WO2022138149A1 - 二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備 - Google Patents

二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備 Download PDF

Info

Publication number
WO2022138149A1
WO2022138149A1 PCT/JP2021/045014 JP2021045014W WO2022138149A1 WO 2022138149 A1 WO2022138149 A1 WO 2022138149A1 JP 2021045014 W JP2021045014 W JP 2021045014W WO 2022138149 A1 WO2022138149 A1 WO 2022138149A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
carbon dioxide
mineral
carbonate
raw material
Prior art date
Application number
PCT/JP2021/045014
Other languages
English (en)
French (fr)
Inventor
則昭 渡邉
ジャジェ ワン
範芳 土屋
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to CN202180085720.0A priority Critical patent/CN116635131A/zh
Priority to US18/267,005 priority patent/US20240042374A1/en
Publication of WO2022138149A1 publication Critical patent/WO2022138149A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/90Chelants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide fixing method, a carbon dioxide recovery method, a carbon dioxide fixing device, and an environment-friendly industrial facility.
  • Non-Patent Document 2 has a problem that the material cost increases because a large amount of chemicals for pH adjustment are used.
  • the method of Non-Patent Document 3 is to open up a new field of carbon dioxide mineralization by hydrothermal alteration of rock under alkaline conditions, but it is industrially due to the high temperature at the time of melting olivine. If implemented on a large scale, equipment costs may increase.
  • the present invention has been made focusing on such problems, and is a carbon dioxide fixing method, a carbon dioxide recovery method, a carbon dioxide fixing device, and an environment-friendly industrial equipment that can reduce material cost and equipment cost.
  • the purpose is to provide.
  • the carbon dioxide fixing method according to the present invention is an aqueous solution for forming an alkaline aqueous solution containing a raw material containing a metal element capable of combining with carbonic acid ions to form a carbonate mineral and a chelating agent.
  • Carbonic acid is added to the mineral forming step of reacting the carbonate ion generated from the compound with the metal ion to form a carbonate mineral by adding a compound capable of generating carbonate ion, and to the aqueous solution after the mineral forming step.
  • a new raw material of the same type as the raw material is added to the pH lowering step of injecting gas to lower the pH of the aqueous solution formed in the aqueous solution forming step to or near the pH value, and the aqueous solution after the pH lowering step.
  • it is characterized by having a repeating step of performing from the separation step to the pH lowering step.
  • the carbon dioxide fixing method first, in the aqueous solution forming step, an alkaline aqueous solution containing the raw material and the chelating agent is formed, and in the separation step, the metal element and the chelating agent are reacted to form the raw material.
  • the metal element can be separated from the metal ion as a metal ion. Further, in the separation step, the pH of the aqueous solution can be raised by separating the metal element.
  • the carbonate ions generated from the compound and the metal ions are reacted to form a carbonate mineral. Can be formed.
  • the reaction between the carbonate ion and the metal ion can be promoted. This makes it possible to immobilize carbon dioxide as a carbonate mineral.
  • the pH lowering step carbon dioxide gas is injected into the aqueous solution after the mineral forming step to lower the pH to or near the pH value of the aqueous solution formed in the aqueous solution forming step, and carbonic acid in the aqueous solution.
  • the ion concentration can be increased.
  • a component unrelated to mineral formation in the mineral forming step or a part thereof can be precipitated in the aqueous solution.
  • the metal elements contained in the new raw material and the metal elements remaining in the aqueous solution in the second separation step can be separated as a metal ion from the raw material by reacting with the chelating agent.
  • the chelating agent added in the aqueous solution forming step is not consumed in the subsequent steps, it can be reused in the second separation step.
  • the second separation step can be performed under substantially the same conditions as the first separation step, and the second mineral formation step and the pH lowering step can also be performed in the same manner as the first step.
  • carbon dioxide can be immobilized as a carbonate mineral even in the second mineral forming step.
  • the carbon dioxide fixing method according to the present invention can fix carbon dioxide at the time of the first and second mineral forming steps and the addition of new raw materials in the repeating step, and is attracting attention in terms of environmental problems. It can contribute to the reduction of carbon dioxide.
  • the carbon dioxide fixing method according to the present invention can fix carbon dioxide under alkaline conditions and does not require a chemical for pH adjustment like a pH swing, so that the material cost can be reduced. .. Further, since the chelating agent once added can be reused, the material cost thereof can be reduced. In addition, carbon dioxide can be immobilized at a relatively low temperature, and equipment costs can be reduced.
  • the metal element contained in the raw material may be any element capable of forming a carbonate (also referred to as a carbonate mineral) such as calcium, magnesium, iron, copper and manganese. It may contain at least one of those elements, preferably. Further, the raw material may be any material containing those metal elements, and is composed of one or more of silicate minerals, steel slag, and waste-derived materials, which are relatively easily available. Is preferable.
  • the chelating agent may be any as long as it can react with metal ions, and examples of the ligand element of the chelating agent include nitrogen, oxygen, sulfur, phosphorus and arsenic. From known materials, the chelating agent is preferably biodegradable GLDA (N, N-Dicarboxymethyl glutamic acid) or EDTA (ethylenediaminetetraacetic acid).
  • the compound added in the mineral forming step is any compound such as sodium carbonate, potassium carbonate, lithium carbonate, carbon dioxide, etc., as long as it can generate carbonate ions in the aqueous solution after the separation step. It may be, for example, preferably composed of at least one of those compounds.
  • the pH of the aqueous solution (aqueous solution used in the mineral forming step) after the separation step is 10 to 10 or more. It is preferably 14. Since the pH of the aqueous solution rises in the separation step, the pH of the alkaline aqueous solution formed in the aqueous solution forming step is preferably 8 to 10 in order to make the pH of the aqueous solution 10 to 14 after the separation step. It is particularly preferable that it is 8.5 or more. In this case, the reaction in the separation step can also be promoted.
  • the separation step is preferably carried out at a temperature of 5 ° C. or higher and 80 ° C. or lower in order to promote the reaction between the metal element in the raw material and the chelating agent, even if it is carried out at room temperature. good.
  • the mineral forming step is preferably carried out at a temperature of 70 ° C. to 170 ° C. in order to promote the reaction between the carbonate ion and the metal ion.
  • the pH lowering step is preferably performed at a temperature of 5 ° C. or higher and 80 ° C. or lower, and may be performed at room temperature.
  • the aqueous solution forming step it is preferable to add a raw material and a chelating agent to water to form an aqueous solution.
  • the separation step after separating the metal element, the solid component remaining without being dissolved in the aqueous solution may be recovered.
  • the mineral forming step it is preferable to recover the formed carbonate mineral from the aqueous solution after the reaction.
  • the pH lowering step after lowering the pH, the precipitated solid component may be recovered.
  • the above-mentioned repeating step may be repeated a plurality of times.
  • carbon dioxide can be continuously immobilized at the time of adding a new raw material in the repeating process or in each mineral forming process.
  • the chelating agent added in the aqueous solution forming step can be repeatedly used in each separation step in the repeating step, and the material cost can be further reduced.
  • the carbon dioxide used is preferably carbon dioxide discharged and recovered from an industry having a high environmental load due to carbon dioxide emission.
  • a known method may be adopted as a method for separating and recovering carbon dioxide from the exhaust gas.
  • a “chemical absorption method” in which carbon dioxide is separated using an amine aqueous solution can be used. This method utilizes the property of an aqueous amine solution that it absorbs carbon dioxide at low temperatures and releases carbon dioxide at high temperatures. By using this method, carbon dioxide can be separated and recovered.
  • the carbon dioxide fixing method according to the present invention can be fixed by using carbon dioxide emitted from an industry having a high environmental load due to carbon dioxide emission.
  • industries with high environmental load based on the carbon dioxide emission ratio 2018; International Energy Agency (IEA)
  • ISO International Energy Agency
  • cement 27%
  • steel 25%
  • petrochemical 14%
  • Paper and pulp 2%
  • aluminum 2%
  • other industries (30%)
  • thermal power plants, steel industries, and petrochemical industries that use fossil fuels (petroleum, coal, natural gas, etc.) as raw materials are also listed as industries with a high environmental load due to carbon dioxide emissions.
  • the method for recovering carbon dioxide according to the present invention is characterized by recovering carbon dioxide emitted from an industry having a high environmental load due to carbon dioxide emission by the carbon dioxide fixing method according to the present invention.
  • the method for recovering carbon dioxide according to the present invention can reduce the environmental load caused by these industries.
  • the carbon dioxide fixing device includes an aqueous solution forming portion provided to form an alkaline aqueous solution containing a raw material containing a metal element capable of forming a carbonate mineral by combining with carbonic acid ions and a chelating agent. After the metal ion is separated into a separation portion provided to separate the metal element as a metal ion from the raw material by reacting the metal element with the chelating agent in the aqueous solution, and the separation portion.
  • a mineral forming portion provided to react the carbonate ion generated from the compound with the metal ion to form a carbonate mineral by adding a compound capable of generating carbonate ion in the aqueous solution to the aqueous solution.
  • carbonic acid gas is injected into the aqueous solution after forming the carbonate mineral in the mineral forming portion to lower the pH to or near the pH value of the aqueous solution formed in the aqueous solution forming portion.
  • It has a pH-lowered portion and a raw material addition section provided to add a new raw material of the same type as the raw material to the aqueous solution in which the pH is lowered in the pH-lowered section, and the new raw material is added in the raw material addition section. It is characterized in that the aqueous solution containing the above is supplied to the separation part and sequentially moved from the separation part to the mineral forming part and the pH lowering part.
  • the carbon dioxide fixing device according to the present invention can suitably carry out the carbon dioxide fixing method according to the present invention.
  • the carbon dioxide fixing device and the carbon dioxide fixing method according to the present invention can provide carbonic acid-fixed carbonate minerals.
  • the carbon dioxide fixing device according to the present invention is preferably used for fixing the emitted carbon dioxide in, for example, an industry having a high environmental load due to carbon dioxide emission, and is one of the emission environment-friendly industrial equipment. It is preferable to incorporate it as a part. That is, the environment-friendly industrial equipment according to the present invention is characterized by including the carbon dioxide fixing device according to the present invention.
  • the present invention it is possible to provide a carbon dioxide fixing method, a carbon dioxide recovery method, a carbon dioxide fixing device, and an environment-friendly industrial equipment that can reduce material cost and equipment cost.
  • FIG. 6 is an example of a flowchart showing the flow of each step of the carbon dioxide fixation method of the embodiment of the present invention, and (b) a graph showing the pH and temperature of the aqueous solution in each step.
  • This is an example of a perspective view showing an aqueous solution (upper figure) and a solid component (lower figure) filtered after the separation reaction.
  • the pH dependence of (a) the aqueous solution and (b) the temperature of the aqueous solution represent the time course of the Ca concentration when the separation reaction shown in FIG. 2 (a) is carried out in the carbon dioxide fixing method of the embodiment of the present invention. It is an example of a graph showing the dependence, (c) the input amount dependence of CaSiO 3 as a raw material, and (d) the concentration dependence of GLDA of the chelating agent.
  • FIG. 6A is an example of a graph showing the relationship between the pH of the aqueous solution and the Si concentration at the time of injecting carbon dioxide gas in the carbon dioxide fixation method of the embodiment of the present invention.
  • FIG. 1 An example of a perspective view showing a state in which (a) an aqueous solution containing a raw material is stirred to cause a separation reaction, which represents a separation step in a repeating step of the carbon dioxide immobilization method of the present invention, (b) filtration after the separation reaction.
  • FIG. 1 An example of each perspective view which shows the aqueous solution (upper figure) and solid component (lower figure) which were made.
  • Each is an example of a perspective view showing an aqueous solution (upper figure) and a solid component (lower figure). It is a flowchart which shows the amount of each component in each step when 100 kg of the raw material CaSiO 3 is charged, which shows the aqueous solution formation step and the repeat step of the carbon dioxide fixing method of an embodiment of this invention.
  • FIG. 1 shows a carbon dioxide fixation method according to an embodiment of the present invention.
