WO2022138619A1 - 太陽電池の電極構造および製造方法 - Google Patents

太陽電池の電極構造および製造方法 Download PDF

Info

Publication number
WO2022138619A1
WO2022138619A1 PCT/JP2021/047243 JP2021047243W WO2022138619A1 WO 2022138619 A1 WO2022138619 A1 WO 2022138619A1 JP 2021047243 W JP2021047243 W JP 2021047243W WO 2022138619 A1 WO2022138619 A1 WO 2022138619A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
electrode structure
bonding layer
conductor
Prior art date
Application number
PCT/JP2021/047243
Other languages
English (en)
French (fr)
Inventor
善秀 宮川
一仁 深澤
幹雄 濱野
恭平 堀口
幸士 山口
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2022571485A priority Critical patent/JPWO2022138619A1/ja
Priority to US18/268,565 priority patent/US20240038910A1/en
Priority to EP21910762.0A priority patent/EP4266375A1/en
Priority to CN202180085865.0A priority patent/CN116636019A/zh
Publication of WO2022138619A1 publication Critical patent/WO2022138619A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials

Definitions

  • the present invention relates to an electrode structure of a solar cell including a calcogen solar cell.
  • CIS-based solar cell using an I-III-VI group 2 compound semiconductor having a chalcopyrite structure containing Cu, In, Ga, Se, and S as a photoelectric conversion layer has been proposed.
  • CIS-based solar cells are expected to have high photoelectric conversion efficiency because they are relatively inexpensive to manufacture and have a large absorption coefficient in the visible to near-infrared wavelength range.
  • the CIS-based solar cell is considered to be used in space applications as a solar cell having excellent radiation resistance, a longer life than a Si-based solar cell, and a lower price than a GaAs-based solar cell.
  • a metal back electrode layer is formed on a substrate, a photoelectric conversion layer which is an I-III-VI group 2 compound is formed on the back electrode layer, and a buffer layer and a transparent conductive film are further formed.
  • the window layers are formed in order.
  • a method using soldering as in Patent Document 1 or an adhesive method using a conductive paste as in Patent Document 2 has been conventionally used. ing.
  • Patent Document 1 discloses a connection method in which an In-solder-coated copper foil ribbon conductor is used to fix both of them without damaging the electrode film or the conductive film. Further, in the configuration of Patent Document 2, a ribbon wire bonded with a conductive paste intermittently applied on an electrode is sandwiched between a solar cell submodule bonded and held via a filler and a cover glass. .. As a result, the ribbon wire is attached to the electrode of the solar cell module in surface contact.
  • Patent Document 4 discloses a technique for increasing the bonding strength between a connection electrode and an electrode layer in a GaAs-based solar cell.
  • the configuration of Patent Document 4 is formed on a GaAs semiconductor layer having a contact region selectively set on the surface, a TiN layer formed in a part of the contact region, and the entire surface of the TiN layer and the contact region. It is equipped with an electrode layer. Then, the connection electrode and the electrode layer are welded to a part or the entire surface of the region located on the TiN layer on the surface of the electrode layer.
  • Japanese Unexamined Patent Publication No. 2007-207861 Japanese Unexamined Patent Publication No. 2009-252975 Japanese Unexamined Patent Publication No. 2000-4034 Japanese Unexamined Patent Publication No. 62-55963
  • Solar cells for space applications require interconnector bonding technology that can withstand sudden temperature changes in the space environment and impacts during launch, and has higher adhesion than ground-based solar cells.
  • solar cells for space applications are exposed to temperatures above the melting point of solder depending on altitude and solar radiation.
  • general adhesives used for adhering electrodes and the like have poor UV resistance.
  • this kind of event is, for example, in the case where a wiring element is welded to a conductive substrate of a CIS solar cell, and there are two Mo (Se, S) layers and two Ti (Se, S) layers on the substrate surface. The same can occur in some cases.
  • the present invention has been made in view of the above situation, and in a solar cell including a calcogen solar cell, an electrode structure having an enhanced adhesion strength between a conductor on the substrate side of the calcogen solar cell and a wiring element is provided. offer.
  • One aspect of the present invention is an electrode structure of a solar cell having a conductor on the substrate side of a calcogen solar cell and a wiring element electrically connected to the conductor.
  • the wiring elements are laminated and joined to the conductor.
  • the melting point of the wiring element is 230 ° C. or higher, and the conductor in the region corresponding to the wiring element contains a part of the metal element of the wiring element.
  • a solar cell including a calcogen solar cell it is possible to increase the adhesion strength between the conductor on the substrate side of the calcogen solar cell and the wiring element.
  • FIG. 1 is a plan view showing a configuration example of a solar cell according to the first embodiment
  • (b) is an enlarged view of the vicinity of a connection portion surrounded by a broken line in FIG. 1 (a).
  • It is a cross-sectional view in the thickness direction of FIG. 1 (b).
  • It is a flow chart which shows the manufacturing method of a solar cell. It is a figure which shows typically the process of the manufacturing method of FIG. It is a continuation of FIG.
  • It is a cross-sectional view in the thickness direction which shows the structural example of the solar cell of 2nd Embodiment.
  • It is a cross-sectional view in the thickness direction which shows the structural example of the solar cell of 3rd Embodiment.
  • FIG. 1A is a plan view showing a configuration example of a solar cell according to the first embodiment.
  • FIG. 1B is an enlarged view of the vicinity of the connection portion surrounded by the broken line in FIG. 1A.
  • FIG. 2 is a cross-sectional view in the thickness direction of FIG. 1 (b).
  • a solar cell including a chalcogen solar cell a configuration example of a CIS-based solar cell module 10 will be described.
  • the conductive substrate 11 having the photoelectric conversion element 12 formed on the light receiving surface side, the interconnector 13, and the photoelectric conversion element 12 and the interconnector 13 are electrically connected. It has a connecting portion 14 and a connecting portion 14.
  • the conductive substrate 11 is made of, for example, titanium (Ti), stainless steel (SUS), copper, aluminum, an alloy thereof, or the like.
  • the conductive substrate 11 may be a flexible substrate.
  • the conductive substrate 11 may have a laminated structure in which a plurality of metal substrates are laminated, and for example, a stainless steel foil, a titanium foil, or a molybdenum foil may be formed on the surface of the substrate.
  • the shape and dimensions of the conductive substrate 11 are appropriately determined according to the size and the like of the solar cell module 10.
  • the overall shape of the conductive substrate 11 in the first embodiment is, for example, a rectangular flat plate, but is not limited thereto.
  • the solar cell module 10 can be bent, and cracking of the substrate due to bending can be suppressed. Further, in the above case, it becomes easier to reduce the weight and thickness of the solar cell module 10 as compared with the glass substrate or the resin substrate.
  • the conductive substrate 11 In a solar cell for space use, it is preferable to form the conductive substrate 11 with titanium or an alloy containing titanium from the viewpoint of suppressing the load weight at the time of launch and increasing the strength of the solar cell.
  • the photoelectric conversion element 12 is an example of a chalcogen solar cell, and a first electrode layer 21, a photoelectric conversion layer 22, a buffer layer 23, and a second electrode layer 24 are sequentially laminated on a conductive substrate 11. It has a laminated structure. Light such as sunlight enters the photoelectric conversion element 12 from the side opposite to the conductive substrate 11 side (upper side in FIG. 2).
  • the first electrode layer 21 is, for example, a metal electrode layer of molybdenum (Mo), and is formed on the conductive substrate 11. Since the first electrode layer 21 faces the back surface side (substrate side) of the photoelectric conversion layer 22 instead of the light receiving surface side, it is also referred to as a back surface electrode. Although not particularly limited, the thickness of the first electrode layer 21 is, for example, 200 nm to 1000 nm.
  • a VI group compound layer 26 made of Mo (Se, S) 2 is formed at an interface with the photoelectric conversion layer 22.
  • Mo (Se, S) 2 of the VI group compound layer 26 is formed on the first electrode layer 21 when the chalcogen layer 22p described later is chalcogenized to form the photoelectric conversion layer 22.
  • Mo (Se, S) 2 of the group VI compound layer 26 is a substance having a graphite-like multilayer structure, and has a property of being easily peeled off by cleavage between layers.
  • the photoelectric conversion layer 22 is omitted on the conductive substrate 11 by omitting the first electrode layer 21. Can also be directly laminated.
  • a VI group compound layer is formed at the interface between the conductive substrate 11 and the photoelectric conversion layer 22 when the precursor layer 22p described later is chalcogenized.
  • the conductive substrate 11 is Ti
  • a VI group compound layer made of Ti (Se, S) 2 is formed at the interface between the conductive substrate 11 and the photoelectric conversion layer 22.
  • Ti (Se, S) 2 is also a substance having a graphite-like multilayer structure, and has a property of being easily peeled off by cleavage between layers.
  • the photoelectric conversion layer 22 is formed on the first electrode layer 21.
  • the photoelectric conversion layer 22 has a large bandgap on the light receiving surface side (upper side in FIG. 2) and the conductive substrate 11 side (lower side in FIG. 2), and has a small bandgap on the inner side in the thickness direction of the photoelectric conversion layer 22. It may have a graded structure.
  • the thickness of the photoelectric conversion layer 22 is, for example, 1.0 ⁇ m to 3.0 ⁇ m.
  • the photoelectric conversion layer 22 functions as a polycrystalline or microcrystalline p-type compound semiconductor layer.
  • the photoelectric conversion layer 22 is a CIS-based photoelectric conversion element using an I-III-VI group 2 compound semiconductor having a chalcopyrite structure containing a group I element, a group III element, and a VI group element (chalcogen element). ..
  • the group I element can be selected from copper (Cu), silver (Ag), gold (Au) and the like.
  • the Group III element can be selected from indium (In), gallium (Ga), aluminum (Al) and the like.
  • the photoelectric conversion layer 22 may contain tellurium (Te) or the like in addition to selenium (Se) and sulfur (S) as a VI group element.
  • the photoelectric conversion layer 22 may contain an alkali metal such as Li, Na, K, Rb and Cs.
  • the photoelectric conversion layer 22 as a chalcogen solar cell is a CZTS-based photoelectric conversion element using a chalcogenide-based I2- ( II -IV) -VI Group 4 compound semiconductor containing Cu, Zn, Sn, S or Se. May be.
  • Typical examples of the CZTS-based photoelectric conversion element include those using a compound such as Cu 2 ZnSnSe 4 and Cu 2 ZnSn (S, Se) 4 .
  • the buffer layer 23 is formed on the photoelectric conversion layer 22. Although not particularly limited, the thickness of the buffer layer 23 is, for example, 10 nm to 100 nm.
  • the buffer layer 23 is, for example, an n-type or i (intrinsic) type high resistance conductive layer.
  • high resistance means having a resistance value higher than the resistance value of the second electrode layer 24, which will be described later.
  • the buffer layer 23 can be selected from compounds containing zinc (Zn), cadmium (Cd), and indium (In).
  • zinc-containing compound examples include ZnO, ZnS, Zn (OH) 2 , or a mixed crystal of these, Zn (O, S), Zn (O, S, OH), and ZnMgO, ZnSnO, etc. , There is.
  • the compound containing cadmium examples include CdS, CdO, or a mixed crystal of these, Cd (O, S) and Cd (O, S, OH).
  • the compound containing indium examples include InS, InO, or a mixed crystal of these, In (O, S), In (O, S, OH), and In 2 O 3 , In 2 S 3 , In. (OH) x and the like can be used. Further, the buffer layer 23 may have a laminated structure of these compounds.
  • the buffer layer 23 has an effect of improving characteristics such as photoelectric conversion efficiency, but it is also possible to omit this.
  • the second electrode layer 24 is formed on the photoelectric conversion layer 22.
  • the second electrode layer 24 is formed on the buffer layer 23.
  • the second electrode layer 24 is, for example, an n-type conductive layer.
  • the thickness of the second electrode layer 24 is, for example, 0.5 ⁇ m to 2.5 ⁇ m.
  • the second electrode layer 24 is preferably provided with, for example, a material having a wide bandgap and a sufficiently low resistance value. Further, since the second electrode layer 24 serves as a path for light such as sunlight, it is preferable that the second electrode layer 24 has a property of transmitting light having a wavelength that can be absorbed by the photoelectric conversion layer 22. In this sense, the second electrode layer 24 is also referred to as a transparent electrode layer or a window layer.
  • the second electrode layer 24 includes, for example, a metal oxide to which a Group III element (B, Al, Ga, or In) is added as a dopant.
  • the metal oxide include ZnO or SnO 2 .
  • the second electrode layer 24 is, for example, ITO (indium tin oxide), ITOO (indium tin oxide), IZO (zinc oxide), ZTO (zinc oxide), FTO (fluorine-doped tin oxide), GZO (gallium-doped). Zinc oxide), BZO (boron-doped zinc oxide) and the like can be selected.
  • the interconnector 13 is a wiring member on the + pole side of the solar cell module 10, and two interconnectors 13 are connected in parallel to the right end of FIG. 1 of the solar cell module 10.
  • the interconnector 13 is, for example, a ribbon wire of a conductive metal containing Ag in the material.
  • the dimensions of the interconnector can be a strip shape having a thickness of 30 ⁇ m and a width of about 2.5 mm.
  • the material of the interconnector 13 is not limited to the conductive metal containing Ag, for example, an iron (Fe), nickel (Ni), cobalt (Co) alloy (for example, Kovar (registered trademark), etc.). Or Ti may be used.
  • the ratio of Fe, Ni, and Co is the same as that of Kovar (Fe: 53.5%, Ni: 29%, Co: 17%). It may be any other ratio.
  • the ratio of Fe, Ni, and Co in the iron / nickel / cobalt alloy may be adjusted so that the difference from the coefficient of thermal expansion of the conductive substrate 11 becomes small. Further, Fe contained in the iron / nickel / cobalt alloy may be increased in order to promote the diffusion of the metal with the opposing elements.
  • the description of the wiring on the negative pole side of the solar cell module 10 will be omitted.
  • connection portion 14 is an element that connects the interconnector 13 and the first electrode layer 21 of the photoelectric conversion element 12, and is provided at two locations on the right end portion of FIG. 1 of the solar cell module 10.
  • Each connection portion 14 is formed in a wiring region 10a in which the photoelectric conversion element 12 is partially cut out and the first electrode layer 21 is exposed on the light receiving surface side.
  • the dimension of the wiring region 10a in the plane direction is, for example, a rectangular shape of about 5 mm ⁇ 5 mm.
  • the connecting portion 14 has a laminated structure in which a first electrode layer 21a corresponding to a wiring region 10a and a bonding layer 27 are sequentially laminated on a conductive substrate 11. Further, the end portion of the interconnector 13 is attached to the upper surface of the joining layer 27 by welding. Welding of the joint layer 27 and the interconnector 13 is performed by, for example, parallel gap type resistance welding.
  • the first electrode layer 21a corresponding to the wiring region 10a is integrally formed with the first electrode layer 21 of the photoelectric conversion element 12.
  • the VI group compound layer 26 is formed at the interface with the photoelectric conversion layer 22 on the first electrode layer 21 facing the photoelectric conversion layer 22 of the photoelectric conversion element 12.
  • the VI group compound layer 26 is not formed on the first electrode layer 21a of the wiring region 10a.
  • the bonding layer 27 is difficult to peel off from the first electrode layer 21a.
  • a metal element (for example, Al) of the bonding layer 27, Se, S and the like, which are Group VI elements, are diffused as described later.
  • the metal element of the bonding layer 27 By diffusing the metal element of the bonding layer 27 into the first electrode layer 21a, the first electrode layer 21a and the bonding layer 27 have high adhesion strength.
  • the first electrode layer 21 in the photoelectric conversion element 12 is not in contact with the bonding layer 27. Therefore, unlike the first electrode layer 21a in the wiring region 10a, the first electrode layer 21 in the photoelectric conversion element 12 hardly diffuses the metal element in the bonding layer 27.
  • the bonding layer 27 is a conductive layer for electrically connecting the first electrode layer 21a of the wiring region 10a and the interconnector 13, and is composed of a substance containing a group VI element diffused in a conductive metal material. ing.
  • the bonding layer 27 of the first embodiment is a substance containing Al and Ag and containing diffused Se and S.
  • a groove 28 is formed around the bonding layer 27 in the plane direction of the light receiving surface between the photoelectric conversion layer 22, the buffer layer 23, and the second electrode layer 24. .. Therefore, the bonding layer 27 is insulated from the photoelectric conversion layer 22, the buffer layer 23, and the second electrode layer 24 by the grooves 28.
  • the thickness of the bonding layer 27 is about 2.0 ⁇ m to 3.0 ⁇ m.
  • the metal material of the bonding layer 27 has a melting point of 230 ° C. or higher and a melting point higher than that of the solder alloy in order to ensure the use of the solar cell module 10 under high temperature due to solar radiation or the like in the space environment.
  • Ru. Both Al and Ag have a melting point of 230 ° C. or higher.
  • the material of the bonding layer 27 preferably contains at least one of Al, Pt, Zn, and Sn, which are metal elements that are easily chalcogenized. Since the bonding layer 27 contains a metal element that is easily chalcogenized, the VI group compound can be easily uniformly distributed in the bonding layer 27. Then, at the time of forming the bonding layer 27 described later, the diffusion of the VI group element from the VI group compound layer 26 to the bonding layer 27 side is promoted. By the diffusion of the group VI element, the group VI compound layer 26 can be eliminated from between the first electrode layer 21a and the bonding layer 27.
  • the VI group elements diffuse to the bonding layer 27 side and the VI group compound layer 26 disappears. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14, there is no peak in the concentration of Group VI elements at the interface between the first electrode layer 21a and the bonding layer 27. Further, since the material of the bonding layer 27 contains a metal element that is easily chalcogenized, the VI group element diffuses more toward the bonding layer 27 in the thickness direction of the connecting portion 14. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14, a peak of the concentration of Group VI elements occurs in the bonding layer 27. In other words, the number of atoms of the Group VI element contained in the bonding layer 27 is larger than the number of atoms of the Group VI element contained in the first electrode layer 21a.
  • the material of the bonding layer 27 preferably contains a metal element having an alloy phase in the phase diagram with respect to the material of the first electrode layer 21a which is the back surface electrode layer.
