WO2021095560A1 - Event detection device - Google Patents

Event detection device Download PDF

Info

Publication number
WO2021095560A1
WO2021095560A1 PCT/JP2020/040770 JP2020040770W WO2021095560A1 WO 2021095560 A1 WO2021095560 A1 WO 2021095560A1 JP 2020040770 W JP2020040770 W JP 2020040770W WO 2021095560 A1 WO2021095560 A1 WO 2021095560A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
signal
event
unit
switch
Prior art date
Application number
PCT/JP2020/040770
Other languages
French (fr)
Japanese (ja)
Inventor
弘博 朱
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021095560A1 publication Critical patent/WO2021095560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to an event detection device, for example, an event detection device in which a device that detects a change in pixel brightness as an event is made smaller.
  • An image sensor has been proposed that outputs event data indicating the occurrence of an event when an event occurs, using a change in pixel brightness as an event (see, for example, Patent Document 1).
  • an image sensor that performs imaging in synchronization with a vertical synchronization signal and outputs frame data in a raster scan format can be said to be a synchronous image sensor.
  • the image sensor that outputs the event data can be said to be an asynchronous image sensor because the pixel in which the event data is generated is read out at any time.
  • the asynchronous image sensor is called, for example, DVS (Dynamic Vision Sensor).
  • This technology was made in view of such a situation, and makes it possible to miniaturize a device that detects the occurrence of an event by using an asynchronous image sensor.
  • the event detection device of one aspect of the present technology is a difference corresponding to the difference in voltage between the first photoelectric conversion element, the second photoelectric conversion element, the first photoelectric conversion element, and the second photoelectric conversion element. It is an event detection device including a differential amplifier circuit as a circuit for generating a signal, and detecting the occurrence of an event which is a change in the signal by the signal from the differential amplifier circuit.
  • the difference signal corresponding to the voltage difference between the first photoelectric conversion element, the second photoelectric conversion element, and the first photoelectric conversion element and the second photoelectric conversion element.
  • a differential amplifier circuit is provided as a circuit for generating the above, and the occurrence of an event, which is a change in the signal, is detected by the signal from the differential amplifier circuit.
  • the event detection device may be an independent device or a module incorporated in another device.
  • FIG. 1 is a diagram showing a configuration example of an embodiment of a data processing chip to which the present technology is applied.
  • the data processing chip is a one-chip semiconductor chip, and is configured by stacking a sensor die (board) 11 as a plurality of dies (boards) and a logic die 12.
  • the data processing chip may be configured by one die, or may be configured by stacking three or more dies.
  • the sensor die 11 is configured with an event generation unit 21 (as a circuit), and the logic die 12 is configured with a data processing unit 22.
  • a part of the event generation unit 21 can be configured in the logic die 12.
  • a part of the data processing unit 22 can be configured in the sensor die 11.
  • the event generation unit 21 has pixels that generate an electric signal by performing photoelectric conversion of incident light, and generates event data indicating the occurrence of an event that is a change in the electric signal of the pixels.
  • the event generation unit 21 supplies the event data to the data processing unit 22. That is, for example, the event generation unit 21 performs imaging to generate an electric signal by performing photoelectric conversion of incident light in pixels, as in the case of a synchronous image sensor, but may generate image data in frame format. It generates image data in the form of no or in a frame format, and also generates event data indicating the occurrence of an event that is a change in an electrical signal of a pixel.
  • the data processing unit 22 performs data processing according to the event data from the event generation unit 21, and outputs the data processing result which is the result of the data processing.
  • the event generation unit 21 Since the event generation unit 21 does not output the event data in synchronization with the vertical synchronization signal, it can be said to be an asynchronous image sensor.
  • Asynchronous image sensors are also called DVS (Dynamic Vision Sensor), for example.
  • DVS Dynamic Vision Sensor
  • the sensor die 11 in which the event generation unit 21 is configured will be referred to as a DVS chip 11 in order to facilitate the distinction.
  • FIG. 2 is a block diagram showing a configuration example of the DVS chip 11.
  • the DVS chip 11 includes a pixel array unit 31, a drive unit 32, an arbiter 33, and an output unit 34.
  • a plurality of pixels are arranged in a two-dimensional grid pattern in the pixel array unit 31. Further, the pixel array unit 31 is divided into a plurality of pixel blocks, each of which is composed of a predetermined number of pixels.
  • a set of pixels or pixel blocks arranged in the horizontal direction is referred to as a "row”
  • a set of pixels or pixel blocks arranged in a direction perpendicular to the row is referred to as a "column”.
  • the pixel block detects a change in the photocurrent as an event when a change exceeding a predetermined threshold value occurs in the photocurrent as an electric signal generated by the photoelectric conversion of the pixel.
  • the pixel block outputs a request to the arbiter 33 requesting the output of event data indicating the occurrence of the event.
  • the drive unit 32 drives the pixel array unit 31 by supplying a control signal to the pixel array unit 31.
  • the arbiter 33 arbitrates the request from the pixel block constituting the pixel array unit 31, and returns a response indicating permission or disapproval of output of event data to the pixel block.
  • the pixel block that has received the response indicating the permission to output the event data outputs the event data to the output unit 34.
  • the output unit 34 performs necessary processing on the event data output by the pixel blocks constituting the pixel array unit 31 and supplies the event data to the data processing unit 22 (FIG. 1).
  • the event can also be said to be the change in the brightness of the pixel (the change in brightness exceeding the threshold value).
  • the event data representing the occurrence of an event includes at least position information (coordinates, etc.) representing the position of the pixel block in which the brightness change as an event has occurred.
  • the event data can include the polarity (positive or negative) of the brightness change.
  • FIG. 3 is a block diagram showing a configuration example of the pixel array unit 31 of FIG.
  • the pixel array unit 31 has a plurality of pixel blocks 41.
  • the pixel block 41 includes 1 or more I ⁇ J pixels 51 arranged in I rows ⁇ J columns (I and J are integers), and an event detection unit 52.
  • One or more pixels 51 in the pixel block 41 share an event detection unit 52.
  • the pixel 51 receives the incident light from the subject and performs photoelectric conversion to generate a photocurrent as an electric signal.
  • the pixel 51 supplies the generated photocurrent to the event detection unit 52.
  • the event detection unit 52 detects as an event a change in which the photocurrent from each of the pixels 51 exceeds a predetermined threshold value after being reset by the reset signal from the arbiter 33.
  • the event detection unit 52 supplies the arbiter 33 (FIG. 2) with a request for outputting event data indicating the occurrence of the event. Then, when the event detection unit 52 receives a response from the arbiter 33 to the effect that the output of the event data is permitted in response to the request, the event detection unit 52 outputs the event data to the output unit 34.
  • detecting a change exceeding a predetermined threshold value of the photocurrent as an event can be regarded as detecting that there is no change exceeding a predetermined threshold value of the photocurrent as an event at the same time.
  • FIG. 4 is a circuit diagram showing a configuration example of the pixel block 41 of FIG.
  • the pixel block 41 includes one or more pixels 51 and an event detection unit 52.
  • the pixel 51 includes a photoelectric conversion element 61.
  • the photoelectric conversion element 61 is composed of, for example, a PD (Photodiode), receives incident light, and performs photoelectric conversion to generate an electric charge.
  • PD Photodiode
  • the I ⁇ J pixels 51 constituting the pixel block 41 are connected to the event detection unit 52 constituting the pixel block 41 via the node 60. Therefore, the photocurrent generated by the pixel 51 (photoelectric conversion element 61) is supplied to the event detection unit 52 via the node 60. As a result, the event detection unit 52 is supplied with the sum of the photocurrents of all the pixels 51 in the pixel block 41. Therefore, the event detection unit 52 detects a change in the sum of the photocurrents supplied from the I ⁇ J pixels 51 constituting the pixel block 41 as an event.
  • the pixel block 41 is composed of one or more pixels 51, and the event detection unit 52 is shared by the one or more pixels 51. Therefore, when the pixel block 41 is composed of a plurality of pixels 51, the number of event detection units 52 is increased as compared with the case where one event detection unit 52 is provided for one pixel 51. The number can be reduced, and the scale of the pixel array unit 31 can be suppressed.
  • an event detection unit 52 can be provided for each pixel 51.
  • the event detection unit 52 is shared by a plurality of pixels 51 of the pixel block 41, an event is detected in units of the pixel block 41, but when the event detection unit 52 is provided for each pixel 51, the pixels. Events can be detected in units of 51.
  • FIG. 5 is a block diagram showing a configuration example of the event detection unit 52 of FIG.
  • the event detection unit 52 includes a current / voltage conversion unit 81, a buffer 82, a subtraction unit 83, a quantization unit 84, and a transfer unit 85.
  • the current-voltage conversion unit 81 converts (the sum) of the optical current from the pixel 51 into a voltage corresponding to the logarithm of the optical current (hereinafter, also referred to as an optical voltage) and supplies it to the buffer 82.
  • the buffer 82 buffers the optical voltage from the current-voltage conversion unit 81 and supplies it to the subtraction unit 83.
  • the subtraction unit 83 calculates the difference between the current optical voltage and the optical voltage at a timing different from the current one by a minute time at the timing according to the reset signal from the arbiter 33, and quantizes the difference signal corresponding to the difference. It is supplied to the conversion unit 84.
  • the quantization unit 84 quantizes the difference signal from the subtraction unit 83 into a digital signal, and supplies the quantization value of the difference signal to the transfer unit 85 as event data.
  • the transfer unit 85 transfers (outputs) the event data to the output unit 34 in response to the event data from the quantization unit 84. That is, the transfer unit 85 supplies the arbiter 33 with a request for outputting event data. Then, when the transfer unit 85 receives a response from the arbiter 33 to the effect that the output of the event data is permitted in response to the request, the transfer unit 85 outputs the event data to the output unit 34.
  • FIG. 6 is a circuit diagram showing a configuration example of the current-voltage conversion unit 81 of FIG.
  • the current-voltage conversion unit 81 is composed of transistors 91 to 93.
  • transistors 91 and 93 for example, an N-type MOS FET can be adopted, and as the transistor 92, for example, a P-type MOS FET can be adopted.
  • the source of the transistor 91 is connected to the gate of the transistor 93, and the photocurrent from the pixel 51 is supplied to the connection point between the source of the transistor 91 and the gate of the transistor 93.
  • the drain of the transistor 91 is connected to the power supply VDD, and its gate is connected to the drain of the transistor 93.
  • the source of the transistor 92 is connected to the power supply VDD, and its drain is connected to the connection point between the gate of the transistor 91 and the drain of the transistor 93.
  • a predetermined bias voltage Vbias is applied to the gate of the transistor 92.
  • the transistor 92 is turned on / off by the bias voltage Vbias, and the operation of the current-voltage converter 81 is also turned on / off by turning the transistor 92 on / off.
  • the source of transistor 93 is grounded.
  • the drain of the transistor 91 is connected to the power supply VDD side and serves as a source follower.
  • a pixel 51 (FIG. 4) is connected to the source of the transistor 91 which is a source follower, whereby the electric charge generated by the photoelectric conversion element 61 of the pixel 51 is applied to the transistor 91 (from the drain to the source). Photocurrent flows.
  • the transistor 91 operates in the subthreshold region, and an optical voltage corresponding to the logarithm of the photocurrent flowing through the transistor 91 appears at the gate of the transistor 91.
  • the transistor 91 converts the optical current from the pixel 51 into an optical voltage corresponding to the logarithm of the optical current.
  • the gate of the transistor 91 is connected to the connection point between the drain of the transistor 92 and the drain of the transistor 93, and the optical voltage is output from the connection point.
  • FIG. 7 is a circuit diagram showing a configuration example of the subtraction unit 83 and the quantization unit 84 of FIG.
  • the reading from the pixel 51 (PD61) will be described by taking as an example a case where the reading is performed using a differential amplifier circuit and the difference between the signals of the two pixels is output. Further, a case where a differential amplifier circuit is applied to the subtraction unit 83 and the quantization unit 84 will be described as an example.
  • the subtraction unit 83 includes a capacitor 101, an operational amplifier 102, a capacitor 103, and a switch 104.
  • the quantization unit 84 includes a comparator 111.
  • One end of the capacitor 101 is connected to the output terminal of the buffer 82 (FIG. 5), and the other end is connected to the input terminal (inverting input terminal) of the operational amplifier 102. Therefore, the optical voltage is input to the input terminal of the operational amplifier 102 via the capacitor 101.
  • the output terminal of the operational amplifier 102 is connected to the non-inverting input terminal (+) of the comparator 111.
  • One end of the capacitor 103 is connected to the input terminal of the operational amplifier 102, and the other end is connected to the output terminal of the operational amplifier 102.
  • the switch 104 is connected to the capacitor 103 so as to turn on / off the connection at both ends of the capacitor 103.
  • the switch 104 turns on / off the connection at both ends of the capacitor 103 by turning it on / off according to the reset signal.
  • the optical voltage on the buffer 82 (FIG. 5) side of the capacitor 101 when the switch 104 is turned on is represented by Vinit, and the capacitance (capacitance) of the capacitor 101 is represented by C1.
  • the input terminal of the operational amplifier 102 is virtually grounded, and the charge Qinit accumulated in the capacitor 101 when the switch 104 is on is represented by the equation (1).
  • Qinit C1 ⁇ Vinit ⁇ ⁇ ⁇ (1)
  • the subtraction unit 83 subtracts the optical voltages Vafter and Vinit, that is, calculates the difference signal (Vout) corresponding to the difference Vafter-Vinit between the optical voltages Vafter and Vinit.
  • the subtraction gain of the subtraction unit 83 is C1 / C2. Since it is usually desired to maximize the gain, it is preferable to design C1 to be large and C2 to be small. On the other hand, if C2 is too small, kTC noise may increase and noise characteristics may deteriorate. Therefore, the capacity reduction of C2 is limited to the range in which noise can be tolerated. Further, since the event detection unit 52 including the subtraction unit 83 is mounted on each pixel block 41, the capacitances C1 and C2 have restrictions on the area. In consideration of these, the values of the capacities C1 and C2 are determined.
  • the comparator 111 quantizes the difference signal by comparing the difference signal from the subtraction unit 83 with a predetermined threshold (voltage) Vth (> 0) applied to the inverting input terminal (-), and quantizes the difference signal.
  • Vth voltage
  • the quantization value obtained by the above is output to the transfer unit 85 as event data.
  • the comparator 111 outputs an H (High) level representing 1 when the difference signal exceeds the threshold value Vth as event data indicating the occurrence of an event, and 0 when the difference signal does not exceed the threshold value Vth.
  • the L (Low) level representing is output as event data indicating that no event has occurred.
  • the transfer unit 85 makes a request when it is recognized that a change in the amount of light as an event has occurred according to the event data from the quantization unit 84, that is, when the difference signal (Vout) is larger than the threshold value Vth.
  • event data for example, H level
  • FIG. 8 is a block diagram showing another configuration example of the quantization unit 84 of FIG.
  • the parts corresponding to the case of FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted as appropriate below.
  • the quantization unit 84 includes comparators 111 and 112, and an output unit 113.
  • the quantization unit 84 of FIG. 8 is common to the case of FIG. 7 in that it has a comparator 111. However, the quantization unit 84 of FIG. 8 is different from the case of FIG. 7 in that the comparator 112 and the output unit 113 are newly provided.
  • the polarity of the change in the amount of light as an event is also detected.
  • the comparator 111 when the difference signal exceeds the threshold value Vth, the comparator 111 outputs the H level representing 1 as event data indicating the occurrence of a positive event, and the difference signal is the threshold value Vth. If it does not exceed, the L level representing 0 is output as event data indicating that no positive event has occurred.
  • the threshold value Vth'( ⁇ Vth) is supplied to the non-inverting input terminal (+) of the comparator 112, and the subtraction unit 83 is supplied to the inverting input terminal (-) of the comparator 112.
  • the difference signal from is supplied.
  • the threshold value Vth' is assumed that the threshold value Vth'is equal to, for example, -Vth.
  • the comparator 112 quantizes the difference signal by comparing the difference signal from the subtraction unit 83 with the threshold value Vth'applied to the inverting input terminal (-), and obtains the quantization value obtained by the quantization. Output as event data.
  • the comparator 112 sets the H level representing 1 to indicate the occurrence of a negative event. Output as event data. Further, in the comparator 112, when the difference signal is not smaller than the threshold value Vth'(when the absolute value of the negative value difference signal does not exceed the threshold value Vth), a negative event occurs at the L level representing 0. It is output as event data indicating that it has not been done.
  • the output unit 113 indicates that the event data indicating the occurrence of a positive event, the event data indicating the occurrence of a negative event, or the event has not occurred, depending on the event data output by the comparators 111 and 112.
  • the event data to be represented is output to the transfer unit 85.
  • the transfer unit 85 supplies a request to the arbiter 33 when it is recognized that a change in the amount of light as a positive or negative event has occurred according to the event data from the output unit 113 of the quantization unit 84, and the event data. After receiving the response indicating the permission of the output of, the event data (H pulse representing 1 or L pulse representing -1) indicating the occurrence of the positive or negative event is output to the output unit 34.
  • the occurrence of the event is output with 1 bit (0 or 1) having only positive electrode properties, and when the configuration shown in FIG. 8 is used, the occurrence of the event is 1. It is output in 5 bits (1, 0, or -1).
  • the above-mentioned DVS chip 11 includes a pixel array unit 31, and PD 61 is two-dimensionally arranged in a matrix in the pixel array unit 31.
  • a sensor including PD61 there is a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • a photodiode (PD) as a photoelectric conversion unit and a floating diffusion region (FD:) that voltage-converts electrons photoelectrically converted by the photodiode into pixels arranged in a matrix in a pixel array.
  • Floating Diffusion and an amplification transistor whose gate input is the voltage obtained in the floating diffusion region (FD), and reading by a source follower circuit using this amplification transistor (hereinafter referred to as source follower type reading) is performed. Is common.
  • differential type amplification reading there is an advantage that the signal can be read with high conversion efficiency.
  • the signal can be read with high conversion efficiency.
  • the case where the differential type amplification reading is applied to the DVS chip 11 will be described below.
  • FIG. 9 is a diagram showing the configuration of the DVS chip 11 in the first embodiment.
  • FIG. 9 shows the configuration of the pixel array unit 31 of the DVS chip 11. Further, in order to show that it is the pixel array unit 31 in the first embodiment, it is described as the pixel array unit 31a.
  • FIG. 9 shows two pixels arranged in the column direction included in the pixel array unit 31a.
  • the upper pixel 51S is a read pixel
  • the lower pixel 51R is a reference pixel.
  • the present embodiment described below is a pixel array unit 31 that performs differential type reading, and is configured to read and output the difference between the read pixel and the reference pixel.
  • the transistor of the reading pixel and the transistor of the reference pixel form a differential amplifier circuit, and the voltage signal corresponding to the signal charge detected by the PD of the reading pixel is generated. It is output.
  • the read pixels can be switched to reference pixels.
  • the pixel drive line changeover switch scans the address while exchanging the pixel pairs of the read pixels and the reference pixels, and the pixel array. It is possible to read out all the effective pixels arranged two-dimensionally in the unit 31.
  • one of the two pixels arranged in the column direction is the read pixel 51S, and the other is the reference pixel 51R.
  • the case where the two pixels arranged in the column direction are set as the read pixel 51S and the reference pixel 51R will be described as an example, but the description will be continued with reference to the read pixel 51S.
  • the pixel 51R is not limited to the two pixels arranged in the column direction.
  • this technique can be applied even when one of the two pixels arranged in the row direction (horizontal direction) is the read pixel 51S and the other is the reference pixel 51R. Further, the read pixel 51S and the reference pixel 51R do not have to be adjacent to each other, and may be, for example, one pixel or two pixels located two pixels apart.
  • the reference pixel 51R may be a pixel provided exclusively as a reference pixel commonly used for pixels arranged in the column direction or the row direction.
  • the idle pixel 51I is a pixel that is not set in either the read pixel 51S or the reference pixel 51R, and is set as a pixel that does not form a differential amplifier circuit described later.
  • the idle pixel 51I is also set to the read pixel 51S and the reference pixel 51R, and is configured to be able to read out all the effective pixels arranged two-dimensionally in the pixel array unit 31.
  • the read pixel 51S is arranged in the upper row in the figure, and the reference pixel 51R is arranged in the lower row in the figure.
  • the idle pixel 51I-1, the read pixel 51S-1, the idle pixel 51I-2, the read pixel 51S-2, and the idle pixel 51I-3 are arranged in this order.
  • a signal is read out from the read pixel 51S-1 and the read pixel 51S-2 at the same time.
  • the reference pixel 51R-1, the idle pixel 51I-4, the reference pixel 51R-2, the idle pixel 51I-5, and the reference pixel 51R-3 are arranged in this order.
  • the read pixel 51S-1 and the reference pixel 51R-1 are paired, and as will be described later, the read pixel 51S-1 and the reference pixel 51R-1 form a differential amplifier circuit. Differential reading is done.
  • the read pixel 51S-2 and the reference pixel 51R-2 are paired, and as will be described later, a differential amplifier circuit is formed by the read pixel 51S-2 and the reference pixel 51R-2, and is a differential type. Is read out.
  • the pixel arranged on the lower left side of the read pixel 51S is an example in which the reference pixel 51R is set.
  • the read pixel 51S and the reference pixel 51R are in different rows, and it is possible to arrange them in different examples.
  • the pixel 51S shown in FIG. 9 includes a PD61S, a PRC (signal processing circuit) 311S, a capacitor 312S, a switch 313S, an MIMO transistor 314S, a MOSFET transistor 315S, an OR circuit 316S, and a switch 317S.
  • a PRC signal processing circuit
  • the pixel 51R includes a PD61R, a PRC311R, a capacitor 312R, a switch 313R, an MIMO transistor 314R, a MOSFET transistor 315R, an OR circuit 316R, and a switch 317R.
  • the PD61S is connected to the PRC311S. As described with reference to FIG. 4, the signal from the PD 61 is supplied to the event detection unit 52.
  • the configuration of the event detection unit 52 has a configuration as described with reference to FIG. 5, and the signal from the PD 61 is supplied to the current-voltage conversion unit 81.
  • the PRC311S is provided as a processing circuit for processing a signal from the PD61S.
  • the PRC311S corresponds to the current-voltage conversion unit 81 of the event detection unit 52, and executes, for example, a process of converting a signal from the PD61S into a voltage signal.
  • the PRC311 is connected to the capacitor 312S.
  • the capacitor 312S is connected to one end of the switch 313S and the gate of the NMOS transistor 314S.
  • the source of the NMOS transistor 314S is connected to the current supply line 319.
  • the current supply line 319 is connected to the load MOS circuit 320, which is a constant current source.
  • the drain of the NMOS transistor 314S is connected to the drain of the MOSFET transistor 315S.
  • the load MOS circuit 320 which is a constant current source, may be provided shared by two pixels, or may be provided for each pixel. Further, the configuration may be shared by a plurality of pixels 51 (two or more pixels 51) arranged in the column direction.
  • the gate of the PMOS transistor 315S is connected to the gate of the PMOS transistor 315R in the pixel 51R which is a reference pixel.
  • the source of the epitaxial transistor 315S is connected to the power supply VDD (not shown).
  • the drain of the MIMO transistor 315S in the pixel 51S, which is the read pixel, is connected to one end of the switch 318S.
  • the other end of the switch 318S is connected to the vertical signal line 321.
  • the switch 318S is configured to be closed when the pixel 51S is set to the pixel to be read.
  • One end of the switch 317S is connected to the ACK signal line 322, and the other end is connected to one of the two inputs of the OR circuit 316S.
  • the ACK signal line 322 is connected to the arbiter 33 (FIG. 2). Although the details will be described later, the switch 317S is closed when the signal ACKen is supplied via the ACK signal line.
  • the MIMO transistor 315S and the MIMO transistor 315R form a current mirror circuit. Further, a portion including the NMOS transistor 315S and the MOSFET transistor 315R constituting the current mirror circuit and adding the NMOS transistor 314S and the NMOS transistor 314R constitutes a differential amplifier circuit.
  • MOSFETs 315S and 315R function as MOS transistors on the side of reading the signal
  • NMOS transistors 314S and 314R function as MOS transistors on the side of inputting the signal.
  • the MOS transistor on the read side may be an NMOS transistor, and the MOS transistor on the input side may be a MOSFET transistor.
  • the portion including the MIMO transistor 315S, the MOSFET transistor 315R, the NMOS transistor 314S, and the NMOS transistor 314R constituting this differential amplifier circuit corresponds to the quantization unit 84 (FIGS. 5 and 7) of the event detection unit 52. ..
  • the quantization unit 84 compares the signal from the subtraction unit 83, in other words, the signal from the PD61, with a predetermined threshold (voltage) Vth (> 0).
  • the difference signal is quantized by the above method, and the quantized value obtained by the quantization is output to the transfer unit 85 as event data.
  • the predetermined threshold value is a signal supplied from the pixel 51R, which is a reference pixel.
  • the voltage value VdiffS supplied to the gate side of the NMOS transistor 314S of the pixel 51S which is the read pixel and the voltage value VdiffS supplied to the gate side of the NMOS transistor 314R of the pixel 51R which is the reference pixel are supplied.
  • a difference value indicating which of the voltage values VdiffR is larger is supplied to the switch 318S, and is supplied to the transfer unit 85 (FIG. 5) via the vertical signal line 321.
  • the voltage value VdiffS represents the amount of time change in the amount of light in the read pixel
  • the voltage value VdiffS represents the amount of time change in the amount of light in the reference pixel.
  • the pixel 51S and the pixel 51R are pixels arranged at different positions. Therefore, it can be said that the configuration shown in FIG. 9 has a configuration in which the amount of time change in the amount of light of the read pixel and the reference pixel is read out by a spatial difference.
  • the signal SELa that gives an instruction to close the switch 318S is regarded as an H level signal.
  • the switch 318S is closed, and a signal is output from the pixel 51S, which is a read pixel, to the vertical signal line 321.
  • the signal applied to the vertical signal line 321 gradually increases from time t11 and reaches a certain value.
  • the signal ACK is a signal that is set to H level when the column circuit (not shown) receives the signal. At time t12, the signal ACK is set to H level. Then, at time t13, the signal ACKen is set to H level. This signal ACKen is a signal indicating the start of reset.
  • the switch 313S When the signal ACKen is set to H level, the switch 313S is closed and the OR circuit 316S and the capacitor 312S are connected.
  • the switch 313S has the same role as the switch 104 (FIG. 7), and when it is turned on, the capacitor 312S is reset.
  • the reset signal for resetting the capacitor 312S is generated by the OR relationship between the global reset signal RST G and the reset signal RST Pa by the signal ACKEN.
  • the signal ACKen is switched to the L level signal (time t14).
  • the switch 313S is opened.
  • the switch 318S is opened by switching the signal SELa to the L level. Further, at time t15, the signal ACK is also switched to the L level, so that the switch 317S is opened.
  • FIG. 7 is a diagram showing a configuration example of a subtraction unit 83 and a quantization unit 84 constituting the event detection unit 52.
  • the configuration shown in FIG. 7 is provided for each pixel 51 (pixel block 41, FIG. 4). Therefore, the comparator 111 is provided for each pixel 51.
  • the comparator 111 is provided for each pixel 51, the area for arranging the comparator 111 becomes large, which may be one of the factors that hinder the miniaturization of the pixel array unit 31.
  • the configuration does not have the comparator 111.
  • the pixel array unit 31a shown in FIG. 9 has a portion corresponding to the comparator 111 (quantization unit 84), but the portion is configured over two pixels. Further, in the pixel array unit 31a shown in FIG. 9, the portion corresponding to the subtraction unit 83 is included in the portion corresponding to the comparator 111. Therefore, the pixel array unit 31a shown in FIG. 9 has a configuration that can be miniaturized.
  • the read pixel and the reference pixel are adjacent pixels. That is, since the reference pixel that supplies the threshold voltage is near the read pixel, the threshold voltage can be generated near the pixel. Therefore, high-speed reading can be realized. Further, since adjacent pixels are used, the temperature characteristics can be canceled and the influence of flicker can be suppressed.
  • FIG. 12 is a diagram showing the configuration of the pixel array portion 31b of the DVS chip 11 in the second embodiment.
  • the same parts as those of the pixel array part 31a (FIG. 9) in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31b in the second embodiment has a configuration in which capacitors 341S, 341R, switches 342S, 342R, and switches 343S, 343R are added as compared with the pixel array unit 31a in the first embodiment. It is the same except that it is.
  • the capacitor 341S is arranged at a position where the gate and drain of the NMOS transistor 314S are connected.
  • the capacitor 341R is arranged at a position connecting the gate and drain of the NMOS transistor 314R.
  • the upper pixel 51S is used as a read pixel and the lower pixel 51R is used as a reference pixel.
  • the read pixel and the reference pixel can be exchanged. It is said that it can be configured.
  • a switch 342S and a switch 343S are arranged in the pixel 51S.
  • the switch 342S is a switch that is closed when the pixel 51S functions as a read pixel.
  • the switch 343S is a switch that is closed when the pixel 51S does not function as a read pixel, and is a switch that is closed when the pixel 51R functions as a reference pixel.
  • Switch 342S and switch 343S are controlled so that when one is closed, the other is open.
  • the switch 342S is closed, the difference between the pixel 51S as the read pixel and the pixel 51R as the reference pixel is supplied to the vertical signal line 321.
  • the switch 343S is closed, the voltage applied to the drain side of the MIMO transistor 315S is supplied to the 1 input side of the OR circuit 316S.
  • a switch 342R and a switch 343R are arranged in the pixel 51R.
  • the switch 342R is a switch that is closed when the pixel 51R functions as a read pixel.
  • the switch 343R is a switch that is closed when the pixel 51R is not functioned as a read pixel, and is a switch that is closed when the pixel 51S is functioned as a reference pixel.
  • Switch 342R and switch 343R are controlled so that when one is closed, the other is open.
  • the switch 342R is closed, the difference between the pixel 51R as the read pixel and the pixel 51S as the reference pixel is supplied to the vertical signal line 321.
  • the switch 343R is closed, the voltage applied to the drain side of the MIMO transistor 315R is supplied to one input side of the OR circuit 316R.
  • the switch 342S and the switch 342R are switches that are closed when they function as read pixels, and are controlled so that when one is closed, the other is open.
  • the switch 343S and the switch 343R are switches that are closed when functioning as a reference pixel, and are controlled so that when one is closed, the other is open.
  • one of the two pixels arranged in the column direction is used as a read pixel and the other is used as a reference pixel as an example. Therefore, the switch is controlled as described above. It is also possible to use one of a plurality of pixels arranged in the column direction as a read pixel and a pixel adjacent to the read pixel as a reference pixel to perform reading while sequentially switching the read pixels (reference pixels).
  • the switch 342 in the pixel 51 set as the read pixel is closed and connected to the vertical signal line 321. Further, the switch 343 in the pixel 51 set as the reference pixel is closed, and the voltage applied to the drain side of the MIMO transistor 315 is applied to one input of the OR circuit 316.
  • the switch 342 and the switch 343 of the pixel 51 other than the pixel 51 set as the read pixel or the reference pixel are in an open state.
  • the state shown in FIG. 12 indicates a state in which the pixel 51S shown on the upper side in the figure is set as the read pixel and the pixel 51S shown on the lower side in the figure is set as the reference pixel.
  • the switch 342S in the pixel 51S is closed and the switch 343S is open.
  • the switch 342R in the pixel 51R is open, and the switch 343R is closed.
  • the state is the same as that of the pixel array unit 31a shown in FIG. 9, and the drain and gate of the MIMO transistor 315R of the reference pixel 51R and the gate of the MIMO transistor 315S of the read pixel 51S are connected. It will be in the state of being. Therefore, as in the first embodiment, the difference between the read pixel and the reference pixel is supplied to the vertical signal line 321.
  • the portion including the MOSFET transistor 315S, the MOSFET transistor 315R, the NMOS transistor 314S, and the NMOS transistor 314R constituting the differential amplifier circuit, and the switches 342S, 342R and the switches 343S, 343R are further included.
  • the portion corresponds to the quantization unit 84 (FIGS. 5 and 7) of the event detection unit 52.
  • the voltage value VdiffS supplied to the gate side of the NMOS transistor 314S of the pixel 51S which is the read pixel and A difference value indicating which of the voltage value VdiffR supplied to the gate side of the NMOS transistor 314R of the pixel 51R, which is the reference pixel, is larger is supplied to the switch 342S and is supplied to the switch 342S via the vertical signal line 321 to the transfer unit 85 (FIG. 5). Is supplied to.
  • the voltage value VdiffS represents the amount of time change in the amount of light in the read pixel
  • the voltage value VdiffR represents the amount of time change in the amount of light in the reference pixel.
  • the pixel 51S and the pixel 51R are pixels arranged at different positions. Therefore, it can be said that the configuration shown in FIG. 12 also has a configuration in which the amount of time change in the amount of light of the read pixel and the reference pixel is read out by a spatial difference, as in the first embodiment.
  • the pixel array unit 31b can be miniaturized.
  • the reading operation in the pixel array unit 31b shown in FIG. 12 will be described with reference to the timing chart of FIG.
  • the pixel array unit 31b shown in FIG. 12 corresponds to a case where a plurality of pixels 51 are synchronously reset and a case where a plurality of pixels 51 are reset asynchronously.
  • a description will be added to the reading operation when the plurality of pixels 51 are synchronously reset.
  • the signal SELa and the signal ACKen are synchronized signals for each line. Further, the signal SELa and the signal ACKen are control signals supplied from outside the pixel 51. Although not shown in FIG. 12, for example, other pixels 51S are arranged in the row direction on the left side or the right side of the pixel 51S. The signal SELa and the signal ACKen are signals supplied at the same timing to the pixels 51 arranged in the row direction.
  • the signal SELa is a read valid signal, and when it is set to H level, the switch 342 is turned on and a signal is output to the vertical signal line 321.
  • This signal SELa is set to H level from time t21 to time t24, during which the switch 342, for example, the switch 342S in FIG. 12 is closed.
  • VSL signal the signal previously supplied to the vertical signal line 321 (hereinafter referred to as VSL signal) is propagated to one input of the OR circuit 316S.
  • VSL signal is propagated to the OR circuit 316S, a reset signal is generated and output by the OR circuit 316S in relation to the global reset signal RST G and OR.
  • the timing chart is the timing chart shown in FIG.
  • the signal SELa is a synchronization signal for each line. Further, the signal SELa is a control signal supplied from outside the pixel 51. In the case of asynchronous reset, the signal ACKen is a control signal supplied from within the pixel 51.
  • the signal SELa is set to the H level from the time t21 to the time t24 as in the above case, and the switch 342, for example, the switch 342S in FIG. 12 is closed during that time.
  • the switch 342S is closed, the VSL signal is supplied to the vertical signal line 321.
  • a column circuit (not shown) provided outside the pixel array unit 31b generates a signal ACKen when a VSL signal is supplied. Specifically, the signal ACKen is set to H level only for the column in which the VSL signal is read as High. For columns where the VSL signal is not read as High, the signal ACKen remains at L level.
  • the signal ACKen By controlling the signal ACKen in this way, only the pixel 51 whose VSL signal is High, in other words, the pixel 51 whose brightness has changed, can be controlled by the signal ACKen.
  • the VSL signal is propagated as the reset signal RSTPa of the OR circuit 316S.
  • the global reset signal RST G is an example and is not an essential configuration.
  • the pixel array unit 31b in the second embodiment can also be miniaturized. Further, as in the first embodiment, since the reference pixel that supplies the threshold voltage is in the vicinity of the read pixel, the threshold voltage can be generated in the vicinity of the pixel. Therefore, high-speed reading can be realized. Further, since adjacent pixels are used, the temperature characteristics can be canceled and the influence of flicker can be suppressed. Such an effect is also an effect that can be expected in the third to fifteenth embodiments described below.
  • FIG. 14 is a diagram showing the configuration of the pixel array unit 31c of the DVS chip 11 according to the third embodiment.
  • the same parts as the pixel array unit 31b (FIG. 12) in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate. To do.
  • the pixel array unit 31c in the third embodiment is different from the pixel array unit 31b in the second embodiment in that the shared quantization unit 361 is added, and the other points are different. The same is true.
  • the shared quantization unit 361 is provided between the pixel 51 and the vertical signal line 321c. That is, the pixel array unit 31c in the third embodiment has a structure in which the signal read from the pixel 51 is supplied to the vertical signal line 321c via the shared quantization unit 361.
  • the shared quantization unit 361 is configured to include a MOSFET transistor 371, an MIMO transistor 372, and a switch 373.
  • the signal read from the pixel 51 is supplied to the gate of the MIMO transistor 371 of the shared quantization unit 361.
  • the drain of the epitaxial transistor 371 is connected to one end of the switch 373 and the drain of the NMOS transistor 372.
  • the switch 373 is closed and connected to the vertical signal line 321C when the pixel 51S is set as the read pixel and when the pixel 51R is set as the read pixel.
  • the signal Von and the signal Voff are time-division-switched and supplied to the gate of the NMOS transistor 372.
  • the signal Von and the signal Voff correspond to the threshold value Vth and the threshold value Vth'in the description with reference to FIG.
  • the description will be continued assuming that the signal Von corresponds to the threshold value Vth and the signal Voff corresponds to the threshold value Vth'.
  • the shared quantization unit 361 sets the H level to the positive event when the difference signal supplied from the pixel 51 side is larger than the signal Von supplied in the time division. It is output as event data indicating occurrence, and when the difference signal is not larger than the signal Von, the L level representing 0 is output as event data indicating that a positive event has not occurred.
  • the shared quantization unit 361 sets the H level representing 1 when the difference signal is smaller than the signal Voff (when the absolute value of the negative value difference signal is larger than the signal Voff), and sets the event indicating the occurrence of a negative event. Output as data. Further, when the difference signal is not smaller than the signal Voff (when the absolute value of the negative value difference signal is not larger than the signal Voff), the shared quantization unit 361 generates a negative event at the L level representing 0. Output as event data indicating that it has not been done.
  • event data indicating the occurrence of a positive event event data indicating the occurrence of a negative event, or event data indicating that no event has occurred can be obtained.
  • It can be configured to output to the transfer unit 85.
  • the portion further included corresponds to the subtraction unit 83 (FIGS. 5 and 8) of the event detection unit 52, and the shared quantization unit 361 corresponds to the quantization unit 84 (FIGS. 5 and 8).
  • the shared quantization unit 361 shown in FIG. 14 is described as a quantization unit shared by two pixels of the pixel 51S and the pixel 51R, it can also be provided as a quantization unit shared by two or more pixels. Is.
  • the switch 373 is closed when the n pixels 51 are set as the read pixels. It is controlled to be.
  • the pixel array unit 31c can be miniaturized.
  • the pixel array unit 31c in the third embodiment includes the shared quantization unit 361, but since it is provided in common for pixels of two or more pixels, the number is smaller than that in the case where it is provided for each pixel. Therefore, even in the case of the configuration including the shared quantization unit 361, the pixel array unit 31c can be miniaturized.
  • FIG. 15 is a diagram showing the configuration of the pixel array unit 31d of the DVS chip 11 according to the fourth embodiment.
  • the same parts as those of the pixel array part 31b (FIG. 12) in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the configuration focuses on the two pixels arranged in the column direction, but in the fourth embodiment, the pixels further arranged in the row direction are also focused on. It is a composition.
  • FIG. 15 illustrates 2 ⁇ 2 4 pixels arranged in the pixel array unit 31d.
  • the pixel 51S-1 and the pixel 51R-1 shown on the left side correspond to the pixel 51S and the pixel 51R shown in FIG.
  • the pixel on the right side of the pixel 51S-1 in the figure is referred to as 51S-2
  • the pixel on the right side of the pixel 51R-1 in the figure is referred to as 51R-2.
  • the pixel 51S-1 and the pixel 51S-2 are set as read pixels
  • the pixel 51R-1 and the pixel 51R-2 are set as reference pixels.
  • the pixels 51S-2 and 51R-2 shown on the right side of the figure are described with some configurations omitted, but are described as the pixels 51S-1 shown on the left side of the figure. It has the same configuration as the pixel 51R-1. Although some of them are omitted in the following description, the pixels 51 in the pixel array unit 31 have basically the same configuration.
  • the pixel 51 of the pixel array unit 31d in the fourth embodiment has the same configuration as the pixel 51 of the pixel array unit 31b in the second embodiment, except that it is connected to adjacent pixels.
  • the reference pixels are connected to each other.
  • a configuration in which reference pixels arranged in the horizontal direction are connected to each other will be appropriately described as a horizontal connection configuration.
  • the read pixel and the reference pixel are connected in the fourth embodiment. Specifically, the gate of the PMOS transistor 315S-1 of the pixel 51S-1 and the gate of the PMOS transistor 315R-1 of the pixel 51R-1 are connected. Further, the gate of the PMOS transistor 315S-2 of the pixel 51S-2 and the gate of the PMOS transistor 315R-2 of the pixel 51R-2 are also connected.
  • the gate of the PMOS transistor 315R-1 of the pixel 51R-1 set as the reference pixel and the gate of the PMOS transistor 315R-2 of the pixel 51R-2 are also connected. Therefore, the pixel 51S-1, the pixel 51R-1, the pixel 51R-2, and the pixel 51S-2 shown in FIG. 15 are in a state in which the gate of the MIMO transistor 315 included in each is connected.
  • Such a connection can be said to be a configuration in which the current mirror circuit is connected horizontally. That is, the current mirror circuit is configured by connecting the PMOS transistor 315S-1 of the pixel 51S-1 and the PMOS transistor 315R-1 of the pixel 51R-1. Further, the current mirror circuit is configured by connecting the PMOS transistor 315S-2 of the pixel 51S-2 and the PMOS transistor 315R-2 of the pixel 51R-2. The two current mirror circuits are connected horizontally.
  • the reference voltage can be generated by the same circuit as the signal voltage, and the temperature characteristic can be canceled. Further, the influence of the flicker can be canceled in the pixel circuit. Therefore, it is possible to perform reading with reduced noise.
  • the switch 391 is set between the pixels 51 provided in the row direction (horizontal direction in the drawing). It may be provided as a configuration.
  • a switch 391 is provided between the pixel 51R-1 and the pixel 51R-2.
  • the switch 391 is provided as a switch for connecting the pixels 51 set as the reference pixels. In other words, it is provided as a switch that is opened when it is set to a pixel other than the reference pixel.
  • FIG. 16 shows a case where a plurality of reference pixels 51R are associated with one read pixel 51S-1.
  • the pixels other than the read pixel 51S-1 are set to the idle pixel 51I.
  • the lower row in the figure set as the reference row is in a state where the reference pixels 51R-1 to 51R-5 are connected because of the horizontally connected configuration.
  • the idle pixel 51I located in the row set in the read row is sequentially set in the read pixel 51S, and the difference from the signals from the horizontally connected reference pixels 51R-1 to 51R-5 is calculated.
  • FIG. 16 shows a case where one read pixel 51S is set in the line set as the read line, but as shown in FIG. 17, a plurality of pixels are set in the read pixel 51S and simultaneously. It can also be configured so that the signal is read out.
  • FIG. 17 is a diagram showing an example of another relationship between the read pixel 51S and the reference pixel 51R in the case of the horizontally connected configuration. Further, the example shown in FIG. 17 is an example in which a plurality of read pixels 51S are set in the line set in the read line.
  • FIG. 17 shows a case where all the pixels in the row set in the read row are set as the read pixels.
  • read pixels 51S-1 to 51S-5 are set as read pixels.
  • the reference pixel shows a case where all the pixels in the row set as the row of the reference pixel are connected in a horizontally connected configuration, as in the example shown in FIG. 17.
  • the reference pixel 51R does not connect all the pixels in the row set in the row of the reference pixels, but connects the reference pixels located at positions separated by a predetermined number of pixels. It can also be configured.
  • the reference pixel 51R-1, the reference pixel 51R-2, and the reference pixel 51R-3 are set, and the reference pixel 51R-3 is set between them. Pixels are set to idle pixels 51I-4 and idle pixels 51I-5.
  • the reference pixels 51R-1 to 51R-3 are connected horizontally.
  • the idle pixel 51I-4 and the idle pixel 51I-5 are set to the reference pixel 51R and are connected horizontally.
  • the read pixels 51S-1 and the read pixels 51S-2 are set, and the pixels in between are set to the idle pixels 51I-1 to 51I-3. ..
  • the read pixel 51S-1 and the read pixel 51S-2 calculate the difference using the signals from the reference pixels 51R-1 to 51R-3 connected horizontally as reference signals, and output them at the same time.
  • the reference pixels 51R may be arranged in a plurality of rows.
  • the read pixel 51S-1, the read pixel 51S-2, the read pixel 51S-3, and the read pixel 51S-4 are set, and the pixels in between are the idle pixels 51I. It is set to -1 to 51I-4.
  • the line next to the read line is set to the line of the reference pixel, and the reference pixel 51R-1 and the reference pixel 51R-2 are set in the line, and the pixel in between is the idle pixel 51I-. It is set to 5 to 51I-10.
  • the line next to the line of the reference pixel (lower row in the figure) is also set to the line of the reference pixel, and the reference pixel 51R-3 and the reference pixel 51R-4 are set in the line, and the pixels in between are set. It is set to idle pixels 51I-11 to 51I-16.
  • Reference pixels 51R-1 to 51R-4 arranged over a plurality of lines are connected by a horizontally connected configuration.
  • a horizontally connected configuration it is possible to connect not only the pixels arranged in the row direction (horizontal direction) but also the pixels arranged in the column direction (vertical direction). it can.
  • the reference pixels 51R-1 to 51R-4 arranged over two rows are connected is described as an example, but the reference pixels 51R-1 to 51R-4 are arranged over two or more rows. It is also possible to configure the reference pixel 51R to be connected.
  • the read pixel 51S-1 and the read pixel 51S-2 calculate the difference using the signals from the connected reference pixels 51R-1 to 51R-4 as reference signals, and output them at the same time.
  • the configuration of the pixel array unit 31d can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the pixel array unit 31d in the fourth embodiment shown in FIG. 15 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 20, a configuration in which current sources are connected horizontally may be used.
  • the pixel array unit 31d shown in FIG. 20 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • FIG. 21 is a diagram showing the configuration of the pixel array unit 31e of the DVS chip 11 according to the fifth embodiment.
  • the same parts as those of the pixel array part 31c (FIG. 14) in the third embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31d in the fourth embodiment described with reference to FIG. 21 is arranged in the lateral direction (row direction) with respect to the pixel array unit 31b (FIG. 12) in the second embodiment. It was a configuration in which reference pixels were connected (horizontal connection configuration). Such a horizontal connection configuration can also be applied to the pixel array unit 31c in the third embodiment.
  • the pixel array unit 31e in the fifth embodiment shown in FIG. 21 has a configuration in which a horizontally connected configuration is applied to the pixel array unit 31c in the third embodiment. That is, the shared quantization unit 361e is provided between the read pixels and the reference pixels.
  • the shared quantization unit 361e has the same configuration as the shared quantization unit 361 shown in FIG. 14, and is a result of comparing the signal output as the difference between the read pixel and the reference pixel with the threshold signal Von or the threshold signal VOFF. Is output to the vertical signal line 321c. Further, similarly to the pixel array unit 31d of the fourth embodiment, the gate of the PMOS transistor 315 included in each of the pixel 51S-1, the pixel 51R-1, the pixel 51R-2, and the pixel 51S-2 is connected to the pixel array unit 31d. It is said that it is in a state of being.
  • the configuration can be configured to include the shared quantization unit 361e. Also in the fifth embodiment, the configuration of the pixel array unit 31e can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the pixel array unit 31e in the fifth embodiment shown in FIG. 21 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 22, the current sources may be connected horizontally.
  • the pixel array unit 31e shown in FIG. 22 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • FIG. 23 is a diagram showing the configuration of the pixel array unit 31f of the DVS chip 11 according to the sixth embodiment.
  • the same parts as those of the pixel array unit 31e (FIG. 21) according to the fifth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31f in the sixth embodiment shown in FIG. 23 is different in that the memory unit 411 is added to the pixel array unit 31e in the fifth embodiment.
  • the memory unit 411 is configured to include the memory 412.
  • the memory unit 411 is provided between the shared quantization unit 361f and the vertical signal line 321f.
  • the switch 373 provided in the shared quantization unit 361e (FIG. 21) is not provided in the shared quantization unit 361f when the memory unit 411 is provided, and is between the memory unit 411 and the vertical signal line 321f. It is configured to be provided in.
  • the output of the shared quantization unit 361f is configured to be directly input to the memory 412 of the memory unit 411, and the signal stored in the memory 412 is output to the vertical signal line 321f via the switch 373f. It is said that the configuration is as follows.
  • the switch 373f provided at the set of the selected read pixel and the reference pixel is closed, and the switch 373f provided at the set of the unselected read pixel and the reference pixel is open.
  • the switch 373f is controlled so as to be.
  • the memory 412 is configured to temporarily store the output result from the shared quantization unit 361f and output the stored signal to the vertical signal line 321f when the switch 373f is closed.
  • the memory 412 stores event data indicating the occurrence of a positive event from the shared quantization unit 361, event data indicating the occurrence of a negative event, or event data indicating that no event has occurred. ..
  • the pixel array unit 31f in the sixth embodiment shown in FIG. 23 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 24, the current sources may be connected horizontally.
  • the pixel array unit 31f shown in FIG. 24 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • ⁇ 7th embodiment> By providing a plurality of memories 412, it is possible to configure the memory unit 411 to store event data representing the occurrence of a positive event and event data representing the occurrence of a negative event, respectively.
  • a pixel array unit 31g having a memory for storing two event data will be described.
  • FIG. 25 is a diagram showing the configuration of the pixel array portion 31 g of the DVS chip 11 according to the seventh embodiment.
  • the same parts as those of the pixel array unit 31f (FIG. 23) according to the sixth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31g according to the seventh embodiment shown in FIG. 25 is different in that it has an on memory 421 and an off memory 422 in the memory unit 411g.
  • the on memory 421 is a memory that stores event data indicating the occurrence of a positive event when a threshold signal Von is supplied to the shared quantization unit 361f and event data indicating the occurrence of a positive event is detected. is there.
  • the off memory 422 is a memory that stores the event data indicating the occurrence of the negative event when the threshold signal Voff is supplied to the shared quantization unit 361f and the event data indicating the occurrence of the negative event is detected. is there.
  • the configuration of the pixel array portions 31f and 31g can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the sixth and seventh embodiments can be combined with the third embodiment shown in FIG. That is, the memory unit 411 (memory unit 411 g) in the sixth and seventh embodiments may be provided after the shared quantization unit 361 included in the pixel array unit 31c shown in FIG.
  • the pixel array unit 31g in the seventh embodiment shown in FIG. 25 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 26, the current sources may be connected horizontally.
  • the pixel array unit 31g shown in FIG. 26 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • FIG. 27 is a diagram showing the configuration of the pixel array unit 31h of the DVS chip 11 according to the eighth embodiment.
  • the same parts as those of the pixel array unit 31e (FIG. 21) according to the fifth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31c in the third embodiment, the pixel array unit 31e in the fifth embodiment, the pixel array unit 31f in the sixth embodiment, and the pixel array unit 31g in the seventh embodiment are respectively. It is common in that it includes a shared quantization unit 361. Further, the shared quantization unit 361 is common in that it outputs event data indicating the occurrence of positive or negative events.
  • a shared quantization unit that outputs event data indicating the occurrence of a positive event and a shared quantization unit that outputs event data indicating the occurrence of a negative event.
  • the pixel array unit 31h including the two will be described.
  • the shared quantization unit 361e of the pixel array unit 31e according to the fifth embodiment is the shared quantization unit 431 and the shared quantization unit 432-2. The difference is that it is composed of two quantization units.
  • the shared quantization unit 431 is configured to include a MOSFET transistor 441, an MIMO transistor 442, and a switch 443.
  • the shared quantization unit 432 is configured to include a NMOS transistor 451, an MIMO transistor 452, and a switch 453.
  • the signal read from the pixel 51 is supplied to the gate of the MIMO transistor 441 of the shared quantization unit 431 and the gate of the MIMO transistor 451 of the shared quantization unit 432, respectively.
  • a threshold signal Von is supplied to the NMOS transistor 442 of the shared quantization unit 431.
  • the shared quantization unit 431 detects event data representing the occurrence of a positive event.
  • the switch 443 is closed, a signal is supplied to the vertical signal line 444.
  • a threshold signal Voff is supplied to the NMOS transistor 452 of the shared quantization unit 432.
  • the shared quantization unit 432 detects event data representing the occurrence of a negative event.
  • the switch 453 is closed, a signal is supplied to the vertical signal line 454.
  • the two shared quantization units 431 and 432 can be provided to detect positive and negative events, respectively.
  • the configuration of the pixel array unit 31h can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the eighth embodiment can be combined with the third embodiment shown in FIG. That is, the shared quantization unit 431 and the shared quantization unit 432 according to the eighth embodiment may be provided after the shared quantization unit 361 included in the pixel array unit 31c shown in FIG.
  • the pixel array unit 31h in the eighth embodiment shown in FIG. 27 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 28, the current sources may be connected horizontally.
  • the pixel array unit 31h shown in FIG. 28 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • FIG. 29 is a diagram showing the configuration of the pixel array unit 31i of the DVS chip 11 according to the ninth embodiment.
  • the same parts as those of the pixel array unit 31d (FIG. 15) according to the fourth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31i in the ninth embodiment is different from the pixel array unit 31 in the first to eighth embodiments in that the portion constituting the current mirror circuit is provided outside the pixel 51. ..
  • the MIMO transistor 511-1 and the MIMO transistor 512-1 are outside the pixel 51, and the pixel array. It is provided in the section 31. Further, the switch 513-1 and the switch 514-1 are also provided outside the pixel 51 and inside the pixel array unit 31.
  • a switch 501S-1 is provided in the pixel 51S-1, and when the switch 501S-1 is closed, the drain of the MIMO transistor 511-1 and the drain of the MIMO transistor 314S are connected to each other.
  • a switch 501R-1 is provided in the pixel 51R-1, and when the switch 501R-1 is closed, the drain of the MIMO transistor 512-1 and the drain of the MIMO transistor 314R are connected to each other.
  • the MIMO transistor 511-1 corresponds to, for example, the PMOS transistor 315S-1 in the pixel 51S-1 of the pixel array unit 31d shown in FIG.
  • the epitaxial transistor 512-1 corresponds to, for example, the MIMO transistor 315R-1 in the pixel 51R-1 of the pixel array unit 31d shown in FIG.
  • the switch 513-1 corresponds to, for example, the switch 343S in the pixel 51S-1 of the pixel array unit 31d shown in FIG.
  • the switch 514-1 corresponds to, for example, the switch 342S in the pixel 51S-1 of the pixel array unit 31d shown in FIG.
  • the switch 514-1 is a switch that is closed when the pixel 51S-1 functions as a read pixel.
  • the switch 513-1 is a switch that is closed when the pixel 51S does not function as a read pixel, and is a switch that is closed when the pixel 51R-1 functions as a reference pixel.
  • Switch 513-1 and switch 514-1 are controlled so that when one is closed, the other is open.
  • the switch 314-1 When the switch 314-1 is closed, the difference between the pixel 51S-1 as the read pixel and the pixel 51R-1 as the reference pixel is supplied to the vertical signal line 516-1.
  • the switch 313-1 When the switch 313-1 is closed, the difference between the pixel 51R-1 as the read pixel and the pixel 51S-1 as the reference pixel is supplied to the vertical signal line 515-1.
  • the same configuration as that of the pixel 51S-1 and the pixel 51R-1 is formed in the pixel 51S-2 and the pixel 51R-2. That is, as a current mirror circuit for the pixel 51S-2 set as the read pixel and the pixel 51R-2 set as the reference pixel, the MIMO transistor 511-2, the MIMO transistor 512-2, the switch 513-2, and the switch 514-2 is outside the pixel 51 and is provided inside the pixel array unit 31.
  • the current mirror circuits are connected by a horizontal connecting wire 531.
  • the horizontal connecting wire 531 is connected to a wiring that connects the gate of the MIMO transistor 511-1 and the gate of the MIMO transistor 512-1 and a wiring that connects the switch 513-1 and the switch 514-1. Further, the horizontal connecting wire 531 is connected with a wiring for connecting the gate of the MIMO transistor 511-2 and the gate of the MIMO transistor 512-2 and a wiring for connecting the switch 513-2 and the switch 514-2.
  • the bias voltage of the current mirror circuit is connected horizontally. By performing the horizontal connection in this way, it is possible to suppress the generation of noise.
  • the switch 532 may be provided on the horizontal connecting wire 531.
  • the switch 532 When the switch 532 is closed, the bias voltage of the current mirror circuit becomes a horizontal connection state. Therefore, such a horizontal connection state and a non-horizontal connection state should be controlled by opening and closing the switch 532. You can also.
  • the part of the current mirror circuit is shared by two pixels of the pixel 51S-1 and the pixel 51R-1, but the configuration is such that it is shared by two or more pixels 51. Is also possible.
  • the current mirror circuit can be provided as a circuit shared by a plurality of lines.
  • the configuration of the pixel 51 can be miniaturized. Further, by making the current mirror circuit shared by a plurality of pixels 51, the configuration of the pixel array unit 31i can be miniaturized. Therefore, also in the ninth embodiment, the configuration of the pixel array unit 31i can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the pixel array unit 31i in the ninth embodiment shown in FIG. 29 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 30, a configuration in which current sources are connected horizontally may be used.
  • the pixel array unit 31i shown in FIG. 30 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • FIG. 31 is a diagram showing a configuration of a pixel array unit 31j in the DVS chip 11 according to the tenth embodiment.
  • the same parts as those of the pixel array unit 31i (FIG. 29) according to the ninth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31j according to the tenth embodiment shown in FIG. 31 is different from the pixel array unit 31i (FIG. 29) according to the ninth embodiment except that the current mirror circuit is arranged outside the pixel array unit 31. , Is the same.
  • the pixel array unit 31j in the tenth embodiment shown in FIG. 31 and the pixel array unit 31i in the ninth embodiment shown in FIG. 29 have the same configuration, but are outside the pixels 51.
  • the difference is that the current mirror circuit formed in the pixel array unit 31i is outside the pixel 51, and the current mirror circuit is formed at a position outside the pixel array unit 31j.
  • the MIMO transistors 511, 512, switches 513, 514, etc. that make up the current mirror circuit can be formed in the peripheral circuit.
  • the current mirror circuit can be formed on the logic die 12 stacked on the DVS chip 11.
  • the configuration of the pixel array unit 31 can be miniaturized. Therefore, also in the tenth embodiment, the configuration of the pixel array unit 31j can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the pixel array unit 31j in the tenth embodiment shown in FIG. 31 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 32, the current sources may be connected horizontally.
  • the pixel array unit 31j shown in FIG. 32 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320).
  • the current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration.
  • a switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
  • the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
  • Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
  • FIG. 33 is a diagram showing the configuration of the pixel array portion 31k of the DVS chip 11 according to the eleventh embodiment.
  • the same parts as those of the pixel array unit 31j (FIG. 31) according to the tenth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31k in the eleventh embodiment shown in FIG. 33 has a configuration in which a memory 551 is added in the pixel 51 as compared with the pixel array unit 31j in the tenth embodiment shown in FIG. 31.
  • the other points are the same.
  • the pixels 51S-2 and the pixels 51R-2 located on the right side of the pixel array unit 31j shown in FIG. 31 are not shown, but they are connected in a horizontally connected configuration as in the case shown in FIG. There is.
  • the pixels 51S-2 and 51R-2 shown on the right side are not shown, but are horizontally connected.
  • the pixel 51S is provided with a memory 551S, and the pixel 51R is provided with a memory 551R. If an event is detected while the pixel 51S is set as the read pixel, the memory 551S stores the event data. Similarly, the memory 551R stores the event data when an event is detected when the pixel 51R is set as the read pixel.
  • a two-phase (2-Phase) global shutter can be realized.
  • the signal for controlling the opening and closing of the switch 514 is referred to as the control signal SELa
  • the signal for controlling the opening and closing of the switch 513 is referred to as the control signal SELb.
  • a signal for controlling the timing of writing event data to the memory 551S is referred to as a control signal MemWRa
  • a signal for controlling the timing of writing event data to the memory 551R is referred to as a control signal MemWRb.
  • control signal SELa and the control signal MemWRa are signals shared by all odd-numbered lines
  • control signal SELb and control signal MemWRb are signals shared by all even-numbered lines.
  • Phase 1 the control signal SELa and the control signal MemWRa are activated, and the result of the luminance change (event data) is written to the pixels 51 in the odd-numbered rows.
  • the control signal SELb and the control signal Mem WRb are activated, and the result of the luminance change (event data) is written to the pixels 51 in the even-numbered rows.
  • Such a two-phase global shutter can be realized.
  • the configuration of the pixel array unit 31k can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise. In addition, it becomes possible to perform shooting with reduced distortion.
  • the pixel array unit 31k in the eleventh embodiment shown in FIG. 33 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
  • FIG. 34 is a diagram showing the configuration of the pixel array portion 31m of the DVS chip 11 in the twelfth embodiment.
  • the same parts as those of the pixel array unit 31k (FIG. 33) according to the eleventh embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31m in the twelfth embodiment shown in FIG. 34 has a quantization unit 552 added in the pixel 51 as compared with the pixel array unit 31k in the eleventh embodiment shown in FIG. 33.
  • the difference is that the configuration is the same, and the other points are the same.
  • the pixel 51S is provided with a quantization unit 552S, and the pixel 51R is provided with a quantization unit 552R.
  • the pixel array unit 31m according to the twelfth embodiment shown in FIG. 34 includes a memory 551 that stores the result quantized by the quantization unit 552 and the quantization unit 552 in the pixel 51.
  • the quantization unit 552 and the memory 551 can be, for example, parts corresponding to the shared quantization unit 361f and the memory 412 in the pixel array unit 31f shown in FIG. 23.
  • the pixel array unit 31m is configured to include a differential amplifier circuit as in the above-described embodiment.
  • the pixel array unit 31m is further configured to include a quantization unit 552 having an amplification function in the subsequent stage of the differential amplifier circuit. Therefore, the amplification factor can be increased and the operating speed can be improved.
  • the two threshold values can be, for example, the threshold values corresponding to the threshold value signal Von and the threshold value signal Voff input to the shared quantization unit 361f in the pixel array unit 31f shown in FIG. 23.
  • the two threshold values in the quantization unit 552 it is possible to detect a case where the brightness increases, that is, a positive electrode property, and a case where the brightness decreases, that is, a negative electrode property.
  • the configuration of the pixel array unit 31 m can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise. In addition, it becomes possible to perform shooting with reduced distortion.
  • the pixel array unit 31m in the twelfth embodiment shown in FIG. 34 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
  • FIG. 35 is a diagram showing the configuration of the pixel array unit 31n of the DVS chip 11 according to the thirteenth embodiment.
  • the same parts as those of the pixel array unit 31j (FIG. 31) according to the tenth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31n in the thirteenth embodiment shown in FIG. 35 adds a quantization unit 571 to the outside of the pixel 51 as compared with the pixel array unit 31j in the tenth embodiment shown in FIG. 31.
  • the difference is that the configuration is the same, and the other points are the same.
  • the pixel array unit 31n according to the thirteenth embodiment shown in FIG. 35 includes a quantization unit 571 outside the pixel array unit 31n.
  • This quantization unit 571 corresponds to, for example, the shared quantization unit 361 of the pixel array unit 31c in the third embodiment shown in FIG. 14, and is provided as a quantization unit shared by a plurality of pixels 51. be able to.
  • the two threshold values can be, for example, the threshold values corresponding to the threshold value signal Von and the threshold value signal Voff input to the shared quantization unit 361f in the pixel array unit 31f shown in FIG. 23.
  • the two threshold values in the quantization unit 571 it is possible to detect a case where the brightness increases, that is, a positive electrode property, and a case where the brightness decreases, that is, a negative electrode property.
  • the configuration of the pixel array unit 31n can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
  • the pixel array unit 31n in the thirteenth embodiment shown in FIG. 35 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
  • FIG. 36 is a diagram showing the configuration of the pixel array portion 31p of the DVS chip 11 in the 14th embodiment.
  • the same parts as those of the pixel array unit 31d (FIG. 15) according to the fourth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31p in the 14th embodiment shown in FIG. 36 has a capacitor 601 and a capacitor 602 added to the pixel 51 as compared with the pixel array unit 31d in the fourth embodiment shown in FIG. The difference is that the configuration is the same, and the other points are the same.
  • FIG. 36 the pixel 51S-2 shown in FIG. 15 and the pixel 51 corresponding to the pixel 51R-2 are not shown, but they have a horizontally connected configuration and are connected to the pixel 51R-2 (not shown). .. The same applies to FIG. 38, which will be described later.
  • the pixel 51S has a capacitor 601S and a capacitor 602S.
  • a signal VTHa1 having a predetermined voltage value is supplied from the outside to one end of the capacitor 601S, and the other end is connected to the gate side of the NMOS transistor 314S.
  • a signal VTHa2 having a predetermined voltage value is supplied from the outside to one end of the capacitor 602S, and the other end is connected to the gate side of the NMOS transistor 314S.
  • the pixel 51R has a capacitor 601R and a capacitor 602R.
  • a signal VTHb1 having a predetermined voltage value is supplied from the outside to one end of the capacitor 601R, and the other end is connected to the gate side of the NMOS transistor 314R.
  • a signal VTHb2 having a predetermined voltage value is supplied from the outside to one end of the capacitor 602R, and the other end is connected to the gate side of the NMOS transistor 314R.
  • the configuration of the pixel array unit 31p shown in FIG. 36 is an example in which a horizontally connected configuration is adopted.
  • the capacitor 601 and the capacitor 602 are provided as one of the purposes for alleviating the variation in capacitance in the horizontal connection.
  • the portion corresponding to the differential amplifier circuit operates as the quantization unit 84 (FIG. 5) of the event detection unit 52.
  • the operation of the pixel array unit 31p shown in FIG. 36 will be described with reference to the timing chart of FIG. 37.
  • the pixel 51S is a read pixel and the pixel 51R is a reference pixel will be described as an example. Since the horizontal connection configuration is adopted, the comparison is made with the average voltage of the row (reference row) in which the reference pixel is arranged. Specifically, the pixel 51S set as the read pixel is compared with the average voltage of the reference line, and the brightness change of the pixel 51S is high, low, or no change. Is detected as event data.
  • the control signal SELa when the control signal SELa is set to H level, the pixel 51S is set as the read pixel and the switch 342S is turned on. From time t51 to time t54, the control signal SELb is maintained at the L level, the signal VTHa1 is maintained at the H level, and the signal VTHa2 is maintained at the L level.
  • an OFF event that is, a negative event in this case, is detected.
  • the signal VTHb1 is switched from the H level to the L level, and the signal VTHb2 is maintained at the L level. That is, in this case, both the signal VTHb1 and the signal VTHb2 are set to the L level.
  • the signal VTHb1 and the signal VTHb2 are at the L level and the output to the vertical signal line 321 becomes High, it means that a negative event has been detected.
  • an ON event that is, a positive event in this case, is detected.
  • the signal VTHb1 is switched from L level to H level and the signal VTHb2 is switched from L level to H level.
  • both the signal VTHb1 and the signal VTHb2 are at H level and the output to the vertical signal line 321 becomes LOW, it means that a positive electrode event has been detected.
  • the part corresponding to the differential amplifier circuit functions as a quantization unit.
  • the occurrence of an event can be detected.
  • the configuration of the pixel array unit 31p can be miniaturized.
  • the pixel array unit 31p in the fourteenth embodiment shown in FIG. 36 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
  • FIG. 38 is a diagram showing the configuration of the pixel array portion 31q of the DVS chip 11 according to the fifteenth embodiment.
  • the same parts as the pixel array unit 31p (FIG. 36) in the fourteenth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the pixel array unit 31q in the fifteenth embodiment shown in FIG. 38 has a configuration in which a shared quantization unit 361q is added as compared with the pixel array unit 31p in the fourteenth embodiment shown in FIG. 36.
  • the points are different, and the other points are the same.
  • the shared quantization unit 361q corresponds to the shared quantization unit 361e of the pixel array unit 31e in the fifth embodiment shown in FIG. 21, has the same configuration, and basically performs the same operation. ..
  • the portion corresponding to the differential amplifier circuit operates as the subtraction unit 83 (FIG. 5) of the event detection unit 52.
  • the shared quantization unit 361q operates as the quantization unit 84 (FIG. 5) of the event detection unit 52.
  • the control signal SELa, the control signal SELbVTHa1, the signal VTHa2, the signal VTHb1, and the signal VTHb2 are the same as those shown in FIG. 37. That is, the operation performed by the pixels 51S and 51R is the same as the pixels 51S and 51R of the pixel array unit 31p in the fourteenth embodiment.
  • a signal Von and a signal Voff are supplied to the NMOS transistor 372 in the shared quantization unit 361q in a time-division manner.
  • the signal Von and the signal Voff are signals having constant values, and the levels do not change from time t61 to time t64.
  • the signal supplied to the shared quantization unit 361q is set to a constant value, and the bias voltage of the shared quantization unit 361q is controlled to be one.
  • control based on the timing chart shown in B of FIG. 39 may be performed.
  • the timing chart shown in FIG. 39B shows an example in which the signal Von and the signal Voff are supplied in a time-division manner.
  • a signal Voff L level signal
  • a signal Von H level signal
  • the configuration may include the shared quantization unit 361q to detect the occurrence of an event. Also in the fifteenth embodiment, the configuration of the pixel array unit 31q can be miniaturized.
  • the pixel array unit 31q in the fifteenth embodiment shown in FIG. 38 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
  • the read pixel and the reference pixel have been described with reference to an example in which the read pixel and the reference pixel are sequentially switched and read.
  • a predetermined pixel is fixed as a reference pixel and the reference pixel is fixed.
  • the difference from the reference pixel may be read out.
  • the reference pixel may be a light-shielded pixel.
  • the pixel area can be reduced. Further, the threshold voltage can be generated in the vicinity of the pixel. Therefore, high-speed reading can be realized. Further, since adjacent pixels are used, the temperature characteristics can be canceled and the influence of flicker can be suppressed.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 40 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 41 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 41 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the present technology can also have the following configurations.
  • the first photoelectric conversion element and The second photoelectric conversion element and A differential amplifier circuit is provided as a circuit that generates a difference signal corresponding to the difference in voltage between the first photoelectric conversion element and the second photoelectric conversion element.
  • An event detection device that detects the occurrence of an event that is a change in a signal based on a signal from the differential amplifier circuit.
  • the transistors constituting the differential amplifier circuit are dispersedly arranged in a first pixel including the first photoelectric conversion element and a second pixel including the second photoelectric conversion element (1). ). The event detection device.
  • the differential amplifier circuit determines the difference between the signal from the read pixel and the signal from the reference pixel.
  • the event detection device according to (2) above which outputs.
  • the first transistor is included in the first pixel, and the second transistor is the second transistor.
  • the event detection device according to (2) above which is included in the pixel.
  • the first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit are included in the pixel array portion in which the first pixel and the second pixel are arranged (2). ).
  • the first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit are arranged outside the pixel array portion in which the first pixel and the second pixel are arranged.
  • the event detection device according to (2) above.
  • the reset of the signal in the first pixel and the reset of the signal in the second pixel are performed asynchronously by the signal generated in each pixel in any of the above (2) to (6).
  • the first pixel and the second pixel are, respectively, a first switch that is closed when the read pixel is set and a second switch that is closed when the reference pixel is set.
  • the event detection device according to any one of (3) to (8) above.
  • the event detection device according to (10) further including a memory unit that stores an output from the quantization unit.
  • a first quantization unit that outputs a comparison result comparing the signal output via the first switch and the first threshold value as event data indicating the occurrence of the event, and the first quantization unit.
  • the above (9) further includes a second quantization unit that outputs a comparison result comparing the signal output via the first switch and the second threshold value as event data indicating the occurrence of the event.
  • the reference pixels are connected and The event detection device according to any one of (3) to (13), wherein a transistor included in the reference pixel and forming a current mirror circuit included in the differential amplifier circuit is connected.
  • the first pixel includes a first memory for storing event data representing the occurrence of the event.
  • the second pixel includes a second memory for storing event data representing the occurrence of the event.
  • the event detection device according to any one of (2) to (14), wherein the writing to the first memory and the writing to the second memory are performed at different timings.
  • the first pixel includes a first quantization unit that compares an output from the differential amplifier circuit with a predetermined threshold value.
  • the second pixel includes a second quantization unit that compares the output from the differential amplifier circuit with a predetermined threshold value.
  • the first memory stores the output from the first quantization unit, and stores the output from the first quantization unit.
  • the event detection device according to (15), wherein the second memory stores an output from the second quantization unit.
  • a quantization unit for comparing the output from the differential amplifier circuit with a predetermined threshold value is further provided.
  • the first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit, and the quantization unit are pixel array units in which the first pixel and the second pixel are arranged.
  • the event detection device according to (2) above which is arranged outside.
  • a first capacitor to which the first threshold signal is supplied and a second capacitor to which the second threshold signal is supplied are further provided.
  • the event detection device wherein the first capacitor and the second capacitor are connected between a photoelectric conversion element and a transistor constituting a differential amplifier circuit.
  • the first threshold signal and the second threshold signal are supplied to a reference pixel that supplies a reference signal to the differential amplifier circuit.
  • both the first threshold value signal and the second threshold value signal are H-level signals.
  • both the first threshold value signal and the second threshold value signal are L-level signals.
  • 11 DVS chip 12 logic die, 21 event generation unit, 22 data processing unit, 31 pixel array unit, 32 drive unit, 33 arbiter, 34 output unit, 41 pixel block, 51 pixels, 52 event detection unit, 60 nodes, 61 Photoelectric conversion element, 81 current-voltage conversion unit, 82 buffer, 83 subtraction unit, 84 quantization unit, 85 transfer unit, 91 transistor, 92 transistor, 93 transistor, 101 transistor, 102 operational capacitor, 103 capacitor, 104 switch, 111, 112.

