the guide RNA containing the region is, for example, , Can be produced based on the description in the above document.
  • the "RNA linking protein” has a high affinity with the specific RNA and the specific RNA is intracellular. It is a protein that can maintain the state of being linked with.
  • the RNA linking protein is an MS2 coated protein (MCP) or a ⁇ N protein.
  • MCP MS2 coated protein
  • the "region for linking the fusion protein of ADAR and the RNA linking protein" is a region consisting of a base sequence capable of linking the fusion protein of the naturally occurring ADAR or the modified ADAR and the RNA linking protein.
  • the region linking to the fusion protein of ADAR and the RNA linking protein is a region consisting of an RNA sequence that has a high affinity for a particular RNA linking protein and is capable of maintaining the intracellularly linked state of the fusion protein. ..
  • the region linked to the fusion protein of ADAR and the RNA linking protein is MS2 RNA when the RNA linking protein is MCP, and is a BoxB sequence when the RNA linking protein is ⁇ N protein.
  • the MCP, MS2 RNA, ⁇ N protein, or BoxB sequence is a sequence known to those skilled in the art, and Protein Eng. Des. Sel. , 2018, vol. 1, p. 471-478, International Publication No. 2018/161032, Nucleic Acids Research, 2016, Vol. 44, p. It is the sequence described in e157, International Publication No. 2017/050306, International Publication No. 2019/07127.
  • the guide RNA of the present invention can be synthesized using a standard polynucleotide synthesis method known in the art based on the sequence information. Further, if a guide RNA of the present invention is obtained, a predetermined method known to those skilled in the art such as a site-specific mutagenesis method (Current Protocols in Molecular Biology edition, 1987, John Willey & Sons Detection) can be used. By introducing a mutation at the site, it is also possible to prepare a variant of the guide RNA of the present invention that maintains the function of recruiting to the target RNA and the function of editing the target RNA. The guide RNA of the present invention can also be produced using a modified nucleic acid.
  • the guide RNA of the present invention can also be prepared using a nucleic acid encoding the guide RNA of the present invention.
  • the guide RNA of the present invention can be prepared by transcribing the guide RNA of the present invention from an expression vector containing a nucleic acid encoding the guide RNA of the present invention.
  • ADAR used in the present invention includes naturally occurring ADAR, modified ADAR, and ADAR or fusion proteins of modified ADAR with other factors.
  • the ADAR used in the present invention also includes naturally occurring ADAR and modified ADAR as long as it has deaminase activity.
  • Deaminase activity can be measured by detecting deamination of the substrate by a method known to those skilled in the art.
  • deaminase activity can be measured by detecting the conversion of adenosine to inosine.
  • the ADAR used in the present invention is, in some embodiments, eukaryotic-derived ADAR, in some embodiments mammalian-derived ADAR, and in some embodiments human ADAR.
  • the ADAR used in the present invention is, in some embodiments, ADAR1 or ADAR2, and in some embodiments, ADAR2.
  • ADAR1 includes two splicing variants ADAR1 p110 and ADAR1 p150, and the ADAR used in the present invention is, in some embodiments, ADAR1 p110 or ADAR1 p150.
  • the ADAR used in the present invention is, in some embodiments, human ADAR1 or human ADAR2, and in some embodiments human ADAR2.
  • ADAR used in the present invention is, in some embodiments, a polypeptide containing a double-stranded RNA binding region (dsRBD: double-stranded-RNA binding domine) and having deminase enzyme activity (Trends in Biochemical Sciences, 2001, Vol.). .26, p.376-384, RNA, 2001, Vol.7, p.846-858).
  • ADAR as used in the present invention is, in some embodiments, a polypeptide that comprises a deaminase domain and is capable of converting the target RNA adenosine to inosine.
  • the ADAR used in the present invention may be ADAR or a fusion protein of modified ADAR and other factors.
  • the ADAR used in the present invention is, in some embodiments, a polypeptide consisting of the amino acid sequence set forth in accession number [NP_001103.1], accession number [NP_056648.1], or accession number [NP_0011022.3]. Alternatively, it consists of an amino acid sequence having 90% or more identity with these amino acid sequences, or an amino acid sequence in which 1 to 10 amino acids are deleted, substituted, inserted and / or added in these amino acid sequences, and adenosine deaminase. It is an active polypeptide.
  • ADAR used in the present invention is, in some embodiments, a polypeptide consisting of the amino acid sequence (human ADAR2) set forth in SEQ ID NO: 15, an amino acid sequence having 90% or more identity with the sequence, or 1 in the sequence. It is a polypeptide having adenosine deaminase activity consisting of an amino acid sequence in which ⁇ 10 amino acids are deleted, substituted, inserted and / or added.
  • the ADAR used in the present invention may be ADAR endogenously present in eukaryotic cells in some embodiments and may be exogenously introduced into eukaryotic cells in some embodiments. The introduction of ADAR into eukaryotic cells may be carried out by directly introducing the ADAR polypeptide or by introducing an expression vector containing a nucleic acid encoding ADAR.
  • identity is obtained using the parameters provided by default by the EMBOSS NEEDLE program (J. Mol. Biol., 1970, Vol. 48, p. 443-453). It means the value Identity.
  • ADAR as used in the present invention is a fusion protein of naturally occurring ADAR or modified ADAR with other factors.
  • dCas13 protein or RNA linking protein can be mentioned.
  • the ADAR used in the present invention is a naturally occurring ADAR or a modified ADAR fusion protein of dCas13.
  • the fusion protein is a protein having an amino acid sequence known to those skilled in the art, and is, for example, a protein having an amino acid sequence described in International Publication No. 2019/005884 or International Publication No. 2019/071048.
  • the ADAR used in the present invention is a naturally occurring ADAR or a modified ADAR fusion protein of an RNA linking protein.
  • the ADAR used in the present invention is a naturally occurring ADAR or a modified ADAR fusion protein with MCP or a naturally occurring ADAR or a modified ADAR fusion protein with a ⁇ N protein.
  • the fusion protein is a protein having an amino acid sequence known to those skilled in the art, and is, for example, Protein Eng. Des. Sel. , 2018, vol. 1, p. 471-478, International Publication No. 2018/161032, Nucleic Acids Research, 2016, Vol. 44, p. It is a protein consisting of the amino acid sequence described in e157, International Publication No. 2017/050306, and International Publication No. 2019/071274.
  • the invention also provides a system for editing target RNAs, including the guide RNAs and ADARs of the invention.
  • the system for editing the target RNA sequence containing the guide RNA and ADAR of the present invention is a kit for editing the target RNA sequence containing the guide RNA and ADAR of the present invention, or the target using the guide RNA and ADAR of the present invention.
  • "editing" means converting a base of a target RNA sequence into another base.
  • the system for editing the target RNA of the present invention can be used both intracellularly and extracellularly.
  • the system can be used within eukaryotic cells.
  • the system can be used in prokaryotic cells, bacteria, phages, viruses, and the like.
  • the present invention also provides a nucleic acid encoding the guide RNA of the present invention (also referred to as "nucleic acid of the present invention” in this section).
  • the nucleic acid of the present invention is a guide RNA for editing a target RNA by ADAR, and is a nucleic acid encoding a guide RNA containing an antisense region complementary to a part of the target RNA containing a polyadenylation signal sequence. be.
  • the nucleic acid of the invention is a guide RNA for editing the target RNA by ADAR, wherein the guide RNA comprises an antisense region complementary to a portion of the target RNA comprising a polyadenylation signal sequence.
  • the nucleic acid of the invention is a guide RNA for editing the target RNA by ADAR, wherein the guide RNA comprises an antisense region complementary to a portion of the target RNA comprising a polyadenylation signal sequence.
  • nucleic acid encoding a guide RNA wherein the polyadenylation signal sequence is a base sequence consisting of AAUAAA.
  • the nucleic acid of the invention is a guide RNA for editing the target RNA by ADAR, wherein the guide RNA comprises an antisense region complementary to a portion of the target RNA comprising a polyadenylation signal sequence.
  • An antisense region complementary to a portion of the target RNA is a nucleic acid encoding a guide RNA containing a base pairing with adenosine contained in the polyadenylation signal sequence of the target RNA.
  • the nucleic acid of the invention is a guide RNA for editing the target RNA by ADAR, wherein the guide RNA comprises an antisense region complementary to a portion of the target RNA comprising a polyadenylation signal sequence.
  • the nucleic acid of the present invention can be synthesized using standard polynucleotide synthesis methods known in the art based on the sequences described herein or publicly available sequence information. Further, if the nucleic acid of the present invention is obtained, a predetermined site can be obtained by using a method known to those skilled in the art such as a site-directed mutagen (Current Protocols in Molecular Biology edition, 1987, John Willey & Sons Section). It is also possible to make another nucleic acid of the present invention by introducing a mutation into the nucleic acid.
  • the present invention also provides an expression vector (also referred to as "expression vector of the present invention") containing a nucleic acid encoding the guide RNA of the present invention.
  • the expression vector of the present invention also provides an expression vector containing a nucleic acid encoding the guide RNA of the present invention and a nucleic acid encoding ADAR.
  • the nucleic acid encoding the guide RNA of the present invention and the nucleic acid encoding ADAR may be loaded on the same expression vector or may be loaded on different expression vectors.
  • the expression vector of the invention is a combination of an expression vector comprising a nucleic acid encoding the guide RNA of the invention and an expression vector comprising a nucleic acid encoding ADAR. In some embodiments, the expression vector of the invention is an expression vector comprising a nucleic acid encoding the guide RNA of the invention and a nucleic acid encoding ADAR.
  • the expression vector used in the present invention is an expression vector capable of expressing the guide RNA of the present invention from a nucleic acid encoding the guide RNA of the present invention, and / or an expression vector capable of expressing ADAR. If there is, there is no particular limitation.
  • the expression vector used in the present invention is an expression vector that can be used to express the guide RNA of the present invention in human cells and / or to express ADAR.
  • examples of expression vectors used in the present invention include plasmid vectors, viral vectors (eg, adenovirus vectors, retroviral vectors, lentivirus vectors, adeno-associated virus vectors) and the like.
  • Expression vectors of the invention may include promoters operably linked to nucleic acids encoding the guide RNAs of the invention and / or nucleic acids encoding ADAR.
  • "operably linked” means that at least one promoter is linked to the nucleic acid so that the polypeptide or RNA encoded by the nucleic acid can be expressed in the host cell. ..
  • the promoter contained in the expression vector of the present invention is not particularly limited, but RNA polymerase suitable for expressing the guide RNA of the present invention or the nucleic acid encoding ADAR (for example, RNA polymerase II (polII), RNA polymerase III (for example) A promoter corresponding to polIII)) can be used.
  • a promoter corresponding to polII or polIII can be used, and in another embodiment, a promoter corresponding to polIII can be used.
  • a promoter corresponding to polII can be used.
  • Examples of the promoter corresponding to polII include a CMV (cytomegalovirus) -derived promoter, an SV40 (simian virus 40) promoter, an RSV (respiratory synchronous virus) promoter, an EF1 ⁇ (Elongation factorAcentCercentA) promoter, and a promoter.
  • Promoter promoter
  • U1 snRNA promoter, U7 snRNA promoter and the like can be mentioned.
  • Examples of promoters corresponding to polIII include human U6 snRNA promoter (U6) (Nat. Biotechnol., 2002, vol.20, p.497-500) and high-sensitivity U6 promoter (Nuclic Acids Research, 2003, vol.31). , P.e100), human H1 promoter, 5S rRNA promoter and other other viruses and eukaryotic cell promoters known to those skilled in the art, but are not limited thereto.
  • the expression vector of the present invention is used for a translation initiation codon, a translation termination codon, a purine base (G or A) preferable for the transcription initiation site of polIII, a polyA signal, and polIII, depending on the promoter used, the host cell, and the like. It may include a continuous T terminator sequence, enhancers, untranslated regions, splicing junctions and the like.
  • the present invention also provides a host cell (also referred to as "the host cell of the present invention") transformed by introducing a nucleic acid encoding the guide RNA of the present invention.
  • the host cell of the invention is a host cell into which the expression vector of the invention has been introduced.
  • the host cell of the invention is a host cell into which the expression vector of the invention, which is a plasmid vector, has been introduced.
  • the host cell of the invention is a host cell into which a plasmid vector for producing the expression vector of the invention, which is a viral vector, has been introduced.
  • the host cell of the invention is a host cell into which the expression vector of the invention, which is a viral vector, has been introduced.
  • the host cell into which the expression vector of the present invention is introduced is not particularly limited, but cells known in the art can be selected as long as they can be used for the production of the expression vector of the present invention.
  • Host cells that can be used for vector replication include, for example, various cells such as natural cells or artificially established cells commonly used in the art of the present invention.
  • Host cells that can be used for vector replication include, for example, animal cells (eg, CHO cells, HEK293 cells, etc.), insect cells (eg, Sf9, etc.), bacteria (Escherichia coli, etc.), yeast (Saccharomyces, Pikia, etc.), etc. ) Etc.).
  • E. coli can be used as a host cell. Transformation can be carried out by a method known to those skilled in the art (Green, MR and Sambrook, J., Molecular Cloning: A Laboratory Manual, 4th Edition, Cold Spring Harbor Laboratory 12 Pres).
  • the method for producing an expression vector of the present invention includes a method for producing a nucleic acid, which comprises a step of culturing a host cell into which an expression vector containing the nucleic acid of the present invention has been introduced.
  • the method of producing an expression vector of the invention comprises culturing a host cell into which the expression vector of the invention has been introduced and replicating the expression vector of the invention.
  • the expression vector of the present invention is a viral vector
  • the method for producing the expression vector of the present invention is prepared by culturing a host cell into which a viral vector plasmid containing the nucleic acid of the present invention has been introduced and in the host cell. Includes the step of purifying the viral vector.
  • the viral vector can be prepared by a method known to those skilled in the art.
  • the method for producing an expression vector of the present invention may include a step of collecting a culture solution of a host cell to obtain a lysate (bacteriolytic solution).
  • the lysate can be obtained, for example, by treating the recovered culture solution by an alkaline dissolution method or a boiling method.
  • the method for producing an expression vector of the present invention may further include a step of purifying the expression vector from lysate. Ion exchange chromatography and / or hydrophobic interaction chromatography can be used to purify the expression vector from lysate.
  • purification of the viral vector from lysate includes cesium chloride density gradient centrifugation, sucrose gradient centrifugation, Iodixanol density gradient centrifugation, and ultrafiltration.
  • An external filtration method, a diafiltration method, an affinity chromatography method, an ion exchange chromatography method, a polyethylene glycol precipitation method, an ammonium sulfate precipitation method, or the like can also be used.
  • the present invention is also the guide RNA of the present invention, the nucleic acid encoding the guide RNA of the present invention (also referred to as “nucleic acid of the present invention” in this section), or the expression vector of the present invention, and pharmaceutically acceptable modifications.
  • a pharmaceutical composition containing an agent also referred to as “the pharmaceutical composition of the present invention” is provided.
  • the pharmaceutical composition of the invention is a pharmaceutical composition comprising the guide RNA of the invention and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition of the invention is a pharmaceutical composition comprising the guide RNA of the invention, ADAR, and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition of the invention is a pharmaceutical composition comprising the nucleic acid of the invention and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition of the invention is a pharmaceutical composition comprising the nucleic acid of the invention, ADAR, and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition of the invention is a pharmaceutical composition comprising an expression vector comprising a nucleic acid encoding the guide RNA of the invention and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition of the invention is a pharmaceutical composition comprising an expression vector comprising the nucleic acid of the invention and a nucleic acid encoding ADAR, as well as a pharmaceutically acceptable excipient.
  • the pharmaceutical composition of the invention comprises an expression vector comprising a nucleic acid encoding the guide RNA of the invention, an expression vector comprising a nucleic acid encoding ADAR, and a pharmaceutical composition comprising a pharmaceutically acceptable excipient. It is a thing.
  • the pharmaceutical composition of the present invention can be prepared by a commonly used method using excipients usually used in the art, that is, pharmaceutical excipients, pharmaceutical carriers and the like.
  • excipients usually used in the art, that is, pharmaceutical excipients, pharmaceutical carriers and the like.
  • examples of the dosage form of these pharmaceutical compositions include parenteral preparations such as injections and infusions, which can be administered by intravenous administration, subcutaneous administration, intradermal administration, intramuscular administration, or the like. ..
  • Excipients, carriers, additives and the like corresponding to these dosage forms can be used in the formulation within a pharmaceutically acceptable range.
  • the dose of the guide RNA of the present invention, the nucleic acid of the present invention, or the expression vector of the present invention, the expression vector containing the nucleic acid encoding ADAR, or ADAR is the degree and age of the patient's symptoms, the dosage form of the pharmaceutical product to be used, and the like.
  • the dose may be, for example, in the range of 0.001 mg / kg to 100 mg / kg.
  • Diseases that can be prevented or treated with the pharmaceutical compositions of the invention are, in one embodiment, any disease in which transcriptional regulation of the target RNA by editing one or more adenosines in the polyadenylation signal sequence of the target RNA results in beneficial changes.
  • the pharmaceutical composition of the present invention can be used as a prophylactic or therapeutic agent for any disease in which transcriptional regulation of the target RNA by editing one or more adenosines in the polyadenylation signal sequence of the target RNA results in beneficial changes.
  • the present invention it is beneficial to control transcription of the target RNA by editing one or more adenosines in the polyadenylation signal sequence of the target RNA, which comprises the guide RNA of the present invention, the nucleic acid of the present invention, or the expression vector of the present invention.
  • the present invention comprises pharmaceutical compositions for the prevention or treatment of any change-causing disease.
  • the present invention comprises the step of administering a prophylactically effective amount or a therapeutically effective amount of the guide RNA of the present invention, the nucleic acid of the present invention, or the expression vector of the present invention, 1 in the polyadenylation signal sequence of the target RNA.
  • the invention also relates to the present invention for use in the prevention or treatment of any disease in which transcriptional regulation of the target RNA by editing one or more adenosines in the polyadenylation signal sequence of the target RNA results in beneficial changes.
  • the guide RNA of the present invention, the nucleic acid of the present invention, or the expression vector of the present invention is included.
  • the present invention also relates to the manufacture of pharmaceutical compositions for the prevention or treatment of any disease in which transcriptional regulation of the target RNA by editing one or more adenosines in the polyadenylation signal sequence of the target RNA results in beneficial changes. Includes the use of the guide RNA of the invention, the nucleic acid of the invention, or the expression vector of the invention.
  • the present invention also provides a method for editing a target RNA using the guide RNA of the present invention (also referred to as "editing method of the present invention").
  • the antisense region of the guide RNA of the invention forms a double strand with a portion of the target RNA containing the polyadenylation signal sequence, and ADAR is recruited to the guide RNA of the invention.
  • ADAR is recruited to the guide RNA of the invention.
  • adenosine on the polyadenylation signal sequence of the target RNA converted to inosine may form a mismatched base pair with the antisense region.
  • the editing method of the present invention comprises (i) a virus infecting a cell having a target RNA or a cell having a target RNA with the guide RNA of the present invention, the nucleic acid encoding the guide RNA of the present invention, or the expression vector of the present invention. Including the process of introducing into.
  • the editing method of the present invention further introduces (ii) ADAR, a nucleic acid encoding ADAR, or an expression vector containing a nucleic acid encoding ADAR into the cell, a virus infected with the cell, or the like. including. Steps (i) and (ii) may be performed simultaneously or separately.
  • the cells to be introduced are eukaryotic cells, prokaryotes, etc., and in some embodiments, the cells are mammalian cells, bacteria, etc.
  • the virus that infects the cells to be introduced comprises phage.
  • the adenosine of the polyadenylation signal sequence of the target RNA is converted to inosine.
  • H1 RNA polymerase III promoter (hereinafter referred to as "H1 promoter") of the neo vector (Oligogenine, Catalog No. VEC-PBS-0004) was replaced with the human U6 RNA polymerase III (hU6) promoter sequence (SEQ ID NO: 1).
  • hU6 promoter human U6 RNA polymerase III
  • a vector was constructed (hereinafter referred to as "pSUPER.neo-U6 vector").
  • the fragment containing the hU6 promoter sequence uses pBAsi-hU6 Neo DNA (Takara Bio Inc., Catalog No.
  • the culture broth was centrifuged to collect the cells, and plasmid extraction and purification was performed with NucleoBond (registered trademark) Xtra Midi Plus EF (Takara Bio Inc., Catalog No. U0422B), and pSUPER.
  • NucleoBond registered trademark
  • Xtra Midi Plus EF Tekara Bio Inc., Catalog No. U0422B
  • pSUPER pSUPER
  • U6 An expression plasmid of a guide RNA to which an antisense region and a functional region U6 snRNA sequence (hereinafter, may be referred to as “U6”) was added was constructed as follows.
  • pSUPER A DNA sequence encoding U6-ASR-STL, which is a guide RNA (SEQ ID NO: 2), is used downstream of the hU6 promoter of the neo-U6 vector using restriction enzymes BglII site (5'side) and HindIII site (3'side). And inserted.
  • BglII site 5'side
  • HindIII site HindIII site
  • the inserted DNA sequence contains a purine base (G or A) preferable for the transcription initiation site of polIII on the 5'side and a terminator sequence of polIII on the 3'side.
  • the prepared guide RNA expression plasmid is referred to as pSUPERneo_U6_gRNA.
  • the ASR is an artificial PAS sequence attached to the posterior part of the Renilla Luciferase (Rluc) mRNA of the psiCHECK-2 vector (Promega, Catalog No. C8021) (1688-1736 of NCBI accession number AY535007.1).
  • RNA sequence (also referred to as ASR).
  • U6 consists of the RNA sequence set forth in SEQ ID NO: 3
  • the nucleic acid encoding U6 consists of the DNA sequence set forth in SEQ ID NO: 4.
  • the STL consists of the RNA sequence set forth in SEQ ID NO: 5, and the nucleic acid encoding STL consists of the DNA sequence set forth in SEQ ID NO: 6.
  • the outline of this guide RNA is shown in Table 1.
  • the constructed pSUPERneo_U6_gRNA plasmid was amplified in the same manner as above using the DH5 ⁇ Escherichia coli strain (Takara Bio Inc., Catalog No. 9057).
  • RNA expression plasmid containing an antisense region and a functional region (a sequence derived from a Gq sequence or a BoxB sequence)
  • An expression plasmid of a guide RNA containing an antisense region and a functional region (a sequence derived from a Gq sequence or a BoxB sequence) was prepared as follows. pSUPER. Downstream of the H1 promoter of the neo vector, DNA sequences encoding the guide RNAs ASR-Gq or BoxB-ASR (SEQ ID NO: 7 and SEQ ID NO: 8, respectively) were introduced with restriction enzymes BglII (5'end side) and HindIII (3). 'End side) was used and inserted respectively.
  • the DNA sequence encoding the inserted guide RNA contains a purine base (G or A) preferred for the transcription initiation site of polIII on the 5'end side and a terminator sequence of polIII on the 3'end side.
  • the Gq sequence (hereinafter, also referred to as Gq) consists of the RNA sequence shown in SEQ ID NO: 9, and the nucleic acid encoding Gq consists of the DNA sequence shown in SEQ ID NO: 10.
  • the sequence derived from the BoxB sequence (hereinafter, also referred to as BoxB) consists of the RNA sequence shown in SEQ ID NO: 11, and the nucleic acid encoding BoxB consists of the DNA sequence shown in SEQ ID NO: 12.
  • the DNA sequence to be inserted was prepared by the same method as in Example 1.
  • the obtained guide RNA expression plasmids are collectively referred to as pSUPERneo_H1_gRNA.
  • the constructed plasmid was amplified using the DH5 ⁇ Escherichia coli strain in the same manner as in Example 1.
  • the expression plasmid of the guide RNA (referred to as BoxB-Con) used as a comparative control is encoded by the sequence from the 30th base to the 64th base of the ASR sequence (DNA sequence shown in SEQ ID NO: 13) targeting the SV40PAS sequence.
  • RNA sequence also referred to as Con-ASR
  • SEQ ID NO: 13 a DNA sequence encoding BoxB
  • the inserted DNA sequence contains a purine base (G or A) preferable for the transcription initiation site of polIII on the 5'side and a terminator sequence of polIII on the 3'side.
  • Table 1 shows an outline of each guide RNA prepared in Examples 1 and 2 and the DNA sequence encoding the same.
  • “5'end” indicates a functional base sequence added to the 5'end side of ASR
  • “3'end” indicates a functional sequence added to the 3'end side of ASR.
  • “Linker” indicates a sequence that links ASR and each functional base sequence.
  • a psiCHECK-2_Rluc-bGHpolyA vector carrying the Rluc gene, which is used as a plasmid for detecting the editing activity of the target RNA in cells was prepared by the following method.
  • the bovine somatotropin (hereinafter, bGH) PAS sequence of the artificial PAS sequence was incorporated into the 3'end side of the Rluc gene PAS sequence loaded on the psiCHECK-2 vector.
  • An artificially synthesized DNA sequence (SEQ ID NO: 14) having a restriction enzyme NotI site on the 5'end side and a SacII site on the 3'end side was inserted using NotI and SacII.
  • the constructed vector was referred to as a psiCHECK-2_Rluc-bGHpolyA vector, and this vector was amplified using a DH5 ⁇ Escherichia coli strain in the same manner as in Example 1.
  • the pAAV-CMV-ADAR2 plasmid which is an ADAR2 expression plasmid, contains a DNA sequence (SEQ ID NO: 16) encoding ADAR2 (SEQ ID NO: 15) downstream of the CMV-derived promoter of the pAAV-CMV vector (Takara Bio, Catalog No. 6230). It was prepared by insertion using restriction enzymes EcoRI (5'end side) and BglII (3'end side).
  • SEQ ID NO: 16 contains a Kozak sequence (“ACC” from bases 13 to 15 of SEQ ID NO: 16) upstream of the translation initiation codon and a stop codon downstream of the ADAR2 gene.
  • the constructed pAAV-CMV-ADAR2 plasmid was amplified using the DH5 ⁇ E. coli strain in the same manner as in Example 1.
  • Example 5 Human fetal kidney-derived cell line HEK293 cells supplemented with 5% fetal bovine serum (FBS) Dulvecco's Modified Eagle Medium (DMEM, high glucose, GlutaMAXtm Suprement, pyruvate; The cells were seeded in a well plate at 2.0 ⁇ 10 4 cells / 100 ⁇ L and cultured overnight at 37 ° C. in the presence of 5% CO 2 .
  • the following (1) to (4) are mixed at a weight ratio of 1: 40: 30: 9 so as to have a total amount of 100 ng / well, and using Lipofectamine TM 3000 Transfection Reagent (Thermo Fisher Scientific, Catalog No. L3000015).
  • HEK293 cells cultured overnight after seeding were transfected.
  • Expression plasmid for detecting intracellular target RNA editing activity prepared in Example 3 (psiCHECK-2_Rluc-bGHpolyA vector)
  • the ADAR2 expression plasmid prepared in Example 4 or pBluescript II KS (-) Phagemid Kit (Agilent Technologies, Catalog No. 212208) (also pBSKS) as a plasmid for correcting the transfection amount.
  • Transfected cells are harvested and attached using QIAshredder (QIAGEN, Catalog No. 79656), RNAy Mini Kit (QIAGEN, Catalog No. 74106), RNase-free DNase Set (QIAGEN, Catalog No. 79254).
  • Total RNA was extracted and purified according to the above.
  • the obtained RNA was subjected to a reverse transcription reaction according to the attached protocol using the SuperScript (registered trademark) VILO TM cDNA Synthesis kit (Thermo Fisher Scientific, Catalog No. 11754-250) to obtain cDNA.
  • a PCR reaction was carried out according to the attached protocol using the following primers for amplifying the fragment containing the edit point using cDNA as a template and PrimeSTAR (registered trademark) GXL DNA Polymerase (Takara Bio Inc., Catalog No. R050A).
  • the primers used in the experiments in Table 2 are listed below.
  • Forward primer AGCGGGAATGGCTCATATCG (SEQ ID NO: 17)
  • Reverse primer GGCACTTCCAGGGTCAAG (SEQ ID NO: 18)
  • Sequence primer GGAGAAGGGGCGAGGTTAGAC (SEQ ID NO: 19)
  • the PCR growth fragment was purified using ExoSAP-IT TM Express PCR Cleanap Reagents (Thermovisher Scientific, Catalog No. 75001.200.UL) according to the attached protocol, and was purified by 3730xl (EXL) DNA Applied Reagents (EXL) DNAAlyz with sequence primers. It was used for the Sanger sequence reaction.
  • Table 2 shows the editing efficiency of the A position at the 4th base of the AATAAA sequence, which is a typical editing position.
  • the column of ADAR2 in the table indicates the presence or absence of transfection of the ADAR2 expression plasmid, where ADAR2 + is a cell supplemented with pAAV-CMV-ADAR2 (hereinafter, also referred to as “ADAR2 + cell”), and ADAR2- is a cell supplemented with pBSKS (hereinafter, also referred to as “ADAR2 + cell”).
  • ADAR2 + cell a cell supplemented with pBSKS
  • ADAR2 + cell a cell supplemented with pBSKS
  • the RNA edit rate (%) column is a column of guanine (extension: .ab1) obtained by the Sanger sequence reaction analyzed by QSVanalyzer software (Bioinformatics, 2009, Vol. 25, p3244-3250).
  • G) represents the ratio of signal intensity (G / (G + A) ⁇ 100).
  • the RNA editing rate was almost constant (2.5 vs 2.3) regardless of the presence or absence of ADAR transfection in BoxB-Con, which is a guide RNA for comparison.
  • BoxB-ASR, ASR-Gq, and U6-ASR-STL which are guide RNAs with functional sequences added to the antisense region targeting the PAS sequence, showed an increase in RNA editing rate under the transfection condition of ADAR2. Was done.
  • Example 6 Examination of mRNA amount of target RNA by transfection and Quantitative PCR>
  • the mixture was mixed so as to have a total amount of 100 ng / well at a weight ratio of: 40: 30: 9.
  • HEK293 cells cultured overnight after seeding were transfected with Lipofectamine TM 3000 Transfection Reagent.
  • Quantitive PCR was performed from the transfected cells using TaqMan® Gene Expression Cells-to-CT TM Kit (Thermo Fisher Scientific, Catalog No. AM1728). After washing the cells with PBS, 50 ⁇ l of a mixed solution of Lysis buffer and DNase I was used to prepare a cell lysate, and 22.5 ⁇ l of the prepared cell lysate was used to synthesize cDNA according to the protocol.
  • Rluc forward primer CTTCTAGCTCCCTCGACAATAG (SEQ ID NO: 20)
  • Rluc reverse primer TCCAGATTGTTCCGCAACTAC (SEQ ID NO: 21)
  • Rluc probe CCAGCGACGATCTGCCTAAGATGTT (SEQ ID NO: 22)
  • the analysis used the delta delta Ct method.
  • the housekeeping gene 18S was used as an endogenous control for correction between samples.
  • the vertical axis of FIG. 1 is the relative expression level under ADAR2 expression, and the test results of two independent trials are shown in each plot. From FIG. 1, as compared with BoxB-Con, which is a guide RNA for comparison and control, the expression ratio of the mRNA of the target Rluc is lower in the guide RNA in which the functional sequence is added to the ASR region targeting the PAS sequence. was admitted.
  • a pharmaceutical composition containing the guide RNA of the present invention, the nucleic acid encoding the guide RNA of the present invention, and the expression vector of the present invention is useful for suppressing the expression of the target RNA.
  • SEQ ID NOs: 1-2, 4, 6-8, 10, 12-14, and 16-22 are synthetic DNA sequences
  • SEQ ID NOs: 3, 5, 9, and 11 are synthetic RNA sequences
  • SEQ ID NO: 15 is. It is a protein sequence.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】高効率で標的RNAを発現制御することが期待される、標的RNAのポリアデニル化シグナル配列を編集するためのアンチセンス型ガイドRNA及びそれをコードする核酸の提供。 【解決手段】本発明者らは、高効率で標的RNAを発現制御するための技術について鋭意検討した結果、ポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む、標的RNAをADARにより編集するためのガイドRNAを知見して本発明を完成した。