  • the material of the bonding layer 27 may contain at least one of the constituent elements of the first electrode layer 21a.
  • a metal having an alloy phase in the phase diagram with respect to the material (Mo) of the first electrode layer 21a is shown in a binary phase diagram (for example, BINARY ALLOY PHASE DIAGRAMS SECOND EDITION Vol.1, You can choose from TBMassalski, 1990).
  • the bonding layer 27 contains at least one of a metal element having an alloy phase in the phase diagram with respect to the material of the first electrode layer 21a (for example, Al) or a constituent element of the first electrode layer 21a. Diffusion of metal elements is likely to occur between the electrode layer 21a of 1 and the bonding layer 27. Further, as described above, as the Group VI elements diffuse more toward the bonding layer 27, the metal elements contained in the bonding layer 27 tend to diffuse into the first electrode layer 21a. Thereby, the adhesion strength between the first electrode layer 21a and the bonding layer 27 can be improved.
  • a metal element having an alloy phase in the phase diagram with respect to the material of the first electrode layer 21a for example, Al
  • a constituent element of the first electrode layer 21a for example, Al
  • Diffusion of metal elements is likely to occur between the electrode layer 21a of 1 and the bonding layer 27. Further, as described above, as the Group VI elements diffuse more toward the bonding layer 27, the metal elements contained in the bonding layer 27 tend to diffuse into the first electrode layer
  • the Ag contained in the bonding layer 27 is also contained in the interconnector 13 as described above. That is, the interface between the bonding layer 27 and the interconnector 13 has a high affinity because both materials contain Ag. Therefore, when the interconnector 13 is welded, the metal element diffuses even at the interface between the interconnector 13 and the joining layer 27, and the adhesion strength between the interconnector 13 and the joining layer 27 is improved.
  • FIG. 3 is a flow chart showing a method of manufacturing the solar cell module 10. Further, FIGS. 4 and 5 are diagrams schematically showing each step of the manufacturing method.
  • the first electrode layer 21 is formed by forming a thin film such as molybdenum (Mo) on the surface of the conductive substrate 11 such as titanium by, for example, a sputtering method. It is formed.
  • the sputtering method may be a direct current (DC) sputtering method or a radio frequency (RF) sputtering method.
  • the first electrode layer 21 may be formed by using a CVD (chemical vapor deposition) method, an ALD (atomic layer deposition) method, or the like.
  • Examples of the method for forming the precursor layer 22p on the first electrode layer 21 include the above-mentioned sputtering method, thin-film deposition method, and ink coating method.
  • the thin-film deposition method is a method in which a vapor deposition source is heated to form a film using atoms or the like that have become a gas phase.
  • the ink coating method is a method in which a powdered precursor film material is dispersed in a solvent such as an organic solvent and applied onto the first electrode layer 21, and then the solvent is evaporated to form the precursor layer 22p. be.
  • the precursor layer 22p contains a group I element and a group III element.
  • the precursor layer 22p may contain Ag as a Group I element.
  • Group I elements other than Ag included in the precursor layer 22p can be selected from copper, gold and the like.
  • the group III element included in the precursor layer 22p can be selected from indium, gallium, aluminum and the like.
  • the precursor layer 22p may contain an alkali metal such as Li, Na, K, Rb and Cs.
  • the precursor layer 22p may contain tellurium as a Group VI element in addition to selenium and sulfur.
  • the precursor layer 22p is formed as a thin film of Cu—Zn—Sn or Cu—Zn—Sn—Se—S.
  • the precursor layer 22p containing the group I element and the group III element is heat-treated in an atmosphere containing a group VI element to form a chalcogen.
  • the photoelectric conversion layer 22 is formed.
  • seleniumization is performed by the vapor phase seleniumization method.
  • Selenium formation is carried out by heating the precursor layer in an atmosphere of a selenium source gas (for example, hydrogen selenide or selenium vapor) containing selenium as a group VI element source.
  • a selenium source gas for example, hydrogen selenide or selenium vapor
  • seleniumization is preferably carried out in a heating furnace at a temperature in the range of 300 ° C. or higher and 600 ° C. or lower, for example.
  • the precursor layer is converted into a compound containing a group I element, a group III element, and selenium (photoelectric conversion layer 22).
  • the compound containing the group I element, the group III element, and selenium (photoelectric conversion layer 22) may be formed by a method other than the vapor phase selenium method.
  • such a compound can also be formed by a solid phase selenium method, a vapor deposition method, an ink coating method, an electrodeposition method, or the like.
  • sulfurization of the photoelectric conversion layer 22 containing the Group I element, the Group III element, and selenium is performed.
  • Sulfurization is performed by heating the photoelectric conversion layer 22 in the atmosphere of a sulfur source gas having sulfur (for example, hydrogen sulfide or sulfur vapor).
  • a sulfur source gas having sulfur for example, hydrogen sulfide or sulfur vapor.
  • the sulfur source gas plays a role of substituting sulfur for a crystal composed of a group I element, a group III element, and selenium, for example, selenium in a chalcopyrite crystal on the surface portion of the photoelectric conversion layer 22.
  • sulfurization is preferably performed in a heating furnace at a temperature in the range of 450 ° C. or higher and 650 ° C. or lower, for example.
  • the precursor layer 22p containing Cu, Zn, and Sn is placed in a hydrogen sulfide atmosphere at 500 ° C to 650 ° C and in a hydrogen selenium atmosphere. Sulfates and selenates with. As a result, the CZTS-based photoelectric conversion layer 22 having Cu 2 ZnSn (S, Se) 4 can be formed.
  • a VI group compound layer 26 made of Mo (Se, S) 2 is formed at the interface of the first electrode layer 21 with the photoelectric conversion layer 22. ..
  • S4 Formation of buffer layer
  • a thin film such as Zn (O, S) is produced on the photoelectric conversion layer 22 by a method such as a CBD (chemical bath deposition) method or a sputtering method.
  • the film is formed to form the buffer layer 23.
  • the formation of the buffer layer 23 may be omitted.
  • the second electrode layer 24 is formed on the buffer layer 23 by a method such as a sputtering method, a CVD method, or an ALD method.
  • the second electrode layer 24 is a transparent electrode made of a thin film such as ZnO to which B, Al or In is added as a dopant.
  • S6 Formation of wiring area
  • a predetermined position on the light receiving surface end portion of the photoelectric conversion element 12 is partially cut out by, for example, mechanical patterning, and a wiring region 10a in which the first electrode layer 21 is exposed is formed on the light receiving surface side.
  • the VI group compound layer 26 is present on the surface of the first electrode layer 21 of the wiring region 10a as in the first electrode layer 21 in the photoelectric conversion element 12.
  • FIG. 5A shows a state in which the photoelectric conversion layer 22, the buffer layer 23, and the second electrode layer 24 corresponding to the wiring region 10a of the photoelectric conversion element 12 are deleted.
  • the area deleted in S6 is shown by a broken line.
  • the region other than the region forming the precursor layer 27p (inside the groove 28 in the wiring region 10a) is appropriately masked. After that, the precursor layer 27p is formed on the first electrode layer 21 of the wiring region 10a by, for example, a thin-film deposition method.
  • the precursor layer 27p of S7 is formed by sequentially laminating the Al layer 27p1 and the Ag layer 27p2 in order from the conductive substrate 11 side.
  • the film forming conditions of the Al layer 27p1 are, for example, an applied voltage of about 10 kV, an EB current of about 0.2 A, a film forming rate of 0.4 nm / sec, and a film thickness of 0.5 ⁇ m.
  • the film forming conditions of the Ag layer 27p2 are, for example, an applied voltage of about 10 kV, an EB current of about 0.1 A, a film forming rate of 0.5 nm / sec, and a film thickness of 2.0 ⁇ m.
  • the Ag layer 27p2 is arranged on the upper surface side facing the interconnector 13.
  • diffusion is likely to occur at the interface between the interconnector 13 and the precursor layer 27p during welding.
  • the Al layer 27p1 is arranged on the lower surface side of the first electrode layer 21 facing the VI group compound layer 26.
  • the VI group compound is likely to diffuse to the bonding layer 27 side at the time of welding.
  • S8 Welding of interconnector
  • the end portion of the interconnector 13 of the conductive metal containing Ag is arranged on the upper surface of the precursor layer 27p, and the interconnector 13 is welded to the solar cell module 10. Welding of the interconnector 13 is performed, for example, by a parallel gap welding method using a resistance welder whose control method is a transistor type.
  • the end portion of the interconnector 13 is arranged at the center of the upper surface of the precursor layer 27p so as not to protrude outward from the peripheral edge portion of the precursor layer 27p. Then, for example, the interconnector 13 is welded to the precursor layer 27p by using a pair of electrodes 30 partitioned by a narrow gap.
  • the welding conditions in S8 are, for example, a welding current of 50 to 200 A and a welding time of 5 to 900 msec.
  • the precursor layer 27p receives thermal energy from the electrode 30 via the interconnector 13. Then, diffusion occurs at the interface between the interconnector 13 and the precursor layer 27p and at the interface between the precursor layer 27p and the first electrode layer 21, respectively. Diffusion also occurs between the Al layer 27p1 and the Ag layer 27p2 in the precursor layer 27p. As a result, as shown in FIG. 5D, the precursor layer 27p, which has a laminated structure of the Al layer 27p1 and the Ag layer 27p2, changes into a bonding layer 27 in which Ag, Al, and Se of the Group VI element are diffused. ..
  • the Se of the VI group compound layer 26 in the first electrode layer 21 becomes the first electrode layer 21a and the bonding layer 27.
  • the VI group compound layer 26 disappears from between the first electrode layer 21a and the bonding layer 27. Since the VI group compound layer 26 that is easily peeled off does not exist between the first electrode layer 21a and the joining layer 27 after welding, the first electrode layer 21a and the joining layer 27 are difficult to peel off.
  • an Al layer 27p1 that easily becomes chalcogen is arranged on the first electrode layer 21 side of the precursor layer 27p. Therefore, Se diffused from the VI group compound layer 26 diffuses more to the junction layer 27 side containing Al, which is easily chalcogenized, than to the first electrode layer 21a side containing Mo. Then, as Se diffuses more toward the bonding layer 27, the metal element Al contained in the precursor layer 27p tends to diffuse into the first electrode layer 21a. By diffusing Al, which is a metal element of the bonding layer 27, into the first electrode layer 21a, the adhesion strength between the first electrode layer 21a and the bonding layer 27 after welding is further improved.
  • the interface between the Ag layer 27p2 of the precursor layer 27p and the interconnector 13 has a high affinity because both materials contain Ag. Therefore, at the time of welding, diffusion of metal elements occurs at the interface between the interconnector 13 and the precursor layer 27p, and the interconnector 13 and the bonding layer 27 are bonded with high adhesion strength.
  • a connecting portion 14 to which the first electrode layer and the interconnector are joined is formed in the wiring region of the solar cell module 10. This is the end of the description of FIG.
  • the precursor layer 27p containing Al is formed on the first electrode layer 21 of the wiring region 10a (S7). Then, the precursor layer 27p and the interconnector 13 are welded to apply heat energy, and Al is diffused between the precursor layer 27p and the first electrode layer 21 to form the bonding layer 27 (S8). As a result, the first electrode layer 21a after welding in the wiring region 10a is joined to the joining layer 27 in a state of containing Al of the joining layer 27, so that the first electrode layer 21 and the joining layer 27 are in close contact with each other. The strength can be increased.
  • FIG. 6 is a cross-sectional view in the thickness direction showing a configuration example of the solar cell of the second embodiment.
  • the second embodiment is a modification of the first embodiment, and the connection portion 14 is formed on the back surface side (the surface opposite to the light receiving surface) of the conductive substrate 11 of the solar cell module 10.
  • the same reference numerals are given to the same configurations as those of the first embodiment, and duplicate description will be omitted.
  • the conductive substrate 11 of the second embodiment has a molybdenum (Mo) conductive coating layer 31 formed on the back surface side, and the bonding layer 27a is laminated on the conductive coating layer 31.
  • the end of the interconnector 13 is attached to the lower side of the joining layer 27a in the drawing by welding.
  • the interconnector 13 of the second embodiment is a ribbon wire made of, for example, a conductive metal containing Ag, Ti, an iron / nickel / cobalt alloy, or the like.
  • a VI group compound layer 32 made of Mo (Se, S) 2 is formed on the surface of the conductive coating layer 31 except for the region where the bonding layer 27a is laminated. Mo (Se, S) 2 of the VI group compound layer 32 is formed on the conductive coating layer 31 when the chalcogen layer 22p is chalcogenized to form the photoelectric conversion layer 22.
  • the VI group compound layer 32 made of Mo (Se, S) 2 has the same properties as the VI group compound layer 26 of the first electrode layer 21. In other words, the VI group compound layer 32 that is easily peeled off is not formed between the conductive coating layer 31 and the bonding layer 27a. Therefore, the bonding layer 27a is difficult to peel off from the conductive coating layer 31.
  • the bonding layer 27a of the second embodiment is a substance containing at least one of Al, Pt, Zn, and Sn, and containing diffused Se and S.
  • the metal material of the bonding layer 27a has a melting point of 230 ° C. or higher and a melting point higher than that of the solder alloy in order to ensure the use of the solar cell module 10 under high temperature due to solar radiation or the like in the space environment. Ru.
  • the material of the bonding layer 27a contains a metal element having an alloy phase in the phase diagram with respect to the material of the conductive coating layer 31 and the material of the interconnector 13 in order to promote the diffusion of the metal element between the members. Is preferable.
  • the material of the bonding layer 27a preferably contains at least one of Al, Pt, Zn, and Sn, which are metal elements that are easily chalcogenized.
  • the VI group compound is likely to be uniformly distributed in the bonding layer 27a.
  • the diffusion of the VI group element from the VI group compound layer 32 to the bonding layer 27a side is promoted, and the VI group compound layer 32 can be eliminated from between the conductive coating layer 31 and the bonding layer 27a. ..
  • the metal element (for example, Al) of the bonding layer 27a, Se, S, which are Group VI elements, and the like are diffused in the region where the bonding layer 27a is laminated, as described later. There is.
  • the metal element of the bonding layer 27a By diffusing the metal element of the bonding layer 27a into the conductive coating layer 31, the conductive coating layer 31 and the bonding layer 27a have high adhesion strength.
  • the bonding layer 27a is not laminated in the conductive coating layer 31, there is almost no diffusion of the metal element in the bonding layer 27a.
  • the steps (S1 to S5) for forming the photoelectric conversion element 12 are almost the same as the steps of the manufacturing method of the first embodiment.
  • the conductive coating layer 31 is formed on the back surface side of the conductive substrate 11 in the step of S1.
  • the VI group compound layer 32 is formed on the surface of the conductive coating layer 31.
  • a precursor layer (not shown) of the bonding layer 27a is formed on the conductive coating layer 31 having the VI group compound layer 32, and the interconnector 13 is arranged on the precursor layer of the bonding layer 27a. Then, the precursor layer of the joining layer 27a and the interconnector 13 are welded and heat energy is applied to form the joining layer 27a.
  • the VI group elements diffuse to the bonding layer 27a side and the VI group compound layer 32 disappears. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14, there is no peak in the concentration of Group VI elements at the interface between the conductive coating layer 31 and the bonding layer 27a. Further, since the material of the bonding layer 27a contains a metal element that is easily chalcogenized, the VI group element diffuses more toward the bonding layer 27a in the thickness direction of the connecting portion 14. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14 of the second embodiment, a peak of the concentration of Group VI elements occurs in the bonding layer 27a. In other words, the number of atoms of the Group VI element contained in the bonding layer 27a is larger than the number of atoms of the Group VI element contained in the conductive coating layer 31.
  • the adhesion strength between the conductive coating layer 31 formed on the back surface side of the substrate of the chalcogen solar cell and the connection portion 14 can be improved.
  • FIG. 7 is a cross-sectional view in the thickness direction showing a configuration example of the solar cell of the third embodiment.
  • the third embodiment is a modification of the second embodiment and differs from the second embodiment in that the conductive coating layer 31 is not formed on the back surface side of the conductive substrate 11.
  • the bonding layer 27b is laminated on the conductive substrate 11 of the third embodiment.
  • the end of the interconnector 13 is attached to the lower side of the joint layer 27b by welding.
  • the interconnector 13 of the third embodiment is also a ribbon wire made of, for example, a conductive metal containing Ag, Ti, an iron / nickel / cobalt alloy, or the like.
  • a VI group compound layer 33 made of Ti (Se, S) 2 is formed on the surface of the conductive substrate 11 except for the region where the bonding layer 27b is laminated.
  • the Ti (Se, S) 2 of the VI group compound layer 33 is formed on the surface of the conductive substrate 11 when the chalcogen layer 22p is chalcogenized to form the photoelectric conversion layer 22.
  • the VI group compound layer 33 made of Ti (Se, S) 2 is a substance having a graphite-like multilayer structure, and has a property of being easily peeled off by cleavage between layers. In other words, the VI group compound layer 33, which is easily peeled off, is not formed between the conductive substrate 11 and the bonding layer 27b. Therefore, the bonding layer 27b is difficult to peel off from the conductive substrate 11.
  • the bonding layer 27b of the third embodiment is a substance containing at least one of Al, Pt, Zn, and Sn, and containing diffused Se and S.
  • the metal material of the bonding layer 27b has a melting point of 230 ° C. or higher and a melting point higher than that of the solder alloy in order to ensure the use of the solar cell module 10 under high temperature due to solar radiation or the like in the space environment. Ru.
  • the material of the bonding layer 27b contains a metal element having an alloy phase in the phase diagram with respect to the material of the conductive substrate 11 and the material of the interconnector 13 in order to promote the diffusion of the metal element between the members. Is preferable.
