WO2022137993A1 - Comparator and solid-state imaging element - Google Patents

Comparator and solid-state imaging element Download PDF

Info

Publication number
WO2022137993A1
WO2022137993A1 PCT/JP2021/043599 JP2021043599W WO2022137993A1 WO 2022137993 A1 WO2022137993 A1 WO 2022137993A1 JP 2021043599 W JP2021043599 W JP 2021043599W WO 2022137993 A1 WO2022137993 A1 WO 2022137993A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
current
amplifier circuit
current terminal
switch
Prior art date
Application number
PCT/JP2021/043599
Other languages
French (fr)
Japanese (ja)
Inventor
大基 田平
秀樹 田中
耕治 塚本
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022137993A1 publication Critical patent/WO2022137993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present disclosure relates to a comparator and a solid-state image sensor.
  • Some AD converters include a comparator.
  • the comparator an auto zero operation for initializing the internal voltage and the like and a comparison operation (AD conversion operation) are performed.
  • Patent Document 1 discloses a method of switching the diode connection of each pair of transistors connected between a transistor constituting a differential pair and a power supply between auto zero operation and comparative operation.
  • One aspect of the present disclosure provides a comparator and a solid-state image sensor capable of suppressing an increase in the number of counts during AD conversion.
  • the comparator is a connection circuit connected between a first amplification circuit, a second amplification circuit provided after the first amplification circuit, and the first amplification circuit and the second amplification circuit.
  • the first amplification circuit comprises a first transistor in which a reference signal is input to the control terminal, and a second transistor in which an input signal is input to the control terminal via a capacitor to form a differential pair together with the first transistor.
  • a fourth transistor connected and the other current terminal connected to one current terminal of the second transistor, the other current terminal of the first transistor, the other current terminal of the second transistor, and the ground and the other of the power supply.
  • a second transistor switch connected between one of the current terminals and the control terminal of the second transistor, and a control terminal of the third transistor and the other of the third transistor.
  • the current terminal and the control terminal of the 4th transistor are connected to each other, and the connection circuit consists of the 1st switch connected between the other current terminal of the 3rd transistor and the 2nd amplification circuit, and the other current of the 4th transistor. Includes a second switch connected between the terminal and the second amplification circuit.
  • the solid-state imaging device includes a plurality of pixels and an AD converter that converts each pixel signal of each of the plurality of pixels into a digital signal, and the AD converter includes a pixel signal and a reference signal.
  • the comparator is a connection connected between the first amplification circuit, the second amplification circuit provided after the first amplification circuit, and the first amplification circuit and the second amplification circuit.
  • the first amplification circuit includes a circuit, a first transistor in which a reference signal is input to a control terminal, and a first transistor in which an input signal is input to a control terminal via a capacitor to form a differential pair together with the first transistor.
  • Two transistors a third transistor in which one current terminal is connected to one of the ground and the power supply, the other current terminal is connected to one of the current terminals of the first transistor, and one current terminal is one of the ground and the power supply.
  • a fourth transistor connected to and the other current terminal connected to one current terminal of the second transistor, the other current terminal of the first transistor and the other current terminal of the second transistor, and the ground and the other of the power supply.
  • the control terminal of the third transistor, the control terminal of the third transistor including the switch for the second transistor connected between the current source connected to the second transistor and one of the current terminals and the control terminal of the second transistor.
  • connection circuit is the first switch connected between the other current terminal of the third transistor and the second amplification circuit, and the other of the fourth transistor. Includes a second switch connected between the current terminal and the second amplification circuit.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a solid-state image sensor according to an embodiment.
  • the solid-state image sensor 111 includes a pixel array unit 112, a timing control unit 113, a reference signal generation circuit 114, a row scanning unit 115, a column scanning unit 116, and a column processing unit 117.
  • the solid-state image sensor 111 is, for example, a CMOS image sensor.
  • the pixel array unit 112 includes a plurality of pixels 121 arranged in a matrix (m rows and n columns). In order to distinguish each pixel 121, it is referred to as a pixel 121 mn or the like and is shown.
  • the pixels 121 in each row are connected to the row scanning unit 115 via the horizontal signal line 122.
  • the horizontal signal line 122 corresponding to each line is referred to as a horizontal signal line 122 m or the like and is illustrated.
  • the pixels 121 in each row are connected to the column processing unit 117 via the vertical signal line 123.
  • Each vertical signal line 123 corresponding to each line is referred to as a vertical signal line 123 n or the like and is illustrated.
  • Each pixel 121 is driven line by line according to a control signal supplied via the horizontal signal line 122, and outputs a pixel signal VSL at a level corresponding to the amount of received light to the vertical signal line 123.
  • the timing control unit 113 controls the operation timing of the reference signal generation circuit 114, the row scanning unit 115, the column scanning unit 116, and the column processing unit 117 by generating and supplying various signals.
  • Examples of the signal generated by the timing control unit 113 include a clock signal CLK, a control signal CS1, a control signal CS2, and a control signal CS3.
  • the clock signal CLK serves as an operating reference for the reference signal generation circuit 114 and the column processing unit 117.
  • the control signal CS1 controls the operation of the reference signal generation circuit 114.
  • the control signal CS2 and the control signal CS3 control the operation of the column processing unit 117.
  • the reference signal generation circuit 114 generates a reference signal Vramp and supplies it to the column processing unit 117.
  • the reference signal Vramp is a lamp signal whose voltage value changes (rises or falls) with a constant gradient according to the clock signal CLK.
  • the row scanning unit 115 drives the pixel 121 row by row.
  • the row scanning unit 115 supplies the pixel 121 with a control signal (transfer signal, selection signal, reset signal, etc.) for driving the pixel 121 row by row.
  • the column scanning unit 116 supplies a control signal to the column processing unit 117, and outputs the pixel signal VSL AD-converted by the column processing unit 117, which will be described later, to the horizontal output line in order for each column.
  • the column processing unit 117 is provided for each column and processes the pixel signal from the pixel 121.
  • An example of processing is AD conversion, and the column processing unit 117 includes an AD conversion circuit 130 provided for each column.
  • the AD conversion circuit 130 corresponding to each column is referred to as an AD conversion circuit 130 n or the like and is illustrated.
  • the AD conversion circuit 130 AD-converts the pixel signal VSL from the pixel 121 input via the vertical signal line 123.
  • the AD conversion circuit 130 includes a comparator 131, a counter 132, a switch 133, and a memory 134.
  • the comparator 131, the counter 132, and the switch 133 corresponding to each column are referred to as a comparator 131 n , a counter 132 n , a switch 133 n , and the like, and are illustrated.
  • the reference signal Vramp is input to one input terminal of the comparator 131.
  • a pixel signal VSL is input to the other input terminal of the comparator 131.
  • the output terminal of the comparator 131 is connected to the counter 132.
  • Comparator 131 compares the reference signal Vram with the pixel signal VSL. For example, the comparator 131 outputs a high-level signal when the voltage of the reference signal Vram is larger than the voltage of the pixel signal VSL, and outputs a low-level signal when the voltage of the reference signal Vram is equal to or lower than the voltage of the pixel signal VSL. Output.
  • the comparator 131 outputs a high-level signal when the voltage of the reference signal Vram is equal to or lower than the voltage of the pixel signal VSL, and outputs a low-level signal when the voltage of the reference signal Vram is larger than the voltage of the pixel signal VLS. Output.
  • the output voltage of the comparator 131 is referred to as a voltage VOUT2 and is shown in the figure.
  • the counter 132 performs a down count or an up count in synchronization with the clock signal CLK according to the control signal CS2.
  • the count value (count result) corresponds to the comparison period between the reference signal Vram and the pixel signal VSL in the comparator 131.
  • the switch 133 is turned on (conducting state) when the counting operation of the counter 132 for the pixel 121 in the predetermined row is completed according to the control signal CS3. Then, the switch 33 transfers the count value of the counter 132 to the memory 134.
  • the memory 134 outputs the retained pixel signal VSL after AD conversion to the horizontal output line according to the control signal supplied from the column scanning unit 116.
  • FIG. 2 is a diagram showing an example of a schematic configuration of pixels and the like.
  • the pixel 121 includes a PD 141, a transfer transistor 142, a charge storage unit 143, an FD (floating diffusion) unit 144, an amplification transistor 145, a selection transistor 146, and a reset transistor 147.
  • PD141 is a photodiode (photoelectric conversion unit) that generates and stores electric charges according to the amount of received light.
  • the anode of the PD 141 is connected to the ground GND and the cathode is connected to the gate of the amplification transistor 145 via the transfer transistor 142.
  • the transfer transistor 142 is connected between the PD 141 and the charge storage unit 143, and transfers the charge stored in the PD 141 to the charge storage unit 143.
  • the charge transfer is controlled by the transfer signal Tx supplied to the gate of the transfer transistor 142.
  • the transfer signal Tx is supplied from the row scanning unit 115 (FIG. 1).
  • the charge storage unit 143 is a capacitance provided between the ground GND and the FD unit 144, and stores the charge transferred from the PD 141 via the transfer transistor 142.
  • the FD unit 144 is a charge detection unit that converts an electric charge into a voltage, and the electric charge held in the FD unit 144 is converted into a voltage in the amplification transistor 145.
  • the amplification transistor 145 outputs a voltage at a level corresponding to the electric charge stored in the FD unit 144 to the source.
  • the source of the amplification transistor 145 is connected to the vertical signal line 123 via the selection transistor 146.
  • the amplification transistor 145 constitutes a source follower together with a current source (not shown).
  • the source follower is a read-out circuit that reads out a signal obtained by photoelectric conversion in PD141.
  • the selection transistor 146 is connected between the amplification transistor 145 and the vertical signal line 123, and the output voltage of the amplification transistor 145 appears on the vertical signal line 123 as a pixel signal VSL. This appearance is controlled by the selection signal SEL supplied to the gate of the selection transistor 146.
  • the selection signal SEL is supplied from the row scanning unit 115 (FIG. 1).
  • the reset transistor 147 is connected between the FD unit 144 and the power supply VDD to reset the FD unit 144.
  • the reset of the FD unit 144 is controlled by the reset signal RST supplied to the gate of the reset transistor 147.
  • the reset signal RST is supplied from the row scanning unit 115 (FIG. 1).
  • the pixel signal VSL of the pixel 121 is input to the comparator 131 via the vertical signal line 123.
  • the reference signal Vram is input to one input terminal of the comparator 131 via the capacitor C1 in this example.
  • the pixel signal VSL is input to the other input terminal of the comparator 131 via the capacitor C2.
  • the charges accumulated in the PD 141 are collectively transferred to the FD unit 144, and the shutter closing simultaneity is maintained by sequentially reading out each column.
  • the signal (D phase) when the FD unit 144 is reset by the reset transistor 147 and the signal (P phase) when the FD unit 144 stores the electric charge generated by the PD 141 are read. It is issued and AD converted.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a comparator.
  • the comparator 131 includes an amplifier circuit 10 (first amplifier circuit), an amplifier circuit 20 (second amplifier circuit), and a connection circuit 30.
  • control signals ⁇ 1 to control signals ⁇ 3 and control signals X ⁇ 1 to control signals X ⁇ 3 obtained by inverting these are exemplified.
  • Each control signal is supplied from, for example, the row scanning unit 115.
  • connection may mean that the two elements are directly connected to each other, or that the two elements are electrically connected to each other via another element. You may.
  • the amplifier circuit 10 is a differential amplifier circuit provided in the previous stage (input stage), and outputs a voltage corresponding to the difference between the pixel signal VSL (input signal) and the reference signal Vram.
  • the amplifier circuit 10 includes transistors 11 to 18, a current source Is, a capacitor C1, and a capacitor C2.
  • the transistor 11, the transistor 12, and the transistor 17 are n-type transistors (more specifically, n-type MOSFETs).
  • the transistors 13 to 16 and the transistor 18 are p-type transistors (more specifically, p-type MOSFETs).
  • the gate (or the base) of the transistor may be referred to as a "control terminal”.
  • the drain and source (may be collector or emitter) of a transistor may be referred to as a "current terminal”.
  • the transistor 11 is a first transistor that constitutes a differential pair together with the transistor 12.
  • the reference signal Vram is input to the gate (control terminal) of the transistor 11 via the capacitor C1.
  • the reference signal Vram of the pixel 121 in the i-th column is referred to as a reference signal Vram_i and is illustrated.
  • the drain of the transistor 11 (one current terminal) is connected to the source of the transistor 13 (the other current terminal).
  • the voltage of the drain of the transistor 11 is referred to as a voltage VOUT1_AZ and is shown in the figure.
  • the source of the transistor 11 (the other current terminal) is connected to the ground GND via the current source Is.
  • the transistor 12 is a second transistor that constitutes a differential pair together with the transistor 11.
  • a pixel signal VSL is input to the gate (control terminal) of the transistor 12 via the capacitor C2.
  • the pixel signal VSL of the pixel 121 in the i-th column is referred to as a pixel signal VSL_i and is shown.
  • the drain of the transistor 12 (one current terminal) is connected to the source of the transistor 14 (the other current terminal).
  • the source of the transistor 12 (the other current terminal) is connected to the ground GND via the current source Is.
  • the transistor 13 is connected between the transistor 11 and the power supply VDD.
  • the gate (control terminal) of the transistor 13 is connected to the source of the transistor 13.
  • the drain (one current terminal) of the transistor 13 is connected to the power supply VDD.
  • the source of the transistor 13 is connected to the drain of the transistor 11.
  • the voltage of the source of the transistor 13 is referred to as a voltage VOUT1 and is shown in the figure.
  • the transistor 14 is connected between the transistor 12 and the power supply VDD.
  • the gate (control terminal) of the 14 is connected to the gate of the transistor 13. That is, the gate of the transistor 13, the source of the transistor 13, and the gate of the transistor 14 are connected to each other.
  • the drain (one current terminal) of the transistor 14 is connected to the power supply VDD.
  • the source of the transistor 14 is connected to the drain of the transistor 12.
  • the current source Is is connected between the transistor 11 and the transistor 12 and the ground GND. Specifically, the current source Is is connected between the source of the transistor 11 and the source of the transistor 12 and the ground GND so that the current flows from the transistor 11 and the transistor 12 toward the ground GND.
  • the transistor 15 is a switch transistor (second transistor switch) connected between the drain and the gate of the transistor 12.
  • a control signal X ⁇ 1 is supplied to the gate (control terminal) of the transistor 15.
  • One of the drain and the source (current terminal) of the transistor 15 is connected to the drain of the transistor 12, and the other is connected to the gate of the transistor 12.
  • the transistor 16 is a switch transistor (switch for the first transistor) connected between the drain and the gate of the transistor 11.
  • a control signal X ⁇ 1 is supplied to the gate (control terminal) of the transistor 16.
  • One of the drain and the source (current terminal) of the transistor 16 is connected to the drain of the transistor 11, and the other is connected to the gate of the transistor 11.
  • the transistor 17 is an example of a level shift circuit LSC connected between the transistor 11 and the transistor 13.
  • the transistor 17 is a diode connected diode.
  • the gate (control terminal) of the transistor 17 is connected to the drain (one current terminal).
  • the drain of the transistor 17 is connected to the source of the transistor 13.
  • the source of the transistor 17 (the other current terminal) is connected to the drain of the transistor 11.
  • the configuration of the level shift circuit LSC is not limited to the example shown in FIG.
  • the level shift circuit LSC may be configured to include other circuit elements such as resistors in place of or with a diode such as a transistor 17.
  • the transistor 18 is a bypass switch connected in parallel to the level shift circuit LSC between the source of the transistor 13 and the drain of the transistor 11.
  • the control signal X ⁇ 2 is supplied to the gate (control terminal) of the transistor 18.
  • One of the drain and the source (current terminal) of the transistor 18 is connected to the source of the transistor 13, and the other is connected to the drain of the transistor 11.
  • the amplifier circuit 20 is provided in the subsequent stage (output stage) of the amplifier circuit 10.
  • the amplifier circuit 20 includes transistors 21 to 23 and a capacitor C3.
  • the transistor 23 is an n-type transistor, and the transistor 21 and the transistor 22 are p-type transistors.
  • the transistor 21 is an input transistor of the amplifier circuit 20.
  • the gate (control terminal) of the transistor 21 is connected to the amplifier circuit 10 via the connection circuit 30.
  • the voltage input to the gate of the transistor 21 is referred to as a voltage VOUT0 and is shown in the figure.
  • the drain (one current terminal) of the transistor 21 is connected to the power supply VDD.
  • the source of the transistor 21 (the other current terminal) is connected to the drain of the transistor 22 (the other current terminal).
  • the transistor 22 is connected between the transistor 21 and the ground GND.
  • the gate (control terminal) of the transistor 22 is connected to the drain of the transistor 22 via the transistor 23 and is connected to the ground GND via the capacitor C3.
  • the drain of the transistor 22 (one of the current terminals) is connected to the source of the transistor 21.
  • the source of transistor 22 (the other current terminal) is connected to ground GND.
  • the transistor 21 and the transistor 22 form a source grounded amplifier circuit.
  • the voltage at the connection point between the source of the transistor 21 and the drain of the transistor 22 is referred to as a voltage VOUT2 and is shown in the figure.
  • the voltage VOUT2 is the output voltage of the comparator 131, that is, the result of comparison between the reference signal Vram and the pixel signal VSL.
  • the transistor 23 is a switch transistor connected between the drain and the gate of the transistor 22.
  • a control signal ⁇ 1 is supplied to the gate (control terminal) of the transistor 23.
  • One of the drain and the source (current terminal) of the transistor 23 is connected to the drain of the transistor 22, and the other is connected to the gate of the transistor 22.
  • the capacitor C3 is connected between the gate of the transistor 22 and the ground GND.
  • the connection circuit 30 is connected between the amplifier circuit 10 and the amplifier circuit 20.
  • the connection circuit 30 includes a transistor 31 and a transistor 32.
  • the transistor 31 and the transistor 32 are p-type transistors.
  • the transistor 31 is a switch transistor (first switch) connected between the source of the transistor 13 of the amplifier circuit 10 and the gate of the transistor 21 of the amplifier circuit 20.