Description

標的RNAのポリアデニル化シグナル配列を編集するためのガイドRNA
 本発明は、ADARをリクルートしてポリアデニル化シグナル配列を編集するためのガイドRNA、に関する。
 遺伝子発現制御は、細胞の恒常性維持や細胞内外の環境変化に適応するために重要な機能である。セントラルドグマの基本原理に示されるように、遺伝情報は基本的にDNA、mRNA、タンパク質の順に伝達される。各段階における発現・翻訳制御が最終的なタンパク質の量を決定させるのに重要である。
 真核生物では、核内において転写・合成された伝令RNA(messenger RNA:mRNA)の前駆体mRNA(pre-mRNA)が5’キャップ構造の付加、スプライシング、3’末端へのポリA鎖付加(ポリアデニル化)と呼ばれるプロセシングを経て成熟mRNAが合成され核から細胞質に搬出される。
 mRNAの3’末端のポリアデニル化には、ポリアデニル酸(poly(A))が付加される10~30塩基上流に存在するポリアデニル化シグナル(polyadenylation signal:PAS)と、PASの20~40塩基下流に存在するGU配列の含有率の高い領域が必要である。PASは6塩基の保存されたモチーフで、代表例としてAAUAAAとその1塩基置換体AUUAAAが知られている。この過程はエンドヌクレアーゼを含有する切断-ポリアデニル化特異的因子(cleavage-polyadenylation specificity factor:CPSF)やポリA付加酵素であるポリアデニル酸ポリメラーゼ(Polyadenylate polymerase:PAP)に加えて、少なくとも20種類以上の因子が関する反応として知られている(Mol.Cell,2009,Vol.33,p.365-376)。
 ヒトの疾患との関連性については、βグロビン遺伝子の変異や欠失によりβグロビン産生障害を引き起こすβサラセミアにおいて、βグロビンのPASの点突然変異(AATAAA→AATAAG)と5塩基対の欠失(AATAAA→A‐‐‐‐‐)の2つの変異が同定されており、これらは正常にポリアデニル化されていないため、mRNA量が減少している(Proc.Natl.Acad.Sci.USA,1992,Vol.89,p.4324-4328)。このように、ヒトの疾患でもPAS配列はポリアデニル化制御に重要な役割を果たしている。
 mRNAのポリA鎖の役割として、一般的に翻訳効率の制御が知られている。mRNAは5’末端キャップ構造に結合する真核生物翻訳開始因子4E(eukaryotic initiation factor 4E:eIF4E)とポリA鎖に結合するポリA結合タンパク質(Poly(A) binding protein:Pab1p)の相互作用により環状構造を形成する(EMBO J.,1996,Vol.15,p.7168-7177)。この環状構造により、翻訳終結後、mRNAから乖離したリボソームが再びmRNAの5’末端にリクルートされやすくなり、翻訳効率が向上すると考えられている(eLife,2017,Vol.6,p.e25237)。また、同じmRNAでも長いポリA鎖を持つ因子では、高い翻訳効率を示すことから、翻訳効率の制御におけるポリA鎖長の重要性が示されている(RNA,1998,Vol.4,p.1321-1331)。
 mRNAのポリA鎖のその他の役割として、mRNAの安定性への関与が知られている。真核生物におけるmRNA分解経路は広く保存されており、脱アデニル化酵素によるポリAの除去が最初の段階であり、律速段階であると考えられている。脱アデニル化酵素には、複数種類存在することが知られており、酵素活性ドメインの構造から大きく分けてAsp-Glu-Asp-Asp(DEDD)とExonuclease-endonuclease-phosphatase(EEP)の2つのファミリーに分類される。ポリA鎖が除去されたmRNAは、続いて脱キャップ酵素であるDecapping 1/Decapping 2(DCP1/DCP2)複合体によりキャップ構造が除去される(Nature,1996,Vol.382,p.642-646,Nucleic Acids Research,2014,Vol.42,p.5217-5233)。その後、mRNAは5’末端からExoribonuclease(XRN)によって分解されるか、3’末端からエキソソームによる分解を受ける(Gene,1990,Vol.95,p.85-90,Mol.Cell,2004,Vol.15,p.173-183,Cell,1997,Vol.91,p.457-466,Cell,2007,Vol.131,p.1340-1353)。
 今までに、PAS配列に対して設計されたアンチセンスオリゴヌクレオチドを用いて、KCNH2遺伝子のイントロン9でのポリアデニル化を防止するオリゴヌクレオチド(特許文献1)や、HIVPASに設計されたアンチセンスオリゴヌクレオチドによるウイルスの遺伝子発現やウイルスの産生量の減少(非特許文献1)などが報告されている。
 アンチセンスヌクレオチドによる標的RNAの発現抑制では、アンチセンスヌクレオチドと標的RNAと1:1で結合して立体障害が生じさせることが必要であるために、高用量のアンチセンスヌクレオチドの投与を必要とする。そのため、高効率でRNAを発現抑制できる技術が必要とされている。
 真核生物には一塩基変異によるRNA編集と呼ばれる機構が存在する。多くの場合、その機構は部位特異的かつ正確に編集される。RNA編集は、アデノシン(A)からイノシン(I)へ変換する、アデノシンデアミナーゼ酵素(adenosine deaminase acting on RNA:ADAR)が知られている。また、ADARのサブタイプであるADAR2の改変体、ADAR2ddがシチジン(C)からウリジン(U)へ変換するシチジンデアミナーゼ活性を有することが報告されている(Science,2019,Vol.365,p.382-386)。
 ADARはマルチドメインタンパク質であり、N末端には二本鎖RNA結合ドメインを、C末端にはデアミナーゼドメインを有する。認識ドメインは特定の二本鎖RNA(double strand RNA:dsRNA)配列及び/又は構造を認識し、デアミナーゼドメインは核酸塩基の脱アミノ化反応によりターゲット内の特定の位置にあるアデノシン(A)をイノシン(I)に変換する。アデノシンから変換されたイノシンは細胞の翻訳機構によりグアニンとして認識される。つまり、イノシンに変換されるアデノシンがmRNAまたは前駆体mRNAのコード領域にある場合はタンパク質配列に変異を導入することが可能となる。これまで、ADARには3種類存在することが知られており、生体内での発現分布が異なっている。ADAR1とADAR2は全身に発現しており、特にADAR2は神経細胞に発現している。一方、ADAR3は神経細胞のみに発現し、N末端側にアルギニンに富んだ一本鎖RNA結合ドメインを持つもののRNAの編集活性を持たず、逆にRNA編集活性を抑制することが報告されている(RNA,2000,Vol.6,p.755-767)。
 近年、野生型ADARと人工ガイドRNAを用いた標的RNA編集技術として、GluR2由来のADARリクルート塩基配列を含む標的RNAを編集するためのガイドRNAがいくつか報告されている(国際公開第2016/097212号、国際公開第2017/050306号、国際公開第2017/010556号、国際公開第2019/111957号、Nucleic Acids Research,2017,Vol.45,p.2797-2808,Nature Methods,2019,Vol.16,p.239-242)。
 また、アンチセンスオリゴヌクレオチドを用いた標的RNA編集技術として、編集標的となるアデノシンを含むmRNAに相補的な35塩基以上のアンチセンスオリゴヌクレオチドを用い、mRNAと不完全へリックス構造の二本鎖を形成してADARをリクルートすることにより標的RNAを編集する技術が報告されている(国際公開第2017/220751号,国際公開第2018/041973号,国際公開第2018/134301号,Nat.Biotechnol.,2019,Vol.37,p.1059-1069,Protein Eng.Des.Sel.,2018,Vol.1,p.471-478,Chem.Commun.,2018,Vol.54,p.2377-2380)。また、100塩基以上の人工RNAを用い、ADAR依存的に標的RNAを編集することも報告されている(Nat.Biotechnol.,2019,Vol.37,p.1059-1069)。
 さらに、タンパク質とRNAとの連結システムを用い、ADAR融合タンパク質とガイドRNAを連結させることにより標的RNAにADARをリクルートさせ、標的RNAを編集する技術もいくつか報告されている。例えば、ADAR1デアミナーゼドメイン-MS2コートタンパク質(MS2 coat protein:MCP)の融合タンパク質とアンチセンス-MS2 RNAとの連結システムを用いた標的RNA編集技術(Protein Eng.Des.Sel.,2018,Vol.1,p.471-478,国際公開第2018/161032号)、λファージ由来のBoxB配列とλNタンパク質との連結システムを用いた標的RNA編集技術(Nucleic Acids Research,2016,Vol.44,p.e157,国際公開第2017/050306号,国際公開第2019/071274号)等が報告されている。
 加えて、RNA指向性のCasタンパク質とADARとの融合タンパク質とCasタンパク質をリクルートするガイドRNAを用いた標的RNAを編集する技術もいくつか報告されている。例えば、dCas13-ADAR融合タンパク質を用いた標的RNA編集技術(国際公開第2019/005884号、国際公開第2019/071048号)等が報告されている。
 これまで、PAS配列に対するアンチセンスヌクレオチドを用いてmRNAの発現抑制を誘導した例は存在するが、RNA上のPAS配列を編集して発現抑制させた報告はない。
国際公開第2016/118118号
Virus Res.,2012,Vol.169,p.63-71
 ポリアデニル化シグナル配列に対して設計されたアンチセンスヌクレオチドを用いて標的RNAの発現を抑制するためには、アンチセンスヌクレオチドと標的RNAのポリアデニル化シグナル配列が1:1で結合する必要があるため、標的RNAの発現抑制の効率に課題があった。そのため、高効率で標的RNAを発現制御するための技術が必要とされていた。本発明は、高効率での標的RNAの発現制御に有用であると期待される、標的RNAのポリアデニル化シグナル配列を編集するためのガイドRNA及びそれをコードする核酸を提供することを課題とする。
 本発明者らは、高効率で標的RNAを発現制御するための技術について鋭意検討した結果、標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む、ガイドRNAを知見して本発明を完成した。
 すなわち、本発明は以下の[1]~[14]に関する。
[1]標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む、ガイドRNA。
[2]ポリアデニル化シグナル配列が、AAUAAAからなる塩基配列又はその改変配列からなる塩基配列である、[1]に記載のガイドRNA。
[3]ポリアデニル化シグナル配列が、AAUAAAからなる塩基配列である、[2]に記載のガイドRNA。
[4]標的RNAの一部に相補的なアンチセンス領域が、標的RNAのポリアデニル化シグナル配列に含まれるアデノシンと塩基対を形成する塩基を含む、[1]~[3]のいずれかに記載のガイドRNA。
[5]ADARが、天然に存在するADAR、改変されたADAR、或いは、ADAR又は改変されたADARと他因子との融合タンパク質である、[1]~[4]のいずれかに記載のガイドRNA。
[6][1]~[5]のいずれか1項に記載のガイドRNA、及びADARを含む、標的RNAを編集するシステム。
[7][1]~[5]のいずれか1項に記載のガイドRNAをコードする核酸。
[8][1]~[5]のいずれか1項に記載のガイドRNAをコードする核酸を含む、発現ベクター。
[9]さらにADARをコードする核酸を含む、[8]に記載の発現ベクター。
[10][8]又は[9]に記載の発現ベクターが導入された宿主細胞。
[11][10]に記載の宿主細胞を培養する工程を含む、発現ベクターを製造する方法。
[12][8]又は[9]に記載の発現ベクター及び薬学的に許容される賦形剤を含む、医薬組成物。
[13][8]又は[9]に記載の発現ベクター、ADARをコードする核酸を含む発現ベクター、及び薬学的に許容される賦形剤を含む、医薬組成物。
[14][1]~[5]のいずれか1項に記載のガイドRNAをコードする核酸を細胞又は細胞に感染したウイルスに導入する工程を含む、標的RNAを編集する方法。
 標的RNAをADARにより編集するためのガイドRNAであって、ポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む、ガイドRNAは、標的RNAのポリアデニル化シグナル配列を編集して標的RNAの発現制御をするために使用できる。標的RNAをADARにより編集するためのガイドRNAは、標的RNAのポリアデニル化シグナル配列に結合して編集することで、該ポリアデニル化シグナル配列の機能を抑制することができ、編集後は細胞内で再利用可能であるため、高効率で標的RNAを発現制御するのに有用であると期待される。
図1は、ADAR2を発現させていない条件に対する、各ガイドRNAのレニラルシフェラーゼの相対発現量を示す。縦軸は、コントロールと比較したレニラルシフェラーゼの相対発現量を表す。横軸は、発現させた各ガイドRNA(BoxB-ASR、ASR-Gq、U6-ASR-STL、BoxB-Con)を表す。
 本発明について以下に詳細に説明するが、本発明はこれらに限定されるものではない。本明細書中で使用される用語が具体的に定義されていない場合、当該用語は、当業者に一般的に受け入れられている意味で使用される。
<本発明のガイドRNA>
 本発明は、標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む、ガイドRNA(以下、「本発明のガイドRNA」とも称する)を提供する。本発明において、「標的RNAをADARにより編集するためのガイドRNA」とは、該標的RNAの一部に相補的で該標的RNAの一部と二本鎖を形成する領域を有し、ADARを標的RNAにリクルートするRNA分子をいう。
1.標的RNA
 本発明において、「標的RNA」とは、本発明のガイドRNAによる編集の標的となるRNAをいう。本発明においては、該標的RNAの一部には、ポリアデニル化シグナル配列が含まれる。ある態様では、標的RNAは前駆体mRNA(pre-mRNA)であり、ある態様ではmRNAであり、ある態様ではウイルスゲノムRNAであり、ある態様では、ウイルスアンチゲノムRNAであり、ある態様ではウイルス由来pregenomicRNA(pgRNA)である。標的RNAは、真核細胞、哺乳動物細胞、ウイルス、原核細胞、バクテリア、ファージ等に含まれるRNA内に存在しうる。
2.ポリアデニル化シグナル配列
 本発明において、標的RNAにはポリアデニル化シグナル配列が含まれる。本発明において、「ポリアデニル化シグナル配列」とは、当業者に公知の配列であり、標的RNAのポリアデニル化(poly(A))部位の10~30塩基上流に存在する6塩基の保存されたモチーフをいう。本発明において、ポリアデニル化シグナル配列には、イノシンに変換されるアデノシンが含まれる。ある態様では、ポリアデニル化シグナル配列とは、AAUAAAからなる塩基配列又はその改変配列からなる塩基配列である。AAUAAAの改変配列とは、AAUAAAからなる塩基配列において、1又は2塩基が欠失、置換、挿入及び/若しくは付加された塩基配列であって、CPSF(cleavage-polyadenylation specificity factor)によって認識される塩基配列である。AAUAAAの改変配列には、天然に存在するAAUAAAの改変配列又は人工的に改変したAAUAAAの改変配列が含まれる。ある態様では、ポリアデニル化シグナル配列とは、AAUAAAからなる塩基配列及びその改変配列からなる塩基配列である。ある態様では、AAUAAAの改変配列は、AUUAAA、AGUAAA、又はUAUAAAである(Gene&Development,2011,Vol.25,p.1770-1782)。ある態様では、ポリアデニル化シグナル配列は、AAUAAA、AUUAAA、AGUAAA、又はUAUAAAからなる塩基配列であり、ある態様では、AAUAAA又はAUUAAAからなる塩基配列であり、ある態様では、AAUAAAからなる塩基配列である。
3.アンチセンス領域
 本発明のガイドRNAは、アンチセンス領域を含む。本発明において、「アンチセンス領域」とは、ポリアデニル化シグナル配列を含む標的RNAの一部に相補的な塩基配列を有し、標的RNAと二本鎖を形成する配列からなる領域をいう。ある態様では、アンチセンス領域は、該標的RNAのポリアデニル化シグナル配列に含まれるアデノシンと塩基対を形成する塩基を含み、標的RNAと二本鎖を形成する配列からなる領域をいう。アンチセンス領域を構成する塩基配列の長さは、ある態様では、10塩基~100塩基、10塩基~80塩基、10塩基~60塩基、10塩基~40塩基であり、ある態様では、15塩基~40塩基であり、ある態様では、10塩基~38塩基であり、ある態様では、15~38塩基であり、ある態様では、18~38塩基である。ある態様では、アンチセンス領域は、該標的RNAの一部とミスマッチ塩基対を形成する塩基又はゆらぎ塩基対を形成する塩基を含んでいてもよい。ある態様では、アンチセンス領域は、標的RNAのポリアデニル化シグナル配列とミスマッチ塩基対を形成する塩基又はゆらぎ塩基対を形成する塩基を含んでいてもよい。ある態様では、アンチセンス領域は、標的RNAのポリアデニル化シグナル配列とミスマッチ塩基対を形成する塩基を含んでいてもよい。
 本明細書において「ミスマッチ塩基対」とは、G-A、C-A、U-C、A-A、G-G、C-C、U-U塩基対である。本明細書において「ゆらぎ塩基対」とは、G-U、I-U、I-A、I-C塩基対である。アンチセンス領域は、ある態様では、該標的RNAの一部に含まれるアデノシンとミスマッチ塩基対を形成する塩基を有し、標的RNAと二本鎖を形成する塩基配列からなる領域である。ある態様では、アンチセンス領域は、該標的RNAのポリアデニル化シグナル配列に含まれるアデノシンとミスマッチ塩基対を形成する塩基を有し、標的RNAと二本鎖を形成する塩基配列からなる領域である。ある態様では、アンチセンス領域は、該標的RNAのポリアデニル化シグナル配列に含まれるアデノシンとミスマッチ塩基対を形成する塩基であるシチジンを有し、標的RNAと二本鎖を形成する塩基配列からなる領域である。
