WO2022138849A1 - Hard carbon film and method for forming same - Google Patents

Hard carbon film and method for forming same Download PDF

Info

Publication number
WO2022138849A1
WO2022138849A1 PCT/JP2021/047970 JP2021047970W WO2022138849A1 WO 2022138849 A1 WO2022138849 A1 WO 2022138849A1 JP 2021047970 W JP2021047970 W JP 2021047970W WO 2022138849 A1 WO2022138849 A1 WO 2022138849A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard carbon
carbon film
film
forming
base material
Prior art date
Application number
PCT/JP2021/047970
Other languages
French (fr)
Japanese (ja)
Inventor
祥和 田中
浩二 三宅
Original Assignee
日本アイ・ティ・エフ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アイ・ティ・エフ株式会社 filed Critical 日本アイ・ティ・エフ株式会社
Publication of WO2022138849A1 publication Critical patent/WO2022138849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a hard carbon film and a method for forming a film thereof.
  • the hard carbon (DLC: diamond-like carbon) film has excellent sliding properties such as low friction, high wear resistance, and low cohesiveness (seizure resistance). Therefore, for example, machines / devices and gold It is widely used as a sliding member for molds, cutting tools and automobile parts.
  • Patent Document 1 proposes that a lubricant reservoir is formed on a hard carbon film, and the angle between the side wall surface of the lubricant reservoir and the outer surface of the hard carbon film is made larger than 90 degrees. Then, Patent Document 2 proposes to form granular irregularities densely. Further, Patent Document 3 proposes to form a recess on the sliding surface to form a film made of a lipophilic substance so as to cover the inner surface of the recess, and Patent Document 4 proposes to form a hard carbon film. It has been proposed to form recesses by using plasma etching or the like.
  • These techniques are basically techniques that delay the depletion of the lubricant and suppress the occurrence of poor lubrication by forming a dent that does not come into direct contact with the sliding part and storing the lubricant in this dent. be.
  • Japanese Unexamined Patent Publication No. 2005-172082 Japanese Unexamined Patent Publication No. 2013-087197 Japanese Unexamined Patent Publication No. 2012-197900 Japanese Patent No. 4442349
  • the present invention provides a hard carbon film capable of suppressing peeling from the substrate and maintaining excellent slidability for a long period of time even for a member that rolls and slides in the presence of a lubricant. It is an object to provide the film forming method.
  • the invention according to claim 1 is A hard carbon film that covers at least part of the contact area of the lubricant on the substrate.
  • the invention according to claim 2 is The hard carbon film according to claim 1, wherein the length of the longest portion of the hole is 10 to 200 ⁇ m.
  • the invention according to claim 3 is The hard carbon film according to claim 1 or 2, wherein the ratio of the pores to the film surface is 7 to 23%.
  • the invention according to claim 4 is The hard carbon film according to any one of claims 1 to 3, wherein the arithmetic average roughness Ra of the surface is 0.01 to 0.07 ⁇ m.
  • the invention according to claim 5 is The hard carbon film according to any one of claims 1 to 4, wherein the maximum valley depth Rv of the pores is 0.04 to 0.23 ⁇ m.
  • the invention according to claim 6 is The hard carbon film according to any one of claims 1 to 5, wherein the oil reservoir depth Rvk of the pores is 0.03 to 0.35 ⁇ m.
  • the invention according to claim 7 is It is formed on the intermediate layer formed on the base material, and is formed on the intermediate layer.
  • the invention according to claim 8 is One of claims 1 to 7, wherein the base material is composed of a base material main body portion and a chromium or tungsten metal base layer formed on the base material main body portion.
  • the invention according to claim 9 is The method for forming a hard carbon film according to any one of claims 1 to 6.
  • the hard carbon film forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber.
  • the hard carbon film is characterized in that the pore forming step is a step of forming the pores by polishing and removing carbon flakes generated from the sputtered cathode and fixed on the surface of the hard carbon film. This is a film forming method.
  • the invention according to claim 10 is The method for forming a hard carbon film according to claim 7.
  • the intermediate layer forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using chromium or tungsten as a sputtering cathode are performed in parallel in the same vacuum chamber.
  • the hard carbon film forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber.
  • the hard carbon is characterized in that the pore forming step is a step of forming the pores by removing carbon fragments generated by the collapse of the carbon film adhering to the surface of the sputtered cathode in the intermediate layer forming step. This is a film forming method.
  • the invention according to claim 11 is The hard carbon according to claim 9 or 10, wherein a base material forming step of forming a metal base layer of chromium or tungsten is provided on the base material main body portion to form the base material. This is a film forming method.
  • the invention according to claim 12 is Claims 9 to 11 are characterized in that the surface of the substrate is cleaned in advance by exposing it to plasma of at least one gas selected from the group consisting of hydrogen gas, oxygen gas and noble gas.
  • a hard carbon film capable of suppressing peeling from a base material and maintaining excellent slidability for a long period of time even for a member that rolls and slides in the presence of a lubricant.
  • the film forming method can be provided.
  • DLC film surface layer
  • FIGS. (A) to (d) are images of a DLC film having film thicknesses of 0.8 ⁇ m, 1.4 ⁇ m, 2.0 ⁇ m, and 3.8 ⁇ m, respectively. It is a figure which shows the relationship between the arithmetic mean roughness Ra and the film thickness of a DLC film. It is a figure which shows the relationship between the maximum valley depth Rv and the film thickness of a DLC film. It is a figure which shows the relationship between the oil accumulation depth Rvk of a DLC film, and the film thickness. It is a schematic diagram which shows an example of a thrust tester. It is a microscope image which shows the test result of the thrust test.
  • Hard carbon film according to the present invention 1. Outline of Hard Carbon Film First, an outline of the hard carbon film (hereinafter, also referred to as “DLC film”) according to the present invention will be described.
  • the hard carbon film according to the present invention is a hard carbon film that covers at least a part of a portion of a substrate that comes into contact with a lubricant, and holes having one or more corners are formed on the surface of the hard carbon film. It is characterized by being formed in multiples.
  • the plurality of holes provided on the surface of the hard carbon film can each hold the lubricant and act as an oil pocket to supply the lubricant to the sliding surface. Even when the members that roll and slide in the presence of the lubricant repeatedly come into contact with each other, it is possible to prevent the lubricant from being exhausted on the sliding surface. As a result, peeling from the base material can be suppressed for a long period of time, and deterioration of slidability and rolling wear resistance can be suppressed, so that excellent slidability can be maintained for a long period of time.
  • each hole is provided with one or more corners. Having one or more corners in the hole makes it easier to hold the lubricant used in the part compared to a simple circular recess, so hard carbon with only a traditional circular recess. Compared to the membrane, it can maintain excellent slidability for a much longer period of time.
  • the lubricant include engine oil, low-viscosity oil, frozen base oil, grease and the like.
  • FIG. 1 is a surface SEM image of the DLC film according to the present embodiment, and is an image of the surface of the DLC film of the sample A in the examples described later. As shown in FIG. 1, a large number of fine pores are formed on the surface of the DLC film, and the pores are distributed almost uniformly on the surface of the DLC film. Also, the individual pores are irregular rather than circular when the membrane is viewed from the surface and have one or more corners.
  • Holes with corners have a better lubricant retention function than conventionally formed holes without corners, and because of their large size, they perform better as oil pockets and have a larger amount of lubricant. Can be stored.
  • the type and film thickness of the DLC film are not particularly limited, and a known DLC film can be used with a known film thickness.
  • a DLC film having a hydrogen content of 5 to 25 at% and a film thickness of several nm to several ⁇ m can be mentioned.
  • a-C low hydrogen or hydrogen-free DLC
  • the two-layer structure composed of the upper layer made of the hydrogen-containing DLC (a-C: H) may be used.
  • FIG. 2A and 2B are cross-sectional views schematically showing the morphology of the DLC film according to the present embodiment, where FIG. 2A shows a state before pore formation and FIG. 2B shows a state after pore formation.
  • 1 is a DLC film
  • 2 is a base material
  • F is a carbon flake (hereinafter, also simply referred to as “flake”)
  • H is a pore.
  • the base 3 is formed between the DLC film 1 and the base material 2.
  • flakes F are fixed in the DLC film 1 before forming the pores in a state of being partially embedded in the DLC film 1, and the portion protruding from the surface is extremely thin. It is covered with the DLC film 1. Since the flake F has a weak fixing force with the DLC film 1, the flake F can be easily separated from the DLC film 1 only by applying a small external force to the protruding portion. Then, as shown in FIG. 2B, holes H having the same shape and size as the flakes F are formed in the marks where the flakes F are detached.
  • plasma CVD using a hydrocarbon as a raw material and deposition by sputtering using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber. Formed by a complex process.
  • FIG. 3 is a schematic view showing an example of a film forming apparatus.
  • FIG. 4 is a schematic diagram showing how carbon flakes are generated in the DLC film forming process.
  • FIG. 5 is a conceptual diagram illustrating the mechanism of carbon flake generation.
  • 4 is a film forming apparatus, 41 is a vacuum chamber, and 42 is a sputtering cathode. Further, 2 is a base material as described above.
  • the film forming apparatus 4 includes a cylindrical vacuum chamber 41 rotatably supported at the center of a circle on the bottom surface of a circle, a spatter cathode 42 fixed to a side wall surface of the vacuum chamber 41, and a spatter cathode 42. It has a circular substrate support and a bias power supply.
  • the vacuum chamber 41 includes an air supply port and an exhaust port.
  • the gas in the vacuum chamber 41 is exhausted, and then a mixed gas of Ar and a hydrocarbon such as methane or ethane is supplied to keep the inside of the vacuum chamber 41 at a predetermined gas pressure.
  • a mixed gas of Ar and a hydrocarbon such as methane or ethane is supplied to keep the inside of the vacuum chamber 41 at a predetermined gas pressure.
  • DC of a predetermined voltage or a pulsed bias voltage is applied to the sputtering cathode 42 to generate Ar plasma inside the sputtering cathode 42.
  • the generated Ar plasma turns hydrocarbons into plasma to generate hydrocarbon ions, and a DLC film is deposited as a layer on the surfaces of the base material 2 and the sputtering cathode 42.
  • the surface of the sputtered cathode 42 is simultaneously sputtered by Ar plasma, so that the deposited DLC layer collapses.
  • the collapsed DLC becomes flakes F, scatters around, adheres to the DLC film forming surface of the opposing base material 2, and is fixed.
  • the plurality of base materials 2 (with a base formed as necessary) are erected on the peripheral edge of the base material support base so as to be rotatable at equal intervals. Then, at the time of film formation, the vacuum chamber 41 and the base material 2 are rotated. As a result, all the base materials 2 can face the sputtered cathode 42 at a fixed distance, a fixed time, and at equal intervals. Further, the entire side surface of the base material 2 can be opposed to the sputtered cathode under the same conditions.
  • the flakes F adhering to and fixed to the surface on which the DLC film is formed are then removed by polishing the surface of the DLC film by a method such as wrapping, and holes are formed in the marks.
  • the surface of the DLC film formed by arc vapor deposition has a large number of holes, but its shape is circular, has no corners, and is small in size.
  • the surface of the DLC film formed by plasma CVD has a very small number of holes, though not absent, and the shape is circular, has no corners, and is small in size.
  • the above-mentioned DLC film and the film forming method thereof preferably take the following embodiments.
  • the DLC film preferably takes each of the following embodiments.
  • the length of the longest portion is preferably 10 to 200 ⁇ m. This allows the holes to function properly as a lubricant reservoir.
  • the ratio (area ratio) of holes H to the film surface is preferably 7 to 23%.
  • the ratio of the hole H to the film surface is determined by, for example, the ratio of the number of pixels of the hole H to the total number of pixels of the imaging data taken by the microscope on the film surface.
  • the arithmetic average roughness Ra of the surface of the DLC film is preferably 0.01 to 0.07 ⁇ m. As a result, the sliding characteristics of the DLC film can be appropriately exhibited.
  • the "arithmetic mean roughness Ra" refers to the arithmetic mean roughness in the surface roughness measured by a method according to JIS B601: 2013.
  • the maximum valley depth Rv of the hole is preferably 0.04 to 0.23 ⁇ m. This allows the holes to function properly as a lubricant reservoir.
  • the "maximum valley depth Rv” refers to the maximum valley depth in the surface roughness measured by a method according to JIS B601: 2013.
  • the hole oil pool depth Rvk is preferably 0.03 to 0.35 ⁇ m. This allows the holes to function properly as a lubricant reservoir.
  • the "oil pool depth Rvk of the hole” refers to the depth of the protruding valley portion in the surface roughness measured by the method according to JIS B601: 2013.
  • a metal base layer containing chromium (Cr) or tungsten (W) is formed as an adhesive layer on a substrate, and then chromium (Cr) or tungsten (C) or tungsten () formed as an intermediate layer. It is preferably formed on a metal-containing hard carbon layer containing W). This makes it possible to improve the adhesion between the DLC film and the base material.
  • (G) Base material As the base material, a base material composed of a base material main body portion and a Cr or W metal base layer formed on the base material main body portion is used. Is preferable. As a result, the DLC film can be brought into close contact with the base material.
  • the thickness of the metal base layer is preferably about 0.2 to 0.7 ⁇ m, and can be formed by, for example, a sputtering vapor deposition method or an arc vapor deposition method.
  • the DLC film forming method preferably takes each of the following embodiments.
  • FIG. 8 is a diagram illustrating the formation of a two-layer structure of the surface layer (DLC film) and the intermediate layer. In FIG. 8, 11 is a surface layer and 12 is an intermediate layer.
  • the flakes F are fixed to the DLC film 1 at the time of film formation, and after the film formation, the flakes 1 are separated from the DLC film to form the pores H. At this time, it is preferable to form the DLC film 1 in the order of the intermediate layer 12 and the surface layer 11 by the following methods.
  • the intermediate layer 12 is formed by a composite process in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using Cr or W as a sputtering cathode are performed in parallel in the same vacuum chamber.
  • the surface layer 11 is formed by a composite process in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber.
  • the sputtering method using graphite as a solid raw material has the disadvantage that the film forming method is slow, but when a hydrocarbon gas is passed through this furnace, a hard carbon film can be formed by the same principle as the plasma CVD method, and the hydrocarbon gas can be formed.
  • the film formation speed is significantly improved compared to the spatter vapor deposition method that does not flow.
  • the film forming speed can be improved as compared with the case where each method is used alone. ..
  • the holes H are formed by polishing the formed DLC film 1 by, for example, a lapping process. As a result, the flakes F adhering to the surface can be efficiently separated. Specifically, brush wrap, film wrap, barrel polishing and the like are applied.
  • FIG. 9 shows the relationship between the abundance of flakes F obtained from imaging data of the DLC film surface having a film thickness of 0.8 ⁇ m, 1.4 ⁇ m, 2.0 ⁇ m, and 3.8 ⁇ m using a microscope and the film thickness of the DLC film. It is a figure which shows. From FIG. 9, it can be seen that there is a high correlation between the abundance of flakes F and the film thickness of the DLC film.
  • FIG. 10 is an image taken by a microscope of the film surface after the formation of pore H in the DLC film, and (a) to (d) have thicknesses of 0.8 ⁇ m, 1.4 ⁇ m, and 2.0 ⁇ m, respectively. It is an image taken with 8 ⁇ m DLC film.
  • the area ratio of the hole H can be adjusted by controlling the film thickness, and the area ratio of the hole H is preferable by controlling the film thickness to 0.8 to 3.8 ⁇ m. It shows that it can be adjusted to 7 to 23%.
  • the substrate after the pretreatment can be transferred to the film formation without taking out the substrate from the vacuum chamber, contamination of the substrate surface can be reliably prevented, which is preferable. Further, it is efficient because the pretreatment and the film formation can be performed continuously.
  • Sample A is a sample in which a DLC film is formed on the above-mentioned substrate by using a sputtering vapor deposition method and a plasma CVD method in combination according to the present invention. Specifically, a film was formed with the following settings to form a film thickness of 0.8 ⁇ m on the substrate.
  • Sample B is a sample in which a DLC film is formed on the above-mentioned substrate by an arc vapor deposition method. Specifically, a film was formed with the following settings to form a film thickness of 1.0 ⁇ m on the substrate. Cleaning process: Ar200ccm, pressure 1.0Pa Board bias voltage 1000V Metal substrate (Cr) process: Ar10ccm, pressure 0.1Pa Arc current 45A Board bias voltage 400V DLC process: Ar10ccm, pressure 0.1Pa Arc current 45A Board bias voltage 45V
  • Sample C is a sample in which a DLC film is formed on the above-mentioned substrate by plasma CVD. Specifically, a film was formed with the following settings to form a film thickness of 3.0 ⁇ m on the substrate.
  • Cleaning process Ar50ccm, pressure 0.2Pa Discharge current 20A, electromagnetic coil energization current 5A Board bias voltage 500V Sputtering process: Ar50ccm, pressure 0.3Pa Discharge current 20A, electromagnetic coil energization current 0A Board bias voltage 100V
  • Test method The test was carried out using the thrust tester shown in FIG. Specifically, after supplying a predetermined amount of lubricant to the surface of the DLC film of each sample 54 on which the DLC film is formed, the steel ball 51 mounted on the raceway ring 52 is pressed with a constant load to press the raceway ring 52. This was done by rolling and orbiting along the same orbit and repeatedly applying a predetermined number of times to the orbiting portion of the steel ball 51. Details of the test conditions are shown in Table 1.
  • test Results (1) Surface Condition During Film Formation As SEM images showing the surface condition of each sample during film formation, the surface condition of sample A is shown in FIG. 1, sample B is shown in FIG. 6, and sample C is shown in FIG. 7.
  • FIG. 15 is a surface SEM image of the orbital portion of each sample after the thrust test.
  • the DLC film had already peeled off in a part of the orbital part in the 225,000 times fatigue test, and peeled off in the entire circumference of the DLC film in the orbital part in the 1.26 million times fatigue test.
  • a film having excellent performance can be obtained by forming a DLC film having one or more corners in the pores by using the arc vapor deposition method and plasma CVD in combination according to the present invention. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided are a hard carbon film and a method for forming the same, said hard carbon film being capable of suppressing peeling thereof from a base material even for a member that rolls and slides in the presence of a lubricant, thereby maintaining excellent slidability for a long period of time. The hard carbon film covers at least a portion of a site on a base material with which a lubricant comes into contact, and a plurality of holes having one or more angles are formed in the surface thereof. The method for forming a hard carbon film includes: a hard carbon film forming step for forming a hard carbon film on a base material; and a hole forming step for forming a plurality of holes in the formed hard carbon film. The hard carbon film forming step is a composite process step in which film formation by means of a plasma CVD method using hydrocarbon as a raw material and film formation by means of a sputtering method using solid carbon in a sputter cathode are performed in parallel in the same vacuum chamber. The hole forming step is a step for forming holes by grinding and removing carbon flakes generated from the sputter cathode and deposited on the surface of the hard carbon film.