  • a control signal X ⁇ 3 is supplied to the gate (control terminal) of the transistor 31.
  • One of the drain and the source (current terminal) of the transistor 31 is connected to the source of the transistor 13, and the other is connected to the gate of the transistor 21.
  • the transistor 32 is a switch transistor (second switch) connected between the source of the transistor 14 of the amplifier circuit 10 and the gate of the transistor 21 of the amplifier circuit 20.
  • a control signal ⁇ 3 is supplied to the gate (control terminal) of the transistor 32.
  • One of the drain and the source (current terminal) of the transistor 32 is connected to the source of the transistor 14, and the other is connected to the gate of the transistor 21.
  • the operation of the comparator 131 includes an auto zero operation (AZ operation) and a comparison operation (AD conversion operation) after the auto zero operation is canceled (after completion). Each operation will be described in association with some control signals.
  • control signal X ⁇ 1 is set to the low level.
  • the transistor 15, the transistor 16 and the transistor 23 are turned on (conducting state).
  • the control signal X ⁇ 2 is set to a high level.
  • the transistor 18 is turned off (non-conducting state).
  • the control signal X ⁇ 3 is set to a low level.
  • the transistor 31 is turned on.
  • the transistor 32 is turned off.
  • a voltage obtained by lowering (shifting) the source voltage of the transistor 13 by the voltage of the level shift circuit LSC is supplied to the gate of the transistor 11, and is held by the capacitor C1.
  • the voltage at the gate of the transistor 11 is initialized.
  • the voltage at the gate of the transistor 11 is copied to the gate of the transistor 12 by the voltage follower and held by the capacitor C2.
  • the voltage at the gate of the transistor 12 is initialized.
  • the voltage VOUT1 of the amplifier circuit 10 in the above-mentioned state is supplied to the gate of the transistor 21 via the transistor 31.
  • the voltage value corresponding to the amount of current flowing through the transistor 21 and the transistor 22 is held by the capacitor C3.
  • the gate voltage of the transistor 22, and thus the current flowing through the transistor 21 and the transistor 22 are initialized.
  • the control signal X ⁇ 1 switches from low level to high level.
  • the transistor 15, the transistor 16 and the transistor 23 are turned off.
  • the control signal X ⁇ 2 switches from high level to low level.
  • Transistor 18 is turned on.
  • the control signal X ⁇ 3 is switched from the high level to the low level.
  • the transistor 31 is turned off.
  • the transistor 32 is turned on.
  • the voltage corresponding to the difference between the reference signal Vramp_i input to the gate of the transistor 11 and the pixel signal VSL_i input to the gate of the transistor 12 is set as the voltage VOUT0 and eventually the voltage VOUT2. It is output.
  • the voltage VOUT2 is counted by the counter 132 (FIG. 3), and AD conversion is performed.
  • FIG. 4 is a diagram schematically showing an example of the operation of the comparator.
  • the control signal X ⁇ 1, the control signal X ⁇ 2, and the control signal X ⁇ 3 are controlled to low level, high level, and low level (control signal ⁇ 3 is high level).
  • a voltage VOUT1_AZ obtained by shifting the voltage VOUT1 by the voltage of the level shift circuit LSC is supplied to the gate of the transistor 11, and the gate voltage of the transistor 11 and the gate voltage of the transistor 12 are initialized.
  • the comparison operation is performed after the auto zero operation is canceled (after the AZ is canceled) after the time t1.
  • the control signal X ⁇ 1 and the control signal X ⁇ 2 are controlled to high level and low level.
  • the control signal X ⁇ 3 is controlled to a high level.
  • the voltage corresponding to the difference between the reference voltage Vramp_i and the pixel signal VSL_i is output as the voltage VOUT0 and thus the voltage VOUT2.
  • the D phase is AD converted from time t3 to time t4. That is, at time t3, the voltage of the reference signal Vram_i begins to change, and at time t4, it becomes equal to the voltage of the pixel signal VSL_i. This period is counted as the AD conversion value of the D phase.
  • the P phase is AD converted from time t5 to time t6. That is, at time t5, the voltage of the reference signal Vram_i begins to change, and at time t6, it becomes equal to the voltage of the pixel signal VSL_i. This period is counted as the AD conversion value of the P phase.
  • the comparator 131 operates as described above.
  • the order of AD conversion of the D phase and the P phase may be reversed.
  • connection circuit 30 includes a connection circuit 30. This will be described with reference to FIGS. 5 to 7. In order to facilitate understanding, some configurations of the illustrated comparator are omitted or simplified.
  • the comparator 131A exemplified in FIGS. 5 and 6 is also one of the comparators according to the embodiment.
  • the comparator 131A is different from the comparator 131 (FIG. 3) described so far in that it does not include the capacitor C1, the transistor 16, the level shift circuit LSC (transistor 17), and the transistor 18.
  • the current source Is is illustrated as a transistor to which a control voltage VGCM is supplied to the gate.
  • the transistor 15, transistor 23, transistor 31 and transistor 32 are illustrated as switches.
  • the transistor 17, the transistor 23, and the transistor 31 are controlled to be on, and the transistor 32 is controlled to be turned off. Since there is no capacitor C1, the reference signal Vramp is directly input to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized. The current flowing through the transistor 21 and the transistor 22 is also initialized.
  • the transistor 17, the transistor 23, and the transistor 31 are controlled to be off, and the transistor 32 is controlled to be on.
  • the voltage corresponding to the difference between the reference signal Vram and the pixel signal VSL_i is output as the voltage VOUT0 and thus the voltage VOUT2.
  • FIG. 7 is a diagram schematically showing an example of the operation of the comparator.
  • the control signal X ⁇ 1 and the control signal ⁇ 3 are set to low level and high level.
  • a reference signal Vram is input to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized.
  • a comparison operation (AD conversion operation) is performed.
  • the control signal X ⁇ 1 is controlled to a high level.
  • the control signal ⁇ 3 is controlled to a low level.
  • the D phase is AD converted from time t13 to time t14. That is, at time t13, the voltage of the reference signal Vram begins to change, and at time t14, it becomes equal to the voltage of the pixel signal VSL_i. This comparison period is counted.
  • the P phase is AD converted from time t15 to time t16. That is, at time t5, the voltage of the reference signal Vram begins to change, and at time t6, it becomes equal to the voltage of the pixel signal VSL_i. This comparison period is counted.
  • the comparator 131E according to the comparative example shown in FIGS. 8 and 9 has the same configuration as that of Patent Document 1.
  • the components of the comparator 131E are obtained by adding "E" to the codes of the corresponding components of the comparator 131 (FIG. 3) and the comparator 131A (FIGS. 6 and 7) described above (referred to as transistors 11E and the like). Illustrated.
  • the comparator 131E does not have a configuration corresponding to the capacitor C2 (FIG. 3).
  • the diode connection is switched by the transistor 31E connected between the gate and the source of the transistor 13E and the transistor 32E connected between the gate and the source of the transistor 14E.
  • the transistor 16E, the transistor 23E, and the transistor 32E are controlled to be on, and the transistor 31E is controlled to be turned off.
  • the transistor 16E, the transistor 23E, and the transistor 32E are controlled to be off, and the transistor 31E is controlled to be on.
  • FIG. 10 is a diagram schematically showing an example of the operation of the comparator according to the comparative example.
  • the control signal X ⁇ 1 and the control signal ⁇ 3 are set to low level and high level.
  • the pixel signal VSL is input to the gate of the transistor 12E, and the voltage of the gate of the transistor 11E and the voltage of the gate of the transistor 12 are initialized.
  • a comparison operation (AD conversion operation) is performed.
  • the control signal X ⁇ 1 is controlled to a high level.
  • the control signal ⁇ 3 is controlled to a low level.
  • the voltage VOUT1 rises and the reference voltage Vramp_i also rises via the coupling. The amount of this rise varies, and some examples of the reference voltage Vramp_i after the rise are illustrated by the alternate long and short dash line.
  • the D phase is AD converted from time t23 to time t24. That is, at time t23, the voltage of the reference signal Vramp_i begins to change, and at time t24, it becomes equal to the voltage of the pixel signal VSL. This period is counted as the AD conversion value of the D phase. The count period (time t23 to time t24) becomes longer due to the occurrence of the feedthrough described above, and the count value increases.
  • the P phase is AD converted from time t25 to time t26. That is, at time t25, the voltage of the reference signal Vramp_i begins to change, and at time t26, it becomes equal to the voltage of the pixel signal VSL. This comparison period is counted. The comparison period (time t25 to time t26) becomes longer and the count value increases by the amount of the above-mentioned feedthrough.
  • the comparison period of the D phase of the comparator 131A (time t13 to time t14 in FIG. 7) is shorter than the comparison period of the D phase of the comparator 131E (time t23 to time t24 in FIG. 10).
  • the comparison period of the P phase of the comparator 131A (time t15 to time t16 in FIG. 7) is shorter than the comparison period of the P phase of the comparator 131E (time t25 to time t26 in FIG. 10).
  • the AD conversion can be speeded up by that amount.
  • the feedthrough at the time of switching the diode connection unlike the comparator 131E does not occur, so that the increase in the count number at the time of AD change can be suppressed by that amount.
  • FIG. 11 is a diagram schematically showing an example of the operation of the comparator.
  • the upper limit UL and the lower limit LL of the operating voltage range of the comparator are shown.
  • the upper limit UL and the lower limit LL are located between the power supply VDD and the voltage VSS (corresponding to the ground GND).
  • the voltage VOUT1_AZ is supplied to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized.
  • the voltage VOUT1_AZ is a voltage obtained by shifting the voltage VOUT1 at the source of the transistor 13 by the level shift circuit LSC, and is a voltage closer to the lower limit value LL than the voltage VOUT1.
  • the voltage of the reference voltage Vramp_i is changed, the voltage is compared with the voltage of the pixel signal VSL_i, and AD conversion is performed.
  • the operating voltage is within the range of the upper limit value UL and the lower limit value LL in any AD conversion of the D phase and the P phase.
  • FIG. 11 an example of voltage fluctuation in the absence of the level shift circuit LSC is shown by an alternate long and short dash line.
  • the voltage VOUT1 is supplied to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized. This voltage is farther from the lower limit value LL than the voltage VOUT1 described above.
  • the operating voltage exceeds the upper limit UL in the P-phase AD conversion after the D-phase AD conversion, and the AD conversion is not properly performed.
  • the comparator 131 by providing the level shift circuit LSC, the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 can be initialized with a more appropriate voltage. Therefore, the operating voltage at the time of AD conversion can be kept within the upper limit value UL and the lower limit value LL, and AD conversion can be appropriately performed. Further, by using the level shift circuit LSC, the circuit area can be reduced as compared with the case where a circuit for separately generating and supplying a voltage is provided, for example.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a comparator according to a modified example. It is illustrated by adding "B" to the code of the component corresponding to the comparator 131 (FIG. 3) (referred to as transistor 11B or the like).
  • the transistor 13B, the transistor 14B, the transistor 15B, the transistor 16B, the transistor 17B, the transistor 18B, the transistor 21B, the transistor 31B and the transistor 32B are n-type transistors.
  • the transistor 11B, the transistor 12B, the transistor 22B and the transistor 23B are p-type transistors.
  • each element is appropriately changed from the comparator 131.
  • one current terminal and the other current terminal of the transistors 11 to 14 are described as drains and sources, but in FIG. 12, one current terminal of the transistors 11B to 14B and the other current terminal are described. Is described as source and drain.
  • the source of transistor 13B (one current terminal) and the source of transistor 14B (one current terminal) are connected to ground GND.
  • the current source Is is located between the power supply VDD and the drain of the transistor 11B (the other current terminal) and the drain of the transistor 12B (the other current terminal) so that the current flows from the power supply VDD toward the transistor 11B and the transistor 12B. Be connected.
  • control signal for example, the low level and the high level of the control signal ⁇ 1 and the control signal X ⁇ 1 are appropriately changed so as to be opposite to those of the comparator 131.
  • control signal ⁇ 2 the control signal ⁇ 3, and the like.
  • a control signal ⁇ 1 is supplied to the gate of the transistor 15B and the gate of the transistor 16B.
  • a control signal ⁇ 2 is supplied to the gate of the transistor 18B.
  • a control signal X ⁇ 1 is supplied to the gate of the transistor 23B.
  • a control signal ⁇ 3 is supplied to the gate of the transistor 31B.
  • the control signal X ⁇ 3 is supplied to the gate of the transistor 32B.
  • FIG. 13 is a diagram schematically showing an example of the operation of the comparator.
  • the control signal ⁇ 1, the control signal ⁇ 2, and the control signal ⁇ 3 are controlled to low level, high level, and high level (control signal X ⁇ 3 is low level).
  • the comparison operation AD conversion operation
  • the control signal ⁇ 1, the control signal ⁇ 2, and the control signal ⁇ 3 are controlled to high level, low level, and low level. Since the specific operation is the same as that of the comparator 131 (FIG. 4, etc.), the description will not be repeated.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 14 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the vehicle interior information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 15 is a diagram showing an example of the installation position of the image pickup unit 12031.
  • the image pickup unit 12031 has image pickup units 12101, 12102, 12103, 12104, and 12105.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided in the front nose and the image pickup section 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 15 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object in the image pickup range 12111 to 12114 based on the distance information obtained from the image pickup unit 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like that autonomously travels without relying on the driver's operation.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and pattern matching processing is performed on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technique according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the image pickup unit 12031 among the configurations described above.
  • the solid-state image sensor 111 described with reference to FIG. 1 can be applied to the image pickup unit 12031.
  • the comparator 131 includes an amplifier circuit 10, an amplifier circuit 20, and a connection circuit 30.
  • the amplifier circuit 10 is a first amplifier circuit.
  • the amplifier circuit 20 is a second amplifier circuit provided after the amplifier circuit 10.
  • the connection circuit 30 is connected between the amplifier circuit 10 and the amplifier circuit 20.
  • the amplifier circuit 10 includes a transistor 11, a transistor 12, a transistor 13, a transistor 14, a current source Is, and a transistor 15.
  • the transistor 11 is a first transistor to which a reference signal Vram is input to the gate.
  • the transistor 12 is a second transistor in which a pixel signal VSL (input signal) is input to the gate via the capacitor C2 and forms a differential pair together with the transistor 11.
  • the transistor 13 is a third transistor whose drain is connected to the power supply VDD and whose source is connected to the drain of the transistor 11.
  • the transistor 14 is a fourth transistor whose drain is connected to the power supply VDD and whose source is connected to the drain of the transistor 12.
  • the current source Is is connected between the source of the transistor 11 and the source of the transistor 12 and the ground GND so that the current flows from the transistor 11 and the transistor 12 toward the ground GND.
  • the transistor 15 is a switch for a second transistor connected between the drain and the gate of the transistor 12.
  • the gate of transistor 13, the source of transistor 13 and the source of transistor 14 are connected to each other.
  • the connection circuit 30 includes a transistor 31 and a transistor 32.
  • the transistor 31 is a first switch connected between the source of the transistor 13 and the amplifier circuit 20.
  • the transistor 32 is a second switch connected between the source of the transistor 13 and the amplifier circuit 20.
  • comparator 131 for example, if each switch is controlled to perform an auto zero operation and a comparison operation as described above with reference to FIGS. 4 to 7, feedthrough as in Patent Document 1 does not occur. Therefore, it is possible to suppress an increase in the number of counts at the time of AD conversion by that amount. As a result, AD conversion can be speeded up.
  • the transistor 31 is controlled to be in the conductive state, the transistor 32 is controlled to be in the non-conducting state, and the transistor 15 is controlled to be in the conductive state during the auto zero operation.
  • the transistor 31 may be controlled in the non-conducting state, the transistor 32 may be controlled in the non-conducting state, and the transistor 15 may be controlled in the non-conducting state.
  • switch control auto zero operation and comparison operation can be performed.
  • the reference signal Vramp is input to the gate of the transistor 11 via the capacitor C1
  • the amplifier circuit 10 is a transistor connected between the drain and the gate of the transistor 11. 16 (switch for the first transistor) may be included.
  • the transistor 16 may be controlled to be in a conductive state during the auto zero operation, and the transistor 16 may be controlled to be in a non-conducting state during the comparative operation.
  • a voltage can be supplied to the gate of the transistor 11 via the transistor 13 or the like to perform initialization.
  • the amplifier circuit 10 includes a level shift circuit LSC connected between the source of the transistor 13 and the drain of the transistor 11, and the source of the transistor 13 and the drain of the transistor 11.
  • a transistor 18 (bypass switch) connected in parallel to the level shift circuit LSC may be included between the two.
  • An example of a level shift circuit LSC is a diode (diode-connected transistor 17).
  • the transistor 18 may be set to the non-conducting state during the auto zero operation, and the transistor 18 may be set to the conducting state during the comparative operation.
  • the operating voltage during the comparative operation (during AD conversion) can be kept within an appropriate range.
  • the circuit area can be made smaller than, for example, as compared with the case where a circuit for separately generating and supplying a voltage is provided.
  • the transistor 11B (first transistor) and the transistor 12B (second transistor) are p-type transistors
  • the transistor 13B (third transistor) and the transistor 14B (fourth transistor) are. It may be an n-type transistor.
  • the source of the transistor 13B and the source of the transistor 14B may be connected to the ground GND.
  • the current source Is may be connected between the power supply VDD and the drain of the transistor 11B and the drain of the transistor 12B so that a current flows from the power supply VDD toward the transistor 11B and the transistor 12B. Even with such a configuration, it is possible to realize a comparator capable of suppressing an increase in the number of counts at the time of AD conversion as described above.
  • the solid-state image sensor 111 described with reference to FIG. 1 and the like is also an aspect of the present disclosure.
  • the solid-state image sensor 111 includes a plurality of pixels 121 and an AD conversion circuit 130 that converts a pixel signal VSL of each of the plurality of pixels 121 into a digital signal.
  • the AD conversion circuit 130 includes a comparator (such as the above-mentioned comparator 131) that compares the pixel signal VSL and the reference signal Vram.
  • the disclosed technology can also have the following configurations.