 アンチセンス領域を構成する塩基配列は、標的RNAの配列、塩基長、標的RNAと形成するミスマッチ塩基の位置、オフターゲット効果等を考慮して、当業者が適宜設計することが可能である。アンチセンス領域を構成する塩基配列は、アデノシンデアミナーゼ酵素(adenosine deaminase acting on RNA:ADAR)による標的RNAのポリアデニル化シグナル配列のアデノシンの編集効率を向上させるために(RNA、2001、Vol.7、p.846-858、Nat.Biotechnol.、2019、Vol.37、p.1059-1069)、該アデノシン又はシチジンとミスマッチ塩基対又はゆらぎ塩基対を形成するように設計することもできる。
 本明細書において「ASR」とは、アンチセンス領域(Antisense Region)を意味する。
4.標的RNAをADARにより編集するためのガイドRNA
 標的RNAをADARにより編集するためのガイドRNAとして種々の形態のガイドRNAが当業者に公知である。本発明のガイドRNAは、ポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む限り、当業者に公知の、標的RNAをADARにより編集するためのガイドRNAを用いることができる。ある態様では、本発明のガイドRNAは、標的RNA配列をADARにより編集するためのガイドRNAとして、以下の1)~5)のいずれかのガイドRNAを含む;
1)アンチセンス領域からなるガイドRNA(国際公開第2017/220751号、国際公開第2018/041973号、国際公開第2018/134301号、Nat.Biotechnol.、2019、Vol.37、p.1059-1069、Protein Eng.Des.Sel.、2018、Vol.1、p.471-478、Chem.Commun.、2018、Vol.54、p.2377-2380)、
2)アンチセンス領域、機能性領域及び任意に含まれるリンカー配列からなるガイドRNA(国際公開番号WO2021/117729)、
3)アンチセンス領域及びADARをリクルートする領域を含むガイドRNA(国際公開第2016/097212号、国際公開第2017/050306号、国際公開第2017/010556号、国際公開第2019/111957号、Nucleic Acids Research、2017、Vol.45、p.2797-2808、Nature Methods、2019、Vol.16、p.239-242、国際公開番号WO2021/020550)、
4)アンチセンス領域及びADARとdCas13タンパク質との融合タンパク質をリクルートする領域を含むガイドRNA(国際公開第2019/005884号、国際公開第2019/071048号)、又は
5)アンチセンス領域及びADARとRNA連結タンパク質との融合タンパク質と連結する領域を含むガイドRNA(Protein Eng.Des.Sel.、2018、Vol.1、p.471-478、国際公開第2018/161032号、Nucleic Acids Research、2016、Vol.44、p.e157、国際公開第2017/050306号、国際公開第2019/071274号)。
 ある態様では、本発明のガイドRNAは、前記2)のアンチセンス領域、機能性領域及び任意に含まれるリンカー配列からなるガイドRNAである。
 本発明のガイドRNAが前記1)のアンチセンス領域からなるガイドRNAである場合、ある態様では、本発明のガイドRNAは、<本発明のガイドRNA>の3.アンチセンス領域に記載される領域からなるガイドRNAである。
 本発明のガイドRNAが前記2)のアンチセンス領域、機能性領域及び任意に含まれるリンカー配列からなるガイドRNAである場合、ある態様では、本発明のガイドRNAは、機能性領域がアンチセンス領域に連結されていて、ADARリクルート塩基配列を実質的に含まない、ガイドRNAである。本発明において、ADARリクルート塩基配列(後述する)を「実質的に含まない」とは、ガイドRNAの同一分子内にADARリクルート塩基配列を含まないことをいう。
 「機能性領域」とは、ガイドRNAの安定化、ガイドRNAの核への局在、ガイドRNAの細胞質への局在、標的RNAとアンチセンス領域の二本鎖形成促進、アンチセンス領域による非特異的な二本鎖形成阻害、標的RNAとアンチセンス領域で形成される複合体の安定化などの機能のいずれか1以上の機能を有する塩基配列からなる領域をいう。本発明のガイドRNAは、ある態様では、機能性領域として、(a)ガイドRNAの安定化を促進する塩基配列からなる領域、(b)ガイドRNAの核への局在を促進する塩基配列からなる領域、(c)ガイドRNAの細胞質への局在を促進する塩基配列からなる領域、(d)標的RNAとアンチセンス領域の二本鎖形成を促進する塩基配列からなる領域、(e)アンチセンス領域による非特異的な二本鎖形成を阻害する塩基配列からなる領域、又は(f)標的RNAとアンチセンス領域で形成される複合体の安定化を促進する塩基配列からなる領域、或いは前記(a)~(f)に記載された機能のいずれか2以上の機能を有する塩基配列からなる領域を含む。機能性領域がこれらの1以上の機能を有することを、まとめて「機能を有する」と称することがある。また、(a)、(b)、及び(d)に記載された機能を有することをまとめて「snRNA配列の機能を有する」と称することがある。
 本明細書において、「ガイドRNAの安定化を促進する」とは、RNA分解酵素への耐性を付与することをいう。該機能は、公知の方法により、RNA分解酵素存在下でのガイドRNAの残存量、細胞へのガイドRNAをコードする核酸の導入後の転写阻害下での細胞内のガイドRNAの残存量等を測定することにより評価することができる。「ガイドRNAの核への局在を促進する」とは、細胞へ導入されたガイドRNAの核への移行及び局在を促進することをいう。該機能は、公知の方法により、ガイドRNAの細胞内での分布や量を検出することにより評価することができる。例えば、インサイチュハイブリダイゼーション(in situ hybridization)(Mol.Ther.、2003、Vol.7、p.237-247)により確認することができる。「ガイドRNAの細胞質への局在を促進する」とは、細胞へ導入されたガイドRNAが細胞質にとどまることを促進することをいう。該機能は、公知の方法により、ガイドRNAの細胞内での分布や量を検出することにより評価することができる。例えば、インサイチュハイブリダイゼーション(in situ hybridization)(Mol.Ther.、2003、Vol.7、p.237-247)により確認することができる。「標的RNAとアンチセンス領域の二本鎖形成を促進する」とは、標的RNAとアンチセンス領域の親和性を向上させることをいう。該機能は、公知の方法により、アフィニティアッセイにより評価できる(BMC Biotech.、2008、Vol.8、article number 48)。「アンチセンス領域による非特異的な二本鎖形成を阻害する」とは、非特異的な二本鎖形成(本明細書中、「オフターゲット効果」とも称する)を軽減することをいう。該機能は、RNAシークエンス等の公知の方法により評価することができる(Nat.Biotechnol.、2019、Vol.37、p.657-666)。「標的RNAとアンチセンス領域で形成される複合体の安定化を促進する」とは、標的RNAとアンチセンス領域で形成される二本鎖を含む複合体の状態が維持されることをいう。該機能は、公知の方法により、DNA/RNAハイブリッド鎖のRNAを分解するRNA分解酵素存在下で、標的RNAとアンチセンス領域で形成される二本鎖の残存量を測定することにより評価することができる。例えば、RNaseHの存在下での標的RNAとDNA配列からなるガイドRNAで形成される二本鎖の残存量を測定することにより評価することができる(Antiviral Chemistry & Chemotherapy、1996、Vol.7、p.86-93)。
 ある態様では、ガイドRNAの安定化を促進する塩基配列からなる領域は、熱力学的に安定化する高次構造を形成する塩基配列からなる領域である。熱力学的に安定化する高次構造は、ヌクレアーゼ活性に耐性を示す構造であれば特に限定されず、ある態様では、ガイドRNAの安定化を促進する塩基配列からなる領域は、核内低分子RNA(snRNA:small nuclear RNA)配列からなる領域、リボソームRNA(rRNA:ribosomal RNA)配列からなる領域、二重鎖構造を形成する塩基配列からなる領域、三重鎖構造を形成する塩基配列からなる領域、四重鎖構造を形成する塩基配列からなる領域、ステムループ構造を形成する塩基配列からなる領域等である。ある態様では、ガイドRNAの安定化を促進する塩基配列からなる領域は、snRNA配列からなる領域、グアニン四重鎖(Gq:G-quadruplex)構造を形成する塩基配列からなる領域又はステムループ構造を形成する塩基配列からなる領域である。ある態様では、ガイドRNAの核への局在を促進する塩基配列からなる領域は、低分子RNA(small RNA)由来の塩基配列からなる領域である。ある態様では、ガイドRNAの核への局在を促進する塩基配列からなる領域は、snRNA配列からなる領域である。ある態様では、ガイドRNAの細胞質への局在を促進する塩基配列からなる領域は、small RNA由来の塩基配列からなる領域である。ある態様では、ガイドRNAの細胞質への局在を促進する塩基配列からなる領域は、ガイドRNAのリボソームへの局在を促進する塩基配列からなる領域であり、ある態様では、rRNA配列からなる領域である。ある態様では、ガイドRNAの細胞質への局在を促進する塩基配列からなる領域は、転移RNA(tRNA:transfer RNA)配列からなる領域である。ある態様では、ガイドRNAの細胞質への局在を促進する塩基配列なる領域は、シグナル認識粒子(Signal Recognition Particle:SRP)由来RNA配列である7SL RNA配列からなる領域である。ある態様では、標的RNAとアンチセンス領域の二本鎖形成を促進する塩基配列からなる領域は、熱力学的及び立体構造的に二本鎖及び二本鎖を含む複合体の形成を促進する塩基配列からなる領域である(Nat.Biotechnol.、2019、Vol.37、p.657-666)。ある態様では、標的RNAとアンチセンス領域の二本鎖形成を促進する塩基配列からなる領域は、snRNA配列からなる領域、又はステムループ構造を形成する塩基配列からなる領域、或いはそれらのいずれかの組み合わせである。ある態様では、標的RNAとアンチセンス領域の二本鎖形成を促進する塩基配列からなる領域は、U6 snRNA配列からなる領域、U1 snRNA配列からなる領域、U7 snRNA配列からなる領域、又はステムループ構造を形成する塩基配列からなる領域、或いはそれらのいずれかの組み合わせである。ある態様では、アンチセンス領域による非特異的な二本鎖形成を阻害する塩基配列からなる領域は、熱力学的及び立体構造的にオフターゲット効果を軽減する塩基配列からなる領域である。ある態様では、アンチセンス領域による非特異的な二本鎖形成を阻害する塩基配列からなる領域は、ステムループ構造を形成する塩基配列からなる領域である(Chem.Commun.、2018、Vol.54、p.2377-2380)。ある態様では、標的RNAとアンチセンス領域で形成される複合体の安定化を促進する塩基配列からなる領域は、熱力学的及び立体構造的に二本鎖及び二本鎖を含む複合体が安定化して、ヌクレアーゼ活性に耐性を示す塩基配列からなる領域である(Antiviral Chemistry & Chemotherapy、1996、Vol.7、p.86-93)。ある態様では、標的RNAとアンチセンス領域で形成される複合体の安定化を促進する塩基配列からなる領域は、ステムループ構造を形成する塩基配列からなる領域である。
 本発明のガイドRNAは、ある態様では、機能性領域として、snRNA配列からなる領域、rRNA配列からなる領域、グアニン四重鎖(Gq:G-quadruplex)構造を形成する塩基配列からなる領域、ステムループ構造を形成する塩基配列からなる領域、SRP由来RNA配列からなる領域、長鎖非コードRNA(lncRNA:long non-coding RNA)配列からなる領域、tRNA配列からなる領域、核小体低分子RNA(snoRNA:small nucleolar RNA)配列からなる領域、又はmiRNA配列からなる領域、或いはそれらのいずれかの組み合わせを含む。本発明のガイドRNAは、ある態様では、機能性領域として、snRNA配列からなる領域、rRNA配列からなる領域、Gq構造を形成する塩基配列からなる領域、又はステムループ構造を形成する塩基配列からなる領域、或いはそれらのいずれかの組み合わせを含む。
 本発明のガイドRNAは、ある態様では、機能性領域として、snRNA配列からなる領域を含む。ある態様では、本発明のガイドRNAは、機能性領域として、snRNA配列からなる領域及びステムループ構造を形成する塩基配列からなる領域を含む。snRNA配列からなる領域と組み合わせて用いることができるステムループ構造を形成する塩基配列からなる領域は、ある態様としては、人工ステムループ配列からなる領域である。人工ステムループ配列とは、人工的に作製されたステムループ構造を形成する配列であり、例えば、Gene Ther.、1997、Vol.4、p.45-54、Nat.Biotechnol.、2002、Vol.20、p.505-508、又はMol.Ther.、2003、Vol.7、p.237-247に記載のU6をコードする配列を含む発現カセット(以下、これら文献記載の発現カセットを「U6カセット」とも称する)に含まれる人工ステムループ配列(本明細書中、「STL配列」と称する)が挙げられる。snRNA配列からなる領域と組み合わせて用いることができるステムループ構造を形成する塩基配列からなる領域は、ある態様としては、STL配列からなる領域である。ある態様では、本発明のガイドRNAは、機能性領域として、snRNA配列からなる領域及び人工ステムループ配列からなる領域を含む。ある態様では、本発明のガイドRNAは、機能性領域として、snRNA配列からなる領域及びSTL配列からなる領域を含む。本発明で使用されるsnRNA配列からなる領域は、当業者に周知のsnRNAの塩基配列から構成される領域であり、snRNA配列の機能を有する限り、天然のsnRNAの塩基配列において部分的に改変を含んでもよく、及び/又はsnRNA配列の機能を有する限り、天然のsnRNAの塩基配列の部分配列であってもよい。例えば、本発明のガイドRNAは、機能性領域として、U1 snRNA配列、U2 snRNA配列、U4 snRNA配列、U5 snRNA配列、U6 snRNA配列、又はU7 snRNA配列からなる領域、或いはそれらのいずれかの組み合わせを含む。ある態様では、本発明のガイドRNAは、機能性領域として、U6 snRNA配列からなる領域を含む。本発明で使用されるU6 snRNA配列からなる領域は、U6 snRNAの塩基配列から構成される領域であり、snRNA配列の機能を有する限り、天然のU6 snRNAの塩基配列において部分的に改変を含んでもよく、及び/又はsnRNA配列の機能を有する限り、天然のU6 snRNAの部分配列であってもよい。ある態様では、本発明で使用されるU6 snRNA配列からなる領域は、U6 snRNAの塩基配列の部分配列からなる領域であり、ある態様では、U6 snRNAの塩基配列の転写開始点から27塩基目までの塩基配列からなる領域である。本発明のガイドRNAにおいて、U6 snRNA配列からなる領域は、snRNA配列の機能を有する限り、人工ステムループ配列からなる領域と合わせて使用してもよい。U6 snRNA配列からなる領域と人工ステムループ配列からなる領域を使用する場合、U6 snRNA配列からなる領域と人工ステムループ配列からなる領域の間にアンチセンス領域を挿入する。本発明で使用されるU6 snRNA配列からなる領域は、ある態様では、配列番号3に示される塩基配列、又は、配列番号3に示される塩基配列において1~3塩基が欠失、置換、挿入及び/若しくは付加された塩基配列であって、snRNA配列の機能を有する塩基配列からなる。本発明で使用される人工ステムループ配列からなる領域は、ある態様では、STL配列であり、ある態様では、配列番号5に示される塩基配列、又は、配列番号5に示される塩基配列において1~3塩基が欠失、置換、挿入及び/若しくは付加された塩基配列であって、ステムループ構造を形成する塩基配列からなる。
 ある態様では、本発明のガイドRNAは、機能性領域として、グアニン四重鎖構造を形成する塩基配列からなる領域、又はステムループ構造を形成する塩基配列からなる領域、或いはそれらの組み合わせを含む。ある態様では、本発明のガイドRNAは、機能性領域として、グアニン四重鎖構造を形成する塩基配列からなる領域を含む。ある態様では、本発明のガイドRNAは、機能性領域として、ステムループ構造を形成する塩基配列からなる領域を含む。
 本発明で使用されるグアニン四重鎖構造(Gq構造)を形成する塩基配列からなる領域はGq配列を含む。Gq配列とは、連続するグアニンからなる繰り返し単位を4個含む配列であり、4つのグアニンが平面上の四重鎖(Gq)構造を形成する配列である。グアニンからなる繰り返し単位同士の間には、Gq構造を維持する限りグアニン以外の塩基を含んでいてよい。ある態様では、Gq配列は、1、2、3、又は4個の連続するグアニンからなる繰り返し単位を含み、それぞれ、1、2、3、又は4層のGqを形成する。ある態様では、Gq配列は、3個の連続するグアニンからなる繰り返し単位を含み、3層のGqを形成する。これを「3層のグアニン四重鎖構造」(以下、「3Gq」とも称する)と称する。ある態様では、本発明のガイドRNAは、機能性領域として、3Gqを形成する塩基配列からなる領域を含み、ある態様では、3Gqを形成する塩基配列は、配列番号9に示される塩基配列、又は、配列番号9に示される塩基配列において1~3塩基が欠失、置換、挿入及び/若しくは付加された塩基配列であって、Gq構造を形成する塩基配列からなる。