  • the material of the bonding layer 27b preferably contains at least one of Al, Pt, Zn, and Sn, which are metal elements that are easily chalcogenized. This facilitates uniform distribution of the VI group compounds in the bonding layer 27b.
  • the diffusion of the VI group element from the VI group compound layer 33 to the bonding layer 27b side is promoted, and the VI group compound layer 33 can be eliminated from between the conductive substrate 11 and the bonding layer 27b. ..
  • the metal element (for example, Al) of the bonding layer 27b, Se, S, which are Group VI elements, and the like are diffused in the region where the bonding layer 27b is laminated, as described later. There is.
  • the metal element of the bonding layer 27b By diffusing the metal element of the bonding layer 27b on the conductive substrate 11, the conductive substrate 11 and the bonding layer 27b have high adhesion strength.
  • the bonding layer 27b is not laminated on the conductive substrate 11, there is almost no diffusion of the metal element in the bonding layer 27b.
  • the steps (S1 to S5) for forming the photoelectric conversion element 12 are almost the same as the steps of the manufacturing method of the first embodiment.
  • the VI group compound layer 33 is formed on the surface of the conductive substrate 11 in the step of S3.
  • a precursor layer (not shown) of the bonding layer 27b is formed on the conductive substrate 11 having the VI group compound layer 33, and the interconnector 13 is arranged on the precursor layer of the bonding layer 27b. After that, the precursor layer of the joining layer 27b and the interconnector 13 are welded and heat energy is applied to form the joining layer 27b.
  • the VI group element diffuses to the bonding layer 27b side and the VI group compound layer 33 disappears. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14, there is no peak in the concentration of Group VI elements at the interface between the conductive substrate 11 and the bonding layer 27b. Further, since the material of the bonding layer 27b contains a metal element that is easily chalcogenized, the VI group element diffuses more toward the bonding layer 27b in the thickness direction of the connecting portion 14. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14 of the third embodiment, a peak of the concentration of Group VI elements occurs in the bonding layer 27b. In other words, the number of atoms of the Group VI element contained in the bonding layer 27b is larger than the number of atoms of the Group VI element contained in the conductive substrate 11.
  • the adhesion strength between the conductive substrate 11 of the chalcogen solar cell and the connection portion 14 can be improved.
  • FIG. 8 is a cross-sectional view in the thickness direction showing a configuration example of the solar cell of the fourth embodiment.
  • the fourth embodiment is a modification of the second embodiment, and is different from the configuration of the second embodiment in that the interconnector 13 is directly welded to the conductive coating layer 31 without passing through the joining layer 27a.
  • the VI group compound layer 32 made of Mo (Se, S) 2 is formed on the surface of the conductive coating layer 31 except for the welded region of the interconnector 13. In other words, the VI group compound layer 32 that is easily peeled off is not formed between the conductive coating layer 31 and the interconnector 13. Therefore, the interconnector 13 is difficult to peel off from the conductive coating layer 31.
  • the material of the interconnector 13 applied to the connection portion 14 has a melting point of 230 ° C. or higher and is made of a solder alloy. The one with a high melting point is used.
  • the material of the interconnector 13 of the fourth embodiment contains a metal element having an alloy phase in the phase diagram with respect to the material of the conductive coating layer 31 in order to promote the diffusion of the metal element between the members. ..
  • the metal element of the interconnector 13, Se, S and the like, which are Group VI elements, are diffused in the region bonded to the interconnector 13.
  • the conductive coating layer 31 and the interconnector 13 have high adhesion strength.
  • the region of the conductive coating layer 31 that is not bonded to the interconnector 13 there is almost no diffusion of the metal element of the interconnector 13.
  • the steps (S1 to S5) for forming the photoelectric conversion element 12 are almost the same as the steps of the manufacturing method of the first embodiment.
  • the conductive coating layer 31 is formed on the back surface side of the conductive substrate 11 in the step of S1.
  • the VI group compound layer 32 is formed on the surface of the conductive coating layer 31.
  • the interconnector 13 is arranged on the conductive film layer 31 having the VI group compound layer 32, and the conductive film layer 31 and the interconnector 13 are welded to apply thermal energy.
  • the VI group element diffuses from the interface between the conductive coating layer 31 and the interconnector 13, and the VI group compound layer 32 disappears. Therefore, in the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14 of the fourth embodiment, the concentration of Group VI elements does not have a peak at the interface between the conductive coating layer 31 and the interconnector 13.
  • the adhesion strength between the conductive coating layer 31 formed on the back surface side of the substrate of the chalcogen solar cell and the interconnector 13 can be improved.
  • FIG. 9 is a cross-sectional view in the thickness direction showing a configuration example of the solar cell of the fifth embodiment.
  • the fifth embodiment is a modification of the third embodiment, and is different from the configuration of the third embodiment in that the interconnector 13 is directly welded to the conductive substrate 11 without passing through the joining layer 27b.
  • the VI group compound layer 33 made of Ti (Se, S) 2 is formed on the surface of the conductive substrate 11 except for the welded region of the interconnector 13. In other words, the VI group compound layer 33, which is easily peeled off, is not formed between the conductive substrate 11 and the interconnector 13. Therefore, the interconnector 13 is difficult to peel off from the conductive substrate 11.
  • the material of the interconnector 13 applied to the connection portion 14 has a melting point of 230 ° C. or higher and is made of a solder alloy. The one with a high melting point is used.
  • the material of the interconnector 13 of the fifth embodiment contains a metal element having an alloy phase in the phase diagram with respect to the material of the conductive substrate 11 in order to promote the diffusion of the metal element between the members. ..
  • the metal element of the interconnector 13, Se, S and the like, which are Group VI elements, are diffused in the region bonded to the interconnector 13.
  • the conductive substrate 11 and the interconnector 13 have high adhesion strength.
  • the steps (S1 to S5) for forming the photoelectric conversion element 12 are almost the same as the steps of the manufacturing method of the first embodiment.
  • the VI group compound layer 33 is formed on the surface of the conductive substrate 11 in the step of S3.
  • the interconnector 13 is arranged on the conductive substrate 11 having the VI group compound layer 33, and the conductive substrate 11 and the interconnector 13 are welded to add thermal energy.
  • the VI group element diffuses from the interface between the conductive substrate 11 and the interconnector 13, and the VI group compound layer 33 disappears. Therefore, the concentration distribution of Group VI elements in the thickness direction of the connecting portion 14 of the fifth embodiment does not have a peak of the concentration of Group VI elements at the interface between the conductive substrate 11 and the interconnector 13.
  • the adhesion strength between the conductive substrate 11 of the chalcogen solar cell and the interconnector 13 can be improved.
  • connection portion of the embodiment is formed in the same manner as the configuration described in the first embodiment. That is, the material of the substrate is Ti, and the back electrode layer before welding is a Mo film having a Se layer formed on the surface.
  • the bonding layer is formed by applying the thermal energy of welding to the precursor in which the Al layer and the Ag layer are laminated.
  • the back electrode layer after welding is Mo in which Al and Se are diffused, and the bonding layer after welding is a substance containing Se diffused in Ag and Al.
  • the concentration distribution of the elements at the connection portion of the solar cell module was obtained by the following method. First, a focused ion beam (FIB) device is used to form a cross section in the thickness direction of the connection portion of the embodiment. Then, a scanning ion microscope (SIM) image of the cross section of the connection portion was imaged at an acceleration voltage of 15 kV. Then, the elements contained in the cross section of the connection portion were analyzed by energy dispersive X-ray analysis (EDX).
  • FIB focused ion beam
  • SIM scanning ion microscope
  • the equipment used in the elemental analysis in the examples is as follows.
  • the FIB device is SMI3200F manufactured by SII Nanotechnology
  • the SEM is SU8240 manufactured by Hitachi High-Technologies Corporation
  • the EDX is EX-370 manufactured by HORIBA, Ltd.
  • FIGS. 10 and 11 are diagrams showing the concentration distribution of each element in the thickness direction of the connection portion of the embodiment.
  • the vertical axis indicates the content of the element
  • the horizontal axis indicates the position of the connection portion in the thickness direction t.
  • the left end corresponds to the back surface side of the light receiving surface
  • the right end corresponds to the light receiving surface side.
  • FIGS. 10 and 11 are standardized with the maximum value of the content set to 1 for each element.
  • the points shown in FIGS. 10 and 11 are plotted when 30% or more after normalization is detected as a threshold value.
  • FIG. 10A superimposes an example of concentration distribution of Mo, Ti, Ag, Al, and Se at the connection portion.
  • FIG. 10 (b) shows an example of the concentration distribution of Mo in the connection portion
  • FIG. 10 (c) shows an example of the concentration distribution of Ti in the connection portion.
  • 11 (a) shows an example of the concentration distribution of Ag in the connection portion
  • FIG. 11 (b) shows an example of the concentration distribution of Al in the connection portion
  • FIG. 11 (c) shows an example of the concentration distribution of Al in the connection portion.
  • An example of concentration distribution is shown.
  • the back electrode layer (indicated by Mo + Al + Se in the figure) of the connecting portion contains Mo, Al, and Se
  • the bonding layer indicated by Ag + Al + Se in the figure
  • Al and Se are diffused over the back surface electrode layer and the bonding layer.
  • Se is widely distributed over the back surface electrode layer and the bonding layer, and the concentration distribution of Se does not have a peak at the boundary between the back surface electrode layer and the bonding layer. Therefore, it can be seen that the VI group compound layer does not exist at the boundary between the back surface electrode layer and the bonding layer of the connecting portion.
  • connection strength test of connection part In addition, the following tests were conducted to evaluate the adhesion strength of the connection part of the solar cell module. In the test, the tip of the interconnector after welding was sandwiched between jigs, and the tip of the interconnector was pulled upward at a speed of 5 mm / min in the direction of 45 degrees using an autograph device. Then, the tensile strength (maximum strength) at the time when the interconnector is disconnected from the connection portion is measured.
  • Comparative Example 1 is a test piece obtained by welding an interconnector to a laminated body of Ti substrate / Mo (MoSeS) / Ag.
  • Comparative Example 2 is a test piece in which an interconnector is welded to a laminated body of Ti substrate / Mo (MoSeS) / In solder. The joint area of Comparative Example 2 is about 60 times that of the Example.
  • Comparative Example 3 is a test piece in which an interconnector is welded to a laminated body of Ti substrate / Mo (MoSeS). The material of the interconnector of Example 1 and Comparative Example 1-3 is Ag.
  • FIG. 12 is a table showing the results of the adhesion strength test of Example 1 and Comparative Example 1-3
  • FIG. 13 is a table showing the presence or absence of an alloy phase in the phase diagram of Example 1 and Comparative Example 1-3. be.
  • the case where the phase diagram has an alloy phase between the opposing members is indicated by “ ⁇ ”
  • the case where the phase diagram does not have the alloy phase between the opposing members is indicated by “x”.
  • the case where there is no corresponding configuration is indicated by “ ⁇ ”.
  • FIG. 12 shows the values of the maximum intensity normalized with reference to Comparative Example 1. Assuming that the maximum strength of the test piece of Comparative Example 1 was 1, the maximum strength of the test piece of Comparative Example 2 was 0.18, and the maximum strength of the test piece of Comparative Example 3 was 0.12. On the other hand, it was confirmed that the test piece of Example 1 was larger than 1, the maximum strength was higher than that of Comparative Examples 1 to 3, and the adhesion strength of the connecting portion was good.
  • both the interconnector and the bonding layer contain Ag (similar metal) in the material, and are contained in the Ag of the material of the interconnector and the material of the bonding layer.
  • Al has an alloy phase in the phase diagram.
  • Al contained in the material of the bonding layer and Mo of the material of the back electrode layer have an alloy phase in the phase diagram. Therefore, in the test piece of Example 1, it is considered that diffusion occurs between the same kind of metal and the metal having an alloy phase in the phase diagram at the time of welding, and the adhesion strength between each element is improved.
  • FIG. 14 is a table showing the results of the adhesion strength test of Example 2-7
  • FIG. 15 is a table showing the presence or absence of an alloy phase in the phase diagram of Example 2-7.
  • the views of the tables in FIGS. 14 and 15 are the same as those in FIGS. 12 and 13.
  • the test piece of Example 2 has a configuration corresponding to the above-mentioned second embodiment.
  • the material of the interconnector of the second embodiment is Ti
  • the material of the bonding layer is Al
  • the material of the conductive coating layer is Mo
  • the material of the substrate is Ti.
  • the material of the interconnector and the bonding layer has an alloy phase in the phase diagram
  • the material of the bonding layer and the conductive coating layer has an alloy phase in the phase diagram. Assuming that the maximum strength of the test piece of Comparative Example 1 is 1, the maximum strength of the test piece of Example 2 is 1.38, which is larger than that of Comparative Example 1.
  • the test piece of Example 3 has a configuration corresponding to the above-mentioned third embodiment.
  • the material of the interconnector of the third embodiment is Ti
  • the material of the bonding layer is Al
  • the material of the substrate is Ti.
  • the material of the interconnector and the bonding layer has an alloy phase in the phase diagram
  • the material of the bonding layer and the substrate has an alloy phase in the phase diagram.
  • the test piece of Example 4 has a configuration corresponding to the above-mentioned third embodiment.
  • the material of the interconnector of the fourth embodiment is Kovar, the material of the bonding layer is Sn, and the material of the substrate is Ti.
  • the material of the interconnector and the bonding layer has an alloy phase in the phase diagram, and the material of the bonding layer and the substrate has an alloy phase in the phase diagram. Assuming that the maximum strength of the test piece of Comparative Example 1 is 1, the maximum strength of the test piece of Example 4 is 2.18, which is larger than that of Comparative Example 1.
  • the test piece of Example 5 has a configuration corresponding to the above-mentioned fourth embodiment.
  • the material of the interconnector of Example 5 is Kovar, the material of the conductive coating layer is Mo, and the material of the substrate is Ti.
  • the material of the interconnector and the conductive coating layer has an alloy phase in the phase diagram. Assuming that the maximum strength of the test piece of Comparative Example 1 is 1, the maximum strength of the test piece of Example 5 is 2.06, which is larger than that of Comparative Example 1.
  • the test piece of Example 6 has a configuration corresponding to the above-mentioned fifth embodiment.
  • the material of the interconnector of the sixth embodiment is Kovar, and the material of the substrate is Ti.
  • the material of the interconnector and the substrate has an alloy phase in the phase diagram. Assuming that the maximum strength of the test piece of Comparative Example 1 is 1, the maximum strength of the test piece of Example 6 is 2.09, which is larger than that of Comparative Example 1.
  • the test piece of Example 7 has a configuration corresponding to the above-mentioned fifth embodiment.
  • the material of the interconnector of the seventh embodiment is Ti, and the material of the substrate is Ti.
  • the material of the interconnector and the substrate is the same kind of metal. Assuming that the maximum strength of the test piece of Comparative Example 1 is 1, the maximum strength of the test piece of Example 7 is 3.15, which is larger than that of Comparative Example 1.
  • Example 2-7 unlike the above-mentioned Comparative Example 1-3, all the metal materials between the opposing elements have an alloy phase in the phase diagram. Therefore, it is considered that the metal element diffuses between the opposing elements during welding, and the adhesion strength between the elements is improved. Further, in particular, the test piece of Example 7 has a high affinity because the material of the interconnector and the substrate is the same metal, and the metal element diffuses at the interface between the interconnector and the substrate during welding, so that the interconnector and the substrate are diffused. It is considered that the adhesion strength of the is further improved.
  • the precursor layer 27p of the bonding layer 27 is not limited to the configuration of the above embodiment in which the Al layer 27p1 and the Ag layer 27p2 are laminated one by one.
  • the precursor layer 27p may be composed of a monolayer film containing Al and Ag.
  • the precursor layer 27p may be composed of three or more laminated films.
  • layers of two materials may be arranged alternately in the thickness direction, or layers of other materials may be added to the layers of the two materials.
  • a layer containing Al and Ag may be added to the laminated film.
  • the above-mentioned fourth embodiment has described a configuration example in which the interconnector 13 is joined to the conductive coating layer 31 formed on the back surface side of the conductive substrate 11.
  • the present invention can also be applied to a configuration in which the interconnector 13 is bonded to the first electrode layer 21 (backside electrode) having the VI group compound layer 26 on the light receiving surface side of the conductive substrate 11. ..
  • the above-mentioned fifth embodiment FIG. 9
  • a configuration example in which the interconnector 13 is joined to the back surface side of the conductive substrate 11 has been described.
  • the present invention can also be applied to a configuration in which the interconnector 13 is bonded to the conductive substrate 11 having the VI group compound layer 33 formed on the surface on the light receiving surface side of the conductive substrate 11.
  • the electrode structure of the solar cell of the present invention is not limited to space applications.
  • the present invention may be applied when forming a connection portion that is unlikely to break down even when subjected to an external force due to a strong wind or an earthquake.