  • the carbon dioxide fixing method of the embodiment of the present invention includes an aqueous solution forming step, a separation step, a mineral forming step, a pH lowering step, and a repeating step.
  • a raw material containing a metal element and a chelating agent are added to water to form an alkaline aqueous solution having a pH of 8 to 10. Further, the temperature of the aqueous solution is set to room temperature to 80 ° C. or lower.
  • a chelating agent is added to water to form an aqueous solution having a pH of 8 to 10, the temperature of the aqueous solution is lowered to room temperature to 80 ° C. or lower, and then a raw material is added to the aqueous solution.
  • the metal element contained in the raw material is composed of an element capable of forming a carbonate mineral by combining with a carbonate ion, for example, calcium, magnesium, iron, copper, manganese and the like.
  • the raw material is composed of those containing such metal elements, and is, for example, silicate minerals, steel slag, waste, etc., which are relatively easily available.
  • the chelating agent is made of a chelating agent capable of reacting with metal ions, and is, for example, biodegradable GLDA-4Na or EDTA-4Na.
  • the metal element is Ca or Mg
  • the raw material is the silicate mineral CaSiO 3 or Mg 3 Si 2 O 5 (OH) 4 .
  • the metal element contained in the raw material reacts with the chelating agent in the separation step and is separated into the aqueous solution as a metal ion. Separation of the metal element raises the pH of the aqueous solution, and the pH of the aqueous solution after the separation step becomes 10 to 14. In the separation step, after separating the metal element, the solid component remaining without being dissolved in the aqueous solution may be recovered.
  • the aqueous solution (pH 10 to 14) after the separation step is brought to 70 ° C. or higher, and a compound capable of generating carbonate ions is added in the aqueous solution.
  • a compound capable of generating carbonate ions is added in the aqueous solution.
  • the recovered carbonate minerals can be effectively used.
  • the pH of the aqueous solution hardly changes.
  • the compound added to the aqueous solution in the mineral forming step comprises a compound capable of producing carbonate ions in the aqueous solution after the separation step, and is, for example, sodium carbonate, potassium carbonate, lithium carbonate, carbon dioxide and the like.
  • the compound is sodium carbonate (Na 2 Co 3 )
  • Ca or Mg in the raw material can be carbonated to form the carbonate mineral CaCO 3 or MgCO 3 . can.
  • the aqueous solution after the mineral forming step is brought to room temperature to 80 ° C. or lower, carbon dioxide gas is injected, and the pH value of the aqueous solution formed in the aqueous solution forming step or its value.
  • the pH is lowered to the vicinity. Specifically, the pH is lowered to 8 to 10 to restore the pH to the original value. This increases the concentration of carbonate ions in the aqueous solution.
  • the precipitated solid component may be recovered from the aqueous solution after the pH is lowered. The recovered solid component can be effectively used.
  • silica (SiO 2 ) which is a part of a raw material, can be precipitated as amorphous silica.
  • a new raw material of the same type as the raw material is added to the aqueous solution after the pH lowering step.
  • a carbonate mineral can be formed by reacting a metal ion generated from a metal element contained in a new raw material or a metal ion not consumed in the first mineral forming step with a carbonate ion. This makes it possible to immobilize carbon dioxide as a carbonate mineral.
  • the second separation step the metal element contained in the new raw material can be reacted with the chelating agent remaining in the aqueous solution to separate the metal element from the raw material as a metal ion. Since the chelating agent added in the aqueous solution forming step is not consumed in the subsequent steps, it can be reused in the second separation step. In this way, the second separation step can be performed under substantially the same conditions as the first separation step, and the second mineral formation step and the pH lowering step can also be performed in the same manner as the first step. As a result, carbon dioxide can be immobilized as a carbonate mineral even in the second mineral forming step.
  • the carbon dioxide fixing method according to the embodiment of the present invention can fix carbon dioxide at the time of the first and second mineral forming steps and the addition of new raw materials in the repeating step, and the carbon dioxide discharged can be fixed. It can contribute to the reduction of carbon dioxide.
  • the carbon dioxide fixation method of the embodiment of the present invention can immobilize carbon dioxide under alkaline conditions and does not require a chemical for pH adjustment such as a pH swing, so that the material cost thereof can be reduced. Can be done. Further, since the chelating agent once added can be reused, the material cost thereof can be reduced. In addition, carbon dioxide can be immobilized at a relatively low temperature, and equipment costs can be reduced.
  • the carbon dioxide fixation method according to the embodiment of the present invention may be repeated a plurality of times.
  • carbon dioxide can be continuously immobilized at the time of adding a new raw material in each repeating step or in each mineral forming step.
  • the chelating agent added in the aqueous solution forming step can be repeatedly used in each separation step in the repeating step, and the material cost can be further reduced.
  • CaSiO 3 was added to an aqueous solution 2a formed by adding GLDA-4Na to 100 ml of water in a beaker 1 and stirred, and after a lapse of a predetermined time, FIG. As shown in 2 (b), the aqueous solution was filtered to remove the undissolved residue of CaSiO 3 .
  • the beaker 1 containing the aqueous solution 2a is placed on the stirrer with a heater 3, and the temperature and pH of the aqueous solution in the experiment are measured by the temperature sensor 4 and the pH sensor 5, respectively.
  • the experiment was carried out under the conditions that the pH (pH 0 ) of the aqueous solution 2a, the temperature of the aqueous solution 2a, the input amount of CaSiO 3 and the concentration of GLDA-4Na were variously changed as parameters.
  • the concentration of Ca (Ca ion) in the filtered aqueous solution 2b in each of Experiment Nos. 1 to 12 shown in Table 1 was measured. ..
  • all Ca in the aqueous solution represents Ca ions.
  • FIGS. 3 (a) to 3 (d) it was confirmed that the Ca separation reaction by the chelating agent was almost completed within 20 minutes. Further, as shown in FIG. 3A, it was confirmed that the smaller the pH, the larger the extraction amount (separation amount) of Ca. Further, as shown in FIG. 3 (b), the higher the temperature of the aqueous solution, the faster the Ca separation rate, but regardless of the temperature and the presence or absence of stirring, the Ca separation reaction is almost completed in 20 minutes, and the Ca separation reaction is almost completed. It was confirmed that the extraction amount was almost the same. Further, as shown in FIG. 3 (c), it was confirmed that the amount of Ca extracted was substantially proportional to the amount of the raw material. Further, as shown in FIG. 3D, it was confirmed that the concentration of the chelating agent did not significantly affect the amount of Ca extracted.
  • the experiment was carried out under the conditions that the temperature of the aqueous solution was 60 ° C., 80 ° C., 120 ° C. and 160 ° C., and the concentration of Na 2 CO 3 was 0.3 mol / L and 0.6 mol / L.
  • a beaker 1 was used when the temperature of the aqueous solution was 60 ° C. and 80 ° C.
  • a pressure vessel was used when the temperature of the aqueous solution was 120 ° C. and 160 ° C.
  • FIG. 5 (a) When the concentration of Na 2 CO 3 is 0.3 mol / L, the residual ratio of Ca in the aqueous solution (Residual Ca ratio) at each temperature 70 minutes after the addition of Na 2 CO 3 is shown in FIG. 5 (a). ). Note that FIG. 5A also shows the Residual Si ratio for comparison. Further, the time course of the residual ratio of Ca at each concentration of Na 2 CO 3 when the aqueous solution is 80 ° C. is shown in FIG. 5 (b).
  • the solid component obtained by filtration was the carbonate mineral aragonite (CaCO 3 ). Therefore, Ca is carbonated to reduce Ca in the aqueous solution. It was confirmed that The purity of the obtained aragonite was 90% or more.
  • the amount of Ca decrease was the largest when the temperature of the aqueous solution was 120 ° C., but at 100 ° C. or higher, it is necessary to use a pressure vessel or the like, which increases the size of the device and increases the equipment cost. For practical use, it is preferable to carry out the mineral forming step at a temperature lower than 100 ° C.
  • the relationship between the measured pH and the Si concentration is shown in FIG. As shown in FIG. 7, it was confirmed that the Si concentration decreased as the pH of the aqueous solution decreased due to the formation of carbonic acid ions by the injection of carbon dioxide gas. It was also confirmed that the pH of the aqueous solution was lowered to 9 by injecting carbon dioxide gas for 5 minutes. As shown in FIG. 6B, since the solid component obtained by filtration was amorphous silica (SiO 2 ), amorphous silica is formed by lowering the pH, and Si in the aqueous solution is removed. It was confirmed that. Further, as shown in FIG. 7, it was confirmed that by setting the pH of the aqueous solution to 10 or less, the Si removal rate becomes about 90% or more, and almost all Si can be removed.
  • SiO 2 amorphous silica
  • the purity of the obtained aragonite was 90% or more.
  • the aqueous solution 2f obtained after filtration in the second mineral forming step shown in FIG. 9 (b) is substantially the same as the aqueous solution 2c obtained after filtration in the first mineral forming step shown in FIG. 4 (b). Was confirmed.
  • the second separation step, the mineral forming step and the pH lowering step can be performed in the same manner as in the first step.
  • the amount of each component in each step when 100 kg of the raw material CaSiO 3 was added in the aqueous solution forming step and the repeating step was determined and shown in FIG.
  • FIG. 10 under the conditions of pH, aqueous solution temperature, and concentration shown in the figure, about 8 kg of carbon dioxide can be immobilized in the first mineral forming step, and the second of the repeating steps.
  • about 8 kg of carbon dioxide can be immobilized in each of the separation step and the mineral formation step. Therefore, for example, by repeating the separation step, the mineral forming step, and the pH lowering step in the repeating step, about 16 kg of carbon dioxide can be immobilized from 100 kg of CaSiO 3 in each repeating step.
  • the carbon dioxide fixation device can be easily designed and manufactured by applying the carbon dioxide fixation method according to the embodiment of the present invention. That is, the carbon dioxide fixation device of the embodiment of the present invention has an aqueous solution forming portion, a separating portion, a mineral forming portion, a pH lowering portion, and a raw material addition portion.
  • the aqueous solution forming portion is provided so as to form an alkaline aqueous solution containing a raw material containing a metal element capable of combining with carbonic acid ions to form a carbonate mineral and a chelating agent, and the carbon dioxide according to the embodiment of the present invention. It is possible to carry out the aqueous solution forming step of the fixing method.
  • the separation unit is provided so as to react the metal element with the chelating agent in the aqueous solution to separate the metal element as a metal ion from the raw material, and the separation step of the carbon dioxide fixing method of the embodiment of the present invention can be performed. It is feasible.
  • a compound capable of generating carbonate ions in the aqueous solution is added to the aqueous solution after separating the metal ions in the separating section, so that the carbonate ions generated from the compound and the metal ions are reacted to form carbonic acid. It is provided to form a salt mineral, and the mineral forming step of the carbonic acid fixing method of the embodiment of the present invention can be carried out.
  • the pH lowering part carbon dioxide gas is injected into the aqueous solution after forming the carbonate mineral in the mineral forming part to lower the pH to or near the pH value of the aqueous solution formed in the aqueous solution forming part. It is provided, and the pH lowering step of the carbon dioxide fixing method of the embodiment of the present invention can be carried out.
  • the raw material addition section is provided so as to add a new raw material of the same type as the raw material used in the aqueous solution forming section to the aqueous solution whose pH is lowered in the pH lowering section.
  • the carbon dioxide fixation device is configured to supply an aqueous solution to which a new raw material is added in the raw material addition section to the separation section and sequentially move the solution from the separation section to the mineral forming section and the pH lowering section. Therefore, it is possible to carry out the repeating step of the carbon dioxide fixation method of the embodiment of the present invention together with the raw material addition part. Thereby, the carbon dioxide fixing method and the carbon dioxide fixing device of the embodiment of the present invention can provide carbon dioxide-fixed carbonate minerals.
  • the carbon dioxide fixing device can fix carbon dioxide emitted from an industry having a high environmental load due to carbon dioxide emission.
  • the carbon dioxide fixing device of the embodiment of the present invention can be incorporated as an emission environment-friendly industrial facility for fixing emitted carbon dioxide and a part thereof in an industry having a high environmental load due to carbon dioxide emission. That is, the environment-friendly industrial equipment according to the embodiment of the present invention includes the carbon dioxide fixation device according to the embodiment of the present invention.
  • the method for recovering carbon dioxide according to the embodiment of the present invention recovers carbon dioxide emitted from an industry having a high environmental load due to carbon dioxide emission by the carbon dioxide fixing method according to the embodiment of the present invention. Thereby, the method for recovering carbon dioxide according to the embodiment of the present invention can reduce the environmental load caused by these industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