Abstract

The present technology pertains to an event detection device that makes it possible to achieve miniaturization of a device which detects occurrence of an event. The present invention is provided with: a first photoelectric conversion element; a second photoelectric conversion element; and a differential amplifier circuit as a circuit that generates a difference signal corresponding to a difference in voltage between the first photoelectric conversion element and the second photoelectric conversion element, wherein occurrence of an event that is a change in a signal is detected by the signal from the differential amplifier circuit. Transistors constituting the differential amplifier circuit are dispersedly disposed in a first pixel including the first photoelectric conversion element and a second pixel including the second photoelectric conversion element. The present technology can be applied, for example, to a sensor for detecting an event that is a change in the electrical signal of a pixel, or the like.

Description

イベント検出装置Event detector
 本技術は、イベント検出装置に関し、例えば、画素の輝度変化をイベントとして検出する装置をより小型化するようにしたイベント検出装置に関する。 The present technology relates to an event detection device, for example, an event detection device in which a device that detects a change in pixel brightness as an event is made smaller.
 画素の輝度変化をイベントとして、イベントが発生した場合に、イベントの発生を表すイベントデータを出力するイメージセンサが提案されている(例えば、特許文献1を参照)。 An image sensor has been proposed that outputs event data indicating the occurrence of an event when an event occurs, using a change in pixel brightness as an event (see, for example, Patent Document 1).
 ここで、垂直同期信号に同期して撮像を行い、ラスタスキャン形式でフレームデータを出力するイメージセンサは、同期型のイメージセンサということができる。これに対して、イベントデータを出力するイメージセンサは、イベントデータが発生した画素の随時読み出しを行うため、非同期型のイメージセンサということができる。非同期型のイメージセンサは、例えば、DVS(Dynamic Vision Sensor)と呼ばれる。 Here, an image sensor that performs imaging in synchronization with a vertical synchronization signal and outputs frame data in a raster scan format can be said to be a synchronous image sensor. On the other hand, the image sensor that outputs the event data can be said to be an asynchronous image sensor because the pixel in which the event data is generated is read out at any time. The asynchronous image sensor is called, for example, DVS (Dynamic Vision Sensor).
特表2017-535999号公報Special Table 2017-535999 Gazette
 非同期型のイメージセンサによりイベントの発生を検出する装置の小型化が望まれている。 It is desired to reduce the size of the device that detects the occurrence of an event using an asynchronous image sensor.
 本技術は、このような状況に鑑みてなされたものであり、非同期型のイメージセンサによりイベントの発生を検出する装置を小型化することができるようにするものである。 This technology was made in view of such a situation, and makes it possible to miniaturize a device that detects the occurrence of an event by using an asynchronous image sensor.
 本技術の一側面のイベント検出装置は、第1の光電変換素子と、第2の光電変換素子と、前記第1の光電変換素子と前記第2の光電変換素子の電圧の差に対応する差信号を生成する回路として、差動増幅回路とを備え、前記差動増幅回路からの信号により信号の変化であるイベントの発生を検出するイベント検出装置である。 The event detection device of one aspect of the present technology is a difference corresponding to the difference in voltage between the first photoelectric conversion element, the second photoelectric conversion element, the first photoelectric conversion element, and the second photoelectric conversion element. It is an event detection device including a differential amplifier circuit as a circuit for generating a signal, and detecting the occurrence of an event which is a change in the signal by the signal from the differential amplifier circuit.
 本技術の一側面のイベント検出装置においては、第1の光電変換素子と、第2の光電変換素子と、第1の光電変換素子と第2の光電変換素子の電圧の差に対応する差信号を生成する回路として、差動増幅回路が備えられ、差動増幅回路からの信号により信号の変化であるイベントの発生が検出される。 In the event detection device of one aspect of the present technology, the difference signal corresponding to the voltage difference between the first photoelectric conversion element, the second photoelectric conversion element, and the first photoelectric conversion element and the second photoelectric conversion element. A differential amplifier circuit is provided as a circuit for generating the above, and the occurrence of an event, which is a change in the signal, is detected by the signal from the differential amplifier circuit.
 イベント検出装置は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。 The event detection device may be an independent device or a module incorporated in another device.
本技術を適用したイベント検出装置の一実施の形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the event detection apparatus to which this technique is applied. DVSチップの構成例を示す図である。It is a figure which shows the structural example of a DVS chip. 画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of a pixel array part. 画素ブロックの構成例を示す図である。It is a figure which shows the structural example of a pixel block. イベント検出部の構成例を示す図である。It is a figure which shows the configuration example of the event detection part. 電流電圧変換部の構成例を示す図である。It is a figure which shows the structural example of the current-voltage conversion part. 減算部と量子化部の構成例を示す図である。It is a figure which shows the structural example of the subtraction part and the quantization part. 量子化部の他の構成例を示す図である。It is a figure which shows the other structural example of the quantization part. 第1の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 1st Embodiment. 読出画素と参照画素の配置について説明するための図である。It is a figure for demonstrating the arrangement of a read pixel and a reference pixel. 第1の実施の形態における画素アレイ部の動作について説明するための図である。It is a figure for demonstrating the operation of the pixel array part in 1st Embodiment. 第2の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 2nd Embodiment. 第2の実施の形態における画素アレイ部の動作について説明するための図である。It is a figure for demonstrating the operation of the pixel array part in 2nd Embodiment. 第3の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 3rd Embodiment. 第4の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 4th Embodiment. 読出画素と参照画素の配置について説明するための図である。It is a figure for demonstrating the arrangement of a read pixel and a reference pixel. 読出画素と参照画素の配置について説明するための図である。It is a figure for demonstrating the arrangement of a read pixel and a reference pixel. 読出画素と参照画素の配置について説明するための図である。It is a figure for demonstrating the arrangement of a read pixel and a reference pixel. 読出画素と参照画素の配置について説明するための図である。It is a figure for demonstrating the arrangement of a read pixel and a reference pixel. 第4の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 4th Embodiment. 第5の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 5th Embodiment. 第5の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 5th Embodiment. 第6の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 6th Embodiment. 第6の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 6th Embodiment. 第7の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 7th Embodiment. 第7の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 7th Embodiment. 第8の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 8th Embodiment. 第8の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 8th Embodiment. 第9の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 9th Embodiment. 第9の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 9th Embodiment. 第10の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 10th Embodiment. 第10の実施の形態における画素アレイ部の他の構成例を示す図である。It is a figure which shows the other structural example of the pixel array part in 10th Embodiment. 第11の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 11th Embodiment. 第12の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in the twelfth embodiment. 第13の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 13th Embodiment. 第14の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 14th Embodiment. 第14の実施の形態における画素アレイ部の動作について説明するための図である。It is a figure for demonstrating the operation of the pixel array part in 14th Embodiment. 第15の実施の形態における画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part in 15th Embodiment. 第15の実施の形態における画素アレイ部の動作について説明するための図である。It is a figure for demonstrating the operation of the pixel array part in the fifteenth embodiment. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
 以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。 The embodiment for implementing the present technology (hereinafter referred to as the embodiment) will be described below.
 <本技術を適用したデータ処理チップの一実施の形態> <One embodiment of a data processing chip to which this technology is applied>
 図1は、本技術を適用したデータ処理チップの一実施の形態の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of an embodiment of a data processing chip to which the present technology is applied.
 データ処理チップは、1チップの半導体チップであり、複数のダイ(基板)としてのセンサダイ(基板)11とロジックダイ12とが積層されて構成される。なお、データ処理チップは、1個のダイで構成することもできるし、3個以上のダイを積層して構成することもできる。 The data processing chip is a one-chip semiconductor chip, and is configured by stacking a sensor die (board) 11 as a plurality of dies (boards) and a logic die 12. The data processing chip may be configured by one die, or may be configured by stacking three or more dies.
 図1のデータ処理チップにおいて、センサダイ11には、イベント生成部21(としての回路)が構成され、ロジックダイ12には、データ処理部22が構成されている。なお、イベント生成部21については、その一部を、ロジックダイ12に構成することができる。また、データ処理部22については、その一部を、センサダイ11に構成することができる。 In the data processing chip of FIG. 1, the sensor die 11 is configured with an event generation unit 21 (as a circuit), and the logic die 12 is configured with a data processing unit 22. A part of the event generation unit 21 can be configured in the logic die 12. Further, a part of the data processing unit 22 can be configured in the sensor die 11.
 イベント生成部21は、入射光の光電変換を行って電気信号を生成する画素を有し、画素の電気信号の変化であるイベントの発生を表すイベントデータを生成する。イベント生成部21は、イベントデータを、データ処理部22に供給する。すなわち、イベント生成部21は、例えば、同期型のイメージセンサと同様に、画素において、入射光の光電変換を行って電気信号を生成する撮像を行うが、フレーム形式の画像データを生成するのではなく、又は、フレーム形式の画像データを生成するとともに、画素の電気信号の変化であるイベントの発生を表すイベントデータを生成する。 The event generation unit 21 has pixels that generate an electric signal by performing photoelectric conversion of incident light, and generates event data indicating the occurrence of an event that is a change in the electric signal of the pixels. The event generation unit 21 supplies the event data to the data processing unit 22. That is, for example, the event generation unit 21 performs imaging to generate an electric signal by performing photoelectric conversion of incident light in pixels, as in the case of a synchronous image sensor, but may generate image data in frame format. It generates image data in the form of no or in a frame format, and also generates event data indicating the occurrence of an event that is a change in an electrical signal of a pixel.
 データ処理部22は、イベント生成部21からのイベントデータに応じてデータ処理を行い、そのデータ処理の結果であるデータ処理結果を出力する。 The data processing unit 22 performs data processing according to the event data from the event generation unit 21, and outputs the data processing result which is the result of the data processing.
 イベント生成部21は、イベントデータを、垂直同期信号に同期して出力するわけではないので、非同期型のイメージセンサということができる。非同期型のイメージセンサは、例えば、DVS(Dynamic Vision Sensor)とも呼ばれる。以下では、区別を容易にするために、イベント生成部21が構成されているセンサダイ11を、DVSチップ11と称する。 Since the event generation unit 21 does not output the event data in synchronization with the vertical synchronization signal, it can be said to be an asynchronous image sensor. Asynchronous image sensors are also called DVS (Dynamic Vision Sensor), for example. In the following, the sensor die 11 in which the event generation unit 21 is configured will be referred to as a DVS chip 11 in order to facilitate the distinction.
 <DVSチップの構成例>
 図2は、DVSチップ11の構成例を示すブロック図である。
<DVS chip configuration example>
FIG. 2 is a block diagram showing a configuration example of the DVS chip 11.
 DVSチップ11は、画素アレイ部31、駆動部32、アービタ33、及び、出力部34を備える。 The DVS chip 11 includes a pixel array unit 31, a drive unit 32, an arbiter 33, and an output unit 34.
 画素アレイ部31には、複数の画素が二次元格子状に配列される。また、画素アレイ部31は、それぞれが所定数の画素からなる複数の画素ブロックに分割される。以下、水平方向に配列された画素または画素ブロックの集合を「行」と称し、行に垂直な方向に配列された画素または画素ブロックの集合を「列」と称する。 A plurality of pixels are arranged in a two-dimensional grid pattern in the pixel array unit 31. Further, the pixel array unit 31 is divided into a plurality of pixel blocks, each of which is composed of a predetermined number of pixels. Hereinafter, a set of pixels or pixel blocks arranged in the horizontal direction is referred to as a "row", and a set of pixels or pixel blocks arranged in a direction perpendicular to the row is referred to as a "column".
 画素ブロックは、画素の光電変換によって生成される電気信号としての光電流に所定の閾値を超える変化が発生した場合に、その光電流の変化をイベントとして検出する。イベントが検出された場合、画素ブロックは、イベントの発生を表すイベントデータの出力を要求するリクエストをアービタ33に出力する。 The pixel block detects a change in the photocurrent as an event when a change exceeding a predetermined threshold value occurs in the photocurrent as an electric signal generated by the photoelectric conversion of the pixel. When an event is detected, the pixel block outputs a request to the arbiter 33 requesting the output of event data indicating the occurrence of the event.
 駆動部32は、画素アレイ部31に制御信号を供給することにより、画素アレイ部31を駆動する。 The drive unit 32 drives the pixel array unit 31 by supplying a control signal to the pixel array unit 31.
 アービタ33は、画素アレイ部31を構成する画素ブロックからのリクエストを調停し、イベントデータの出力の許可又は不許可を表す応答を画素ブロックに返す。イベントデータの出力の許可を表す応答を受け取った画素ブロックは、イベントデータを出力部34に出力する。 The arbiter 33 arbitrates the request from the pixel block constituting the pixel array unit 31, and returns a response indicating permission or disapproval of output of event data to the pixel block. The pixel block that has received the response indicating the permission to output the event data outputs the event data to the output unit 34.
 出力部34は、画素アレイ部31を構成する画素ブロックが出力するイベントデータに必要な処理を施し、データ処理部22(図1)に供給する。 The output unit 34 performs necessary processing on the event data output by the pixel blocks constituting the pixel array unit 31 and supplies the event data to the data processing unit 22 (FIG. 1).
 ここで、画素の電気信号としての光電流の変化は、画素の輝度変化とも捉えることができるので、イベントは、画素の輝度変化(閾値を超える輝度変化)であるともいうことができる。 Here, since the change in the light current as the electric signal of the pixel can be regarded as the change in the brightness of the pixel, the event can also be said to be the change in the brightness of the pixel (the change in brightness exceeding the threshold value).
 イベントの発生を表すイベントデータには、少なくとも、イベントとしての輝度変化が発生した画素ブロックの位置を表す位置情報(座標等)が含まれる。その他、イベントデータには、輝度変化の極性(正負)を含ませることができる。 The event data representing the occurrence of an event includes at least position information (coordinates, etc.) representing the position of the pixel block in which the brightness change as an event has occurred. In addition, the event data can include the polarity (positive or negative) of the brightness change.
 <画素アレイ部31の構成例>
 図3は、図2の画素アレイ部31の構成例を示すブロック図である。
<Structure example of pixel array unit 31>
FIG. 3 is a block diagram showing a configuration example of the pixel array unit 31 of FIG.
 画素アレイ部31は、複数の画素ブロック41を有する。画素ブロック41は、I行×J列(I及びJは整数)に配列された1以上としてのI×J個の画素51、及び、イベント検出部52を備える。画素ブロック41内の1以上の画素51は、イベント検出部52を共有している。 The pixel array unit 31 has a plurality of pixel blocks 41. The pixel block 41 includes 1 or more I × J pixels 51 arranged in I rows × J columns (I and J are integers), and an event detection unit 52. One or more pixels 51 in the pixel block 41 share an event detection unit 52.
 画素51は、被写体からの入射光を受光し、光電変換して電気信号としての光電流を生成する。画素51は、生成した光電流を、イベント検出部52に供給する。 The pixel 51 receives the incident light from the subject and performs photoelectric conversion to generate a photocurrent as an electric signal. The pixel 51 supplies the generated photocurrent to the event detection unit 52.
 イベント検出部52は、アービタ33からのリセット信号によるリセット後に、画素51のそれぞれからの光電流の所定の閾値を超える変化を、イベントとして検出する。イベント検出部52は、イベントを検出した場合、イベントの発生を表すイベントデータの出力を要求するリクエストを、アービタ33(図2)に供給する。そして、イベント検出部52は、リクエストに対して、イベントデータの出力を許可する旨の応答を、アービタ33から受け取ると、イベントデータを、出力部34に出力する。 The event detection unit 52 detects as an event a change in which the photocurrent from each of the pixels 51 exceeds a predetermined threshold value after being reset by the reset signal from the arbiter 33. When the event detection unit 52 detects an event, the event detection unit 52 supplies the arbiter 33 (FIG. 2) with a request for outputting event data indicating the occurrence of the event. Then, when the event detection unit 52 receives a response from the arbiter 33 to the effect that the output of the event data is permitted in response to the request, the event detection unit 52 outputs the event data to the output unit 34.
 ここで、光電流の所定の閾値を超える変化をイベントとして検出することは、同時に、光電流の所定の閾値を超える変化がなかったことをイベントとして検出していると捉えることができる。 Here, detecting a change exceeding a predetermined threshold value of the photocurrent as an event can be regarded as detecting that there is no change exceeding a predetermined threshold value of the photocurrent as an event at the same time.
 <画素ブロック41の構成例>
 図4は、図3の画素ブロック41の構成例を示す回路図である。
<Structure example of pixel block 41>
FIG. 4 is a circuit diagram showing a configuration example of the pixel block 41 of FIG.
 画素ブロック41は、図3で説明したように、1以上の画素51と、イベント検出部52とを備える。 As described with reference to FIG. 3, the pixel block 41 includes one or more pixels 51 and an event detection unit 52.
 画素51は、光電変換素子61を備える。光電変換素子61は、例えば、PD(Photodiode)で構成され、入射光を受光し、光電変換して電荷を生成する。 The pixel 51 includes a photoelectric conversion element 61. The photoelectric conversion element 61 is composed of, for example, a PD (Photodiode), receives incident light, and performs photoelectric conversion to generate an electric charge.
 画素ブロック41を構成するI×J個の画素51は、ノード60を介して、その画素ブロック41を構成するイベント検出部52に接続されている。したがって、画素51(の光電変換素子61)で生成された光電流は、ノード60を介して、イベント検出部52に供給される。その結果、イベント検出部52には、画素ブロック41内のすべての画素51の光電流の和が供給される。したがって、イベント検出部52では、画素ブロック41を構成するI×J個の画素51から供給される光電流の和の変化がイベントとして検出される。 The I × J pixels 51 constituting the pixel block 41 are connected to the event detection unit 52 constituting the pixel block 41 via the node 60. Therefore, the photocurrent generated by the pixel 51 (photoelectric conversion element 61) is supplied to the event detection unit 52 via the node 60. As a result, the event detection unit 52 is supplied with the sum of the photocurrents of all the pixels 51 in the pixel block 41. Therefore, the event detection unit 52 detects a change in the sum of the photocurrents supplied from the I × J pixels 51 constituting the pixel block 41 as an event.
 図3の画素アレイ部31では、画素ブロック41が1以上の画素51で構成され、その1以上の画素51で、イベント検出部52が共有される。したがって、画素ブロック41が、複数の画素51で構成される場合には、1個の画素51に対して、1個のイベント検出部52を設ける場合に比較して、イベント検出部52の数を少なくすることができ、画素アレイ部31の規模を抑制することができる。 In the pixel array unit 31 of FIG. 3, the pixel block 41 is composed of one or more pixels 51, and the event detection unit 52 is shared by the one or more pixels 51. Therefore, when the pixel block 41 is composed of a plurality of pixels 51, the number of event detection units 52 is increased as compared with the case where one event detection unit 52 is provided for one pixel 51. The number can be reduced, and the scale of the pixel array unit 31 can be suppressed.
 なお、画素ブロック41が、複数の画素51で構成される場合、画素51ごとに、イベント検出部52を設けることができる。画素ブロック41の複数の画素51で、イベント検出部52を共有する場合には、画素ブロック41の単位でイベントが検出されるが、画素51ごとに、イベント検出部52を設ける場合には、画素51の単位で、イベントを検出することができる。 When the pixel block 41 is composed of a plurality of pixels 51, an event detection unit 52 can be provided for each pixel 51. When the event detection unit 52 is shared by a plurality of pixels 51 of the pixel block 41, an event is detected in units of the pixel block 41, but when the event detection unit 52 is provided for each pixel 51, the pixels. Events can be detected in units of 51.
 <イベント検出部52の構成例>
 図5は、図3のイベント検出部52の構成例を示すブロック図である。
<Configuration example of event detection unit 52>
FIG. 5 is a block diagram showing a configuration example of the event detection unit 52 of FIG.
 イベント検出部52は、電流電圧変換部81、バッファ82、減算部83、量子化部84、及び、転送部85を備える。 The event detection unit 52 includes a current / voltage conversion unit 81, a buffer 82, a subtraction unit 83, a quantization unit 84, and a transfer unit 85.
 電流電圧変換部81は、画素51からの光電流(の和)を、その光電流の対数に対応する電圧(以下、光電圧ともいう)に変換し、バッファ82に供給する。 The current-voltage conversion unit 81 converts (the sum) of the optical current from the pixel 51 into a voltage corresponding to the logarithm of the optical current (hereinafter, also referred to as an optical voltage) and supplies it to the buffer 82.
 バッファ82は、電流電圧変換部81からの光電圧をバッファリングし、減算部83に供給する。 The buffer 82 buffers the optical voltage from the current-voltage conversion unit 81 and supplies it to the subtraction unit 83.
 減算部83は、アービタ33からのリセット信号に従ったタイミングで、現在の光電圧と、現在と微小時間だけ異なるタイミングの光電圧との差を演算し、その差に対応する差信号を、量子化部84に供給する。 The subtraction unit 83 calculates the difference between the current optical voltage and the optical voltage at a timing different from the current one by a minute time at the timing according to the reset signal from the arbiter 33, and quantizes the difference signal corresponding to the difference. It is supplied to the conversion unit 84.
 量子化部84は、減算部83からの差信号をデジタル信号に量子化し、差信号の量子化値を、イベントデータとして、転送部85に供給する。 The quantization unit 84 quantizes the difference signal from the subtraction unit 83 into a digital signal, and supplies the quantization value of the difference signal to the transfer unit 85 as event data.
 転送部85は、量子化部84からのイベントデータに応じて、そのイベントデータを、出力部34に転送(出力)する。すなわち、転送部85は、イベントデータの出力を要求するリクエストを、アービタ33に供給する。そして、転送部85は、リクエストに対して、イベントデータの出力を許可する旨の応答をアービタ33から受け取ると、イベントデータを、出力部34に出力する。 The transfer unit 85 transfers (outputs) the event data to the output unit 34 in response to the event data from the quantization unit 84. That is, the transfer unit 85 supplies the arbiter 33 with a request for outputting event data. Then, when the transfer unit 85 receives a response from the arbiter 33 to the effect that the output of the event data is permitted in response to the request, the transfer unit 85 outputs the event data to the output unit 34.
 <電流電圧変換部81の構成例>
 図6は、図5の電流電圧変換部81の構成例を示す回路図である。
<Configuration example of current-voltage converter 81>
FIG. 6 is a circuit diagram showing a configuration example of the current-voltage conversion unit 81 of FIG.
 電流電圧変換部81は、トランジスタ91ないし93で構成される。トランジスタ91及び93としては、例えば、N型のMOS FETを採用することができ、トランジスタ92としては、例えば、P型のMOS FETを採用することができる。 The current-voltage conversion unit 81 is composed of transistors 91 to 93. As the transistors 91 and 93, for example, an N-type MOS FET can be adopted, and as the transistor 92, for example, a P-type MOS FET can be adopted.
 トランジスタ91のソースは、トランジスタ93のゲートと接続され、トランジスタ91のソースとトランジスタ93のゲートとの接続点には、画素51からの光電流が供給される。トランジスタ91のドレインは、電源VDDに接続され、そのゲートは、トランジスタ93のドレインに接続される。 The source of the transistor 91 is connected to the gate of the transistor 93, and the photocurrent from the pixel 51 is supplied to the connection point between the source of the transistor 91 and the gate of the transistor 93. The drain of the transistor 91 is connected to the power supply VDD, and its gate is connected to the drain of the transistor 93.
 トランジスタ92のソースは、電源VDDに接続され、そのドレインは、トランジスタ91のゲートとトランジスタ93のドレインとの接続点に接続される。トランジスタ92のゲートには、所定のバイアス電圧Vbiasが印加される。バイアス電圧Vbiasによって、トランジスタ92はオン/オフし、このトランジスタ92のオン/オフにより、電流電圧変換部81の動作もオン/オフする。 The source of the transistor 92 is connected to the power supply VDD, and its drain is connected to the connection point between the gate of the transistor 91 and the drain of the transistor 93. A predetermined bias voltage Vbias is applied to the gate of the transistor 92. The transistor 92 is turned on / off by the bias voltage Vbias, and the operation of the current-voltage converter 81 is also turned on / off by turning the transistor 92 on / off.
 トランジスタ93のソースは接地される。 The source of transistor 93 is grounded.
 電流電圧変換部81において、トランジスタ91のドレインは電源VDD側に接続されており、ソースフォロアになっている。ソースフォロアになっているトランジスタ91のソースには、画素51(図4)が接続され、これにより、トランジスタ91(のドレインからソース)には、画素51の光電変換素子61で生成された電荷による光電流が流れる。トランジスタ91は、サブスレッショルド領域で動作し、トランジスタ91のゲートには、そのトランジスタ91に流れる光電流の対数に対応する光電圧が現れる。以上のように、電流電圧変換部81では、トランジスタ91により、画素51からの光電流が、その光電流の対数に対応する光電圧に変換される。 In the current-voltage conversion unit 81, the drain of the transistor 91 is connected to the power supply VDD side and serves as a source follower. A pixel 51 (FIG. 4) is connected to the source of the transistor 91 which is a source follower, whereby the electric charge generated by the photoelectric conversion element 61 of the pixel 51 is applied to the transistor 91 (from the drain to the source). Photocurrent flows. The transistor 91 operates in the subthreshold region, and an optical voltage corresponding to the logarithm of the photocurrent flowing through the transistor 91 appears at the gate of the transistor 91. As described above, in the current-voltage conversion unit 81, the transistor 91 converts the optical current from the pixel 51 into an optical voltage corresponding to the logarithm of the optical current.
 電流電圧変換部81において、トランジスタ91のゲートは、トランジスタ92のドレインとトランジスタ93のドレインとの接続点に接続されており、その接続点から、光電圧が出力される。 In the current-voltage conversion unit 81, the gate of the transistor 91 is connected to the connection point between the drain of the transistor 92 and the drain of the transistor 93, and the optical voltage is output from the connection point.
 <減算部83及び量子化部84の構成例>
 図7は、図5の減算部83及び量子化部84の構成例を示す回路図である。後述するように、画素51(PD61)からの読み出しは、差動増幅回路を用いた読み出しを行い、2画素の信号の差分を出力する構成とする場合を例に挙げて説明する。また減算部83と量子化部84にも、差動増幅回路を適用した場合を例に挙げて説明する。
<Structure example of subtraction unit 83 and quantization unit 84>
FIG. 7 is a circuit diagram showing a configuration example of the subtraction unit 83 and the quantization unit 84 of FIG. As will be described later, the reading from the pixel 51 (PD61) will be described by taking as an example a case where the reading is performed using a differential amplifier circuit and the difference between the signals of the two pixels is output. Further, a case where a differential amplifier circuit is applied to the subtraction unit 83 and the quantization unit 84 will be described as an example.
 そのような差動増幅回路が適用されている減算部83と量子化部84の説明を容易とするために、そのような適用がされていない従来の減算部83と量子化部84について、図7を参照して説明し、DVSチップ11に含まれるイベント検出部52の構成について説明を加える。 In order to facilitate the explanation of the subtraction unit 83 and the quantization unit 84 to which such a differential amplifier circuit is applied, the conventional subtraction unit 83 and the quantization unit 84 to which such a differential amplifier circuit is not applied are shown in FIG. 7 will be described, and the configuration of the event detection unit 52 included in the DVS chip 11 will be described.
 減算部83は、コンデンサ101、オペアンプ102、コンデンサ103、及び、スイッチ104を備える。量子化部84は、コンパレータ111を備える。 The subtraction unit 83 includes a capacitor 101, an operational amplifier 102, a capacitor 103, and a switch 104. The quantization unit 84 includes a comparator 111.
 コンデンサ101の一端は、バッファ82(図5)の出力端子に接続され、他端は、オペアンプ102の入力端子(反転入力端子)に接続される。したがって、オペアンプ102の入力端子には、コンデンサ101を介して光電圧が入力される。 One end of the capacitor 101 is connected to the output terminal of the buffer 82 (FIG. 5), and the other end is connected to the input terminal (inverting input terminal) of the operational amplifier 102. Therefore, the optical voltage is input to the input terminal of the operational amplifier 102 via the capacitor 101.
 オペアンプ102の出力端子は、コンパレータ111の非反転入力端子(+)に接続される。コンデンサ103の一端は、オペアンプ102の入力端子に接続され、他端は、オペアンプ102の出力端子に接続される。 The output terminal of the operational amplifier 102 is connected to the non-inverting input terminal (+) of the comparator 111. One end of the capacitor 103 is connected to the input terminal of the operational amplifier 102, and the other end is connected to the output terminal of the operational amplifier 102.
 スイッチ104は、コンデンサ103の両端の接続をオン/オフするように、コンデンサ103に接続される。スイッチ104は、リセット信号に従ってオン/オフすることにより、コンデンサ103の両端の接続をオン/オフする。 The switch 104 is connected to the capacitor 103 so as to turn on / off the connection at both ends of the capacitor 103. The switch 104 turns on / off the connection at both ends of the capacitor 103 by turning it on / off according to the reset signal.
 スイッチ104をオンにした際のコンデンサ101のバッファ82(図5)側の光電圧をVinitと表すとともに、コンデンサ101の容量(静電容量)をC1と表すこととする。オペアンプ102の入力端子は、仮想接地になっており、スイッチ104がオンである場合にコンデンサ101に蓄積される電荷Qinitは、式(1)により表される。
 Qinit = C1 ×Vinit  ・・・(1)
The optical voltage on the buffer 82 (FIG. 5) side of the capacitor 101 when the switch 104 is turned on is represented by Vinit, and the capacitance (capacitance) of the capacitor 101 is represented by C1. The input terminal of the operational amplifier 102 is virtually grounded, and the charge Qinit accumulated in the capacitor 101 when the switch 104 is on is represented by the equation (1).
Qinit = C1 × Vinit ・ ・ ・ (1)
 また、スイッチ104がオンである場合には、コンデンサ103の両端の接続はオフにされる(短絡される)ため、コンデンサ103に蓄積される電荷はゼロとなる。 Further, when the switch 104 is on, the connections at both ends of the capacitor 103 are turned off (short-circuited), so that the electric charge accumulated in the capacitor 103 becomes zero.
 その後、スイッチ104がオフになった場合の、コンデンサ101のバッファ82(図5)側の光電圧を、Vafterと表すこととすると、スイッチ104がオフになった場合にコンデンサ101に蓄積される電荷Qafterは、式(2)により表される。
 Qafter = C1×Vafter  ・・・(2)
After that, if the optical voltage on the buffer 82 (FIG. 5) side of the capacitor 101 when the switch 104 is turned off is expressed as Vafter, the electric charge stored in the capacitor 101 when the switch 104 is turned off is expressed as Vafter. Qafter is expressed by equation (2).
Qafter = C1 × Vafter ・ ・ ・ (2)
 コンデンサ103の容量をC2と表すとともに、オペアンプ102の出力電圧をVoutと表すこととすると、コンデンサ103に蓄積される電荷Q2は、式(3)により表される。
 Q2 = -C2×Vout  ・・・(3)
Assuming that the capacitance of the capacitor 103 is represented by C2 and the output voltage of the operational amplifier 102 is represented by Vout, the charge Q2 stored in the capacitor 103 is represented by the equation (3).
Q2 = -C2 × Vout ・ ・ ・ (3)
 スイッチ104がオフする前後で、コンデンサ101の電荷とコンデンサ103の電荷とを合わせた総電荷量は変化しないため、式(4)が成立する。
 Qinit = Qafter + Q2  ・・・(4)
Since the total amount of electric charges including the electric charges of the capacitor 101 and the electric charges of the capacitor 103 does not change before and after the switch 104 is turned off, the equation (4) is established.
Qinit = Qafter + Q2 ・ ・ ・ (4)
 式(4)に式(1)ないし式(3)を代入すると、式(5)が得られる。
 Vout = -(C1/C2)×(Vafter - Vinit)  ・・・(5)
By substituting the equations (1) and (3) into the equation (4), the equation (5) is obtained.
Vout =-(C1 / C2) × (Vafter --Vinit) ・ ・ ・ (5)
 式(5)によれば、減算部83では、光電圧Vafter及びVinitの減算、すなわち、光電圧VafterとVinitとの差Vafter - Vinitに対応する差信号(Vout)の算出が行われる。式(5)によれば、減算部83の減算のゲインはC1/C2となる。通常、ゲインを最大化することが望まれるため、C1を大きく、C2を小さく設計することが好ましい。一方、C2が小さすぎると、kTCノイズが増大し、ノイズ特性が悪化するおそれがあるため、C2の容量削減は、ノイズを許容することができる範囲に制限される。また、画素ブロック41ごとに減算部83を含むイベント検出部52が搭載されるため、容量C1やC2には、面積上の制約がある。これらを考慮して、容量C1及びC2の値が決定される。 According to the equation (5), the subtraction unit 83 subtracts the optical voltages Vafter and Vinit, that is, calculates the difference signal (Vout) corresponding to the difference Vafter-Vinit between the optical voltages Vafter and Vinit. According to the equation (5), the subtraction gain of the subtraction unit 83 is C1 / C2. Since it is usually desired to maximize the gain, it is preferable to design C1 to be large and C2 to be small. On the other hand, if C2 is too small, kTC noise may increase and noise characteristics may deteriorate. Therefore, the capacity reduction of C2 is limited to the range in which noise can be tolerated. Further, since the event detection unit 52 including the subtraction unit 83 is mounted on each pixel block 41, the capacitances C1 and C2 have restrictions on the area. In consideration of these, the values of the capacities C1 and C2 are determined.
 コンパレータ111は、減算部83からの差信号と、反転入力端子(-)に印加された所定の閾値(電圧)Vth(>0)とを比較することにより、差信号を量子化し、その量子化により得られる量子化値を、イベントデータとして、転送部85に出力する。 The comparator 111 quantizes the difference signal by comparing the difference signal from the subtraction unit 83 with a predetermined threshold (voltage) Vth (> 0) applied to the inverting input terminal (-), and quantizes the difference signal. The quantization value obtained by the above is output to the transfer unit 85 as event data.