  • (1) The first amplifier circuit and The second amplifier circuit provided after the first amplifier circuit and A connection circuit connected between the first amplifier circuit and the second amplifier circuit, Equipped with The first amplifier circuit is The first transistor to which the reference signal is input to the control terminal, An input signal is input to the control terminal via a capacitor, and the second transistor forming a differential pair together with the first transistor
  • a fourth transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the second transistor.
  • a current source connected between the other current terminal of the first transistor, the other current terminal of the second transistor, and the other of the ground and the power supply.
  • a switch for the second transistor connected between one of the current terminals and the control terminal of the second transistor, Including The control terminal of the third transistor, the other current terminal of the third transistor, and the control terminal of the fourth transistor are connected to each other.
  • the connection circuit is A first switch connected between the other current terminal of the third transistor and the second amplifier circuit, A second switch connected between the other current terminal of the fourth transistor and the second amplifier circuit, including, comparator.
  • the switch for the second transistor is controlled to be in a conductive state, and is controlled.
  • the first switch is controlled to be in a non-conducting state.
  • the second switch is controlled to be in a conductive state and is controlled to a conduction state.
  • the second transistor switch is controlled to be in a non-conducting state.
  • the comparator according to (1).
  • the reference signal is input to the control terminal of the first transistor via a capacitor.
  • the first amplifier circuit includes a switch for the first transistor connected between one of the current terminals and the control terminal of the first transistor.
  • the comparator according to (1) or (2).
  • the switch for the first transistor is controlled to be in a conductive state.
  • the switch for the first transistor is controlled to be in a non-conducting state.
  • the first amplifier circuit is A level shift circuit connected between the other current terminal of the third transistor and one current terminal of the first transistor.
  • a bypass switch connected in parallel to the level shift circuit between the other current terminal of the third transistor and one current terminal of the first transistor. including, The comparator according to (3) or (4).
  • (6) During auto zero operation, the bypass switch is set to the non-conducting state. During the comparison operation, the bypass switch is set to the conductive state.
  • the level shift circuit includes a diode. The comparator according to (5) or (6).
  • the first transistor and the second transistor are n-type transistors and are n-type transistors.
  • the third transistor and the fourth transistor are p-type transistors and are p-type transistors.
  • the one current terminal and the other current terminal of each of the first transistor to the fourth transistor are a drain and a source.
  • the drain of the third transistor and the drain of the fourth transistor are connected to the power supply.
  • the current source is connected between the source of the first transistor and the source of the second transistor and the ground so that a current flows from the first transistor and the second transistor toward the ground.
  • the comparator according to any one of (1) to (7).
  • the first transistor and the second transistor are p-type transistors and are p-type transistors.
  • the third transistor and the fourth transistor are n-type transistors and are n-type transistors.
  • the one current terminal and the other current terminal of each of the first transistor to the fourth transistor are a source and a drain.
  • the source of the third transistor and the source of the fourth transistor are connected to the ground.
  • the current source is connected between the power supply and the drain of the first transistor and the drain of the second transistor so that a current flows from the power supply toward the first transistor and the second transistor.
  • the comparator according to any one of (1) to (7). (10) With multiple pixels, An AD converter that converts each pixel signal of each of the plurality of pixels into a digital signal, Equipped with The AD converter includes a comparator that compares the pixel signal with the reference signal.
  • the comparator is The first amplifier circuit and The second amplifier circuit provided after the first amplifier circuit and A connection circuit connected between the first amplifier circuit and the second amplifier circuit, Equipped with The first amplifier circuit is The first transistor to which the reference signal is input to the control terminal, An input signal is input to the control terminal via a capacitor, and the second transistor forming a differential pair together with the first transistor A third transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the first transistor. A fourth transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the second transistor.
  • a current source connected between the other current terminal of the first transistor, the other current terminal of the second transistor, and the other of the ground and the power supply.
  • a switch for the second transistor connected between one of the current terminals and the control terminal of the second transistor, Including The control terminal of the third transistor, the other current terminal of the third transistor, and the control terminal of the fourth transistor are connected to each other.
  • the connection circuit is A first switch connected between the other current terminal of the third transistor and the second amplifier circuit, A second switch connected between the other current terminal of the fourth transistor and the second amplifier circuit, including, Solid-state image sensor.
  • Amplifier circuit (first amplifier circuit) 11 Transistor (1st transistor) 12 Transistor (2nd transistor) 13 Transistor (3rd transistor) 14 Transistor (4th transistor) 15 Transistor (Switch for 2nd transistor) 16 Transistor (Switch for 1st transistor) 17 Transistor 18 Transistor (Bypass switch) 20 Amplifier circuit (second amplifier circuit) 21 Transistor 22 Transistor 23 Transistor 30 Connection circuit 31 Transistor (1st switch) 32 Transistor (2nd switch) 111 Solid-state image sensor 121 pixel 130 AD conversion circuit 131 comparator 132 counter C1 capacitor C2 capacitor Is current source LSC level shift circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A connection circuit (30) connected between a first amplifier circuit (10) and second amplifier circuit (20) includes: a first switch (31) connected between another current terminal of a third transistor (13) and the second amplifier circuit (20); and a second switch (32) connected between another current terminal of a fourth transistor (14) and the second amplifier circuit (20).

Description

コンパレータ及び固体撮像素子Comparator and solid-state image sensor
 本開示は、コンパレータ及び固体撮像素子に関する。 The present disclosure relates to a comparator and a solid-state image sensor.
 AD変換器には、コンパレータを含むものもある。コンパレータでは、内部電圧等の初期化を行うためのオートゼロ動作、及び、比較動作(AD変換動作)が行われる。例えば特許文献1は、差動対を構成するトランジスタと電源との間に接続された一対のトランジスタそれぞれのダイオード接続を、オートゼロ動作時と比較動作時とで切り替える手法を開示する。 Some AD converters include a comparator. In the comparator, an auto zero operation for initializing the internal voltage and the like and a comparison operation (AD conversion operation) are performed. For example, Patent Document 1 discloses a method of switching the diode connection of each pair of transistors connected between a transistor constituting a differential pair and a power supply between auto zero operation and comparative operation.
特開2014-197773号公報Japanese Unexamined Patent Publication No. 2014-197773
 ダイオード接続切り替え時に生じるフィードスルーにより電圧変動が生じ、AD変換時のカウント数が増加する可能性がある。この点について、特許文献1では具体的な検討は行われていない。 Voltage fluctuation may occur due to feedthrough that occurs when switching diode connections, and the number of counts during AD conversion may increase. No specific study has been made on this point in Patent Document 1.
 本開示の一側面は、AD変換時のカウント数の増加を抑制することが可能なコンパレータ及び固体撮像素子を提供する。 One aspect of the present disclosure provides a comparator and a solid-state image sensor capable of suppressing an increase in the number of counts during AD conversion.
 本開示の一側面に係るコンパレータは、第1増幅回路と、第1増幅回路の後段に設けられた第2増幅回路と、第1増幅回路と第2増幅回路との間に接続された接続回路と、を備え、第1増幅回路は、制御端子に参照信号が入力される第1トランジスタと、コンデンサを介して制御端子に入力信号が入力され、第1トランジスタとともに差動対を構成する第2トランジスタと、一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第1トランジスタの一方の電流端子に接続された第3トランジスタと、一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第2トランジスタの一方の電流端子に接続された第4トランジスタと、第1トランジスタの他方の電流端子及び第2トランジスタの他方の電流端子と、グラウンド及び電源の他方との間に接続された電流源と、第2トランジスタの一方の電流端子と制御端子との間に接続された第2トランジスタ用スイッチと、を含み、第3トランジスタの制御端子、第3トランジスタの他方の電流端子及び第4トランジスタの制御端子は互いに接続され、接続回路は、第3トランジスタの他方の電流端子と第2増幅回路と間に接続された第1スイッチと、第4トランジスタの他方の電流端子と第2増幅回路との間に接続された第2スイッチと、を含む。 The comparator according to one aspect of the present disclosure is a connection circuit connected between a first amplification circuit, a second amplification circuit provided after the first amplification circuit, and the first amplification circuit and the second amplification circuit. The first amplification circuit comprises a first transistor in which a reference signal is input to the control terminal, and a second transistor in which an input signal is input to the control terminal via a capacitor to form a differential pair together with the first transistor. A transistor, a third transistor in which one current terminal is connected to one of the ground and the power supply, the other current terminal is connected to one of the current terminals of the first transistor, and one current terminal is connected to one of the ground and the power supply. A fourth transistor connected and the other current terminal connected to one current terminal of the second transistor, the other current terminal of the first transistor, the other current terminal of the second transistor, and the ground and the other of the power supply. A second transistor switch connected between one of the current terminals and the control terminal of the second transistor, and a control terminal of the third transistor and the other of the third transistor. The current terminal and the control terminal of the 4th transistor are connected to each other, and the connection circuit consists of the 1st switch connected between the other current terminal of the 3rd transistor and the 2nd amplification circuit, and the other current of the 4th transistor. Includes a second switch connected between the terminal and the second amplification circuit.
 本開示の一側面に係る固体撮像素子は、複数の画素と、複数の画素それぞれの各々の画素信号をディジタル信号に変換するAD変換器と、を備え、AD変換器は、画素信号と参照信号とを比較するコンパレータを含み、コンパレータは、第1増幅回路と、第1増幅回路の後段に設けられた第2増幅回路と、第1増幅回路と第2増幅回路との間に接続された接続回路と、を備え、第1増幅回路は、制御端子に参照信号が入力される第1トランジスタと、コンデンサを介して制御端子に入力信号が入力され、第1トランジスタとともに差動対を構成する第2トランジスタと、一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第1トランジスタの一方の電流端子に接続された第3トランジスタと、一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第2トランジスタの一方の電流端子に接続された第4トランジスタと、第1トランジスタの他方の電流端子及び第2トランジスタの他方の電流端子と、グラウンド及び電源の他方との間に接続された電流源と、第2トランジスタの一方の電流端子と制御端子との間に接続された第2トランジスタ用スイッチと、を含み、第3トランジスタの制御端子、第3トランジスタの他方の電流端子及び第4トランジスタの制御端子は互いに接続され、接続回路は、第3トランジスタの他方の電流端子と第2増幅回路と間に接続された第1スイッチと、第4トランジスタの他方の電流端子と第2増幅回路との間に接続された第2スイッチと、を含む。 The solid-state imaging device according to one aspect of the present disclosure includes a plurality of pixels and an AD converter that converts each pixel signal of each of the plurality of pixels into a digital signal, and the AD converter includes a pixel signal and a reference signal. Including a comparator to compare with, the comparator is a connection connected between the first amplification circuit, the second amplification circuit provided after the first amplification circuit, and the first amplification circuit and the second amplification circuit. The first amplification circuit includes a circuit, a first transistor in which a reference signal is input to a control terminal, and a first transistor in which an input signal is input to a control terminal via a capacitor to form a differential pair together with the first transistor. Two transistors, a third transistor in which one current terminal is connected to one of the ground and the power supply, the other current terminal is connected to one of the current terminals of the first transistor, and one current terminal is one of the ground and the power supply. A fourth transistor connected to and the other current terminal connected to one current terminal of the second transistor, the other current terminal of the first transistor and the other current terminal of the second transistor, and the ground and the other of the power supply. The control terminal of the third transistor, the control terminal of the third transistor, including the switch for the second transistor connected between the current source connected to the second transistor and one of the current terminals and the control terminal of the second transistor. The other current terminal and the control terminal of the fourth transistor are connected to each other, and the connection circuit is the first switch connected between the other current terminal of the third transistor and the second amplification circuit, and the other of the fourth transistor. Includes a second switch connected between the current terminal and the second amplification circuit.
実施形態に係る固体撮像素子の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the solid-state image pickup device which concerns on embodiment. 画素等の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of a pixel and the like. コンパレータの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of a comparator. コンパレータの動作の例を模式的に示す図である。It is a figure which shows the example of the operation of a comparator schematically. コンパレータの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of a comparator. コンパレータの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of a comparator. 動作の例を模式的に示す図である。It is a figure which shows the example of operation schematically. 比較例に係るコンパレータの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the comparator which concerns on a comparative example. 比較例に係るコンパレータの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the comparator which concerns on a comparative example. 比較例に係るコンパレータの動作の例を模式的に示す図である。It is a figure which shows typically the example of the operation of the comparator which concerns on a comparative example. コンパレータの動作の例を模式的に示す図である。It is a figure which shows the example of the operation of a comparator schematically. 変形例に係るコンパレータの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the comparator which concerns on the modification. コンパレータの動作の例を模式的に示す図である。It is a figure which shows the example of the operation of a comparator schematically. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。
 以下に示す項目順序に従って本開示を説明する。
  1.実施形態
  2.変形例
  3.移動体への応用例
  4.効果
1. 実施形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each of the following embodiments, the same elements are designated by the same reference numerals, so that duplicate description will be omitted.
The present disclosure will be described according to the order of items shown below.
1. 1. Embodiment 2. Modification example 3. Application example to mobile body 4. Effect 1. Embodiment
 図1は、実施形態に係る固体撮像素子の概略構成の例を示す図である。固体撮像素子111は、画素アレイ部112と、タイミング制御部113と、参照信号生成回路114と、行走査部115と、列走査部116と、カラム処理部117とを含む。固体撮像素子111は、例えばCMOSイメージセンサである。 FIG. 1 is a diagram showing an example of a schematic configuration of a solid-state image sensor according to an embodiment. The solid-state image sensor 111 includes a pixel array unit 112, a timing control unit 113, a reference signal generation circuit 114, a row scanning unit 115, a column scanning unit 116, and a column processing unit 117. The solid-state image sensor 111 is, for example, a CMOS image sensor.
 画素アレイ部112は、行列状(m行n列)に配置された複数の画素121を含む。各画素121を区別できるように、画素121mn等と称し図示する。各行の画素121は、水平信号線122を介して、行走査部115に接続される。各行に対応する水平信号線122を、水平信号線122等と称し図示する。各列の画素121は、垂直信号線123を介して、カラム処理部117に接続される。各行に対応する各垂直信号線123を、垂直信号線123等と称し図示する。各画素121は、水平信号線122を介して供給される制御信号に従って行ごとに駆動され、受光量に応じたレベルの画素信号VSLを垂直信号線123に出力する。 The pixel array unit 112 includes a plurality of pixels 121 arranged in a matrix (m rows and n columns). In order to distinguish each pixel 121, it is referred to as a pixel 121 mn or the like and is shown. The pixels 121 in each row are connected to the row scanning unit 115 via the horizontal signal line 122. The horizontal signal line 122 corresponding to each line is referred to as a horizontal signal line 122 m or the like and is illustrated. The pixels 121 in each row are connected to the column processing unit 117 via the vertical signal line 123. Each vertical signal line 123 corresponding to each line is referred to as a vertical signal line 123 n or the like and is illustrated. Each pixel 121 is driven line by line according to a control signal supplied via the horizontal signal line 122, and outputs a pixel signal VSL at a level corresponding to the amount of received light to the vertical signal line 123.
 タイミング制御部113は、種々の信号の生成及び供給により、参照信号生成回路114、行走査部115、列走査部116及びカラム処理部117の動作タイミングを制御する。タイミング制御部113が生成する信号として、クロック信号CLK、制御信号CS1、制御信号CS2及び制御信号CS3が例示される。クロック信号CLKは、参照信号生成回路114及びカラム処理部117の動作基準となる。制御信号CS1は、参照信号生成回路114の動作を制御する。制御信号CS2及び制御信号CS3は、カラム処理部117の動作を制御する。 The timing control unit 113 controls the operation timing of the reference signal generation circuit 114, the row scanning unit 115, the column scanning unit 116, and the column processing unit 117 by generating and supplying various signals. Examples of the signal generated by the timing control unit 113 include a clock signal CLK, a control signal CS1, a control signal CS2, and a control signal CS3. The clock signal CLK serves as an operating reference for the reference signal generation circuit 114 and the column processing unit 117. The control signal CS1 controls the operation of the reference signal generation circuit 114. The control signal CS2 and the control signal CS3 control the operation of the column processing unit 117.
 参照信号生成回路114は、参照信号Vrampを生成し、カラム処理部117に供給する。参照信号Vrampは、クロック信号CLKに従った一定の勾配で電圧値が変化(上昇又は降下)するランプ信号である。 The reference signal generation circuit 114 generates a reference signal Vramp and supplies it to the column processing unit 117. The reference signal Vramp is a lamp signal whose voltage value changes (rises or falls) with a constant gradient according to the clock signal CLK.
 行走査部115は、画素121を行ごとに駆動する。例えば、行走査部115は、画素121を行ごとに駆動するための制御信号(転送信号、選択信号、リセット信号等)を、画素121に供給する。 The row scanning unit 115 drives the pixel 121 row by row. For example, the row scanning unit 115 supplies the pixel 121 with a control signal (transfer signal, selection signal, reset signal, etc.) for driving the pixel 121 row by row.
 列走査部116は、カラム処理部117に制御信号を供給し、後述するカラム処理部117によってAD変換された画素信号VSLを列ごとに順番に水平出力線に出力させる。 The column scanning unit 116 supplies a control signal to the column processing unit 117, and outputs the pixel signal VSL AD-converted by the column processing unit 117, which will be described later, to the horizontal output line in order for each column.
 カラム処理部117は、列ごとに設けられ、画素121からの画素信号を処理する。処理の例は、AD変換であり、カラム処理部117は、列ごとに設けられたAD変換回路130を含む。各列に対応するAD変換回路130を、AD変換回路130等と称し図示する。AD変換回路130は、垂直信号線123を介して入力された画素121からの画素信号VSLをAD変換する。 The column processing unit 117 is provided for each column and processes the pixel signal from the pixel 121. An example of processing is AD conversion, and the column processing unit 117 includes an AD conversion circuit 130 provided for each column. The AD conversion circuit 130 corresponding to each column is referred to as an AD conversion circuit 130 n or the like and is illustrated. The AD conversion circuit 130 AD-converts the pixel signal VSL from the pixel 121 input via the vertical signal line 123.