【課題】材料コストや設備コストを低減することができる二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備を提供する。 【解決手段】水溶液形成工程で、炭酸イオンと化合して炭酸塩鉱物を形成可能な金属元素を含む原料と、キレート剤とを含むアルカリ性の水溶液を形成する。分離工程で、その水溶液中で、金属元素とキレート剤とを反応させて、原料から金属元素を金属イオンとして分離する。鉱物形成工程で、その水溶液に、炭酸イオンを生成可能な化合物を加えることにより、その化合物から生じた炭酸イオンと金属イオンとを反応させて炭酸塩鉱物を形成する。pH低下工程で、その水溶液に、二酸化炭素ガスを注入して、水溶液形成工程で形成した水溶液のpHの値またはその値の近傍までpHを低下させる。繰り返し工程で、その水溶液に、新たな原料を加えて、分離工程からpH低下工程までを行う。

Description

二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備
 本発明は、二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備に関する。
 近年の地球温暖化の急速な進行にともない、大気中の二酸化炭素(CO)を大規模かつ迅速に削減することが求められている。二酸化炭素を削減する有力な方法の一つとして、二酸化炭素の長期貯蔵を目的として、二酸化炭素を難水溶性炭酸塩鉱物として固定化(鉱物化)する方法が提案されている(例えば、非特許文献1参照)。
 従来、鉱物化による二酸化炭素固定方法として、まず、酸を大量に使用した低pH条件下(例えば、pH<4)で、岩石や産業廃棄物を溶解して金属イオン(Ca2+、Mg2+)を抽出した後、アルカリを添加した高pH条件下(例えば、pH>9)で、抽出した金属イオンを炭酸化させて炭酸塩鉱物を析出させる、いわゆるpHスイング(pH-swing process)と呼ばれる方法が開発されている(例えば、非特許文献2参照)。
 また、地中での水熱反応を考慮した方法として、高濃度の配位子NaHCOを触媒として利用することにより、225~300℃の温度条件下で、カンラン石[(Mg,Fe)SiO)]の溶解が大幅に促進され、マグネサイト(MgCO)の形成による二酸化炭素固定が可能であることが、本発明者等により見出されている(例えば、非特許文献3参照)。
Sandra O. Snabjornsdottir, Bergur Sigfusson, Chiara Marieni, David Goldberg, Sigurdur R. Gislason and Eric H. Oelkers, "Carbon dioxide storage through mineral carbonation", Nature Reviews Earth & Environment, February 2020, Volume 1, p.90-102 Amin Azdarpour, Mohammad Asadullah, Radzuan Junin, Muhammad Manan, Hossein Hamidi, Ahmad Rafizan Mohamad Daud, "Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review", Energy Procedia, 2014, 61, p.2783-2786 Jiajie Wang, Noriaki Watanabe, Atsushi Okamoto, Kengo Nakamura, Takeshi Komai, "Enhanced hydrogen production with carbon storage by olivine alteration in CO2-rich hydrothermal environments", Journal of CO2 Utilization, 2019, 30, p.205-213
 しかしながら、非特許文献2に記載のpHスイングでは、pH調整のための薬品を大量に使用するため、その材料コストが嵩むという課題があった。また、非特許文献3の方法は、アルカリ性条件下での岩石の熱水変質による二酸化炭素鉱物化の分野を新たな開拓するものであるが、カンラン石溶解時の温度が高いため、工業的に大規模に実施する場合には、設備コストが嵩む可能性がある。
 本発明は、このような課題に着目してなされたもので、材料コストや設備コストを低減することができる二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備を提供することを目的とする。
 上記目的を達成するために、本発明に係る二酸化炭素固定方法は、炭酸イオンと化合して炭酸塩鉱物を形成可能な金属元素を含む原料と、キレート剤とを含むアルカリ性の水溶液を形成する水溶液形成工程と、前記水溶液中で、前記金属元素と前記キレート剤とを反応させて、前記原料から前記金属元素を金属イオンとして分離する分離工程と、前記分離工程後の水溶液に、その水溶液中で炭酸イオンを生成可能な化合物を加えることにより、前記化合物から生じた炭酸イオンと前記金属イオンとを反応させて炭酸塩鉱物を形成する鉱物形成工程と、前記鉱物形成工程後の水溶液に、二酸化炭素ガスを注入して、前記水溶液形成工程で形成した水溶液のpHの値またはその値の近傍までpHを低下させるpH低下工程と、前記pH低下工程後の水溶液に、前記原料と同種の新たな原料を加えて、前記分離工程から前記pH低下工程までを行う繰り返し工程とを、有することを特徴とする。
 本発明に係る二酸化炭素固定方法は、まず、水溶液形成工程で、原料とキレート剤とを含むアルカリ性の水溶液を形成することにより、分離工程で、その金属元素とキレート剤とを反応させて、原料から金属元素を金属イオンとして分離することができる。また、分離工程では、金属元素の分離により、水溶液のpHを上昇させることができる。
 次に、鉱物形成工程で、分離工程後の水溶液に、その水溶液中で炭酸イオンを生成可能な化合物を加えることにより、その化合物から生じた炭酸イオンと金属イオンとを反応させて、炭酸塩鉱物を形成することができる。このとき、分離工程により水溶液のpHが上昇しているため、炭酸イオンと金属イオンとの反応を促進することができる。これにより、二酸化炭素を炭酸塩鉱物として固定化することができる。
 次に、pH低下工程で、鉱物形成工程後の水溶液に、二酸化炭素ガスを注入し、水溶液形成工程で形成した水溶液のpHの値またはその値の近傍までpHを低下させると共に、水溶液中の炭酸イオン濃度を増大させることができる。また、pHの低下により、原料の種類に応じて、鉱物形成工程での鉱物形成とは無関係な成分またはその一部を、水溶液中に析出させることができる。
 次に、繰り返し工程で、pH低下工程後の水溶液に、新たな原料を加えることにより、その原料に含まれる金属元素から生じる金属イオンや、1回目の鉱物形成工程で消費されなかった金属イオンと、pH低下工程で濃度が増加した炭酸イオンとを反応させて、炭酸塩鉱物を形成することができる。これにより、二酸化炭素を炭酸塩鉱物として固定化することができる。
 また、炭酸イオンとの反応で消費される量より多くの金属イオンが生じるよう、新たな原料を加えることにより、2回目の分離工程で、新たな原料に含まれる金属元素と、水溶液中に残っているキレート剤とを反応させて、原料から金属元素を金属イオンとして分離することができる。このとき、水溶液形成工程で投入したキレート剤は、その後の工程で消費されないため、2回目の分離工程でも再利用することができる。このように、2回目の分離工程を、1回目の分離工程とほぼ同じ条件で行うことができ、2回目の鉱物形成工程およびpH低下工程も、それぞれ1回目と同様に行うことができる。これにより、2回目の鉱物形成工程でも、二酸化炭素を炭酸塩鉱物として固定化することができる。
 このように、本発明に係る二酸化炭素固定方法は、1回目および2回目の鉱物形成工程、ならびに繰り返し工程での新たな原料投入時に、二酸化炭素を固定することができ、環境問題で注目される二酸化炭素の削減に寄与することができる。本発明に係る二酸化炭素固定方法は、アルカリ性条件下で二酸化炭素を固定化することができ、pHスイングのようにpH調整のための薬品が不要であるため、その材料コストを低減することができる。また、一度投入されたキレート剤を再利用することができるため、その材料コストも低減することができる。また、比較的低温で二酸化炭素を固定化することができ、設備コストも低減することができる。