Abstract

太陽電池の電極構造は、カルコゲン太陽電池セルの基板側の導電体と、導電体に電気的に接続される配線要素とを有する。配線要素は導電体に積層されて接合される。配線要素の融点は230℃以上であり、配線要素に対応する領域の導電体には、配線要素の金属元素の一部が含まれる。

Description

太陽電池の電極構造および製造方法
 本発明は、カルコゲン太陽電池セルを含む太陽電池の電極構造に関する。
 従来から、光電変換層としてCu、In、Ga、Se、Sを含むカルコパイライト構造のI-III-VI族化合物半導体を用いたCIS系太陽電池が提案されている。CIS系太陽電池は、製造コストが比較的安価であり、しかも可視から近赤外の波長範囲に大きな吸収係数を有するので高い光電変換効率が期待される。また、CIS系太陽電池は、耐放射線性に優れ、Si系太陽電池よりも寿命が長くGaAs系太陽電池よりも低価格な太陽電池として、宇宙用途での利用も検討されている。
 CIS系太陽電池は、例えば、基板上に金属の裏面電極層を形成し、その上にI-III-VI族化合物である光電変換層を形成し、更にバッファ層、透明導電膜で形成される窓層を順に形成して構成される。CIS系太陽電池の+極側の裏面電極上への配線では、特許文献1のようにハンダ付けを用いた方法や、特許文献2のように導電性ペーストを用いた接着方法などが従来用いられている。
 例えば、特許文献1は、Inハンダ被覆の銅箔リボン導線を用いて、電極膜又は導電膜を破損することなく両者を固着する接続方法を開示する。
 また、特許文献2の構成では、電極上に間欠的に塗布された導電性ペーストで接着されたリボンワイヤが、充填材を介して接着保持された太陽電池サブモジュールとカバーガラスとによって挟持される。これにより、太陽電池モジュールの電極にリボンワイヤが面接触して取り付けられる。
 また、地上用太陽電池における裏面電極層と金属リボンとの接合方法の1つとして、例えば、特許文献3のような超音波シーム溶接が知られている。
 また、特許文献4には、GaAs系太陽電池において接続電極と電極層との接合強度を高める技術が開示されている。特許文献4の構成は、表面上に選択的に設定されたコンタクト領域を有するGaAs半導体層と、コンタクト領域上の一部に形成されたTiN層と、TiN層及びコンタクト領域上の全面に形成された電極層とを備えている。そして、電極層表面のTiN層上に位置する領域の一部または全面で接続電極と電極層が溶接されている。
特開2007-207861号公報 特開2009-252975号公報 特開2000-4034号公報 特開昭62-55963号公報
 宇宙用途の太陽電池においては、宇宙環境における急激な温度変化や打ち上げ時の衝撃に耐え得る、地上用よりも密着性の高いインターコネクタの接合技術が求められる。また、宇宙用途の太陽電池は、高度や日射によってはハンダの融点以上の温度に晒される。さらに、電極等の接着に使用される一般的な接着剤はUV耐性に乏しい。
 そのため、地上用の太陽電池において一般的なハンダ付けや接着によるインターコネクタの接合では、太陽電池の運用中に接着力が低下して電気的な接続不良を生じさせることが懸念される。かかる観点から、宇宙用途の太陽電池におけるインターコネクタの接合には、パラレルギャップ式抵抗溶接が推奨されている。
 ところで、CIS系太陽電池の裏面電極層(Mo)の表面には、層状構造で密着強度の弱いMo(Se,S)層が存在する。そのため、CIS系太陽電池のインターコネクタの接合では、特許文献4のように裏面電極層上にTi系の接合層を形成しても、Mo(Se,S)層の存在により、接合層と裏面電極層の密着強度を十分高めることが困難であった。
 また、この種の事象は、例えば、CIS系太陽電池の導電性基板に配線要素を溶接するケースで、基板表面にMo(Se,S)層やTi(Se,S)層が存在する場合においても同様に発生しうる。
 本発明は、上記の状況に鑑みてなされたものであって、カルコゲン太陽電池セルを含む太陽電池において、カルコゲン太陽電池セルの基板側の導電体と配線要素との密着強度を高めた電極構造を提供する。
 本発明の一態様は、カルコゲン太陽電池セルの基板側の導電体と、導電体に電気的に接続される配線要素とを有する太陽電池の電極構造である。配線要素は導電体に積層されて接合される。配線要素の融点は230℃以上であり、配線要素に対応する領域の導電体には、配線要素の金属元素の一部が含まれる。
 本発明によれば、カルコゲン太陽電池セルを含む太陽電池において、カルコゲン太陽電池セルの基板側の導電体と配線要素との密着強度を高めることができる。
(a)は、第1実施形態における太陽電池の構成例を示す平面図であり、(b)は、図1(a)の破線で囲った接続部近傍の拡大図である。 図1(b)の厚さ方向断面図である。 太陽電池の製造方法を示す流れ図である。 図3の製造方法の工程を模式的に示す図である。 図4の続きの図である。 第2実施形態の太陽電池の構成例を示す厚さ方向断面図である。 第3実施形態の太陽電池の構成例を示す厚さ方向断面図である。 第4実施形態の太陽電池の構成例を示す厚さ方向断面図である。 第5実施形態の太陽電池の構成例を示す厚さ方向断面図である。 実施例の接続部の厚さ方向における各元素の濃度分布の一例を示す図である。 実施例の接続部の厚さ方向における各元素の濃度分布の一例を示す図である。 実施例1および比較例の密着強度試験の結果を示す表である。 実施例1および比較例の相図の合金相の有無を示す表である。 実施例2-7の密着強度試験の結果を示す表である。 実施例2-7の相図の合金相の有無を示す表である。
 以下、図面を参照しながら実施形態を説明する。
 実施形態では、その説明を分かり易くするため、本発明の主要部以外の構造または要素については、簡略化または省略して説明する。また、図面において、同じ要素には同じ符号を付す。なお、図面において、各要素の形状、寸法などは、模式的に示したもので、実際の形状や寸法などを示すものではない。
<<第1実施形態の説明>>
<太陽電池の構造>
 図1(a)は、第1実施形態における太陽電池の構成例を示す平面図である。図1(b)は、図1(a)の破線で囲った接続部近傍の拡大図である。図2は、図1(b)の厚さ方向断面図である。第1実施形態では、カルコゲン太陽電池セルを含む太陽電池の一例として、CIS系の太陽電池モジュール10の構成例について説明する。
 図1、図2に示す太陽電池モジュール10は、受光面側に光電変換素子12が形成された導電性基板11と、インターコネクタ13と、光電変換素子12とインターコネクタ13とを電気的に接続する接続部14と、を有している。
(導電性基板11)
 導電性基板11は、例えば、チタン(Ti)、ステンレス鋼(SUS)、銅、アルミニウムあるいはこれらの合金等で形成される。導電性基板11は、フレキシブル基板であってもよい。導電性基板11は、複数の金属基材を積層した積層構造であってもよく、例えば、ステンレス箔、チタン箔、モリブデン箔が基板の表面に形成されていてもよい。
 導電性基板11の形状および寸法は、太陽電池モジュール10の大きさ等に応じて適宜決定される。第1実施形態における導電性基板11の全体形状は、例えば矩形の平板状であるがこれに限られることはない。
 導電性基板11として、金属基板やフレキシブル基板を適用した場合、太陽電池モジュール10を曲げることが可能となり、曲げによる基板の割れも抑制できる。さらに、上記の場合には、ガラス基板や樹脂基板と比べて、太陽電池モジュール10の軽量化および薄型化を図ることが容易となる。
 なお、宇宙用途の太陽電池においては、打ち上げ時の積載重量の抑制および太陽電池の高強度化を図る観点から、導電性基板11をチタンまたはチタンを含む合金で形成することが好ましい。
(光電変換素子12)
 光電変換素子12は、カルコゲン太陽電池セルの一例であって、導電性基板11の上に、第1の電極層21、光電変換層22、バッファ層23、第2の電極層24が順次積層された積層構造を有する。太陽光などの光は、導電性基板11側とは反対側(図2の上側)から光電変換素子12に入射する。
(第1の電極層21)
 第1の電極層21は、例えばモリブデン(Mo)の金属電極層であり、導電性基板11の上に形成される。第1の電極層21は、光電変換層22の受光面側ではなく裏面側(基板側)に臨むため、裏面電極とも称される。特に限定するものではないが、第1の電極層21の厚さは、例えば、200nm~1000nmである。
 また、光電変換素子12における第1の電極層21には、光電変換層22との界面に、Mo(Se,S)からなるVI族化合物層26が形成される。VI族化合物層26のMo(Se,S)は、後述のプリカーサ層22pをカルコゲン化して光電変換層22を形成する際に、第1の電極層21に形成される。なお、VI族化合物層26のMo(Se,S)は、グラファイト状の多層構造を有する物質であって、層間のへき開により剥離しやすい性質を有している。
 ここで、第1実施形態の太陽電池モジュール10では、導電性基板11に光電変換素子12を積層しているため、第1の電極層21を省略して導電性基板11上に光電変換層22を直接積層することもできる。導電性基板11上に光電変換層22を直接積層した場合、後述のプリカーサ層22pのカルコゲン化の際に、導電性基板11と光電変換層22の界面にVI族化合物層が形成される。例えば、導電性基板11がTiの場合には、導電性基板11と光電変換層22の界面にTi(Se,S)からなるVI族化合物層が形成される。なお、Ti(Se,S)も、Mo(Se,S)と同様に、グラファイト状の多層構造を有する物質であって、層間のへき開により剥離しやすい性質を有している。
(光電変換層22)
 光電変換層22は、第1の電極層21上に形成される。光電変換層22は、受光面側(図2の上側)および導電性基板11側(図2の下側)ではバンドギャップがそれぞれ大きく、光電変換層22の厚さ方向内側ではバンドギャップが小さいダブルグレーデッド構造を有してもよい。特に限定するものではないが、光電変換層22の厚さは、例えば、1.0μm~3.0μmである。
 光電変換層22は、多結晶または微結晶のp型化合物半導体層として機能する。光電変換層22は、I族元素と、III族元素と、VI族元素(カルコゲン元素)と、を含むカルコパイライト構造のI-III-VI族化合物半導体を用いたCIS系光電変換素子である。I族元素は、銅(Cu)、銀(Ag)、金(Au)などから選択可能である。III族元素は、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)などから選択可能である。また、光電変換層22は、VI族元素として、セレン(Se)や硫黄(S)の他に、テルル(Te)などを含んでもよい。また、光電変換層22は、Li、Na、K、Rb、Cs等のアルカリ金属を含んでいてもよい。
 なお、カルコゲン太陽電池セルとしての光電変換層22は、Cu,Zn,Sn,SまたはSeを含むカルコゲナイド系のI-(II-IV)-VI族化合物半導体を用いたCZTS系光電変換素子であってもよい。CZTS系光電変換素子の代表例としては、CuZnSnSe、CuZnSn(S,Se)等の化合物を用いたものが挙げられる。
(バッファ層23)
 バッファ層23は、光電変換層22の上に形成される。特に限定するものではないが、バッファ層23の厚さは、例えば、10nm~100nmである。
 バッファ層23は、例えば、n型またはi(intrinsic)型高抵抗導電層である。ここで「高抵抗」とは、後述する第2の電極層24の抵抗値よりも高い抵抗値を有するという意味である。
 バッファ層23は、亜鉛(Zn)、カドミウム(Cd)、インジウム(In)を含む化合物から選択可能である。亜鉛を含む化合物としては、例えば、ZnO、ZnS、Zn(OH)2、または、これらの混晶であるZn(O,S)、Zn(O,S,OH)、さらには、ZnMgO、ZnSnOなど、がある。カドミウムを含む化合物としては、例えば、CdS、CdO、または、これらの混晶であるCd(O,S)、Cd(O,S,OH)がある。インジウムを含む化合物としては、例えば、InS、InO、または、これらの混晶であるIn(O,S)、In(O,S,OH)があり、In23、In23、In(OH)x等を用いることができる。また、バッファ層23は、これらの化合物の積層構造を有してもよい。
 なお、バッファ層23は、光電変換効率などの特性を向上させる効果を有するが、これを省略することも可能である。バッファ層23が省略される場合、第2の電極層24は光電変換層22の上に形成される。
(第2の電極層24)
 第2の電極層24は、バッファ層23の上に形成される。第2の電極層24は、例えば、n型導電層である。特に限定するものではないが、第2の電極層24の厚さは、例えば、0.5μm~2.5μmである。
 第2の電極層24は、例えば、禁制帯幅が広く、抵抗値が十分に低い材料を備えることが好ましい。また、第2の電極層24は、太陽光などの光の通り道となるため、光電変換層22が吸収可能な波長の光を透過する性質を持つことが好ましい。この意味から、第2の電極層24は、透明電極層または窓層とも称される。
 第2の電極層24は、例えば、III族元素(B、Al、Ga、またはIn)がドーパントとして添加された酸化金属を備える。酸化金属の例としては、ZnO、または、SnO2がある。第2の電極層24は、例えば、ITO(酸化インジウムスズ)、ITiO(酸化インジウムチタン)、IZO(酸化インジウム亜鉛)、ZTO(酸化亜鉛スズ)、FTO(フッ素ドープト酸化スズ)、GZO(ガリウムドープト酸化亜鉛)、BZO(ホウ素ドープト酸化亜鉛)などから選択可能である。
(インターコネクタ13)
 インターコネクタ13は、太陽電池モジュール10の+極側の配線部材であり、太陽電池モジュール10の図1右側端部に2本並列に接続されている。インターコネクタ13は、例えば、材料にAgを含む導電性金属のリボンワイヤである。
 特に限定するものではないが、インターコネクタの寸法は、厚さ30μm、幅2.5mm程度の短冊状とすることができる。
 ここで、インターコネクタ13の材料は、Agを含む導電性金属に限定されることなく、例えば、鉄(Fe)・ニッケル(Ni)・コバルト(Co)合金(例えば、Kovar(登録商標)など)やTiを用いてもよい。
 インターコネクタ13の材料として鉄・ニッケル・コバルト合金を用いる場合、Fe、Ni、Coの比率はKovarと同様の比率(Fe:53.5%、Ni:29%、Co:17%)であってもよく、その他の比率であってもよい。