 例えば、コンパレータ111は、差信号が閾値Vthを超えている場合、1を表すH(High)レベルを、イベントの発生を表すイベントデータとして出力し、差信号が閾値Vthを超えていない場合、0を表すL(Low)レベルを、イベントが発生していないことを表すイベントデータとして出力する。 For example, the comparator 111 outputs an H (High) level representing 1 when the difference signal exceeds the threshold value Vth as event data indicating the occurrence of an event, and 0 when the difference signal does not exceed the threshold value Vth. The L (Low) level representing is output as event data indicating that no event has occurred.
 転送部85は、量子化部84からのイベントデータに応じて、イベントとしての光量変化が発生したと認められる場合、すなわち、差信号(Vout)が閾値Vthより大である場合に、リクエストをアービタ33に供給し、イベントデータの出力の許可を表す応答を受け取った後に、イベントの発生を表すイベントデータ(例えば、Hレベル)を、出力部34に出力する。 The transfer unit 85 makes a request when it is recognized that a change in the amount of light as an event has occurred according to the event data from the quantization unit 84, that is, when the difference signal (Vout) is larger than the threshold value Vth. After supplying to 33 and receiving a response indicating permission to output event data, event data (for example, H level) indicating the occurrence of an event is output to the output unit 34.
 <量子化部84の他の構成例>
 図8は、図5の量子化部84の他の構成例を示すブロック図である。なお、図中、図7の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
<Other configuration examples of the quantization unit 84>
FIG. 8 is a block diagram showing another configuration example of the quantization unit 84 of FIG. In the drawings, the parts corresponding to the case of FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted as appropriate below.
 図8において、量子化部84は、コンパレータ111及び112、並びに、出力部113を有する。 In FIG. 8, the quantization unit 84 includes comparators 111 and 112, and an output unit 113.
 したがって、図8の量子化部84は、コンパレータ111を有する点で、図7の場合と共通する。但し、図8の量子化部84は、コンパレータ112及び出力部113を新たに有する点で、図7の場合と相違する。 Therefore, the quantization unit 84 of FIG. 8 is common to the case of FIG. 7 in that it has a comparator 111. However, the quantization unit 84 of FIG. 8 is different from the case of FIG. 7 in that the comparator 112 and the output unit 113 are newly provided.
 図8の量子化部84を有するイベント検出部52(図5)では、イベントの他、イベントとしての光量変化の極性も検出される。 In the event detection unit 52 (FIG. 5) having the quantization unit 84 of FIG. 8, in addition to the event, the polarity of the change in the amount of light as an event is also detected.
 図8の量子化部84では、コンパレータ111は、差信号が閾値Vthを超えている場合、1を表すHレベルを、正極性のイベントの発生を表すイベントデータとして出力し、差信号が閾値Vthを超えていない場合、0を表すLレベルを、正極性のイベントが発生していないことを表すイベントデータとして出力する。 In the quantization unit 84 of FIG. 8, when the difference signal exceeds the threshold value Vth, the comparator 111 outputs the H level representing 1 as event data indicating the occurrence of a positive event, and the difference signal is the threshold value Vth. If it does not exceed, the L level representing 0 is output as event data indicating that no positive event has occurred.
 また、図8の量子化部84では、コンパレータ112の非反転入力端子(+)には、閾値Vth'(<Vth)が供給され、コンパレータ112の反転入力端子(-)には、減算部83からの差信号が供給される。いま、説明を簡単にするため、閾値Vth'が、例えば、-Vthに等しいこととする。 Further, in the quantization unit 84 of FIG. 8, the threshold value Vth'(<Vth) is supplied to the non-inverting input terminal (+) of the comparator 112, and the subtraction unit 83 is supplied to the inverting input terminal (-) of the comparator 112. The difference signal from is supplied. Now, for the sake of simplicity, it is assumed that the threshold value Vth'is equal to, for example, -Vth.
 コンパレータ112は、減算部83からの差信号と、反転入力端子(-)に印加された閾値Vth'とを比較することにより、差信号を量子化し、その量子化により得られる量子化値を、イベントデータとして出力する。 The comparator 112 quantizes the difference signal by comparing the difference signal from the subtraction unit 83 with the threshold value Vth'applied to the inverting input terminal (-), and obtains the quantization value obtained by the quantization. Output as event data.
 例えば、コンパレータ112は、差信号が閾値Vth'より小さい場合(負の値の差信号の絶対値が閾値Vthを超えている場合)、1を表すHレベルを、負極性のイベントの発生を表すイベントデータとして出力する。また、コンパレータ112は、差信号が閾値Vth'より小さくない場合(負の値の差信号の絶対値が閾値Vthを超えていない場合)、0を表すLレベルを、負極性のイベントが発生していないことを表すイベントデータとして出力する。 For example, when the difference signal is smaller than the threshold value Vth'(when the absolute value of the negative value difference signal exceeds the threshold value Vth), the comparator 112 sets the H level representing 1 to indicate the occurrence of a negative event. Output as event data. Further, in the comparator 112, when the difference signal is not smaller than the threshold value Vth'(when the absolute value of the negative value difference signal does not exceed the threshold value Vth), a negative event occurs at the L level representing 0. It is output as event data indicating that it has not been done.
 出力部113は、コンパレータ111及び112が出力するイベントデータに応じて、正極性のイベントの発生を表すイベントデータ、負極性のイベントの発生を表すイベントデータ、又は、イベントが発生していないことを表すイベントデータを、転送部85に出力する。 The output unit 113 indicates that the event data indicating the occurrence of a positive event, the event data indicating the occurrence of a negative event, or the event has not occurred, depending on the event data output by the comparators 111 and 112. The event data to be represented is output to the transfer unit 85.
 転送部85は、量子化部84の出力部113からのイベントデータに応じて、正極性又は負極性のイベントとしての光量変化が発生したと認められる場合、リクエストをアービタ33に供給し、イベントデータの出力の許可を表す応答を受け取った後に、正極性又は負極性のイベントの発生を表すイベントデータ(1を表すHパルス、又は、-1を表すLパルス)を、出力部34に出力する。 The transfer unit 85 supplies a request to the arbiter 33 when it is recognized that a change in the amount of light as a positive or negative event has occurred according to the event data from the output unit 113 of the quantization unit 84, and the event data. After receiving the response indicating the permission of the output of, the event data (H pulse representing 1 or L pulse representing -1) indicating the occurrence of the positive or negative event is output to the output unit 34.
 量子化部84を図7の構成とした場合には、イベントの発生が正極性のみの1ビット(0または1)で出力され、図8の構成とした場合には、イベントの発生が1.5ビット(1、0、または、-1)で出力される。 When the quantization unit 84 has the configuration shown in FIG. 7, the occurrence of the event is output with 1 bit (0 or 1) having only positive electrode properties, and when the configuration shown in FIG. 8 is used, the occurrence of the event is 1. It is output in 5 bits (1, 0, or -1).
 <差分型の増幅読み出しについて>
 上記したDVSチップ11は、画素アレイ部31を含み、画素アレイ部31は、PD61が行列状に2次元配置されている。PD61を含むセンサとしては、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサがある。
<About differential amplification reading>
The above-mentioned DVS chip 11 includes a pixel array unit 31, and PD 61 is two-dimensionally arranged in a matrix in the pixel array unit 31. As a sensor including PD61, there is a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 CMOSイメージセンサでは、画素アレイ部に行列状に2次元配置された画素に、光電変換部としてのフォトダイオード(PD)と、フォトダイオードで光電変換された電子を電圧変換する浮遊拡散領域(FD:Floating Diffusion)と、浮遊拡散領域(FD)で得られる電圧をゲート入力とする増幅トランジスタを有し、この増幅トランジスタを用いたソースフォロア回路による読み出し(以下、ソースフォロア型の読み出しという)を行うのが一般的である。 In a CMOS image sensor, a photodiode (PD) as a photoelectric conversion unit and a floating diffusion region (FD:) that voltage-converts electrons photoelectrically converted by the photodiode into pixels arranged in a matrix in a pixel array. Floating Diffusion) and an amplification transistor whose gate input is the voltage obtained in the floating diffusion region (FD), and reading by a source follower circuit using this amplification transistor (hereinafter referred to as source follower type reading) is performed. Is common.
 一方で、画素は同様の構成ながら、ソース接地回路による読み出しを行う構成や、差動増幅回路による読み出し(以下、差動型の増幅読み出しという)を行う構成がある。差動型の増幅読み出しの場合、高い変換効率で信号を読み出すことができるという利点がある。 On the other hand, although the pixels have the same configuration, there are a configuration in which reading is performed by a grounded-source circuit and a configuration in which reading is performed by a differential amplifier circuit (hereinafter referred to as differential type amplification reading). In the case of differential amplification reading, there is an advantage that the signal can be read with high conversion efficiency.
 このような利点を得られる差動型の増幅読み出しをDVSチップ11に適用することで、高い変換効率で信号を読み出すことができる。DVSチップ11に、差動型の増幅読み出しを適用した場合について以下に説明を加える。 By applying the differential type amplification reading that can obtain such an advantage to the DVS chip 11, the signal can be read with high conversion efficiency. The case where the differential type amplification reading is applied to the DVS chip 11 will be described below.
 <第1の実施の形態>
 図9は、第1の実施の形態におけるDVSチップ11の構成を示す図である。図9では、DVSチップ11のうち、画素アレイ部31の構成を示す。また、第1の実施の形態における画素アレイ部31であることを示すために、画素アレイ部31aと記述する。
<First Embodiment>
FIG. 9 is a diagram showing the configuration of the DVS chip 11 in the first embodiment. FIG. 9 shows the configuration of the pixel array unit 31 of the DVS chip 11. Further, in order to show that it is the pixel array unit 31 in the first embodiment, it is described as the pixel array unit 31a.
 図9では、画素アレイ部31a内に含まれる列方向に配置されている2画素を示している。図9中、上側の画素51Sを読出画素とし、下側の画素51Rを参照画素とする。以下に説明する本実施の形態は、差動型の読出しを行う画素アレイ部31であり、読出画素と参照画素との差分を読出し、出力する構成とされている。 FIG. 9 shows two pixels arranged in the column direction included in the pixel array unit 31a. In FIG. 9, the upper pixel 51S is a read pixel, and the lower pixel 51R is a reference pixel. The present embodiment described below is a pixel array unit 31 that performs differential type reading, and is configured to read and output the difference between the read pixel and the reference pixel.
 以下に説明する差動型の読出しの場合、読出画素のトランジスタと、参照画素のトランジスタとが、差動増幅回路を構成し、読出画素のPDで検出された信号電荷に応じた電圧信号が、出力される。 In the case of the differential type reading described below, the transistor of the reading pixel and the transistor of the reference pixel form a differential amplifier circuit, and the voltage signal corresponding to the signal charge detected by the PD of the reading pixel is generated. It is output.
 また読出画素は、信号の蓄積及び読み出しの他に、参照画素に切り替え可能で、例えば画素駆動線の切り替えスイッチによって、読出画素と参照画素の画素ペアを入れ替えながら、アドレスを走査して、画素アレイ部31に、2次元配置された全有効画素を読み出すことが可能となる。 In addition to storing and reading signals, the read pixels can be switched to reference pixels. For example, the pixel drive line changeover switch scans the address while exchanging the pixel pairs of the read pixels and the reference pixels, and the pixel array. It is possible to read out all the effective pixels arranged two-dimensionally in the unit 31.
 図9に示した例では、列方向(図中縦方向)に配置されている2画素のうち一方を読出画素51Sとし、他方を参照画素51Rとした例を示している。また以下の説明では、図9に示したように、列方向に配置されている2画素を読出画素51Sと参照画素51Rに設定した場合を例に挙げて説明を続けるが、読出画素51Sと参照画素51Rは、列方向配置されている2画素に限定される記載ではない。 In the example shown in FIG. 9, one of the two pixels arranged in the column direction (vertical direction in the figure) is the read pixel 51S, and the other is the reference pixel 51R. Further, in the following description, as shown in FIG. 9, the case where the two pixels arranged in the column direction are set as the read pixel 51S and the reference pixel 51R will be described as an example, but the description will be continued with reference to the read pixel 51S. The pixel 51R is not limited to the two pixels arranged in the column direction.
 図示はしないが、行方向(横方向)に配置されている2画素のうちの一方を読出画素51Sとし、他方を参照画素51Rとした場合にも本技術を適用できる。また、読出画素51Sと参照画素51Rは、隣接していなくても良く、例えば、1画素や2画素離れた位置にある2画素であっても良い。 Although not shown, this technique can be applied even when one of the two pixels arranged in the row direction (horizontal direction) is the read pixel 51S and the other is the reference pixel 51R. Further, the read pixel 51S and the reference pixel 51R do not have to be adjacent to each other, and may be, for example, one pixel or two pixels located two pixels apart.
 また参照画素51Rは、列方向または行方向に配置されている画素に共通して用いられる参照画素として、専用に設けられている画素であっても良い。 Further, the reference pixel 51R may be a pixel provided exclusively as a reference pixel commonly used for pixels arranged in the column direction or the row direction.
 また、図10に示すように、アイドル画素51Iが設定される読み出しが行われるような場合にも本技術は適用できる。アイドル画素51Iは、読出画素51S、参照画素51Rのどちらにも設定されていない画素であり、後述する差動増幅回路を構成しない画素として設定されている画素である。 Further, as shown in FIG. 10, the present technology can be applied even when reading is performed in which the idle pixel 51I is set. The idle pixel 51I is a pixel that is not set in either the read pixel 51S or the reference pixel 51R, and is set as a pixel that does not form a differential amplifier circuit described later.
 なお、アイドル画素51Iも、読出画素51Sや参照画素51Rに設定され、画素アレイ部31に、2次元配置された全有効画素を読み出すことが可能な構成とされている。 The idle pixel 51I is also set to the read pixel 51S and the reference pixel 51R, and is configured to be able to read out all the effective pixels arranged two-dimensionally in the pixel array unit 31.
 図10を参照するに、読出画素51Sは図中上側の行に配置され、参照画素51Rは図中下側の行に配置されている。 With reference to FIG. 10, the read pixel 51S is arranged in the upper row in the figure, and the reference pixel 51R is arranged in the lower row in the figure.
 上側の行に注目すると、アイドル画素51I-1、読出画素51S-1、アイドル画素51I-2、読出画素51S-2、アイドル画素51I-3の順に配置されている。この読出画素51S-1と読出画素51S-2は、同時に信号が読み出される。 Focusing on the upper row, the idle pixel 51I-1, the read pixel 51S-1, the idle pixel 51I-2, the read pixel 51S-2, and the idle pixel 51I-3 are arranged in this order. A signal is read out from the read pixel 51S-1 and the read pixel 51S-2 at the same time.
 下側の行に注目すると、参照画素51R-1、アイドル画素51I-4、参照画素51R-2、アイドル画素51I-5、参照画素51R-3の順に配置されている。 Focusing on the lower row, the reference pixel 51R-1, the idle pixel 51I-4, the reference pixel 51R-2, the idle pixel 51I-5, and the reference pixel 51R-3 are arranged in this order.
 図10に示した場合、例えば、読出画素51S-1と参照画素51R-1がペアとされ、後述するように、読出画素51S-1と参照画素51R-1で差動増幅回路が形成され、差動型の読み出しが行われる。 In the case shown in FIG. 10, for example, the read pixel 51S-1 and the reference pixel 51R-1 are paired, and as will be described later, the read pixel 51S-1 and the reference pixel 51R-1 form a differential amplifier circuit. Differential reading is done.
 また同様に、例えば、読出画素51S-2と参照画素51R-2がペアとされ、後述するように、読出画素51S-2と参照画素51R-2で差動増幅回路が形成され、差動型の読み出しが行われる。 Similarly, for example, the read pixel 51S-2 and the reference pixel 51R-2 are paired, and as will be described later, a differential amplifier circuit is formed by the read pixel 51S-2 and the reference pixel 51R-2, and is a differential type. Is read out.
 この場合、読出画素51Sの左下側に配置されている画素が、参照画素51Rに設定される例である。このように、読出画素51Sと参照画素51Rは、異なる行であり、異なる例に配置されているようにすることも可能である。 In this case, the pixel arranged on the lower left side of the read pixel 51S is an example in which the reference pixel 51R is set. As described above, the read pixel 51S and the reference pixel 51R are in different rows, and it is possible to arrange them in different examples.
 ここでは、図9に示したように、読出画素51Sと参照画素51Rは、列(縦方向)に配置されている場合を例に挙げて説明を続ける。 Here, as shown in FIG. 9, the description will be continued by taking as an example the case where the read pixel 51S and the reference pixel 51R are arranged in a row (vertical direction).
 図9を参照した説明に戻る。図9に示した画素51Sは、PD61S、PRC(信号処理回路)311S、コンデンサ312S、スイッチ313S、NMOSトランジスタ314S、PMOSトランジスタ315S、OR回路316S、およびスイッチ317Sを備える。 Return to the explanation with reference to FIG. The pixel 51S shown in FIG. 9 includes a PD61S, a PRC (signal processing circuit) 311S, a capacitor 312S, a switch 313S, an MIMO transistor 314S, a MOSFET transistor 315S, an OR circuit 316S, and a switch 317S.
 同様に画素51Rは、PD61R、PRC311R、コンデンサ312R、スイッチ313R、NMOSトランジスタ314R、PMOSトランジスタ315R、OR回路316R、およびスイッチ317Rを備える。 Similarly, the pixel 51R includes a PD61R, a PRC311R, a capacitor 312R, a switch 313R, an MIMO transistor 314R, a MOSFET transistor 315R, an OR circuit 316R, and a switch 317R.
 画素51Sと画素51Rは、同様の構成をしているため、画素51Sを例に挙げて説明する。PD61Sは、PRC311Sと接続されている。図4を参照して説明したように、PD61からの信号は、イベント検出部52に供給される。イベント検出部52の構成は、図5を参照して説明したような構成を有し、PD61からの信号は、電流電圧変換部81に供給される。 Since the pixel 51S and the pixel 51R have the same configuration, the pixel 51S will be described as an example. The PD61S is connected to the PRC311S. As described with reference to FIG. 4, the signal from the PD 61 is supplied to the event detection unit 52. The configuration of the event detection unit 52 has a configuration as described with reference to FIG. 5, and the signal from the PD 61 is supplied to the current-voltage conversion unit 81.
 PRC311Sは、PD61Sからの信号を処理する処理回路として設けられている。PRC311Sは、イベント検出部52の電流電圧変換部81に該当し、例えば、PD61Sからの信号を電圧信号に変換する処理を実行する。PRC311は、コンデンサ312Sと接続されている。 The PRC311S is provided as a processing circuit for processing a signal from the PD61S. The PRC311S corresponds to the current-voltage conversion unit 81 of the event detection unit 52, and executes, for example, a process of converting a signal from the PD61S into a voltage signal. The PRC311 is connected to the capacitor 312S.
 コンデンサ312Sは、スイッチ313Sの一端と、NMOSトランジスタ314Sのゲートに接続されている。NMOSトランジスタ314Sのソースは、電流供給線319に接続されている。電流供給線319は、一定電流源である負荷MOS回路320に接続されている。NMOSトランジスタ314Sのドレインは、PMOSトランジスタ315Sのドレインに接続されている。 The capacitor 312S is connected to one end of the switch 313S and the gate of the NMOS transistor 314S. The source of the NMOS transistor 314S is connected to the current supply line 319. The current supply line 319 is connected to the load MOS circuit 320, which is a constant current source. The drain of the NMOS transistor 314S is connected to the drain of the MOSFET transistor 315S.
 一定電流源である負荷MOS回路320は、図9に示したように、2画素共有で設けられていても良いし、画素毎に設けられている構成としても良い。さらには、列方向で配置されている複数の画素51(2以上の画素51)で共有される構成としても良い。 As shown in FIG. 9, the load MOS circuit 320, which is a constant current source, may be provided shared by two pixels, or may be provided for each pixel. Further, the configuration may be shared by a plurality of pixels 51 (two or more pixels 51) arranged in the column direction.
 PMOSトランジスタ315Sのゲートは、参照画素である画素51R内のPMOSトランジスタ315Rのゲートと接続されている。PMOSトランジスタ315Sのソースは、電源VDD(不図示)に接続されている。 The gate of the PMOS transistor 315S is connected to the gate of the PMOS transistor 315R in the pixel 51R which is a reference pixel. The source of the epitaxial transistor 315S is connected to the power supply VDD (not shown).
 読出画素である画素51S内のPMOSトランジスタ315Sのドレインは、スイッチ318Sの一端と接続されている。スイッチ318Sの他端は、垂直信号線321に接続されている。スイッチ318Sは、画素51Sが読み出し対象の画素に設定されているとき閉じられる構成とされている。 The drain of the MIMO transistor 315S in the pixel 51S, which is the read pixel, is connected to one end of the switch 318S. The other end of the switch 318S is connected to the vertical signal line 321. The switch 318S is configured to be closed when the pixel 51S is set to the pixel to be read.
 スイッチ317Sの一端は、ACK信号線322に接続され、他端はOR回路316Sの2入力のうちの1入力側に接続されている。ACK信号線322は、アービタ33(図2)と接続されている。詳細は後述するが、ACK信号線を介して、信号ACKenが供給されたとき、スイッチ317Sは閉じられる。 One end of the switch 317S is connected to the ACK signal line 322, and the other end is connected to one of the two inputs of the OR circuit 316S. The ACK signal line 322 is connected to the arbiter 33 (FIG. 2). Although the details will be described later, the switch 317S is closed when the signal ACKen is supplied via the ACK signal line.
 図9に示した構成において、PMOSトランジスタ315SとPMOSトランジスタ315Rは、カレントミラー回路を構成している。またこのカレントミラー回路を構成するPMOSトランジスタ315SとPMOSトランジスタ315Rを含み、NMOSトランジスタ314SとNMOSトランジスタ314Rを加えた部分は、差動増幅回路を構成している。 In the configuration shown in FIG. 9, the MIMO transistor 315S and the MIMO transistor 315R form a current mirror circuit. Further, a portion including the NMOS transistor 315S and the MOSFET transistor 315R constituting the current mirror circuit and adding the NMOS transistor 314S and the NMOS transistor 314R constitutes a differential amplifier circuit.
 この場合、PMOSトランジスタ315S,315Rは、信号を読み出す側のMOSトランジスタとして機能し、NMOSトランジスタ314S,314Rは、信号を入力する側のMOSトランジスタとして機能する。 In this case, the MOSFETs 315S and 315R function as MOS transistors on the side of reading the signal, and the NMOS transistors 314S and 314R function as MOS transistors on the side of inputting the signal.
 読み出し側のMOSトランジスタを、NMOSトランジスタとし、入力側のMOSトランジスタをPMOSトランジスタとした構成であっても良い。 The MOS transistor on the read side may be an NMOS transistor, and the MOS transistor on the input side may be a MOSFET transistor.
 また、この差動増幅回路を構成するPMOSトランジスタ315S、PMOSトランジスタ315R、NMOSトランジスタ314S、およびNMOSトランジスタ314Rを含む部分は、イベント検出部52の量子化部84(図5,図7)に該当する。 Further, the portion including the MIMO transistor 315S, the MOSFET transistor 315R, the NMOS transistor 314S, and the NMOS transistor 314R constituting this differential amplifier circuit corresponds to the quantization unit 84 (FIGS. 5 and 7) of the event detection unit 52. ..
 図7を参照して説明したように、量子化部84は、減算部83からの信号、換言すれば、PD61からの信号と、所定の閾値(電圧)Vth(>0)とを比較することにより、差信号を量子化し、その量子化により得られる量子化値を、イベントデータとして、転送部85に出力する。図9に示した構成においては、所定の閾値は、参照画素である画素51Rから供給される信号である。 As described with reference to FIG. 7, the quantization unit 84 compares the signal from the subtraction unit 83, in other words, the signal from the PD61, with a predetermined threshold (voltage) Vth (> 0). The difference signal is quantized by the above method, and the quantized value obtained by the quantization is output to the transfer unit 85 as event data. In the configuration shown in FIG. 9, the predetermined threshold value is a signal supplied from the pixel 51R, which is a reference pixel.
 図9に示した画素アレイ部31aにおいては、読出画素である画素51SのNMOSトランジスタ314Sのゲート側に供給される電圧値VdiffSと、参照画素である画素51RのNMOSトランジスタ314Rのゲート側に供給される電圧値VdiffRのどちらが大きいかを表す差分値が、スイッチ318Sに供給され、垂直信号線321を介して転送部85(図5)に供給される。 In the pixel array unit 31a shown in FIG. 9, the voltage value VdiffS supplied to the gate side of the NMOS transistor 314S of the pixel 51S which is the read pixel and the voltage value VdiffS supplied to the gate side of the NMOS transistor 314R of the pixel 51R which is the reference pixel are supplied. A difference value indicating which of the voltage values VdiffR is larger is supplied to the switch 318S, and is supplied to the transfer unit 85 (FIG. 5) via the vertical signal line 321.
 電圧値VdiffSは、読出画素における光量の時間変化量を表し、電圧値VdiffSは、参照画素における光量の時間変化量を表す。画素51Sと画素51Rは、図9に示すように、異なる位置に配置されている画素である。よって、図9に示した構成は、読出画素と参照画素の光量の時間変化量を、空間差分で読み出す構成を有しているといえる。 The voltage value VdiffS represents the amount of time change in the amount of light in the read pixel, and the voltage value VdiffS represents the amount of time change in the amount of light in the reference pixel. As shown in FIG. 9, the pixel 51S and the pixel 51R are pixels arranged at different positions. Therefore, it can be said that the configuration shown in FIG. 9 has a configuration in which the amount of time change in the amount of light of the read pixel and the reference pixel is read out by a spatial difference.
 図11のタイミングチャートを参照し、図9に示した画素アレイ部31aにおける読出し動作について説明する。時刻t11において、スイッチ318Sを閉じる指示を出す信号SELaがHレベルの信号とされる。信号SELaがHレベルの信号にされることで、スイッチ318Sは閉じられ、読出画素である画素51Sから、垂直信号線321に信号が出される。 The reading operation in the pixel array unit 31a shown in FIG. 9 will be described with reference to the timing chart of FIG. At time t11, the signal SELa that gives an instruction to close the switch 318S is regarded as an H level signal. When the signal SELa is converted to an H level signal, the switch 318S is closed, and a signal is output from the pixel 51S, which is a read pixel, to the vertical signal line 321.
 垂直信号線321に印加される信号(図11中、VSLと記載した信号)は、時刻t11から徐々に大きくなり、一定の値まで達する。信号ACKは、カラム回路(不図示)が信号を受け取った時点でHレベルにされる信号である。時刻t12において、信号ACKがHレベルにされる。その後、時刻t13において、信号ACKenがHレベルにされる。この信号ACKenは、リセットの開始を示す信号である。 The signal applied to the vertical signal line 321 (the signal described as VSL in FIG. 11) gradually increases from time t11 and reaches a certain value. The signal ACK is a signal that is set to H level when the column circuit (not shown) receives the signal. At time t12, the signal ACK is set to H level. Then, at time t13, the signal ACKen is set to H level. This signal ACKen is a signal indicating the start of reset.
 信号ACKenがHレベルにされると、スイッチ313Sは閉じられ、OR回路316Sとコンデンサ312Sが接続された状態となる。スイッチ313Sは、スイッチ104(図7)と同様の役割を有し、オンの状態にされることで、コンデンサ312Sがリセットされる。このコンデンサ312Sをリセットするためのリセット信号は、グローバルなリセット信号RST Gと、信号ACKenによるリセット信号RST PaとのORの関係で生成される。 When the signal ACKen is set to H level, the switch 313S is closed and the OR circuit 316S and the capacitor 312S are connected. The switch 313S has the same role as the switch 104 (FIG. 7), and when it is turned on, the capacitor 312S is reset. The reset signal for resetting the capacitor 312S is generated by the OR relationship between the global reset signal RST G and the reset signal RST Pa by the signal ACKEN.
 垂直信号線321に印加される信号が0レベルになると、信号ACKenは、Lレベルの信号へと切り替えられる(時刻t14)。信号ACKenが、Lレベルの信号となることで、スイッチ313Sは開放される。時刻t15において、信号SELaがLレベルに切り替えられることで、スイッチ318Sが開放される。また、時刻t15において、信号ACKもLレベルに切り替えられることで、スイッチ317Sが開放される。 When the signal applied to the vertical signal line 321 reaches the 0 level, the signal ACKen is switched to the L level signal (time t14). When the signal ACKen becomes an L level signal, the switch 313S is opened. At time t15, the switch 318S is opened by switching the signal SELa to the L level. Further, at time t15, the signal ACK is also switched to the L level, so that the switch 317S is opened.
 図9に示した構成において、図11に示したタイミングチャートに基づく処理が実行されると、リセットは画素51Sと画素51Rにおいて、同期して行われることになる。 In the configuration shown in FIG. 9, when the process based on the timing chart shown in FIG. 11 is executed, the reset is performed synchronously in the pixel 51S and the pixel 51R.
 図9に示した構成によれば、回路構成を小さくすることができる。ここで比較のため、再度、図7を参照する。図7は、イベント検出部52を構成する減算部83と量子化部84の構成例を示す図であった。図7に示した構成は、画素51(画素ブロック41、図4)毎に設けられている。よって、画素51毎に、コンパレータ111を備えていることになる。画素51毎にコンパレータ111を備える構成した場合、コンパレータ111を配置するための面積が大きくなり、画素アレイ部31の小型化を妨げる一因となってしまう可能性があった。 According to the configuration shown in FIG. 9, the circuit configuration can be reduced. Here, for comparison, reference is made to FIG. 7 again. FIG. 7 is a diagram showing a configuration example of a subtraction unit 83 and a quantization unit 84 constituting the event detection unit 52. The configuration shown in FIG. 7 is provided for each pixel 51 (pixel block 41, FIG. 4). Therefore, the comparator 111 is provided for each pixel 51. When the comparator 111 is provided for each pixel 51, the area for arranging the comparator 111 becomes large, which may be one of the factors that hinder the miniaturization of the pixel array unit 31.
 図9に示した構成によれば、コンパレータ111を有さない構成とされている。図9に示した画素アレイ部31aは、コンパレータ111(量子化部84)に該当する部分は有しているが、その部分は2画素に渡って構成されている。また、図9に示した画素アレイ部31aにおいては、減算部83に該当する部分は、コンパレータ111に該当する部分に含まれている。よって、図9に示した画素アレイ部31aは、小型化できる構成である。 According to the configuration shown in FIG. 9, the configuration does not have the comparator 111. The pixel array unit 31a shown in FIG. 9 has a portion corresponding to the comparator 111 (quantization unit 84), but the portion is configured over two pixels. Further, in the pixel array unit 31a shown in FIG. 9, the portion corresponding to the subtraction unit 83 is included in the portion corresponding to the comparator 111. Therefore, the pixel array unit 31a shown in FIG. 9 has a configuration that can be miniaturized.
 また、読出画素と参照画素は隣接した画素である。すなわち、閾値電圧を供給する参照画素は、読出画素付近にあるため、閾値電圧を画素付近で生成する構成とすることができる。よって、高速な読み出しを実現することができる。また、隣接する画素を用いるため、温度特性をキャンセルでき、フリッカの影響を抑制することができる。 Also, the read pixel and the reference pixel are adjacent pixels. That is, since the reference pixel that supplies the threshold voltage is near the read pixel, the threshold voltage can be generated near the pixel. Therefore, high-speed reading can be realized. Further, since adjacent pixels are used, the temperature characteristics can be canceled and the influence of flicker can be suppressed.
 <第2の実施の形態>
 図12は、第2の実施の形態におけるDVSチップ11のうちの画素アレイ部31bの構成を示す図である。第1の実施の形態における画素アレイ部31a(図9)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Second embodiment>
FIG. 12 is a diagram showing the configuration of the pixel array portion 31b of the DVS chip 11 in the second embodiment. The same parts as those of the pixel array part 31a (FIG. 9) in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 第2の実施の形態における画素アレイ部31bは、第1の実施の形態における画素アレイ部31aと比較し、コンデンサ341S,341R、スイッチ342S,342R、およびスイッチ343S,343Rが追加された構成とされている点以外は、同様である。 The pixel array unit 31b in the second embodiment has a configuration in which capacitors 341S, 341R, switches 342S, 342R, and switches 343S, 343R are added as compared with the pixel array unit 31a in the first embodiment. It is the same except that it is.
 コンデンサ341Sは、NMOSトランジスタ314Sのゲートとドレインを接続する位置に配置されている。同じくコンデンサ341Rは、NMOSトランジスタ314Rのゲートとドレインを接続する位置に配置されている。 The capacitor 341S is arranged at a position where the gate and drain of the NMOS transistor 314S are connected. Similarly, the capacitor 341R is arranged at a position connecting the gate and drain of the NMOS transistor 314R.
 図12に示した画素アレイ部31bにおいても、上側の画素51Sを読出画素とし、下側の画素51Rを参照画素とするが、図12に示した構成では、読出画素と参照画素を入れ替えることができる構成とされている。 Also in the pixel array unit 31b shown in FIG. 12, the upper pixel 51S is used as a read pixel and the lower pixel 51R is used as a reference pixel. However, in the configuration shown in FIG. 12, the read pixel and the reference pixel can be exchanged. It is said that it can be configured.
 画素51S内には、スイッチ342Sとスイッチ343Sが配置されている。スイッチ342Sは、画素51Sを読出画素として機能させるときに閉じられるスイッチである。スイッチ343Sは、画素51Sを読出画素として機能させないときに閉じられるスイッチであり、画素51Rを参照画素として機能させるときに閉じられるスイッチである。 A switch 342S and a switch 343S are arranged in the pixel 51S. The switch 342S is a switch that is closed when the pixel 51S functions as a read pixel. The switch 343S is a switch that is closed when the pixel 51S does not function as a read pixel, and is a switch that is closed when the pixel 51R functions as a reference pixel.
 スイッチ342Sとスイッチ343Sは、一方が閉じられているときには、他方は開放されている状態となるように制御される。スイッチ342Sが閉じられているときには、読出画素としての画素51Sと参照画素としての画素51Rの差分が垂直信号線321に供給される状態にされる。スイッチ343Sが閉じられているときには、PMOSトランジスタ315Sのドレイン側にかかる電圧が、OR回路316Sの1入力側に供給される状態にされる。 Switch 342S and switch 343S are controlled so that when one is closed, the other is open. When the switch 342S is closed, the difference between the pixel 51S as the read pixel and the pixel 51R as the reference pixel is supplied to the vertical signal line 321. When the switch 343S is closed, the voltage applied to the drain side of the MIMO transistor 315S is supplied to the 1 input side of the OR circuit 316S.
 画素51R内には、スイッチ342Rとスイッチ343Rが配置されている。スイッチ342Rは、画素51Rを読出画素として機能させるときに閉じられるスイッチである。スイッチ343Rは、画素51Rを読出画素として機能させないときに閉じられるスイッチであり、画素51Sを参照画素として機能させるときに閉じられるスイッチである。 A switch 342R and a switch 343R are arranged in the pixel 51R. The switch 342R is a switch that is closed when the pixel 51R functions as a read pixel. The switch 343R is a switch that is closed when the pixel 51R is not functioned as a read pixel, and is a switch that is closed when the pixel 51S is functioned as a reference pixel.
 スイッチ342Rとスイッチ343Rは、一方が閉じられているときには、他方は開放されている状態となるように制御される。スイッチ342Rが閉じられているときには、読出画素としての画素51Rと参照画素としての画素51Sの差分が垂直信号線321に供給される状態にされる。スイッチ343Rが閉じられているときには、PMOSトランジスタ315Rのドレイン側にかかる電圧が、OR回路316Rの1入力側に供給される状態にされる。 Switch 342R and switch 343R are controlled so that when one is closed, the other is open. When the switch 342R is closed, the difference between the pixel 51R as the read pixel and the pixel 51S as the reference pixel is supplied to the vertical signal line 321. When the switch 343R is closed, the voltage applied to the drain side of the MIMO transistor 315R is supplied to one input side of the OR circuit 316R.
 スイッチ342S、スイッチ342Rは、読出画素として機能するときに閉じられるスイッチであり、一方が閉じられているとき、他方は開放されている状態となるように制御される。スイッチ343S、スイッチ343Rは、参照画素として機能するときに閉じられるスイッチであり、一方が閉じられているとき、他方は開放されている状態となるように制御される。 The switch 342S and the switch 342R are switches that are closed when they function as read pixels, and are controlled so that when one is closed, the other is open. The switch 343S and the switch 343R are switches that are closed when functioning as a reference pixel, and are controlled so that when one is closed, the other is open.