 本発明に係る二酸化炭素固定方法について、原料に含まれる金属元素は、カルシウム、マグネシウム、鉄、銅、マンガンなど、炭酸塩(炭酸塩鉱物とも呼ばれる)を形成可能な元素であればいかなるものであってもよく、それらの元素のうちの少なくとも1つを含んでいることが好ましい。また、原料は、それらの金属元素を含むものであればいかなるものであってもよく、比較的入手が容易なケイ酸塩鉱物、鉄鋼スラグ、および廃棄物由来のもののうちの1または複数から成ることが好ましい。キレート剤は、金属イオンと反応可能であればいかなるものであってよく、例えば、キレート剤の配位子元素には、窒素、酸素、硫黄(いおう)、リン又はヒ素等が挙げられる。キレート剤は、公知な材料から、具体的には、生分解性のGLDA(N,N-Dicarboxymethyl glutamic acid)やEDTA(ethylenediaminetetraacetic acid)であることが好ましい。
 本発明に係る二酸化炭素固定方法で、鉱物形成工程で加える化合物は、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、二酸化炭素など、分離工程後の水溶液中で炭酸イオンを生成可能なものであればいかなるものであってもよく、例えば、それらの化合物のうちの少なくとも1つから成ることが好ましい。
 本発明に係る二酸化炭素固定方法は、鉱物形成工程での炭酸イオンと金属イオンとの反応をより促進するために、分離工程後の水溶液(鉱物形成工程で使用する水溶液)のpHが、10乃至14であることが好ましい。分離工程により水溶液のpHが上昇するため、分離工程後の水溶液のpHを10乃至14にするためには、水溶液形成工程で形成するアルカリ性の水溶液のpHが、8乃至10であることが好ましく、8.5以上であることが特に好ましい。この場合、分離工程での反応も促進することができる。
 本発明に係る二酸化炭素固定方法で、分離工程は、原料中の金属元素とキレート剤との反応を促進するために、5℃以上80℃以下の温度で行うことが好ましく、室温で行ってもよい。鉱物形成工程は、炭酸イオンと金属イオンとの反応を促進するために、70℃乃至170℃の温度で行うことが好ましい。pH低下工程は、5℃以上80℃以下の温度で行うことが好ましく、室温で行ってもよい。
 本発明に係る二酸化炭素固定方法で、水溶液形成工程は、水に原料とキレート剤とを加えて水溶液を形成することが好ましい。分離工程は、金属元素を分離後、水溶液に溶けずに残存した固体成分を回収してもよい。また、鉱物形成工程は、形成された炭酸塩鉱物を、反応後の水溶液から回収することが好ましい。また、pH低下工程は、pHを低下させた後、析出した固体成分を回収してもよい。
 本発明に係る二酸化炭素固定方法は、前記繰り返し工程を複数回繰り返してもよい。この場合、繰り返し工程での新たな原料投入時や各鉱物形成工程で、連続的に二酸化炭素を固定化することができる。また、水溶液形成工程で投入したキレート剤を、繰り返し工程での各分離工程で繰り返し使用することができ、材料コストをさらに低減することができる。
 本発明に係る二酸化炭素固定方法において、使用する二酸化炭素は、二酸化炭素排出による環境負荷の高い産業から排出され、回収される二酸化炭素であることが好ましい。排出ガスから二酸化炭素を分離・回収する方法として、公知方法を採用してもよい。例えば、化石燃料の燃焼後に二酸化炭素を回収する「燃焼後回収方式」では、アミン水溶液を利用して二酸化炭素を分離する「化学吸収法」を用いることができる。この方法では、アミン水溶液は、低温の状態では二酸化炭素を吸収し、高温になると二酸化炭素を放出するというアミン水溶液の性質を利用している。この方法を利用することで、二酸化炭素を分離回収が可能である。
 本発明に係る二酸化炭素固定方法は、二酸化炭素排出による環境負荷の高い産業から排出される二酸化炭素を利用して、固定することができる。例えば、日本において、二酸化炭素排出量比率(2018年;国際エネルギー機関(IEA))に基づく環境負荷の高い産業とは、セメント(27%)、鉄鋼(25%)、石油化学(14%)、紙パルプ(2%)、アルミニウム(2%)、その他産業(30%)が挙げられる。また、化石燃料(石油、石炭、天然ガス等)を原料とする火力発電所や鉄鋼産業、石油化学業も、二酸化炭素排出による環境負荷の高い産業として挙げられる。
 本発明に係る二酸化炭素の回収方法は、本発明に係る二酸化炭素固定方法により、二酸化炭素排出による環境負荷の高い産業から排出される二酸化炭素を回収することを特徴とする。
 本発明に係る二酸化炭素の回収方法は、これらの産業による環境負荷の低減を図ることができる。
 本発明に係る二酸化炭素固定装置は、炭酸イオンと化合して炭酸塩鉱物を形成可能な金属元素を含む原料と、キレート剤とを含むアルカリ性の水溶液を形成するよう設けられた水溶液形成部と、前記水溶液中で、前記金属元素と前記キレート剤とを反応させて、前記原料から前記金属元素を金属イオンとして分離するよう設けられた分離部と、前記分離部で前記金属イオンを分離した後の水溶液に、その水溶液中で炭酸イオンを生成可能な化合物を加えることにより、前記化合物から生じた炭酸イオンと前記金属イオンとを反応させて炭酸塩鉱物を形成するよう設けられた鉱物形成部と、前記鉱物形成部で前記炭酸塩鉱物を形成後の水溶液に、二酸化炭素ガスを注入して、前記水溶液形成部で形成された水溶液のpHの値またはその値の近傍までpHを低下させるよう設けられたpH低下部と、前記pH低下部でpHを低下させた水溶液に、前記原料と同種の新たな原料を加えるよう設けられた原料追加部とを有し、前記原料追加部で前記新たな原料を加えた水溶液を前記分離部に供給し、前記分離部から前記鉱物形成部、前記pH低下部まで順次移動させるよう構成されていることを特徴とする。
 本発明に係る二酸化炭素固定装置は、本発明に係る二酸化炭素固定方法を好適に実施することができる。本発明に係る二酸化炭素固定装置および二酸化炭素固定方法は、二酸化炭素固定化された炭酸塩鉱物を提供することができる。また、本発明に係る二酸化炭素固定装置は、例えば、二酸化炭素排出による環境負荷の高い産業において、排出される二酸化炭素を固定する際に使用されることが好ましく、排出環境配慮型産業設備の一部として組み込まれることが好ましい。すなわち、本発明に係る環境配慮型産業設備は、本発明に係る二酸化炭素固定装置を備えていることを特徴とする。
 本発明によれば、材料コストや設備コストを低減することができる二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備を提供することができる。
本発明の実施形態の二酸化炭素固定方法の、(a)各工程の流れを示すフローチャートの一例、(b)各工程での水溶液のpHおよび温度を示すグラフである。 本発明の実施形態の二酸化炭素固定方法の、水溶液形成工程および分離工程において行われる単位操作図であって、(a)水溶液を撹拌して分離反応させる状態を示す斜視図の一例、(b)分離反応後にろ過した水溶液(上図)および固体成分(下図)を示す斜視図の一例である。 本発明の実施形態の二酸化炭素固定方法の、図2(a)に示す分離反応を実施されたときのCa濃度の経時変化を表す、(a)水溶液のpH依存性、(b)水溶液の温度依存性、(c)原料のCaSiOの投入量依存性、(d)キレート剤のGLDAの濃度依存性を示すグラフの例示である。 本発明の実施形態の二酸化炭素固定方法の、鉱物形成工程の(a)水溶液にNaCOを加えて反応させる状態を示す斜視図の一例、(b)反応後にろ過した水溶液の斜視図(上図)および固体成分の電子顕微鏡写真(下図)の各例示である。 本発明の実施形態の二酸化炭素固定方法の、図4(a)に示す反応結果として、(a)70分経過後の各温度での水溶液中のCaおよびSiの残存割合(Residual Ca and Si ratio)を示すグラフの一例、(b)水溶液が80℃のときの、NaCOの各濃度でのCaの残存割合の経時変化を示すグラフの一例である。 本発明の実施形態の二酸化炭素固定方法の、pH低下工程を表す、(a)水溶液に二酸化炭素ガス(CO gas)注入する状態を示す斜視図の一例、(b)二酸化炭素ガスを5分間注入後にろ過した水溶液の斜視図(上図)および固体成分の電子顕微鏡写真(下図)の各例示である。 本発明の実施形態の二酸化炭素固定方法の、図6(a)で二酸化炭素ガス注入時の水溶液のpHとSi濃度との関係を示すグラフの一例である。 本発明の実施形態の二酸化炭素固定方法の、繰り返し工程における分離工程を表す、(a)原料を加えた水溶液を撹拌して分離反応させる状態を示す斜視図の一例、(b)分離反応後にろ過した水溶液(上図)および固体成分(下図)を示す斜視図の各例示である。 本発明の実施形態の二酸化炭素固定方法の、繰り返し工程における鉱物形成工程を表す、(a)水溶液にNaCOを加えて反応させる状態を示す斜視図の一例、(b)反応後にろ過した水溶液(上図)および固体成分(下図)を示す斜視図の各例示である。 本発明の実施形態の二酸化炭素固定方法の、水溶液形成工程および繰り返し工程を表す、原料のCaSiOを100kg投入したときの、各工程での各成分の量を示すフローチャートである。