 例えば、インターコネクタ13と導電性基板11の熱膨張係数の差を小さくすると、熱膨張で接続部14に作用する応力が小さくなるので、接続部14の密着強度低下を抑制しやすくなる。そのため、導電性基板11の熱膨張係数との差が小さくなるように、鉄・ニッケル・コバルト合金におけるFe、Ni、Coの比率を調整してもよい。
 また、相対する要素との間で金属の拡散を促進するために、鉄・ニッケル・コバルト合金に含まれるFeを増加させてもよい。
 なお、第1実施形態においては、太陽電池モジュール10の-極側の配線に関する説明は省略する。
(接続部14)
 接続部14は、インターコネクタ13と、光電変換素子12の第1の電極層21とを接続する要素であり、太陽電池モジュール10の図1右側端部に2か所設けられている。各々の接続部14は、光電変換素子12を部分的に切り欠いて受光面側に第1の電極層21を露出させた配線領域10aに形成されている。特に限定するものではないが、配線領域10aの平面方向の寸法は、例えば5mm×5mm程度の矩形状である。
 図2に示すように、接続部14は、導電性基板11の上に、配線領域10aに対応する第1の電極層21aと、接合層27とを順次積層した積層構造を有している。また、接合層27の上面には、インターコネクタ13の端部が溶接で取り付けられている。接合層27とインターコネクタ13の溶接は、例えばパラレルギャップ式抵抗溶接で行われる。
 配線領域10aに対応する第1の電極層21aは、光電変換素子12の第1の電極層21と一体に形成されている。
 ただし、光電変換素子12の光電変換層22に臨む第1の電極層21には、光電変換層22との界面にVI族化合物層26が形成される。これに対し、配線領域10aの第1の電極層21aには、VI族化合物層26が形成されていない。配線領域10aにおいては第1の電極層21aと接合層27の間に剥離しやすいVI族化合物層26が形成されていないので、第1の電極層21aから接合層27が剥離しにくい。
 また、配線領域10aの第1の電極層21aには、後述のように接合層27の金属元素(例えば、Al)や、VI族元素であるSe,Sなどが拡散されている。第1の電極層21aに接合層27の金属元素が拡散することで、第1の電極層21aと接合層27とは高い密着強度を有する。
 これに対し、光電変換素子12内の第1の電極層21は、接合層27と接触していない。そのため、光電変換素子12内の第1の電極層21では、配線領域10aの第1の電極層21aとは異なり、接合層27の金属元素の拡散はほとんどない。
(接合層27)
 接合層27は、配線領域10aの第1の電極層21aとインターコネクタ13を電気的に接続するための導電層であり、導電性の金属材料に拡散したVI族元素が含まれる物質で構成されている。一例として、第1実施形態の接合層27は、Al,Agを含み、拡散したSe,Sを含む物質である。
 図1、図2に示すように、受光面の平面方向において接合層27の周囲には、光電変換層22、バッファ層23および第2の電極層24との間に溝28が形成されている。そのため、接合層27は、光電変換層22、バッファ層23および第2の電極層24に対して、溝28によって絶縁されている。特に限定するものではないが、接合層27の厚さは約2.0μm~3.0μm程度である。
 接合層27の金属材料は、宇宙環境における日射等による高温下での太陽電池モジュール10の使用を担保するために、融点が230℃以上であって、はんだ合金よりも融点の高いものが使用される。なお、上記のAl,Agはいずれも融点が230℃以上である。
 また、接合層27の材料は、カルコゲン化されやすい金属元素であるAl、Pt、Zn、Snのいずれか1つを少なくとも含むことが好ましい。接合層27がカルコゲン化されやすい金属元素を含むことで、接合層27にはVI族化合物が均一に分布しやすくなる。そして、後述する接合層27の形成時には、VI族化合物層26から接合層27側へのVI族元素の拡散が促進される。かかるVI族元素の拡散により、第1の電極層21aと接合層27との間からVI族化合物層26を消失させることができる。
 上記のように、接合層27の形成時には接合層27側にVI族元素が拡散してVI族化合物層26が消失する。そのため、接続部14の厚さ方向におけるVI族元素の濃度分布では、第1の電極層21aと接合層27との界面にVI族元素の濃度のピークを有しない。
 また、接合層27の材料はカルコゲン化されやすい金属元素を含むので、接続部14の厚さ方向においてVI族元素は接合層27側により多く拡散する。そのため、接続部14の厚さ方向におけるVI族元素の濃度分布では、接合層27にVI族元素の濃度のピークが生じる。換言すれば、接合層27に含まれるVI族元素の原子数は、第1の電極層21aに含まれるVI族元素の原子数よりも多くなる。
 また、接合層27の材料は、裏面電極層である第1の電極層21aの材料に対して相図に合金相を有する金属元素を含むことが好ましい。あるいは、接合層27の材料は、第1の電極層21aの構成元素の少なくとも1つを含んでいてもよい。
 接合層27の材料の選定では、第1の電極層21aの材料(Mo)に対して相図に合金相を有する金属を二元系状態図(例えば、BINARY ALLOY PHASE DIAGRAMS SECOND EDITION Vol.1, T.B.Massalski, 1990)から選択すればよい。
 第1の電極層21aの材料に対して相図に合金相を有する金属元素(例えばAlなど)、あるいは第1の電極層21aの構成元素の少なくとも1つを接合層27が含むことで、第1の電極層21aと接合層27との間では金属元素の拡散が生じやすくなる。また、上記のように、VI族元素が接合層27側により多く拡散することに伴って、接合層27に含まれる金属元素は第1の電極層21aに拡散しやすい状態となる。これにより、第1の電極層21aと接合層27との密着強度を向上させることができる。
 また、接合層27に含まれるAgは、上記のようにインターコネクタ13にも含まれている。つまり、接合層27とインターコネクタ13の界面については、両者の材料がいずれもAgを含むので高い親和性を有している。そのため、インターコネクタ13の溶接時には、インターコネクタ13と接合層27の界面でも金属元素の拡散が生じ、インターコネクタ13と接合層27の密着強度が向上する。
<太陽電池の製造方法>
 次に、太陽電池モジュール10の製造方法の例を説明する。図3は、太陽電池モジュール10の製造方法を示す流れ図である。また、図4、図5は、製造方法の各工程を模式的に示す図である。
(S1:第1の電極層の形成)
 S1にて、図4(a)に示すように、チタンなどの導電性基板11の表面に、例えばスパッタリング法によりモリブデン(Mo)などの薄膜を製膜することで、第1の電極層21が形成される。スパッタリング法は、直流(DC)スパッタリング法でもよいし、または、高周波(RF)スパッタリング法でもよい。また、スパッタリング法に代えて、CVD(chemical vapor deposition)法、ALD(atomic layer deposition)法などを用いて、第1の電極層21を形成してもよい。
(S2:プリカーサ層の形成)
 S2にて、図4(a)に破線で示すように、第1の電極層21の上に、薄膜状のプリカーサ層22pが形成される。
 第1の電極層21上にプリカーサ層22pを形成する方法としては、例えば、上記のスパッタリング法や、蒸着法またはインク塗布法が挙げられる。蒸着法は、蒸着源を加熱して気相となった原子等を用いて成膜する方法である。インク塗布法は、プリカーサ膜の材料を粉体にしたものを有機溶剤等の溶媒に分散して第1の電極層21上に塗布し、その後溶剤を蒸発してプリカーサ層22pを形成する方法である。
 CIS系の光電変換層22を形成する場合、プリカーサ層22pは、I族元素と、III族元素とを含む。例えば、プリカーサ層22pはI族元素としてAgを含んでいてもよい。プリカーサ層22pに含めるAg以外のI族元素は、銅、金などから選択可能である。また、プリカーサ層22pに含めるIII族元素は、インジウム、ガリウム、アルミニウムなどから選択可能である。また、プリカーサ層22pは、Li、Na、K、Rb、Cs等のアルカリ金属を含んでいてもよい。また、プリカーサ層22pは、VI族元素として、セレンおよび硫黄の他に、テルルを含んでいてもよい。
 一方、CZTS系の光電変換層22を形成する場合、プリカーサ層22pは、Cu-Zn-SnあるいはCu-Zn-Sn-Se-Sの薄膜として製膜される。
(S3:光電変換層の形成)
 S3にて、図4(b)に示すように、プリカーサ層22pをカルコゲン化することで光電変換層22が形成される。
 CIS系の光電変換層22を形成する場合、プリカーサ層22pのカルコゲン化処理では、VI族元素を含む雰囲気中で、I族元素とIII族元素を含むプリカーサ層22pを熱処理することでカルコゲン化し、光電変換層22を形成する。
 例えば、まず、気相セレン化法によるセレン化が行われる。セレン化は、VI族元素源としてセレンを含むセレン源ガス(例えば、セレン化水素またはセレン蒸気)の雰囲気中でプリカーサ層を加熱することにより行う。特に限定するものではないが、セレン化は、例えば、加熱炉内において300℃以上600℃以下の範囲内の温度で行うことが好ましい。
 その結果、プリカーサ層は、I族元素と、III族元素と、セレンとを含む化合物(光電変換層22)に変換される。なお、I族元素と、III族元素と、セレンとを含む化合物(光電変換層22)は、気相セレン化法以外の方法により形成してもよい。例えば、このような化合物は、固相セレン化法、蒸着法、インク塗布法、電着法などによっても形成可能である。
 次に、I族元素と、III族元素と、セレンとを含む光電変換層22の硫化が行われる。硫化は、硫黄を有する硫黄源ガス(例えば、硫化水素、または硫黄蒸気)の雰囲気中で光電変換層22を加熱することにより行う。その結果、光電変換層22は、I族元素と、III族元素と、VI族元素としてセレンおよび硫黄とを含む化合物に変換される。硫黄源ガスは、光電変換層22の表面部において、I族元素と、III族元素と、セレンとからなる結晶、例えば、カルコパイライト結晶内のセレンを硫黄に置換する役割を担う。
 特に限定するものではないが、硫化は、例えば、加熱炉内において450℃以上650℃以下の範囲内の温度で行うことが好ましい。
 一方、CZTS系の光電変換層22を形成する場合、プリカーサ層22pのカルコゲン化処理では、Cu、Zn、Snを含むプリカーサ層22pを500℃~650℃の硫化水素雰囲気中及びセレン化水素雰囲気中で硫化及びセレン化する。これにより、CuZnSn(S、Se)を有するCZTS系の光電変換層22を形成することができる。
 また、S3でのプリカーサ層22pのカルコゲン化処理に伴い、第1の電極層21における光電変換層22との界面には、Mo(Se,S)からなるVI族化合物層26が形成される。
(S4:バッファ層の形成)
 S4にて、図4(c)に示すように、CBD(chemical bath deposition)法、スパッタリング法などの方法により、光電変換層22の上に、例えば、Zn(O,S)などの薄膜を製膜してバッファ層23が形成される。なお、バッファ層23の形成は省略されてもよい。
(S5:第2の電極層の形成)
 S5にて、図4(c)に破線で示すように、スパッタリング法、CVD法、ALD法などの方法により、バッファ層23の上に、第2の電極層24が形成される。第2の電極層24は、例えば、B、AlまたはInがドーパントとして添加されたZnOなどの薄膜による透明電極である。
 以上のS1からS5の工程により、導電性基板11上に光電変換素子12が形成される。
(S6:配線領域の形成)
 S6にて、光電変換素子12の受光面端部における所定位置を、例えばメカニカルパターニングで部分的に切り欠き、受光面側に第1の電極層21を露出させた配線領域10aが形成される。なお、S6の段階では、配線領域10aの第1の電極層21の表面には、光電変換素子12内の第1の電極層21と同様にVI族化合物層26が存在している。
 一例として、図5(a)では、光電変換素子12の配線領域10aに対応する光電変換層22、バッファ層23および第2の電極層24を削除した状態を示している。なお、図5(a)では、S6で削除された領域を破線で示している。
(S7:配線領域でのプリカーサ層の形成)
 S7にて、図5(b)に示すように、配線領域10aの第1の電極層21の上に、接合層27に対応するプリカーサ層27pが形成される。
 S7では、まず、光電変換素子12の受光面において、プリカーサ層27pを形成する領域(配線領域10aにおける溝28の内側)以外を適宜マスキングする。その後、配線領域10aの第1の電極層21の上に、例えば蒸着法でプリカーサ層27pを形成する。
 S7のプリカーサ層27pは、導電性基板11側から順に、Al層27p1と、Ag層27p2とを順次積層して形成される。Al層27p1の製膜条件は、例えば、印加電圧10kV程度、EB電流0.2A程度、製膜レート0.4nm/sec、膜厚0.5μmである。同様に、Ag層27p2の製膜条件は、例えば、印加電圧10kV程度、EB電流0.1A程度、製膜レート0.5nm/sec、膜厚2.0μmである。
 プリカーサ層27pでは、インターコネクタ13に臨む上面側にAg層27p2が配置されている。インターコネクタ13の材料と共通するAg層27p2をインターコネクタ13に臨む領域に配置することで、溶接時にはインターコネクタ13とプリカーサ層27pとの界面で拡散が生じやすくなる。
 また、プリカーサ層27pでは、第1の電極層21のVI族化合物層26に臨む下面側にAl層27p1が配置されている。カルコゲン化しやすいAl層27p1をVI族化合物層26に臨む領域に配置することで、溶接時には接合層27側にVI族化合物の拡散が生じやすくなる。
(S8:インターコネクタの溶接)
 S8にて、プリカーサ層27pの上面に、Agを含む導電性金属のインターコネクタ13の端部を配置し、太陽電池モジュール10へのインターコネクタ13の溶接が行われる。インターコネクタ13の溶接は、一例として、制御方式がトランジスタ式の抵抗溶接機を使用したパラレルギャップ式溶接法により行われる。
 具体的には、図5(c)に示すように、インターコネクタ13の端部は、プリカーサ層27pの周縁部から外側にはみ出さないようにプリカーサ層27pの上面中央部に配置される。そして、例えば狭いギャップで仕切られた一対の電極30を用いて、インターコネクタ13がプリカーサ層27pと溶接される。
 なお、S8での溶接条件は、例えば、溶接電流50~200A、溶接時間5~900msecである。