Description

硬質炭素膜とその成膜方法Hard carbon film and its film formation method
  本発明は、硬質炭素膜とその成膜方法に関する。 The present invention relates to a hard carbon film and a method for forming a film thereof.
  硬質炭素(DLC:ダイヤモンドライクカーボン)膜は、低摩擦性・高耐摩耗性・低凝集性(耐焼き付き性)など、優れた摺動特性を有しているため、例えば、機械・装置、金型、切削工具および自動車部品などの摺動部材として広く用いられている。 The hard carbon (DLC: diamond-like carbon) film has excellent sliding properties such as low friction, high wear resistance, and low cohesiveness (seizure resistance). Therefore, for example, machines / devices and gold It is widely used as a sliding member for molds, cutting tools and automobile parts.
  しかしながら、このような硬質炭素膜を潤滑剤の存在下で使用した場合、摺動部が貧潤滑な状態となると硬質炭素膜の摺動性が低下して、基材から剥離し、最終的には疲労破壊により部材が損傷される恐れがある。 However, when such a hard carbon film is used in the presence of a lubricant, the slidability of the hard carbon film deteriorates when the sliding portion becomes poorly lubricated, and the hard carbon film peels off from the base material and finally becomes. There is a risk of damage to the members due to fatigue failure.
  また、近年の潤滑剤の低粘度化に伴い、このような貧潤滑状態が短時間で発生するようになっている。 Further, with the recent decrease in viscosity of lubricants, such a poor lubrication state has come to occur in a short time.
  これらの理由から、貧潤滑状態の発生を遅らせることにより、硬質炭素膜の基材からの剥離を抑制して、長期間にわたって摺動性を維持することができる硬質炭素膜について、種々の技術が提案されている。 For these reasons, various techniques have been developed for hard carbon films that can suppress peeling of the hard carbon film from the substrate and maintain slidability for a long period of time by delaying the occurrence of poor lubrication. Proposed.
  例えば、特許文献1には、硬質炭素膜に潤滑剤溜が形成され、潤滑剤溜の側壁面と硬質炭素膜の外表面とのなす角度を90度より大きくすることが提案されている。そして、特許文献2には、粒状凹凸を密集して形成させることが提案されている。また、特許文献3には、摺動面に凹部を形成させて、この凹部の内面を覆うように親油性物質からなる被膜を形成させることが提案され、特許文献4には、硬質炭素膜にプラズマエッチング等を用いて凹部を形成させることが提案されている。 For example, Patent Document 1 proposes that a lubricant reservoir is formed on a hard carbon film, and the angle between the side wall surface of the lubricant reservoir and the outer surface of the hard carbon film is made larger than 90 degrees. Then, Patent Document 2 proposes to form granular irregularities densely. Further, Patent Document 3 proposes to form a recess on the sliding surface to form a film made of a lipophilic substance so as to cover the inner surface of the recess, and Patent Document 4 proposes to form a hard carbon film. It has been proposed to form recesses by using plasma etching or the like.
  これらの技術は、基本的に、摺動部とは直接接触しない凹みを形成させて、この凹みに潤滑剤を溜めることにより、潤滑剤の枯渇を遅らせ、貧潤滑状態の発生を抑制する技術である。 These techniques are basically techniques that delay the depletion of the lubricant and suppress the occurrence of poor lubrication by forming a dent that does not come into direct contact with the sliding part and storing the lubricant in this dent. be.
特開2005-172082号公報Japanese Unexamined Patent Publication No. 2005-172082 特開2013-087197号公報Japanese Unexamined Patent Publication No. 2013-087197 特開2012-197900号公報Japanese Unexamined Patent Publication No. 2012-197900 特許第4442349号公報Japanese Patent No. 4442349
  しかしながら、上記した各技術は、一般的な摺動に対してある程度の効果は発揮されるものの、未だ十分とは言えず、特に、エンジン部材などの転がり摺動する部材に対しては、長期間にわたる摺動性の維持が不十分であり、改善の要請が強くなっている。 However, although each of the above-mentioned techniques exerts some effect on general sliding, it is still not sufficient, and particularly on rolling and sliding members such as engine members for a long period of time. The maintenance of slidability is insufficient, and the demand for improvement is increasing.
  そこで、本発明は、潤滑剤の存在下で転がり摺動する部材に対しても、基材からの剥離を抑制して、長期間にわたって優れた摺動性を維持することができる硬質炭素膜とその成膜方法を提供することを課題とする。 Therefore, the present invention provides a hard carbon film capable of suppressing peeling from the substrate and maintaining excellent slidability for a long period of time even for a member that rolls and slides in the presence of a lubricant. It is an object to provide the film forming method.
  本発明者は、上記の課題を解決するため鋭意検討を行った結果、以下に記載する発明により上記の課題が解決できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventor has found that the above problems can be solved by the invention described below, and has completed the present invention.
  請求項1に記載の発明は、
  基材上の潤滑剤が接触する部位の少なくとも一部を被覆する硬質炭素膜であって、
  1つ以上の角を備えた孔が、表面に複数形成されていることを特徴とする硬質炭素膜である。
The invention according to claim 1 is
A hard carbon film that covers at least part of the contact area of the lubricant on the substrate.
A hard carbon film characterized in that a plurality of holes having one or more corners are formed on the surface.
  請求項2に記載の発明は、
  前記孔の最長部の長さが、10~200μmであることを特徴とする請求項1に記載の硬質炭素膜である。
The invention according to claim 2 is
The hard carbon film according to claim 1, wherein the length of the longest portion of the hole is 10 to 200 μm.
  請求項3に記載の発明は、
  前記孔の膜表面に占める比率が、7~23%であることを特徴とする請求項1または請求項2に記載の硬質炭素膜である。
The invention according to claim 3 is
The hard carbon film according to claim 1 or 2, wherein the ratio of the pores to the film surface is 7 to 23%.
  請求項4に記載の発明は、
  表面の算術平均粗さRaが、0.01~0.07μmであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の硬質炭素膜である。
The invention according to claim 4 is
The hard carbon film according to any one of claims 1 to 3, wherein the arithmetic average roughness Ra of the surface is 0.01 to 0.07 μm.
  請求項5に記載の発明は、
  前記孔の最大谷深さRvが、0.04~0.23μmであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の硬質炭素膜である。
The invention according to claim 5 is
The hard carbon film according to any one of claims 1 to 4, wherein the maximum valley depth Rv of the pores is 0.04 to 0.23 μm.
  請求項6に記載の発明は、
  前記孔の油溜り深さRvkが、0.03~0.35μmであることを特徴とする請求項1ないし請求項5のいずれか1項に記載の硬質炭素膜である。
The invention according to claim 6 is
The hard carbon film according to any one of claims 1 to 5, wherein the oil reservoir depth Rvk of the pores is 0.03 to 0.35 μm.
  請求項7に記載の発明は、
  前記基材上に形成された中間層上に形成されており、
  前記中間層が、クロムまたはタングステンを含む金属含有硬質炭素層であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の硬質炭素膜である。
The invention according to claim 7 is
It is formed on the intermediate layer formed on the base material, and is formed on the intermediate layer.
The hard carbon film according to any one of claims 1 to 6, wherein the intermediate layer is a metal-containing hard carbon layer containing chromium or tungsten.
  請求項8に記載の発明は、
  前記基材が、基材本体部、および、前記基材本体部上に形成されたクロムまたはタングステンの金属下地層から構成されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の硬質炭素膜である。
The invention according to claim 8 is
One of claims 1 to 7, wherein the base material is composed of a base material main body portion and a chromium or tungsten metal base layer formed on the base material main body portion. The rigid carbon film described in the section.
  請求項9に記載の発明は、
  請求項1ないし請求項6のいずれか1項に記載の硬質炭素膜の成膜方法であって、
  前記基材上に、硬質炭素膜を形成する硬質炭素膜形成工程と、
  形成された前記硬質炭素膜に対して、複数の前記孔を形成する孔形成工程とを備えており、
  前記硬質炭素膜形成工程が、炭化水素を原料とするプラズマCVD法による成膜と、固形炭素をスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセス工程であり、
  前記孔形成工程が、前記スパッタカソードから発生して前記硬質炭素膜の表面に定着した炭素フレークを、研磨、除去することにより、前記孔を形成する工程であることを特徴とする硬質炭素膜の成膜方法である。
The invention according to claim 9 is
The method for forming a hard carbon film according to any one of claims 1 to 6.
A hard carbon film forming step of forming a hard carbon film on the base material,
It is provided with a pore forming step of forming a plurality of the pores with respect to the formed hard carbon film.
The hard carbon film forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber. And
The hard carbon film is characterized in that the pore forming step is a step of forming the pores by polishing and removing carbon flakes generated from the sputtered cathode and fixed on the surface of the hard carbon film. This is a film forming method.
  請求項10に記載の発明は、
  請求項7に記載の硬質炭素膜の成膜方法であって、
  前記基材上に、中間層として、クロムまたはタングステンを含む金属含有硬質炭素層を形成する中間層形成工程と、
  前記中間層上に、硬質炭素膜を形成する硬質炭素膜形成工程と、
  形成された前記硬質炭素膜に対して、複数の前記孔を形成する孔形成工程とを備えており、
  前記中間層形成工程が、炭化水素を原料とするプラズマCVD法による成膜と、クロムまたはタングステンをスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセス工程であり、
  前記硬質炭素膜形成工程が、炭化水素を原料とするプラズマCVD法による成膜と、固形炭素をスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセス工程であり、
  前記孔形成工程が、前記中間層形成工程において前記スパッタカソードの表面に付着した炭素被膜が崩れて発生した炭素片を除去することにより、前記孔を形成する工程であることを特徴とする硬質炭素膜の成膜方法である。
The invention according to claim 10 is
The method for forming a hard carbon film according to claim 7.
An intermediate layer forming step of forming a metal-containing hard carbon layer containing chromium or tungsten as an intermediate layer on the substrate,
A hard carbon film forming step of forming a hard carbon film on the intermediate layer,
It is provided with a pore forming step of forming a plurality of the pores with respect to the formed hard carbon film.
The intermediate layer forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using chromium or tungsten as a sputtering cathode are performed in parallel in the same vacuum chamber. And