 以下、図面および実施例等に基づいて、本発明の実施形態について説明する。
 図1は、本発明の実施形態の二酸化炭素固定方法を示している。
 図1に示すように、本発明の実施形態の二酸化炭素固定方法は、水溶液形成工程と分離工程と鉱物形成工程とpH低下工程と繰り返し工程とを有している。
 本発明の実施形態の二酸化炭素固定方法では、まず、水溶液形成工程として、水に、金属元素を含む原料とキレート剤とを加えて、pHが8乃至10のアルカリ性の水溶液を形成する。また、その水溶液の温度を、室温~80℃以下にする。具体的な一例では、水にキレート剤を加えてpHが8乃至10の水溶液を形成し、その水溶液の温度を室温~80℃以下にした後、その水溶液に原料を加える。
 水溶液形成工程で、原料に含まれる金属元素は、炭酸イオンと化合して炭酸塩鉱物を形成可能な元素から成り、例えば、カルシウム、マグネシウム、鉄、銅、マンガンなどである。また、原料は、それらの金属元素を含むものから成り、例えば、比較的入手が容易なケイ酸塩鉱物、鉄鋼スラグ、廃棄物などである。また、キレート剤は、金属イオンと反応可能なものから成り、例えば、生分解性のGLDA-4NaやEDTA-4Naなどである。なお、図1に示す具体的な一例では、金属元素はCaまたはMgであり、原料は、ケイ酸塩鉱物のCaSiOまたはMgSi(OH)である。
 水溶液形成工程で水溶液を形成すると、分離工程で、原料に含まれる金属元素がキレート剤と反応し、金属イオンとして水溶液中に分離される。金属元素の分離により、水溶液のpHが上昇し、分離工程後の水溶液のpHが10乃至14となる。なお、分離工程では、金属元素を分離後、水溶液に溶けずに残存した固体成分を回収してもよい。
 次に、分離工程後、鉱物形成工程として、分離工程後の水溶液(pH10乃至14)を70℃以上にして、その水溶液中で炭酸イオンを生成可能な化合物を加える。これにより、水溶液に加えた化合物から生じた炭酸イオンと金属イオンとを反応させて、炭酸塩鉱物を形成することができる。これにより、二酸化炭素を炭酸塩鉱物として固定化することができる。鉱物形成工程では、形成された炭酸塩鉱物を、反応後の水溶液から回収することが好ましい。回収した炭酸塩鉱物は、有効利用することができる。なお、鉱物形成工程では、水溶液のpHはほとんど変化しない。
 鉱物形成工程で、水溶液に加える化合物は、分離工程後の水溶液中で炭酸イオンを生成可能なものから成り、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、二酸化炭素などである。図1に示す具体的な一例では、化合物は、炭酸ナトリウム(NaCo)であり、原料中のCaまたはMgを炭酸塩化して、炭酸塩鉱物のCaCOまたはMgCOを形成することができる。
 次に、鉱物形成工程後、pH低下工程として、鉱物形成工程後の水溶液を室温~80℃以下にして、二酸化炭素ガスを注入し、水溶液形成工程で形成した水溶液のpHの値またはその値の近傍までpHを低下させる。具体的には、8乃至10までpHを低下させて、元の値までpHを回復させる。これにより、水溶液中の炭酸イオン濃度が増加する。また、pHの低下により、鉱物形成工程での鉱物形成とは無関係な成分またはその一部を、水溶液中に析出させることができる。pH低下工程では、pHを低下させた後の水溶液から、析出した固体成分を回収してもよい。回収した固体成分は、有効利用することができる。図1に示す具体的な一例では、原料の一部であるシリカ(SiO)を、アモルファスシリカとして析出させることができる。
 次に、pH低下工程後、繰り返し工程として、まず、pH低下工程後の水溶液に、原料と同種の新たな原料を加える。このとき、新たな原料に含まれる金属元素から生じる金属イオンや、1回目の鉱物形成工程で消費されなかった金属イオンと、炭酸イオンとを反応させて、炭酸塩鉱物を形成することができる。これにより、二酸化炭素を炭酸塩鉱物として固定化することができる。繰り返し工程では、ここで形成された炭酸塩鉱物を、反応後の水溶液から回収することが好ましい。回収した炭酸塩鉱物は、有効利用することができる。
 また、繰り返し工程では、炭酸イオンとの反応で消費される量より多くの金属イオンが生じるよう、新たな原料を加えた上で、再度、分離工程からpH低下工程までを行う。2回目の分離工程では、新たな原料に含まれる金属元素と、水溶液中に残っているキレート剤とを反応させて、原料から金属元素を金属イオンとして分離することができる。水溶液形成工程で投入したキレート剤は、その後の工程で消費されないため、2回目の分離工程でも再利用することができる。このように、2回目の分離工程を、1回目の分離工程とほぼ同じ条件で行うことができ、2回目の鉱物形成工程およびpH低下工程も、それぞれ1回目と同様に行うことができる。これにより、2回目の鉱物形成工程でも、二酸化炭素を炭酸塩鉱物として固定化することができる。
 このように、本発明の実施形態の二酸化炭素固定方法は、1回目および2回目の鉱物形成工程、ならびに繰り返し工程での新たな原料投入時に、二酸化炭素を固定することができ、排出された二酸化炭素の削減に寄与することができる。本発明の実施形態の二酸化炭素固定方法は、アルカリ性条件下で二酸化炭素を固定化することができ、pHスイングのようにpH調整のための薬品が不要であるため、その材料コストを低減することができる。また、一度投入されたキレート剤を再利用することができるため、その材料コストも低減することができる。また、比較的低温で二酸化炭素を固定化することができ、設備コストも低減することができる。
 なお、本発明の実施形態の二酸化炭素固定方法は、繰り返し工程を複数回繰り返してもよい。この場合、各繰り返し工程での新たな原料投入時や各鉱物形成工程で、連続的に二酸化炭素を固定化することができる。また、水溶液形成工程で投入したキレート剤を、繰り返し工程での各分離工程で繰り返し使用することができ、材料コストをさらに低減することができる。
 原料としてCaSiO(富士フイルム和光純薬株式会社製)、キレート剤としてGLDA-4Na(N,N-Dicarboxymethyl glutamic acid, tetrasodium salt、東京化成工業株式会社製)を用い、本発明の実施形態の二酸化炭素固定方法に関する実験を行った。まず、水溶液形成工程および分離工程の実験を行った。実験では、図2(a)に示すように、ビーカー1に入れた100 mlの水にGLDA-4Naを加えて形成した水溶液2aに、CaSiOを投入して撹拌し、所定時間経過後、図2(b)に示すように、水溶液をろ過して、CaSiOの溶け残りを取り除いた。なお、実験では、水溶液2aを収納しているビーカー1を、ヒーター付き撹拌装置3の上に載せ、実験中の水溶液の温度およびpHを、それぞれ温度センサ4およびpHセンサ5で測定している。
 実験は、表1に示すように、パラメータとして、水溶液2aのpH(pH)、水溶液2aの温度、CaSiOの投入量、GLDA-4Naの濃度を様々に変えた条件で行った。実験では、原料から金属元素のCaが分離する様子を調べるために、表1に示す各実験No.1~12での、ろ過後の水溶液2b中のCa(Caイオン)の濃度等を測定した。なお、以下では、Caのうち水溶液中のものは全てCaイオンを表している。
Figure JPOXMLDOC01-appb-T000001
 表1の実験No.1~12について、水溶液2aにCaSiOを投入してから20分経過までの、各水溶液のCa濃度の経時変化を、図3(a)~(d)に示す。また、20分経過後の各水溶液のpH(pH)、Caの濃度、Siの濃度、Caの分離割合(Ca extraction rate)などをまとめ、表1に示す。図3(a)は表1の実験No.1~5、図3(b)は表1の実験No.5~8、図3(c)は表1の実験No.5, 9, 10、図3(d)は表1の実験No.5, 11, 12の結果を示している。なお、実験No.8は、実験中に撹拌を行っていないもの(without stirring)である。
 図3(a)~(d)に示すように、キレート剤によるCaの分離反応は、20分以内でほぼ完了していることが確認された。また、図3(a)に示すように、pHが小さい方がCaの抽出量(分離量)は多くなることが確認された。また、図3(b)に示すように、水溶液の温度が高い方がCaの分離速度は早いが、温度および撹拌の有無にかかわらず、20分でCaの分離反応がほぼ完了し、Caの抽出量はほとんど同じになることが確認された。また、図3(c)に示すように、Caの抽出量は、原料の量にほぼ比例することが確認された。また、図3(d)に示すように、キレート剤の濃度は、Caの抽出量にはあまり影響しないことが確認された。