 図12では、列方向に配置されている2画素の一方を読出画素、他方を参照画素とする場合を例に挙げて説明しているため、上記したようなスイッチの制御となる。列方向に配置されている複数の画素の1つを読出画素とし、その読出画素に隣接する画素を参照画素として、順次読出画素(参照画素)を切り替えながら読出しを行う構成とすることもできる。 In FIG. 12, one of the two pixels arranged in the column direction is used as a read pixel and the other is used as a reference pixel as an example. Therefore, the switch is controlled as described above. It is also possible to use one of a plurality of pixels arranged in the column direction as a read pixel and a pixel adjacent to the read pixel as a reference pixel to perform reading while sequentially switching the read pixels (reference pixels).
 複数の画素を順次読出画素に設定し、読出しを行う場合、読出画素に設定された画素51内のスイッチ342が閉じられ、垂直信号線321と接続される。また、参照画素に設定された画素51内のスイッチ343は、閉じられ、PMOSトランジスタ315のドレイン側にかかる電圧が、OR回路316の1入力にかかる状態にされる。読出画素または参照画素に設定された画素51以外の画素51のスイッチ342とスイッチ343は、開放された状態とされる。 When a plurality of pixels are sequentially set as read pixels and read, the switch 342 in the pixel 51 set as the read pixel is closed and connected to the vertical signal line 321. Further, the switch 343 in the pixel 51 set as the reference pixel is closed, and the voltage applied to the drain side of the MIMO transistor 315 is applied to one input of the OR circuit 316. The switch 342 and the switch 343 of the pixel 51 other than the pixel 51 set as the read pixel or the reference pixel are in an open state.
 図12に示した状態は、図中上側に示した画素51Sが読出画素に設定され、図中下側に示した画素51Sが参照画素に設定されている状態を示している。このような設定の場合、画素51S内のスイッチ342Sは閉じられ、スイッチ343Sは開放されている状態である。また、画素51R内のスイッチ342Rは開放され、スイッチ343Rは閉じられている状態である。 The state shown in FIG. 12 indicates a state in which the pixel 51S shown on the upper side in the figure is set as the read pixel and the pixel 51S shown on the lower side in the figure is set as the reference pixel. In such a setting, the switch 342S in the pixel 51S is closed and the switch 343S is open. Further, the switch 342R in the pixel 51R is open, and the switch 343R is closed.
 図12に示したスイッチの状態の場合、図9に示した画素アレイ部31aの状態と同様となり、参照画素51RのPMOSトランジスタ315Rのドレインとゲート、および読出画素51SのPMOSトランジスタ315Sのゲートが接続された状態となる。よって、第1の実施の形態と同じく、読出画素と参照画素の差分が垂直信号線321に供給される構成となる。 In the case of the switch state shown in FIG. 12, the state is the same as that of the pixel array unit 31a shown in FIG. 9, and the drain and gate of the MIMO transistor 315R of the reference pixel 51R and the gate of the MIMO transistor 315S of the read pixel 51S are connected. It will be in the state of being. Therefore, as in the first embodiment, the difference between the read pixel and the reference pixel is supplied to the vertical signal line 321.
 また第1の実施の形態と同じく、差動増幅回路を構成するPMOSトランジスタ315S、PMOSトランジスタ315R、NMOSトランジスタ314S、およびNMOSトランジスタ314Rを含む部分と、スイッチ342S,342Rとスイッチ343S,343Rをさらに含む部分は、イベント検出部52の量子化部84(図5,図7)に該当する。 Further, as in the first embodiment, the portion including the MOSFET transistor 315S, the MOSFET transistor 315R, the NMOS transistor 314S, and the NMOS transistor 314R constituting the differential amplifier circuit, and the switches 342S, 342R and the switches 343S, 343R are further included. The portion corresponds to the quantization unit 84 (FIGS. 5 and 7) of the event detection unit 52.
 図12に示した第2の実施の形態における画素アレイ部31bにおいても、第1の実施の形態と同じく、読出画素である画素51SのNMOSトランジスタ314Sのゲート側に供給される電圧値VdiffSと、参照画素である画素51RのNMOSトランジスタ314Rのゲート側に供給される電圧値VdiffRのどちらが大きいかを表す差分値が、スイッチ342Sに供給され、垂直信号線321を介して転送部85(図5)に供給される。 In the pixel array unit 31b in the second embodiment shown in FIG. 12, as in the first embodiment, the voltage value VdiffS supplied to the gate side of the NMOS transistor 314S of the pixel 51S which is the read pixel and A difference value indicating which of the voltage value VdiffR supplied to the gate side of the NMOS transistor 314R of the pixel 51R, which is the reference pixel, is larger is supplied to the switch 342S and is supplied to the switch 342S via the vertical signal line 321 to the transfer unit 85 (FIG. 5). Is supplied to.
 電圧値VdiffSは、読出画素における光量の時間変化量を表し、電圧値VdiffRは、参照画素における光量の時間変化量を表す。画素51Sと画素51Rは、図12に示すように、異なる位置に配置されている画素である。よって、図12に示した構成も第1の実施の形態と同じく、読出画素と参照画素の光量の時間変化量を、空間差分で読み出す構成を有しているといえる。 The voltage value VdiffS represents the amount of time change in the amount of light in the read pixel, and the voltage value VdiffR represents the amount of time change in the amount of light in the reference pixel. As shown in FIG. 12, the pixel 51S and the pixel 51R are pixels arranged at different positions. Therefore, it can be said that the configuration shown in FIG. 12 also has a configuration in which the amount of time change in the amount of light of the read pixel and the reference pixel is read out by a spatial difference, as in the first embodiment.
 また、図12に示した構成によれば、コンパレータ111を有さない構成とされているため、画素アレイ部31bを小型化できる。 Further, according to the configuration shown in FIG. 12, since the configuration does not have the comparator 111, the pixel array unit 31b can be miniaturized.
 図13のタイミングチャートを参照し、図12に示した画素アレイ部31bにおける読出し動作について説明する。図12に示した画素アレイ部31bは、複数の画素51で同期してリセットする場合と、非同期でリセットする場合とに対応している。まず、複数の画素51で同期してリセットする場合の読出し動作について説明を加える。 The reading operation in the pixel array unit 31b shown in FIG. 12 will be described with reference to the timing chart of FIG. The pixel array unit 31b shown in FIG. 12 corresponds to a case where a plurality of pixels 51 are synchronously reset and a case where a plurality of pixels 51 are reset asynchronously. First, a description will be added to the reading operation when the plurality of pixels 51 are synchronously reset.
 信号SELaと信号ACKenは、行毎の同期信号とされている。また、信号SELaと信号ACKenは、画素51外から供給される制御信号とされている。図12には図示していないが、例えば、画素51Sの左側や右側の行方向にも、他の画素51Sが配置されている。信号SELaと信号ACKenは、行方向に配置されている画素51に対して、同タイミングで供給される信号である。 The signal SELa and the signal ACKen are synchronized signals for each line. Further, the signal SELa and the signal ACKen are control signals supplied from outside the pixel 51. Although not shown in FIG. 12, for example, other pixels 51S are arranged in the row direction on the left side or the right side of the pixel 51S. The signal SELa and the signal ACKen are signals supplied at the same timing to the pixels 51 arranged in the row direction.
 信号SELaは、読出し有効信号であり、Hレベルにされると、スイッチ342がオンの状態にされ、垂直信号線321に信号が出される状態にされる。この信号SELaは、時刻t21から時刻t24の間、Hレベルとされ、その間、スイッチ342、例えば、図12におけるスイッチ342Sは閉じられた状態とされる。 The signal SELa is a read valid signal, and when it is set to H level, the switch 342 is turned on and a signal is output to the vertical signal line 321. This signal SELa is set to H level from time t21 to time t24, during which the switch 342, for example, the switch 342S in FIG. 12 is closed.
 時刻t22において、信号ACKenがHレベルにされると、それまで垂直信号線321に供給されていた信号(以下、VSL信号と記述する)が、OR回路316Sの一方の入力に伝搬される。OR回路316SにVSL信号が伝搬されると、グローバルなリセット信号RST GとORの関係でリセット信号が、OR回路316Sで生成され、出力される。このリセット信号を有効とすることで、すなわちこの場合、スイッチ313SをOR回路316Sの出力側と接続することで、画素51SのVdiffsがリセットされる。 When the signal ACKen is set to H level at time t22, the signal previously supplied to the vertical signal line 321 (hereinafter referred to as VSL signal) is propagated to one input of the OR circuit 316S. When the VSL signal is propagated to the OR circuit 316S, a reset signal is generated and output by the OR circuit 316S in relation to the global reset signal RST G and OR. By enabling this reset signal, that is, in this case, by connecting the switch 313S to the output side of the OR circuit 316S, the Vdiffs of the pixel 51S are reset.
 このような読出し動作が繰り返し行われることで、各画素51から信号が読み出される。 By repeating such a reading operation, a signal is read from each pixel 51.
 次に複数の画素51において、非同期でリセットする場合の読出し動作について説明を加える。非同期でリセットする場合も、タイミングチャートとしては、図11に示したタイミングチャートとなる。 Next, a description will be added to the reading operation when resetting asynchronously in a plurality of pixels 51. Even when resetting asynchronously, the timing chart is the timing chart shown in FIG.
 信号SELaは、行毎の同期信号とされている。また、信号SELaは、画素51外から供給される制御信号とされている。非同期のリセットの場合、信号ACKenは、画素51内から供給される制御信号とされている。 The signal SELa is a synchronization signal for each line. Further, the signal SELa is a control signal supplied from outside the pixel 51. In the case of asynchronous reset, the signal ACKen is a control signal supplied from within the pixel 51.
 信号SELaは、上記した場合と同じく、時刻t21から時刻t24の間、Hレベルとされ、その間、スイッチ342、例えば、図12におけるスイッチ342Sが閉じられた状態とされる。スイッチ342Sが閉じられることで、垂直信号線321にVSL信号が供給される。 The signal SELa is set to the H level from the time t21 to the time t24 as in the above case, and the switch 342, for example, the switch 342S in FIG. 12 is closed during that time. When the switch 342S is closed, the VSL signal is supplied to the vertical signal line 321.
 画素アレイ部31b外に設けられているカラム回路(不図示)は、VSL信号の供給を受けると信号ACKenを生成する。具体的には、VSL信号がHighとして読み出されたカラムに対してのみ信号ACKenはHレベルにされる。VSL信号がHighとして読み出されないカラムに対しては、信号ACKenは、Lレベルのままとされる。 A column circuit (not shown) provided outside the pixel array unit 31b generates a signal ACKen when a VSL signal is supplied. Specifically, the signal ACKen is set to H level only for the column in which the VSL signal is read as High. For columns where the VSL signal is not read as High, the signal ACKen remains at L level.
 このように信号ACKenが制御されることで、VSL信号がHighの画素51、換言すれば輝度の変化があった画素51のみを、信号ACKenによる制御対象とすることができる。Hレベルの信号ACKenの供給を受けた画素51Sにおいては、VSL信号が、OR回路316Sのリセット信号RST Paとして伝搬される状態となる。 By controlling the signal ACKen in this way, only the pixel 51 whose VSL signal is High, in other words, the pixel 51 whose brightness has changed, can be controlled by the signal ACKen. In the pixel 51S supplied with the H-level signal ACKen, the VSL signal is propagated as the reset signal RSTPa of the OR circuit 316S.
 この後の動作は上記した場合と同様である。このように、信号ACKenをVSL信号がHighの画素51のみに供給されるようにすることで、輝度変化のあった画素51のみを対象としたリセットを行うことができる。 The operation after this is the same as the above case. In this way, by making the signal ACKen supplied only to the pixel 51 in which the VSL signal is high, it is possible to reset only the pixel 51 in which the brightness has changed.
 なお、上記および以下に説明する実施の形態において、グローバルなリセット信号RST Gは、一例であり、必須の構成ではない。 Note that, in the above and the embodiments described below, the global reset signal RST G is an example and is not an essential configuration.
 第2の実施の形態における画素アレイ部31bも、小型化できる。また、第1の実施の形態と同じく、閾値電圧を供給する参照画素は、読出画素付近にあるため、閾値電圧を画素付近で生成する構成とすることができる。よって、高速な読み出しを実現することができる。また、隣接する画素を用いるため、温度特性をキャンセルでき、フリッカの影響を抑制することができる。このような効果は、以下に説明する第3乃至第15の実施の形態においても同様に期待できる効果である。 The pixel array unit 31b in the second embodiment can also be miniaturized. Further, as in the first embodiment, since the reference pixel that supplies the threshold voltage is in the vicinity of the read pixel, the threshold voltage can be generated in the vicinity of the pixel. Therefore, high-speed reading can be realized. Further, since adjacent pixels are used, the temperature characteristics can be canceled and the influence of flicker can be suppressed. Such an effect is also an effect that can be expected in the third to fifteenth embodiments described below.
 <第3の実施の形態>
 図14は、第3の実施の形態におけるDVSチップ11のうちの画素アレイ部31cの構成を示す図である。第3の実施の形態における画素アレイ部31cの構成のうち、第2の実施の形態における画素アレイ部31b(図12)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Third embodiment>
FIG. 14 is a diagram showing the configuration of the pixel array unit 31c of the DVS chip 11 according to the third embodiment. Of the configurations of the pixel array unit 31c in the third embodiment, the same parts as the pixel array unit 31b (FIG. 12) in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate. To do.
 第3の実施の形態における画素アレイ部31cは、第2の実施の形態における画素アレイ部31bと比較し、共有量子化部361が追加された構成とされている点が異なり、他の点は同様である。 The pixel array unit 31c in the third embodiment is different from the pixel array unit 31b in the second embodiment in that the shared quantization unit 361 is added, and the other points are different. The same is true.
 共有量子化部361は、画素51と垂直信号線321cとの間に設けられる。すなわち、第3の実施の形態における画素アレイ部31cは、画素51から読み出された信号は、共有量子化部361を介して、垂直信号線321cに供給される構造となっている。 The shared quantization unit 361 is provided between the pixel 51 and the vertical signal line 321c. That is, the pixel array unit 31c in the third embodiment has a structure in which the signal read from the pixel 51 is supplied to the vertical signal line 321c via the shared quantization unit 361.
 共有量子化部361は、PMOSトランジスタ371、NMOSトランジスタ372、およびスイッチ373を備える構成とされている。画素51から読み出された信号は、共有量子化部361のPMOSトランジスタ371のゲートに供給される構成とされている。PMOSトランジスタ371のドレインは、スイッチ373の一端と、NMOSトランジスタ372のドレインに接続されている。 The shared quantization unit 361 is configured to include a MOSFET transistor 371, an MIMO transistor 372, and a switch 373. The signal read from the pixel 51 is supplied to the gate of the MIMO transistor 371 of the shared quantization unit 361. The drain of the epitaxial transistor 371 is connected to one end of the switch 373 and the drain of the NMOS transistor 372.
 スイッチ373は、画素51Sが読出画素に設定されているとき、および画素51Rが読出画素に設定されているときに、閉じられ、垂直信号線321Cと接続される構成とされている。 The switch 373 is closed and connected to the vertical signal line 321C when the pixel 51S is set as the read pixel and when the pixel 51R is set as the read pixel.
 NMOSトランジスタ372のゲートには、信号Vonと信号Voffが時分割に切り替えられて供給される。信号Vonと信号Voffは、図8を参照した説明において、閾値Vthと閾値Vth’に該当する。ここでは、信号Vonは、閾値Vthに該当し、信号Voffは、と閾値Vth’に該当するとして説明を続ける。 The signal Von and the signal Voff are time-division-switched and supplied to the gate of the NMOS transistor 372. The signal Von and the signal Voff correspond to the threshold value Vth and the threshold value Vth'in the description with reference to FIG. Here, the description will be continued assuming that the signal Von corresponds to the threshold value Vth and the signal Voff corresponds to the threshold value Vth'.
 共有量子化部361を設けることで、イベントの他、イベントとしての光量変化の極性も検出できる構成となる。 By providing the shared quantization unit 361, it is possible to detect not only the event but also the polarity of the change in the amount of light as an event.
 図8の量子化部84と同じく、共有量子化部361は、画素51側から供給される差信号が、時分割で供給される信号Vonよりも大きい場合、Hレベルを、正極性のイベントの発生を表すイベントデータとして出力し、差信号が信号Vonより大きくない場合、0を表すLレベルを、正極性のイベントが発生していないことを表すイベントデータとして出力する。 Similar to the quantization unit 84 of FIG. 8, the shared quantization unit 361 sets the H level to the positive event when the difference signal supplied from the pixel 51 side is larger than the signal Von supplied in the time division. It is output as event data indicating occurrence, and when the difference signal is not larger than the signal Von, the L level representing 0 is output as event data indicating that a positive event has not occurred.
 また共有量子化部361は、差信号が信号Voffより小さい場合(負の値の差信号の絶対値が信号Voffより大きい場合)、1を表すHレベルを、負極性のイベントの発生を表すイベントデータとして出力する。また、共有量子化部361は、差信号が信号Voffより小さくない場合(負の値の差信号の絶対値が信号Voffより大きくない場合)、0を表すLレベルを、負極性のイベントが発生していないことを表すイベントデータとして出力する。 Further, the shared quantization unit 361 sets the H level representing 1 when the difference signal is smaller than the signal Voff (when the absolute value of the negative value difference signal is larger than the signal Voff), and sets the event indicating the occurrence of a negative event. Output as data. Further, when the difference signal is not smaller than the signal Voff (when the absolute value of the negative value difference signal is not larger than the signal Voff), the shared quantization unit 361 generates a negative event at the L level representing 0. Output as event data indicating that it has not been done.
 このように、共有量子化部361を設けることで、正極性のイベントの発生を表すイベントデータ、負極性のイベントの発生を表すイベントデータ、又は、イベントが発生していないことを表すイベントデータを、転送部85に出力する構成とすることができる。 By providing the shared quantization unit 361 in this way, event data indicating the occurrence of a positive event, event data indicating the occurrence of a negative event, or event data indicating that no event has occurred can be obtained. , It can be configured to output to the transfer unit 85.
 図14に示した画素アレイ部31cにおいては、差動増幅回路を構成するPMOSトランジスタ315S、PMOSトランジスタ315R、NMOSトランジスタ314S、およびNMOSトランジスタ314Rを含む部分と、スイッチ342S,342Rとスイッチ343S,343Rをさらに含む部分は、イベント検出部52の減算部83(図5,図8)に該当し、共有量子化部361は、量子化部84(図5,図8)に該当する。 In the pixel array unit 31c shown in FIG. 14, a portion including a MOSFET transistor 315S, a MOSFET transistor 315R, an NMOS transistor 314S, and an NMOS transistor 314R constituting a differential amplifier circuit, switches 342S, 342R, and switches 343S, 343R are included. The portion further included corresponds to the subtraction unit 83 (FIGS. 5 and 8) of the event detection unit 52, and the shared quantization unit 361 corresponds to the quantization unit 84 (FIGS. 5 and 8).
 図14に示した共有量子化部361は、画素51Sと画素51Rの2画素で共有される量子化部として記載しているが、2以上の画素で共有される量子化部として設けることも可能である。共有量子化部361を、複数(n個とする)の画素51で共有される量子化部として設けた場合、n個の画素51が読出画素に設定されているときには、スイッチ373は閉じられているように制御される。 Although the shared quantization unit 361 shown in FIG. 14 is described as a quantization unit shared by two pixels of the pixel 51S and the pixel 51R, it can also be provided as a quantization unit shared by two or more pixels. Is. When the shared quantization unit 361 is provided as a quantization unit shared by a plurality of (n) pixels 51, the switch 373 is closed when the n pixels 51 are set as the read pixels. It is controlled to be.
 第3の実施の形態においても、画素アレイ部31cを小型化することが可能である。第3の実施の形態における画素アレイ部31cは、共有量子化部361を備えるが、2画素以上の画素に共通して設けられるため、1画素毎に設ける場合よりも少ない個数となる。よって、共有量子化部361を備える構成とした場合であっても、画素アレイ部31cを小型化できる。 Also in the third embodiment, the pixel array unit 31c can be miniaturized. The pixel array unit 31c in the third embodiment includes the shared quantization unit 361, but since it is provided in common for pixels of two or more pixels, the number is smaller than that in the case where it is provided for each pixel. Therefore, even in the case of the configuration including the shared quantization unit 361, the pixel array unit 31c can be miniaturized.
 <第4の実施の形態>
 図15は、第4の実施の形態におけるDVSチップ11のうちの画素アレイ部31dの構成を示す図である。第2の実施の形態における画素アレイ部31b(図12)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Fourth Embodiment>
FIG. 15 is a diagram showing the configuration of the pixel array unit 31d of the DVS chip 11 according to the fourth embodiment. The same parts as those of the pixel array part 31b (FIG. 12) in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 第1乃至第3の実施の形態では、列方向に配置されている2画素に注目した構成であったが、第4の実施の形態では、さらに行方向に配置されている画素にも注目した構成である。 In the first to third embodiments, the configuration focuses on the two pixels arranged in the column direction, but in the fourth embodiment, the pixels further arranged in the row direction are also focused on. It is a composition.
 図15では、画素アレイ部31dに配置されている2×2の4画素を図示している。図中、左側に示した画素51S-1と画素51R-1は、図14に示した画素51Sと画素51Rに該当するとする。この画素51S-1の図中右隣の画素を51S-2とし、画素51R-1の図中右隣の画素を51R-2とする。この場合、画素51S-1と画素51S-2が読出画素として設定され、画素51R-1と画素51R-2が参照画素として設定されている状態である。 FIG. 15 illustrates 2 × 2 4 pixels arranged in the pixel array unit 31d. In the figure, the pixel 51S-1 and the pixel 51R-1 shown on the left side correspond to the pixel 51S and the pixel 51R shown in FIG. The pixel on the right side of the pixel 51S-1 in the figure is referred to as 51S-2, and the pixel on the right side of the pixel 51R-1 in the figure is referred to as 51R-2. In this case, the pixel 51S-1 and the pixel 51S-2 are set as read pixels, and the pixel 51R-1 and the pixel 51R-2 are set as reference pixels.
 図15では、説明の都合上、図中右側に示した画素51S-2と画素51R-2は、構成を一部省略して記載してあるが、図中左側に示した画素51S-1と画素51R-1と同様の構成とされている。以下の説明においても、一部省略して図示してあるが、画素アレイ部31内の画素51は、基本的に同一の構成とされている。 In FIG. 15, for convenience of explanation, the pixels 51S-2 and 51R-2 shown on the right side of the figure are described with some configurations omitted, but are described as the pixels 51S-1 shown on the left side of the figure. It has the same configuration as the pixel 51R-1. Although some of them are omitted in the following description, the pixels 51 in the pixel array unit 31 have basically the same configuration.
 第4の実施の形態における画素アレイ部31dの画素51は、第2の実施の形態における画素アレイ部31bの画素51と同様の構成であるが、隣接する画素と接続されている点が異なる。図15に示した例では、参照画素同士が接続されている。以下、横方向に配置されている参照画素同士を接続する構成を、適宜、横繋ぎの構成と記述する。 The pixel 51 of the pixel array unit 31d in the fourth embodiment has the same configuration as the pixel 51 of the pixel array unit 31b in the second embodiment, except that it is connected to adjacent pixels. In the example shown in FIG. 15, the reference pixels are connected to each other. Hereinafter, a configuration in which reference pixels arranged in the horizontal direction are connected to each other will be appropriately described as a horizontal connection configuration.
 第1乃至第3の実施の形態と同じく、第4の実施の形態においても読出画素と参照画素は接続されている。具体的には画素51S-1のPMOSトランジスタ315S-1のゲートと、画素51R-1のPMOSトランジスタ315R-1のゲートは接続されている。また、画素51S-2のPMOSトランジスタ315S-2のゲートと、画素51R-2のPMOSトランジスタ315R-2のゲートも接続されている。 Similar to the first to third embodiments, the read pixel and the reference pixel are connected in the fourth embodiment. Specifically, the gate of the PMOS transistor 315S-1 of the pixel 51S-1 and the gate of the PMOS transistor 315R-1 of the pixel 51R-1 are connected. Further, the gate of the PMOS transistor 315S-2 of the pixel 51S-2 and the gate of the PMOS transistor 315R-2 of the pixel 51R-2 are also connected.
 さらに、参照画素に設定されている画素51R-1のPMOSトランジスタ315R-1のゲートと画素51R-2のPMOSトランジスタ315R-2のゲートも接続されている。よって、図15に示した画素51S-1、画素51R-1、画素51R-2、および画素51S-2は、それぞれに含まれるPMOSトランジスタ315のゲートが接続された状態とされている。 Further, the gate of the PMOS transistor 315R-1 of the pixel 51R-1 set as the reference pixel and the gate of the PMOS transistor 315R-2 of the pixel 51R-2 are also connected. Therefore, the pixel 51S-1, the pixel 51R-1, the pixel 51R-2, and the pixel 51S-2 shown in FIG. 15 are in a state in which the gate of the MIMO transistor 315 included in each is connected.
 このような接続は、カレントミラー回路を横繋ぎした構成ともいえる。すなわち、画素51S-1のPMOSトランジスタ315S-1と、画素51R-1のPMOSトランジスタ315R-1が接続されていることで、カレントミラー回路が構成されている。また、画素51S-2のPMOSトランジスタ315S-2と、画素51R-2のPMOSトランジスタ315R-2が接続されていることで、カレントミラー回路が構成されている。そして、この2つのカレントミラー回路は、横繋ぎで接続されている。 Such a connection can be said to be a configuration in which the current mirror circuit is connected horizontally. That is, the current mirror circuit is configured by connecting the PMOS transistor 315S-1 of the pixel 51S-1 and the PMOS transistor 315R-1 of the pixel 51R-1. Further, the current mirror circuit is configured by connecting the PMOS transistor 315S-2 of the pixel 51S-2 and the PMOS transistor 315R-2 of the pixel 51R-2. The two current mirror circuits are connected horizontally.
 このように、参照画素同士を接続することで、信号電圧と同じ回路で参照電圧を生成することができ、温度特性をキャンセルする構成とすることができる。また、フリッカの影響を画素回路の中でキャンセルすることができる構成とすることができる。よって、ノイズを低減した読み出しを行うことができる。 By connecting the reference pixels in this way, the reference voltage can be generated by the same circuit as the signal voltage, and the temperature characteristic can be canceled. Further, the influence of the flicker can be canceled in the pixel circuit. Therefore, it is possible to perform reading with reduced noise.
 なお、参照画素は読出画素に順次設定されることで、読み出しが行われる構成とした場合、図15に示すように、行方向(図中横方向)に設けられた画素51間にスイッチ391を設けた構成としても良い。例えば、図15に示した構成においては、画素51R-1と画素51R-2の間にスイッチ391が設けられている。このスイッチ391は、参照画素に設定された画素51同士を接続するスイッチとして設けられている。換言すれば、参照画素以外に設定されているときには、開放されるスイッチとして設けられている。 When the reference pixels are sequentially set to the reading pixels so that the reading is performed, as shown in FIG. 15, the switch 391 is set between the pixels 51 provided in the row direction (horizontal direction in the drawing). It may be provided as a configuration. For example, in the configuration shown in FIG. 15, a switch 391 is provided between the pixel 51R-1 and the pixel 51R-2. The switch 391 is provided as a switch for connecting the pixels 51 set as the reference pixels. In other words, it is provided as a switch that is opened when it is set to a pixel other than the reference pixel.
 横方向に配置されている参照画素51Rを接続した横繋ぎの構成を適用した場合、読出画素51Sと参照画素51Rの関係の一例としては、図16に示すような関係がある。図16は、1つの読出画素51S-1に対して、複数の参照画素51Rが対応付けられた場合を示している。 When a horizontally connected configuration in which reference pixels 51R arranged in the horizontal direction are connected is applied, there is a relationship as shown in FIG. 16 as an example of the relationship between the read pixel 51S and the reference pixel 51R. FIG. 16 shows a case where a plurality of reference pixels 51R are associated with one read pixel 51S-1.
 読み出し行に設定された図中上側の行は、読出画素51S-1以外の画素は、アイドル画素51Iに設定されている。参照行に設定された図中下側の行は、横繋ぎ構成のため、参照画素51R-1乃至51R-5が接続された状態とされている。 In the upper row in the figure set as the read row, the pixels other than the read pixel 51S-1 are set to the idle pixel 51I. The lower row in the figure set as the reference row is in a state where the reference pixels 51R-1 to 51R-5 are connected because of the horizontally connected configuration.
 読み出し行に設定されている行に位置するアイドル画素51Iは、順次、読出画素51Sに設定され、横繋ぎされている参照画素51R-1乃至51R-5からの信号との差分が算出される。 The idle pixel 51I located in the row set in the read row is sequentially set in the read pixel 51S, and the difference from the signals from the horizontally connected reference pixels 51R-1 to 51R-5 is calculated.
 なお、図16では、読み出し行に設定された行内に、1つの読出画素51Sが設定される場合を示したが、図17に示すように、複数の画素が、読出画素51Sに設定され、同時に信号が読み出されるように構成することもできる。 Note that FIG. 16 shows a case where one read pixel 51S is set in the line set as the read line, but as shown in FIG. 17, a plurality of pixels are set in the read pixel 51S and simultaneously. It can also be configured so that the signal is read out.
 図17は、横繋ぎ構成とした場合の、読出画素51Sと参照画素51Rの他の関係の一例を示す図である。また、図17に示した例は、読み出し行に設定された行内に、複数の読出画素51Sが設定された場合の例である。 FIG. 17 is a diagram showing an example of another relationship between the read pixel 51S and the reference pixel 51R in the case of the horizontally connected configuration. Further, the example shown in FIG. 17 is an example in which a plurality of read pixels 51S are set in the line set in the read line.
 図17に示した例は、読み出し行に設定された行内の画素全てを、読み出し画素として設定した場合を示している。図17では、読み出し画素として、読出画素51S-1乃至51S-5が設定されている。 The example shown in FIG. 17 shows a case where all the pixels in the row set in the read row are set as the read pixels. In FIG. 17, read pixels 51S-1 to 51S-5 are set as read pixels.
 図17に示した例において、参照画素は、図16に示した例と同じく、参照画素の行として設定された行内の全ての画素が横繋ぎ構成で接続されている場合を示している。 In the example shown in FIG. 17, the reference pixel shows a case where all the pixels in the row set as the row of the reference pixel are connected in a horizontally connected configuration, as in the example shown in FIG.
 このように、複数の読出画素51Sを設定し、横繋ぎされた参照画像51Rとの差分が、同時にそれぞれの読出画素51Sで算出され、出力されるように構成することもできる。 In this way, a plurality of read pixels 51S can be set, and the difference from the horizontally connected reference image 51R can be simultaneously calculated and output by each read pixel 51S.
 また、図18に示すように、参照画素51Rは、参照画素の行に設定された行内の全ての画素を接続するのではなく、所定の画素数だけ離れた位置にある参照画素同士を接続する構成とすることもできる。 Further, as shown in FIG. 18, the reference pixel 51R does not connect all the pixels in the row set in the row of the reference pixels, but connects the reference pixels located at positions separated by a predetermined number of pixels. It can also be configured.
 図18に示した例では、図中下側に示した参照画素の行に設定された行内のうち、参照画素51R-1、参照画素51R-2、および参照画素51R-3が設定され、その間の画素は、アイドル画素51I-4とアイドル画素51I―5に設定されている。 In the example shown in FIG. 18, among the rows set in the row of the reference pixel shown on the lower side in the figure, the reference pixel 51R-1, the reference pixel 51R-2, and the reference pixel 51R-3 are set, and the reference pixel 51R-3 is set between them. Pixels are set to idle pixels 51I-4 and idle pixels 51I-5.
 図18に示した例では、参照画素51R-1乃至51R-3が横繋ぎで接続されている。次のタイミングでは、アイドル画素51I-4とアイドル画素51I-5が、参照画素51Rに設定され、横繋ぎ接続される。 In the example shown in FIG. 18, the reference pixels 51R-1 to 51R-3 are connected horizontally. At the next timing, the idle pixel 51I-4 and the idle pixel 51I-5 are set to the reference pixel 51R and are connected horizontally.
 図18では、読み出し画素の行に設定された行内のうち、読出画素51S-1と読出画素51S-2が設定され、その間の画素は、アイドル画素51I-1乃至51I-3に設定されている。 In FIG. 18, among the rows set in the row of the read pixels, the read pixels 51S-1 and the read pixels 51S-2 are set, and the pixels in between are set to the idle pixels 51I-1 to 51I-3. ..
 読出画素51S-1と読出画素51S-2は、横繋ぎに接続されている参照画素51R-1乃至51R-3からの信号を参照信号とした差分を、それぞれ算出し、同時に出力する。 The read pixel 51S-1 and the read pixel 51S-2 calculate the difference using the signals from the reference pixels 51R-1 to 51R-3 connected horizontally as reference signals, and output them at the same time.
 このように、参照画素51Rを横繋ぎ構成とした場合、読出画素51Sと参照画素51Rは、1対多の関係で読み出しが行われる。 In this way, when the reference pixel 51R is horizontally connected, the read pixel 51S and the reference pixel 51R are read in a one-to-many relationship.
 さらに、図19に示すように、参照画素51Rは、複数の行に配置されていても良い。 Further, as shown in FIG. 19, the reference pixels 51R may be arranged in a plurality of rows.
 図19では、読み出し行に設定された行内のうち、読出画素51S-1、読出画素51S-2、読出画素51S-3、および読出画素51S-4が設定され、その間の画素は、アイドル画素51I-1乃至51I-4に設定されている。 In FIG. 19, among the rows set in the read row, the read pixel 51S-1, the read pixel 51S-2, the read pixel 51S-3, and the read pixel 51S-4 are set, and the pixels in between are the idle pixels 51I. It is set to -1 to 51I-4.
 読み出し行の次の行(図中中段)は、参照画素の行に設定され、その行内のうち、参照画素51R-1と参照画素51R-2が設定され、その間の画素は、アイドル画素51I-5乃至51I-10に設定されている。 The line next to the read line (middle in the figure) is set to the line of the reference pixel, and the reference pixel 51R-1 and the reference pixel 51R-2 are set in the line, and the pixel in between is the idle pixel 51I-. It is set to 5 to 51I-10.
 さらに、参照画素の行の次の行(図中下段)も、参照画素の行に設定され、その行内のうち、参照画素51R-3と参照画素51R-4が設定され、その間の画素は、アイドル画素51I-11乃至51I-16に設定されている。 Further, the line next to the line of the reference pixel (lower row in the figure) is also set to the line of the reference pixel, and the reference pixel 51R-3 and the reference pixel 51R-4 are set in the line, and the pixels in between are set. It is set to idle pixels 51I-11 to 51I-16.
 複数行(この場合2行)にわたって配置されている参照画素51R-1乃至51R-4は、横繋ぎ構成により接続されている。ここでは、横繋ぎ構成と記述しているが、行方向(横方向)に配置されている画素だけでなく、列方向(縦方向)に配置されている画素も接続される構成とすることができる。 Reference pixels 51R-1 to 51R-4 arranged over a plurality of lines (two lines in this case) are connected by a horizontally connected configuration. Here, although it is described as a horizontally connected configuration, it is possible to connect not only the pixels arranged in the row direction (horizontal direction) but also the pixels arranged in the column direction (vertical direction). it can.
 ここでは、図19に示したように、2行にわたって配置されている参照画素51R-1乃至51R-4が接続されている場合を例に挙げて説明しているが、2以上の行にわたって配置されている参照画素51Rが接続される構成とすることもできる。 Here, as shown in FIG. 19, the case where the reference pixels 51R-1 to 51R-4 arranged over two rows are connected is described as an example, but the reference pixels 51R-1 to 51R-4 are arranged over two or more rows. It is also possible to configure the reference pixel 51R to be connected.
 読出画素51S-1と読出画素51S-2は、接続されている参照画素51R-1乃至51R-4からの信号を参照信号とした差分を、それぞれ算出し、同時に出力する。 The read pixel 51S-1 and the read pixel 51S-2 calculate the difference using the signals from the connected reference pixels 51R-1 to 51R-4 as reference signals, and output them at the same time.
 第4の実施の形態においても、画素アレイ部31dの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 Also in the fourth embodiment, the configuration of the pixel array unit 31d can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 図15に示した第4の実施の形態における画素アレイ部31dは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図20に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31d in the fourth embodiment shown in FIG. 15 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 20, a configuration in which current sources are connected horizontally may be used.
 図20に示した画素アレイ部31dは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31d shown in FIG. 20 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第5の実施の形態>