 AD変換回路130は、コンパレータ131と、カウンタ132と、スイッチ133と、メモリ134とを含む。各列に対応するコンパレータ131、カウンタ132及びスイッチ133を、コンパレータ131、カウンタ132及びスイッチ133等と称し図示する。 The AD conversion circuit 130 includes a comparator 131, a counter 132, a switch 133, and a memory 134. The comparator 131, the counter 132, and the switch 133 corresponding to each column are referred to as a comparator 131 n , a counter 132 n , a switch 133 n , and the like, and are illustrated.
 コンパレータ131の一方の入力端子には、参照信号Vrampが入力される。コンパレータ131の他方の入力端子には、画素信号VSLが入力される。コンパレータ131の出力端子は、カウンタ132に接続される。コンパレータ131は、参照信号Vrampと画素信号VSLとを比較する。例えば、コンパレータ131は、参照信号Vrampの電圧が画素信号VSLの電圧よりも大きいときにハイレベルの信号を出力し、参照信号Vrampの電圧が画素信号VSLの電圧以下のときにローレベルの信号を出力する。或いは、コンパレータ131は、参照信号Vrampの電圧が画素信号VSLの電圧以下のときにハイレベルの信号を出力し、参照信号Vrampの電圧が画素信号VLSの電圧よりも大きいときにローレベルの信号を出力する。コンパレータ131の出力電圧を、電圧VOUT2と称し図示する。 The reference signal Vramp is input to one input terminal of the comparator 131. A pixel signal VSL is input to the other input terminal of the comparator 131. The output terminal of the comparator 131 is connected to the counter 132. Comparator 131 compares the reference signal Vram with the pixel signal VSL. For example, the comparator 131 outputs a high-level signal when the voltage of the reference signal Vram is larger than the voltage of the pixel signal VSL, and outputs a low-level signal when the voltage of the reference signal Vram is equal to or lower than the voltage of the pixel signal VSL. Output. Alternatively, the comparator 131 outputs a high-level signal when the voltage of the reference signal Vram is equal to or lower than the voltage of the pixel signal VSL, and outputs a low-level signal when the voltage of the reference signal Vram is larger than the voltage of the pixel signal VLS. Output. The output voltage of the comparator 131 is referred to as a voltage VOUT2 and is shown in the figure.
 カウンタ132は、制御信号CS2に従って、クロック信号CLKに同期して、ダウンカウントまたはアップカウントを行う。カウント値(カウント結果)は、コンパレータ131での参照信号Vrampと画素信号VSLとの比較期間に相当する。 The counter 132 performs a down count or an up count in synchronization with the clock signal CLK according to the control signal CS2. The count value (count result) corresponds to the comparison period between the reference signal Vram and the pixel signal VSL in the comparator 131.
 スイッチ133は、制御信号CS3に従って、所定の行の画素121についてのカウンタ132のカウント動作が完了した時点でオン(導通状態)となる。そして、スイッチ33は、カウンタ132のカウント値をメモリ134に転送する。 The switch 133 is turned on (conducting state) when the counting operation of the counter 132 for the pixel 121 in the predetermined row is completed according to the control signal CS3. Then, the switch 33 transfers the count value of the counter 132 to the memory 134.
 メモリ134は、列走査部116から供給される制御信号に従って、保持しているAD変換後の画素信号VSLを水平出力線に出力する。 The memory 134 outputs the retained pixel signal VSL after AD conversion to the horizontal output line according to the control signal supplied from the column scanning unit 116.
 図2は、画素等の概略構成の例を示す図である。画素121は、PD141と、転送トランジスタ142と、電荷蓄積部143と、FD(フローティングディフュージョン)部144と、増幅トランジスタ145と、選択トランジスタ146と、リセットトランジスタ147とを含む。 FIG. 2 is a diagram showing an example of a schematic configuration of pixels and the like. The pixel 121 includes a PD 141, a transfer transistor 142, a charge storage unit 143, an FD (floating diffusion) unit 144, an amplification transistor 145, a selection transistor 146, and a reset transistor 147.
 PD141は、受光光量に応じた電荷を発生し蓄積するフォトダイオード(光電変換部)である。PD141のアノードはグラウンドGNDに接続され、カソードは、転送トランジスタ142を介して、増幅トランジスタ145のゲートに接続される。 PD141 is a photodiode (photoelectric conversion unit) that generates and stores electric charges according to the amount of received light. The anode of the PD 141 is connected to the ground GND and the cathode is connected to the gate of the amplification transistor 145 via the transfer transistor 142.
 転送トランジスタ142は、PD141と電荷蓄積部143との間に接続され、PD141に蓄積された電荷を、電荷蓄積部143に転送する。電荷の転送は、転送トランジスタ142のゲートに供給される転送信号Txによって制御される。転送信号Txは、行走査部115(図1)から供給される。 The transfer transistor 142 is connected between the PD 141 and the charge storage unit 143, and transfers the charge stored in the PD 141 to the charge storage unit 143. The charge transfer is controlled by the transfer signal Tx supplied to the gate of the transfer transistor 142. The transfer signal Tx is supplied from the row scanning unit 115 (FIG. 1).
 電荷蓄積部143は、グラウンドGNDとFD部144との間に設けられた容量であり、転送トランジスタ142を介してPD141から転送された電荷を蓄積する。 The charge storage unit 143 is a capacitance provided between the ground GND and the FD unit 144, and stores the charge transferred from the PD 141 via the transfer transistor 142.
 FD部144は、電荷を電圧に変換する電荷検出部であり、FD部144に保持される電荷が増幅トランジスタ145において電圧に変換される。 The FD unit 144 is a charge detection unit that converts an electric charge into a voltage, and the electric charge held in the FD unit 144 is converted into a voltage in the amplification transistor 145.
 増幅トランジスタ145は、FD部144に蓄積された電荷に応じたレベルの電圧を、ソースに出力する。増幅トランジスタ145のソースは、選択トランジスタ146を介して垂直信号線123に接続される。増幅トランジスタ145は、図示しない電流源とともに、ソースフォロワを構成する。ソースフォロワは、PD141での光電変換によって得られる信号を読み出す読出し回路である。 The amplification transistor 145 outputs a voltage at a level corresponding to the electric charge stored in the FD unit 144 to the source. The source of the amplification transistor 145 is connected to the vertical signal line 123 via the selection transistor 146. The amplification transistor 145 constitutes a source follower together with a current source (not shown). The source follower is a read-out circuit that reads out a signal obtained by photoelectric conversion in PD141.
 選択トランジスタ146は、増幅トランジスタ145と垂直信号線123との間に接続され、増幅トランジスタ145の出力電圧を、画素信号VSLとして垂直信号線123に出現させる。この出現は、選択トランジスタ146のゲートに供給される選択信号SELによって制御される。選択信号SELは、行走査部115(図1)から供給される。 The selection transistor 146 is connected between the amplification transistor 145 and the vertical signal line 123, and the output voltage of the amplification transistor 145 appears on the vertical signal line 123 as a pixel signal VSL. This appearance is controlled by the selection signal SEL supplied to the gate of the selection transistor 146. The selection signal SEL is supplied from the row scanning unit 115 (FIG. 1).
 リセットトランジスタ147は、FD部144と電源VDDとの間に接続され、FD部144をリセットする。FD部144のリセットは、リセットトランジスタ147のゲートに供給されるリセット信号RSTによって制御される。リセット信号RSTは、行走査部115(図1)から供給される。 The reset transistor 147 is connected between the FD unit 144 and the power supply VDD to reset the FD unit 144. The reset of the FD unit 144 is controlled by the reset signal RST supplied to the gate of the reset transistor 147. The reset signal RST is supplied from the row scanning unit 115 (FIG. 1).
 画素121の画素信号VSLは、垂直信号線123を介して、コンパレータ131に入力される。コンパレータ131の一方の入力端子には、必須では無いがこの例ではコンデンサC1を介して、参照信号Vrampが入力される。コンパレータ131の他方の入力端子には、コンデンサC2を介して、画素信号VSLが入力される。 The pixel signal VSL of the pixel 121 is input to the comparator 131 via the vertical signal line 123. Although not essential, the reference signal Vram is input to one input terminal of the comparator 131 via the capacitor C1 in this example. The pixel signal VSL is input to the other input terminal of the comparator 131 via the capacitor C2.
 例えば以上説明した構成を備える固体撮像素子111では、PD141に蓄積された電荷がFD部144に一括転送され、列ごとに順次読み出しを行うことで、シャッタクローズの同時性が保持される。 For example, in the solid-state image sensor 111 having the configuration described above, the charges accumulated in the PD 141 are collectively transferred to the FD unit 144, and the shutter closing simultaneity is maintained by sequentially reading out each column.
 固体撮像素子111では、リセットトランジスタ147によってFD部144がリセットされたときの信号(D相)と、PD141が発生した電荷をFD部144が蓄積しているときの信号(P相)とが読み出され、AD変換される。 In the solid-state image sensor 111, the signal (D phase) when the FD unit 144 is reset by the reset transistor 147 and the signal (P phase) when the FD unit 144 stores the electric charge generated by the PD 141 are read. It is issued and AD converted.
 図3は、コンパレータの概略構成の例を示す図である。コンパレータ131は、増幅回路10(第1増幅回路)と、増幅回路20(第2増幅回路)と、接続回路30とを含む。いくつかのトランジスタに供給される制御信号として、制御信号φ1~制御信号φ3及びこれらを反転させた制御信号Xφ1~制御信号Xφ3が例示される。各制御信号は、例えば行走査部115から供給される。 FIG. 3 is a diagram showing an example of a schematic configuration of a comparator. The comparator 131 includes an amplifier circuit 10 (first amplifier circuit), an amplifier circuit 20 (second amplifier circuit), and a connection circuit 30. As the control signals supplied to some transistors, control signals φ1 to control signals φ3 and control signals Xφ1 to control signals Xφ3 obtained by inverting these are exemplified. Each control signal is supplied from, for example, the row scanning unit 115.
 なお、以下の説明において、「接続」は、2つの要素どうしが直接接続されることを意味してもよいし、2つの要素どうしが他の要素を介して電気的に接続されることを意味してもよい。 In the following description, "connection" may mean that the two elements are directly connected to each other, or that the two elements are electrically connected to each other via another element. You may.
 増幅回路10は、前段(入力段)に設けられた差動増幅回路であり、画素信号VSL(入力信号)と参照信号Vrampとの差分に応じた電圧を出力する。増幅回路10は、トランジスタ11~トランジスタ18と、電流源Isと、コンデンサC1と、コンデンサC2とを含む。トランジスタ11~トランジスタ18のうち、この例では、トランジスタ11、トランジスタ12及びトランジスタ17が、n型トランジスタ(より具体的にはn型MOSFET)である。トランジスタ13~トランジスタ16及びトランジスタ18が、p型トランジスタ(より具体的にはp型MOSFET)である。なお、トランジスタのゲート(ベースでもよい)を、「制御端子」という場合もある。トランジスタのドレイン、ソース(コレクタ、エミッタでもよい)を、「電流端子」という場合もある。 The amplifier circuit 10 is a differential amplifier circuit provided in the previous stage (input stage), and outputs a voltage corresponding to the difference between the pixel signal VSL (input signal) and the reference signal Vram. The amplifier circuit 10 includes transistors 11 to 18, a current source Is, a capacitor C1, and a capacitor C2. Of the transistors 11 to 18, in this example, the transistor 11, the transistor 12, and the transistor 17 are n-type transistors (more specifically, n-type MOSFETs). The transistors 13 to 16 and the transistor 18 are p-type transistors (more specifically, p-type MOSFETs). The gate (or the base) of the transistor may be referred to as a "control terminal". The drain and source (may be collector or emitter) of a transistor may be referred to as a "current terminal".
 トランジスタ11は、トランジスタ12とともに差動対を構成する第1のトランジスタである。トランジスタ11のゲート(制御端子)には、この例ではコンデンサC1を介して、参照信号Vrampが入力される。i列目の画素121の参照信号Vrampを、参照信号Vramp_iと称し図示する。トランジスタ11のドレイン(一方の電流端子)は、トランジスタ13のソース(他方の電流端子)に接続される。トランジスタ11のドレインの電圧を、電圧VOUT1_AZと称し図示する。トランジスタ11のソース(他方の電流端子)は、電流源Isを介して、グラウンドGNDに接続される。 The transistor 11 is a first transistor that constitutes a differential pair together with the transistor 12. In this example, the reference signal Vram is input to the gate (control terminal) of the transistor 11 via the capacitor C1. The reference signal Vram of the pixel 121 in the i-th column is referred to as a reference signal Vram_i and is illustrated. The drain of the transistor 11 (one current terminal) is connected to the source of the transistor 13 (the other current terminal). The voltage of the drain of the transistor 11 is referred to as a voltage VOUT1_AZ and is shown in the figure. The source of the transistor 11 (the other current terminal) is connected to the ground GND via the current source Is.
 トランジスタ12は、トランジスタ11とともに差動対を構成する第2のトランジスタである。トランジスタ12のゲート(制御端子)には、コンデンサC2を介して、画素信号VSLが入力される。i列目の画素121の画素信号VSLを、画素信号VSL_iと称し図示する。トランジスタ12のドレイン(一方の電流端子)は、トランジスタ14のソース(他方の電流端子)に接続される。トランジスタ12のソース(他方の電流端子)は、電流源Isを介して、グラウンドGNDに接続される。 The transistor 12 is a second transistor that constitutes a differential pair together with the transistor 11. A pixel signal VSL is input to the gate (control terminal) of the transistor 12 via the capacitor C2. The pixel signal VSL of the pixel 121 in the i-th column is referred to as a pixel signal VSL_i and is shown. The drain of the transistor 12 (one current terminal) is connected to the source of the transistor 14 (the other current terminal). The source of the transistor 12 (the other current terminal) is connected to the ground GND via the current source Is.
 トランジスタ13は、トランジスタ11と電源VDDとの間に接続される。トランジスタ13のゲート(制御端子)は、トランジスタ13のソースに接続される。トランジスタ13のドレイン(一方の電流端子)は、電源VDDに接続される。トランジスタ13のソースは、トランジスタ11のドレインに接続される。トランジスタ13のソースの電圧を、電圧VOUT1と称し図示する。 The transistor 13 is connected between the transistor 11 and the power supply VDD. The gate (control terminal) of the transistor 13 is connected to the source of the transistor 13. The drain (one current terminal) of the transistor 13 is connected to the power supply VDD. The source of the transistor 13 is connected to the drain of the transistor 11. The voltage of the source of the transistor 13 is referred to as a voltage VOUT1 and is shown in the figure.
 トランジスタ14は、トランジスタ12と電源VDDとの間に接続される。14のゲート(制御端子)は、トランジスタ13のゲートに接続される。すなわち、トランジスタ13のゲート、トランジスタ13のソース及びトランジスタ14のゲートは、互いに接続される。トランジスタ14のドレイン(一方の電流端子)は、電源VDDに接続される。トランジスタ14のソースは、トランジスタ12のドレインに接続される。 The transistor 14 is connected between the transistor 12 and the power supply VDD. The gate (control terminal) of the 14 is connected to the gate of the transistor 13. That is, the gate of the transistor 13, the source of the transistor 13, and the gate of the transistor 14 are connected to each other. The drain (one current terminal) of the transistor 14 is connected to the power supply VDD. The source of the transistor 14 is connected to the drain of the transistor 12.
 電流源Isは、トランジスタ11及びトランジスタ12と、グラウンドGNDとの間に接続される。具体的に、電流源Isは、トランジスタ11及びトランジスタ12からグラウンドGNDに向かって電流が流れるように、トランジスタ11のソース及びトランジスタ12のソースとグラウンドGNDとの間に接続される。 The current source Is is connected between the transistor 11 and the transistor 12 and the ground GND. Specifically, the current source Is is connected between the source of the transistor 11 and the source of the transistor 12 and the ground GND so that the current flows from the transistor 11 and the transistor 12 toward the ground GND.
 トランジスタ15は、トランジスタ12のドレインとゲートとの間に接続されるスイッチトランジスタ(第2トランジスタ用スイッチ)である。トランジスタ15のゲート(制御端子)には、制御信号Xφ1が供給される。トランジスタ15のドレイン及びソース(電流端子)の一方はトランジスタ12のドレインに接続され、他方はトランジスタ12のゲートに接続される。 The transistor 15 is a switch transistor (second transistor switch) connected between the drain and the gate of the transistor 12. A control signal Xφ1 is supplied to the gate (control terminal) of the transistor 15. One of the drain and the source (current terminal) of the transistor 15 is connected to the drain of the transistor 12, and the other is connected to the gate of the transistor 12.
 トランジスタ16は、トランジスタ11のドレインとゲートとの間に接続されるスイッチトランジスタ(第1トランジスタ用スイッチ)である。トランジスタ16のゲート(制御端子)には、制御信号Xφ1が供給される。トランジスタ16のドレイン及びソース(電流端子)の一方はトランジスタ11のドレインに接続され、他方はトランジスタ11のゲートに接続される。 The transistor 16 is a switch transistor (switch for the first transistor) connected between the drain and the gate of the transistor 11. A control signal Xφ1 is supplied to the gate (control terminal) of the transistor 16. One of the drain and the source (current terminal) of the transistor 16 is connected to the drain of the transistor 11, and the other is connected to the gate of the transistor 11.
 トランジスタ17は、トランジスタ11とトランジスタ13との間に接続されるレベルシフト回路LSCの一例である。この例では、トランジスタ17は、ダイオード接続されたダイオードである。トランジスタ17のゲート(制御端子)は、ドレイン(一方の電流端子)に接続される。トランジスタ17のドレインは、トランジスタ13のソースに接続される。トランジスタ17のソース(他方の電流端子)は、トランジスタ11のドレインに接続される。 The transistor 17 is an example of a level shift circuit LSC connected between the transistor 11 and the transistor 13. In this example, the transistor 17 is a diode connected diode. The gate (control terminal) of the transistor 17 is connected to the drain (one current terminal). The drain of the transistor 17 is connected to the source of the transistor 13. The source of the transistor 17 (the other current terminal) is connected to the drain of the transistor 11.