 次に、鉱物形成工程の実験を行った。表1の実験No.4による20分経過後の水溶液をろ過した後の水溶液2b(pH11.9)を用い、図4(a)に示すように、その水溶液2bに炭酸ナトリウム(NaCO)を加えて撹拌し、所定時間経過後に、図4(b)に示すように、水溶液をろ過して、固体成分を取り除いた。実験では、ろ過後の水溶液2c中のCaの量を測定し、NaCOを加えたときからのCaの残存割合を求めた。また、実験は、水溶液の温度が60℃、80℃、120℃、160℃の各条件、および、NaCOの濃度が0.3 mol/L、0.6 mol/Lの各条件で行った。なお、水溶液を収納する容器として、水溶液の温度が60℃および80℃のときにはビーカー1を用い、120℃および160℃のときには圧力容器を用いた。
 NaCOの濃度を0.3 mol/Lとしたとき、NaCOを加えて70分経過後の、各温度での水溶液中のCaの残存割合(Residual Ca ratio)を、図5(a)に示す。なお、図5(a)には、比較のため、Siの残存割合(Residual Si ratio)も示す。また、水溶液が80℃のときの、NaCOの各濃度でのCaの残存割合の経時変化を、図5(b)に示す。
 図5(a)に示すように、80℃~160℃のとき、Siの量はほとんど変化しないのに対して、Caの量が大きく減少していることが確認された。また、図5(b)に示すように、水溶液が80℃のとき、時間の経過と共に、Caが減少していく様子が確認された。また、加えるNaCOの量が多いほど、Caの減少速度が大きいことが確認された。また、Caの減少速度が一旦小さくなっても、NaCOを追加することにより、Caの減少速度が再び大きくなり、最大で約45%までCaが減少することが確認された。
 図4(b)に示すように、ろ過して得られた固体成分は、炭酸塩鉱物のアラゴナイト(CaCO)であったことから、Caが炭酸塩化されることにより、水溶液中のCaが減少することが確認された。なお、得られたアラゴナイトの純度は90%以上であった。図5(a)では、水溶液の温度が120℃のとき最もCaの減少量が大きかったが、100℃以上では圧力容器等を使用する必要があり、装置が大型化して設備費も嵩むことから、実用化の際には、100℃より低い温度で鉱物形成工程を行うことが好ましい。
 次に、pH低下工程の実験を行った。Caを約45%まで減少させて、ろ過した後の図4(b)に示す水溶液2cを用い、図6(a)に示すように、その水溶液2cに二酸化炭素ガス(CO gas)を5分間注入した後、図6(b)に示すように、その水溶液をろ過して、固体成分を取り除いた。実験では、水溶液2cの温度を室温とし、二酸化炭素ガス注入中の、水溶液中のpHおよびSi濃度を測定した。
 測定したpHとSi濃度(Si concentration)との関係を、図7に示す。図7に示すように、二酸化炭素ガスの注入により、炭酸イオンが形成されて水溶液のpHが低下するのに従って、Si濃度も低下していく様子が確認された。また、5分間の二酸化炭素ガスの注入で、水溶液のpHが9まで低下していることが確認された。図6(b)に示すように、ろ過して得られた固体成分は、アモルファスシリカ(SiO)であったことから、pHの低下によりアモルファスシリカが形成され、水溶液中のSiが除去されることが確認された。また、図7に示すように、水溶液のpHを10以下にすることにより、Siの除去率(Si removal rate)が約90%以上となり、Siをほとんど除去できることが確認された。
 次に、繰り返し工程の実験を行った。pHを9まで低下させて、ろ過した後の図6(b)に示す水溶液2dを用い、図8(a)に示すように、その水溶液2dに再び原料のCaSiOを加えて撹拌し、20分撹拌後に、図8(b)に示すように、水溶液をろ過して、固体成分を取り除いた。実験では、水溶液2dの温度を50℃、CaSiOの投入量を0.4 mol/Lとした。ろ過後の水溶液2eのpHを測定したところ、約12であった。また、ろ過して得られた固体成分を調べたところ、CaSiOの溶け残りと共に、炭酸塩鉱物のアラゴナイト(CaCO)の存在も確認できた。
 これらの結果から、新たに加えたCaSiOに含まれるCaや、1回目の鉱物形成工程で消費されなかったCaと、pH低下工程で濃度が増加した炭酸イオンとが反応して、CaCOが形成されていることが確認された。また、pHが上昇したことから、新たに加えたCaSiOに含まれるCaと、水溶液中に残っているキレート剤とが反応して、CaSiOからCaが分離していることも確認された。図8(b)に示す2回目の分離工程でろ過後に得られた水溶液2eは、図2(b)に示す1回目の分離工程でろ過後に得られた水溶液2bとほぼ同じであることが確認された。
 次に、図8(b)に示すろ過後の水溶液2eを用い、図9(a)に示すように、その水溶液2eに炭酸ナトリウム(NaCO)を加えて撹拌し、100分経過後に、図9(b)に示すように、水溶液をろ過して、固体成分を取り除いた。実験では、水溶液2eの温度を80℃、NaCOの濃度を0.6 mol/Lとした。ろ過後の水溶液2fのpHを測定したところ、約12であった。また、ろ過して得られた固体成分を調べたところ、炭酸塩鉱物のアラゴナイト(CaCO)であった。得られたアラゴナイトの純度は90%以上であった。図9(b)に示す2回目の鉱物形成工程でろ過後に得られた水溶液2fは、図4(b)に示す1回目の鉱物形成工程でろ過後に得られた水溶液2cとほぼ同じであることが確認された。
 図8および図9に示す繰り返し工程での実験から、2回目の分離工程、鉱物形成工程およびpH低下工程を、それぞれ1回目と同様に行うことができるといえる。ここまでの実験結果に基づいて、水溶液形成工程および繰り返し工程で、原料のCaSiOを100kg投入したときの、各工程での各成分の量を求め、図10に示す。図10に示すように、図中に示すpH、水溶液の温度、各濃度の条件では、1回目の鉱物形成工程で、約8kgの二酸化炭素を固定化することができ、繰り返し工程の2回目の分離工程および鉱物形成工程で、それぞれ約8kgの二酸化炭素を固定化することができる。このため、例えば、繰り返し工程で分離工程、鉱物形成工程、およびpH低下工程を繰り返すことにより、各繰り返し工程で100kgのCaSiOから約16kgの二酸化炭素を固定化することができる。
 本発明の実施形態の二酸化炭素固定装置は、本発明の実施形態の二酸化炭素固定方法を適用することにより、容易に設計製作することができる。すなわち、本発明の実施形態の二酸化炭素固定装置は、水溶液形成部と分離部と鉱物形成部とpH低下部と原料追加部とを有している。水溶液形成部は、炭酸イオンと化合して炭酸塩鉱物を形成可能な金属元素を含む原料と、キレート剤とを含むアルカリ性の水溶液を形成するよう設けられており、本発明の実施形態の二酸化炭素固定方法の水溶液形成工程を実施可能である。分離部は、その水溶液中で、金属元素とキレート剤とを反応させて、原料から金属元素を金属イオンとして分離するよう設けられており、本発明の実施形態の二酸化炭素固定方法の分離工程を実施可能である。鉱物形成部は、分離部で金属イオンを分離した後の水溶液に、その水溶液中で炭酸イオンを生成可能な化合物を加えることにより、その化合物から生じた炭酸イオンと金属イオンとを反応させて炭酸塩鉱物を形成するよう設けられており、本発明の実施形態の二酸化炭素固定方法の鉱物形成工程を実施可能である。pH低下部は、鉱物形成部で炭酸塩鉱物を形成後の水溶液に、二酸化炭素ガスを注入して、水溶液形成部で形成された水溶液のpHの値またはその値の近傍までpHを低下させるよう設けられており、本発明の実施形態の二酸化炭素固定方法のpH低下工程を実施可能である。原料追加部は、pH低下部でpHを低下させた水溶液に、水溶液形成部で使用した原料と同種の新たな原料を加えるよう設けられている。さらに、本発明の実施形態の二酸化炭素固定装置は、原料追加部で新たな原料を加えた水溶液を分離部に供給し、分離部から鉱物形成部、pH低下部まで順次移動させるよう構成されており、原料追加部と共に、本発明の実施形態の二酸化炭素固定方法の繰り返し工程を実施可能である。これにより、本発明の実施形態の二酸化炭素固定方法及び二酸化炭素固定装置は、二酸化炭素固定化された炭酸塩鉱物を提供することができる。
 本発明の実施形態の二酸化炭素固定装置は、二酸化炭素排出による環境負荷の高い産業から排出される二酸化炭素を固定することができる。本発明の実施形態の二酸化炭素固定装置は、二酸化炭素排出による環境負荷の高い産業において、排出される二酸化炭素を固定する排出環境配慮型産業設備及びその一部として組み込むことができる。すなわち、本発明の実施形態の環境配慮型産業設備は、本発明の実施形態の二酸化炭素固定装置を備えている。
 本発明の実施形態の二酸化炭素の回収方法は、本発明の実施形態の二酸化炭素固定方法により、二酸化炭素排出による環境負荷の高い産業から排出される二酸化炭素を回収する。これにより本発明の実施形態の二酸化炭素の回収方法は、これらの産業による環境負荷の低減を図ることができる。
  1 ビーカー
  2a,2b,2c,2d,2e,2f 水溶液
  3 ヒーター付き撹拌装置
  4 温度センサ
  5 pHセンサ
 