 ステムループ構造は、ヘアピン構造とも称し、当該技術分野において周知である。ステムループ構造を形成する塩基配列としては、アプタマー配列(Int.J.Biochem.Mol.Biol.、2013、Vol.4、p.27-40、国際公開第2016/143700号)、BoxB配列由来の配列、MS2配列由来の配列、PP7配列由来の配列(Integr.Biol.、2009、Vol.1、p.499-505、Nucleic Acids Research、2016、Vol.44、p.9555-9564)、人工ステムループ配列(例えば、U6カセットに含まれる人工ステムループ配列(STL配列)(Gene Ther.、1997、Vol.4、p.45-54、Nat.Biotechnol.、2002、Vol.20、p.505-508、Mol.Ther.、2003、Vol.7、p.237-247))等が挙げられる。ある態様では、本発明のガイドRNAは、機能性領域として、ステムループ構造を形成する塩基配列からなる領域を含み、該ステムループ構造を形成する塩基配列からなる領域は、BoxB配列由来の配列、アプタマー配列、MS2配列由来の配列、PP7配列由来の配列、又は人工ステムループ配列(例えば、STL配列)からなる領域、或いはそれらのいずれかの組み合わせである。ある態様では、本発明のガイドRNAは、機能性領域として、BoxB配列由来の配列からなる領域を含む。ある態様では、本発明のガイドRNAは、機能性領域として、STL配列からなる領域を含む。本発明で使用されるBoxB配列由来の配列からなる領域は、ある態様では、配列番号11に示される塩基配列、又は、配列番号11に示される塩基配列において1~3塩基が欠失、置換、挿入及び/若しくは付加された塩基配列であって、ステムループ構造を形成する塩基配列からなる。
 本発明のガイドRNAのうち、前記2)のアンチセンス領域、機能性領域及び任意に含まれるリンカー配列からなるガイドRNAにおいて、機能性領域はアンチセンス領域に連結されている。本明細書において「連結」とは、直接結合すること及びリンカーを介して結合することを含む。ある態様では、本発明のガイドRNAにおいては、少なくとも1つの機能性領域がアンチセンス領域に直接結合されている。別の態様では、本発明のガイドRNAは、少なくとも1つの機能性領域がアンチセンス領域にリンカーを介して連結されている。本発明のガイドRNAにおいて、複数の機能性領域を連結して用いる場合、機能性領域間の連結は、直接結合又はリンカーを介した連結のいずれであってもよい。
 リンカーを使用する場合、ある態様では、リンカーの長さは1~10塩基であり、ある態様では1~6塩基、ある態様では1~3塩基、ある態様では3~6塩基、ある態様では3塩基、ある態様では6塩基である。リンカーの塩基配列は、ガイドRNAを構成する配列に基づき当業者に適宜設計可能である。例えば、本発明において使用されるリンカーの塩基配列は、標的RNAと相補鎖を形成しないように設計してもよい。ある態様では、リンカーは、塩基配列「UCU」、制限酵素SalIサイト配列である「GUCGAC」、又は制限酵素XbaIサイト配列である「UCUAGA」からなる。
 ある態様として、本発明のガイドRNAが機能性領域としてBoxB配列由来の配列からなる領域を含む場合には、BoxB配列由来の配列からなる領域とアンチセンス領域の間にリンカーを介した連結を用いることができ、ある態様では、該リンカーは塩基配列「UCU」である。ある態様として、本発明のガイドRNAが機能性領域としてU6 snRNA配列からなる領域及び任意に含まれるステムループ構造を形成する塩基配列からなる領域を含む場合には、リンカーを介して機能性領域にアンチセンス領域を連結することができ、ある態様では、該リンカーは塩基配列「GUCGAC」又は「UCUAGA」である。
 ある態様では、本発明のガイドRNAは、少なくとも1つの機能性領域及びポリアデニル化シグナル配列を含む該標的RNAの一部に相補的で該標的RNAと二本鎖を形成するアンチセンス領域を含み、少なくとも1つの該機能性領域が該アンチセンス領域に連結されていて、ADARリクルート塩基配列を実質的に含まない、ガイドRNAであって、以下の特徴を有する:
(a-1)ガイドRNAが、U6 snRNA配列からなる機能性領域、アンチセンス領域、任意に含まれるリンカー、及び人工ステムループ配列からなる領域からなり、U6 snRNA配列からなる機能性領域、アンチセンス領域、及び人工ステムループ配列構造を形成する塩基配列からなる機能性領域がこの順に5’側から3’側に連結されている、
(a-2)ガイドRNAが、アンチセンス領域、グアニン四重鎖構造を形成する塩基配列からなる機能性領域、及び任意に含まれるリンカーからなり、アンチセンス領域及びグアニン四重鎖構造を形成する塩基配列からなる機能性領域がこの順に5’側から3’側に連結されている、又は
(a-3)ガイドRNAが、ステムループ構造を形成する塩基配列からなる機能性領域、アンチセンス領域、及び任意に含まれるリンカーからなり、ステムループ構造を形成する塩基配列からなる機能性領域及びアンチセンス領域がこの順に5’側から3’側に連結されている。
 前記3)のアンチセンス領域及びADARをリクルートする領域を含むガイドRNAにおいて、「ADARをリクルートする領域」とは、天然に存在する又は改変されたADARをリクルートできる塩基配列からなる領域である。ある態様では、ADARをリクルートできる塩基配列とは、同一分子内でステムループ構造を形成し、該ステムループ構造にADARが結合して、該ADARを標的RNAにリクルートさせることができる塩基配列である。ADARをリクルートできる塩基配列の例としては、GluR2のmRNA前駆体等のADARの基質由来のステムループ構造に基づき設計された塩基配列(国際公開第2016/097212号、国際公開第2017/050306号、ドイツ特許第102015012522号、国際公開第2017/010556号、国際公開第2019/111957号、Nucleic Acids Research、2017、Vol.45、p.2797-2808、Nature Methods、2019、Vol.16、p.239-242)が挙げられる。ADARをリクルートする領域を含むガイドRNAは、当業者に公知であり、前記文献の記載に基づいて作製することができる。
 前記4)のアンチセンス領域及びADARとdCas13タンパク質との融合タンパク質をリクルートする領域を含むガイドRNAにおいて、dCas13は、改変されたCas13タンパク質であり、二本鎖DNA切断活性を有しない改変されたCas13タンパク質である。「ADARとdCas13タンパク質との融合タンパク質をリクルートする領域」とは、天然に存在するADAR又は改変されたADARとdCas13タンパク質との融合タンパク質をリクルートできる塩基配列からなる領域である。ある態様では、ADARとdCas13タンパク質との融合タンパク質をリクルートする領域は、dCas13をリクルートできる塩基配列である。dCas13をリクルートできる塩基配列は、当業者に公知の配列であり、例えば、国際公開第2019/005884号又は国際公開第2019/071048号に記載された配列である。ある態様では、ADARとdCas13タンパク質との融合タンパク質をリクルートする領域は、dCas13タンパク質をリクルートできる塩基配列からなる領域であり、その配列は当業者に公知であり、該領域を含むガイドRNAは、例えば、前記文献の記載に基づいて作製することができる。
 前記5)のアンチセンス領域及びADARとRNA連結タンパク質との融合タンパク質と連結する領域を含むガイドRNAにおいて、「RNA連結タンパク質」とは、特定のRNAと親和性が高く細胞内で当該特定のRNAと連結した状態を維持できるタンパク質である。ある態様では、RNA連結タンパク質は、MS2コートタンパク質(MS2 coat protein:MCP)又はλNタンパク質である。「ADARとRNA連結タンパク質との融合タンパク質と連結する領域」は、天然に存在するADAR又は改変されたADARとRNA連結タンパク質との融合タンパク質を連結できる塩基配列からなる領域である。ある態様では、ADARとRNA連結タンパク質との融合タンパク質と連結する領域は、特定のRNA連結タンパク質と親和性が高く、当該融合タンパク質と細胞内で連結した状態を維持できるRNA配列からなり領域である。ADARとRNA連結タンパク質との融合タンパク質と連結する領域は、RNA連結タンパク質がMCPの場合は、MS2 RNAであり、RNA連結タンパク質がλNタンパク質の場合は、BoxB配列である。MCP、MS2 RNA、λNタンパク質、又はBoxB配列は、いずれも当業者に公知の配列であり、Protein Eng.Des.Sel.、2018、vol.1、p.471-478、国際公開第2018/161032号、Nucleic Acids Research、2016、Vol.44、p.e157、国際公開第2017/050306号、国際公開第2019/07127号に記載された配列である。
 本発明のガイドRNAは、配列情報に基づき、当該分野で公知の標準的なポリヌクレオチド合成法を使用して合成することができる。また、本発明のあるガイドRNAを取得すれば、部位特異的変異誘発法(Current Protocols in Molecular Biology edition、1987、John Wiley & Sons Section)等の当業者に公知の方法を使用して、所定の部位に変異を導入することによって、標的RNAへのリクルート機能及び標的RNAを編集する機能を維持した本発明のガイドRNAの改変体を作製することも可能である。本発明のガイドRNAは、修飾をされた核酸を用いて製造することもできる。本発明のガイドRNAは、本発明のガイドRNAをコードする核酸を用いて作製することもできる。例えば、本発明のガイドRNAは、本発明のガイドRNAをコードする核酸を含む発現ベクターから本発明のガイドRNAを転写させることにより作製することができる。
<本発明で使用されるADAR>
 本発明で使用されるADARには、天然に存在するADAR、改変されたADAR、及びADAR又は改変されたADARと他因子との融合タンパク質が含まれる。
 ある態様では、本発明で使用されるADARには、天然に存在するADAR、及びデアミナーゼ活性を有する限り、改変されたADARも含まれる。デアミナーゼ活性は、当業者に公知の方法により、基質の脱アミノ化を検出することで測定できる。例えば、デアミナーゼ活性は、アデノシンのイノシンへの変換を検出することで測定できる。本発明で使用されるADARは、ある態様では、真核生物由来ADARであり、ある態様では、哺乳動物由来のADARであり、またある態様では、ヒトADARである。本発明で使用されるADARは、ある態様では、ADAR1又はADAR2であり、ある態様では、ADAR2である。ADAR1には、2種のスプライシングバリアントADAR1 p110及びADAR1 p150が含まれ、本発明で使用されるADARは、ある態様では、ADAR1 p110又はADAR1 p150である。本発明で使用されるADARは、ある態様では、ヒトADAR1又はヒトADAR2であり、ある態様では、ヒトADAR2である。本発明で使用されるADARは、ある態様では、二本鎖RNA結合領域(dsRBD:double-stranded-RNA binding domain)を含みデアミナーゼ酵素活性を有するポリペプチドである(Trends in Biochemical Sciences、2001、Vol.26、p.376-384、RNA、2001、Vol.7、p.846-858)。本発明で使用されるADARは、ある態様では、デアミナーゼドメインを含み、標的RNAのアデノシンをイノシンに変換することができるポリペプチドである。本発明で使用されるADARは、ADAR又は改変されたADARと他因子との融合タンパク質であってもよい。
 本発明で使用されるADARは、ある態様では、アクセッション番号[NP_001103.1]、アクセッション番号[NP_056648.1]、又はアクセッション番号[NP_001102.3]に示されるアミノ酸配列からなるポリペプチド、或いは、これらのアミノ酸配列と同一性が90%以上であるアミノ酸配列、又はこれらのアミノ酸配列において1~10個のアミノ酸が欠失、置換、挿入及び/若しくは付加されたアミノ酸配列からなり、アデノシンデアミナーゼ活性を有するポリペプチドである。本発明で使用されるADARは、ある態様では、配列番号15に示されるアミノ酸配列(ヒトADAR2)からなるポリペプチド、或いは、該配列と同一性が90%以上であるアミノ酸配列又は該配列において1~10個のアミノ酸が欠失、置換、挿入及び/若しくは付加されたアミノ酸配列からなり、アデノシンデアミナーゼ活性を有するポリペプチドである。本発明で使用されるADARは、ある態様では、真核細胞において内在的に存在するADARであり、ある態様では、真核細胞に外来的に導入されたADARであってもよい。真核細胞へのADARの導入は、ADARポリペプチドを直接導入しても、ADARをコードする核酸を含む発現ベクターを導入してもよい。
 本明細書において、「同一性」とは、EMBOSS NEEDLE program(J.Mol.Biol.、1970、Vol.48、p.443-453)検索によりデフォルトで用意されているパラメータを用いて得られた値Identityを意味する。前記のパラメータは以下の通りである。
 Gap Open penalty=10
 Gap Extend penalty=0.5
 Matrix=EBLOSUM62
 ある態様では、本発明で使用されるADARは、天然に存在するADAR又は改変されたADARとの他因子との融合タンパク質である。ここで、他因子としては、ある態様では、dCas13タンパク質又はRNA連結タンパク質が挙げられる。ある態様では、本発明で使用されるADARは、天然に存在するADAR又は改変されたADARとdCas13との融合タンパク質である。該融合タンパク質は、当業者に公知のアミノ酸配列からなるタンパク質であり、例えば、国際公開第2019/005884号又は国際公開第2019/071048号に記載されたアミノ酸配列からなるタンパク質である。ある態様では、本発明で使用されるADARは、天然に存在するADAR又は改変されたADARとRNA連結タンパク質との融合タンパク質である。ある態様では、本発明で使用されるADARは、天然に存在するADAR又は改変されたADARとMCPとの融合タンパク質或いは天然に存在するADAR又は改変されたADARとλNタンパク質との融合タンパク質である。該融合タンパク質は、当業者に公知のアミノ酸配列からなるタンパク質であり、例えば、Protein Eng.Des.Sel.、2018、vol.1、p.471-478、国際公開第2018/161032号、Nucleic Acids Research、2016、Vol.44、p.e157、国際公開第2017/050306号、国際公開第2019/071274号に記載されたアミノ酸配列からなるタンパク質である。
<本発明の標的RNAを編集するシステム>
 本発明はまた、本発明のガイドRNA及びADARを含む標的RNAを編集するシステムを提供する。本発明のガイドRNA及びADARを含む標的RNA配列を編集するシステムとは、本発明のガイドRNA及びADARを含む標的RNA配列を編集するためのキット、又は本発明のガイドRNA及びADARを用いて標的RNA配列を編集する方法を含む。本発明において、「編集」とは、標的RNA配列の塩基を別の塩基に変換することをいう。本発明の標的RNAを編集するシステムは、細胞内でも細胞外でも用いることができる。ある態様では、該システムを真核細胞内で用いることができる。ある態様では、該システムを原核細胞内、バクテリア内、ファージ内、ウイルス内等で用いることができる。
<本発明のガイドRNAをコードする核酸>
 本発明はまた、本発明のガイドRNAをコードする核酸(本項において「本発明の核酸」とも称する)を提供する。本発明の核酸は、標的RNAをADARにより編集するためのガイドRNAであって、ポリアデニル化シグナル配列を含む該標的RNAの一部に相補的なアンチセンス領域を含む、ガイドRNAをコードする核酸である。
 ある態様では、本発明の核酸は、標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含み、該ポリアデニル化シグナル配列がAAUAAA又はその改変配列からなる塩基配列である、ガイドRNAをコードする核酸である。ある態様では、本発明の核酸は、標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含み、該ポリアデニル化シグナル配列がAAUAAAからなる塩基配列である、ガイドRNAをコードする核酸である。ある態様では、本発明の核酸は、標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含み、該標的RNAの一部に相補的なアンチセンス領域が、標的RNAのポリアデニル化シグナル配列に含まれるアデノシンと塩基対を形成する塩基を含む、ガイドRNAをコードする核酸である。ある態様では、本発明の核酸は、標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含み、天然に存在するADAR、改変されたADAR、或いは、ADAR又は改変されたADARとの他因子との融合タンパク質をリクルートする、ガイドRNAをコードする核酸である。
 本発明の核酸は、本明細書に記載された配列又は公的に利用可能な配列情報に基づき、当該分野で公知の標準的なポリヌクレオチド合成法を使用して合成することができる。また、ある本発明の核酸を取得すれば、部位特異的変異誘発法(Current Protocols in Molecular Biology edition、1987、John Wiley & Sons Section)等の当業者に公知の方法を使用して、所定の部位に変異を導入することによって、別の本発明の核酸を作製することも可能である。
<本発明のガイドRNAをコードする核酸を含む発現ベクター>