 図21は、第5の実施の形態におけるDVSチップ11のうちの画素アレイ部31eの構成を示す図である。第3の実施の形態における画素アレイ部31c(図14)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Fifth Embodiment>
FIG. 21 is a diagram showing the configuration of the pixel array unit 31e of the DVS chip 11 according to the fifth embodiment. The same parts as those of the pixel array part 31c (FIG. 14) in the third embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図21を参照して説明した第4の実施の形態における画素アレイ部31dは、第2の実施の形態における画素アレイ部31b(図12)に対して横方向(行方向)に配置されている参照画素を接続する構成(横繋ぎの構成)であった。このような横繋ぎの構成は、第3の実施の形態における画素アレイ部31cに対しても適用できる。 The pixel array unit 31d in the fourth embodiment described with reference to FIG. 21 is arranged in the lateral direction (row direction) with respect to the pixel array unit 31b (FIG. 12) in the second embodiment. It was a configuration in which reference pixels were connected (horizontal connection configuration). Such a horizontal connection configuration can also be applied to the pixel array unit 31c in the third embodiment.
 図21に示した第5の実施の形態における画素アレイ部31eは、第3の実施の形態における画素アレイ部31cに対して横繋ぎの構成を適用した構成とされている。すなわち、共有量子化部361eが、読出画素間および参照画素間に設けられた構成とされている。 The pixel array unit 31e in the fifth embodiment shown in FIG. 21 has a configuration in which a horizontally connected configuration is applied to the pixel array unit 31c in the third embodiment. That is, the shared quantization unit 361e is provided between the read pixels and the reference pixels.
 共有量子化部361eは、図14に示した共有量子化部361と同様の構成を有し、読出画素と参照画素の差分として出力された信号と、閾値信号Vonまたは閾値信号VOFFを比較した結果を、垂直信号線321cに出力する構成とされている。また、第4の実施の形態の画素アレイ部31dと同じく、画素51S-1、画素51R-1、画素51R-2、および画素51S-2は、それぞれに含まれるPMOSトランジスタ315のゲートが接続された状態とされている。 The shared quantization unit 361e has the same configuration as the shared quantization unit 361 shown in FIG. 14, and is a result of comparing the signal output as the difference between the read pixel and the reference pixel with the threshold signal Von or the threshold signal VOFF. Is output to the vertical signal line 321c. Further, similarly to the pixel array unit 31d of the fourth embodiment, the gate of the PMOS transistor 315 included in each of the pixel 51S-1, the pixel 51R-1, the pixel 51R-2, and the pixel 51S-2 is connected to the pixel array unit 31d. It is said that it is in a state of being.
 このように、共有量子化部361eを備える構成とすることもできる。第5の実施の形態においても、画素アレイ部31eの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 In this way, the configuration can be configured to include the shared quantization unit 361e. Also in the fifth embodiment, the configuration of the pixel array unit 31e can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 図21に示した第5の実施の形態における画素アレイ部31eは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図22に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31e in the fifth embodiment shown in FIG. 21 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 22, the current sources may be connected horizontally.
 図22に示した画素アレイ部31eは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31e shown in FIG. 22 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第6の実施の形態>
 図23は、第6の実施の形態におけるDVSチップ11のうちの画素アレイ部31fの構成を示す図である。第6の実施の形態における画素アレイ部31fにおいて、第5の実施の形態における画素アレイ部31e(図21)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Sixth Embodiment>
FIG. 23 is a diagram showing the configuration of the pixel array unit 31f of the DVS chip 11 according to the sixth embodiment. In the pixel array unit 31f according to the sixth embodiment, the same parts as those of the pixel array unit 31e (FIG. 21) according to the fifth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図23に示した第6の実施の形態における画素アレイ部31fは、第5の実施の形態の画素アレイ部31eにメモリ部411を追加した構成とされている点が異なる。 The pixel array unit 31f in the sixth embodiment shown in FIG. 23 is different in that the memory unit 411 is added to the pixel array unit 31e in the fifth embodiment.
 メモリ部411は、メモリ412を含む構成とされている。メモリ部411は、共有量子化部361fと垂直信号線321fの間に設けられている。共有量子化部361e(図21)内に設けられていたスイッチ373は、メモリ部411を設けた場合、共有量子化部361f内には設けられず、メモリ部411と垂直信号線321fとの間に設けられる構成とされる。 The memory unit 411 is configured to include the memory 412. The memory unit 411 is provided between the shared quantization unit 361f and the vertical signal line 321f. The switch 373 provided in the shared quantization unit 361e (FIG. 21) is not provided in the shared quantization unit 361f when the memory unit 411 is provided, and is between the memory unit 411 and the vertical signal line 321f. It is configured to be provided in.
 すなわち、共有量子化部361fの出力は、メモリ部411のメモリ412に直接的に入力される構成とされ、メモリ412に記憶された信号は、スイッチ373fを介して、垂直信号線321fに出力される構成とされている。 That is, the output of the shared quantization unit 361f is configured to be directly input to the memory 412 of the memory unit 411, and the signal stored in the memory 412 is output to the vertical signal line 321f via the switch 373f. It is said that the configuration is as follows.
 選択されている読出画素と参照画素の組のところに設けられているスイッチ373fは閉じられ、選択されていない読出画素と参照画素の組のところに設けられているスイッチ373fは開放された状態となるようにスイッチ373fは制御される。 The switch 373f provided at the set of the selected read pixel and the reference pixel is closed, and the switch 373f provided at the set of the unselected read pixel and the reference pixel is open. The switch 373f is controlled so as to be.
 メモリ412は、共有量子化部361fからの出力結果を一時的に記憶し、スイッチ373fが閉じられたときに、記憶している信号を、垂直信号線321fに出力する構成とされている。メモリ412には、共有量子化部361からの正極性のイベントの発生を表すイベントデータ、負極性のイベントの発生を表すイベントデータ、またはイベントが発生していないことを表すイベントデータが記憶される。 The memory 412 is configured to temporarily store the output result from the shared quantization unit 361f and output the stored signal to the vertical signal line 321f when the switch 373f is closed. The memory 412 stores event data indicating the occurrence of a positive event from the shared quantization unit 361, event data indicating the occurrence of a negative event, or event data indicating that no event has occurred. ..
 図23に示した第6の実施の形態における画素アレイ部31fは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図24に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31f in the sixth embodiment shown in FIG. 23 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 24, the current sources may be connected horizontally.
 図24に示した画素アレイ部31fは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31f shown in FIG. 24 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第7の実施の形態>
 メモリ412を複数設けることで、正極性のイベントの発生を表すイベントデータと負極性のイベントの発生を表すイベントデータを、それぞれ記憶するメモリ部411を備える構成とすることもできる。第7の実施の形態として、2つのイベントデータをそれぞれ記憶するメモリを有する画素アレイ部31gについて説明する。
<7th embodiment>
By providing a plurality of memories 412, it is possible to configure the memory unit 411 to store event data representing the occurrence of a positive event and event data representing the occurrence of a negative event, respectively. As a seventh embodiment, a pixel array unit 31g having a memory for storing two event data will be described.
 図25は、第7の実施の形態におけるDVSチップ11のうちの画素アレイ部31gの構成を示す図である。第7の実施の形態における画素アレイ部31gにおいて、第6の実施の形態における画素アレイ部31f(図23)と同一の部分には、同一の符号を付し、その説明は適宜省略する。 FIG. 25 is a diagram showing the configuration of the pixel array portion 31 g of the DVS chip 11 according to the seventh embodiment. In the pixel array unit 31g according to the seventh embodiment, the same parts as those of the pixel array unit 31f (FIG. 23) according to the sixth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図25に示した第7の実施の形態における画素アレイ部31gは、メモリ部411g内に、onメモリ421とoffメモリ422を有する構成とされている点が異なる。 The pixel array unit 31g according to the seventh embodiment shown in FIG. 25 is different in that it has an on memory 421 and an off memory 422 in the memory unit 411g.
 onメモリ421は、共有量子化部361fに閾値信号Vonが供給され、正極性のイベントの発生を表すイベントデータが検出されたときに、正極性のイベントの発生を表すイベントデータを記憶するメモリである。offメモリ422は、共有量子化部361fに閾値信号Voffが供給され、負極性のイベントの発生を表すイベントデータが検出されたときに、負極性のイベントの発生を表すイベントデータを記憶するメモリである。 The on memory 421 is a memory that stores event data indicating the occurrence of a positive event when a threshold signal Von is supplied to the shared quantization unit 361f and event data indicating the occurrence of a positive event is detected. is there. The off memory 422 is a memory that stores the event data indicating the occurrence of the negative event when the threshold signal Voff is supplied to the shared quantization unit 361f and the event data indicating the occurrence of the negative event is detected. is there.
 第6、第7の実施の形態においても、画素アレイ部31f,31gの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 Also in the sixth and seventh embodiments, the configuration of the pixel array portions 31f and 31g can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 なお、第6,第7の実施の形態は、図14に示した第3の実施の形態と組み合わせることも可能である。すなわち第6,第7の実施の形態におけるメモリ部411(メモリ部411g)を、図14に示した画素アレイ部31cに含まれる共有量子化部361の後段に設ける構成とすることもできる。 Note that the sixth and seventh embodiments can be combined with the third embodiment shown in FIG. That is, the memory unit 411 (memory unit 411 g) in the sixth and seventh embodiments may be provided after the shared quantization unit 361 included in the pixel array unit 31c shown in FIG.
 図25に示した第7の実施の形態における画素アレイ部31gは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図26に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31g in the seventh embodiment shown in FIG. 25 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 26, the current sources may be connected horizontally.
 図26に示した画素アレイ部31gは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31g shown in FIG. 26 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第8の実施の形態>
 図27は、第8の実施の形態におけるDVSチップ11のうちの画素アレイ部31hの構成を示す図である。第8の実施の形態における画素アレイ部31hにおいて、第5の実施の形態における画素アレイ部31e(図21)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Eighth Embodiment>
FIG. 27 is a diagram showing the configuration of the pixel array unit 31h of the DVS chip 11 according to the eighth embodiment. In the pixel array unit 31h according to the eighth embodiment, the same parts as those of the pixel array unit 31e (FIG. 21) according to the fifth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 第3の実施の形態における画素アレイ部31c、第5の実施の形態における画素アレイ部31e、第6の実施の形態における画素アレイ部31f、第7の実施の形態における画素アレイ部31gは、それぞれ共有量子化部361を備える点で共通している。また共有量子化部361は、正極性または負極性のイベントの発生を表すイベントデータを出力する点で共通している。 The pixel array unit 31c in the third embodiment, the pixel array unit 31e in the fifth embodiment, the pixel array unit 31f in the sixth embodiment, and the pixel array unit 31g in the seventh embodiment are respectively. It is common in that it includes a shared quantization unit 361. Further, the shared quantization unit 361 is common in that it outputs event data indicating the occurrence of positive or negative events.
 第8の実施の形態における画素アレイ部31hとして、正極性のイベントの発生を表すイベントデータを出力する共有量子化部と、負極性のイベントの発生を表すイベントデータを出力する共有量子化部の2つを備える画素アレイ部31hについて説明する。 As the pixel array unit 31h in the eighth embodiment, a shared quantization unit that outputs event data indicating the occurrence of a positive event and a shared quantization unit that outputs event data indicating the occurrence of a negative event. The pixel array unit 31h including the two will be described.
 図27に示した第8の実施の形態における画素アレイ部31hは、第5の実施の形態の画素アレイ部31eの共有量子化部361eが、共有量子化部431と共有量子化部432の2つの量子化部で構成されている点が異なる。 In the pixel array unit 31h according to the eighth embodiment shown in FIG. 27, the shared quantization unit 361e of the pixel array unit 31e according to the fifth embodiment is the shared quantization unit 431 and the shared quantization unit 432-2. The difference is that it is composed of two quantization units.
 共有量子化部431は、PMOSトランジスタ441、NMOSトランジスタ442、およびスイッチ443を備える構成とされている。同様に、共有量子化部432は、PMOSトランジスタ451、NMOSトランジスタ452、およびスイッチ453を備える構成とされている。 The shared quantization unit 431 is configured to include a MOSFET transistor 441, an MIMO transistor 442, and a switch 443. Similarly, the shared quantization unit 432 is configured to include a NMOS transistor 451, an MIMO transistor 452, and a switch 453.
 画素51から読み出された信号は、共有量子化部431のPMOSトランジスタ441のゲートと、共有量子化部432のPMOSトランジスタ451のゲートにそれぞれ供給される構成とされている。 The signal read from the pixel 51 is supplied to the gate of the MIMO transistor 441 of the shared quantization unit 431 and the gate of the MIMO transistor 451 of the shared quantization unit 432, respectively.
 共有量子化部431のNMOSトランジスタ442には閾値信号Vonが供給される。共有量子化部431は、正極性のイベントの発生を表すイベントデータを検出する。共有量子化部431により、正極性のイベントの発生を表すイベントデータが検出された場合であり、スイッチ443が閉じられているとき、垂直信号線444に信号が供給される。 A threshold signal Von is supplied to the NMOS transistor 442 of the shared quantization unit 431. The shared quantization unit 431 detects event data representing the occurrence of a positive event. When the shared quantization unit 431 detects event data indicating the occurrence of a positive event, and the switch 443 is closed, a signal is supplied to the vertical signal line 444.
 共有量子化部432のNMOSトランジスタ452には閾値信号Voffが供給される。共有量子化部432は、負極性のイベントの発生を表すイベントデータを検出する。共有量子化部432により、負極性のイベントの発生を表すイベントデータが検出された場合であり、スイッチ453が閉じられているとき、垂直信号線454に信号が供給される。 A threshold signal Voff is supplied to the NMOS transistor 452 of the shared quantization unit 432. The shared quantization unit 432 detects event data representing the occurrence of a negative event. When the shared quantization unit 432 detects event data indicating the occurrence of a negative event, and the switch 453 is closed, a signal is supplied to the vertical signal line 454.
 このように2つの共有量子化部431,432を備え、正極性と負極性のイベントをそれぞれ検出する構成とすることもできる。 In this way, the two shared quantization units 431 and 432 can be provided to detect positive and negative events, respectively.
 第8の実施の形態においても、画素アレイ部31hの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 Also in the eighth embodiment, the configuration of the pixel array unit 31h can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 なお、第8の実施の形態は、図14に示した第3の実施の形態と組み合わせることも可能である。すなわち第8の実施の形態における共有量子化部431と共有量子化部432を、図14に示した画素アレイ部31cに含まれる共有量子化部361の後段に設ける構成とすることもできる。 The eighth embodiment can be combined with the third embodiment shown in FIG. That is, the shared quantization unit 431 and the shared quantization unit 432 according to the eighth embodiment may be provided after the shared quantization unit 361 included in the pixel array unit 31c shown in FIG.
 図27に示した第8の実施の形態における画素アレイ部31hは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図28に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31h in the eighth embodiment shown in FIG. 27 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 28, the current sources may be connected horizontally.
 図28に示した画素アレイ部31hは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31h shown in FIG. 28 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第9の実施の形態>
 図29は、第9の実施の形態におけるDVSチップ11のうちの画素アレイ部31iの構成を示す図である。第9の実施の形態における画素アレイ部31iにおいて、第4の実施の形態における画素アレイ部31d(図15)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<9th embodiment>
FIG. 29 is a diagram showing the configuration of the pixel array unit 31i of the DVS chip 11 according to the ninth embodiment. In the pixel array unit 31i according to the ninth embodiment, the same parts as those of the pixel array unit 31d (FIG. 15) according to the fourth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 第9の実施の形態における画素アレイ部31iは、カレントミラー回路を構成する部分を、画素51外に設けた構成としている点が、第1乃至第8の実施の形態における画素アレイ部31と異なる。 The pixel array unit 31i in the ninth embodiment is different from the pixel array unit 31 in the first to eighth embodiments in that the portion constituting the current mirror circuit is provided outside the pixel 51. ..
 読出画素に設定されている画素51S-1と参照画素に設定されている画素51R-1に対するカレントミラー回路として、PMOSトランジスタ511-1とPMOSトランジスタ512-1が、画素51外であり、画素アレイ部31内に設けられている。また、スイッチ513-1とスイッチ514-1も、画素51外であり、画素アレイ部31内に設けられている。 As a current mirror circuit for the pixel 51S-1 set as the read pixel and the pixel 51R-1 set as the reference pixel, the MIMO transistor 511-1 and the MIMO transistor 512-1 are outside the pixel 51, and the pixel array. It is provided in the section 31. Further, the switch 513-1 and the switch 514-1 are also provided outside the pixel 51 and inside the pixel array unit 31.
 また、画素51S-1内には、スイッチ501S-1が設けられ、スイッチ501S-1が閉じられたときには、PMOSトランジスタ511-1のドレインとNMOSトランジスタ314Sのドレインが接続される状態となる。同様に画素51R-1内には、スイッチ501R-1が設けられ、スイッチ501R-1が閉じられたときには、PMOSトランジスタ512-1のドレインとNMOSトランジスタ314Rのドレインが接続される状態となる。 Further, a switch 501S-1 is provided in the pixel 51S-1, and when the switch 501S-1 is closed, the drain of the MIMO transistor 511-1 and the drain of the MIMO transistor 314S are connected to each other. Similarly, a switch 501R-1 is provided in the pixel 51R-1, and when the switch 501R-1 is closed, the drain of the MIMO transistor 512-1 and the drain of the MIMO transistor 314R are connected to each other.
 PMOSトランジスタ511-1は、例えば、図15に示した画素アレイ部31dの画素51S-1内のPMOSトランジスタ315S-1に該当する。PMOSトランジスタ512-1は、例えば、図15に示した画素アレイ部31dの画素51R-1内のPMOSトランジスタ315R-1に該当する。また、スイッチ513-1は、例えば、図15に示した画素アレイ部31dの画素51S-1内のスイッチ343Sに該当する。また、スイッチ514-1は、例えば、図15に示した画素アレイ部31dの画素51S-1内のスイッチ342Sに該当する。 The MIMO transistor 511-1 corresponds to, for example, the PMOS transistor 315S-1 in the pixel 51S-1 of the pixel array unit 31d shown in FIG. The epitaxial transistor 512-1 corresponds to, for example, the MIMO transistor 315R-1 in the pixel 51R-1 of the pixel array unit 31d shown in FIG. Further, the switch 513-1 corresponds to, for example, the switch 343S in the pixel 51S-1 of the pixel array unit 31d shown in FIG. Further, the switch 514-1 corresponds to, for example, the switch 342S in the pixel 51S-1 of the pixel array unit 31d shown in FIG.
 スイッチ514-1は、画素51S-1を読出画素として機能させるときに閉じられるスイッチである。スイッチ513-1は、画素51Sを読出画素として機能させないときに閉じられるスイッチであり、画素51R-1を参照画素として機能させるときに閉じられるスイッチである。 The switch 514-1 is a switch that is closed when the pixel 51S-1 functions as a read pixel. The switch 513-1 is a switch that is closed when the pixel 51S does not function as a read pixel, and is a switch that is closed when the pixel 51R-1 functions as a reference pixel.
 スイッチ513-1とスイッチ514-1は、一方が閉じられているときには、他方は開放されている状態となるように制御される。スイッチ314-1が閉じられているときには、読出画素としての画素51S-1と参照画素としての画素51R-1の差分が垂直信号線516-1に供給される状態にされる。またスイッチ313-1が閉じられているときには、読出画素としての画素51R-1と参照画素としての画素51S-1の差分が垂直信号線515-1に供給される状態にされる。 Switch 513-1 and switch 514-1 are controlled so that when one is closed, the other is open. When the switch 314-1 is closed, the difference between the pixel 51S-1 as the read pixel and the pixel 51R-1 as the reference pixel is supplied to the vertical signal line 516-1. When the switch 313-1 is closed, the difference between the pixel 51R-1 as the read pixel and the pixel 51S-1 as the reference pixel is supplied to the vertical signal line 515-1.
 このような画素51S-1と画素51R-1における構成と同様の構成が、画素51S-2と画素51R-2においても形成されている。すなわち、読出画素に設定されている画素51S-2と参照画素に設定されている画素51R-2に対するカレントミラー回路として、PMOSトランジスタ511-2とPMOSトランジスタ512-2、スイッチ513-2、およびスイッチ514-2が、画素51外であり、画素アレイ部31内に設けられている。 The same configuration as that of the pixel 51S-1 and the pixel 51R-1 is formed in the pixel 51S-2 and the pixel 51R-2. That is, as a current mirror circuit for the pixel 51S-2 set as the read pixel and the pixel 51R-2 set as the reference pixel, the MIMO transistor 511-2, the MIMO transistor 512-2, the switch 513-2, and the switch 514-2 is outside the pixel 51 and is provided inside the pixel array unit 31.
 カレントミラー回路同士は、横繋ぎ線531により接続されている。横繋ぎ線531には、PMOSトランジスタ511-1のゲートとPMOSトランジスタ512-1のゲートを接続する配線と、スイッチ513-1とスイッチ514-1を接続する配線が接続されている。また、横繋ぎ線531には、PMOSトランジスタ511-2のゲートとPMOSトランジスタ512-2のゲートを接続する配線と、スイッチ513-2とスイッチ514-2を接続する配線が接続されている。 The current mirror circuits are connected by a horizontal connecting wire 531. The horizontal connecting wire 531 is connected to a wiring that connects the gate of the MIMO transistor 511-1 and the gate of the MIMO transistor 512-1 and a wiring that connects the switch 513-1 and the switch 514-1. Further, the horizontal connecting wire 531 is connected with a wiring for connecting the gate of the MIMO transistor 511-2 and the gate of the MIMO transistor 512-2 and a wiring for connecting the switch 513-2 and the switch 514-2.
 この場合、カレントミラー回路のバイアス電圧が横繋ぎで接続された状態となる。このように、横繋ぎを行うことで、ノイズの発生を抑制することができる。 In this case, the bias voltage of the current mirror circuit is connected horizontally. By performing the horizontal connection in this way, it is possible to suppress the generation of noise.
 図29に示したように、横繋ぎ線531にスイッチ532を設けても良い。スイッチ532が閉じられることで、カレントミラー回路のバイアス電圧が横繋ぎの状態となるため、そのような横繋ぎの状態と、横繋ぎではない状態を、スイッチ532の開閉により制御できる構成とすることもできる。 As shown in FIG. 29, the switch 532 may be provided on the horizontal connecting wire 531. When the switch 532 is closed, the bias voltage of the current mirror circuit becomes a horizontal connection state. Therefore, such a horizontal connection state and a non-horizontal connection state should be controlled by opening and closing the switch 532. You can also.
 図29に示した例では、カレントミラー回路の部分は、画素51S-1と画素51R-1の2画素で共有される例を示したが、2以上の画素51で共有される構成とすることも可能である。換言すれば、カレントミラー回路は、複数行で共有する回路として設けることが可能である。 In the example shown in FIG. 29, the part of the current mirror circuit is shared by two pixels of the pixel 51S-1 and the pixel 51R-1, but the configuration is such that it is shared by two or more pixels 51. Is also possible. In other words, the current mirror circuit can be provided as a circuit shared by a plurality of lines.
 カレントミラー回路を構成するPMOSトランジスタ511,512を画素51外に構成することで、画素51の構成を小型化することができる。また、カレントミラー回路を複数の画素51で共有する構成とすることで、画素アレイ部31iの構成を小型化することができる。よって第9の実施の形態においても、画素アレイ部31iの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 By configuring the MIMO transistors 511, 512 that make up the current mirror circuit outside the pixel 51, the configuration of the pixel 51 can be miniaturized. Further, by making the current mirror circuit shared by a plurality of pixels 51, the configuration of the pixel array unit 31i can be miniaturized. Therefore, also in the ninth embodiment, the configuration of the pixel array unit 31i can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 図29に示した第9の実施の形態における画素アレイ部31iは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図30に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31i in the ninth embodiment shown in FIG. 29 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 30, a configuration in which current sources are connected horizontally may be used.
 図30に示した画素アレイ部31iは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31i shown in FIG. 30 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第10の実施の形態>
 図31は、第10の実施の形態におけるDVSチップ11のうちの画素アレイ部31jの構成を示す図である。第10の実施の形態における画素アレイ部31jにおいて、第9の実施の形態における画素アレイ部31i(図29)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<10th Embodiment>
FIG. 31 is a diagram showing a configuration of a pixel array unit 31j in the DVS chip 11 according to the tenth embodiment. In the pixel array unit 31j according to the tenth embodiment, the same parts as those of the pixel array unit 31i (FIG. 29) according to the ninth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図31に示した第10の実施の形態における画素アレイ部31jは、第9の実施の形態における画素アレイ部31i(図29)から、カレントミラー回路を画素アレイ部31外に配置した点以外は、同一である。 The pixel array unit 31j according to the tenth embodiment shown in FIG. 31 is different from the pixel array unit 31i (FIG. 29) according to the ninth embodiment except that the current mirror circuit is arranged outside the pixel array unit 31. , Is the same.
 すなわち、図31に示した第10の実施の形態における画素アレイ部31jと、図29に示した第9の実施の形態における画素アレイ部31iは、同一の構成であるが、画素51外であるが画素アレイ部31i内に形成されていたカレントミラー回路が、画素51外であり、さらに画素アレイ部31j外である位置にカレントミラー回路が形成されている点が異なる。 That is, the pixel array unit 31j in the tenth embodiment shown in FIG. 31 and the pixel array unit 31i in the ninth embodiment shown in FIG. 29 have the same configuration, but are outside the pixels 51. The difference is that the current mirror circuit formed in the pixel array unit 31i is outside the pixel 51, and the current mirror circuit is formed at a position outside the pixel array unit 31j.
 カレントミラー回路を構成するPMOSトランジスタ511,512、スイッチ513,514などは、周辺回路に形成することができる。例えば、図1に示したようにデータ処理チップを形成した場合、DVSチップ11に積層されるロジックダイ12にカレントミラー回路を形成した構成とすることができる。 The MIMO transistors 511, 512, switches 513, 514, etc. that make up the current mirror circuit can be formed in the peripheral circuit. For example, when the data processing chip is formed as shown in FIG. 1, the current mirror circuit can be formed on the logic die 12 stacked on the DVS chip 11.
 カレントミラー回路を、画素アレイ部31外に設けることで、画素アレイ部31の構成を小型化することができる。よって第10の実施の形態においても、画素アレイ部31jの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 By providing the current mirror circuit outside the pixel array unit 31, the configuration of the pixel array unit 31 can be miniaturized. Therefore, also in the tenth embodiment, the configuration of the pixel array unit 31j can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 図31に示した第10の実施の形態における画素アレイ部31jは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図32に示すように、電流源を横繋ぎする構成としても良い。 The pixel array unit 31j in the tenth embodiment shown in FIG. 31 had a configuration in which a current mirror circuit was horizontally connected. Further, as shown in FIG. 32, the current sources may be connected horizontally.
 図32に示した画素アレイ部31jは、隣り合う画素の電流源が接続されている。具体的には、列方向に配置されている画素51S-1と画素51R-1の電流源(負荷MOS回路320)と、その隣の列の列方向に配置されている画素51S-2と画素51R-2の電流源(負荷MOS回路320)が横繋ぎ構成で接続されている。電流源(負荷MOS回路320)を接続する配線上にスイッチ392を設けた構成としても良い。 The pixel array unit 31j shown in FIG. 32 is connected to the current sources of adjacent pixels. Specifically, the current source (load MOS circuit 320) of the pixels 51S-1 and the pixels 51R-1 arranged in the row direction, and the pixels 51S-2 and the pixels arranged in the row direction next to the current source (load MOS circuit 320). The current source (load MOS circuit 320) of 51R-2 is connected in a horizontal connection configuration. A switch 392 may be provided on the wiring for connecting the current source (load MOS circuit 320).
 換言すれば、画素51S-1と画素51R-1に配線されている電流供給線319と、画素51S-2と画素51R-2に配線されている電流供給線319が接続される構成としても良い。また、電流供給線319間に、スイッチ392が設けられた構成とすることもできる。 In other words, the current supply line 319 wired to the pixel 51S-1 and the pixel 51R-1 and the current supply line 319 wired to the pixel 51S-2 and the pixel 51R-2 may be connected. .. Further, a switch 392 may be provided between the current supply lines 319.
 スイッチ392は、スイッチ392と同時にオンまたはオフされる。よって、図16乃至19に示したように、参照画素51Rが設定された場合、参照画素51R同士を接続するスイッチ391とスイッチ392はオンにされる(閉じられる)。このように、電流源も横繋ぎされる構成とすることもできる。 Switch 392 is turned on or off at the same time as switch 392. Therefore, as shown in FIGS. 16 to 19, when the reference pixel 51R is set, the switch 391 and the switch 392 connecting the reference pixels 51R are turned on (closed). In this way, the current sources can also be connected horizontally.
 <第11の実施の形態>
 図33は、第11の実施の形態におけるDVSチップ11のうちの画素アレイ部31kの構成を示す図である。第11の実施の形態における画素アレイ部31kにおいて、第10の実施の形態における画素アレイ部31j(図31)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<11th Embodiment>
FIG. 33 is a diagram showing the configuration of the pixel array portion 31k of the DVS chip 11 according to the eleventh embodiment. In the pixel array unit 31k according to the eleventh embodiment, the same parts as those of the pixel array unit 31j (FIG. 31) according to the tenth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図33に示した第11の実施の形態における画素アレイ部31kは、図31に示した第10の実施の形態における画素アレイ部31jと比較して、画素51内に、メモリ551を追加した構成とされている点が異なり、他の点は同一である。 The pixel array unit 31k in the eleventh embodiment shown in FIG. 33 has a configuration in which a memory 551 is added in the pixel 51 as compared with the pixel array unit 31j in the tenth embodiment shown in FIG. 31. The other points are the same.
 図33では、図31に示した画素アレイ部31jの右側に位置する画素51S-2と画素51R-2を図示していないが、図31に示した場合と同じく、横繋ぎ構成で接続されている。なお、以下の実施の形態においても図33と同じく、右側に図示していた画素51S-2と画素51R-2は図示しないが、横繋ぎ構成とされている。 In FIG. 33, the pixels 51S-2 and the pixels 51R-2 located on the right side of the pixel array unit 31j shown in FIG. 31 are not shown, but they are connected in a horizontally connected configuration as in the case shown in FIG. There is. In the following embodiments, as in FIG. 33, the pixels 51S-2 and 51R-2 shown on the right side are not shown, but are horizontally connected.
 画素51Sにはメモリ551Sが設けられ、画素51Rにはメモリ551Rが設けられている。メモリ551Sは、画素51Sが読出画素に設定されているときに、イベントが検出された場合、そのイベントデータを記憶する。同様に、メモリ551Rは、画素51Rが読出画素に設定されているときに、イベントが検出された場合、そのイベントデータを記憶する。 The pixel 51S is provided with a memory 551S, and the pixel 51R is provided with a memory 551R. If an event is detected while the pixel 51S is set as the read pixel, the memory 551S stores the event data. Similarly, the memory 551R stores the event data when an event is detected when the pixel 51R is set as the read pixel.
 このように画素51内に、メモリ551を設け、イベントデータを記憶する構成とすることで、歪み(アーチファクト)の発生を軽減することができる。例えば、上の行と下の行の読み出しのタイミングが異なると、動きの速い物体を撮影しているときなどには、その読み出しタイミングの違いにより、歪みが発生してしまう可能性があった。 By providing the memory 551 in the pixel 51 and storing the event data in this way, it is possible to reduce the occurrence of distortion (artifact). For example, if the reading timings of the upper row and the lower row are different, distortion may occur due to the difference in the reading timing when shooting a fast-moving object.
 メモリ551を設けることで、2フェーズ(2-Phase)のグローバルシャッタを実現することができる。図33に示した構成において、スイッチ514の開閉を制御する信号を制御信号SELaとし、スイッチ513の開閉を制御する信号を制御信号SELbとする。また、メモリ551Sにイベントデータを書き込むタイミングを制御する信号を制御信号Mem WRaとし、メモリ551Rにイベントデータを書き込むタイミングを制御する信号を制御信号Mem WRbとする。 By providing the memory 551, a two-phase (2-Phase) global shutter can be realized. In the configuration shown in FIG. 33, the signal for controlling the opening and closing of the switch 514 is referred to as the control signal SELa, and the signal for controlling the opening and closing of the switch 513 is referred to as the control signal SELb. Further, a signal for controlling the timing of writing event data to the memory 551S is referred to as a control signal MemWRa, and a signal for controlling the timing of writing event data to the memory 551R is referred to as a control signal MemWRb.
 制御信号SELaと制御信号Mem WRaは、全ての奇数行で共有される信号とし、制御信号SELbと制御信号Mem WRbは、全ての偶数行で共有される信号とする。 The control signal SELa and the control signal MemWRa are signals shared by all odd-numbered lines, and the control signal SELb and control signal MemWRb are signals shared by all even-numbered lines.
 フェーズ1のときには、制御信号SELaと制御信号Mem WRaがアクティブな状態とされ、奇数行の画素51に輝度変化の結果(イベントデータ)が書き込まれる。フェーズ2のときには、制御信号SELbと制御信号Mem WRbがアクティブな状態とされ、偶数行の画素51に輝度変化の結果(イベントデータ)が書き込まれる。このような、2フェーズのグローバルシャッタを実現することができる。 In Phase 1, the control signal SELa and the control signal MemWRa are activated, and the result of the luminance change (event data) is written to the pixels 51 in the odd-numbered rows. At the time of phase 2, the control signal SELb and the control signal Mem WRb are activated, and the result of the luminance change (event data) is written to the pixels 51 in the even-numbered rows. Such a two-phase global shutter can be realized.
 第11の実施の形態においても、画素アレイ部31kの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。また歪みを低減した撮影を行うことが可能となる。 Also in the eleventh embodiment, the configuration of the pixel array unit 31k can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise. In addition, it becomes possible to perform shooting with reduced distortion.
 図33に示した第11の実施の形態における画素アレイ部31kは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図示はしないが、例えば図32に示した構成を適用し、電流源を横繋ぎする構成としても良い。 The pixel array unit 31k in the eleventh embodiment shown in FIG. 33 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
 <第12の実施の形態>
 図34は、第12の実施の形態におけるDVSチップ11のうちの画素アレイ部31mの構成を示す図である。第12の実施の形態における画素アレイ部31mにおいて、第11の実施の形態における画素アレイ部31k(図33)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<12th Embodiment>