The hard carbon film forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber. And
The hard carbon is characterized in that the pore forming step is a step of forming the pores by removing carbon fragments generated by the collapse of the carbon film adhering to the surface of the sputtered cathode in the intermediate layer forming step. This is a film forming method.
  請求項11に記載の発明は、
  基材本体部上に、クロムまたはタングステンの金属下地層を形成して前記基材を形成する基材形成工程が設けられていることを特徴とする請求項9または請求項10に記載の硬質炭素膜の成膜方法である。
The invention according to claim 11 is
The hard carbon according to claim 9 or 10, wherein a base material forming step of forming a metal base layer of chromium or tungsten is provided on the base material main body portion to form the base material. This is a film forming method.
  請求項12に記載の発明は、
  前記基材の表面を、予め、水素ガス、酸素ガスおよび希ガスから成る群より選ばれた少なくとも1種のガスのプラズマに曝すことによりクリーニングすることを特徴とする請求項9ないし請求項11のいずれか1項に記載の硬質炭素膜の成膜方法である。
The invention according to claim 12 is
Claims 9 to 11 are characterized in that the surface of the substrate is cleaned in advance by exposing it to plasma of at least one gas selected from the group consisting of hydrogen gas, oxygen gas and noble gas. The method for forming a hard carbon film according to any one of the above items.
  本発明によれば、潤滑剤の存在下で転がり摺動する部材に対しても、基材からの剥離を抑制して、長期間にわたって優れた摺動性を維持することができる硬質炭素膜とその成膜方法を提供することができる。 According to the present invention, a hard carbon film capable of suppressing peeling from a base material and maintaining excellent slidability for a long period of time even for a member that rolls and slides in the presence of a lubricant. The film forming method can be provided.
本発明の一実施の形態に係る硬質炭素膜の表面SEM画像である。It is a surface SEM image of the hard carbon film which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る硬質炭素膜の形態を模式的に示す断面図である。It is sectional drawing which shows typically the form of the hard carbon film which concerns on one Embodiment of this invention. 成膜装置の一例を示す概略図である。It is a schematic diagram which shows an example of a film forming apparatus. 成膜工程において炭素フレークの発生の様子を示す模式図である。It is a schematic diagram which shows the state of generation of carbon flakes in a film forming process. 炭素フレークの発生機構を説明する概念図である。It is a conceptual diagram explaining the generation mechanism of carbon flakes. アーク蒸着で成膜された硬質炭素膜の表面SEM画像である。It is a surface SEM image of a hard carbon film formed by arc vapor deposition. プラズマスCVDで成膜された硬質炭素膜の表面SEM画像である。It is a surface SEM image of a hard carbon film formed by Plasmas CVD. 本発明の一実施の形態における表層(DLC膜)と中間層の2層構造の形成を説明する図である。It is a figure explaining the formation of the two-layer structure of the surface layer (DLC film) and the intermediate layer in one embodiment of the present invention. フレーク存在率とDLC膜の膜厚との関係を示す図である。It is a figure which shows the relationship between the flake abundance and the film thickness of a DLC film. DLC膜のマイクロスコープ画像であり、(a)図~(d)図は、それぞれ膜厚が0.8μm、1.4μm、2.0μm、3.8μmのDLC膜の画像である。It is a microscope image of a DLC film, and FIGS. (A) to (d) are images of a DLC film having film thicknesses of 0.8 μm, 1.4 μm, 2.0 μm, and 3.8 μm, respectively. DLC膜の算術平均粗さRaと膜厚の関係を示す図である。It is a figure which shows the relationship between the arithmetic mean roughness Ra and the film thickness of a DLC film. DLC膜の最大谷深さRvと膜厚の関係を示す図である。It is a figure which shows the relationship between the maximum valley depth Rv and the film thickness of a DLC film. DLC膜の油溜り深さRvkと膜厚の関係を示す図である。It is a figure which shows the relationship between the oil accumulation depth Rvk of a DLC film, and the film thickness. スラスト試験機の一例を示す模式図である。It is a schematic diagram which shows an example of a thrust tester. スラスト試験の試験結果を示す顕微鏡画像である。It is a microscope image which shows the test result of the thrust test.
[1]本発明に係る硬質炭素膜
1.硬質炭素膜の概要
  はじめに、本発明に係る硬質炭素膜(以下、「DLC膜」ともいう)の概要について説明する。本発明に係る硬質炭素膜は、基材上の潤滑剤が接触する部位の少なくとも一部を被覆する硬質炭素膜であって、1つ以上の角を備えた孔が、硬質炭素膜の表面に複数形成されていることを特徴としている。
[1] Hard carbon film according to the present invention 1. Outline of Hard Carbon Film First, an outline of the hard carbon film (hereinafter, also referred to as “DLC film”) according to the present invention will be described. The hard carbon film according to the present invention is a hard carbon film that covers at least a part of a portion of a substrate that comes into contact with a lubricant, and holes having one or more corners are formed on the surface of the hard carbon film. It is characterized by being formed in multiples.
  潤滑剤の存在下、硬質炭素膜の表面に設けられた複数の孔は、それぞれ、潤滑剤を保持することができ、摺動面に潤滑剤を供給するオイルポケットの役割を果たすことができるため、潤滑剤の存在下で転がり摺動する部材が繰り返し接触した場合でも、摺動面において潤滑剤が枯渇するようなことが抑制される。この結果、長期間にわたって、基材からの剥離を抑制し、摺動性や転がり摩耗耐性の低下を抑制することができるため、長期間にわたって優れた摺動性を維持することができる。 In the presence of the lubricant, the plurality of holes provided on the surface of the hard carbon film can each hold the lubricant and act as an oil pocket to supply the lubricant to the sliding surface. Even when the members that roll and slide in the presence of the lubricant repeatedly come into contact with each other, it is possible to prevent the lubricant from being exhausted on the sliding surface. As a result, peeling from the base material can be suppressed for a long period of time, and deterioration of slidability and rolling wear resistance can be suppressed, so that excellent slidability can be maintained for a long period of time.
  そして、本発明においては、アーク蒸着法などで成膜時に生じる円形のドロップレットとは異なり、各孔に、1つ以上の角を備えている。孔に1つ以上の角を備えることによって、単純な円形の凹みと比べて部品に使用される潤滑剤を保持しやすくすることができるため、従来の円形の凹みが設けられただけの硬質炭素膜に比べて、遥かに長期間にわたって優れた摺動性を維持することができる。なお、潤滑剤としては、エンジンオイル、低粘度オイル、冷凍基油、グリスなどが挙げられる。 And, in the present invention, unlike the circular droplets generated at the time of film formation by the arc vapor deposition method or the like, each hole is provided with one or more corners. Having one or more corners in the hole makes it easier to hold the lubricant used in the part compared to a simple circular recess, so hard carbon with only a traditional circular recess. Compared to the membrane, it can maintain excellent slidability for a much longer period of time. Examples of the lubricant include engine oil, low-viscosity oil, frozen base oil, grease and the like.
[2]具体的な実施の形態
  以下、本発明について、実施の形態に基づき、図面を用いて具体的に説明する。
[2] Specific Embodiments Hereinafter, the present invention will be specifically described with reference to the drawings based on the embodiments.
1.硬質炭素膜
(1)表面の状態
  はじめに、硬質炭素膜の表面状態について説明する。図1は、本実施の形態に係るDLC膜の表面SEM画像であり、後述する実施例における試料AのDLC膜の表面を撮影したものである。図1に示すように、DLC膜の表面には多数の微細な孔が形成されており、孔はDLC膜の表面にほぼ一様に分布している。また、個々の孔は、膜を表面から見た時に円形ではなく不定形であり、1個または複数個の角部を有している。
1. 1. Hard carbon film (1) Surface condition First, the surface condition of the hard carbon film will be described. FIG. 1 is a surface SEM image of the DLC film according to the present embodiment, and is an image of the surface of the DLC film of the sample A in the examples described later. As shown in FIG. 1, a large number of fine pores are formed on the surface of the DLC film, and the pores are distributed almost uniformly on the surface of the DLC film. Also, the individual pores are irregular rather than circular when the membrane is viewed from the surface and have one or more corners.
  角を有する孔は、従来形成されていた角のない孔よりも潤滑剤の保持機能に優れており、また、サイズが大きいため、オイルポケットとして優れた機能を発揮して、より多量の潤滑剤を溜めることができる。 Holes with corners have a better lubricant retention function than conventionally formed holes without corners, and because of their large size, they perform better as oil pockets and have a larger amount of lubricant. Can be stored.
(2)構成
  DLC膜の種類および膜厚は、特に限定されず、公知のDLC膜を公知の膜厚で使用することはできる。
(2) Structure The type and film thickness of the DLC film are not particularly limited, and a known DLC film can be used with a known film thickness.
  具体的には、例えば、水素含有率が5~25at%の含水素DLC(a-C:H)で、膜厚が数nm~数μmのDLC膜が挙げられる。 Specifically, for example, a DLC film having a hydrogen content of 5 to 25 at% and a film thickness of several nm to several μm can be mentioned.
  また、例えば、基材(母材)との密着性を良くし、かつ摩擦係数を低減させるため、水素含有比率が例えば5at%未満の低水素あるいは無水素DLC(a-C)製の下層と、上記含水素DLC(a-C:H)製の上層からなる2層構造としてもよい。 Further, for example, in order to improve the adhesion to the base material (base material) and reduce the friction coefficient, for example, with a lower layer made of low hydrogen or hydrogen-free DLC (a-C) having a hydrogen content ratio of less than 5 at%. , The two-layer structure composed of the upper layer made of the hydrogen-containing DLC (a-C: H) may be used.
2.DLC膜の成膜方法
  次に、DLC膜の成膜方法について説明する。図2は、本実施の形態に係るDLC膜の形態を模式的に示す断面図であり、(a)は孔形成前の状態、(b)は孔形成後の状態を示している。図2において、1はDLC膜、2は基材、Fは炭素フレーク(以下、単に「フレーク」ともいう)、Hは孔である。なお、図2においては、DLC膜1と基材2の間に、下地3が形成されている。