 本発明はまた、本発明のガイドRNAをコードする核酸を含む発現ベクター(「本発明の発現ベクター」とも称する)を提供する。本発明の発現ベクターはまた、本発明のガイドRNAをコードする核酸とADARをコードする核酸を含む発現ベクターを提供する。本発明のガイドRNAをコードする核酸、及びADARをコードする核酸は、同一の発現ベクターに搭載されていても、別々の発現ベクターに搭載されていてもよい。ある態様では、本発明の発現ベクターは、本発明のガイドRNAをコードする核酸を含む発現ベクター及びADARをコードする核酸を含む発現ベクターの組み合わせである。ある態様では、本発明の発現ベクターは、本発明のガイドRNAをコードする核酸及びADARをコードする核酸を含む発現ベクターである
1.本発明で使用される発現ベクター
 本発明で使用される発現ベクターとしては、本発明のガイドRNAをコードする核酸から本発明のガイドRNAを発現できる発現ベクター、及び/又はADARを発現できる発現ベクターであれば、特に制限されない。ある態様において、本発明で使用される発現ベクターはヒト細胞において本発明のガイドRNAを発現させるために、及び/又はADARを発現させるために用いることのできる発現ベクターである。ある態様では、本発明で使用される発現ベクターの例としては、プラスミドベクター、ウイルスベクター(例えば、アデノウイルスベクター、レトロウイルスベクター、レンチウイルスベクター、アデノ随伴ウイルスベクター)等が挙げられる。
2.プロモーター
 本発明の発現ベクターは、本発明のガイドRNAをコードする核酸及び/又はADARをコードする核酸に作動可能に連結されたプロモーターを含んでいてもよい。本明細書において、「作動可能に連結された」とは、核酸にコードされたポリペプチド又はRNAが宿主細胞において発現可能なように、少なくとも1つのプロモーターが核酸に連結されていることを意味する。本発明の発現ベクターに含まれるプロモーターとしては特に限定されないが、本発明のガイドRNA又はADARをコードする核酸を発現させるのに適したRNAポリメラーゼ(例えば、RNAポリメラーゼII(polII)、RNAポリメラーゼIII(polIII))に対応したプロモーターを使用できる。本発明のガイドRNAを発現させるためには、ある態様としては、polII又はpolIIIに対応したプロモーターを用いることができ、別の態様としては、polIIIに対応したプロモーターを用いることができる。ADARを発現させるためには、ある態様としては、polIIに対応したプロモーターを用いることができる。
 polIIに対応したプロモーターとしては、例えば、CMV(cytomegalovirus)由来プロモーター、SV40(simian virus 40)プロモーター、RSV(respiratory syncytial virus)プロモーター、EF1α(Elongation factor 1α)プロモーター、CAG(CMV enhancer,chicken beta-Actin promoter)プロモーター、U1 snRNAプロモーター、U7 snRNAプロモーター等が挙げられる。polIIIに対応したプロモーターとしては、例えば、ヒトU6 snRNAプロモーター(U6)(Nat. Biotechnol.、2002、vol.20、p.497-500)、高感度U6プロモーター(Nucleic Acids Research、2003、vol.31、p.e100)、ヒトH1プロモーター、5S rRNAプロモーターその他、当業者に公知の他のウイルス及び真核細胞プロモーターが挙げられるがこれらに限定されない。
 本発明の発現ベクターは、使用するプロモーターや宿主細胞等に応じて、さらに、翻訳開始コドン、翻訳終止コドン、polIIIの転写開始点に好ましいプリン塩基(G又はA)、polyAシグナル、polIIIのための連続Tのターミネーター配列、エンハンサー、非翻訳領域、スプライシング接合部等を含んでいてもよい。
<本発明の宿主細胞>
 本発明はまた、本発明のガイドRNAをコードする核酸を導入することにより形質転換された宿主細胞(「本発明の宿主細胞」とも称する)を提供する。ある態様において、本発明の宿主細胞は、本発明の発現ベクターが導入された宿主細胞である。ある態様において、本発明の宿主細胞は、プラスミドベクターである本発明の発現ベクターが導入された宿主細胞である。ある態様において、本発明の宿主細胞は、ウイルスベクターである本発明の発現ベクターを製造するためのプラスミドベクターを導入された宿主細胞である。ある態様において、本発明の宿主細胞は、ウイルスベクターである本発明の発現ベクターを導入された宿主細胞である。
 本発明の発現ベクターが導入される宿主細胞としては、特に限定されないが、本発明の発現ベクターの産生に使用し得る細胞である限り、当該分野で公知の細胞を選択することができる。ベクターの複製に使用し得る宿主細胞としては、例えば、本発明の技術分野において通常使用される天然細胞又は人工的に樹立された細胞等種々の細胞が挙げられる。ベクターの複製に使用し得る宿主細胞としては、例えば、動物細胞(例えば、CHO細胞、HEK293細胞等)、昆虫細胞(例えば、Sf9等)、細菌(大腸菌等)、酵母(サッカロマイセス属、ピキア属等)等)が挙げられる。ある態様として、大腸菌を宿主細胞として使用することができる。形質転換は、当業者に公知の方法で実施することができる(Green、M.R.and Sambrook、J.、Molecular Cloning: A Laboratory Manual、4th Edition、Cold Spring Harbor Laboratory Press、2012)。
<本発明の発現ベクターを製造する方法>
 本発明の発現ベクターを製造する方法には、本発明の核酸を含む発現ベクターが導入された宿主細胞を培養する工程を含む、核酸を製造する方法が含まれる。ある態様では、本発明の発現ベクターを製造する方法は、本発明の発現ベクターが導入された宿主細胞を培養し、本発明の発現ベクターを複製する工程を含む。本発明の発現ベクターがウイルスベクターである場合には、本発明の発現ベクターを製造する方法は、本発明の核酸を含むウイルスベクタープラスミドが導入された宿主細胞を培養し、宿主細胞内で作製されたウイルスベクターを精製する工程を含む。ウイルスベクターは当業者に公知の方法により作製することができる。
 本発明の発現ベクターを製造する方法は、宿主細胞の培養液を回収してライセート(溶菌液)を得る工程を含んでもよい。ライセートは、例えば、回収した培養液をアルカリ溶解法又はボイリング法で処理することで得ることができる。本発明の発現ベクターを製造する方法は、さらに、ライセートから発現ベクターを精製する工程を含んでもよい。ライセートからの発現ベクターの精製には、イオン交換クロマトグラフィー及び/又は疎水相互作用クロマトグラフィーを用いることができる。本発明の発現ベクターがウイルスベクターである場合には、ライセートからのウイルスベクターの精製には、塩化セシウム密度勾配遠心分離法、ショ糖勾配遠心分離法、イオジキサノール(Iodixanol)密度勾配遠心分離法、限外ろ過法、ダイアフィルトレーション法、アフィニティークロマトグラフィー法、イオン交換クロマトグラフィー法、ポリエチレングリコール沈殿法や硫酸アンモニウム沈殿法などを用いることもできる。
<本発明の医薬組成物>
 本発明はまた、本発明のガイドRNA、本発明のガイドRNAをコードする核酸(本項において「本発明の核酸」とも称する)、又は本発明の発現ベクター、及び薬学的に許容される賦形剤を含む医薬組成物(「本発明の医薬組成物」とも称する)を提供する。ある態様では、本発明の医薬組成物は、本発明のガイドRNA及び薬学的に許容される賦形剤を含む医薬組成物である。ある態様では、本発明の医薬組成物は、本発明のガイドRNA、ADAR、及び薬学的に許容される賦形剤を含む医薬組成物である。ある態様では、本発明の医薬組成物は、本発明の核酸、及び、薬学的に許容される賦形剤を含む医薬組成物である。ある態様では、本発明の医薬組成物は、本発明の核酸、ADAR、及び、薬学的に許容される賦形剤を含む医薬組成物である。ある態様では、本発明の医薬組成物は、本発明のガイドRNAをコードする核酸を含む発現ベクター、及び、薬学的に許容される賦形剤を含む医薬組成物である。ある態様では、本発明の医薬組成物は、本発明の核酸及びADARをコードする核酸を含む発現ベクター、並びに薬学的に許容される賦形剤を含む医薬組成物である。ある態様では、本発明の医薬組成物は、本発明のガイドRNAをコードする核酸を含む発現ベクター、ADARをコードする核酸を含む発現ベクター、及び薬学的に許容される賦形剤を含む医薬組成物である。
 本発明の医薬組成物は、当該分野において通常用いられる賦形剤、即ち、薬剤用賦形剤や薬剤用担体等を用いて、通常使用される方法によって調製することができる。これら医薬組成物の剤型の例としては、例えば、注射剤、点滴用剤等の非経口剤が挙げられ、静脈内投与、皮下投与、皮内投与、筋肉内投与等により投与することができる。製剤化にあたっては、薬学的に許容される範囲で、これら剤型に応じた賦形剤、担体、添加剤等を使用することができる。
 本発明のガイドRNA、本発明の核酸、又は本発明の発現ベクター、ADARをコードする核酸を含む発現ベクター、又はADARの投与量は、患者の症状の程度や年齢、使用する製剤の剤型等により異なるが、例えば、0.001mg/kg~100mg/kgの範囲の投与量とすることができる。
 本発明の医薬組成物で予防又は治療できる疾患は、ある態様として、標的RNAのポリアデニル化シグナル配列中の1個以上のアデノシンの編集による標的RNAの転写制御が有益な変化をもたらす任意の疾患である。本発明の医薬組成物は、標的RNAのポリアデニル化シグナル配列中の1個以上のアデノシンの編集による標的RNAの転写制御が有益な変化をもたらす任意の疾患の予防又は治療剤として用いることができる。
 本発明には、本発明のガイドRNA、本発明の核酸、又は本発明の発現ベクターを含む、標的RNAのポリアデニル化シグナル配列中の1個以上のアデノシンの編集による標的RNAの転写制御が有益な変化をもたらす任意の疾患の予防又は治療用医薬組成物が含まれる。また、本発明には、本発明のガイドRNA、本発明の核酸、又は本発明の発現ベクターの予防有効量又は治療有効量を投与する工程を包含する、標的RNAのポリアデニル化シグナル配列中の1個以上のアデノシンの編集による標的RNAの転写制御が有益な変化をもたらす任意の疾患を予防又は治療する方法が含まれる。また、本発明には、標的RNAのポリアデニル化シグナル配列中の1個以上のアデノシンの編集による標的RNAの転写制御が有益な変化をもたらす任意の疾患の予防又は治療に使用するための、本発明のガイドRNA、本発明の核酸、又は本発明の発現ベクターが含まれる。また、本発明には、標的RNAのポリアデニル化シグナル配列中の1個以上のアデノシンの編集による標的RNAの転写制御が有益な変化をもたらす任意の疾患の予防又は治療用医薬組成物の製造における、本発明のガイドRNA、本発明の核酸、又は本発明の発現ベクターの使用が含まれる。
<本発明の標的RNAを編集する方法>
 本発明はまた、本発明のガイドRNAを用いた標的RNAを編集する方法(「本発明の編集方法」とも称する)を提供する。ある態様では、本発明の編集方法では、本発明のガイドRNAのアンチセンス領域がポリアデニル化シグナル配列を含む標的RNAの一部と二本鎖を形成し、ADARが本発明のガイドRNAにリクルートされ、リクルートされたADARが標的RNA配列のポリアデニル化シグナル配列のアデノシンをイノシンに変換する方法を含む。ここで、イノシンに変換される標的RNAのポリアデニル化シグナル配列上のアデノシンは、アンチセンス領域とミスマッチ塩基対を形成していてもよい。
 本発明の編集方法は、(i)本発明のガイドRNA、本発明のガイドRNAをコードする核酸、又は本発明の発現ベクターを、標的RNAを有する細胞又は標的RNAを有する細胞に感染したウイルス等に導入する工程を含む。ある態様では、本発明の編集方法は、さらに、(ii)ADAR、ADARをコードする核酸、又はADARをコードする核酸を含む発現ベクターを、該細胞又は該細胞に感染したウイルス等に導入する工程を含む。工程(i)及び(ii)は、同時であっても別々に行ってもよい。ある態様では、導入される細胞は、真核細胞又は原核生物等であり、ある態様では、当該細胞は、哺乳動物細胞又はバクテリア等である。ある態様では、導入される細胞に感染したウイルスには、ファージを含む。ある態様では、標的RNAのポリアデニル化シグナル配列のアデノシンがイノシンに変換される。
 特に断りがない場合は、以下の実施例に記載の工程は、公知の方法に従って実施可能である。また、市販のキット又は試薬等を用いた部分については、特に断りのない限り添付のプロトコールに従って実験を行った。
<実施例1 アンチセンス領域と機能性領域(U6 snRNA配列及びSTL配列)を含むガイドRNA発現プラスミドの作製>
 pSUPER.neoベクター(Oligoengine社、カタログ番号VEC-PBS-0004)のH1 RNA polymerase IIIプロモーター(以下、「H1プロモーター」と称する)を、human U6 RNA polymerase III(hU6)プロモーター配列(配列番号1)に置換したベクターを構築した(以下、「pSUPER.neo-U6ベクター」と称する)。hU6プロモーター配列を含む断片は、hU6プロモーターを有するpBAsi-hU6 Neo DNA(タカラバイオ社、カタログ番号3227)を鋳型とし、5’側にEcoRI及び3’側にBglIIの各制限酵素サイトを付加するようにして、Tks GflexTM DNA Polymerase(タカラバイオ社、カタログ番号R060A)を使用して標準的なPCR法を用いて増幅した。得られたhU6プロモーター断片を、制限酵素EcoRIサイト(5’側)及びBglIIサイト(3’側)を使用してpSUPER.neoベクターに挿入した。構築したpSUPER.neo-U6ベクターでE.coli DH5α Competent Cells(タカラバイオ社、カタログ番号9057、以下、「DH5α大腸菌株」と称する)を形質転換し、液体培養を行った。培養液を遠心し菌体を回収し、NucleoBond(登録商標)Xtra Midi Plus EF(タカラバイオ社、カタログ番号U0422B)でプラスミド抽出精製を行い、pSUPER.neo-U6ベクターを増幅した。
 アンチセンス領域及び機能性領域U6 snRNA配列(以下、「U6」と称することがある)を付加したガイドRNAの発現プラスミドを以下のように構築した。pSUPER.neo-U6ベクターのhU6プロモーター下流に、ガイドRNAであるU6-ASR-STLをコードするDNA配列(配列番号2)を、制限酵素BglIIサイト(5’側)及びHindIIIサイト(3’側)を使用し挿入した。挿入するDNA配列の作製に際しては、制限酵素切断末端を形成するように合成したフォワードオリゴとリバースオリゴ(下記)をアニーリングする方法を用いた。
 フォワードオリゴ:5’-GATC-ガイドRNAをコードするDNA配列-3’
 リバースオリゴ:5’-AGCTT-ガイドRNAをコードするDNA配列の逆相補配列-3’
 挿入したDNA配列には、5’側にpolIIIの転写開始点に好ましいプリン塩基(G又はA)、3’側にpolIIIのターミネーター配列が含まれる。作製したガイドRNA発現プラスミドをpSUPERneo_U6_gRNAと称する。ここで、ASRは、psiCHECK-2ベクター(プロメガ社、カタログ番号C8021)のレニラルシフェラーゼ(Renilla Luciferase:Rluc)mRNAの後部につけられた人工PAS配列(NCBIアクセッション番号AY535007.1の1688―1736)に存在するAATAAA(PAS)を含む部分に相補的な33塩基からなるアンチセンス塩基配列であり、配列番号2に示されるDNA配列のうち、35塩基目から67塩基目までの配列にコードされるRNA配列(ASRとも称する)からなる。U6は、配列番号3に示されるRNA配列からなり、U6をコードする核酸は配列番号4に示されるDNA配列からなる。STLは、配列番号5に示されるRNA配列からなり、STLをコードする核酸は配列番号6に示されるDNA配列からなる。
 本ガイドRNAの概要を表1に示す。構築したpSUPERneo_U6_gRNAプラスミドは、DH5α大腸菌株(タカラバイオ社、カタログ番号9057)を用いて上記と同様に増幅させた。
<実施例2 アンチセンス領域及び機能性領域(Gq配列又はBoxB配列由来の配列)を含むガイドRNA発現プラスミドの作製>
 アンチセンス領域及び機能性領域(Gq配列又はBoxB配列由来の配列)を含むガイドRNAの発現プラスミドを以下のように作製した。pSUPER.neoベクターのH1プロモーター下流に、ガイドRNAであるASR-Gq又はBoxB-ASRをコードするDNA配列(それぞれ、配列番号7及び配列番号8)を、制限酵素BglII(5’末端側)及びHindIII(3’末端側)を使用し、それぞれ挿入した。挿入したガイドRNAをコードするDNA配列には、5’末端側にpolIIIの転写開始点に好ましいプリン塩基(G又はA)、3’末端側にpolIIIのターミネーター配列が含まれる。Gq配列(以下、Gqとも称する)は、配列番号9に示されるRNA配列からなり、Gqをコードする核酸は配列番号10に示されるDNA配列からなる。BoxB配列由来の配列(以下、BoxBとも称する)は、配列番号11に示されるRNA配列からなり、BoxBをコードする核酸は配列番号12に示されるDNA配列からなる。挿入するDNA配列は実施例1と同様の方法を用いて作製した。得られたガイドRNA発現プラスミドをまとめてpSUPERneo_H1_gRNAと称する。構築したプラスミドはDH5α大腸菌株を用いて実施例1と同様の方法にて増幅した。比較対照に用いるガイドRNA(BoxB-Conと称する)の発現プラスミドは、SV40PAS配列を標的とするASR配列(配列番号13に示されるDNA配列の30塩基目から64塩基目までの配列にコードされるRNA配列。Con-ASRとも称する)をコードするDNA配列にBoxBをコードするDNA配列を付加したDNA配列(配列番号13)を用いて、上記と同様の方法にて作製した。挿入したDNA配列には、5’側にpolIIIの転写開始点に好ましいプリン塩基(G又はA)、3’側にpolIIIのターミネーター配列が含まれる。
 実施例1及び2で作製した各ガイドRNA及びそれをコードするDNA配列の概要を表1に示す。表1において、「5’末端」はASRの5’末端側に付加した機能性塩基配列を、「3’末端」はASRの3’末端側に付加した機能性配列を示す。「リンカー」はASRと各機能性塩基配列を連結する配列を示す。
Figure JPOXMLDOC01-appb-T000001