FIG. 34 is a diagram showing the configuration of the pixel array portion 31m of the DVS chip 11 in the twelfth embodiment. In the pixel array unit 31m according to the twelfth embodiment, the same parts as those of the pixel array unit 31k (FIG. 33) according to the eleventh embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図34に示した第12の実施の形態における画素アレイ部31mは、図33に示した第11の実施の形態における画素アレイ部31kと比較して、画素51内に、量子化部552を追加した構成とされている点が異なり、他の点は同一である。 The pixel array unit 31m in the twelfth embodiment shown in FIG. 34 has a quantization unit 552 added in the pixel 51 as compared with the pixel array unit 31k in the eleventh embodiment shown in FIG. 33. The difference is that the configuration is the same, and the other points are the same.
 画素51Sには量子化部552Sが設けられ、画素51Rには量子化部552Rが設けられている。 The pixel 51S is provided with a quantization unit 552S, and the pixel 51R is provided with a quantization unit 552R.
 図34に示した第12の実施の形態における画素アレイ部31mは、画素51内に、量子化部552と量子化部552により量子化された結果を記憶するメモリ551を備える。量子化部552とメモリ551は、例えば、図23に示した画素アレイ部31fにおける共有量子化部361fとメモリ412に相当する部分とすることができる。 The pixel array unit 31m according to the twelfth embodiment shown in FIG. 34 includes a memory 551 that stores the result quantized by the quantization unit 552 and the quantization unit 552 in the pixel 51. The quantization unit 552 and the memory 551 can be, for example, parts corresponding to the shared quantization unit 361f and the memory 412 in the pixel array unit 31f shown in FIG. 23.
 メモリ551を備えることで、上記したように、歪みの少ないグローバルシャッタを実現することができる。さらに量子化部552を設けることで、動作速度を向上させることができる。画素アレイ部31mは、上記した実施の形態と同じく、差動増幅回路を備える構成とされている。画素アレイ部31mは、さらに、増幅機能を有する量子化部552を、差動増幅回路の後段に備える構成とされている。よって、増幅率を上げることができ、動作速度を向上させることができる。 By providing the memory 551, it is possible to realize a global shutter with less distortion as described above. Further, by providing the quantization unit 552, the operation speed can be improved. The pixel array unit 31m is configured to include a differential amplifier circuit as in the above-described embodiment. The pixel array unit 31m is further configured to include a quantization unit 552 having an amplification function in the subsequent stage of the differential amplifier circuit. Therefore, the amplification factor can be increased and the operating speed can be improved.
 量子化部552に2つの閾値を記憶させ、その2つの閾値を用いた量子化が行われるようにすることもできる。2つの閾値とは、例えば、図23に示した画素アレイ部31fにおける共有量子化部361fに入力される閾値信号Vonと閾値信号Voffに該当する閾値とすることができる。2つの閾値を量子化部552に設定しておくことで、輝度が上がる、すなわち正極性の場合と、輝度が下がる、すなわち負極性の場合とを検出することが可能となる。 It is also possible to store two threshold values in the quantization unit 552 so that quantization can be performed using the two threshold values. The two threshold values can be, for example, the threshold values corresponding to the threshold value signal Von and the threshold value signal Voff input to the shared quantization unit 361f in the pixel array unit 31f shown in FIG. 23. By setting the two threshold values in the quantization unit 552, it is possible to detect a case where the brightness increases, that is, a positive electrode property, and a case where the brightness decreases, that is, a negative electrode property.
 第12の実施の形態においても、画素アレイ部31mの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。また歪みを低減した撮影を行うことが可能となる。 Also in the twelfth embodiment, the configuration of the pixel array unit 31 m can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise. In addition, it becomes possible to perform shooting with reduced distortion.
 図34に示した第12の実施の形態における画素アレイ部31mは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図示はしないが、例えば図32に示した構成を適用し、電流源を横繋ぎする構成としても良い。 The pixel array unit 31m in the twelfth embodiment shown in FIG. 34 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
 <第13の実施の形態>
 図35は、第13の実施の形態におけるDVSチップ11のうちの画素アレイ部31nの構成を示す図である。第13の実施の形態における画素アレイ部31nにおいて、第10の実施の形態における画素アレイ部31j(図31)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<13th Embodiment>
FIG. 35 is a diagram showing the configuration of the pixel array unit 31n of the DVS chip 11 according to the thirteenth embodiment. In the pixel array unit 31n according to the thirteenth embodiment, the same parts as those of the pixel array unit 31j (FIG. 31) according to the tenth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図35に示した第13の実施の形態における画素アレイ部31nは、図31に示した第10の実施の形態における画素アレイ部31jと比較して、画素51外に、量子化部571を追加した構成とされている点が異なり、他の点は同一である。 The pixel array unit 31n in the thirteenth embodiment shown in FIG. 35 adds a quantization unit 571 to the outside of the pixel 51 as compared with the pixel array unit 31j in the tenth embodiment shown in FIG. 31. The difference is that the configuration is the same, and the other points are the same.
 図35に示した第13の実施の形態における画素アレイ部31nは、画素アレイ部31n外に量子化部571を備える。この量子化部571は、例えば、図14に示した第3の実施の形態における画素アレイ部31cの共有量子化部361に該当し、複数の画素51に共有して用いられる量子化部として設けることができる。 The pixel array unit 31n according to the thirteenth embodiment shown in FIG. 35 includes a quantization unit 571 outside the pixel array unit 31n. This quantization unit 571 corresponds to, for example, the shared quantization unit 361 of the pixel array unit 31c in the third embodiment shown in FIG. 14, and is provided as a quantization unit shared by a plurality of pixels 51. be able to.
 量子化部571に2つの閾値を記憶させ、その2つの閾値を用いた量子化が行われるようにすることもできる。2つの閾値とは、例えば、図23に示した画素アレイ部31fにおける共有量子化部361fに入力される閾値信号Vonと閾値信号Voffに該当する閾値とすることができる。2つの閾値を量子化部571に設定しておくことで、輝度が上がる、すなわち正極性の場合と、輝度が下がる、すなわち負極性の場合とを検出することが可能となる。 It is also possible to store two threshold values in the quantization unit 571 so that quantization can be performed using the two threshold values. The two threshold values can be, for example, the threshold values corresponding to the threshold value signal Von and the threshold value signal Voff input to the shared quantization unit 361f in the pixel array unit 31f shown in FIG. 23. By setting the two threshold values in the quantization unit 571, it is possible to detect a case where the brightness increases, that is, a positive electrode property, and a case where the brightness decreases, that is, a negative electrode property.
 第13の実施の形態においても、画素アレイ部31nの構成を小型化することができる。また、ノイズを低減した高効率での読み出しを行うことができる。 Also in the thirteenth embodiment, the configuration of the pixel array unit 31n can be miniaturized. In addition, it is possible to perform high-efficiency reading with reduced noise.
 図35に示した第13の実施の形態における画素アレイ部31nは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図示はしないが、例えば図32に示した構成を適用し、電流源を横繋ぎする構成としても良い。 The pixel array unit 31n in the thirteenth embodiment shown in FIG. 35 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
 <第14の実施の形態>
 図36は、第14の実施の形態におけるDVSチップ11のうちの画素アレイ部31pの構成を示す図である。第14の実施の形態における画素アレイ部31pにおいて、第4の実施の形態における画素アレイ部31d(図15)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<14th Embodiment>
FIG. 36 is a diagram showing the configuration of the pixel array portion 31p of the DVS chip 11 in the 14th embodiment. In the pixel array unit 31p according to the fourteenth embodiment, the same parts as those of the pixel array unit 31d (FIG. 15) according to the fourth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図36に示した第14の実施の形態における画素アレイ部31pは、図15に示した第4の実施の形態における画素アレイ部31dと比較して、画素51に、コンデンサ601とコンデンサ602が追加された構成とされている点が異なり、他の点は同一である。 The pixel array unit 31p in the 14th embodiment shown in FIG. 36 has a capacitor 601 and a capacitor 602 added to the pixel 51 as compared with the pixel array unit 31d in the fourth embodiment shown in FIG. The difference is that the configuration is the same, and the other points are the same.
 図36には、図15に示した画素51S-2と画素51R-2に該当する画素51は図示していないが、横繋ぎ構成とされ、図示していない画素51R-2と接続されている。後述する図38においても、同様である。 In FIG. 36, the pixel 51S-2 shown in FIG. 15 and the pixel 51 corresponding to the pixel 51R-2 are not shown, but they have a horizontally connected configuration and are connected to the pixel 51R-2 (not shown). .. The same applies to FIG. 38, which will be described later.
 画素51Sは、コンデンサ601Sとコンデンサ602Sを有する。コンデンサ601Sの一端には、外部から、所定の電圧値を有する信号VTHa1が供給され、他端は、NMOSトランジスタ314Sのゲート側に接続されている。同じく、コンデンサ602Sの一端には、外部から、所定の電圧値を有する信号VTHa2が供給され、他端は、NMOSトランジスタ314Sのゲート側に接続されている。 The pixel 51S has a capacitor 601S and a capacitor 602S. A signal VTHa1 having a predetermined voltage value is supplied from the outside to one end of the capacitor 601S, and the other end is connected to the gate side of the NMOS transistor 314S. Similarly, a signal VTHa2 having a predetermined voltage value is supplied from the outside to one end of the capacitor 602S, and the other end is connected to the gate side of the NMOS transistor 314S.
 同様に、画素51Rは、コンデンサ601Rとコンデンサ602Rを有する。コンデンサ601Rの一端には、外部から、所定の電圧値を有する信号VTHb1が供給され、他端は、NMOSトランジスタ314Rのゲート側に接続されている。同じく、コンデンサ602Rの一端には、外部から、所定の電圧値を有する信号VTHb2が供給され、他端は、NMOSトランジスタ314Rのゲート側に接続されている。 Similarly, the pixel 51R has a capacitor 601R and a capacitor 602R. A signal VTHb1 having a predetermined voltage value is supplied from the outside to one end of the capacitor 601R, and the other end is connected to the gate side of the NMOS transistor 314R. Similarly, a signal VTHb2 having a predetermined voltage value is supplied from the outside to one end of the capacitor 602R, and the other end is connected to the gate side of the NMOS transistor 314R.
 図36に示した画素アレイ部31pの構成は、横繋ぎの構成が採用されている例である。コンデンサ601やコンデンサ602は、横繋ぎでの容量のばらつきを緩和することを目的の1つとして設けられている。 The configuration of the pixel array unit 31p shown in FIG. 36 is an example in which a horizontally connected configuration is adopted. The capacitor 601 and the capacitor 602 are provided as one of the purposes for alleviating the variation in capacitance in the horizontal connection.
 図36に示した画素アレイ部31pの構成では、差動増幅回路に該当する部分は、イベント検出部52の量子化部84(図5)として動作する。図36に示した画素アレイ部31pの動作について、図37のタイミングチャートを参照して説明する。 In the configuration of the pixel array unit 31p shown in FIG. 36, the portion corresponding to the differential amplifier circuit operates as the quantization unit 84 (FIG. 5) of the event detection unit 52. The operation of the pixel array unit 31p shown in FIG. 36 will be described with reference to the timing chart of FIG. 37.
 ここでは、画素51Sが読出画素であり、画素51Rが参照画素である場合を例に挙げて説明する。横繋ぎの構成が採用されているため、参照画素が配置されている行(参照行)の平均電圧との比較がされる。具体的には、読出画素に設定された画素51Sに対して、参照行の平均電圧との比較が行われ、画素51Sの輝度変化が高くなるか、低くなるか、または変化がないかの状態がイベントデータとして検出される。 Here, a case where the pixel 51S is a read pixel and the pixel 51R is a reference pixel will be described as an example. Since the horizontal connection configuration is adopted, the comparison is made with the average voltage of the row (reference row) in which the reference pixel is arranged. Specifically, the pixel 51S set as the read pixel is compared with the average voltage of the reference line, and the brightness change of the pixel 51S is high, low, or no change. Is detected as event data.
 時刻t51において、制御信号SELaがHレベルにされることで、画素51Sが読出画素に設定され、スイッチ342Sがオンの状態にされる。時刻t51から時刻t54の間、制御信号SELbは、Lレベルの信号のまま維持され、信号VTHa1は、Hレベルのまま維持され、信号VTHa2は、Lレベルまま維持される。 At time t51, when the control signal SELa is set to H level, the pixel 51S is set as the read pixel and the switch 342S is turned on. From time t51 to time t54, the control signal SELb is maintained at the L level, the signal VTHa1 is maintained at the H level, and the signal VTHa2 is maintained at the L level.
 時刻t52から時刻t53において、OFFイベント、すなわちこの場合、負極性のイベントの検出が行われる。時刻t52において、信号VTHb1は、HレベルからLレベルに切り替えられ、信号VTHb2はLレベルが維持される。すなわちこの場合、信号VTHb1と信号VTHb2は、共にLレベルに設定されている。信号VTHb1と信号VTHb2がLレベルであるときに、垂直信号線321への出力がHighとなる場合、負極性のイベントが検出されたことになる。 From time t52 to time t53, an OFF event, that is, a negative event in this case, is detected. At time t52, the signal VTHb1 is switched from the H level to the L level, and the signal VTHb2 is maintained at the L level. That is, in this case, both the signal VTHb1 and the signal VTHb2 are set to the L level. When the signal VTHb1 and the signal VTHb2 are at the L level and the output to the vertical signal line 321 becomes High, it means that a negative event has been detected.
 時刻t53から時刻t54において、ONイベント、すなわちこの場合、正極性のイベントの検出が行われる。時刻t53において、信号VTHb1は、LレベルからHレベルに切り替えられ、信号VTHb2はLレベルからHレベルに切り替えられる。信号VTHb1と信号VTHb2がともにHレベルのときに、垂直信号線321への出力がLOWとなる場合、正極性のイベントが検出されたことになる。 From time t53 to time t54, an ON event, that is, a positive event in this case, is detected. At time t53, the signal VTHb1 is switched from L level to H level and the signal VTHb2 is switched from L level to H level. When both the signal VTHb1 and the signal VTHb2 are at H level and the output to the vertical signal line 321 becomes LOW, it means that a positive electrode event has been detected.
 このように、画素51内にコンデンサを設け、参照画素とされた画素51に供給する信号VTHb1、信号VTHb2を制御することで、差動増幅回路に該当する部分を、量子化部として機能させ、イベントの発生を検出することができる。第14の実施の形態においても、画素アレイ部31pの構成を小型化することができる。 In this way, by providing a capacitor in the pixel 51 and controlling the signal VTHb1 and the signal VTHb2 supplied to the pixel 51 as the reference pixel, the part corresponding to the differential amplifier circuit functions as a quantization unit. The occurrence of an event can be detected. Also in the fourteenth embodiment, the configuration of the pixel array unit 31p can be miniaturized.
 図36に示した第14の実施の形態における画素アレイ部31pは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図示はしないが、例えば図32に示した構成を適用し、電流源を横繋ぎする構成としても良い。 The pixel array unit 31p in the fourteenth embodiment shown in FIG. 36 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
 <第15の実施の形態>
 図38は、第15の実施の形態におけるDVSチップ11のうちの画素アレイ部31qの構成を示す図である。第15の実施の形態における画素アレイ部31qにおいて、第14の実施の形態における画素アレイ部31p(図36)と同一の部分には、同一の符号を付し、その説明は適宜省略する。
<Fifteenth Embodiment>
FIG. 38 is a diagram showing the configuration of the pixel array portion 31q of the DVS chip 11 according to the fifteenth embodiment. In the pixel array unit 31q in the fifteenth embodiment, the same parts as the pixel array unit 31p (FIG. 36) in the fourteenth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図38に示した第15の実施の形態における画素アレイ部31qは、図36に示した第14の実施の形態における画素アレイ部31pと比較して、共有量子化部361qを追加した構成とされている点が異なり、他の点は同一である。また、共有量子化部361qは、図21に示した第5の実施の形態における画素アレイ部31eの共有量子化部361eに該当し、同様の構成を有し、基本的に同様の動作を行う。 The pixel array unit 31q in the fifteenth embodiment shown in FIG. 38 has a configuration in which a shared quantization unit 361q is added as compared with the pixel array unit 31p in the fourteenth embodiment shown in FIG. 36. The points are different, and the other points are the same. Further, the shared quantization unit 361q corresponds to the shared quantization unit 361e of the pixel array unit 31e in the fifth embodiment shown in FIG. 21, has the same configuration, and basically performs the same operation. ..
 図38に示した画素アレイ部31qの構成では、差動増幅回路に該当する部分は、イベント検出部52の減算部83(図5)として動作する。また、図38に示した画素アレイ部31qの構成では、共有量子化部361qは、イベント検出部52の量子化部84(図5)として動作する。図38に示した画素アレイ部31qの動作について、図39のタイミングチャートを参照して説明する。 In the configuration of the pixel array unit 31q shown in FIG. 38, the portion corresponding to the differential amplifier circuit operates as the subtraction unit 83 (FIG. 5) of the event detection unit 52. Further, in the configuration of the pixel array unit 31q shown in FIG. 38, the shared quantization unit 361q operates as the quantization unit 84 (FIG. 5) of the event detection unit 52. The operation of the pixel array unit 31q shown in FIG. 38 will be described with reference to the timing chart of FIG. 39.
 図39のAに示したタイミングチャートを参照する。制御信号SELa、制御信号SELbVTHa1、信号VTHa2、信号VTHb1、および信号VTHb2は、図37に示した場合と同様である。すなわち、画素51Sや画素51Rで行われる動作は、第14の実施の形態における画素アレイ部31pの画素51Sや画素51Rと同様である。 Refer to the timing chart shown in A of FIG. 39. The control signal SELa, the control signal SELbVTHa1, the signal VTHa2, the signal VTHb1, and the signal VTHb2 are the same as those shown in FIG. 37. That is, the operation performed by the pixels 51S and 51R is the same as the pixels 51S and 51R of the pixel array unit 31p in the fourteenth embodiment.
 共有量子化部361q内のNMOSトランジスタ372には、信号Vonと信号Voffが時分割で供給される。図39のAに示したタイミングチャートにおいては、信号Vonと信号Voffは、一定値の信号とされ、時刻t61から時刻t64までレベルが変化することがない信号とされている。このように、共有量子化部361qに供給される信号は、一定値とし、共有量子化部361qのバイアス電圧を1つにした制御を行う。 A signal Von and a signal Voff are supplied to the NMOS transistor 372 in the shared quantization unit 361q in a time-division manner. In the timing chart shown in FIG. 39A, the signal Von and the signal Voff are signals having constant values, and the levels do not change from time t61 to time t64. In this way, the signal supplied to the shared quantization unit 361q is set to a constant value, and the bias voltage of the shared quantization unit 361q is controlled to be one.
 または、図39のBに示したタイミングチャートに基づく制御が行われるようにしても良い。図39のBに示したタイミングチャートは、信号Vonと信号Voffが時分割で供給される例を示している。 Alternatively, control based on the timing chart shown in B of FIG. 39 may be performed. The timing chart shown in FIG. 39B shows an example in which the signal Von and the signal Voff are supplied in a time-division manner.
 時刻t72から時刻t73において、負極性のイベントを検出するときには、信号Voff(Lレベルの信号)が供給される。時刻t73から時刻t74において、正極性のイベントを検出するときには、信号Von(Hレベルの信号)が供給される。 When a negative event is detected from time t72 to time t73, a signal Voff (L level signal) is supplied. When a positive event is detected from time t73 to time t74, a signal Von (H level signal) is supplied.
 このように、共有量子化部361qを備える構成とし、イベントの発生を検出するようにしても良い。第15の実施の形態においても、画素アレイ部31qの構成を小型化することができる。 In this way, the configuration may include the shared quantization unit 361q to detect the occurrence of an event. Also in the fifteenth embodiment, the configuration of the pixel array unit 31q can be miniaturized.
 図38に示した第15の実施の形態における画素アレイ部31qは、カレントミラー回路を横繋ぎ構成した構成であった。さらに、図示はしないが、例えば図32に示した構成を適用し、電流源を横繋ぎする構成としても良い。 The pixel array unit 31q in the fifteenth embodiment shown in FIG. 38 had a configuration in which a current mirror circuit was horizontally connected. Further, although not shown, for example, the configuration shown in FIG. 32 may be applied to horizontally connect the current sources.
 第4乃至第15の実施の形態においては、行方向での横繋ぎの構成を適用した場合を例に挙げて説明したが、ブロック毎に横繋ぎ構成を適用した構成としても良い。 In the fourth to fifteenth embodiments, the case where the horizontal connection configuration in the row direction is applied has been described as an example, but the horizontal connection configuration may be applied to each block.
 第1乃至第15の実施の形態においては、画素51単位で処理する場合を例に挙げて説明したが、ブロック毎に処理される場合にも適用できる。 In the first to fifteenth embodiments, the case of processing in units of 51 pixels has been described as an example, but it can also be applied to the case of processing in block units.
 また、第1乃至第15の実施の形態においては、読出画素や参照画素が、順次切り替えられて読み出しが行われる例を挙げて説明したが、所定の画素を参照画素として固定し、その固定された参照画素との差分が読み出されるようにしても良い。また参照画素としては遮光された画素であっても良い。 Further, in the first to fifteenth embodiments, the read pixel and the reference pixel have been described with reference to an example in which the read pixel and the reference pixel are sequentially switched and read. However, a predetermined pixel is fixed as a reference pixel and the reference pixel is fixed. The difference from the reference pixel may be read out. Further, the reference pixel may be a light-shielded pixel.
 なお、第1乃至第15の実施の形態を組み合わせた実施の形態も可能である。 It should be noted that an embodiment in which the first to fifteenth embodiments are combined is also possible.
 本技術を適用することで、画素面積を小さくすることができる。また、閾値電圧を画素付近で生成する構成とすることができる。よって、高速な読み出しを実現することができる。また、隣接する画素を用いるため、温度特性をキャンセルでき、フリッカの影響を抑制することができる。 By applying this technology, the pixel area can be reduced. Further, the threshold voltage can be generated in the vicinity of the pixel. Therefore, high-speed reading can be realized. Further, since adjacent pixels are used, the temperature characteristics can be canceled and the influence of flicker can be suppressed.
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Example of application to mobiles>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図40は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 40 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図40に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 40, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図40の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information. In the example of FIG. 40, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
 図41は、撮像部12031の設置位置の例を示す図である。 FIG. 41 is a diagram showing an example of the installation position of the imaging unit 12031.
 図41では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 41, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図41には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 41 shows an example of the photographing range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining, it is possible to extract as the preceding vehicle a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and that travels in substantially the same direction as the vehicle 12100 at a predetermined speed (for example, 0 km / h or more). it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1の光電変換素子と、
 第2の光電変換素子と、
 前記第1の光電変換素子と前記第2の光電変換素子の電圧の差に対応する差信号を生成する回路として、差動増幅回路と
 を備え、
 前記差動増幅回路からの信号により信号の変化であるイベントの発生を検出する
 イベント検出装置。
(2)
 前記差動増幅回路を構成するトランジスタは、前記第1の光電変換素子を含む第1の画素と、前記第2の光電変換素子を含む第2の画素に分散して配置されている
 前記(1)に記載のイベント検出装置。
(3)
 前記第1の画素と前記第2の画素のうちの一方を読出画素、他方を参照画素としたとき、前記差動増幅回路は、前記読出画素からの信号と前記参照画素からの信号の差分を出力する
 前記(2)に記載のイベント検出装置。
(4)
 前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタのうち、第1のトランジスタは前記第1の画素に含まれ、前記第2のトランジスタは前記第2の画素に含まれる
 前記(2)に記載のイベント検出装置。
(5)
 前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタは、前記第1の画素と前記第2の画素が配置されている画素アレイ部に含まれる
 前記(2)に記載のイベント検出装置。
(6)
 前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタは、前記第1の画素と前記第2の画素が配置されている画素アレイ部外に配置されている
 前記(2)に記載のイベント検出装置。
(7)
 前記第1の画素内の信号のリセットと、前記第2の画素内の信号のリセットは、外部からの信号により同期して行われる
 前記(2)乃至(6)のいずれかに記載のイベント検出装置。
(8)
 前記第1の画素内の信号のリセットと、前記第2の画素内の信号のリセットは、それぞれの画素内で生成される信号により非同期で行われる
 前記(2)乃至(6)のいずれかに記載のイベント検出装置。
(9)
 前記第1の画素と前記第2の画素は、ぞれぞれ、前記読出画素に設定されたときに閉じられる第1のスイッチと、前記参照画素に設定されたときに閉じられる第2のスイッチをさらに備える
 前記(3)乃至(8)のいずれかに記載のイベント検出装置。
(10)
 前記第1のスイッチを介して出力された信号と、所定の閾値とを比較した比較結果を前記イベントの発生を表すイベントデータとして出力する量子化部をさらに備える
 前記(9)に記載のイベント検出装置。
(11)
 前記量子化部からの出力を記憶するメモリ部をさらに備える
 前記(10)に記載のイベント検出装置。
(12)
 前記メモリ部は、第1の閾値と比較された結果を記憶する第1のメモリと、第2の閾値と比較された結果を記憶する第2のメモリを含む
 前記(11)に記載のイベント検出装置。
(13)
 前記第1のスイッチを介して出力された信号と、第1の閾値とを比較した比較結果を前記イベントの発生を表すイベントデータとして出力する第1の量子化部と、
 前記第1のスイッチを介して出力された信号と、第2の閾値とを比較した比較結果を前記イベントの発生を表すイベントデータとして出力する第2の量子化部と
 をさらに備える前記(9)に記載のイベント検出装置。
(14)
 前記参照画素は接続され、
 前記参照画素に含まれ、前記差動増幅回路に含まれるカレントミラー回路を構成するトランジスタが接続されている
 前記(3)乃至(13)のいずれかに記載のイベント検出装置。
(15)
 前記第1の画素は、前記イベントの発生を表すイベントデータを記憶する第1のメモリを含み、
 前記第2の画素は、前記イベントの発生を表すイベントデータを記憶する第2のメモリを含み、
 前記第1のメモリへの書き込みと前記第2のメモリの書き込みは、異なるタイミングで行われる
 前記(2)乃至(14)のいずれかに記載のイベント検出装置。
(16)
 前記第1の画素は、前記差動増幅回路からの出力と所定の閾値とを比較する第1の量子化部を含み、
 前記第2の画素は、前記差動増幅回路からの出力と所定の閾値とを比較する第2の量子化部を含み、
 前記第1のメモリは、前記第1の量子化部からの出力を記憶し、
 前記第2のメモリは、前記第2の量子化部からの出力を記憶する
 前記(15)に記載のイベント検出装置。
(17)
 前記差動増幅回路からの出力と所定の閾値とを比較する量子化部をさらに備え、
 前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタ、および前記量子化部は、前記第1の画素と前記第2の画素が配置されている画素アレイ部外に配置されている
 前記(2)に記載のイベント検出装置。
(18)
 第1の閾値信号が供給される第1のコンデンサと、第2の閾値信号が供給される第2のコンデンサがさらに備えられ、
 前記第1のコンデンサと前記第2のコンデンサは、光電変換素子と差動増幅回路を構成するトランジスタとの間に接続されている
 前記(1)に記載のイベント検出装置。
(19)
 前記第1の閾値信号と前記第2の閾値信号は、前記差動増幅回路に参照信号を供給する参照画素に供給される
 前記(18)に記載のイベント検出装置。
(20)
 前記差動増幅回路からの出力と第1の閾値との比較結果を、前記イベントとして検出するとき、前記第1の閾値信号と前記第2の閾値信号は共にHレベルの信号とされ、
 前記差動増幅回路からの出力と第2の閾値との比較結果を、前記イベントとして検出するとき、前記第1の閾値信号と前記第2の閾値信号は共にLレベルの信号とされる
 前記(19)に記載のイベント検出装置。
The present technology can also have the following configurations.
(1)
The first photoelectric conversion element and
The second photoelectric conversion element and
A differential amplifier circuit is provided as a circuit that generates a difference signal corresponding to the difference in voltage between the first photoelectric conversion element and the second photoelectric conversion element.
An event detection device that detects the occurrence of an event that is a change in a signal based on a signal from the differential amplifier circuit.
(2)
The transistors constituting the differential amplifier circuit are dispersedly arranged in a first pixel including the first photoelectric conversion element and a second pixel including the second photoelectric conversion element (1). ). The event detection device.
(3)
When one of the first pixel and the second pixel is a read pixel and the other is a reference pixel, the differential amplifier circuit determines the difference between the signal from the read pixel and the signal from the reference pixel. The event detection device according to (2) above, which outputs.
(4)
Of the first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit, the first transistor is included in the first pixel, and the second transistor is the second transistor. The event detection device according to (2) above, which is included in the pixel.
(5)
The first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit are included in the pixel array portion in which the first pixel and the second pixel are arranged (2). ). The event detection device.
(6)
The first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit are arranged outside the pixel array portion in which the first pixel and the second pixel are arranged. The event detection device according to (2) above.
(7)
The event detection according to any one of (2) to (6) above, wherein the reset of the signal in the first pixel and the reset of the signal in the second pixel are performed synchronously by a signal from the outside. apparatus.
(8)
The reset of the signal in the first pixel and the reset of the signal in the second pixel are performed asynchronously by the signal generated in each pixel in any of the above (2) to (6). The event detector described.
(9)
The first pixel and the second pixel are, respectively, a first switch that is closed when the read pixel is set and a second switch that is closed when the reference pixel is set. The event detection device according to any one of (3) to (8) above.
(10)
The event detection according to (9) above, further comprising a quantization unit that outputs a comparison result comparing a signal output via the first switch with a predetermined threshold value as event data indicating the occurrence of the event. apparatus.
(11)
The event detection device according to (10), further including a memory unit that stores an output from the quantization unit.
(12)
The event detection according to (11) above, wherein the memory unit includes a first memory for storing the result compared with the first threshold value and a second memory for storing the result compared with the second threshold value. apparatus.
(13)
A first quantization unit that outputs a comparison result comparing the signal output via the first switch and the first threshold value as event data indicating the occurrence of the event, and the first quantization unit.
(9) The above (9) further includes a second quantization unit that outputs a comparison result comparing the signal output via the first switch and the second threshold value as event data indicating the occurrence of the event. The event detection device described in.
(14)
The reference pixels are connected and
The event detection device according to any one of (3) to (13), wherein a transistor included in the reference pixel and forming a current mirror circuit included in the differential amplifier circuit is connected.
(15)
The first pixel includes a first memory for storing event data representing the occurrence of the event.
The second pixel includes a second memory for storing event data representing the occurrence of the event.
The event detection device according to any one of (2) to (14), wherein the writing to the first memory and the writing to the second memory are performed at different timings.
(16)
The first pixel includes a first quantization unit that compares an output from the differential amplifier circuit with a predetermined threshold value.
The second pixel includes a second quantization unit that compares the output from the differential amplifier circuit with a predetermined threshold value.
The first memory stores the output from the first quantization unit, and stores the output from the first quantization unit.
The event detection device according to (15), wherein the second memory stores an output from the second quantization unit.
(17)
A quantization unit for comparing the output from the differential amplifier circuit with a predetermined threshold value is further provided.
The first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit, and the quantization unit are pixel array units in which the first pixel and the second pixel are arranged. The event detection device according to (2) above, which is arranged outside.
(18)
A first capacitor to which the first threshold signal is supplied and a second capacitor to which the second threshold signal is supplied are further provided.
The event detection device according to (1), wherein the first capacitor and the second capacitor are connected between a photoelectric conversion element and a transistor constituting a differential amplifier circuit.
(19)
The event detection device according to (18), wherein the first threshold signal and the second threshold signal are supplied to a reference pixel that supplies a reference signal to the differential amplifier circuit.
(20)
When the comparison result between the output from the differential amplifier circuit and the first threshold value is detected as the event, both the first threshold value signal and the second threshold value signal are H-level signals.
When the comparison result between the output from the differential amplifier circuit and the second threshold value is detected as the event, both the first threshold value signal and the second threshold value signal are L-level signals. 19) The event detection device according to.
 11 DVSチップ, 12 ロジックダイ, 21 イベント生成部, 22 データ処理部, 31 画素アレイ部, 32 駆動部, 33 アービタ, 34 出力部, 41 画素ブロック, 51 画素, 52 イベント検出部, 60 ノード, 61 光電変換素子, 81 電流電圧変換部, 82 バッファ, 83 減算部, 84 量子化部, 85 転送部, 91 トランジスタ, 92 トランジスタ, 93 トランジスタ, 101 コンデンサ, 102 オペアンプ, 103 コンデンサ, 104 スイッチ, 111,112 コンパレータ, 113 出力部, 312 コンデンサ, 313,314 スイッチ, 315 PMOSトランジスタ, 316 OR回路, 317,318 スイッチ, 319 電流供給線, 320 負荷MOS回路, 321 垂直信号線, 322 ACK信号線, 323 スイッチ, 341 コンデンサ, 342,343 スイッチ, 361 共有量子化部, 371 PMOSトランジスタ, 372 NMOSトランジスタ, 373 スイッチ, 391,392 スイッチ, 411 メモリ部, 412 メモリ, 421 onメモリ, 422 offメモリ, 431,432 共有量子化部, 441 PMOSトランジスタ, 442 NMOSトランジスタ, 443スイッチ, 444 垂直信号線, 451 PMOSトランジスタ, 452 NMOSトランジスタ, 453 スイッチ, 454 垂直信号線, 501 スイッチ, 511,512 PMOSトランジスタ, 513,514 スイッチ, 515,516 垂直信号線, 531 横繋ぎ線, 532 スイッチ, 551 メモリ, 552 量子化部, 571 量子化部, 601,602 コンデンサ 11 DVS chip, 12 logic die, 21 event generation unit, 22 data processing unit, 31 pixel array unit, 32 drive unit, 33 arbiter, 34 output unit, 41 pixel block, 51 pixels, 52 event detection unit, 60 nodes, 61 Photoelectric conversion element, 81 current-voltage conversion unit, 82 buffer, 83 subtraction unit, 84 quantization unit, 85 transfer unit, 91 transistor, 92 transistor, 93 transistor, 101 transistor, 102 operational capacitor, 103 capacitor, 104 switch, 111, 112. Comparer, 113 output unit, 312 condenser, 313,314 switch, 315 MIMO transistor, 316 OR circuit, 317, 318 switch, 319 current supply line, 320 load MOS circuit, 321 vertical signal line, 322 ACK signal line, 323 switch, 341 capacitor, 342, 343 switch, 361 shared quantization unit, 371 MIMO transistor, 372 NMOS transistor, 373 switch, 391,392 switch, 411 memory unit, 412 memory, 421 on memory, 422 off memory, 431,432 shared quantum Kabu, 441 MIMO transistor, 442 MIMO transistor, 443 switch, 444 vertical signal line, 451 MIMO transistor, 452 MIMO transistor, 453 switch, 454 vertical signal line, 501 switch, 511,512 MIMO transistor, 513,514 switch, 515. , 516 vertical signal line, 531 horizontal connecting line, 532 switch, 551 memory, 552 quantization part, 571 quantization part, 601,602 capacitor