 なお、レベルシフト回路LSCの構成は、図3に示される例に限定されない。レベルシフト回路LSCは、トランジスタ17のようなダイオードに代えて或いはそれとともに、抵抗器等の他の回路素子を含んで構成されてよい。 The configuration of the level shift circuit LSC is not limited to the example shown in FIG. The level shift circuit LSC may be configured to include other circuit elements such as resistors in place of or with a diode such as a transistor 17.
 トランジスタ18は、トランジスタ13のソースとトランジスタ11のドレインとの間に、レベルシフト回路LSCに対して並列に接続されたバイパス用スイッチである。トランジスタ18のゲート(制御端子)には、制御信号Xφ2が供給される。トランジスタ18のドレイン及びソース(電流端子)の一方はトランジスタ13のソースに接続され、他方はトランジスタ11のドレインに接続される。 The transistor 18 is a bypass switch connected in parallel to the level shift circuit LSC between the source of the transistor 13 and the drain of the transistor 11. The control signal Xφ2 is supplied to the gate (control terminal) of the transistor 18. One of the drain and the source (current terminal) of the transistor 18 is connected to the source of the transistor 13, and the other is connected to the drain of the transistor 11.
 増幅回路20は、増幅回路10の後段(出力段)に設けられる。増幅回路20は、トランジスタ21~トランジスタ23と、コンデンサC3とを含む。トランジスタ21~トランジスタ23のうち、この例では、トランジスタ23がn型トランジスタであり、トランジスタ21及びトランジスタ22がp型トランジスタである。 The amplifier circuit 20 is provided in the subsequent stage (output stage) of the amplifier circuit 10. The amplifier circuit 20 includes transistors 21 to 23 and a capacitor C3. Of the transistors 21 to 23, in this example, the transistor 23 is an n-type transistor, and the transistor 21 and the transistor 22 are p-type transistors.
 トランジスタ21は、増幅回路20の入力トランジスタである。トランジスタ21のゲート(制御端子)は、接続回路30を介して、増幅回路10に接続される。トランジスタ21のゲートに入力される電圧を、電圧VOUT0と称し図示する。トランジスタ21のドレイン(一方の電流端子)は、電源VDDに接続される。トランジスタ21のソース(他方の電流端子)は、トランジスタ22のドレイン(一方の電流端子)に接続される。 The transistor 21 is an input transistor of the amplifier circuit 20. The gate (control terminal) of the transistor 21 is connected to the amplifier circuit 10 via the connection circuit 30. The voltage input to the gate of the transistor 21 is referred to as a voltage VOUT0 and is shown in the figure. The drain (one current terminal) of the transistor 21 is connected to the power supply VDD. The source of the transistor 21 (the other current terminal) is connected to the drain of the transistor 22 (the other current terminal).
 トランジスタ22は、トランジスタ21とグラウンドGNDとの間に接続される。トランジスタ22のゲート(制御端子)は、トランジスタ23を介してトランジスタ22のドレインに接続されるとともに、コンデンサC3を介してグラウンドGNDに接続される。トランジスタ22のドレイン(一方の電流端子)は、トランジスタ21のソースに接続される。トランジスタ22のソース(他方の電流端子)は、グラウンドGNDに接続される。 The transistor 22 is connected between the transistor 21 and the ground GND. The gate (control terminal) of the transistor 22 is connected to the drain of the transistor 22 via the transistor 23 and is connected to the ground GND via the capacitor C3. The drain of the transistor 22 (one of the current terminals) is connected to the source of the transistor 21. The source of transistor 22 (the other current terminal) is connected to ground GND.
 トランジスタ21及びトランジスタ22は、ソース接地増幅回路を構成する。トランジスタ21のソースとトランジスタ22のドレインとの接続点の電圧を、電圧VOUT2と称し図示する。電圧VOUT2は、コンパレータ131の出力電圧、すなわち参照信号Vrampと画素信号VSLとの比較結果である。 The transistor 21 and the transistor 22 form a source grounded amplifier circuit. The voltage at the connection point between the source of the transistor 21 and the drain of the transistor 22 is referred to as a voltage VOUT2 and is shown in the figure. The voltage VOUT2 is the output voltage of the comparator 131, that is, the result of comparison between the reference signal Vram and the pixel signal VSL.
 トランジスタ23は、トランジスタ22のドレインとゲートとの間に接続されるスイッチトランジスタである。トランジスタ23のゲート(制御端子)には、制御信号φ1が供給される。トランジスタ23のドレイン及びソース(電流端子)の一方はトランジスタ22のドレインに接続され、他方はトランジスタ22のゲートに接続される。 The transistor 23 is a switch transistor connected between the drain and the gate of the transistor 22. A control signal φ1 is supplied to the gate (control terminal) of the transistor 23. One of the drain and the source (current terminal) of the transistor 23 is connected to the drain of the transistor 22, and the other is connected to the gate of the transistor 22.
 コンデンサC3は、トランジスタ22のゲートと、グラウンドGNDとの間に接続される。 The capacitor C3 is connected between the gate of the transistor 22 and the ground GND.
 接続回路30は、増幅回路10と増幅回路20との間に接続される。接続回路30は、トランジスタ31と、トランジスタ32とを含む。この例では、トランジスタ31及びトランジスタ32は、p型トランジスタである。 The connection circuit 30 is connected between the amplifier circuit 10 and the amplifier circuit 20. The connection circuit 30 includes a transistor 31 and a transistor 32. In this example, the transistor 31 and the transistor 32 are p-type transistors.
 トランジスタ31は、増幅回路10のトランジスタ13のソースと、増幅回路20のトランジスタ21のゲートとの間に接続されるスイッチトランジスタ(第1のスイッチ)である。トランジスタ31のゲート(制御端子)には、制御信号Xφ3が供給される。トランジスタ31のドレイン及びソース(電流端子)の一方はトランジスタ13のソースに接続され、他方はトランジスタ21のゲートに接続される。 The transistor 31 is a switch transistor (first switch) connected between the source of the transistor 13 of the amplifier circuit 10 and the gate of the transistor 21 of the amplifier circuit 20. A control signal Xφ3 is supplied to the gate (control terminal) of the transistor 31. One of the drain and the source (current terminal) of the transistor 31 is connected to the source of the transistor 13, and the other is connected to the gate of the transistor 21.
 トランジスタ32は、増幅回路10のトランジスタ14のソースと、増幅回路20のトランジスタ21のゲートとの間に接続されるスイッチトランジスタ(第2のスイッチ)である。トランジスタ32のゲート(制御端子)には、制御信号φ3が供給される。トランジスタ32のドレイン及びソース(電流端子)の一方はトランジスタ14のソースに接続され、他方はトランジスタ21のゲートに接続される。 The transistor 32 is a switch transistor (second switch) connected between the source of the transistor 14 of the amplifier circuit 10 and the gate of the transistor 21 of the amplifier circuit 20. A control signal φ3 is supplied to the gate (control terminal) of the transistor 32. One of the drain and the source (current terminal) of the transistor 32 is connected to the source of the transistor 14, and the other is connected to the gate of the transistor 21.
 以上説明した構成を備えるコンパレータ131の動作の例について説明する。コンパレータ131の動作は、オートゼロ動作(AZ動作)と、オートゼロ動作解除後(完了後)の比較動作(AD変換動作)を含む。それぞれの動作について、いくつかの制御信号と対応付けて説明する。 An example of the operation of the comparator 131 having the configuration described above will be described. The operation of the comparator 131 includes an auto zero operation (AZ operation) and a comparison operation (AD conversion operation) after the auto zero operation is canceled (after completion). Each operation will be described in association with some control signals.
 オートゼロ動作時、制御信号Xφ1は、ローレベルに設定される。トランジスタ15、トランジスタ16及びトランジスタ23は、オン(導通状態)になる。制御信号Xφ2は、ハイレベルに設定される。トランジスタ18は、オフ(非導通状態)になる。制御信号Xφ3は、ローレベルに設定される。トランジスタ31は、オンになる。トランジスタ32は、オフになる。 During auto zero operation, the control signal Xφ1 is set to the low level. The transistor 15, the transistor 16 and the transistor 23 are turned on (conducting state). The control signal Xφ2 is set to a high level. The transistor 18 is turned off (non-conducting state). The control signal Xφ3 is set to a low level. The transistor 31 is turned on. The transistor 32 is turned off.
 増幅回路10では、トランジスタ11のゲートに、トランジスタ13のソース電圧をレベルシフト回路LSCの電圧だけ低下させた(シフトさせた)電圧が供給され、コンデンサC1によって保持される。これにより、トランジスタ11のゲートの電圧が初期化される。トランジスタ11のゲートの電圧は、ボルテージフォロワにより、トランジスタ12のゲートにコピーされ、コンデンサC2によって保持される。これにより、トランジスタ12のゲートの電圧が初期化される。 In the amplifier circuit 10, a voltage obtained by lowering (shifting) the source voltage of the transistor 13 by the voltage of the level shift circuit LSC is supplied to the gate of the transistor 11, and is held by the capacitor C1. As a result, the voltage at the gate of the transistor 11 is initialized. The voltage at the gate of the transistor 11 is copied to the gate of the transistor 12 by the voltage follower and held by the capacitor C2. As a result, the voltage at the gate of the transistor 12 is initialized.
 増幅回路20では、トランジスタ21のゲートに、上述の状態での増幅回路10の電圧VOUT1が、トランジスタ31を介して供給される。トランジスタ21及びトランジスタ22を流れる電流量に応じた電圧値が、コンデンサC3によって保持される。これにより、トランジスタ22のゲート電圧、ひいてはトランジスタ21及びトランジスタ22を流れる電流が初期化される。 In the amplifier circuit 20, the voltage VOUT1 of the amplifier circuit 10 in the above-mentioned state is supplied to the gate of the transistor 21 via the transistor 31. The voltage value corresponding to the amount of current flowing through the transistor 21 and the transistor 22 is held by the capacitor C3. As a result, the gate voltage of the transistor 22, and thus the current flowing through the transistor 21 and the transistor 22 are initialized.
 その後、オートゼロ動作が解除される。制御信号Xφ1がローレベルからハイレベルに切り替わる。トランジスタ15、トランジスタ16及びトランジスタ23は、オフになる。制御信号Xφ2がハイレベルからローレベルに切り替わる。トランジスタ18は、オンになる。そして、制御信号Xφ3が、ハイレベルからローレベルに切り替わる。トランジスタ31は、オフになる。トランジスタ32は、オンになる。 After that, the auto zero operation is canceled. The control signal Xφ1 switches from low level to high level. The transistor 15, the transistor 16 and the transistor 23 are turned off. The control signal Xφ2 switches from high level to low level. Transistor 18 is turned on. Then, the control signal Xφ3 is switched from the high level to the low level. The transistor 31 is turned off. The transistor 32 is turned on.
 オートゼロ動作解除後、すなわち比較動作時、トランジスタ11のゲートに入力される参照信号Vramp_iと、トランジスタ12のゲートに入力される画素信号VSL_iとの差分に応じた電圧が、電圧VOUT0、ひいては電圧VOUT2として出力される。電圧VOUT2がカウンタ132(図3)によってカウントされ、AD変換が行われる。 After the auto zero operation is canceled, that is, during the comparison operation, the voltage corresponding to the difference between the reference signal Vramp_i input to the gate of the transistor 11 and the pixel signal VSL_i input to the gate of the transistor 12 is set as the voltage VOUT0 and eventually the voltage VOUT2. It is output. The voltage VOUT2 is counted by the counter 132 (FIG. 3), and AD conversion is performed.
 図4は、コンパレータの動作の例を模式的に示す図である。時刻t1よりも前のオートゼロ動作時(AZ期間)は、制御信号Xφ1、制御信号Xφ2及び制御信号Xφ3が、ローレベル、ハイレベル及びローレベル(制御信号φ3はハイレベル)に制御される。トランジスタ11のゲートに、電圧VOUT1をレベルシフト回路LSCの電圧だけシフトさせた電圧VOUT1_AZが供給され、トランジスタ11のゲート電圧及びトランジスタ12のゲート電圧が初期化される。 FIG. 4 is a diagram schematically showing an example of the operation of the comparator. During the auto zero operation (AZ period) before the time t1, the control signal Xφ1, the control signal Xφ2, and the control signal Xφ3 are controlled to low level, high level, and low level (control signal φ3 is high level). A voltage VOUT1_AZ obtained by shifting the voltage VOUT1 by the voltage of the level shift circuit LSC is supplied to the gate of the transistor 11, and the gate voltage of the transistor 11 and the gate voltage of the transistor 12 are initialized.
 時刻t1以降のオートゼロ動作解除後(AZ解除後)に、比較動作(AD変換動作)が行われる。時刻t1において、制御信号Xφ1及び制御信号Xφ2が、ハイレベル及びローレベルに制御される。時刻t2において、制御信号Xφ3が、ハイレベルに制御される。参照電圧Vramp_i及び画素信号VSL_iの差分に応じた電圧が、電圧VOUT0、ひいては電圧VOUT2として出力される。 The comparison operation (AD conversion operation) is performed after the auto zero operation is canceled (after the AZ is canceled) after the time t1. At time t1, the control signal Xφ1 and the control signal Xφ2 are controlled to high level and low level. At time t2, the control signal Xφ3 is controlled to a high level. The voltage corresponding to the difference between the reference voltage Vramp_i and the pixel signal VSL_i is output as the voltage VOUT0 and thus the voltage VOUT2.
 時刻t3~時刻t4において、D相がAD変換される。すなわち、時刻t3において参照信号Vramp_iの電圧が変化し始め、時刻t4において、画素信号VSL_iの電圧に等しくなる。この期間が、D相のAD変換値としてカウントされる。 The D phase is AD converted from time t3 to time t4. That is, at time t3, the voltage of the reference signal Vram_i begins to change, and at time t4, it becomes equal to the voltage of the pixel signal VSL_i. This period is counted as the AD conversion value of the D phase.
 時刻t5~時刻t6において、P相がAD変換される。すなわち、時刻t5において参照信号Vramp_iの電圧が変化し始め、時刻t6において、画素信号VSL_iの電圧に等しくなる。この期間が、P相のAD変換値としてカウントされる。 The P phase is AD converted from time t5 to time t6. That is, at time t5, the voltage of the reference signal Vram_i begins to change, and at time t6, it becomes equal to the voltage of the pixel signal VSL_i. This period is counted as the AD conversion value of the P phase.
 例えば以上のようにして、コンパレータ131が動作する。なお、D相及びP相のAD変換の順序は逆であってもよい。 For example, the comparator 131 operates as described above. The order of AD conversion of the D phase and the P phase may be reversed.
 以上説明した実施形態に係るコンパレータの特徴の一つは、接続回路30を備える点にある。これについて、図5~図7を参照して説明する。理解を容易にするため、図示されるコンパレータでは、一部の構成が省略、簡素化等されている。 One of the features of the comparator according to the embodiment described above is that it includes a connection circuit 30. This will be described with reference to FIGS. 5 to 7. In order to facilitate understanding, some configurations of the illustrated comparator are omitted or simplified.
 図5及び図6に例示されるコンパレータ131Aも、実施形態に係るコンパレータの一つである。コンパレータ131Aは、これまで説明したコンパレータ131(図3)と比較して、コンデンサC1、トランジスタ16、レベルシフト回路LSC(トランジスタ17)及びトランジスタ18を備えていない点において相違する。電流源Isは、ゲートに制御電圧VGCMが供給されるトランジスタとして図示される。トランジスタ15、トランジスタ23、トランジスタ31及びトランジスタ32は、スイッチとして図示される。 The comparator 131A exemplified in FIGS. 5 and 6 is also one of the comparators according to the embodiment. The comparator 131A is different from the comparator 131 (FIG. 3) described so far in that it does not include the capacitor C1, the transistor 16, the level shift circuit LSC (transistor 17), and the transistor 18. The current source Is is illustrated as a transistor to which a control voltage VGCM is supplied to the gate. The transistor 15, transistor 23, transistor 31 and transistor 32 are illustrated as switches.
 オートゼロ動作時は、図5に示されるように、トランジスタ17、トランジスタ23及びトランジスタ31がオンに制御され、トランジスタ32がオフに制御される。コンデンサC1が無いので、トランジスタ11のゲートに参照信号Vrampが直接入力され、トランジスタ11のゲートの電圧及びトランジスタ12のゲートの電圧が初期化される。トランジスタ21及びトランジスタ22を流れる電流も初期化される。 During the auto zero operation, as shown in FIG. 5, the transistor 17, the transistor 23, and the transistor 31 are controlled to be on, and the transistor 32 is controlled to be turned off. Since there is no capacitor C1, the reference signal Vramp is directly input to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized. The current flowing through the transistor 21 and the transistor 22 is also initialized.
 比較動作時は、図6に示されるように、トランジスタ17、トランジスタ23及びトランジスタ31がオフに制御され、トランジスタ32がオンに制御される。参照信号Vrampと画素信号VSL_iとの差分に応じた電圧が、電圧VOUT0、ひいては電圧VOUT2として出力される。 During the comparative operation, as shown in FIG. 6, the transistor 17, the transistor 23, and the transistor 31 are controlled to be off, and the transistor 32 is controlled to be on. The voltage corresponding to the difference between the reference signal Vram and the pixel signal VSL_i is output as the voltage VOUT0 and thus the voltage VOUT2.
 図7は、コンパレータの動作の例を模式的に示す図である。時刻t11よりも前のオートゼロ動作時は、制御信号Xφ1及び制御信号φ3は、ローレベル及びハイレベルに設定される。トランジスタ11のゲートに参照信号Vrampが入力され、トランジスタ11のゲートの電圧及びトランジスタ12のゲートの電圧が初期化される。 FIG. 7 is a diagram schematically showing an example of the operation of the comparator. During the auto zero operation before the time t11, the control signal Xφ1 and the control signal φ3 are set to low level and high level. A reference signal Vram is input to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized.