<実施例3 細胞内標的RNAの編集活性検出用発現プラスミドの作製>
 細胞内における標的RNAの編集活性を検出するためのプラスミドとして使用する、Rluc遺伝子を搭載したpsiCHECK-2_Rluc-bGHpolyAベクターを、以下の方法で作製した。psiCHECK-2ベクターに搭載されたRluc遺伝子PAS配列の3’末端側に、人工PAS配列のbovine Growth Hormone(以下、bGH)PAS配列を組み込んだ。5’末端側に制限酵素NotIサイト及び3’末端側にSacIIサイトを付加したDNA配列(配列番号14)を人工合成したものを、NotI及びSacIIを用いて挿入した。構築したベクターをpsiCHECK-2_Rluc-bGHpolyAベクターと称し、このベクターを、DH5α大腸菌株を用いて実施例1と同様の方法にて増幅した。
<実施例4 RNA編集酵素であるADAR2発現プラスミドの作製>
 ADAR2発現プラスミドであるpAAV-CMV-ADAR2プラスミドは、pAAV-CMVベクター(タカラバイオ社、カタログ番号6230)のCMV由来プロモーター下流にADAR2(配列番号15)をコードするDNA配列(配列番号16)を、制限酵素EcoRI(5’末端側)及びBglII(3’末端側)を用いて挿入して作製した。配列番号16は、翻訳開始コドン上流にコザック配列(配列番号16の13塩基目から15塩基目の「ACC」)を、ADAR2遺伝子下流に終止コドンを含む。構築したpAAV-CMV-ADAR2プラスミドは、DH5α大腸菌株を用いて実施例1と同様の方法にて増幅した。
<実施例5 トランスフェクションとサンガーシークエンス>
 ヒト胎児腎臓由来細胞株HEK293細胞を5%ウシ胎児血清(FBS)添加Dulbecco’s Modified Eagle Medium(DMEM,high glucose,GlutaMAXtm Supplement,pyruvate;ThermoFisher Scientific社、カタログ番号10569-010)に懸濁し、96ウェルプレートに2.0×10細胞個/100μLで播種し、5%CO存在下、37℃の条件で一晩培養した。
 下記(1)~(4)を、それぞれ1:40:30:9の重量比で総量100ng/ウェルとなるように混和し、LipofectamineTM3000 Transfection Reagent(ThermoFisher Scientific社、カタログ番号L3000015)を用いて、播種後一晩培養したHEK293細胞にトランスフェクションした。
(1)実施例3で作製した細胞内標的RNA編集活性検出用発現プラスミド(psiCHECK-2_Rluc-bGHpolyAベクター)
(2)実施例4で作製したADAR2発現プラスミド(pAAV-CMV-ADAR2)又はトランスフェクション量を補正するためのプラスミドとしてpBluescript II KS(-) Phagemid Kit(アジレントテクノロジー社、カタログ番号212208)(pBSKSとも称する)
(3)実施例1及び2で作製したガイドRNA発現プラスミド(pSUPERneo_U6_gRNA、及びpSUPERneo_H1_gRNA)、及び
(4)キャリアープラスミドとしてpHelper Vector(タカラバイオ社、カタログ番号6230)。
 トランスフェクション後、細胞を5%CO存在下、37℃の条件3日間培養した後、細胞を回収して実施例6に記載のサンガーシークエンスによるRNA編集効率の検討に供した。
 トランスフェクションした細胞を回収し、細胞からQIAshredder(QIAGEN社、カタログ番号79656)、RNeasy Mini Kit(QIAGEN社、カタログ番号74106)、RNase-free DNase Set(QIAGEN社、カタログ番号79254)を用いて添付プロトコールに従い総RNAを抽出、精製した。得られたRNAについて、SuperScript(登録商標)VILOTM cDNA Synthesis kit(ThermoFisher Scientific社、カタログ番号11754-250)を用い、添付プロトコールに従って逆転写反応を行い、cDNAを得た。cDNAを鋳型とし、編集点を含む断片を増幅する下記プライマーとPrimeSTAR(登録商標)GXL DNA Polymerase(タカラバイオ社、カタログ番号R050A)を用いて添付プロトコールに従ってPCR反応を行った。表2の実験で使用したプライマーを以下に記載する。
 フォワードプライマー:AGCGGGAATGGCTCATATCG(配列番号17)
 リバースプライマー:GGCACCTTCCAGGGTCAAG(配列番号18)
 シークエンスプライマー:GGAGAAGGGCGAGGTTAGAC(配列番号19)
 PCR増殖断片はExoSAP-ITTM Express PCR Cleanup Reagents(Thermofisher Scientific社、カタログ番号75001.200.UL)を用いて添付プロトコールに従い精製し、シークエンスプライマーとともに3730xl(エックスエル) DNA Analyzer(Applied Biosystems社)によるサンガーシークエンス反応に供した。
 トランスフェクション実験で得られた結果のうち、代表的な編集の位置であるAATAAAの配列の4塩基目のAの位置の編集効率を表2に示す。
 表中のADAR2の列はADAR2発現プラスミドのトランスフェクションの有無を表し、ADAR2+はpAAV-CMV-ADAR2を添加した細胞(以下、「ADAR2+細胞」とも称す)を、ADAR2-はpBSKSを添加した細胞(以下、「ADAR2-細胞」とも称す)を表す。RNA編集率(%)の列は、サンガーシークエンス反応で得られた波形データファイル(拡張子:.ab1)を、QSVanalyzer software(Bioinformatics、2009、Vol.25、p3244-3250)によって解析した、グアニン(G)のシグナル強度の割合(G/(G+A)×100)を表す。
Figure JPOXMLDOC01-appb-T000002