 インターコネクタ13との溶接時には、プリカーサ層27pはインターコネクタ13を介して電極30からの熱エネルギーを受ける。すると、インターコネクタ13とプリカーサ層27pの界面と、プリカーサ層27pと第1の電極層21の界面とでそれぞれ拡散が生じる。また、プリカーサ層27p内のAl層27p1とAg層27p2の間でも拡散が生じる。これにより、図5(d)に示すように、Al層27p1とAg層27p2の積層構造であったプリカーサ層27pは、Ag、AlおよびVI族元素のSeが拡散された接合層27に変化する。
 溶接時の熱エネルギーによりプリカーサ層27pと第1の電極層21の界面で拡散が生じると、第1の電極層21におけるVI族化合物層26のSeは、第1の電極層21aと接合層27に拡散する。かかるSeの拡散により、第1の電極層21aと接合層27との間からVI族化合物層26が消失する。溶接後の第1の電極層21aと接合層27の間には剥離しやすいVI族化合物層26が存在しないので、第1の電極層21aと接合層27が剥離しにくい。
 また、プリカーサ層27pの第1の電極層21側には、カルコゲン化しやすいAl層27p1が配置されている。そのため、VI族化合物層26から拡散するSeは、Moを含む第1の電極層21a側よりも、カルコゲン化しやすいAlを含む接合層27側に多く拡散する。そして、Seが接合層27側により多く拡散することに伴って、プリカーサ層27pに含まれていた金属元素のAlは第1の電極層21aに拡散しやすくなる。接合層27の金属元素であるAlが第1の電極層21aに拡散することで、溶接後の第1の電極層21aと接合層27の密着強度がより向上する。
 一方、プリカーサ層27pのAg層27p2とインターコネクタ13の界面については、両者の材料がいずれもAgを含むので高い親和性を有している。したがって、溶接時にはインターコネクタ13とプリカーサ層27pの界面で金属元素の拡散が生じ、インターコネクタ13と接合層27が高い密着強度で接合される。
 上述のS1~S8の工程により、太陽電池モジュール10の配線領域には、接合層を介して第1の電極層とインターコネクタが接合された接続部14が形成される。
 以上で、図3の説明を終了する。
 以上のように、第1実施形態では、配線領域10aの第1の電極層21の上にAlを含んだプリカーサ層27pを形成する(S7)。そして、プリカーサ層27pとインターコネクタ13を溶接して熱エネルギーを加え、プリカーサ層27pと第1の電極層21の間でAlを拡散させて接合層27を形成する(S8)。
 これにより、配線領域10aにおける溶接後の第1の電極層21aは、接合層27のAlを含んだ状態で接合層27と接合されるので、第1の電極層21と接合層27との密着強度を高めることができる。
<<第2実施形態>>
 図6は、第2実施形態の太陽電池の構成例を示す厚さ方向断面図である。第2実施形態は、第1実施形態の変形例であって、太陽電池モジュール10の導電性基板11の裏面側(受光面の反対側の面)に接続部14が形成されている。
 なお、以下の各実施形態の説明において、第1実施形態と同様の構成には同じ符号を付して重複説明を省略する。
 図6に示すように、第2実施形態の導電性基板11には、裏面側にモリブデン(Mo)の導電被膜層31が形成され、導電被膜層31に接合層27aが積層されている。そして、接合層27aの図中下側にはインターコネクタ13の端部が溶接で取り付けられている。第2実施形態のインターコネクタ13は、例えば、Agを含む導電性金属、Tiまたは鉄・ニッケル・コバルト合金などを材料とするリボンワイヤである。
 導電性基板11の裏面側に導電被膜層31が形成されることで、太陽電池モジュール10の反りを低減することができる。
 また、導電被膜層31の表面には、接合層27aが積層されている領域を除いてMo(Se,S)からなるVI族化合物層32が形成されている。VI族化合物層32のMo(Se,S)は、プリカーサ層22pをカルコゲン化して光電変換層22を形成する際に、導電被膜層31に形成される。なお、Mo(Se,S)からなるVI族化合物層32は、第1の電極層21のVI族化合物層26と同様の性質を有している。
 換言すれば、導電被膜層31と接合層27aの間には剥離しやすいVI族化合物層32が形成されていない。そのため、導電被膜層31から接合層27aが剥離しにくい。
 また、第2実施形態の接合層27aは、Al、Pt、Zn、Snのいずれか1つを少なくとも含み、拡散したSe,Sを含む物質である。接合層27aの金属材料は、宇宙環境における日射等による高温下での太陽電池モジュール10の使用を担保するために、融点が230℃以上であって、はんだ合金よりも融点の高いものが使用される。また、接合層27aの材料は、部材間での金属元素の拡散を促進するために、導電被膜層31の材料およびインターコネクタ13の材料に対して相図に合金相を有する金属元素を含むことが好ましい。
 また、接合層27aの材料は、カルコゲン化されやすい金属元素であるAl、Pt、Zn、Snのいずれか1つを少なくとも含むことが好ましい。これにより、接合層27aにはVI族化合物が均一に分布しやすくなる。接合層27aの形成時には、VI族化合物層32から接合層27a側へのVI族元素の拡散が促進され、導電被膜層31と接合層27aの間からVI族化合物層32を消失させることができる。
 また、導電被膜層31において、接合層27aが積層されている領域には、後述のように接合層27aの金属元素(例えば、Al)や、VI族元素であるSe,Sなどが拡散されている。導電被膜層31に接合層27aの金属元素が拡散することで、導電被膜層31と接合層27aは高い密着強度を有する。
 これに対し、導電被膜層31において接合層27aが積層されていない領域では、接合層27aの金属元素の拡散はほとんどない。
 第2実施形態の接続部14を形成する場合、光電変換素子12を形成する工程(S1からS5)までは第1実施形態の製造方法の工程とほぼ同様である。但し、第2実施形態の場合、S1の工程において、導電性基板11の裏面側に導電被膜層31が形成される。また、S3の工程において、導電被膜層31の表面にVI族化合物層32が形成される。
 その後、VI族化合物層32を有する導電被膜層31の上に接合層27aのプリカーサ層(不図示)を形成し、接合層27aのプリカーサ層の上にインターコネクタ13を配置する。そして、接合層27aのプリカーサ層とインターコネクタ13を溶接して熱エネルギーを加え、接合層27aが形成される。
 接合層27aの形成時には接合層27a側にVI族元素が拡散してVI族化合物層32が消失する。そのため、接続部14の厚さ方向におけるVI族元素の濃度分布では、導電被膜層31と接合層27aとの界面にVI族元素の濃度のピークを有しない。
 また、接合層27aの材料はカルコゲン化されやすい金属元素を含むので、接続部14の厚さ方向においてVI族元素は接合層27a側により多く拡散する。そのため、第2実施形態の接続部14の厚さ方向におけるVI族元素の濃度分布では、接合層27aにVI族元素の濃度のピークが生じる。換言すれば、接合層27aに含まれるVI族元素の原子数は、導電被膜層31に含まれるVI族元素の原子数よりも多くなる。
 上記の第2実施形態の構成によれば、カルコゲン太陽電池セルの基板裏面側に形成される導電被膜層31と接続部14との密着強度を向上させることができる。
<<第3実施形態>>
 図7は、第3実施形態の太陽電池の構成例を示す厚さ方向断面図である。第3実施形態は、第2実施形態の変形例であって、導電性基板11の裏面側に導電被膜層31が形成されていない点で第2実施形態と相違する。
 図7に示すように、第3実施形態の導電性基板11には、接合層27bが積層されている。そして、接合層27bの図中下側にはインターコネクタ13の端部が溶接で取り付けられている。第3実施形態のインターコネクタ13も、例えば、Agを含む導電性金属、Tiまたは鉄・ニッケル・コバルト合金などを材料とするリボンワイヤである。
 また、導電性基板11の表面には、接合層27bが積層されている領域を除いてTi(Se,S)からなるVI族化合物層33が形成されている。VI族化合物層33のTi(Se,S)は、プリカーサ層22pをカルコゲン化して光電変換層22を形成する際に、導電性基板11の表面に形成される。なお、Ti(Se,S)からなるVI族化合物層33は、グラファイト状の多層構造を有する物質であって、層間のへき開により剥離しやすい性質を有している。
 換言すれば、導電性基板11と接合層27bの間には剥離しやすいVI族化合物層33が形成されていない。そのため、導電性基板11から接合層27bが剥離しにくい。
 また、第3実施形態の接合層27bは、Al、Pt、Zn、Snのいずれか1つを少なくとも含み、拡散したSe,Sを含む物質である。接合層27bの金属材料は、宇宙環境における日射等による高温下での太陽電池モジュール10の使用を担保するために、融点が230℃以上であって、はんだ合金よりも融点の高いものが使用される。また、接合層27bの材料は、部材間での金属元素の拡散を促進するために、導電性基板11の材料およびインターコネクタ13の材料に対して相図に合金相を有する金属元素を含むことが好ましい。
 また、接合層27bの材料は、カルコゲン化されやすい金属元素であるAl、Pt、Zn、Snのいずれか1つを少なくとも含むことが好ましい。これにより、接合層27bにはVI族化合物が均一に分布しやすくなる。接合層27bの形成時には、VI族化合物層33から接合層27b側へのVI族元素の拡散が促進され、導電性基板11と接合層27bの間からVI族化合物層33を消失させることができる。
 また、導電性基板11において、接合層27bが積層されている領域には、後述のように接合層27bの金属元素(例えば、Al)や、VI族元素であるSe,Sなどが拡散されている。導電性基板11に接合層27bの金属元素が拡散することで、導電性基板11と接合層27bは高い密着強度を有する。
 これに対し、導電性基板11において接合層27bが積層されていない領域では、接合層27bの金属元素の拡散はほとんどない。
 第3実施形態の接続部14を形成する場合、光電変換素子12を形成する工程(S1からS5)までは第1実施形態の製造方法の工程とほぼ同様である。なお、第3実施形態では、S3の工程において導電性基板11の表面にVI族化合物層33が形成される。
 その後、VI族化合物層33を有する導電性基板11の上に接合層27bのプリカーサ層(不図示)を形成し、接合層27bのプリカーサ層の上にインターコネクタ13を配置する。その後、接合層27bのプリカーサ層とインターコネクタ13を溶接して熱エネルギーを加え、接合層27bが形成される。
 接合層27bの形成時には接合層27b側にVI族元素が拡散してVI族化合物層33が消失する。そのため、接続部14の厚さ方向におけるVI族元素の濃度分布では、導電性基板11と接合層27bとの界面にVI族元素の濃度のピークを有しない。
 また、接合層27bの材料はカルコゲン化されやすい金属元素を含むので、接続部14の厚さ方向においてVI族元素は接合層27b側により多く拡散する。そのため、第3実施形態の接続部14の厚さ方向におけるVI族元素の濃度分布では、接合層27bにVI族元素の濃度のピークが生じる。換言すれば、接合層27bに含まれるVI族元素の原子数は、導電性基板11に含まれるVI族元素の原子数よりも多くなる。
 上記の第3実施形態の構成によれば、カルコゲン太陽電池セルの導電性基板11と接続部14との密着強度を向上させることができる。
<<第4実施形態>>
 図8は、第4実施形態の太陽電池の構成例を示す厚さ方向断面図である。第4実施形態は、第2実施形態の変形例であって、接合層27aを介さずに導電被膜層31にインターコネクタ13が直接溶接されている点で第2実施形態の構成と相違する。なお、第4実施形態においても、導電被膜層31の表面には、インターコネクタ13の溶接されている領域を除いてMo(Se,S)からなるVI族化合物層32が形成されている。
 換言すれば、導電被膜層31とインターコネクタ13の間には剥離しやすいVI族化合物層32が形成されていない。そのため、導電被膜層31からインターコネクタ13が剥離しにくい。
 また、宇宙環境における日射等による高温下での太陽電池モジュール10の使用を担保するために、接続部14に適用されるインターコネクタ13の材料は、融点が230℃以上であって、はんだ合金よりも融点の高いものが使用される。また、第4実施形態のインターコネクタ13の材料は、部材間での金属元素の拡散を促進するために、導電被膜層31の材料に対して相図に合金相を有する金属元素を含んでいる。
 第4実施形態の導電被膜層31において、インターコネクタ13と接合されている領域には、インターコネクタ13の金属元素や、VI族元素であるSe,Sなどが拡散されている。導電被膜層31にインターコネクタ13の金属元素が拡散することで、導電被膜層31とインターコネクタ13は高い密着強度を有する。
 これに対し、導電被膜層31においてインターコネクタ13と接合されていない領域では、インターコネクタ13の金属元素の拡散はほとんどない。
 第4実施形態の接続部14を形成する場合、光電変換素子12を形成する工程(S1からS5)までは第1実施形態の製造方法の工程とほぼ同様である。但し、第4実施形態の場合、S1の工程において、導電性基板11の裏面側に導電被膜層31が形成される。また、S3の工程において、導電被膜層31の表面にVI族化合物層32が形成される。
 その後、VI族化合物層32を有する導電被膜層31の上にインターコネクタ13を配置し、導電被膜層31とインターコネクタ13を溶接して熱エネルギーを加える。これにより、導電被膜層31とインターコネクタ13の界面からVI族元素が拡散してVI族化合物層32が消失する。そのため、第4実施形態の接続部14の厚さ方向におけるVI族元素の濃度分布では、導電被膜層31とインターコネクタ13との界面にVI族元素の濃度のピークを有しない。
 上記の第4実施形態の構成によれば、カルコゲン太陽電池セルの基板裏面側に形成される導電被膜層31とインターコネクタ13との密着強度を向上させることができる。
<<第5実施形態>>
 図9は、第5実施形態の太陽電池の構成例を示す厚さ方向断面図である。第5実施形態は、第3実施形態の変形例であって、接合層27bを介さずに導電性基板11にインターコネクタ13が直接溶接されている点で第3実施形態の構成と相違する。なお、第5実施形態においても、導電性基板11の表面には、インターコネクタ13の溶接されている領域を除いてTi(Se,S)からなるVI族化合物層33が形成されている。