Claims (20)

  1.  第1の光電変換素子と、
     第2の光電変換素子と、
     前記第1の光電変換素子と前記第2の光電変換素子の電圧の差に対応する差信号を生成する回路として、差動増幅回路と
     を備え、
     前記差動増幅回路からの信号により信号の変化であるイベントの発生を検出する
     イベント検出装置。
    The first photoelectric conversion element and
    The second photoelectric conversion element and
    A differential amplifier circuit is provided as a circuit that generates a difference signal corresponding to the difference in voltage between the first photoelectric conversion element and the second photoelectric conversion element.
    An event detection device that detects the occurrence of an event that is a change in a signal based on a signal from the differential amplifier circuit.
  2.  前記差動増幅回路を構成するトランジスタは、前記第1の光電変換素子を含む第1の画素と、前記第2の光電変換素子を含む第2の画素に分散して配置されている
     請求項1に記載のイベント検出装置。
    Claim 1 in which the transistors constituting the differential amplifier circuit are dispersedly arranged in a first pixel including the first photoelectric conversion element and a second pixel including the second photoelectric conversion element. The event detection device described in.
  3.  前記第1の画素と前記第2の画素のうちの一方を読出画素、他方を参照画素としたとき、前記差動増幅回路は、前記読出画素からの信号と前記参照画素からの信号の差分を出力する
     請求項2に記載のイベント検出装置。
    When one of the first pixel and the second pixel is a read pixel and the other is a reference pixel, the differential amplifier circuit determines the difference between the signal from the read pixel and the signal from the reference pixel. The event detection device according to claim 2, which outputs.
  4.  前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタのうち、第1のトランジスタは前記第1の画素に含まれ、前記第2のトランジスタは前記第2の画素に含まれる
     請求項2に記載のイベント検出装置。
    Of the first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit, the first transistor is included in the first pixel, and the second transistor is the second transistor. The event detection device according to claim 2, which is included in a pixel.
  5.  前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタは、前記第1の画素と前記第2の画素が配置されている画素アレイ部に含まれる
     請求項2に記載のイベント検出装置。
    The first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit are included in the pixel array portion in which the first pixel and the second pixel are arranged. The event detection device described in.
  6.  前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタは、前記第1の画素と前記第2の画素が配置されている画素アレイ部外に配置されている
     請求項2に記載のイベント検出装置。
    The first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit are arranged outside the pixel array portion in which the first pixel and the second pixel are arranged. The event detection device according to claim 2.
  7.  前記第1の画素内の信号のリセットと、前記第2の画素内の信号のリセットは、外部からの信号により同期して行われる
     請求項2に記載のイベント検出装置。
    The event detection device according to claim 2, wherein the reset of the signal in the first pixel and the reset of the signal in the second pixel are performed in synchronization with a signal from the outside.
  8.  前記第1の画素内の信号のリセットと、前記第2の画素内の信号のリセットは、それぞれの画素内で生成される信号により非同期で行われる
     請求項2に記載のイベント検出装置。
    The event detection device according to claim 2, wherein the reset of the signal in the first pixel and the reset of the signal in the second pixel are performed asynchronously by the signal generated in each pixel.
  9.  前記第1の画素と前記第2の画素は、それぞれ、前記読出画素に設定されたときに閉じられる第1のスイッチと、前記参照画素に設定されたときに閉じられる第2のスイッチをさらに備える
     請求項3に記載のイベント検出装置。
    The first pixel and the second pixel each further include a first switch that is closed when set to the read pixel and a second switch that is closed when set to the reference pixel, respectively. The event detection device according to claim 3.
  10.  前記第1のスイッチを介して出力された信号と、所定の閾値とを比較した比較結果を前記イベントの発生を表すイベントデータとして出力する量子化部をさらに備える
     請求項9に記載のイベント検出装置。
    The event detection device according to claim 9, further comprising a quantization unit that outputs a comparison result of comparing a signal output via the first switch with a predetermined threshold value as event data indicating the occurrence of the event. ..
  11.  前記量子化部からの出力を記憶するメモリ部をさらに備える
     請求項10に記載のイベント検出装置。
    The event detection device according to claim 10, further comprising a memory unit for storing the output from the quantization unit.
  12.  前記メモリ部は、第1の閾値と比較された結果を記憶する第1のメモリと、第2の閾値と比較された結果を記憶する第2のメモリを含む
     請求項11に記載のイベント検出装置。
    The event detection device according to claim 11, wherein the memory unit includes a first memory for storing the result compared with the first threshold value and a second memory for storing the result compared with the second threshold value. ..
  13.  前記第1のスイッチを介して出力された信号と、第1の閾値とを比較した比較結果を前記イベントの発生を表すイベントデータとして出力する第1の量子化部と、
     前記第1のスイッチを介して出力された信号と、第2の閾値とを比較した比較結果を前記イベントの発生を表すイベントデータとして出力する第2の量子化部と
     をさらに備える請求項9に記載のイベント検出装置。
    A first quantization unit that outputs a comparison result comparing the signal output via the first switch and the first threshold value as event data indicating the occurrence of the event, and the first quantization unit.
    The ninth aspect of the present invention further includes a second quantization unit that outputs a comparison result comparing the signal output via the first switch and the second threshold value as event data indicating the occurrence of the event. The event detector described.
  14.  前記参照画素は接続され、
     前記参照画素に含まれ、前記差動増幅回路に含まれるカレントミラー回路を構成するトランジスタが接続されている
     請求項3に記載のイベント検出装置。
    The reference pixels are connected and
    The event detection device according to claim 3, wherein a transistor included in the reference pixel and forming a current mirror circuit included in the differential amplifier circuit is connected.
  15.  前記第1の画素は、前記イベントの発生を表すイベントデータを記憶する第1のメモリを含み、
     前記第2の画素は、前記イベントの発生を表すイベントデータを記憶する第2のメモリを含み、
     前記第1のメモリへの書き込みと前記第2のメモリの書き込みは、異なるタイミングで行われる
     請求項2に記載のイベント検出装置。
    The first pixel includes a first memory for storing event data representing the occurrence of the event.
    The second pixel includes a second memory for storing event data representing the occurrence of the event.
    The event detection device according to claim 2, wherein the writing to the first memory and the writing to the second memory are performed at different timings.
  16.  前記第1の画素は、前記差動増幅回路からの出力と所定の閾値とを比較する第1の量子化部を含み、
     前記第2の画素は、前記差動増幅回路からの出力と所定の閾値とを比較する第2の量子化部を含み、
     前記第1のメモリは、前記第1の量子化部からの出力を記憶し、
     前記第2のメモリは、前記第2の量子化部からの出力を記憶する
     請求項15に記載のイベント検出装置。
    The first pixel includes a first quantization unit that compares an output from the differential amplifier circuit with a predetermined threshold value.
    The second pixel includes a second quantization unit that compares the output from the differential amplifier circuit with a predetermined threshold value.
    The first memory stores the output from the first quantization unit, and stores the output from the first quantization unit.
    The event detection device according to claim 15, wherein the second memory stores an output from the second quantization unit.
  17.  前記差動増幅回路からの出力と所定の閾値とを比較する量子化部をさらに備え、
     前記差動増幅回路に含まれるカレントミラー回路を構成する第1のトランジスタと第2のトランジスタ、および前記量子化部は、前記第1の画素と前記第2の画素が配置されている画素アレイ部外に配置されている
     請求項2に記載のイベント検出装置。
    A quantization unit for comparing the output from the differential amplifier circuit with a predetermined threshold value is further provided.
    The first transistor and the second transistor constituting the current mirror circuit included in the differential amplifier circuit, and the quantization unit are pixel array units in which the first pixel and the second pixel are arranged. The event detection device according to claim 2, which is arranged outside.
  18.  第1の閾値信号が供給される第1のコンデンサと、第2の閾値信号が供給される第2のコンデンサがさらに備えられ、
     前記第1のコンデンサと前記第2のコンデンサは、光電変換素子と差動増幅回路を構成するトランジスタとの間に接続されている
     請求項1に記載のイベント検出装置。
    A first capacitor to which the first threshold signal is supplied and a second capacitor to which the second threshold signal is supplied are further provided.
    The event detection device according to claim 1, wherein the first capacitor and the second capacitor are connected between a photoelectric conversion element and a transistor constituting a differential amplifier circuit.
  19.  前記第1の閾値信号と前記第2の閾値信号は、前記差動増幅回路に参照信号を供給する参照画素に供給される
     請求項18に記載のイベント検出装置。
    The event detection device according to claim 18, wherein the first threshold signal and the second threshold signal are supplied to a reference pixel that supplies a reference signal to the differential amplifier circuit.
  20.  前記差動増幅回路からの出力と第1の閾値との比較結果を、前記イベントとして検出するとき、前記第1の閾値信号と前記第2の閾値信号は共にHレベルの信号とされ、
     前記差動増幅回路からの出力と第2の閾値との比較結果を、前記イベントとして検出するとき、前記第1の閾値信号と前記第2の閾値信号は共にLレベルの信号とされる
     請求項19に記載のイベント検出装置。
    When the comparison result between the output from the differential amplifier circuit and the first threshold value is detected as the event, both the first threshold value signal and the second threshold value signal are H-level signals.
    When the comparison result between the output from the differential amplifier circuit and the second threshold value is detected as the event, the first threshold value signal and the second threshold value signal are both L-level signals. 19. The event detection device according to 19.
PCT/JP2020/040770 2019-11-15 2020-10-30 Event detection device WO2021095560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-206968 2019-11-15
JP2019206968A JP2021082883A (en) 2019-11-15 2019-11-15 Event detection device