 表2の通り、比較対象用ガイドRNAであるBoxB-ConにおいてADARのトランスフェクションの有無によらずRNA編集率はほぼ一定(2.5 vs 2.3)であった。PAS配列を標的としたアンチセンス領域に機能性配列を付加したガイドRNAであるBoxB-ASR、ASR-Gq、及びU6-ASR-STLはADAR2のトランスフェクション条件下において、RNA編集率の上昇が認められた。
<実施例6 トランスフェクションとQuantitative PCRによる標的RNAのmRNA量の検討>
 psiCHECK-2ベクター、実施例4で作製したADAR2発現プラスミド(pAAV-CMV-ADAR2)、実施例1及び2で作製したガイドRNA発現プラスミド(pSUPERneo_U6_gRNA、pSUPERneo_H1_gRNA)、並びにキャリアープラスミドのpHelper Vectorを、それぞれ1:40:30:9の重量比で総量100ng/ウェルとなるように混合した。播種後一晩培養したHEK293細胞に、LipofectamineTM3000 Transfection Reagentを用いてトランスフェクションした。トランスフェクション後、5%CO存在下、37℃の条件で3日間培養した後、細胞を回収してQuantitative PCRの検討に供した。トランスフェクションした細胞からTaqMan(登録商標)Gene Expression Cells-to-CTTM Kit(ThermoFisher Scientific社、カタログ番号AM1728)を用いてQuantitative PCRを行った。細胞をPBSで洗浄した後、Lysis bufferとDNaseIを混和した溶液を50μl用いて細胞溶解液を作製し、作製した細胞溶解液22.5μl用いてプロトコールに従いcDNAを合成した。その後、ヒト18S(ThermoFisher Scientific社、カタログ番号Hs999999901_s1)、または下記に示すRlucのプライマー及びプローブを用いてQuantitative PCRを行った。
 Rlucのフォワードプライマー:CTTCTTAGCTCCCTCGACAATAG(配列番号20)
 Rlucのリバースプライマー:TCCAGATTGTCCGCAACTAC(配列番号21)
 Rlucのプローブ:CCAGCGACGATCTGCCTAAGATGTT(配列番号22)
 解析はデルタデルタCt法を用いた。ハウスキーピング遺伝子である18Sを内在性コントロールとしてサンプル間の補正に用いた。図1の縦軸はADAR2発現下における、相対的な発現量であり、独立2試行の試験結果をそれぞれのプロットで示している。図1より、比較対照用のガイドRNAであるBoxB-Conに比べて、PAS配列を標的としたASR領域に機能性配列を付加したガイドRNAでは、標的であるRlucのmRNAの発現比率が低下していることが認められた。
 本発明のガイドRNA、本発明のガイドRNAをコードする核酸、及び本発明の発現ベクターを含む医薬組成物は、標的RNAの発現を抑制するのに有用である。
 以下の配列表の数字見出し<223>には、「Artificial Sequence」の説明を記載する。配列番号1-2、4、6-8、10、12-14、及び16-22は合成DNA配列であり、配列番号3、5、9、及び11は合成RNA配列であり、配列番号15はタンパク質配列である。