 換言すれば、導電性基板11とインターコネクタ13の間には剥離しやすいVI族化合物層33が形成されていない。そのため、導電性基板11からインターコネクタ13が剥離しにくい。
 また、宇宙環境における日射等による高温下での太陽電池モジュール10の使用を担保するために、接続部14に適用されるインターコネクタ13の材料は、融点が230℃以上であって、はんだ合金よりも融点の高いものが使用される。また、第5実施形態のインターコネクタ13の材料は、部材間での金属元素の拡散を促進するために、導電性基板11の材料に対して相図に合金相を有する金属元素を含んでいる。
 第5実施形態の導電性基板11において、インターコネクタ13と接合されている領域には、インターコネクタ13の金属元素や、VI族元素であるSe,Sなどが拡散されている。導電性基板11にインターコネクタ13の金属元素が拡散することで、導電性基板11とインターコネクタ13は高い密着強度を有する。
 これに対し、導電性基板11においてインターコネクタ13と接合されていない領域では、インターコネクタ13の金属元素の拡散はほとんどない。
 第5実施形態の接続部14を形成する場合、光電変換素子12を形成する工程(S1からS5)までは第1実施形態の製造方法の工程とほぼ同様である。なお、第5実施形態では、S3の工程において導電性基板11の表面にVI族化合物層33が形成される。
 その後、VI族化合物層33を有する導電性基板11の上にインターコネクタ13を配置し、導電性基板11とインターコネクタ13を溶接して熱エネルギーを加える。これにより、導電性基板11とインターコネクタ13の界面からVI族元素が拡散してVI族化合物層33が消失する。そのため、第5実施形態の接続部14の厚さ方向におけるVI族元素の濃度分布では、導電性基板11とインターコネクタ13との界面にVI族元素の濃度のピークを有しない。
 上記の第5実施形態の構成によれば、カルコゲン太陽電池セルの導電性基板11とインターコネクタ13との密着強度を向上させることができる。
<<実施例>>
 以下、本発明の太陽電池モジュールの実施例について説明する。
 ここで、実施例の接続部は、上記第1実施形態で説明した構成と同様に形成されている。つまり、基板の材料はTiであり、溶接前の裏面電極層は表面にSeの層が形成されたMo膜である。接合層は、Al層とAg層を積層したプリカーサに溶接の熱エネルギーを加えて形成される。溶接後の裏面電極層は、AlとSeが拡散したMoであり、溶接後の接合層は、Ag,Alに拡散したSeを含む物質である。
(接続部における元素の濃度分布)
 実施例では、太陽電池モジュールの接続部における元素の濃度分布を以下の手法で求めた。
 まず、集束イオンビーム(FIB)装置を用いて実施例の接続部の厚さ方向断面を形成する。そして、加速電圧15kVで接続部断面の走査イオン顕微鏡(SIM)像を撮像した。その後、エネルギー分散型X線分析(EDX)により、接続部断面に含まれる元素を分析した。
 なお、実施例における元素の分析で使用した機器は以下の通りである。FIB装置は、エスアイアイ・ナノテクノロジー製 SMI3200Fであり、SEMは、日立ハイテクノロジーズ製 SU8240であり、EDXは、堀場製作所製 EX-370である。
 図10、図11は、実施例の接続部の厚さ方向における各元素の濃度分布を示す図である。
 図10、図11の各図において、縦軸は元素の含有量を示し、横軸は接続部の厚さ方向tの位置を示す。図10、図11の横軸において、左端は受光面の裏面側に対応し、右端は受光面側に対応する。
 また、図10、図11の縦軸に示す含有量は、元素ごとに含有量の最大値を1として規格化して示している。なお、図10、図11に示す各点は、閾値として規格化後の30%以上が検知された場合にプロットされている。
 図10(a)は、接続部のMo、Ti、Ag、Al、Seの濃度分布例を重ねて示す。図10(b)は、接続部のMoの濃度分布例を示し、図10(c)は、接続部のTiの濃度分布例を示す。
 また、図11(a)は、接続部のAgの濃度分布例を示し、図11(b)は、接続部のAlの濃度分布例を示し、図11(c)は、接続部のSeの濃度分布例を示す。
 図10、図11に示すように、接続部の裏面電極層(図中、Mo+Al+Seで示す)はMo、Al、Seを含み、接合層(図中、Ag+Al+Seで示す)は、Ag、Al、Seを含んでいる。図10(a)、図11(b)、(c)から、裏面電極層と接合層に亘ってAl、Seが拡散していることが分かる。
 また、図11(c)に示すように、裏面電極層と接合層に亘ってSeは幅広く分布し、Seの濃度分布は裏面電極層と接合層の境界にピークを有していない。したがって、接続部の裏面電極層と接合層の境界には、VI族化合物層が存在していないことが分かる。
 また、図11(c)に示すように、裏面電極層よりも接合層でSeはより多く検知されている。したがって、接合層に含まれるSeの原子数は、裏面電極層に含まれるSeの原子数よりも多いことが分かる。
 さらに、図11(c)に示すように、裏面電極層でのSeの最大値と、接合層でのSeの最大値とを比較すると、接合層でのSeの最大値の方が大きい。したがって、Seの濃度のピークは接合層の部位にあることが分かる。
(接続部の密着強度試験)
 また、太陽電池モジュールの接続部の密着強度を評価するために、以下の試験を行った。試験では、溶接後のインターコネクタの先端を治具で挟み、オートグラフ装置を用いてインターコネクタの先端を45度方向に5mm/minの速度で上方向に引っ張った。そして、接続部からインターコネクタがはずれる時点の引張強度(最大強度)を測定する。
 試験の対象としては、上記の実施例(以下、実施例1と表記する)の試験片と、比較例として以下の3つの試験片を用いた。
 比較例1は、Ti基板/Mo(MoSeS)/Agの積層体にインターコネクタを溶接した試験片である。比較例2は、Ti基板/Mo(MoSeS)/Inハンダの積層体にインターコネクタを溶接した試験片である。なお、比較例2の接合面積は実施例の約60倍である。比較例3は、Ti基板/Mo(MoSeS)の積層体にインターコネクタを溶接した試験片である。なお、実施例1、比較例1-3のインターコネクタの材料はいずれもAgである。
 図12は、実施例1、比較例1-3の密着強度試験の結果を示す表であり、図13は、実施例1、比較例1-3の相図の合金相の有無を示す表である。図13の表では、相対する部材間で相図に合金相を有する場合を「〇」で示し、相対する部材間で相図に合金相を有しない場合を「×」で示している。また、図12、図13において該当する構成がない場合を「-」で示している。
 図12では、比較例1を基準として正規化した最大強度の値をそれぞれ示している。
 比較例1の試験片での最大強度を1とすると、比較例2の試験片での最大強度は0.18であり、比較例3の試験片での最大強度は0.12であった。これに対し、実施例1の試験片は1より大きくなり、比較例1~3のいずれよりも最大強度が高く、接続部の密着強度が良好であることが確認できた。
 また、図13に示すように、実施例1の試験片では、インターコネクタと接合層はいずれも材料にAg(同種金属)を含み、かつインターコネクタの材料のAgと接合層の材料に含まれるAlは相図に合金相を有している。また、実施例1の試験片では、接合層の材料に含まれるAlと裏面電極層の材料のMoは相図に合金相を有している。そのため、実施例1の試験片では、溶接時に同種金属や相図に合金相を有する金属の間で拡散が生じ、各要素間での密着強度が向上すると考えられる。
 一方、比較例1の試験片では、接合層の材料のAgと裏面電極層の材料のMoは相図に合金相を有していない。また、比較例2の試験片では、接合層の材料のInハンダと裏面電極層の材料のMoは相図に合金相を有していない。そのため、比較例1、2は、接合層と裏面電極層の材料で金属元素の拡散が生じないので、実施例1と比べると密着強度が低下すると考えられる。
 同様に、比較例3の試験片では、インターコネクタの材料のAgと裏面電極層の材料のMoは相図に合金相を有していない。そのため、比較例3は、インターコネクタと裏面電極層の材料で金属元素の拡散が生じないので、実施例1と比べると密着強度が低下すると考えられる。
 また、図14は、実施例2-7の密着強度試験の結果を示す表であり、図15は、実施例2-7の相図の合金相の有無を示す表である。図14、図15の表の見方は、図12、図13と同様である。
 実施例2の試験片は、上記の第2実施形態に対応する構成である。実施例2のインターコネクタの材料はTiであり、接合層の材料はAlであり、導電被膜層の材料はMoであり、基板の材料はTiである。実施例2では、インターコネクタと接合層の材料は相図に合金相を有し、また、接合層と導電被膜層の材料は相図に合金相を有している。比較例1の試験片での最大強度を1とすると、実施例2の試験片の最大強度は1.38であり、比較例1よりも大きな値を示した。
 実施例3の試験片は、上記の第3実施形態に対応する構成である。実施例3のインターコネクタの材料はTiであり、接合層の材料はAlであり、基板の材料はTiである。実施例3では、インターコネクタと接合層の材料は相図に合金相を有し、また、接合層と基板の材料は相図に合金相を有している。比較例1の試験片での最大強度を1とすると、実施例3の試験片の最大強度は1.24であり、比較例1よりも大きな値を示した。
 実施例4の試験片は、上記の第3実施形態に対応する構成である。実施例4のインターコネクタの材料はKovarであり、接合層の材料はSnであり、基板の材料はTiである。実施例4では、インターコネクタと接合層の材料は相図に合金相を有し、また、接合層と基板の材料は相図に合金相を有している。比較例1の試験片での最大強度を1とすると、実施例4の試験片の最大強度は2.18であり、比較例1よりも大きな値を示した。
 実施例5の試験片は、上記の第4実施形態に対応する構成である。実施例5のインターコネクタの材料はKovarであり、導電被膜層の材料はMoであり、基板の材料はTiである。実施例5では、インターコネクタと導電被膜層の材料は相図に合金相を有している。比較例1の試験片での最大強度を1とすると、実施例5の試験片の最大強度は2.06であり、比較例1よりも大きな値を示した。
 実施例6の試験片は、上記の第5実施形態に対応する構成である。実施例6のインターコネクタの材料はKovarであり、基板の材料はTiである。実施例6では、インターコネクタと基板の材料は相図に合金相を有している。比較例1の試験片での最大強度を1とすると、実施例6の試験片の最大強度は2.09であり、比較例1よりも大きな値を示した。
 実施例7の試験片は、上記の第5実施形態に対応する構成である。実施例7のインターコネクタの材料はTiであり、基板の材料はTiである。実施例6では、インターコネクタと基板の材料は同種金属である。比較例1の試験片での最大強度を1とすると、実施例7の試験片の最大強度は3.15であり、比較例1よりも大きな値を示した。
 以上のように、実施例2-7では、上記の比較例1-3とは異なり、相対する要素間の金属材料がいずれも相図に合金相を有している。そのため、溶接時には相対する要素間で金属元素の拡散が生じ、各要素間での密着強度が向上すると考えられる。
 また、特に実施例7の試験片は、インターコネクタと基板の材料が同種金属であるので高い親和性を有し、溶接時にはインターコネクタと基板の界面で金属元素の拡散が生じ、インターコネクタと基板の密着強度がより向上すると考えられる。
<<実施形態の補足事項>>
 上記実施形態では、1つの光電変換素子で構成される単セル構造の太陽電池モジュールの構成を説明したが、太陽電池モジュールは導電性基板の受光面の平面方向に複数の光電変換素子を配置し、これらの光電変換素子を直列に接続した集積型構造を有していてもよい。なお、集積型構造の太陽電池モジュールの場合、導電性基板と第1の電極層の間には絶縁層が形成される。
 また、接合層27のプリカーサ層27pは、Al層27p1とAg層27p2を1層ずつ積層した上記実施形態の構成に限定されない。例えば、プリカーサ層27pは、AlとAgを含む単層膜で構成されていてもよい。また、プリカーサ層27pは、3層以上の積層膜で構成されていてもよい。プリカーサ層27pを3層以上の積層膜とする場合、2つの材料の層を厚さ方向に交互に配置してもよく、2つの材料の層にさらに他の材料の層を加えてもよい。また、AlとAgを含む層を積層膜に加えてもよい。
 また、上記の第4実施形態(図8)は、導電性基板11の裏面側に形成された導電被膜層31にインターコネクタ13を接合する構成例を説明した。しかし、本発明は、導電性基板11の受光面側において、VI族化合物層26を有する第1の電極層21(裏面電極)にインターコネクタ13を接合する構成にも適用することが可能である。
 同様に、上記の第5実施形態(図9)は、導電性基板11の裏面側にインターコネクタ13を接合する構成例を説明した。しかし、本発明は、導電性基板11の受光面側において、VI族化合物層33が表面に形成された導電性基板11にインターコネクタ13を接合する構成にも適用することが可能である。
 また、本発明の太陽電池の電極構造は宇宙用途に限定されない。例えば、地上に設置する太陽電池において、強風や地震による外力を受けても故障しにくい接続部を形成する際に本発明を適用してもよい。
 以上のように、本発明の実施形態を説明したが、実施形態は、一例として提示したものであり、本発明の範囲を限定することを意図しない。実施形態は、上記以外の様々な形態で実施することが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換、変更など、を行える。実施形態およびその変形は、本発明の範囲および要旨に含まれると共に、特許請求の範囲に記載された発明およびその均等物についても、本発明の範囲および要旨に含まれる。
 また、本出願は、2020年12月21日に出願した日本国特許出願2020-211746号に基づく優先権を主張するものであり、日本国特許出願2020-211746号の全内容を本出願に援用する。
10…太陽電池モジュール、10a…配線領域、11…導電性基板、12…光電変換素子、13…インターコネクタ、14…接続部、21、21a…第1の電極層、22…光電変換層、22p…プリカーサ層、26,32,33…VI族化合物層、27,27a,27b…接合層、27p…プリカーサ層、27p1…Al層、27p2…Ag層、31…導電被膜層