Publications (1)

Publication Number Publication Date
WO2021095560A1 true WO2021095560A1 (en) 2021-05-20

Family

ID=75912501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040770 WO2021095560A1 (en) 2019-11-15 2020-10-30 Event detection device

Country Status (2)

Country Link
JP (1) JP2021082883A (en)
WO (1) WO2021095560A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747090A (en) * 2021-09-01 2021-12-03 豪威芯仑传感器(上海)有限公司 Pixel acquisition circuit and image sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050853A (en) * 2015-09-01 2017-03-09 三星電子株式会社Samsung Electronics Co.,Ltd. Event-based sensor and pixel of event-based sensor
JP2018085725A (en) * 2016-11-21 2018-05-31 三星電子株式会社Samsung Electronics Co.,Ltd. Event-based sensor, user device including the same, and operation method thereof
JP2018182496A (en) * 2017-04-11 2018-11-15 ソニーセミコンダクタソリューションズ株式会社 Signal processor and solid state image sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050853A (en) * 2015-09-01 2017-03-09 三星電子株式会社Samsung Electronics Co.,Ltd. Event-based sensor and pixel of event-based sensor
JP2018085725A (en) * 2016-11-21 2018-05-31 三星電子株式会社Samsung Electronics Co.,Ltd. Event-based sensor, user device including the same, and operation method thereof
JP2018182496A (en) * 2017-04-11 2018-11-15 ソニーセミコンダクタソリューションズ株式会社 Signal processor and solid state image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747090A (en) * 2021-09-01 2021-12-03 豪威芯仑传感器(上海)有限公司 Pixel acquisition circuit and image sensor

Also Published As

Publication number Publication date
JP2021082883A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
TWI820078B (en) solid-state imaging element
US11832013B2 (en) Solid-state image sensor, imaging device, and method of controlling solid-state image sensor
CN112640428B (en) Solid-state imaging device, signal processing chip, and electronic apparatus
WO2020090460A1 (en) Sensor and control method
WO2020170861A1 (en) Event signal detection sensor and control method
US11523079B2 (en) Solid-state imaging element and imaging device
US20210235036A1 (en) Solid-state image sensor, imaging device, and method of controlling solid-state image sensor
WO2021039142A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2020129657A1 (en) Sensor and control method
CN115604558A (en) Photodetector and electronic device
WO2021095560A1 (en) Event detection device
WO2021261070A1 (en) Solid-state imaging device, and imaging device
WO2022137993A1 (en) Comparator and solid-state imaging element
WO2024042946A1 (en) Photodetector element
TW202408216A (en) A light detection device
TW202408217A (en) Light detection device and vehicle control system
KR20240056646A (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
KR20240056647A (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886886

Country of ref document: EP

Kind code of ref document: A1