2. 2. DLC film forming method Next, a DLC film forming method will be described. 2A and 2B are cross-sectional views schematically showing the morphology of the DLC film according to the present embodiment, where FIG. 2A shows a state before pore formation and FIG. 2B shows a state after pore formation. In FIG. 2, 1 is a DLC film, 2 is a base material, F is a carbon flake (hereinafter, also simply referred to as “flake”), and H is a pore. In FIG. 2, the base 3 is formed between the DLC film 1 and the base material 2.
  図2(a)に示すように、孔を形成する前のDLC膜1にはフレークFが、一部がDLC膜1に埋め込まれた状態で定着されており、表面から突出した部分は極薄いDLC膜1で覆われている。フレークFは、DLC膜1との定着力が弱いため、突出部に小さな外力が加えられるだけでフレークFを容易にDLC膜1から離脱させることができる。そして、フレークFを離脱させた痕には、図2(b)に示すように、フレークFと同形同サイズの孔Hが形成される。 As shown in FIG. 2A, flakes F are fixed in the DLC film 1 before forming the pores in a state of being partially embedded in the DLC film 1, and the portion protruding from the surface is extremely thin. It is covered with the DLC film 1. Since the flake F has a weak fixing force with the DLC film 1, the flake F can be easily separated from the DLC film 1 only by applying a small external force to the protruding portion. Then, as shown in FIG. 2B, holes H having the same shape and size as the flakes F are formed in the marks where the flakes F are detached.
  図2(a)に示した孔形成前のDLC膜は、炭化水素を原料とするプラズマCVDと、固形炭素をスパッタカソードに用いたスパッタによる成膜とを、同一真空チャンバー内で並行して行う複合プロセスにより形成される。 In the DLC film before pore formation shown in FIG. 2A, plasma CVD using a hydrocarbon as a raw material and deposition by sputtering using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber. Formed by a complex process.
  図3は成膜装置の一例を示す概略図である。そして、図4はDLC膜の成膜工程において炭素フレークの発生の様子を示す模式図である。また、図5は炭素フレークの発生機構を説明する概念図である。図3~図5において、4は成膜装置、41は真空チャンバー、42はスパッタカソードである。また、2は前記したように基材である。 FIG. 3 is a schematic view showing an example of a film forming apparatus. FIG. 4 is a schematic diagram showing how carbon flakes are generated in the DLC film forming process. Further, FIG. 5 is a conceptual diagram illustrating the mechanism of carbon flake generation. In FIGS. 3 to 5, 4 is a film forming apparatus, 41 is a vacuum chamber, and 42 is a sputtering cathode. Further, 2 is a base material as described above.
  図3に示すように、成膜装置4は、円形の底面の円の中心で回転可能に支持された円筒状の真空チャンバー41と、真空チャンバー41の側壁面に固定されたスパッタカソード42と、円形の基材支持台、およびバイアス電源を備えている。なお、真空チャンバー41は、給気口と排気口を備えている。 As shown in FIG. 3, the film forming apparatus 4 includes a cylindrical vacuum chamber 41 rotatably supported at the center of a circle on the bottom surface of a circle, a spatter cathode 42 fixed to a side wall surface of the vacuum chamber 41, and a spatter cathode 42. It has a circular substrate support and a bias power supply. The vacuum chamber 41 includes an air supply port and an exhaust port.
  成膜に際しては、まず、真空チャンバー41内の気体を排気し、その後、Arとメタンやエタンなどの炭化水素の混合ガスを供給して、真空チャンバー41内を所定のガス圧力に保つ。次に、スパッタカソード42に所定電圧のDC、またはパルス状のバイアス電圧を印加して、スパッタカソード42の内側にArプラズマを発生させる。この発生したArプラズマにより、炭化水素がプラズマ化されて炭化水素イオンが生成され、基材2およびスパッタカソード42の表面に、DLC膜が層となって堆積する。 At the time of film formation, first, the gas in the vacuum chamber 41 is exhausted, and then a mixed gas of Ar and a hydrocarbon such as methane or ethane is supplied to keep the inside of the vacuum chamber 41 at a predetermined gas pressure. Next, DC of a predetermined voltage or a pulsed bias voltage is applied to the sputtering cathode 42 to generate Ar plasma inside the sputtering cathode 42. The generated Ar plasma turns hydrocarbons into plasma to generate hydrocarbon ions, and a DLC film is deposited as a layer on the surfaces of the base material 2 and the sputtering cathode 42.
  このとき、図4、図5に示すように、スパッタカソード42の表面は、同時に、Arプラズマによってスパッタされるため、堆積したDLC層に崩れが発生する。崩れたDLCは、フレークFとなって周囲に飛散し、対向する基材2のDLC膜形成面に付着し、定着される。 At this time, as shown in FIGS. 4 and 5, the surface of the sputtered cathode 42 is simultaneously sputtered by Ar plasma, so that the deposited DLC layer collapses. The collapsed DLC becomes flakes F, scatters around, adheres to the DLC film forming surface of the opposing base material 2, and is fixed.
  なお、成膜に際して、(必要に応じて下地が形成された)複数の基材2は、基材支持台の周縁に等間隔で回転可能に立設される。そして、成膜時には、真空チャンバー41および基材2を回転させる。これにより、全ての基材2が一定距離、一定時間、等間隔でスパッタカソード42と対向させることができる。また、基材2の側面全体を、同一条件の下でスパッタカソードと対向させることができる。 At the time of film formation, the plurality of base materials 2 (with a base formed as necessary) are erected on the peripheral edge of the base material support base so as to be rotatable at equal intervals. Then, at the time of film formation, the vacuum chamber 41 and the base material 2 are rotated. As a result, all the base materials 2 can face the sputtered cathode 42 at a fixed distance, a fixed time, and at equal intervals. Further, the entire side surface of the base material 2 can be opposed to the sputtered cathode under the same conditions.
  DLC膜の形成面に付着、定着されたフレークFは、その後、DLC膜表面をラッピング加工などの手法で研磨することにより、除去され、その痕に孔が形成される。 The flakes F adhering to and fixed to the surface on which the DLC film is formed are then removed by polishing the surface of the DLC film by a method such as wrapping, and holes are formed in the marks.
3.従来のDLC膜との形状の比較
  本実施の形態のDLC膜は、前記のように、膜を表面から見た時に個々の孔は、円形ではなく不定形で、1個または複数個の角部を有し、さらに孔のサイズが大きいという特徴を有している。このことを明らかにするため、従来のDLC膜との比較を行った。図6および図7に、従来のDLC膜の表面SEM画像を示す。図6はアーク蒸着、図7はプラズマCVDで成膜されたDLC膜の表面SEM画像であり、それぞれ後述する実施例における試料B、試料Cの表面を撮影したものである。
3. 3. Comparison of shape with conventional DLC film In the DLC film of this embodiment, as described above, when the film is viewed from the surface, the individual pores are not circular but irregular, and one or more corners are formed. It also has a feature that the size of the hole is large. In order to clarify this, a comparison with a conventional DLC film was performed. 6 and 7 show surface SEM images of a conventional DLC film. FIG. 6 is an arc vapor deposition, and FIG. 7 is a surface SEM image of a DLC film formed by plasma CVD, and the surfaces of Sample B and Sample C in Examples described later are photographed, respectively.
  図6に示すように、アーク蒸着で成膜されたDLC膜の表面は、多数の孔の存在が認められるものの、その形状は円形で角がなく、サイズも小さい。そして、図7に示すように、プラズマCVDで成膜されたDLC膜の表面は、孔は皆無ではないが極めて少数であり、その形状は円形で角がなく、サイズも小さい。 As shown in FIG. 6, the surface of the DLC film formed by arc vapor deposition has a large number of holes, but its shape is circular, has no corners, and is small in size. As shown in FIG. 7, the surface of the DLC film formed by plasma CVD has a very small number of holes, though not absent, and the shape is circular, has no corners, and is small in size.
4.好ましい態様
  本実施の形態において、上記したDLC膜およびその成膜方法は、以下の態様をとることが好ましい。
4. Preferred Embodiment In the present embodiment, the above-mentioned DLC film and the film forming method thereof preferably take the following embodiments.
(1)DLC膜における好ましい形態
  DLC膜は、以下に示す各態様をとることが好ましい。
(1) Preferred Form in DLC Film The DLC film preferably takes each of the following embodiments.
(a)孔のサイズ
  孔Hのサイズは、最長部の長さが、10~200μmであることが好ましい。これにより、孔を潤滑剤溜りとして、適切に機能させることができる。
(A) Hole size As for the size of the hole H, the length of the longest portion is preferably 10 to 200 μm. This allows the holes to function properly as a lubricant reservoir.
(b)孔の膜表面に占める比率
  孔Hの膜表面に占める比率(面積比率)は、7~23%であることが好ましい。これにより、潤滑剤溜りとしての孔から、適切に潤滑剤を供給することができる。なお、孔Hの膜表面に占める比率は、例えば膜表面のマイクロスコープによる撮像データの総ピクセル数に対する孔Hのピクセル数の比率で求められる。
(B) Ratio of pores to the film surface The ratio (area ratio) of holes H to the film surface is preferably 7 to 23%. As a result, the lubricant can be appropriately supplied from the holes as the lubricant reservoirs. The ratio of the hole H to the film surface is determined by, for example, the ratio of the number of pixels of the hole H to the total number of pixels of the imaging data taken by the microscope on the film surface.
(c)表面粗さ
  DLC膜の表面の算術平均粗さRaは、0.01~0.07μmであることが好ましい。これにより、DLC膜の摺動特性を適切に発揮させることができる。なお、「算術平均粗さRa」とは、JIS  B601:2013に準拠する方法で測定された表面粗さにおける算術平均粗さを指している。
(C) Surface Roughness The arithmetic average roughness Ra of the surface of the DLC film is preferably 0.01 to 0.07 μm. As a result, the sliding characteristics of the DLC film can be appropriately exhibited. The "arithmetic mean roughness Ra" refers to the arithmetic mean roughness in the surface roughness measured by a method according to JIS B601: 2013.
(d)孔の最大谷深さ
  孔の最大谷深さRvは、0.04~0.23μmであることが好ましい。これにより、孔を潤滑剤溜りとして、適切に機能させることができる。なお、「最大谷深さRv」とは、JIS  B601:2013に準拠する方法で測定された表面粗さにおける最大谷深さを指している。
(D) Maximum valley depth of the hole The maximum valley depth Rv of the hole is preferably 0.04 to 0.23 μm. This allows the holes to function properly as a lubricant reservoir. The "maximum valley depth Rv" refers to the maximum valley depth in the surface roughness measured by a method according to JIS B601: 2013.
(e)孔の油溜り深さ
  孔の油溜り深さRvkは、0.03~0.35μmであることが好ましい。これにより、孔を潤滑剤溜りとして、適切に機能させることができる。なお、「孔の油溜り深さRvk」とは、JIS  B601:2013に準拠する方法で測定された表面粗さにおける突出谷部深さを指している。
(E) Pore oil pool depth The hole oil pool depth Rvk is preferably 0.03 to 0.35 μm. This allows the holes to function properly as a lubricant reservoir. The "oil pool depth Rvk of the hole" refers to the depth of the protruding valley portion in the surface roughness measured by the method according to JIS B601: 2013.