Claims (14)

  1.  標的RNAをADARにより編集するためのガイドRNAであって、該ガイドRNAがポリアデニル化シグナル配列を含む標的RNAの一部に相補的なアンチセンス領域を含む、ガイドRNA。
  2.  ポリアデニル化シグナル配列が、AAUAAAからなる塩基配列又はその改変配列からなる塩基配列である、請求項1に記載のガイドRNA。
  3.  ポリアデニル化シグナル配列が、AAUAAAからなる塩基配列である、請求項2に記載のガイドRNA。
  4.  標的RNAの一部に相補的なアンチセンス領域が、標的RNAのポリアデニル化シグナル配列に含まれるアデノシンと塩基対を形成する塩基を含む、請求項1~3のいずれか1項に記載のガイドRNA。
  5.  ADARが、天然に存在するADAR、改変されたADAR、或いは、ADAR又は改変されたADARとの他因子との融合タンパク質である、請求項1~4のいずれか1項に記載のガイドRNA。
  6.  請求項1~5のいずれか1項に記載のガイドRNA、及びADARを含む、標的RNAを編集するシステム。
  7.  請求項1~5のいずれか1項に記載のガイドRNAをコードする核酸。
  8.  請求項1~5のいずれか1項に記載のガイドRNAをコードする核酸を含む、発現ベクター。
  9.  さらにADARをコードする核酸を含む、請求項8に記載の発現ベクター。
  10.  請求項8又は9に記載の発現ベクターが導入された宿主細胞。
  11.  請求項10に記載の宿主細胞を培養する工程を含む、発現ベクターを製造する方法。
  12.  請求項8又は9に記載の発現ベクター及び薬学的に許容される賦形剤を含む、医薬組成物。
  13.  請求項8又は9に記載の発現ベクター、ADARをコードする核酸を含む発現ベクター、及び薬学的に許容される賦形剤を含む、医薬組成物。
  14.  請求項1~5のいずれか1項に記載のガイドRNAをコードする核酸を細胞又は細胞に感染したウイルスに導入する工程を含む、標的RNAを編集する方法。
PCT/JP2021/048231 2020-12-25 2021-12-24 標的rnaのポリアデニル化シグナル配列を編集するためのガイドrna WO2022138929A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/269,531 US20240150754A1 (en) 2020-12-25 2020-12-24 Guide rna for editing polyadenylation signal sequence of target rna
JP2022571689A JPWO2022138929A1 (ja) 2020-12-25 2021-12-24
CN202180087262.4A CN116981773A (zh) 2020-12-25 2021-12-24 用于编辑靶标rna的多聚腺苷酸化信号序列的指导rna
EP21911066.5A EP4269585A1 (en) 2020-12-25 2021-12-24 Guide rna for editing polyadenylation signal sequence of target rna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216787 2020-12-25
JP2020216787 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138929A1 true WO2022138929A1 (ja) 2022-06-30

Family

ID=82158093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048231 WO2022138929A1 (ja) 2020-12-25 2021-12-24 標的rnaのポリアデニル化シグナル配列を編集するためのガイドrna

Country Status (5)

Country Link
US (1) US20240150754A1 (ja)
EP (1) EP4269585A1 (ja)
JP (1) JPWO2022138929A1 (ja)
CN (1) CN116981773A (ja)
WO (1) WO2022138929A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012522B3 (de) 2015-09-26 2016-06-02 Eberhard Karls Universität Tübingen Verfahren und Substanzen zur gerichteten RNA-Editierung
JP2017537618A (ja) * 2014-12-17 2017-12-21 プロキューアール・セラピューティクス・セカンド・ベスローテン・フェンノートシャップProQR Therapeutics II B.V. 標的化rna編集
WO2018161032A1 (en) 2017-03-03 2018-09-07 The Regents Of The University Of California RNA TARGETING OF MUTATIONS VIA SUPPRESSOR tRNAs AND DEAMINASES
WO2019005884A1 (en) 2017-06-26 2019-01-03 The Broad Institute, Inc. CRISPR / CAS-ADENINE DEAMINASE COMPOSITIONS, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITION
WO2019071048A1 (en) 2017-10-04 2019-04-11 The Broad Institute, Inc. SYSTEMS, METHODS AND COMPOSITIONS FOR TARGETED NUCLEIC ACID EDITION
WO2019071274A1 (en) 2017-10-06 2019-04-11 Oregon Health & Science University COMPOSITIONS AND METHODS FOR EDITING RNA
WO2019111957A1 (ja) * 2017-12-06 2019-06-13 学校法人福岡大学 オリゴヌクレオチド、その製造方法及び標的rnaの部位特異的編集方法
WO2020051555A1 (en) * 2018-09-06 2020-03-12 The Regents Of The University Of California Rna and dna base editing via engneered adar recruitment
WO2021020550A1 (ja) 2019-08-01 2021-02-04 アステラス製薬株式会社 機能性塩基配列を付加した標的編集ガイドrna
WO2021117729A1 (ja) 2019-12-09 2021-06-17 アステラス製薬株式会社 標的rnaを編集するための機能性領域を付加したアンチセンス型ガイドrna

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537618A (ja) * 2014-12-17 2017-12-21 プロキューアール・セラピューティクス・セカンド・ベスローテン・フェンノートシャップProQR Therapeutics II B.V. 標的化rna編集
DE102015012522B3 (de) 2015-09-26 2016-06-02 Eberhard Karls Universität Tübingen Verfahren und Substanzen zur gerichteten RNA-Editierung
WO2017050306A1 (de) 2015-09-26 2017-03-30 Eberhard Karls Universität Tübingen Verfahren und substanzen zur gerichteten rna-editierung
WO2018161032A1 (en) 2017-03-03 2018-09-07 The Regents Of The University Of California RNA TARGETING OF MUTATIONS VIA SUPPRESSOR tRNAs AND DEAMINASES
WO2019005884A1 (en) 2017-06-26 2019-01-03 The Broad Institute, Inc. CRISPR / CAS-ADENINE DEAMINASE COMPOSITIONS, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITION
WO2019071048A1 (en) 2017-10-04 2019-04-11 The Broad Institute, Inc. SYSTEMS, METHODS AND COMPOSITIONS FOR TARGETED NUCLEIC ACID EDITION
WO2019071274A1 (en) 2017-10-06 2019-04-11 Oregon Health & Science University COMPOSITIONS AND METHODS FOR EDITING RNA
WO2019111957A1 (ja) * 2017-12-06 2019-06-13 学校法人福岡大学 オリゴヌクレオチド、その製造方法及び標的rnaの部位特異的編集方法
WO2020051555A1 (en) * 2018-09-06 2020-03-12 The Regents Of The University Of California Rna and dna base editing via engneered adar recruitment
WO2021020550A1 (ja) 2019-08-01 2021-02-04 アステラス製薬株式会社 機能性塩基配列を付加した標的編集ガイドrna
WO2021117729A1 (ja) 2019-12-09 2021-06-17 アステラス製薬株式会社 標的rnaを編集するための機能性領域を付加したアンチセンス型ガイドrna

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"mRNA 3' end processing and metabolism", 4 June 2021, ISBN: 978-0-12-823573-7, article SHIN, J.: "Modulation of alternative cleavage and polyadenylation events by dCas9-mediated CRISPRpas", pages: 459 - 482, XP009537702, DOI: 10.1016/bs.mie.2021.04.016 *
ANTIVIRAL CHEMISTRY & CHEMOTHERAPY, vol. 7, 1996, pages 86 - 93
BIOCHEMICAL SCIENCES, vol. 26, 2001, pages 376 - 384
BIOINFORMATICS, vol. 25, 2009, pages 3244 - 3250
BMC BIOTECH., vol. 8, no. 48, 2008
CELL, vol. 131, 2007, pages 1340 - 1353
CELL, vol. 91, 1997, pages 457 - 466
CHEM. COMMUN., vol. 54, 2018, pages 2377 - 2380
ELIFE, vol. 6, 2017, pages e25237
EMBO J., vol. 15, 1996, pages 7168 - 7177
ENG. DES. SEL., vol. 1, 2018, pages 471 - 478
GENE & DEVELOPMENT, vol. 25, 2011, pages 1770 - 1782
GENE THER., vol. 4, 1997, pages 45 - 54
GENE, vol. 95, 1990, pages 85 - 90
GREEN, M.R.SAMBROOK, J.: "Molecular Cloning: A Laboratory Manual", 2012, COLD SPRING HARBOR LABORATORY PRESS
INT. J. BIOCHEM. MOL. BIOL., vol. 4, 2013, pages 27 - 40
INTEGR. BIOL., vol. 1, 2009, pages 499 - 505
J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
JOUBERT ROMAINS, MARIOT VIRGINIE, CHARPENTIER MARINE, CONCORDET JEAN PAUL, DUMONCEAUX JULIE: "Gene Editing Targeting the DUX4 Polyadenylation Signal: A Therapy for FSHD?", JOURNAL OF PERSONALIZED MEDICINE, vol. 11, no. 1, pages 1 - 10, XP055945013, DOI: 10.3390/jpm11010007 *
MOL. CELL, vol. 15, 2004, pages 173 - 183
MOL. CELL, vol. 33, 2009, pages 365 - 376
MOL. THER, vol. 7, 2003, pages 237 - 247
MOL. THER., vol. 7, 2003, pages 237 - 247
NAT. BIOTECHNOL., vol. 20, 2002, pages 497 - 500
NAT. BIOTECHNOL., vol. 37, 2019, pages 1059 - 1069
NATURE METHODS, vol. 16, 2019, pages 239 - 242
NATURE, vol. 382, 1996, pages 642 - 646
NUCLEIC ACIDS RESEARCH, vol. 31, 2003, pages 100
NUCLEIC ACIDS RESEARCH, vol. 42, 2014, pages 5217 - 5233
NUCLEIC ACIDS RESEARCH, vol. 44, 2016, pages e157 - 9564
NUCLEIC ACIDS RESEARCH, vol. 45, 2017, pages 2797 - 2808
PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4324 - 4328
PROTEIN ENG. DES. SEL., vol. 1, 2018, pages 471 - 478
RNA, vol. 4, 1998, pages 1321 - 1331
RNA, vol. 6, 2000, pages 755 - 767
RNA, vol. 7, 2001, pages 846 - 858
SCIENCE, vol. 365, 2019, pages 382 - 386
VIRUS RES, vol. 169, 2012, pages 63 - 71

Also Published As

Publication number Publication date
EP4269585A1 (en) 2023-11-01
JPWO2022138929A1 (ja) 2022-06-30
US20240150754A1 (en) 2024-05-09
CN116981773A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US11352640B2 (en) Circular RNA for translation in eukaryotic cells
WO2021020550A1 (ja) 機能性塩基配列を付加した標的編集ガイドrna
WO2021117729A1 (ja) 標的rnaを編集するための機能性領域を付加したアンチセンス型ガイドrna
KR102312903B1 (ko) 신규의 최소 utr 서열
KR20220122727A (ko) Rna의 표적 편집을 위한 신규한 방법
WO2022138929A1 (ja) 標的rnaのポリアデニル化シグナル配列を編集するためのガイドrna
CN117295819A (zh) 用于抑制补体组分3表达的组合物和方法
WO2023020574A1 (en) Engineered adar-recruiting rnas and methods of use thereof
WO2023143539A1 (en) Engineered adar-recruiting rnas and methods of use thereof
WO2023185231A1 (en) Engineered adar-recruiting rnas and methods of use for usher syndrome
EP4347830A2 (en) Circular guide rnas for crispr/cas editing systems
WO2023178294A9 (en) Compositions and methods for improved protein translation from recombinant circular rnas
JP2011190176A (ja) 肥満細胞の脱顆粒抑制剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571689

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087262.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911066

Country of ref document: EP

Effective date: 20230725