 時刻t11以降のオートゼロ動作解除後に、比較動作(AD変換動作)が行われる。時刻t11において、制御信号Xφ1が、ハイレベルに制御される。時刻t12において、制御信号φ3が、ローレベルに制御される。この時、電圧VOUT0の動作点は変化しないので、後述する比較例(図8~図10)のようなフィードスルーが発生せず、画素信号VSL_iの変動が抑制される。 After canceling the auto zero operation after time t11, a comparison operation (AD conversion operation) is performed. At time t11, the control signal Xφ1 is controlled to a high level. At time t12, the control signal φ3 is controlled to a low level. At this time, since the operating point of the voltage VOUT0 does not change, the feedthrough as in the comparative examples (FIGS. 8 to 10) described later does not occur, and the fluctuation of the pixel signal VSL_i is suppressed.
 時刻t13~時刻t14において、D相がAD変換される。すなわち、時刻t13において参照信号Vrampの電圧が変化し始め、時刻t14において、画素信号VSL_iの電圧に等しくなる。この比較期間がカウントされる。 The D phase is AD converted from time t13 to time t14. That is, at time t13, the voltage of the reference signal Vram begins to change, and at time t14, it becomes equal to the voltage of the pixel signal VSL_i. This comparison period is counted.
 時刻t15~時刻t16において、P相がAD変換される。すなわち、時刻t5において参照信号Vrampの電圧が変化し始め、時刻t6において、画素信号VSL_iの電圧に等しくなる。この比較期間がカウントされる。 The P phase is AD converted from time t15 to time t16. That is, at time t5, the voltage of the reference signal Vram begins to change, and at time t6, it becomes equal to the voltage of the pixel signal VSL_i. This comparison period is counted.
 比較例について、図8~図10を参照して説明する。図8及び図9に示される比較例に係るコンパレータ131Eは、特許文献1と同様の構成を備える。コンパレータ131Eの構成要素は、これまで説明したコンパレータ131(図3)及びコンパレータ131A(図6及び図7)の対応する構成要素の符号に「E」を付加して(トランジスタ11E等と称して)図示する。 A comparative example will be described with reference to FIGS. 8 to 10. The comparator 131E according to the comparative example shown in FIGS. 8 and 9 has the same configuration as that of Patent Document 1. The components of the comparator 131E are obtained by adding "E" to the codes of the corresponding components of the comparator 131 (FIG. 3) and the comparator 131A (FIGS. 6 and 7) described above (referred to as transistors 11E and the like). Illustrated.
 コンパレータ131Eは、コンデンサC2(図3)に相当する構成を備えていない。コンパレータ131Eでは、トランジスタ13Eのゲートとソースとの間に接続されたトランジスタ31Eと、トランジスタ14Eのゲートとソースとの間に接続されたトランジスタ32Eとによって、ダイオード接続が切り替えられる。 The comparator 131E does not have a configuration corresponding to the capacitor C2 (FIG. 3). In the comparator 131E, the diode connection is switched by the transistor 31E connected between the gate and the source of the transistor 13E and the transistor 32E connected between the gate and the source of the transistor 14E.
 オートゼロ動作時は、図8に示されるように、トランジスタ16E、トランジスタ23E及びトランジスタ32Eがオンに制御され、トランジスタ31Eがオフに制御される。比較動作時は、図9に示されるように、トランジスタ16E、トランジスタ23E及びトランジスタ32Eがオフに制御され、トランジスタ31Eがオンに制御される。 During the auto zero operation, as shown in FIG. 8, the transistor 16E, the transistor 23E, and the transistor 32E are controlled to be on, and the transistor 31E is controlled to be turned off. During the comparative operation, as shown in FIG. 9, the transistor 16E, the transistor 23E, and the transistor 32E are controlled to be off, and the transistor 31E is controlled to be on.
 図10は、比較例に係るコンパレータの動作の例を模式的に示す図である。時刻t21よりも前のオートゼロ動作時は、制御信号Xφ1及び制御信号φ3は、ローレベル及びハイレベルに設定される。トランジスタ12Eのゲートに画素信号VSLが入力され、トランジスタ11Eのゲートの電圧及びトランジスタ12のゲートの電圧が初期化される。 FIG. 10 is a diagram schematically showing an example of the operation of the comparator according to the comparative example. During the auto zero operation before the time t21, the control signal Xφ1 and the control signal φ3 are set to low level and high level. The pixel signal VSL is input to the gate of the transistor 12E, and the voltage of the gate of the transistor 11E and the voltage of the gate of the transistor 12 are initialized.
 時刻t21以降のオートゼロ動作解除後に、比較動作(AD変換動作)が行われる。時刻t21において、制御信号Xφ1が、ハイレベルに制御される。時刻t22において、制御信号φ3が、ローレベルに制御される。このとき、電圧VOUT1が上昇し、カップリングを介して参照電圧Vramp_iも上昇する点に留意すべきである。この上昇の量にはバラつきがあり、上昇後の参照電圧Vramp_iのいくつかの例が複数の一点鎖線で図示される。このようにフィードスルーによって参照電圧Vramp_iが上昇すると、その後のAD変換におけるカウント値が増加し、その分、AD変換の時間が長くなる。 After canceling the auto zero operation after time t21, a comparison operation (AD conversion operation) is performed. At time t21, the control signal Xφ1 is controlled to a high level. At time t22, the control signal φ3 is controlled to a low level. At this time, it should be noted that the voltage VOUT1 rises and the reference voltage Vramp_i also rises via the coupling. The amount of this rise varies, and some examples of the reference voltage Vramp_i after the rise are illustrated by the alternate long and short dash line. When the reference voltage Vramp_i rises due to feedthrough in this way, the count value in the subsequent AD conversion increases, and the AD conversion time becomes longer by that amount.
 時刻t23~時刻t24において、D相がAD変換される。すなわち、時刻t23において参照信号Vramp_iの電圧が変化し始め、時刻t24において、画素信号VSLの電圧に等しくなる。この期間が、D相のAD変換値としてカウントされる。カウント期間(時刻t23~時刻t24)が、上述のフィードスルーが発生したことにより長くなり、カウント値が増加する。 The D phase is AD converted from time t23 to time t24. That is, at time t23, the voltage of the reference signal Vramp_i begins to change, and at time t24, it becomes equal to the voltage of the pixel signal VSL. This period is counted as the AD conversion value of the D phase. The count period (time t23 to time t24) becomes longer due to the occurrence of the feedthrough described above, and the count value increases.
 時刻t25~時刻t26において、P相がAD変換される。すなわち、時刻t25において参照信号Vramp_iの電圧が変化し始め、時刻t26において、画素信号VSLの電圧に等しくなる。この比較期間がカウントされる。上述のフィードスルーが発生した分だけ、比較期間(時刻t25~時刻t26)が長くなり、カウント値が増加する。 The P phase is AD converted from time t25 to time t26. That is, at time t25, the voltage of the reference signal Vramp_i begins to change, and at time t26, it becomes equal to the voltage of the pixel signal VSL. This comparison period is counted. The comparison period (time t25 to time t26) becomes longer and the count value increases by the amount of the above-mentioned feedthrough.
 これに対し、先に説明したコンパレータ131A(図5~図7)によれば、フィードスルーが生じないので、カウント値の増加が抑制される。具体的に、コンパレータ131AのD相の比較期間(図7の時刻t13~時刻t14)は、コンパレータ131EのD相の比較期間(図10の時刻t23~時刻t24)よりも短い。コンパレータ131AのP相の比較期間(図7の時刻t15~時刻t16)は、コンパレータ131EのP相の比較期間(図10の時刻t25~時刻t26)よりも短い。その分、AD変換を高速化することができる。 On the other hand, according to the comparator 131A (FIGS. 5 to 7) described above, feedthrough does not occur, so that the increase in the count value is suppressed. Specifically, the comparison period of the D phase of the comparator 131A (time t13 to time t14 in FIG. 7) is shorter than the comparison period of the D phase of the comparator 131E (time t23 to time t24 in FIG. 10). The comparison period of the P phase of the comparator 131A (time t15 to time t16 in FIG. 7) is shorter than the comparison period of the P phase of the comparator 131E (time t25 to time t26 in FIG. 10). The AD conversion can be speeded up by that amount.
 以上のように、コンパレータ131Aによれば、コンパレータ131Eのようなダイオード接続切り替え時のフィードスルーが発生しないので、その分、AD変化時のカウント数の増加を抑制することができる。 As described above, according to the comparator 131A, the feedthrough at the time of switching the diode connection unlike the comparator 131E does not occur, so that the increase in the count number at the time of AD change can be suppressed by that amount.
 実施形態に係るコンパレータの他の特徴の一つは、レベルシフト回路LSCを備える点にある。これについて、これまで説明した図3の他に、図11も参照して説明する。図11は、コンパレータの動作の例を模式的に示す図である。コンパレータの動作電圧の範囲の上限値UL及び下限値LLが示される。上限値UL及び下限値LLは、電源VDDと電圧VSS(グラウンドGNDに相当)との間に位置する。 One of the other features of the comparator according to the embodiment is that it includes a level shift circuit LSC. This will be described with reference to FIG. 11 in addition to FIG. 3 described so far. FIG. 11 is a diagram schematically showing an example of the operation of the comparator. The upper limit UL and the lower limit LL of the operating voltage range of the comparator are shown. The upper limit UL and the lower limit LL are located between the power supply VDD and the voltage VSS (corresponding to the ground GND).
 オートゼロ動作時には、トランジスタ11のゲートに電圧VOUT1_AZが供給され、トランジスタ11のゲートの電圧及びトランジスタ12のゲートの電圧が初期化される。電圧VOUT1_AZは、トランジスタ13のソースでの電圧VOUT1を、レベルシフト回路LSCによってシフトさせた電圧であり、電圧VOUT1よりも下限値LLに近い電圧となる。 During the auto zero operation, the voltage VOUT1_AZ is supplied to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized. The voltage VOUT1_AZ is a voltage obtained by shifting the voltage VOUT1 at the source of the transistor 13 by the level shift circuit LSC, and is a voltage closer to the lower limit value LL than the voltage VOUT1.
 オートゼロ解除後の比較動作(AD変換)時には、参照電圧Vramp_iの電圧を変化させつつ、その電圧と画素信号VSL_iの電圧とが比較され、AD変換が行われる。この例では、D相及びP相のいずれのAD変換においても、動作電圧が上限値UL及び下限値LLの範囲内に収まっている。 At the time of comparison operation (AD conversion) after the auto zero is released, the voltage of the reference voltage Vramp_i is changed, the voltage is compared with the voltage of the pixel signal VSL_i, and AD conversion is performed. In this example, the operating voltage is within the range of the upper limit value UL and the lower limit value LL in any AD conversion of the D phase and the P phase.
 図11において、レベルシフト回路LSCが存在しない場合の電圧の変動の例が、一点鎖線で示される。比較動作時(AD変換時)には、トランジスタ11のゲートに電圧VOUT1が供給され、トランジスタ11のゲートの電圧及びトランジスタ12のゲートの電圧が初期化される。この電圧は、上述の電圧VOUT1よりも下限値LLから離れている。その結果、この例では、D相のAD変換の後のP相のAD変換において動作電圧が上限値ULを上回り、AD変換が適切に行われない。 In FIG. 11, an example of voltage fluctuation in the absence of the level shift circuit LSC is shown by an alternate long and short dash line. During the comparative operation (AD conversion), the voltage VOUT1 is supplied to the gate of the transistor 11, and the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 are initialized. This voltage is farther from the lower limit value LL than the voltage VOUT1 described above. As a result, in this example, the operating voltage exceeds the upper limit UL in the P-phase AD conversion after the D-phase AD conversion, and the AD conversion is not properly performed.
 以上のように、コンパレータ131によれば、レベルシフト回路LSCを備えることにより、トランジスタ11のゲートの電圧及びトランジスタ12のゲートの電圧を、より適切な電圧で初期化することができる。したがって、AD変換時の動作電圧を上限値UL及び下限値LL内に収め、適切にAD変換を行うことができる。また、レベルシフト回路LSCを用いることにより、例えば別途電圧を生成して供給するための回路を設ける場合よりも、回路面積を小さくすることができる。 As described above, according to the comparator 131, by providing the level shift circuit LSC, the voltage of the gate of the transistor 11 and the voltage of the gate of the transistor 12 can be initialized with a more appropriate voltage. Therefore, the operating voltage at the time of AD conversion can be kept within the upper limit value UL and the lower limit value LL, and AD conversion can be appropriately performed. Further, by using the level shift circuit LSC, the circuit area can be reduced as compared with the case where a circuit for separately generating and supplying a voltage is provided, for example.
2.変形例
 コンパレータにおけるn型トランジスタ及びp型トランジスタの組み合わせはさまざまである。図12は、変形例に係るコンパレータの概略構成の例を示す図である。コンパレータ131(図3)に対応する構成要素の符号に「B」を付加して(トランジスタ11B等と称して)図示する。
2. 2. Modification example There are various combinations of n-type transistors and p-type transistors in the comparator. FIG. 12 is a diagram showing an example of a schematic configuration of a comparator according to a modified example. It is illustrated by adding "B" to the code of the component corresponding to the comparator 131 (FIG. 3) (referred to as transistor 11B or the like).
 コンパレータ131Bでは、トランジスタ13B、トランジスタ14B、トランジスタ15B、トランジスタ16B、トランジスタ17B、トランジスタ18B、トランジスタ21B、トランジスタ31B及びトランジスタ32Bが、n型トランジスタである。トランジスタ11B、トランジスタ12B、トランジスタ22B及びトランジスタ23Bが、p型トランジスタである。 In the comparator 131B, the transistor 13B, the transistor 14B, the transistor 15B, the transistor 16B, the transistor 17B, the transistor 18B, the transistor 21B, the transistor 31B and the transistor 32B are n-type transistors. The transistor 11B, the transistor 12B, the transistor 22B and the transistor 23B are p-type transistors.
 各要素の接続関係は、コンパレータ131からは適宜変更される。例えば、図3等ではトランジスタ11~トランジスタ14の一方の電流端子及び他方の電流端子をドレイン及びソースとして説明したが、図12においては、トランジスタ11B~トランジスタ14Bの一方の電流端子及び他方の電流端子はソース及びドレインとして説明される。トランジスタ13Bのソース(一方の電流端子)及びトランジスタ14Bのソース(一方の電流端子)は、グラウンドGNDに接続される。電流源Isは、電源VDDからトランジスタ11B及びトランジスタ12Bに向かって電流が流れるように、電源VDDとトランジスタ11Bのドレイン(他方の電流端子)及びトランジスタ12Bのドレイン(他方の電流端子)との間に接続される。制御信号についても、例えば制御信号φ1と制御信号Xφ1のローレベル及びハイレベルが、コンパレータ131と逆になるように適宜変更される。制御信号φ2及び制御信号φ3等についても同様である。トランジスタ15Bのゲート及びトランジスタ16Bのゲートには、制御信号φ1が供給される。トランジスタ18Bのゲートには、制御信号φ2が供給される。トランジスタ23Bのゲートには、制御信号Xφ1が供給される。トランジスタ31Bのゲートには、制御信号φ3が供給される。トランジスタ32Bのゲートには、制御信号Xφ3が供給される。 The connection relationship of each element is appropriately changed from the comparator 131. For example, in FIG. 3 and the like, one current terminal and the other current terminal of the transistors 11 to 14 are described as drains and sources, but in FIG. 12, one current terminal of the transistors 11B to 14B and the other current terminal are described. Is described as source and drain. The source of transistor 13B (one current terminal) and the source of transistor 14B (one current terminal) are connected to ground GND. The current source Is is located between the power supply VDD and the drain of the transistor 11B (the other current terminal) and the drain of the transistor 12B (the other current terminal) so that the current flows from the power supply VDD toward the transistor 11B and the transistor 12B. Be connected. As for the control signal, for example, the low level and the high level of the control signal φ1 and the control signal Xφ1 are appropriately changed so as to be opposite to those of the comparator 131. The same applies to the control signal φ2, the control signal φ3, and the like. A control signal φ1 is supplied to the gate of the transistor 15B and the gate of the transistor 16B. A control signal φ2 is supplied to the gate of the transistor 18B. A control signal Xφ1 is supplied to the gate of the transistor 23B. A control signal φ3 is supplied to the gate of the transistor 31B. The control signal Xφ3 is supplied to the gate of the transistor 32B.
 図13は、コンパレータの動作の例を模式的に示す図である。オートゼロ動作時は、制御信号φ1、制御信号φ2及び制御信号φ3が、ローレベル、ハイレベル及びハイレベル(制御信号Xφ3はローレベル)に制御される。比較動作(AD変換動作)時には、制御信号φ1、制御信号φ2及び制御信号φ3は、ハイレベル、ローレベル及びローレベルに制御される。具体的な動作はコンパレータ131の場合(図4等)と同様であるので、説明は繰り返さない。 FIG. 13 is a diagram schematically showing an example of the operation of the comparator. During the auto zero operation, the control signal φ1, the control signal φ2, and the control signal φ3 are controlled to low level, high level, and high level (control signal X φ3 is low level). During the comparison operation (AD conversion operation), the control signal φ1, the control signal φ2, and the control signal φ3 are controlled to high level, low level, and low level. Since the specific operation is the same as that of the comparator 131 (FIG. 4, etc.), the description will not be repeated.
3.移動体への応用例
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
3. 3. Examples of application to mobile objects The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図14は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 14 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図14に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 14, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the vehicle interior information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図16の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 16, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
 図15は、撮像部12031の設置位置の例を示す図である。 FIG. 15 is a diagram showing an example of the installation position of the image pickup unit 12031.
 図15では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 15, the image pickup unit 12031 has image pickup units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The image pickup units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100. The image pickup unit 12101 provided in the front nose and the image pickup section 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100. The image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図15には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 15 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object in the image pickup range 12111 to 12114 based on the distance information obtained from the image pickup unit 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining, it is possible to extract a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and travels in substantially the same direction as the vehicle 12100 at a predetermined speed (for example, 0 km / h or more) as a preceding vehicle. can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like that autonomously travels without relying on the driver's operation.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104. Such recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and pattern matching processing is performed on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured image of the image pickup unit 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば撮像部12031に適用され得る。具体的には、図1を参照して説明した固体撮像素子111は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、AD変換時のカウント数の増加を抑制することができるため、より高速な撮像が可能になる。 The above is an example of a vehicle control system to which the technique according to the present disclosure can be applied. The technique according to the present disclosure can be applied to, for example, the image pickup unit 12031 among the configurations described above. Specifically, the solid-state image sensor 111 described with reference to FIG. 1 can be applied to the image pickup unit 12031. By applying the technique according to the present disclosure to the image pickup unit 12031, it is possible to suppress an increase in the number of counts at the time of AD conversion, so that higher speed imaging becomes possible.