(f)膜の構成
  DLC膜は、基材上に接着層としてクロム(Cr)またはタングステン(W)などを含む金属下地層を形成した後、中間層として形成されたクロム(Cr)またはタングステン(W)を含む金属含有硬質炭素層の上に形成されていることが好ましい。これにより、DLC膜と基材の密着性を向上させることができる。
(F) Structure of film In the DLC film, a metal base layer containing chromium (Cr) or tungsten (W) is formed as an adhesive layer on a substrate, and then chromium (Cr) or tungsten (C) or tungsten () formed as an intermediate layer. It is preferably formed on a metal-containing hard carbon layer containing W). This makes it possible to improve the adhesion between the DLC film and the base material.
(g)基材
  本実施の形態において、基材としては、基材本体部、および、前記基材本体部上に形成されたCrまたはWの金属下地層から構成されている基材を使用することが好ましい。これにより、DLC膜を基材とより密着させることができる。なお、金属下地層の厚みとしては、0.2~0.7μm程度が好ましく、例えば、スパッタ蒸着法やアーク蒸着法を用いて形成することができる。
(G) Base material In the present embodiment, as the base material, a base material composed of a base material main body portion and a Cr or W metal base layer formed on the base material main body portion is used. Is preferable. As a result, the DLC film can be brought into close contact with the base material. The thickness of the metal base layer is preferably about 0.2 to 0.7 μm, and can be formed by, for example, a sputtering vapor deposition method or an arc vapor deposition method.
(2)DLC膜の成膜方法における好ましい形態
  DLC膜の成膜方法は、以下に示す各態様をとることが好ましい。
(2) Preferred Form in the DLC Film Filming Method The DLC film forming method preferably takes each of the following embodiments.
(a)DLC膜の形成
  前記したように、DLC膜は、基材上に中間層として形成されたクロム(Cr)またはタングステン(W)を含む金属含有硬質炭素層の上に形成されていることが好ましい。図8は、この表層(DLC膜)と中間層の2層構造の形成を説明する図である。なお、図8において、11は表層、12は中間層である。
(A) Formation of DLC film As described above, the DLC film is formed on a metal-containing hard carbon layer containing chromium (Cr) or tungsten (W) formed as an intermediate layer on the substrate. Is preferable. FIG. 8 is a diagram illustrating the formation of a two-layer structure of the surface layer (DLC film) and the intermediate layer. In FIG. 8, 11 is a surface layer and 12 is an intermediate layer.
  DLC膜1の形成に際しては、成膜時にフレークFをDLC膜1に定着させ、成膜後、フレーク1をDLC膜から離脱させることで孔Hを形成する。このとき、DLC膜1を中間層12、表層11の順で形成し、それぞれ以下の方法で形成することが好ましい。 When forming the DLC film 1, the flakes F are fixed to the DLC film 1 at the time of film formation, and after the film formation, the flakes 1 are separated from the DLC film to form the pores H. At this time, it is preferable to form the DLC film 1 in the order of the intermediate layer 12 and the surface layer 11 by the following methods.
  まず、炭化水素を原料とするプラズマCVD法による成膜と、Cr又はWをスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセスにより、中間層12を形成する。 First, the intermediate layer 12 is formed by a composite process in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using Cr or W as a sputtering cathode are performed in parallel in the same vacuum chamber. Form.
  スパッタカソードにCrまたはWを用いた場合、フレークの発生頻度が飛躍的に増大するため、より多くのフレークFを定着させることが可能となり、結果として、孔Hを効率良く好ましい密度で分布させることができる。 When Cr or W is used for the sputtered cathode, the frequency of flake generation increases dramatically, so that more flake F can be fixed, and as a result, the pores H can be efficiently distributed at a preferable density. Can be done.
  次いで、炭化水素を原料とするプラズマCVD法による成膜と、固形炭素をスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセスにより表層11を形成する。 Next, the surface layer 11 is formed by a composite process in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber.
  黒鉛を固体原料としたスパッタ法は、成膜方法が遅いという欠点があるが、この炉内に炭化水素ガスを流すと、プラズマCVD法と同じ原理で硬質炭素膜を成膜でき、炭化水素ガスを流さないスパッタ蒸着法に比べ成膜速度が大幅に向上する。 The sputtering method using graphite as a solid raw material has the disadvantage that the film forming method is slow, but when a hydrocarbon gas is passed through this furnace, a hard carbon film can be formed by the same principle as the plasma CVD method, and the hydrocarbon gas can be formed. The film formation speed is significantly improved compared to the spatter vapor deposition method that does not flow.
  このため、スパッタ法とプラズマCVD法を併用する複合プロセスを採用して硬質炭素膜を成膜することにより、それぞれの方法を単独で用いた場合と比較して成膜速度を向上させることができる。 Therefore, by forming a hard carbon film by adopting a composite process in which the sputtering method and the plasma CVD method are used in combination, the film forming speed can be improved as compared with the case where each method is used alone. ..
(b)孔の形成
  孔Hの形成は、成膜されたDLC膜1に対して、例えば、ラッピング加工などの研磨処理により行うことが好ましい。これにより、表面に付着したフレークFを、効率良く離脱させることができる。具体的には、ブラシラップ、フィルムラップ、バレル研磨などが適用される。
(B) Formation of holes It is preferable that the holes H are formed by polishing the formed DLC film 1 by, for example, a lapping process. As a result, the flakes F adhering to the surface can be efficiently separated. Specifically, brush wrap, film wrap, barrel polishing and the like are applied.
(c)孔の面積比率の制御
  フレークFの存在率、即ちフレークFの膜表面に対する面積比率と、DLC膜の膜厚との間には相関性がある。図9は、膜厚が0.8μm、1.4μm、2.0μm、3.8μmのDLC膜表面のマイクロスコープによる撮像データから求めたフレークFの存在率と、DLC膜の膜厚との関係を示す図である。図9より、フレークFの存在率とDLC膜の膜厚との間には高い相関性があることが分かる。
(C) Control of pore area ratio There is a correlation between the abundance of flakes F, that is, the area ratio of flakes F to the film surface and the film thickness of the DLC film. FIG. 9 shows the relationship between the abundance of flakes F obtained from imaging data of the DLC film surface having a film thickness of 0.8 μm, 1.4 μm, 2.0 μm, and 3.8 μm using a microscope and the film thickness of the DLC film. It is a figure which shows. From FIG. 9, it can be seen that there is a high correlation between the abundance of flakes F and the film thickness of the DLC film.
  そして、前記のように、フレークFの脱離痕が孔Hとなるため、膜厚を制御することで孔Hの面積比率を所望の値に調整することができる。図10は、DLC膜の孔H形成後の膜表面のマイクロスコープによる撮像画像であり、(a)~(d)は、それぞれ膜厚が0.8μm、1.4μm、2.0μm、3.8μmのDLC膜の撮像画像である。これらの撮像データは、膜厚を制御することで孔Hの面積比率を調整することが可能であり、膜厚を0.8~3.8μmに制御することで、孔Hの面積比率を好ましい7~23%に調整できることを示している。 Then, as described above, since the detachment marks of the flakes F are the holes H, the area ratio of the holes H can be adjusted to a desired value by controlling the film thickness. FIG. 10 is an image taken by a microscope of the film surface after the formation of pore H in the DLC film, and (a) to (d) have thicknesses of 0.8 μm, 1.4 μm, and 2.0 μm, respectively. It is an image taken with 8 μm DLC film. In these imaging data, the area ratio of the hole H can be adjusted by controlling the film thickness, and the area ratio of the hole H is preferable by controlling the film thickness to 0.8 to 3.8 μm. It shows that it can be adjusted to 7 to 23%.
(d)膜の表面粗さの制御
  また、DLC膜の算術平均粗さRa、最大谷深さRv、油溜り深さRvkと、DLC膜の膜厚との間には相関性がある。図11~図13は、それぞれ膜厚が0.8μm、1.4μm、2.0μm、3.8μmのDLC膜の算術平均粗さRa、最大谷深さRv、油溜り深さRvkと、膜厚の関係を示す図である。これらの図は、膜厚を制御することで、算術平均粗さRa、最大谷深さRv、油溜り深さRvkを調整することが可能であることを示しており、これらの相関性に基づいて、算術平均粗さRa、最大谷深さRv、油溜り深さRvkを所望の値に調整することができる。
(D) Control of surface roughness of the film Further, there is a correlation between the arithmetic mean roughness Ra of the DLC film, the maximum valley depth Rv, the oil pool depth Rvk, and the film thickness of the DLC film. 11 to 13 show the arithmetic mean roughness Ra, the maximum valley depth Rv, and the oil pool depth Rvk of the DLC film having a film thickness of 0.8 μm, 1.4 μm, 2.0 μm, and 3.8 μm, respectively. It is a figure which shows the relationship of thickness. These figures show that it is possible to adjust the arithmetic mean roughness Ra, the maximum valley depth Rv, and the oil pool depth Rvk by controlling the film thickness, and based on these correlations. Therefore, the arithmetic mean roughness Ra, the maximum valley depth Rv, and the oil pool depth Rvk can be adjusted to desired values.
(e)基材の前処理
  なお、DLC膜の形成に際しては、基材の表面を、予め、水素ガス、酸素ガスおよび希ガスから成る群より選ばれた少なくとも1種のガスのプラズマに曝すことによりクリーニングすることが好ましい。これにより、基材の表面の不純物を除去して、クリーンな状態とすることができ、DLC膜と基材との密着力を向上させることができる。
(E) Pretreatment of the base material When forming the DLC film, the surface of the base material is previously exposed to plasma of at least one gas selected from the group consisting of hydrogen gas, oxygen gas and noble gas. It is preferable to clean with. As a result, impurities on the surface of the base material can be removed to maintain a clean state, and the adhesion between the DLC film and the base material can be improved.
  この方法によれば、前処理後の基材を真空チャンバーから取り出すことなく成膜に移行することができるため、基材表面の汚染を確実に防止でき好ましい。また、前処理と成膜とを連続作業で行うことができるため、効率的である。 According to this method, since the substrate after the pretreatment can be transferred to the film formation without taking out the substrate from the vacuum chamber, contamination of the substrate surface can be reliably prevented, which is preferable. Further, it is efficient because the pretreatment and the film formation can be performed continuously.
  次に、実施例に基づき、本発明をより具体的に説明する。 Next, the present invention will be described in more detail based on Examples.
  本実施例では、基材上に3種類のDLC膜を形成した試料を作製し、それぞれの膜の耐剥離性を評価した。 In this example, a sample in which three types of DLC films were formed on a substrate was prepared, and the peel resistance of each film was evaluated.
[1]試料の作製
1.基材
  表1に示す通り、30mm径、3mm厚のSCM415浸炭(HRC60)で作製した基材を準備した。
[1] Preparation of sample 1. Substrate As shown in Table 1, a substrate made of SCM415 carburized (HRC60) having a diameter of 30 mm and a thickness of 3 mm was prepared.
2.DLC膜の形成
(1)試料A
  試料Aは、上記の基材上に、本発明に従い、スパッタ蒸着法とプラズマCVD法を併用してDLC膜を作製した試料である。具体的には、以下の設定で成膜し、基材上に膜厚0.8μmを形成した。
  クリーニング工程            :Ar150ccm、圧力0.4Pa
                                フィラメントエミッション電流8A
                                基板バイアス電圧800V
  金属下地(Cr)工程        :Ar250ccm、圧力0.9Pa
                                スパッタ電源出力5kW
                                基板バイアス電圧150V
  Cr含有DLC(中間層)工程:Ar500ccm、C2H210~200ccm
                                圧力0.8~1.0Pa
                                スパッタ電源出力3kW
                                基板バイアス電圧100~600V
  DLC工程                  :Ar250ccm、C2H2100ccm
                                圧力0.5Pa
                                スパッタ電源出力4kW
                                基板バイアス電圧550V
2. 2. Formation of DLC film (1) Sample A
Sample A is a sample in which a DLC film is formed on the above-mentioned substrate by using a sputtering vapor deposition method and a plasma CVD method in combination according to the present invention. Specifically, a film was formed with the following settings to form a film thickness of 0.8 μm on the substrate.
Cleaning process: Ar150ccm, pressure 0.4Pa
Filament emission current 8A
Board bias voltage 800V
Metal base (Cr) process: Ar250ccm, pressure 0.9Pa
Spatter power output 5kW
Board bias voltage 150V
Cr-containing DLC (intermediate layer) process: Ar500ccm, C2H210-200ccm
Pressure 0.8-1.0Pa
Spatter power output 3kW
Board bias voltage 100-600V
DLC process: Ar250ccm, C2H2100ccm
Pressure 0.5Pa
Spatter power output 4kW
Board bias voltage 550V
(2)試料B
  試料Bは、上記の基材上に、アーク蒸着法によりDLC膜を作製した試料である。具体的には、以下の設定で成膜し、基材上に膜厚1.0μmを形成した。
  クリーニング工程    :Ar200ccm、圧力1.0Pa
                        基板バイアス電圧1000V
  金属下地(Cr)工程:Ar10ccm、圧力0.1Pa
                        アーク電流45A
                        基板バイアス電圧400V
  DLC工程          :Ar10ccm、圧力0.1Pa
                        アーク電流45A
                        基板バイアス電圧45V
(2) Sample B
Sample B is a sample in which a DLC film is formed on the above-mentioned substrate by an arc vapor deposition method. Specifically, a film was formed with the following settings to form a film thickness of 1.0 μm on the substrate.
Cleaning process: Ar200ccm, pressure 1.0Pa
Board bias voltage 1000V
Metal substrate (Cr) process: Ar10ccm, pressure 0.1Pa
Arc current 45A
Board bias voltage 400V
DLC process: Ar10ccm, pressure 0.1Pa
Arc current 45A
Board bias voltage 45V
(3)試料C
  試料Cは、上記の基材上に、プラズマCVDによりDLC膜を作製した試料である。具体的には、以下の設定で成膜し、基材上に膜厚3.0μmを形成した。
  クリーニング工程  :Ar50ccm、圧力0.2Pa
                      放電電流20A、電磁コイル通電電流5A
                      基板バイアス電圧500V
  スパッタ工程      :Ar50ccm、圧力0.3Pa
                      放電電流20A、電磁コイル通電電流0A
                      基板バイアス電圧100V
                      時間40分
  Si含有DLC工程:Ar50ccm、TMS100ccm、C2H2100ccm
                      圧力0.1Pa
                      放電電流20A、電磁コイル通電電流5A
                      基板バイアス500V
  DLC工程        :Ar50ccm、C2H2100ccm、圧力0.1Pa
                      放電電流20A、電磁コイル通電電流5A
                      基板バイアス500V
(3) Sample C
Sample C is a sample in which a DLC film is formed on the above-mentioned substrate by plasma CVD. Specifically, a film was formed with the following settings to form a film thickness of 3.0 μm on the substrate.
Cleaning process: Ar50ccm, pressure 0.2Pa
Discharge current 20A, electromagnetic coil energization current 5A
Board bias voltage 500V
Sputtering process: Ar50ccm, pressure 0.3Pa
Discharge current 20A, electromagnetic coil energization current 0A
Board bias voltage 100V
Time 40 minutes Si-containing DLC process: Ar50ccm, TMS100ccm, C2H2100ccm
Pressure 0.1Pa
Discharge current 20A, electromagnetic coil energization current 5A
Board bias 500V
DLC process: Ar50ccm, C2H2100ccm, pressure 0.1Pa
Discharge current 20A, electromagnetic coil energization current 5A
Board bias 500V
[2]耐剥離性の評価
  次に、各試料のDLC膜の密着性を、ベアリングによる転動試験(スラスト試験)により評価した。
[2] Evaluation of peeling resistance Next, the adhesion of the DLC film of each sample was evaluated by a rolling test (thrust test) using a bearing.
1.試験方法
  試験は、図14に示すスラスト試験機を使用して行った。具体的には、DLC膜が形成された各試料54のDLC膜の表面に所定量の潤滑剤を供給した後、一定荷重で軌道輪52に装着された鋼球51を押し付け、軌道輪52を同一軌道に沿って転動周回させ、鋼球51の周回軌道部にあらかじめ定めた回数、繰り返し荷重を与えることにより行った。試験条件の詳細を表1に示す。
1. 1. Test method The test was carried out using the thrust tester shown in FIG. Specifically, after supplying a predetermined amount of lubricant to the surface of the DLC film of each sample 54 on which the DLC film is formed, the steel ball 51 mounted on the raceway ring 52 is pressed with a constant load to press the raceway ring 52. This was done by rolling and orbiting along the same orbit and repeatedly applying a predetermined number of times to the orbiting portion of the steel ball 51. Details of the test conditions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.試験結果
(1)成膜時の表面状態
  成膜時の各試料の表面状態を示すSEM画像として、図1に試料A、図6に試料B、図7に試料Cの表面状態を示す。
2. 2. Test Results (1) Surface Condition During Film Formation As SEM images showing the surface condition of each sample during film formation, the surface condition of sample A is shown in FIG. 1, sample B is shown in FIG. 6, and sample C is shown in FIG. 7.
  図1より、アーク蒸着法とプラズマCVD法の併用の場合には、1つ以上の角がある孔が形成されていることが分かる。そして、図6より、アーク蒸着法の場合には、角のない小さい粒状(球状)の凹みが形成されていることが分かる。また、図7より、プラズマCVD法の場合には、図6よりさらに小さい粒状(球状)の凹みが形成されていることが分かる。 From FIG. 1, it can be seen that in the case of the combined use of the arc vapor deposition method and the plasma CVD method, holes having one or more corners are formed. From FIG. 6, it can be seen that in the case of the arc vapor deposition method, small granular (spherical) dents having no corners are formed. Further, from FIG. 7, it can be seen that in the case of the plasma CVD method, smaller granular (spherical) dents than those in FIG. 6 are formed.
(2)スラスト試験結果
  スラスト試験の結果を図15に示す。図15は、スラスト試験後の各試料の軌道部分の表面SEM画像である。
(2) Thrust test results The results of the thrust test are shown in FIG. FIG. 15 is a surface SEM image of the orbital portion of each sample after the thrust test.
  図15より、実施例である試料Aの場合、22.5万回疲労試験、126万回疲労試験の双方でDLC膜の剥離が発生しないことが確認できた。このような優れた耐疲労性能が得られたのは、疲労試験中、潤滑剤による潤滑機能が維持され、転動接触による摩擦が低く抑えられたため、結果としてDLC膜同士およびDLC膜と基材との界面に発生する応力が抑制されたためである。 From FIG. 15, in the case of sample A as an example, it was confirmed that the DLC film did not peel off in both the 225,000 times fatigue test and the 1.26 million times fatigue test. Such excellent fatigue resistance was obtained because the lubrication function by the lubricant was maintained during the fatigue test and the friction due to rolling contact was suppressed to a low level. As a result, the DLC films and the DLC film and the base material were obtained. This is because the stress generated at the interface with and is suppressed.
  一方、試料Bの場合には、22.5万回疲労試験では剥離が発生しなかったが、126万回疲労試験では軌道部のDLC膜の全周において剥離した。 On the other hand, in the case of sample B, peeling did not occur in the 225,000 times fatigue test, but in the 1.26 million times fatigue test, peeling occurred on the entire circumference of the DLC film in the orbital portion.
  また、試料Cの場合には、22.5万回疲労試験で、既に軌道部の一部でDLC膜が剥離し、126万回疲労試験では軌道部のDLC膜の全周で剥離した。 In the case of sample C, the DLC film had already peeled off in a part of the orbital part in the 225,000 times fatigue test, and peeled off in the entire circumference of the DLC film in the orbital part in the 1.26 million times fatigue test.
  以上の結果、本発明に従い、アーク蒸着法とプラズマCVDを併用して、孔に1つ以上の角があるDLC膜を成膜することにより、優れた性能を有する膜が得られることが確認できた。 As a result of the above, it can be confirmed that a film having excellent performance can be obtained by forming a DLC film having one or more corners in the pores by using the arc vapor deposition method and plasma CVD in combination according to the present invention. rice field.
  以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments. It is possible to make various modifications to the above embodiments within the same and equal range as the present invention.
  1          DLC膜
  2          基材
  3          下地
  4          成膜装置
  11        表層
  12        中間層
  41        真空チャンバー
  42        スパッタカソード
  51        鋼球
  52        軌道輪
  53        オイル
  54        試料
  F          炭素フレーク(フレーク)
  H          孔
1 DLC film 2 base material 3 base material 4 film forming equipment 11 surface layer 12 intermediate layer 41 vacuum chamber 42 sputter cathode 51 steel ball 52 track ring 53 oil 54 sample F carbon flakes (flakes)
H hole

Claims (12)

  1.   基材上の潤滑剤が接触する部位の少なくとも一部を被覆する硬質炭素膜であって、
      1つ以上の角を備えた孔が、表面に複数形成されていることを特徴とする硬質炭素膜。
    A hard carbon film that covers at least part of the contact area of the lubricant on the substrate.
    A hard carbon film characterized in that a plurality of holes having one or more corners are formed on the surface.
  2.   前記孔の最長部の長さが、10~200μmであることを特徴とする請求項1に記載の硬質炭素膜。 The hard carbon film according to claim 1, wherein the length of the longest portion of the hole is 10 to 200 μm.
  3.   前記孔の膜表面に占める比率が、7~23%であることを特徴とする請求項1または請求項2に記載の硬質炭素膜。 The hard carbon film according to claim 1 or 2, wherein the ratio of the pores to the film surface is 7 to 23%.
  4.   表面の算術平均粗さRaが、0.01~0.07μmであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の硬質炭素膜。 The hard carbon film according to any one of claims 1 to 3, wherein the arithmetic mean roughness Ra of the surface is 0.01 to 0.07 μm.
  5.   前記孔の最大谷深さRvが、0.04~0.23μmであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の硬質炭素膜。 The hard carbon film according to any one of claims 1 to 4, wherein the maximum valley depth Rv of the pores is 0.04 to 0.23 μm.
  6.   前記孔の油溜り深さRvkが、0.03~0.35μmであることを特徴とする請求項1ないし請求項5のいずれか1項に記載の硬質炭素膜。 The hard carbon film according to any one of claims 1 to 5, wherein the oil pool depth Rvk of the pores is 0.03 to 0.35 μm.
  7.   前記基材上に形成された中間層上に形成されており、
      前記中間層が、クロムまたはタングステンを含む金属含有硬質炭素層であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の硬質炭素膜。
    It is formed on the intermediate layer formed on the base material, and is formed on the intermediate layer.
    The hard carbon film according to any one of claims 1 to 6, wherein the intermediate layer is a metal-containing hard carbon layer containing chromium or tungsten.
  8.   前記基材が、基材本体部、および、前記基材本体部上に形成されたクロムまたはタングステンの金属下地層から構成されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の硬質炭素膜。 One of claims 1 to 7, wherein the base material is composed of a base material main body portion and a chromium or tungsten metal base layer formed on the base material main body portion. The rigid carbon film described in the section.
  9.   請求項1ないし請求項6のいずれか1項に記載の硬質炭素膜の成膜方法であって、
      前記基材上に、硬質炭素膜を形成する硬質炭素膜形成工程と、
      形成された前記硬質炭素膜に対して、複数の前記孔を形成する孔形成工程とを備えており、
      前記硬質炭素膜形成工程が、炭化水素を原料とするプラズマCVD法による成膜と、固形炭素をスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセス工程であり、
      前記孔形成工程が、前記スパッタカソードから発生して前記硬質炭素膜の表面に定着した炭素フレークを、研磨、除去することにより、前記孔を形成する工程であることを特徴とする硬質炭素膜の成膜方法。
    The method for forming a hard carbon film according to any one of claims 1 to 6.
    A hard carbon film forming step of forming a hard carbon film on the base material,
    It is provided with a pore forming step of forming a plurality of the pores with respect to the formed hard carbon film.
    The hard carbon film forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber. And
    The hard carbon film is characterized in that the pore forming step is a step of forming the pores by polishing and removing carbon flakes generated from the sputtered cathode and fixed on the surface of the hard carbon film. Film formation method.
  10.   請求項7に記載の硬質炭素膜の成膜方法であって、
      前記基材上に、中間層として、クロムまたはタングステンを含む金属含有硬質炭素層を形成する中間層形成工程と、
      前記中間層上に、硬質炭素膜を形成する硬質炭素膜形成工程と、
      形成された前記硬質炭素膜に対して、複数の前記孔を形成する孔形成工程とを備えており、
      前記中間層形成工程が、炭化水素を原料とするプラズマCVD法による成膜と、クロムまたはタングステンをスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセス工程であり、
      前記硬質炭素膜形成工程が、炭化水素を原料とするプラズマCVD法による成膜と、固形炭素をスパッタカソードに用いたスパッタ法による成膜とを、同一真空チャンバー内で並行して行う複合プロセス工程であり、
      前記孔形成工程が、前記中間層形成工程において前記スパッタカソードの表面に付着した炭素被膜が崩れて発生した炭素片を除去することにより、前記孔を形成する工程であることを特徴とする硬質炭素膜の成膜方法。
    The method for forming a hard carbon film according to claim 7.
    An intermediate layer forming step of forming a metal-containing hard carbon layer containing chromium or tungsten as an intermediate layer on the substrate,
    A hard carbon film forming step of forming a hard carbon film on the intermediate layer,
    It is provided with a pore forming step of forming a plurality of the pores with respect to the formed hard carbon film.
    The intermediate layer forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using chromium or tungsten as a sputtering cathode are performed in parallel in the same vacuum chamber. And
    The hard carbon film forming step is a composite process step in which a film formation by a plasma CVD method using a hydrocarbon as a raw material and a film formation by a sputtering method using solid carbon as a sputtering cathode are performed in parallel in the same vacuum chamber. And
    The hard carbon is characterized in that the pore forming step is a step of forming the pores by removing carbon fragments generated by the collapse of the carbon film adhering to the surface of the sputtered cathode in the intermediate layer forming step. Film forming method.
  11.   基材本体部上に、クロムまたはタングステンの金属下地層を形成して前記基材を形成する基材形成工程が設けられていることを特徴とする請求項9または請求項10に記載の硬質炭素膜の成膜方法。 The hard carbon according to claim 9 or 10, wherein a base material forming step of forming a metal base layer of chromium or tungsten is provided on the base material main body portion to form the base material. Film forming method.
  12.   前記基材の表面を、予め、水素ガス、酸素ガスおよび希ガスから成る群より選ばれた少なくとも1種のガスのプラズマに曝すことによりクリーニングすることを特徴とする請求項9ないし請求項11のいずれか1項に記載の硬質炭素膜の成膜方法。 Claims 9 to 11 are characterized in that the surface of the substrate is cleaned in advance by exposing it to plasma of at least one gas selected from the group consisting of hydrogen gas, oxygen gas and noble gas. The method for forming a hard carbon film according to any one of the above items.
PCT/JP2021/047970 2020-12-24 2021-12-23 Hard carbon film and method for forming same WO2022138849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020215260A JP2022100954A (en) 2020-12-24 2020-12-24 Hard carbon film and method for depositing the same
JP2020-215260 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138849A1 true WO2022138849A1 (en) 2022-06-30

Family

ID=82158721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047970 WO2022138849A1 (en) 2020-12-24 2021-12-23 Hard carbon film and method for forming same

Country Status (2)

Country Link
JP (2) JP2022100954A (en)
WO (1) WO2022138849A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348350A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Hard carbon thin film and production method therefor
JP2010126419A (en) * 2008-11-28 2010-06-10 Kanagawa Prefecture Dlc film, dlc coating member, and method for production thereof
JP2013001939A (en) * 2011-06-15 2013-01-07 Sanyo Electric Co Ltd Sliding member and compressor
JP2013087325A (en) * 2011-10-18 2013-05-13 Nippon Itf Kk Hard carbon film, and method for forming the same
JP2014129839A (en) * 2012-12-28 2014-07-10 Minebea Co Ltd Porous metal sliding member
JP2015516506A (en) * 2012-03-12 2015-06-11 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ Coating with improved sliding characteristics
WO2016167161A1 (en) * 2015-04-16 2016-10-20 株式会社iMott Protective film and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197900A (en) * 2011-03-22 2012-10-18 Hitachi Ltd Sliding component and method for manufacturing the same
JP7230399B2 (en) * 2018-09-27 2023-03-01 日産自動車株式会社 Sliding member and sliding device using the sliding member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348350A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Hard carbon thin film and production method therefor
JP2010126419A (en) * 2008-11-28 2010-06-10 Kanagawa Prefecture Dlc film, dlc coating member, and method for production thereof
JP2013001939A (en) * 2011-06-15 2013-01-07 Sanyo Electric Co Ltd Sliding member and compressor
JP2013087325A (en) * 2011-10-18 2013-05-13 Nippon Itf Kk Hard carbon film, and method for forming the same
JP2015516506A (en) * 2012-03-12 2015-06-11 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ Coating with improved sliding characteristics
JP2014129839A (en) * 2012-12-28 2014-07-10 Minebea Co Ltd Porous metal sliding member
WO2016167161A1 (en) * 2015-04-16 2016-10-20 株式会社iMott Protective film and method for producing same

Also Published As

Publication number Publication date
JP2022100954A (en) 2022-07-06
JP2024052914A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
JP4696823B2 (en) Metal composite diamond-like carbon (DLC) film, method for forming the same, and sliding member
KR101699774B1 (en) Diamond-like carbon film-formed material and method for producing the same
US8119240B2 (en) Metal-free diamond-like-carbon coatings
JP5273337B2 (en) Low friction sliding member
EP1666628B1 (en) Bearing with a self-lubricating liner of one bearing element in sliding contact with a nitride hardened counterface of a titanium bearing element
JP4918656B2 (en) Amorphous hard carbon film
CN103814150B (en) Hard films, hard films organizer and rolling bearing
KR20150077451A (en) Component having a coating and method for the production thereof
JP2004339564A (en) Sliding member and film deposition method
JP5993680B2 (en) Rolling bearing and manufacturing method thereof
US20060280946A1 (en) Metal-containing diamond-like-carbon coating compositions
WO2022138849A1 (en) Hard carbon film and method for forming same
JP2013087325A (en) Hard carbon film, and method for forming the same
JP2018076873A (en) Internal combustion engine jacket
KR102427732B1 (en) Wc/c coating film structure for extending lifetime of press roll for producing facility of secondary battery
JP6756641B2 (en) piston ring
JP2004018907A (en) Fluted plug
JPH0464A (en) Piston ring
JP5620860B2 (en) Rolling bearing
CN101152779A (en) Metalliferous carbon coating composition similar with diamond
JP2004238695A (en) Dlc coating film
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
KR980009510A (en) Method of forming hard film on various metal surfaces
JP2006177522A (en) Flighted screw mechanism
JP2003094103A (en) Reduction roll and method for rolling lithium metal foil or lithium alloy foil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910988

Country of ref document: EP

Kind code of ref document: A1