Claims (10)

  1.  炭酸イオンと化合して炭酸塩鉱物を形成可能な金属元素を含む原料と、キレート剤とを含むアルカリ性の水溶液を形成する水溶液形成工程と、
     前記水溶液中で、前記金属元素と前記キレート剤とを反応させて、前記原料から前記金属元素を金属イオンとして分離する分離工程と、
     前記分離工程後の水溶液に、その水溶液中で炭酸イオンを生成可能な化合物を加えることにより、前記化合物から生じた炭酸イオンと前記金属イオンとを反応させて炭酸塩鉱物を形成する鉱物形成工程と、
     前記鉱物形成工程後の水溶液に、二酸化炭素ガスを注入して、前記水溶液形成工程で形成した水溶液のpHの値またはその値の近傍までpHを低下させるpH低下工程と、
     前記pH低下工程後の水溶液に、前記原料と同種の新たな原料を加えて、前記分離工程から前記pH低下工程までを行う繰り返し工程とを、
     有することを特徴とする二酸化炭素固定方法。
  2.  前記繰り返し工程を複数回繰り返すことを特徴とする請求項1記載の二酸化炭素固定方法。
  3.  前記原料は、前記金属元素として、カルシウム、マグネシウム、鉄、銅、およびマンガンのうちの少なくとも1つを含んでおり、ケイ酸塩鉱物、鉄鋼スラグ、および廃棄物のうちの1または複数から成ることを特徴とする請求項1または2記載の二酸化炭素固定方法。
  4.  前記化合物は、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、および二酸化炭素のうちの少なくとも1つから成ることを特徴とする請求項1乃至3のいずれか1項に記載の二酸化炭素固定方法。
  5.  前記水溶液形成工程で形成する水溶液は、pHが8乃至10であり、
     前記分離工程は、5℃以上80℃以下の温度で、前記金属元素と前記キレート剤とを反応させ、
     前記鉱物形成工程は、70℃乃至170℃の温度で、前記炭酸イオンと前記金属イオンとを反応させることを
     特徴とする請求項1乃至4のいずれか1項に記載の二酸化炭素固定方法。
  6.  前記分離工程は、前記原料から前記金属元素を分離後の水溶液から固体成分を回収し、
     前記鉱物形成工程は、前記炭酸塩鉱物を形成した後、その炭酸塩鉱物を回収し、
     前記pH低下工程は、pHを低下させた後、固体成分を回収することを
     特徴とする請求項1乃至5のいずれか1項に記載の二酸化炭素固定方法。
  7.  前記水溶液形成工程で形成する水溶液は、水に前記原料と前記キレート剤とを加えて形成することを特徴とする請求項1乃至6のいずれか1項に記載の二酸化炭素固定方法。
  8.  請求項1乃至7のいずれか1項に記載の二酸化炭素固定方法により、二酸化炭素排出による環境負荷の高い産業から排出される二酸化炭素を回収することを特徴とする二酸化炭素の回収方法。
  9.  炭酸イオンと化合して炭酸塩鉱物を形成可能な金属元素を含む原料と、キレート剤とを含むアルカリ性の水溶液を形成するよう設けられた水溶液形成部と、
     前記水溶液中で、前記金属元素と前記キレート剤とを反応させて、前記原料から前記金属元素を金属イオンとして分離するよう設けられた分離部と、
     前記分離部で前記金属イオンを分離した後の水溶液に、その水溶液中で炭酸イオンを生成可能な化合物を加えることにより、前記化合物から生じた炭酸イオンと前記金属イオンとを反応させて炭酸塩鉱物を形成するよう設けられた鉱物形成部と、
     前記鉱物形成部で前記炭酸塩鉱物を形成後の水溶液に、二酸化炭素ガスを注入して、前記水溶液形成部で形成された水溶液のpHの値またはその値の近傍までpHを低下させるよう設けられたpH低下部と、
     前記pH低下部でpHを低下させた水溶液に、前記原料と同種の新たな原料を加えるよう設けられた原料追加部とを有し、
     前記原料追加部で前記新たな原料を加えた水溶液を前記分離部に供給し、前記分離部から前記鉱物形成部、前記pH低下部まで順次移動させるよう構成されていることを
     特徴とする二酸化炭素固定装置。
  10.  請求項9記載の二酸化炭素固定装置を備えていることを特徴とする環境配慮型産業設備。
     