4.効果
 以上説明した技術は、例えば次のように特定される。図3、図5及び図6等を参照して説明したように、コンパレータ131は、増幅回路10と、増幅回路20と、接続回路30と、を備える。増幅回路10は、第1増幅回路である。増幅回路20は、増幅回路10の後段に設けられた第2増幅回路である。接続回路30は、増幅回路10と増幅回路20との間に接続される。増幅回路10は、トランジスタ11と、トランジスタ12と、トランジスタ13と、トランジスタ14と、電流源Isと、トランジスタ15とを含む。トランジスタ11は、ゲートに参照信号Vrampが入力される第1トランジスタである。トランジスタ12は、コンデンサC2を介してゲートに画素信号VSL(入力信号)が入力され、トランジスタ11とともに差動対を構成する第2トランジスタである。トランジスタ13は、ドレインが電源VDDに接続され、ソースがトランジスタ11のドレインに接続された第3トランジスタである。トランジスタ14は、ドレインが電源VDDに接続され、ソースがトランジスタ12のドレインに接続された第4トランジスタである。電流源Isは、トランジスタ11及びトランジスタ12からグラウンドGNDに向かって電流が流れるように、トランジスタ11のソース及びトランジスタ12のソースとグラウンドGNDとの間に接続される。トランジスタ15は、トランジスタ12のドレインとゲートとの間に接続された第2トランジスタ用スイッチである。トランジスタ13のゲート、トランジスタ13のソース及びトランジスタ14のソースは互いに接続される。接続回路30は、トランジスタ31と、トランジスタ32と、を含む。トランジスタ31は、トランジスタ13のソースと増幅回路20との間に接続された第1スイッチである。トランジスタ32は、トランジスタ13のソースと増幅回路20との間に接続された第2スイッチである。
4. Effects The techniques described above are specified, for example, as follows. As described with reference to FIGS. 3, 5, 6, 6 and the like, the comparator 131 includes an amplifier circuit 10, an amplifier circuit 20, and a connection circuit 30. The amplifier circuit 10 is a first amplifier circuit. The amplifier circuit 20 is a second amplifier circuit provided after the amplifier circuit 10. The connection circuit 30 is connected between the amplifier circuit 10 and the amplifier circuit 20. The amplifier circuit 10 includes a transistor 11, a transistor 12, a transistor 13, a transistor 14, a current source Is, and a transistor 15. The transistor 11 is a first transistor to which a reference signal Vram is input to the gate. The transistor 12 is a second transistor in which a pixel signal VSL (input signal) is input to the gate via the capacitor C2 and forms a differential pair together with the transistor 11. The transistor 13 is a third transistor whose drain is connected to the power supply VDD and whose source is connected to the drain of the transistor 11. The transistor 14 is a fourth transistor whose drain is connected to the power supply VDD and whose source is connected to the drain of the transistor 12. The current source Is is connected between the source of the transistor 11 and the source of the transistor 12 and the ground GND so that the current flows from the transistor 11 and the transistor 12 toward the ground GND. The transistor 15 is a switch for a second transistor connected between the drain and the gate of the transistor 12. The gate of transistor 13, the source of transistor 13 and the source of transistor 14 are connected to each other. The connection circuit 30 includes a transistor 31 and a transistor 32. The transistor 31 is a first switch connected between the source of the transistor 13 and the amplifier circuit 20. The transistor 32 is a second switch connected between the source of the transistor 13 and the amplifier circuit 20.
 上記のコンパレータ131によれば、例えば先に図4~図7を参照して説明したように各スイッチを制御してオートゼロ動作及び比較動作を行えば、特許文献1のようなフィードスルーが発生しないので、その分、AD変換時のカウント数の増加を抑制することが可能になる。その結果、AD変換を高速化することができる。 According to the above-mentioned comparator 131, for example, if each switch is controlled to perform an auto zero operation and a comparison operation as described above with reference to FIGS. 4 to 7, feedthrough as in Patent Document 1 does not occur. Therefore, it is possible to suppress an increase in the number of counts at the time of AD conversion by that amount. As a result, AD conversion can be speeded up.
 図4及び図7等を参照して説明したように、オートゼロ動作時に、トランジスタ31は、導通状態に制御され、トランジスタ32は、非導通状態に制御され、トランジスタ15は、導通状態に制御され、比較動作時に、トランジスタ31は、非導通状態に制御され、トランジスタ32は、導通状態に制御され、トランジスタ15は、非導通状態に制御されてよい。例えばこのようなスイッチ制御により、オートゼロ動作及び比較動作を行うことができる。 As described with reference to FIGS. 4 and 7, the transistor 31 is controlled to be in the conductive state, the transistor 32 is controlled to be in the non-conducting state, and the transistor 15 is controlled to be in the conductive state during the auto zero operation. At the time of the comparative operation, the transistor 31 may be controlled in the non-conducting state, the transistor 32 may be controlled in the non-conducting state, and the transistor 15 may be controlled in the non-conducting state. For example, by such switch control, auto zero operation and comparison operation can be performed.
 図3等を参照して説明したように、トランジスタ11のゲートには、コンデンサC1を介して参照信号Vrampが入力され、増幅回路10は、トランジスタ11のドレインとゲートとの間に接続されたトランジスタ16(第1トランジスタ用スイッチ)を含んでよい。図4等を参照して説明したように、オートゼロ動作時に、トランジスタ16は、導通状態に制御され、比較動作時に、トランジスタ16は、非導通状態に制御されてよい。これにより、オーゼロ動作時に、トランジスタ13等を介して、トランジスタ11のゲートに電圧を供給し、初期化を行うことができる。 As described with reference to FIG. 3 and the like, the reference signal Vramp is input to the gate of the transistor 11 via the capacitor C1, and the amplifier circuit 10 is a transistor connected between the drain and the gate of the transistor 11. 16 (switch for the first transistor) may be included. As described with reference to FIG. 4 and the like, the transistor 16 may be controlled to be in a conductive state during the auto zero operation, and the transistor 16 may be controlled to be in a non-conducting state during the comparative operation. As a result, during the Ozero operation, a voltage can be supplied to the gate of the transistor 11 via the transistor 13 or the like to perform initialization.
 図3等を参照して説明したように、増幅回路10は、トランジスタ13のソースと、トランジスタ11のドレインとの間に接続されたレベルシフト回路LSCと、トランジスタ13のソースとトランジスタ11のドレインとの間に、レベルシフト回路LSCに対して並列に接続されたトランジスタ18(バイパス用スイッチ)と、を含んでよい。レベルシフト回路LSCの例は、ダイオード(ダイオード接続されたトランジスタ17)である。図4等を参照して説明したように、オートゼロ動作時に、トランジスタ18は、非導通状態に設定され、比較動作時に、トランジスタ18は、導通状態に設定されてよい。これにより、図11等を参照して説明したように、比較動作時(AD変換時)の動作電圧を適切な範囲内に収めることができる。また、例えば別途電圧を生成して供給するための回路を設ける場合よりも、回路面積を小さくすることができる。 As described with reference to FIG. 3 and the like, the amplifier circuit 10 includes a level shift circuit LSC connected between the source of the transistor 13 and the drain of the transistor 11, and the source of the transistor 13 and the drain of the transistor 11. A transistor 18 (bypass switch) connected in parallel to the level shift circuit LSC may be included between the two. An example of a level shift circuit LSC is a diode (diode-connected transistor 17). As described with reference to FIG. 4 and the like, the transistor 18 may be set to the non-conducting state during the auto zero operation, and the transistor 18 may be set to the conducting state during the comparative operation. As a result, as described with reference to FIG. 11 and the like, the operating voltage during the comparative operation (during AD conversion) can be kept within an appropriate range. Further, the circuit area can be made smaller than, for example, as compared with the case where a circuit for separately generating and supplying a voltage is provided.
 図12等を参照して説明したように、トランジスタ11B(第1トランジスタ)及びトランジスタ12B(第2トランジスタ)がp型トランジスタであり、トランジスタ13B(第3トランジスタ)及びトランジスタ14B(第4トランジスタ)がn型トランジスタであってもよい。この場合、トランジスタ13Bのソース及びトランジスタ14Bのソースは、グラウンドGNDに接続されてよい。電流源Isは、電源VDDからトランジスタ11B及びトランジスタ12Bに向かって電流が流れるように、電源VDDとトランジスタ11Bのドレイン及びトランジスタ12Bのドレインとの間に接続されてよい。このような構成によっても、上述のようにAD変換時のカウント数の増加を抑制することが可能なコンパレータを実現できる。 As described with reference to FIG. 12 and the like, the transistor 11B (first transistor) and the transistor 12B (second transistor) are p-type transistors, and the transistor 13B (third transistor) and the transistor 14B (fourth transistor) are. It may be an n-type transistor. In this case, the source of the transistor 13B and the source of the transistor 14B may be connected to the ground GND. The current source Is may be connected between the power supply VDD and the drain of the transistor 11B and the drain of the transistor 12B so that a current flows from the power supply VDD toward the transistor 11B and the transistor 12B. Even with such a configuration, it is possible to realize a comparator capable of suppressing an increase in the number of counts at the time of AD conversion as described above.
 図1等を参照して説明した固体撮像素子111も、本開示の一態様である。固体撮像素子111は、複数の画素121と、複数の画素121それぞれの画素信号VSLをディジタル信号に変換するAD変換回路130と、を備える。AD変換回路130は、画素信号VSLと参照信号Vrampとを比較するコンパレータ(上述のコンパレータ131等)を含む。これにより、これまで説明したようにAD変換時のカウント数の増加を抑制することが可能な固体撮像素子111が得られる。 The solid-state image sensor 111 described with reference to FIG. 1 and the like is also an aspect of the present disclosure. The solid-state image sensor 111 includes a plurality of pixels 121 and an AD conversion circuit 130 that converts a pixel signal VSL of each of the plurality of pixels 121 into a digital signal. The AD conversion circuit 130 includes a comparator (such as the above-mentioned comparator 131) that compares the pixel signal VSL and the reference signal Vram. As a result, as described above, the solid-state image sensor 111 capable of suppressing an increase in the number of counts at the time of AD conversion can be obtained.
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。 Note that the effects described in this disclosure are merely examples and are not limited to the disclosed contents. There may be other effects.
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the above-described embodiments as they are, and various changes can be made without departing from the gist of the present disclosure. In addition, components over different embodiments and modifications may be combined as appropriate.
 なお、開示される技術は以下のような構成も取ることができる。
(1)
 第1増幅回路と、
 前記第1増幅回路の後段に設けられた第2増幅回路と、
 前記第1増幅回路と前記第2増幅回路との間に接続された接続回路と、
 を備え、
 前記第1増幅回路は、
  制御端子に参照信号が入力される第1トランジスタと、
  コンデンサを介して制御端子に入力信号が入力され、前記第1トランジスタとともに差動対を構成する第2トランジスタと、
  一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第1トランジスタの一方の電流端子に接続された第3トランジスタと、
  一方の電流端子が前記グラウンド及び電源の一方に接続され、他方の電流端子が前記第2トランジスタの一方の電流端子に接続された第4トランジスタと、
  前記第1トランジスタの他方の電流端子及び前記第2トランジスタの他方の電流端子と、前記グラウンド及び電源の他方との間に接続された電流源と、
  前記第2トランジスタの一方の電流端子と制御端子との間に接続された第2トランジスタ用スイッチと、
 を含み、
 前記第3トランジスタの制御端子、前記第3トランジスタの他方の電流端子及び前記第4トランジスタの制御端子は互いに接続され、
 前記接続回路は、
  前記第3トランジスタの他方の電流端子と前記第2増幅回路と間に接続された第1スイッチと、
  前記第4トランジスタの他方の電流端子と前記第2増幅回路との間に接続された第2スイッチと、
 を含む、
 コンパレータ。
(2)
 オートゼロ動作時に、
  前記第1スイッチは、導通状態に制御され、
  前記第2スイッチは、非導通状態に制御され、
  前記第2トランジスタ用スイッチは、導通状態に制御され、
 比較動作時に、
  前記第1スイッチは、非導通状態に制御され、
  前記第2スイッチは、導通状態に制御され、
  前記第2トランジスタ用スイッチは、非導通状態に制御される、
 (1)に記載のコンパレータ。
(3)
 前記第1トランジスタの制御端子には、コンデンサを介して前記参照信号が入力され、
 前記第1増幅回路は、前記第1トランジスタの一方の電流端子と制御端子との間に接続された第1トランジスタ用スイッチを含む、
 (1)又は(2)に記載のコンパレータ。
(4)
 オートゼロ動作時に、前記第1トランジスタ用スイッチは、導通状態に制御され、
 比較動作時に、前記第1トランジスタ用スイッチは、非導通状態に制御される、
 (3)に記載のコンパレータ。
(5)
 前記第1増幅回路は、
  前記第3トランジスタの他方の電流端子と、前記第1トランジスタの一方の電流端子との間に接続されたレベルシフト回路と、
  前記第3トランジスタの他方の電流端子と、前記第1トランジスタの一方の電流端子との間に、前記レベルシフト回路に対して並列に接続されたバイパス用スイッチと、
 を含む、
 (3)又は(4)に記載のコンパレータ。
(6)
 オートゼロ動作時に、前記バイパス用スイッチは、非導通状態に設定され、
 比較動作時に、前記バイパス用スイッチは、導通状態に設定される、
 (5)に記載のコンパレータ。
(7)
 前記レベルシフト回路は、ダイオードを含む、
 (5)又は(6)に記載のコンパレータ。
(8)
 前記第1トランジスタ及び前記第2トランジスタは、n型トランジスタであり、
 前記第3トランジスタ及び前記第4トランジスタは、p型トランジスタであり、
 前記第1トランジスタから前記第4トランジスタそれぞれの前記一方の電流端子及び前記他方の電流端子はドレイン及びソースであり、
 前記第3トランジスタのドレイン及び前記第4トランジスタのドレインは、前記電源に接続され、
 前記電流源は、前記第1トランジスタ及び前記第2トランジスタから前記グラウンドに向かって電流が流れるように、前記第1トランジスタのソース及び前記第2トランジスタのソースと前記グラウンドとの間に、接続される、
 (1)~(7)のいずれかに記載のコンパレータ。
(9)
 前記第1トランジスタ及び前記第2トランジスタは、p型トランジスタであり、
 前記第3トランジスタ及び前記第4トランジスタは、n型トランジスタであり、
 前記第1トランジスタから前記第4トランジスタそれぞれの前記一方の電流端子及び前記他方の電流端子はソース及びドレインであり、
 前記第3トランジスタのソース及び前記第4トランジスタのソースは、前記グラウンドに接続され、
 前記電流源は、前記電源から前記第1トランジスタ及び前記第2トランジスタに向かって電流が流れるように、前記電源と前記第1トランジスタのドレイン及び前記第2トランジスタのドレインとの間に接続される、
 (1)~(7)のいずれかに記載のコンパレータ。
(10)
 複数の画素と、
 前記複数の画素それぞれの各々の画素信号をディジタル信号に変換するAD変換器と、
 を備え、
 前記AD変換器は、前記画素信号と参照信号とを比較するコンパレータを含み、
 前記コンパレータは、
  第1増幅回路と、
  前記第1増幅回路の後段に設けられた第2増幅回路と、
  前記第1増幅回路と前記第2増幅回路との間に接続された接続回路と、
 を備え、
 前記第1増幅回路は、
  制御端子に参照信号が入力される第1トランジスタと、
  コンデンサを介して制御端子に入力信号が入力され、前記第1トランジスタとともに差動対を構成する第2トランジスタと、
  一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第1トランジスタの一方の電流端子に接続された第3トランジスタと、
  一方の電流端子が前記グラウンド及び電源の一方に接続され、他方の電流端子が前記第2トランジスタの一方の電流端子に接続された第4トランジスタと、
  前記第1トランジスタの他方の電流端子及び前記第2トランジスタの他方の電流端子と、前記グラウンド及び電源の他方との間に接続された電流源と、
  前記第2トランジスタの一方の電流端子と制御端子との間に接続された第2トランジスタ用スイッチと、
 を含み、
 前記第3トランジスタの制御端子、前記第3トランジスタの他方の電流端子及び前記第4トランジスタの制御端子は互いに接続され、
 前記接続回路は、
  前記第3トランジスタの他方の電流端子と前記第2増幅回路と間に接続された第1スイッチと、
  前記第4トランジスタの他方の電流端子と前記第2増幅回路との間に接続された第2スイッチと、
 を含む、
 固体撮像素子。
The disclosed technology can also have the following configurations.
(1)
The first amplifier circuit and
The second amplifier circuit provided after the first amplifier circuit and
A connection circuit connected between the first amplifier circuit and the second amplifier circuit,
Equipped with
The first amplifier circuit is
The first transistor to which the reference signal is input to the control terminal,
An input signal is input to the control terminal via a capacitor, and the second transistor forming a differential pair together with the first transistor
A third transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the first transistor.
A fourth transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the second transistor.
A current source connected between the other current terminal of the first transistor, the other current terminal of the second transistor, and the other of the ground and the power supply.
A switch for the second transistor connected between one of the current terminals and the control terminal of the second transistor,
Including
The control terminal of the third transistor, the other current terminal of the third transistor, and the control terminal of the fourth transistor are connected to each other.
The connection circuit is
A first switch connected between the other current terminal of the third transistor and the second amplifier circuit,
A second switch connected between the other current terminal of the fourth transistor and the second amplifier circuit,
including,
comparator.
(2)
During auto zero operation
The first switch is controlled to be in a conductive state and is controlled to a conduction state.
The second switch is controlled to be in a non-conducting state.
The switch for the second transistor is controlled to be in a conductive state, and is controlled.