 

Claims (36)

  1.  カルコゲン太陽電池セルの基板側の導電体と、前記導電体に電気的に接続される配線要素とを有する太陽電池の電極構造であって、
     前記配線要素は前記導電体に積層されて接合され、
     前記配線要素の融点は230℃以上であり、前記配線要素に対応する領域の前記導電体には、前記配線要素の金属元素の一部が含まれる
    太陽電池の電極構造。
  2.  前記導電体は、前記カルコゲン太陽電池セルの受光面側において、前記カルコゲン太陽電池セルの光電変換層と重ならない位置で露出し、
     前記配線要素は、前記受光面側に露出した前記導電体に積層されている
    請求項1に記載の太陽電池の電極構造。
  3.  前記導電体は、前記カルコゲン太陽電池セルの基板上に形成される裏面電極層であり、
     前記配線要素は、配線部材と、前記裏面電極層と前記配線部材の間に配置される接合層とを含み、
     前記接合層の第1面は前記裏面電極層の受光面側に臨み、前記第1面とは反対側の前記接合層の第2面は前記配線部材と接合され、
     前記接合層の融点は230℃以上であり、前記接合層に対応する領域の前記裏面電極層には、前記接合層の金属元素の一部が含まれる
    請求項2に記載の太陽電池の電極構造。
  4.  前記裏面電極層の材料と前記接合層の材料は相図に合金相を有し、
     前記接合層の材料と前記配線部材の材料は相図に合金相を有する
    請求項3に記載の太陽電池の電極構造。
  5.  前記配線部材は、前記接合層の金属元素の一部を含む
    請求項3または請求項4に記載の太陽電池の電極構造。
  6.  前記接合層の材料と前記配線部材の材料には、同一の金属元素が含まれる
    請求項3または請求項4に記載の太陽電池の電極構造。
  7.  前記接合層は、Al、Pt、Zn、Snのいずれか一つを少なくとも含む
    請求項3から請求項6のいずれか一項に記載の太陽電池の電極構造。
  8.  前記配線部材は、Agを含み、
     前記接合層は、AlおよびAgを含む
    請求項6に記載の太陽電池の電極構造。
  9.  前記配線部材の材料は、Tiまたは鉄・ニッケル・コバルト合金を含む
    請求項3から請求項7のいずれか一項に記載の太陽電池の電極構造。
  10.  前記裏面電極層および前記接合層はVI族元素を含み、
     前記裏面電極層と前記接合層の積層方向において、前記VI族元素の濃度分布のピークは前記裏面電極層と前記接合層の界面からずれている
    請求項3から請求項9のいずれか一項に記載の太陽電池の電極構造。
  11.  前記裏面電極層と前記接合層の積層方向において、前記VI族元素の濃度分布のピークが前記接合層にある
    請求項10に記載の太陽電池の電極構造。
  12.  前記接合層に含まれる前記VI族元素の原子数は、前記接合層に対応する領域の前記裏面電極層に含まれる前記VI族元素の原子数より多い
    請求項10または請求項11に記載の太陽電池の電極構造。
  13.  前記導電体は、前記カルコゲン太陽電池セルの受光面とは反対側の面に露出し、
     前記配線要素は、前記反対側の面に露出した前記導電体に積層されている
    請求項1に記載の太陽電池の電極構造。
  14.  前記導電体は、前記カルコゲン太陽電池セルの基板上に形成される導電層または前記カルコゲン太陽電池セルの導電性基板であり、
     前記配線要素は、配線部材と、前記裏面電極層と前記配線部材の間に配置される接合層とを含み、
     前記接合層の第1面は前記導電体に臨み、前記第1面とは反対側の前記接合層の第2面は前記配線部材と接合され、
     前記接合層の融点は230℃以上であり、前記接合層に対応する領域の前記導電体には、前記接合層の金属元素の一部が含まれる
    請求項13に記載の太陽電池の電極構造。
  15.  前記導電体の材料と前記接合層の材料は相図に合金相を有し、
     前記接合層の材料と前記配線部材の材料は相図に合金相を有する
    請求項14に記載の太陽電池の電極構造。
  16.  前記導電体は、前記カルコゲン太陽電池セルの基板上に形成される導電層または前記カルコゲン太陽電池セルの導電性基板であり、
     前記配線要素は、前記導電体に積層される配線部材である
    請求項13に記載の太陽電池の電極構造。
  17.  前記導電体の材料と前記配線部材の材料は相図に合金相を有する
    請求項16に記載の太陽電池の電極構造。
  18.  前記配線部材の材料は、Tiまたは鉄・ニッケル・コバルト合金を含む
    請求項14から請求項17のいずれか一項に記載の太陽電池の電極構造。
  19.  カルコゲン太陽電池セルの基板側の導電体と、前記導電体に電気的に接続される配線要素とを有する太陽電池の電極構造の製造方法であって、
     前記導電体の上に、前記配線要素または前記配線要素のプリカーサ層を配置する工程と、
     前記配線要素または前記配線要素のプリカーサ層に溶接による熱エネルギーを加え、前記配線要素または前記プリカーサ層に含まれる金属元素を前記導電体に拡散させて、前記導電体と前記配線要素を接合する工程と、を有する
    太陽電池の電極構造の製造方法。
  20.  前記導電体は、前記カルコゲン太陽電池セルの受光面側において、前記カルコゲン太陽電池セルの光電変換層と重ならない位置で露出し、
     前記配線要素は、前記受光面側に露出した前記導電体に積層される
    請求項19に記載の太陽電池の電極構造の製造方法。
  21.  前記導電体は、前記カルコゲン太陽電池セルの基板上に形成される裏面電極層であり、
     前記配線要素は、配線部材と、前記裏面電極層と前記配線部材の間に配置される接合層とを含む
    請求項20に記載の太陽電池の電極構造の製造方法。
  22.  前記裏面電極層の上に、前記裏面電極層に含まれる金属元素、もしくは、前記裏面電極層の材料に対して相図に合金相を有する金属元素を含んだプリカーサ層を形成し、
     前記プリカーサ層の上に前記配線部材を配置し、
     前記プリカーサ層および前記配線部材を溶接して前記プリカーサ層に熱エネルギーを加え、前記プリカーサ層に含まれる金属元素を前記裏面電極層に拡散させて前記接合層を形成し、前記裏面電極層と前記配線部材を接合する
    請求項21に記載の太陽電池の電極構造の製造方法。
  23.  前記溶接後の前記裏面電極層は、前記プリカーサ層から拡散した金属元素を含む
    請求項22に記載の太陽電池の電極構造の製造方法。
  24.  前記プリカーサ層における前記配線部材に臨む領域には、前記配線部材に含まれる金属元素、もしくは、前記配線部材の材料に対して相図に合金相を有する金属元素が含まれ、
     前記プリカーサ層および前記配線部材を溶接するときに、前記プリカーサ層に含まれる金属元素が前記配線部材に拡散する
    請求項22または請求項23に記載の太陽電池の電極構造の製造方法。
  25.  前記溶接後の前記配線部材は、前記プリカーサ層から拡散した金属元素を含む
    請求項24に記載の太陽電池の電極構造の製造方法。
  26.  前記プリカーサ層は、Al、Pt、Zn、Snのいずれか一つを含む
    請求項22から請求項25のいずれか一項に記載の太陽電池の電極構造の製造方法。
  27.  前記配線部材は、Agを含み、
     前記プリカーサ層は、AlおよびAgを含む
    請求項22から請求項26のいずれか一項に記載の太陽電池の電極構造の製造方法。
  28.  前記プリカーサ層は、Alを含んだ第1の層と、Agを含んだ第2の層が積層された構造であり、
     前記第2の層は、前記プリカーサ層において前記配線部材に臨む面に配置される
    請求項27に記載の太陽電池の電極構造の製造方法。
  29.  前記溶接前の前記裏面電極層は、前記プリカーサ層に臨む表面にVI族元素の化合物を有し、
     前記接合層は、前記プリカーサ層に含まれる元素と前記VI族元素を含む
    請求項22から請求項28のいずれか一項に記載の太陽電池の電極構造の製造方法。
  30.  前記接合層に含まれる前記VI族元素は、前記溶接前の前記裏面電極層の表面にある前記化合物から拡散する
    請求項29に記載の太陽電池の電極構造の製造方法。
  31.  前記導電体は、前記カルコゲン太陽電池セルの受光面とは反対側の面に露出し、
     前記配線要素は、前記反対側の面に露出した前記導電体に積層されている
    請求項19に記載の太陽電池の電極構造の製造方法。
  32.  前記導電体は、前記カルコゲン太陽電池セルの基板上に形成される導電層または前記カルコゲン太陽電池セルの導電性基板であり、
     前記配線要素は、配線部材と、前記裏面電極層と前記配線部材の間に配置される接合層とを含む
    請求項31に記載の太陽電池の電極構造の製造方法。
  33.  前記導電体の材料と前記接合層の材料は相図に合金相を有し、
     前記接合層の材料と前記配線部材の材料は相図に合金相を有する
    請求項32に記載の太陽電池の電極構造の製造方法。
  34.  前記導電体は、前記カルコゲン太陽電池セルの基板上に形成される導電層または前記カルコゲン太陽電池セルの導電性基板であり、
     前記配線要素は、前記導電体に積層される配線部材である
    請求項31に記載の太陽電池の電極構造の製造方法。
  35.  前記導電体の材料と前記配線部材の材料は相図に合金相を有する
    請求項34に記載の太陽電池の電極構造の製造方法。
  36.  前記配線部材の材料は、Tiまたは鉄・ニッケル・コバルト合金を含む
    請求項32から請求項35のいずれか一項に記載の太陽電池の電極構造の製造方法。

     
PCT/JP2021/047243 2020-12-21 2021-12-21 太陽電池の電極構造および製造方法 WO2022138619A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022571485A JPWO2022138619A1 (ja) 2020-12-21 2021-12-21
US18/268,565 US20240038910A1 (en) 2020-12-21 2021-12-21 Electrode structure and manufacturing method of solar cell
EP21910762.0A EP4266375A1 (en) 2020-12-21 2021-12-21 Electrode structure of solar cell and method for manufacturing same
CN202180085865.0A CN116636019A (zh) 2020-12-21 2021-12-21 太阳能电池的电极结构和制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020211746 2020-12-21
JP2020-211746 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022138619A1 true WO2022138619A1 (ja) 2022-06-30

Family

ID=82159339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047243 WO2022138619A1 (ja) 2020-12-21 2021-12-21 太陽電池の電極構造および製造方法

Country Status (5)

Country Link
US (1) US20240038910A1 (ja)
EP (1) EP4266375A1 (ja)
JP (1) JPWO2022138619A1 (ja)
CN (1) CN116636019A (ja)
WO (1) WO2022138619A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255963A (ja) 1985-09-04 1987-03-11 Mitsubishi Electric Corp GaAs半導体装置
JP2000004034A (ja) 1998-06-16 2000-01-07 Yazaki Corp 太陽電池モジュールにおけるバスバーの接続方法
JP2007207861A (ja) 2006-01-31 2007-08-16 Showa Shell Sekiyu Kk Inハンダ被覆銅箔リボン導線及びその接続方法
JP2009252975A (ja) 2008-04-04 2009-10-29 Showa Shell Sekiyu Kk 太陽電池モジュール、及びその製造方法。
JP2012256881A (ja) * 2011-06-07 2012-12-27 Korea Electronics Telecommun 太陽電池モジュールの製造方法
JP2013074117A (ja) * 2011-09-28 2013-04-22 Kyocera Corp 光電変換モジュール
US20200027999A1 (en) * 2015-08-17 2020-01-23 Solaero Technologies Corp. Multijunction solar cell and solar cell assemblies for space applications
JP2020057694A (ja) * 2018-10-02 2020-04-09 パナソニック株式会社 太陽電池セル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255963A (ja) 1985-09-04 1987-03-11 Mitsubishi Electric Corp GaAs半導体装置
JP2000004034A (ja) 1998-06-16 2000-01-07 Yazaki Corp 太陽電池モジュールにおけるバスバーの接続方法
JP2007207861A (ja) 2006-01-31 2007-08-16 Showa Shell Sekiyu Kk Inハンダ被覆銅箔リボン導線及びその接続方法
JP2009252975A (ja) 2008-04-04 2009-10-29 Showa Shell Sekiyu Kk 太陽電池モジュール、及びその製造方法。
JP2012256881A (ja) * 2011-06-07 2012-12-27 Korea Electronics Telecommun 太陽電池モジュールの製造方法
JP2013074117A (ja) * 2011-09-28 2013-04-22 Kyocera Corp 光電変換モジュール
US20200027999A1 (en) * 2015-08-17 2020-01-23 Solaero Technologies Corp. Multijunction solar cell and solar cell assemblies for space applications
JP2020057694A (ja) * 2018-10-02 2020-04-09 パナソニック株式会社 太陽電池セル

Also Published As

Publication number Publication date
CN116636019A (zh) 2023-08-22
JPWO2022138619A1 (ja) 2022-06-30
EP4266375A1 (en) 2023-10-25
US20240038910A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US8916767B2 (en) Solar cell and method of fabricating the same
US8889468B2 (en) Method and structure for thin film tandem photovoltaic cell
US20100300514A1 (en) Solar cell and method for manufacturing solar cell
KR101081294B1 (ko) 태양전지 및 이의 제조방법
KR101172132B1 (ko) 태양전지 및 이의 제조방법
KR20110047726A (ko) 태양전지 및 이의 제조방법
EP2680320A1 (en) Thin film solar cell module and method of manufacturing the same
KR20140135095A (ko) 태양전지
US20100180927A1 (en) Affixing method and solar decal device using a thin film photovoltaic and interconnect structures
WO2022138619A1 (ja) 太陽電池の電極構造および製造方法
WO2022138623A1 (ja) 太陽電池の電極構造および製造方法
US20130133714A1 (en) Three Terminal Thin Film Photovoltaic Module and Their Methods of Manufacture
JP5064107B2 (ja) 電子部品モジュール又はcis系薄膜太陽電池モジュールのリボンワイヤの接続方法
US8207008B1 (en) Affixing method and solar decal device using a thin film photovoltaic
KR101592582B1 (ko) 태양전지 및 이의 제조방법
KR101034146B1 (ko) 태양전지 및 이의 제조방법
WO2023276759A1 (ja) 光電変換素子及び光電変換素子の製造方法
WO2023074573A1 (ja) 光電変換モジュール、パドル及び光電変換モジュールの製造方法
WO2023120614A1 (ja) 光電変換素子、太陽電池モジュール、パドル及び光電変換素子の製造方法
WO2023054652A1 (ja) 光電変換モジュール、パドル及び光電変換モジュールの製造方法
KR101081175B1 (ko) 태양전지 및 이의 제조방법
KR101327102B1 (ko) 태양전지 및 이의 제조방법
KR20100109310A (ko) 태양전지 및 이의 제조방법
JP2021174868A (ja) 光電変換素子の製造方法
CN117461147A (zh) 光电转换元件、光电转换元件的制造方法、太阳能电池模块和帆板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085865.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022571485

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18268565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910762

Country of ref document: EP

Effective date: 20230721