PCT/JP2021/045014 2020-12-25 2021-12-07 二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備 WO2022138149A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180085720.0A CN116635131A (zh) 2020-12-25 2021-12-07 二氧化碳固定方法、二氧化碳的回收方法、二氧化碳固定装置及环境友好型工业设备
US18/267,005 US20240042374A1 (en) 2020-12-25 2021-12-07 Carbon dioxide fixation method, carbon dioxide recovery method, carbon dioxide fixation device and environmentally friendly industrial facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217738A JP7345791B2 (ja) 2020-12-25 2020-12-25 二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備
JP2020-217738 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138149A1 true WO2022138149A1 (ja) 2022-06-30

Family

ID=82159618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045014 WO2022138149A1 (ja) 2020-12-25 2021-12-07 二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備

Country Status (4)

Country Link
US (1) US20240042374A1 (ja)
JP (1) JP7345791B2 (ja)
CN (1) CN116635131A (ja)
WO (1) WO2022138149A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085162A1 (ja) * 2022-10-18 2024-04-25 住友電気工業株式会社 二酸化炭素捕捉モジュール、二酸化炭素捕捉用スクラバー、二酸化炭素捕捉装置及び二酸化炭素捕捉方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519027A (ja) * 2007-02-20 2010-06-03 リチャード ジェイ ハンウィック 二酸化炭素隔離のためのシステム、装置、及び方法
JP2011501726A (ja) * 2007-09-27 2011-01-13 フォーブス オイル アンド ガス プロプライエタリー リミテッド 炭酸塩への二酸化炭素の固定化
JP2015525674A (ja) * 2012-08-08 2015-09-07 オムヤ インターナショナル アーゲー Co2の量を減少させるための再生可能イオン交換材料
JP2019527178A (ja) * 2016-07-12 2019-09-26 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ アバーディーンThe University Court Of The University Of Aberdeen 二酸化炭素を捕捉及び変換する方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519027A (ja) * 2007-02-20 2010-06-03 リチャード ジェイ ハンウィック 二酸化炭素隔離のためのシステム、装置、及び方法
JP2011501726A (ja) * 2007-09-27 2011-01-13 フォーブス オイル アンド ガス プロプライエタリー リミテッド 炭酸塩への二酸化炭素の固定化
JP2015525674A (ja) * 2012-08-08 2015-09-07 オムヤ インターナショナル アーゲー Co2の量を減少させるための再生可能イオン交換材料
JP2019527178A (ja) * 2016-07-12 2019-09-26 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ アバーディーンThe University Court Of The University Of Aberdeen 二酸化炭素を捕捉及び変換する方法及びシステム

Also Published As

Publication number Publication date
JP2022102786A (ja) 2022-07-07
US20240042374A1 (en) 2024-02-08
CN116635131A (zh) 2023-08-22
JP7345791B2 (ja) 2023-09-19

Similar Documents

Publication Publication Date Title
EP2024062B1 (en) Carbon dioxide capture and related processes
Azdarpour et al. A review on carbon dioxide mineral carbonation through pH-swing process
Bobicki et al. Carbon capture and storage using alkaline industrial wastes
US7604787B2 (en) Process for sequestering carbon dioxide and sulfur dioxide
CA2721677C (en) Capture and sequestration of carbon dioxide in flue gases
US7722842B2 (en) Carbon dioxide sequestration using alkaline earth metal-bearing minerals
Sun et al. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash
KR101329673B1 (ko) 산업부산물인 고로슬래그를 이용한 광물 탄산화 효율 증대 방법
CN106999947B (zh) 用于从钢铁渣回收产品的方法和系统
JP5009746B2 (ja) 燃焼排ガス中の二酸化炭素の化学固定法
WO2022138149A1 (ja) 二酸化炭素固定方法、二酸化炭素の回収方法、二酸化炭素固定装置、および環境配慮型産業設備
Ho et al. Mineral carbonation using alkaline waste and byproducts to reduce CO2 emissions in Taiwan
WO2015097674A1 (pt) Processo de carbonatação de resíduos industriais e urbanos e regeneração dos reagentes
TWM628553U (zh) 焚化廠碳捕捉與飛灰鈉鹽回收製碳酸氫鈉再利用系統
KR101877920B1 (ko) 알칼리 산업부산물의 간접탄산화를 이용한 고순도 탄산칼슘 생성 및 용제 재사용 방법
Park et al. Laboratory-scale experiment on a novel mineralization-based method of CO2 capture using alkaline solution
KR102041299B1 (ko) 탄산칼슘 및 중조의 제조방법 및 그 제조설비
KR101860331B1 (ko) 해수 담수화 농축수 처리방법
JP2010082526A (ja) 炭酸ガスの処理方法
CN114699890B (zh) 一种工业污泥吸附固化二氧化碳系统及方法
KR20150123512A (ko) 액상 촉진 탄산화법을 이용한 개질된 산업부산물 제조 시스템 및 제조 방법
JP2024094693A (ja) 炭酸ガス固定化方法
Kawatra et al. Capture and sequestration of carbon dioxide in flue gases
Liu et al. Mineral carbonation technology overview
KR20180056127A (ko) 해수 및 제지슬러지소각재의 직접탄산화반응을 이용한 이산화탄소의 저장방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180085720.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910298

Country of ref document: EP

Kind code of ref document: A1