During comparison operation
The first switch is controlled to be in a non-conducting state.
The second switch is controlled to be in a conductive state and is controlled to a conduction state.
The second transistor switch is controlled to be in a non-conducting state.
The comparator according to (1).
(3)
The reference signal is input to the control terminal of the first transistor via a capacitor.
The first amplifier circuit includes a switch for the first transistor connected between one of the current terminals and the control terminal of the first transistor.
The comparator according to (1) or (2).
(4)
At the time of auto zero operation, the switch for the first transistor is controlled to be in a conductive state.
During the comparative operation, the switch for the first transistor is controlled to be in a non-conducting state.
The comparator according to (3).
(5)
The first amplifier circuit is
A level shift circuit connected between the other current terminal of the third transistor and one current terminal of the first transistor.
A bypass switch connected in parallel to the level shift circuit between the other current terminal of the third transistor and one current terminal of the first transistor.
including,
The comparator according to (3) or (4).
(6)
During auto zero operation, the bypass switch is set to the non-conducting state.
During the comparison operation, the bypass switch is set to the conductive state.
The comparator according to (5).
(7)
The level shift circuit includes a diode.
The comparator according to (5) or (6).
(8)
The first transistor and the second transistor are n-type transistors and are n-type transistors.
The third transistor and the fourth transistor are p-type transistors and are p-type transistors.
The one current terminal and the other current terminal of each of the first transistor to the fourth transistor are a drain and a source.
The drain of the third transistor and the drain of the fourth transistor are connected to the power supply.
The current source is connected between the source of the first transistor and the source of the second transistor and the ground so that a current flows from the first transistor and the second transistor toward the ground. ,
The comparator according to any one of (1) to (7).
(9)
The first transistor and the second transistor are p-type transistors and are p-type transistors.
The third transistor and the fourth transistor are n-type transistors and are n-type transistors.
The one current terminal and the other current terminal of each of the first transistor to the fourth transistor are a source and a drain.
The source of the third transistor and the source of the fourth transistor are connected to the ground.
The current source is connected between the power supply and the drain of the first transistor and the drain of the second transistor so that a current flows from the power supply toward the first transistor and the second transistor.
The comparator according to any one of (1) to (7).
(10)
With multiple pixels,
An AD converter that converts each pixel signal of each of the plurality of pixels into a digital signal,
Equipped with
The AD converter includes a comparator that compares the pixel signal with the reference signal.
The comparator is
The first amplifier circuit and
The second amplifier circuit provided after the first amplifier circuit and
A connection circuit connected between the first amplifier circuit and the second amplifier circuit,
Equipped with
The first amplifier circuit is
The first transistor to which the reference signal is input to the control terminal,
An input signal is input to the control terminal via a capacitor, and the second transistor forming a differential pair together with the first transistor
A third transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the first transistor.
A fourth transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the second transistor.
A current source connected between the other current terminal of the first transistor, the other current terminal of the second transistor, and the other of the ground and the power supply.
A switch for the second transistor connected between one of the current terminals and the control terminal of the second transistor,
Including
The control terminal of the third transistor, the other current terminal of the third transistor, and the control terminal of the fourth transistor are connected to each other.
The connection circuit is
A first switch connected between the other current terminal of the third transistor and the second amplifier circuit,
A second switch connected between the other current terminal of the fourth transistor and the second amplifier circuit,
including,
Solid-state image sensor.
  10 増幅回路(第1増幅回路)
  11 トランジスタ(第1トランジスタ)
  12 トランジスタ(第2トランジスタ)
  13 トランジスタ(第3トランジスタ)
  14 トランジスタ(第4トランジスタ)
  15 トランジスタ(第2トランジスタ用スイッチ)
  16 トランジスタ(第1トランジスタ用スイッチ)
  17 トランジスタ
  18 トランジスタ(バイパス用スイッチ)
  20 増幅回路(第2増幅回路)
  21 トランジスタ
  22 トランジスタ
  23 トランジスタ
  30 接続回路
  31 トランジスタ(第1スイッチ)
  32 トランジスタ(第2スイッチ)
 111 固体撮像素子
 121 画素
 130 AD変換回路
 131 コンパレータ
 132 カウンタ
  C1 コンデンサ
  C2 コンデンサ
  Is 電流源
 LSC レベルシフト回路
10 Amplifier circuit (first amplifier circuit)
11 Transistor (1st transistor)
12 Transistor (2nd transistor)
13 Transistor (3rd transistor)
14 Transistor (4th transistor)
15 Transistor (Switch for 2nd transistor)
16 Transistor (Switch for 1st transistor)
17 Transistor 18 Transistor (Bypass switch)
20 Amplifier circuit (second amplifier circuit)
21 Transistor 22 Transistor 23 Transistor 30 Connection circuit 31 Transistor (1st switch)
32 Transistor (2nd switch)
111 Solid-state image sensor 121 pixel 130 AD conversion circuit 131 comparator 132 counter C1 capacitor C2 capacitor Is current source LSC level shift circuit

Claims (10)

  1.  第1増幅回路と、
     前記第1増幅回路の後段に設けられた第2増幅回路と、
     前記第1増幅回路と前記第2増幅回路との間に接続された接続回路と、
     を備え、
     前記第1増幅回路は、
      制御端子に参照信号が入力される第1トランジスタと、
      コンデンサを介して制御端子に入力信号が入力され、前記第1トランジスタとともに差動対を構成する第2トランジスタと、
      一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第1トランジスタの一方の電流端子に接続された第3トランジスタと、
      一方の電流端子が前記グラウンド及び電源の一方に接続され、他方の電流端子が前記第2トランジスタの一方の電流端子に接続された第4トランジスタと、
      前記第1トランジスタの他方の電流端子及び前記第2トランジスタの他方の電流端子と、前記グラウンド及び電源の他方との間に接続された電流源と、
      前記第2トランジスタの一方の電流端子と制御端子との間に接続された第2トランジスタ用スイッチと、
     を含み、
     前記第3トランジスタの制御端子、前記第3トランジスタの他方の電流端子及び前記第4トランジスタの制御端子は互いに接続され、
     前記接続回路は、
      前記第3トランジスタの他方の電流端子と前記第2増幅回路と間に接続された第1スイッチと、
      前記第4トランジスタの他方の電流端子と前記第2増幅回路との間に接続された第2スイッチと、
     を含む、
     コンパレータ。
    The first amplifier circuit and
    The second amplifier circuit provided after the first amplifier circuit and
    A connection circuit connected between the first amplifier circuit and the second amplifier circuit,
    Equipped with
    The first amplifier circuit is
    The first transistor to which the reference signal is input to the control terminal,
    An input signal is input to the control terminal via a capacitor, and the second transistor forming a differential pair together with the first transistor
    A third transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the first transistor.
    A fourth transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the second transistor.
    A current source connected between the other current terminal of the first transistor, the other current terminal of the second transistor, and the other of the ground and the power supply.
    A switch for the second transistor connected between one of the current terminals and the control terminal of the second transistor,
    Including
    The control terminal of the third transistor, the other current terminal of the third transistor, and the control terminal of the fourth transistor are connected to each other.
    The connection circuit is
    A first switch connected between the other current terminal of the third transistor and the second amplifier circuit,
    A second switch connected between the other current terminal of the fourth transistor and the second amplifier circuit,
    including,
    comparator.
  2.  オートゼロ動作時に、
      前記第1スイッチは、導通状態に制御され、
      前記第2スイッチは、非導通状態に制御され、
      前記第2トランジスタ用スイッチは、導通状態に制御され、
     比較動作時に、
      前記第1スイッチは、非導通状態に制御され、
      前記第2スイッチは、導通状態に制御され、
      前記第2トランジスタ用スイッチは、非導通状態に制御される、
     請求項1に記載のコンパレータ。
    During auto zero operation
    The first switch is controlled to be in a conductive state and is controlled to a conduction state.
    The second switch is controlled to be in a non-conducting state.
    The switch for the second transistor is controlled to be in a conductive state, and is controlled.
    During comparison operation
    The first switch is controlled to be in a non-conducting state.
    The second switch is controlled to be in a conductive state and is controlled to a conduction state.
    The second transistor switch is controlled to be in a non-conducting state.
    The comparator according to claim 1.
  3.  前記第1トランジスタの制御端子には、コンデンサを介して前記参照信号が入力され、
     前記第1増幅回路は、前記第1トランジスタの一方の電流端子と制御端子との間に接続された第1トランジスタ用スイッチを含む、
     請求項1に記載のコンパレータ。
    The reference signal is input to the control terminal of the first transistor via a capacitor.
    The first amplifier circuit includes a switch for the first transistor connected between one of the current terminals and the control terminal of the first transistor.
    The comparator according to claim 1.
  4.  オートゼロ動作時に、前記第1トランジスタ用スイッチは、導通状態に制御され、
     比較動作時に、前記第1トランジスタ用スイッチは、非導通状態に制御される、
     請求項3に記載のコンパレータ。
    At the time of auto zero operation, the switch for the first transistor is controlled to be in a conductive state.
    During the comparative operation, the switch for the first transistor is controlled to be in a non-conducting state.
    The comparator according to claim 3.
  5.  前記第1増幅回路は、
      前記第3トランジスタの他方の電流端子と、前記第1トランジスタの一方の電流端子との間に接続されたレベルシフト回路と、
      前記第3トランジスタの他方の電流端子と、前記第1トランジスタの一方の電流端子との間に、前記レベルシフト回路に対して並列に接続されたバイパス用スイッチと、
     を含む、
     請求項3に記載のコンパレータ。
    The first amplifier circuit is
    A level shift circuit connected between the other current terminal of the third transistor and one current terminal of the first transistor.
    A bypass switch connected in parallel to the level shift circuit between the other current terminal of the third transistor and one current terminal of the first transistor.
    including,
    The comparator according to claim 3.
  6.  オートゼロ動作時に、前記バイパス用スイッチは、非導通状態に設定され、
     比較動作時に、前記バイパス用スイッチは、導通状態に設定される、
     請求項5に記載のコンパレータ。
    During auto zero operation, the bypass switch is set to the non-conducting state.
    During the comparison operation, the bypass switch is set to the conductive state.
    The comparator according to claim 5.
  7.  前記レベルシフト回路は、ダイオードを含む、
     請求項5に記載のコンパレータ。
    The level shift circuit includes a diode.
    The comparator according to claim 5.
  8.  前記第1トランジスタ及び前記第2トランジスタは、n型トランジスタであり、
     前記第3トランジスタ及び前記第4トランジスタは、p型トランジスタであり、
     前記第1トランジスタから前記第4トランジスタそれぞれの前記一方の電流端子及び前記他方の電流端子はドレイン及びソースであり、
     前記第3トランジスタのドレイン及び前記第4トランジスタのドレインは、前記電源に接続され、
     前記電流源は、前記第1トランジスタ及び前記第2トランジスタから前記グラウンドに向かって電流が流れるように、前記第1トランジスタのソース及び前記第2トランジスタのソースと前記グラウンドとの間に、接続される、
     請求項1に記載のコンパレータ。
    The first transistor and the second transistor are n-type transistors and are n-type transistors.
    The third transistor and the fourth transistor are p-type transistors and are p-type transistors.
    The one current terminal and the other current terminal of each of the first transistor to the fourth transistor are a drain and a source.
    The drain of the third transistor and the drain of the fourth transistor are connected to the power supply.
    The current source is connected between the source of the first transistor and the source of the second transistor and the ground so that a current flows from the first transistor and the second transistor toward the ground. ,
    The comparator according to claim 1.
  9.  前記第1トランジスタ及び前記第2トランジスタは、p型トランジスタであり、
     前記第3トランジスタ及び前記第4トランジスタは、n型トランジスタであり、
     前記第1トランジスタから前記第4トランジスタそれぞれの前記一方の電流端子及び前記他方の電流端子はソース及びドレインであり、
     前記第3トランジスタのソース及び前記第4トランジスタのソースは、前記グラウンドに接続され、
     前記電流源は、前記電源から前記第1トランジスタ及び前記第2トランジスタに向かって電流が流れるように、前記電源と前記第1トランジスタのドレイン及び前記第2トランジスタのドレインとの間に接続される、
     請求項1に記載のコンパレータ。
    The first transistor and the second transistor are p-type transistors and are p-type transistors.
    The third transistor and the fourth transistor are n-type transistors and are n-type transistors.
    The one current terminal and the other current terminal of each of the first transistor to the fourth transistor are a source and a drain.
    The source of the third transistor and the source of the fourth transistor are connected to the ground.
    The current source is connected between the power supply and the drain of the first transistor and the drain of the second transistor so that a current flows from the power supply toward the first transistor and the second transistor.
    The comparator according to claim 1.
  10.  複数の画素と、
     前記複数の画素それぞれの各々の画素信号をディジタル信号に変換するAD変換器と、
     を備え、
     前記AD変換器は、前記画素信号と参照信号とを比較するコンパレータを含み、
     前記コンパレータは、
      第1増幅回路と、
      前記第1増幅回路の後段に設けられた第2増幅回路と、
      前記第1増幅回路と前記第2増幅回路との間に接続された接続回路と、
     を備え、
     前記第1増幅回路は、
      制御端子に参照信号が入力される第1トランジスタと、
      コンデンサを介して制御端子に入力信号が入力され、前記第1トランジスタとともに差動対を構成する第2トランジスタと、
      一方の電流端子がグラウンド及び電源の一方に接続され、他方の電流端子が第1トランジスタの一方の電流端子に接続された第3トランジスタと、
      一方の電流端子が前記グラウンド及び電源の一方に接続され、他方の電流端子が前記第2トランジスタの一方の電流端子に接続された第4トランジスタと、
      前記第1トランジスタの他方の電流端子及び前記第2トランジスタの他方の電流端子と、前記グラウンド及び電源の他方との間に接続された電流源と、
      前記第2トランジスタの一方の電流端子と制御端子との間に接続された第2トランジスタ用スイッチと、
     を含み、
     前記第3トランジスタの制御端子、前記第3トランジスタの他方の電流端子及び前記第4トランジスタの制御端子は互いに接続され、
     前記接続回路は、
      前記第3トランジスタの他方の電流端子と前記第2増幅回路と間に接続された第1スイッチと、
      前記第4トランジスタの他方の電流端子と前記第2増幅回路との間に接続された第2スイッチと、
     を含む、
     固体撮像素子。
    With multiple pixels,
    An AD converter that converts each pixel signal of each of the plurality of pixels into a digital signal,
    Equipped with
    The AD converter includes a comparator that compares the pixel signal with the reference signal.
    The comparator is
    The first amplifier circuit and
    The second amplifier circuit provided after the first amplifier circuit and
    A connection circuit connected between the first amplifier circuit and the second amplifier circuit,
    Equipped with
    The first amplifier circuit is
    The first transistor to which the reference signal is input to the control terminal,
    An input signal is input to the control terminal via a capacitor, and the second transistor forming a differential pair together with the first transistor
    A third transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the first transistor.
    A fourth transistor in which one current terminal is connected to one of the ground and the power supply and the other current terminal is connected to one of the current terminals of the second transistor.
    A current source connected between the other current terminal of the first transistor, the other current terminal of the second transistor, and the other of the ground and the power supply.
    A switch for the second transistor connected between one of the current terminals and the control terminal of the second transistor,
    Including
    The control terminal of the third transistor, the other current terminal of the third transistor, and the control terminal of the fourth transistor are connected to each other.
    The connection circuit is
    A first switch connected between the other current terminal of the third transistor and the second amplifier circuit,
    A second switch connected between the other current terminal of the fourth transistor and the second amplifier circuit,
    including,
    Solid-state image sensor.
PCT/JP2021/043599 2020-12-21 2021-11-29 Comparator and solid-state imaging element WO2022137993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210929 2020-12-21
JP2020210929 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022137993A1 true WO2022137993A1 (en) 2022-06-30

Family

ID=82157680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043599 WO2022137993A1 (en) 2020-12-21 2021-11-29 Comparator and solid-state imaging element

Country Status (1)

Country Link
WO (1) WO2022137993A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150454A (en) * 1997-11-19 1999-06-02 Nec Corp Fill differential configuration sample-and-hold comparator circuit
JP2012147339A (en) * 2011-01-13 2012-08-02 Panasonic Corp Solid-state imaging device, camera provided with solid-state imaging device, and driving method of solid-state imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150454A (en) * 1997-11-19 1999-06-02 Nec Corp Fill differential configuration sample-and-hold comparator circuit
JP2012147339A (en) * 2011-01-13 2012-08-02 Panasonic Corp Solid-state imaging device, camera provided with solid-state imaging device, and driving method of solid-state imaging device

Similar Documents

Publication Publication Date Title
KR102673021B1 (en) Solid-state imaging device, imaging device, and control method of solid-state imaging device
WO2020170861A1 (en) Event signal detection sensor and control method
JP7311423B2 (en) Solid-state image sensor
JP7148269B2 (en) Solid-state imaging device and imaging device
JP2020072317A (en) Sensor and control method
CN112640428A (en) Solid-state imaging device, signal processing chip, and electronic apparatus
WO2021039142A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP2020099015A (en) Sensor and control method
WO2022075190A1 (en) Solid-state imaging device
JP2021170691A (en) Imaging element, method for control, and electronic apparatus
WO2022153746A1 (en) Imaging device
WO2021181856A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2022137993A1 (en) Comparator and solid-state imaging element
WO2021131831A1 (en) Solid-state imaging element and imaging device
WO2021095560A1 (en) Event detection device
WO2020179288A1 (en) Light detection device
JP2022141460A (en) Solid-state imaging sensor and imaging device
US11711634B2 (en) Electronic circuit, solid-state image sensor, and method of controlling electronic circuit
WO2023089958A1 (en) Solid-state imaging element
WO2022209368A1 (en) Solid-state imaging element and solid-state imaging device
WO2023058345A1 (en) Imaging device
WO2023248633A1 (en) Imaging device and charge pump circuit
WO2023007861A1 (en) Semiconductor circuit, imaging apparatus, and electronic device
WO2022064867A1 (en) Solid-state imaging element, and imaging device
WO2021124628A1 (en) Solid-state imaging element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP