WO2020179288A1 - Light detection device - Google Patents

Light detection device Download PDF

Info

Publication number
WO2020179288A1
WO2020179288A1 PCT/JP2020/002912 JP2020002912W WO2020179288A1 WO 2020179288 A1 WO2020179288 A1 WO 2020179288A1 JP 2020002912 W JP2020002912 W JP 2020002912W WO 2020179288 A1 WO2020179288 A1 WO 2020179288A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
exposure
unit
pixel
switch
Prior art date
Application number
PCT/JP2020/002912
Other languages
French (fr)
Japanese (ja)
Inventor
前田 俊治
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2020179288A1 publication Critical patent/WO2020179288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to a light detection device capable of detecting light.
  • the TOF Time Of Flight
  • this TOF method light is emitted and the reflected light reflected by the measurement object is detected. Then, in the TOF method, the distance to the measurement object is measured by measuring the time difference between the timing at which light is emitted and the timing at which reflected light is detected (for example, Patent Document 1).
  • the photodetector there may be a case where it is desired to perform an imaging operation in addition to the distance measuring operation for measuring the distance to the object to be measured.
  • the image pickup operation it is desirable to secure a dynamic range.
  • the photodetector includes a first pixel, a first exposure controller, and a first driver.
  • the first pixel includes a first photoelectric conversion element capable of performing a photoelectric conversion operation to generate a first received light charge based on light, and a first charge storage unit capable of storing the first received light charge. And a second charge storage portion, a first switch capable of connecting the first photoelectric conversion element to the first charge storage portion by being turned on, and a first photoelectric conversion element by being turned on And a second switch connectable to the second charge storage section.
  • the first exposure control unit stores the first photoelectric conversion element in the first charge storage unit based on the first charge amount of the first received charge stored in the first charge storage unit.
  • the first drive unit is configured to be able to control the operation of the first switch and the second switch based on the result of the first setting process.
  • the first photoelectric conversion element generates the first received light charge
  • the first switch is turned on, so that the first received charge becomes the first light receiving charge.
  • the first light receiving charge is stored in the first charge storage unit and the second switch is turned on, so that the first received light charge is stored in the second charge storage unit.
  • the first time length of the first exposure period and the second time length of the second exposure period are set.
  • the first setting process for setting is performed.
  • the first exposure period is a period in which the first photoelectric conversion element generates the first received light charge accumulated in the first charge storage section
  • the second exposure period is the period in which the first photoelectric conversion element is generated. This is a period in which the first received light charges accumulated in the second charge accumulation unit are generated.
  • the operation of the first switch and the second switch is controlled based on the result of the first setting process.
  • FIG. 3 is a block diagram illustrating a configuration example of a photodetector device according to an embodiment of the present disclosure.
  • FIG. 3 is a block diagram showing a configuration example of a photodetector section shown in FIG. 1.
  • FIG. 3 is a circuit diagram illustrating a configuration example of the pixel illustrated in FIG. 2.
  • 4 is a cross-sectional view illustrating an example of a cross-sectional structure of a main part of the pixel illustrated in FIG. 3.
  • FIG. 3 is a cross-sectional view illustrating a configuration example of the photodetector device illustrated in FIG. 1.
  • FIG. 6 is a timing chart showing an example of a distance measuring operation in the photodetector shown in FIG. 1.
  • FIG. 1 is a timing chart showing an example of a distance measuring operation in the photodetector shown in FIG. 1.
  • FIG. 6 is a timing diagram illustrating an example of an image pickup operation in the photodetector shown in FIG. 1.
  • FIG. 6 is a timing waveform chart showing an example of a distance measuring operation in the photodetector shown in FIG. 1.
  • FIG. 6 is a timing waveform chart showing an example of an image pickup operation in the photodetector shown in FIG. 1.
  • FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2.
  • FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2.
  • FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2.
  • FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2.
  • FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2.
  • 6 is a flowchart showing an example of an image pickup operation in the photodetector shown in FIG. 1.
  • FIG. 13 is a timing waveform chart illustrating an example of an image pickup operation in the photodetector according to the modification. It is explanatory drawing which shows one operation state of the pixel which concerns on a modification. It is explanatory drawing showing the other operation state of the pixel which concerns on a modification. It is explanatory drawing showing the other operation state of the pixel which concerns on a modification. It is explanatory drawing which shows the other operation state of the pixel which concerns on a modification.
  • FIG. 11 is a block diagram illustrating a configuration example of a pixel array and a driving unit according to another modification. It is explanatory drawing showing the structural example of the photon detection part which concerns on another modification.
  • FIG. 11 is a block diagram illustrating a configuration example of a pixel array and a driving unit according to another modification. It is explanatory drawing showing the structural example of the photon detection part which concerns on another modification.
  • FIG. 19 is a circuit diagram illustrating a configuration example of the pixel and the circuit illustrated in FIG. 18. It is a block diagram showing an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • FIG. 1 shows a configuration example of a photodetector (photodetector 1) according to an embodiment.
  • the photodetector 1 has two operation modes M (distance measuring operation mode MD and imaging operation mode MI).
  • the distance measuring operation mode MD is an operation mode for performing a distance measuring operation for measuring the distance to the object 100 by an indirect method
  • the imaging operation mode MI is a mode for performing an imaging operation for imaging the object 100.
  • the photodetector 1 includes a light emitting unit 11, an optical system 12, a photodetector 20, and a control unit 13.
  • the light emitting unit 11 is configured to emit an optical pulse L0 toward the object 100 in the distance measuring operation mode MD.
  • the light emitting unit 11 emits the light pulse L0 by performing a light emitting operation in which light emission and non-light emission are alternately repeated based on an instruction from the control unit 13.
  • the light emitting unit 11 has, for example, a light source that emits infrared light. This light source is configured using, for example, a laser light source or an LED (Light Emitting Diode).
  • the optical system 12 is configured to include a lens that forms an image on the light receiving surface S of the light detection unit 20.
  • a light pulse reflected light pulse L1 emitted from the light emitting unit 11 and reflected by the object 100 enters the optical system 12.
  • the image pickup operation mode MI the light from the subject enters the optical system 12.
  • the light detection unit 20 is configured to generate an image PIC by detecting light based on an instruction from the control unit 13. Specifically, in the distance measurement operation mode MD, the light detection unit 20 receives the reflected light pulse L1 to generate the image PIC (distance image PIC1). Each of the plurality of pixel values included in the distance image PIC1 indicates a value for the distance D to the object 100. Further, the photodetector 20 generates an image PIC (image PIC2) by receiving light L2 in the image pickup operation mode MI. Each of the plurality of pixel values included in the captured image PIC2 indicates the amount of received light. Then, the photodetector 20 outputs the generated image PIC as the image signal DATA.
  • the control unit 13 supplies a control signal to the light emitting unit 11 and the photodetecting unit 20 to control the operations thereof, thereby controlling the operation of the photodetecting device 1.
  • the control unit 13 has an operation mode setting unit 14.
  • the operation mode setting unit 14 sets the operation mode M to one of the distance measurement operation mode MD and the imaging operation mode MI based on the instruction included in the control signal CTL supplied from the outside.
  • the control unit 13 is configured to control the operations of the light emitting unit 11 and the light detection unit 20 according to the operation mode M set by the operation mode setting unit 14.
  • FIG. 2 shows an example of the configuration of the light detection unit 20.
  • the light detection unit 20 includes a pixel array 21, a driving unit 22, a reading unit 24, and a processing unit 26.
  • the pixel array 21 has a plurality of pixels P arranged in a matrix. Each pixel P outputs pixel signals SIGA and SIGB.
  • FIG. 3 shows an example of a configuration of pixel P.
  • FIG. 4 shows an example of a configuration of a main part of the pixel P.
  • the pixel array 21 includes a plurality of control line TGLA, a plurality of control line TGLB, a plurality of control line RSLA, a plurality of control line RSLB, a plurality of control line SELL, a plurality of signal lines SGLA, and a plurality of signals. It has a line SGLB.
  • the control line TGLA is provided so as to extend in the horizontal direction (horizontal direction in FIGS. 2 and 3), and the drive unit 22 applies the control signal STGLA to the control line TGLA.
  • the control line TGLB is provided so as to extend in the horizontal direction, and the drive unit 22 applies the control signal STGLB to the control line TGLB.
  • the control line RSLA is provided so as to extend in the horizontal direction, and the drive unit 22 applies a control signal SRSLA to the control line RSLA.
  • the control line RSLB is provided so as to extend in the horizontal direction, and the control signal SRSLB is applied to the control line RSLB by the drive unit 22.
  • the control line SELL is provided so as to extend in the horizontal direction, and a control signal SSELL is applied to the control line SELL by the drive unit 22.
  • the signal line SGLA is provided so as to extend in the vertical direction (longitudinal direction in FIGS. 2 and 3) and transmits the pixel signal SIGA to the reading unit 24.
  • the signal line SGLB is provided so as to extend in the vertical direction, and transmits the pixel signal SIGB to the reading unit 24.
  • the pixel P has a photodiode PD, transistors TGA and TGB, floating diffusions FDA and FDB, transistors RSTA and RSTB, transistors AMPA and AMPB, and transistors SELA and SELB.
  • the transistors TGA, TGB, RSTA, RSTB, AMPA, AMPB, SELA, SELB are N-type MOS (Metal Oxide Semiconductor) transistors in this example.
  • the photodiode PD is a photoelectric conversion element that generates electric charges according to the amount of received light.
  • the anode of the photodiode PD is grounded, and the cathode is connected to the sources of the transistors TGA and TGB.
  • the amount of charge that can be stored in the photodiode PD is smaller than the amount of charge that can be stored in the floating diffusion FDA and the amount of charge that can be stored in the floating diffusion FDB.
  • the gate of the transistor TGA is connected to the control line TGLA, the source is connected to the cathode of the photodiode PD and the source of the transistor TGB, and the drain is connected to the floating diffusion FDA, the source of the transistor RSTA, and the gate of the transistor AMPA.
  • the floating diffusion FDA is configured to accumulate the electric charge supplied from the photodiode PD via the transistor TGA. For example, as shown in FIG. 4, a diffusion layer formed on the surface of the semiconductor substrate 9 is used. It is composed. In FIG. 3, the floating diffusion FDA is shown using a capacitive element symbol. In this example, the amount of charge that can be stored in the floating diffusion FDA is larger than the amount of charge that can be stored in the photodiode PD.
  • the gate of the transistor RSTA is connected to the control line RSLA, the drain is supplied with a power supply voltage VDD, and the source is connected to the floating diffusion FDA, the drain of the transistor TGA, and the gate of the transistor AMPA.
  • the gate of the transistor AMPA is connected to the floating diffusion FDA, the drain of the transistor TGA, and the source of the transistor RSTA, the drain is supplied with the power supply voltage VDD, and the source is connected to the drain of the transistor SELA.
  • the gate of the transistor SELA is connected to the control line SELL, the drain is connected to the source of the transistor AMPA, and the source is connected to the signal line SGLA.
  • the circuit including the photodiode PD, the floating diffusion FDA, and the transistors RSTA, AMPA, and SELA is also referred to as tap A.
  • the gate of the transistor TGB is connected to the control line TGLB, the source is connected to the cathode of the photodiode PD and the source of the transistor TGA, and the drain is connected to the floating diffusion FDB, the source of the transistor RSTB, and the gate of the transistor AMPB.
  • the floating diffusion FDB is configured to accumulate the electric charge supplied from the photodiode PD via the transistor TGB. For example, as shown in FIG. 4, a diffusion layer formed on the surface of the semiconductor substrate 9 is used. It is composed. In FIG. 3, similarly to the floating diffusion FDA, the floating diffusion FDB is shown using the symbol of the capacitive element.
  • the amount of charge that can be stored in the floating diffusion FDB is larger than the amount of charge that can be stored in the photodiode PD.
  • the gate of the transistor RSTB is connected to the control line RSLB, the drain is supplied with the power supply voltage VDD, and the source is connected to the floating diffusion FDB, the drain of the transistor TGB, and the gate of the transistor AMPB.
  • the gate of the transistor AMPB is connected to the floating diffusion FDB, the drain of the transistor TGB, and the source of the transistor RSTB, the power supply voltage VDD is supplied to the drain, and the source is connected to the drain of the transistor SELB.
  • the gate of the transistor SELB is connected to the control line SELL, the drain is connected to the source of the transistor AMPB, and the source is connected to the signal line SGLB.
  • the circuit including the photodiode PD, the floating diffusion FDB, and the transistors RSTB, AMPB, and SELB is also referred to as tap B.
  • the floating diffusion FDA is reset by turning on the transistor RSTA
  • the floating diffusion FDB is reset by turning on the transistor RSTB.
  • the charges generated by the photodiode PD are selectively accumulated in the floating diffusion FDA and the floating diffusion FDB.
  • the transistors SELA and SELB are turned on, the pixel P outputs the pixel signal SIGA corresponding to the amount of charges accumulated in the floating diffusion FDA, and the amount of charges accumulated in the floating diffusion FDB is changed.
  • the corresponding pixel signal SIGB is output.
  • the drive unit 22 (FIG. 2) is configured to drive the plurality of pixels P based on an instruction from the processing unit 26. Specifically, the drive unit 22 applies the control signal STGLA to the control line TGLA, the control signal STGLB to the control line TGLB, and the control signal SRSLA to the control line RSLA to perform control.
  • the control signal SRSLB is applied to the line RSLB
  • the control signal SSELL is applied to the control line SELL.
  • the drive unit 22 has a signal generation unit 23.
  • the signal generator 23 is configured to generate the control signals STGLA and STGLB.
  • the drive unit 22 applies the single control signal STGLA generated by the signal generation unit 23 to the plurality of control lines TGLA, and applies the single control signal STGLB generated by the signal generation unit 23 to the plurality of control lines TGLB. It is designed to do.
  • the reading unit 24 performs AD (Analog to Digital) conversion based on the pixel signal SIG (pixel signal SIGA, SIGB) supplied from the pixel array 21 via the signal line SGL (signal line SGLA, SGLB). It is configured to generate the image signal DATA0.
  • AD Analog to Digital
  • the reading unit 24 has a plurality of AD conversion units 25 and a bus line BUS.
  • the plurality of AD conversion units 25 are provided corresponding to the plurality of signal lines SGL (signal lines SGLA, SGLB), respectively.
  • the AD conversion unit 25 is configured to generate a digital code CODE by performing AD conversion based on the voltage of the pixel signal SIG supplied via the corresponding signal line SGL. Then, the AD conversion unit 25 supplies the digital code CODE to the bus wiring BUS.
  • the bus wiring BUS has a plurality of wirings and is configured to transmit the digital code CODE output from the AD conversion unit 25. Using this bus wiring BUS, the reading unit 24 sequentially transfers a plurality of digital code CODEs supplied from the plurality of AD conversion units 25 to the processing unit 26 as an image signal DATA0.
  • the processing unit 26 is configured to control the operation of the light detection unit 20 by supplying a control signal to the driving unit 22 and the reading unit 24 based on an instruction from the control unit 13.
  • the processing unit 26 has an exposure control unit 27 and a pixel value calculation unit 28.
  • the exposure control unit 27 determines the time length of the period (exposure period T2A) in which the photodiode PD accumulates electric charges accumulated in the floating diffusion FDA, and the electric charges accumulated in the photodiode PD in the floating diffusion FDB. Is configured to set the time length of the period (exposure period T2B) for generating the. Specifically, the exposure control unit 27 sets, for example, the ratio of the time length of the exposure period T2A and the time length of the exposure period T2B (exposure time ratio RT). In this example, the exposure time ratio RT is obtained by dividing the time length of the exposure period T2B by the time length of the exposure period T2A. Then, the processing unit 26 supplies the driving unit 22 with information about the time lengths of the exposure periods T2A and T2B set by the exposure control unit 27.
  • the pixel value calculation unit 28 is configured to calculate the pixel value of each of the plurality of pixels P based on the digital code CODE relating to the plurality of pixels P in the pixel array 21.
  • the pixel value indicates the value for the distance D to the object 100.
  • the processing unit 26 generates the distance image PIC1 using the pixel values of the plurality of pixels P in the pixel array 21, and outputs the distance image PIC1 as the image signal DATA. Further, in the imaging operation mode MI, the pixel value indicates the amount of received light.
  • the processing unit 26 is configured to generate a captured image PIC2 by using the pixel values of the plurality of pixels P in the pixel array 21, and output the captured image PIC2 as an image signal DATA.
  • FIG. 5 shows a configuration example of the photodetector 1.
  • the light emitting unit 11, the light detection unit 20, and the holder 91 are arranged on the substrate of the substrate 90.
  • the holder 91 is provided with openings 91A and 91B.
  • the light emitting unit 11 is arranged on the substrate of the substrate 90 at a position corresponding to the opening 91A, and the light detecting unit 20 is arranged at a position on the substrate of the substrate 90 corresponding to the opening 91B.
  • the holder 91 holds the cover glass 93.
  • the cover glass 93 is configured to protect the light emitting unit 11 and the light detection unit 20 from dust and the external atmosphere.
  • the cover glass 93 is provided with a light diffusing film 94 and an infrared filter 95.
  • the light diffusion film 94 is provided in a region of the cover glass 93 corresponding to the light emitting unit 11, and is configured to diffuse the light pulse L0.
  • the infrared filter 95 is provided in a region of the cover glass 93 corresponding to the photodetector 20, and is configured to transmit infrared light.
  • a lens holder 92 is provided in the opening 91B of the holder 91. The lens holder 92 holds the lenses 12A and 12B. The lenses 12A and 12B form an optical system 12.
  • the photodiode PD corresponds to a specific but not limitative example of “first photoelectric conversion element” in one embodiment of the present disclosure.
  • the floating diffusion FDB corresponds to a specific but not limitative example of “first charge storage section” in one embodiment of the disclosure.
  • the floating diffusion FDA corresponds to a specific but not limitative example of “second charge storage section” in one embodiment of the present disclosure.
  • the transistor TGB corresponds to a specific example of the "first switch” in the present disclosure.
  • the transistor TGA corresponds to a specific example of the "second switch” in the present disclosure.
  • the transistors AMPB and SELB correspond to a specific but not limitative example of “first output section” in one embodiment of the disclosure.
  • the transistors AMPA and SELA correspond to a specific but not limitative example of “second output section” in one embodiment of the disclosure.
  • the exposure control unit 27 corresponds to a specific but not limitative example of “first exposure control unit” in one embodiment of the present disclosure.
  • the exposure period T2B corresponds to a specific but not limitative example of “first exposure period” in one embodiment of the present disclosure.
  • the exposure period T2A corresponds to a specific but not limitative example of “second exposure period” in one embodiment of the present disclosure.
  • the exposure time ratio RT corresponds to a specific but not limitative example of “first exposure time ratio” in one embodiment of the present disclosure.
  • the drive unit 22 corresponds to a specific example of the “first drive unit” in the present disclosure.
  • the pixel value calculation unit 28 corresponds to a specific but not limitative example of “first pixel value calculation unit” in one embodiment of the present disclosure.
  • the photodetector 1 When performing a distance measuring operation for measuring the distance to the object 100, the photodetector 1 operates in the distance measuring operation mode MD. In this distance measurement operation mode MD, the light detection device 1 emits the light pulse L0 by performing the light emission operation OP1 and receives the reflected light pulse L1 reflected by the object 100 by performing the exposure operation OP2. Then, the charge is selectively accumulated in the floating diffusion FDA and FDB in each of the plurality of pixels P.
  • the photodetector 1 performs AD conversion based on the pixel signal SIG supplied from the plurality of pixels P via the signal line SGL by performing the read operation OP3, and generates the image signal DATA0. Then, the photodetector 1 generates a distance image PIC1 based on the image signal DATA0, and outputs the distance image PIC1 as an image signal DATA.
  • the photodetector 1 when performing an imaging operation for imaging the object 100, the photodetector 1 operates in the imaging operation mode MI.
  • the photodetector 1 receives the light L2 by performing the exposure operation OP2, and selectively accumulates charges in the floating diffusion FDA and FDB in each of the plurality of pixels P.
  • the photodetection device 1 performs the read operation OP3 to perform AD conversion based on the pixel signal SIG supplied from the plurality of pixels P via the signal line SGL to generate the image signal DATA0.
  • the photodetection device 1 generates a captured image PIC2 based on the image signal DATA0 and outputs this captured image PIC2 as the image signal DATA.
  • FIGS. 6A and 6B show an example of the operation in the photodetector 1
  • FIG. 6A shows the distance measuring operation in the distance measuring operation mode MD
  • FIG. 6B shows the imaging operation in the imaging operation mode MI.
  • the upper end indicates the uppermost portion of the pixel array 21
  • the lower end indicates the lowermost portion of the pixel array 21.
  • the photodetector 1 performs the light emission operation OP1 and the exposure operation OP2 during the period from timing t1 to t2.
  • the control unit 13 controls the operation of the light emitting unit 11, and the light emitting unit 11 emits the light pulse L0 by performing the light emitting operation OP1 that alternately repeats light emission and non-light emission.
  • the control unit 13 controls the operation of the light detection unit 20, and the drive unit 22 of the light detection unit 20 drives the plurality of pixels P in the pixel array 21.
  • the plurality of pixels P receive the reflected light pulse L1 reflected by the object 100.
  • the photodetection device 1 performs the read operation OP3 during the period from timing t2 to timing t3.
  • the drive unit 22 sequentially drives the plurality of pixels P in the pixel array 21 in pixel line units, and the plurality of pixels P outputs the pixel signal SIG and the signal line SGL (signal lines SGLA and SGLB). It is supplied to the reading unit 24 via.
  • the reading unit 24 generates the image signal DATA0 by performing AD conversion based on the pixel signal SIG.
  • the photodetector 1 alternately repeats the light emitting operation OP1 and the exposing operation OP2 and the reading operation OP3.
  • the processing unit 26 generates a distance image PIC1 in which each pixel value indicates a value for the distance D based on the image signal DATA0.
  • the photodetection device 1 performs the exposure operation OP2 in the period of timing t4 to t5, as shown in FIG. 6B.
  • the control unit 13 controls the operation of the light detection unit 20, and the drive unit 22 of the light detection unit 20 drives the plurality of pixels P in the pixel array 21.
  • the photodetection device 1 performs the read operation OP3 during the period from timing t5 to t6.
  • the drive unit 22 sequentially drives the plurality of pixels P in the pixel array 21 in pixel line units, and the plurality of pixels P outputs the pixel signal SIG and the signal line SGL (signal lines SGLA and SGLB). It is supplied to the reading unit 24 via.
  • the reading unit 24 generates the image signal DATA0 by performing AD conversion based on the pixel signal SIG.
  • the photodetector 1 alternately repeats such an exposure operation OP2 and a read operation OP3.
  • the processing unit 26 generates a captured image PIC2 in which each pixel value indicates the amount of received light, based on the image signal DATA0.
  • FIG. 7A and 7B show an example of the distance measuring operation of the photodetector 1, where FIG. 7A shows the waveform of the light pulse L0 emitted by the light emitting unit 11, and FIG. 7B shows the waveforms of the control signals SRSLA and SRSLB.
  • C shows the waveform of the voltage VFDA in the floating diffusion FDA
  • D shows the waveform of the voltage VFDB in the floating diffusion FDB
  • E shows the waveform of the control signal STGLA
  • F shows the control signal.
  • the waveform of STGLB is shown, (G) shows the operation of the AD conversion unit 25 (AD conversion unit 25A) connected to the signal line SGLA related to the pixel P1, and (H) is connected to the signal line SGLB related to the pixel P1.
  • the operation of the AD converter 25 (AD converter 25B) will be described.
  • the photodetector 1 performs light emission operation OP1 and exposure operation OP2.
  • the drive section 22 sets the voltage of the control signal SSELL to a low level.
  • the transistors SELA and SELB are both turned off, and the pixel P1 is electrically disconnected from the signal lines SGLA and SGLB.
  • the floating diffusions FDA and FDB of the pixel P1 selectively accumulate the charges generated by the photodiode PD.
  • the photodetector 1 performs the read operation OP3.
  • the drive section 22 sets the voltage of the control signal SSELL to a high level.
  • both the transistors SELA and SELB are turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB.
  • the pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA
  • the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB. The operation will be described in detail below.
  • the drive unit 22 sets the voltages of the control signals SRSLA and SRSLB to the high level (FIG. 7(B)).
  • the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD (FIGS. 7C and 7D). In this way, the floating diffusions FDA and FDB are reset.
  • the drive unit 22 changes the voltage of the control signals SRSLA and SRSLB from the high level to the low level (FIG. 7(B)).
  • both the transistors RSTA and RSTB are turned off.
  • the light emitting unit 11 starts the light emitting operation OP1 in which light emission and non-light emission are alternately repeated (FIG. 7 (A)).
  • the drive unit 22 starts generating the control signals STGLA and STGLB at this timing t11 (FIGS. 7E and 7F).
  • the control signals STGLA and STGLB are signals that alternately repeat high level and low level.
  • the phase of the control signal STGLB lags the phase of the control signal STGLA by 180 degrees.
  • the frequency of the light pulse L0 is the same as the frequency of the control signal STGLA
  • the phase of the light pulse L0 is the same as the phase of the control signal STGLA. That is, the control unit 13 controls the operations of the light emitting unit 11 and the light detection unit 20 so that the light pulse L0 and the control signals STGLA and STGLB are synchronized.
  • the exposure period T1 starts at this timing t11.
  • the photodiode PD In the exposure period T1, in the pixel P1, the photodiode PD generates an electric charge based on the reflected light pulse L1 corresponding to the light pulse L0.
  • the transistor TGA is turned on/off based on the control signal STGLA, and the transistor TGB is turned on/off based on the control signal STGLB. That is, one of the transistors TGA and TGB is turned on.
  • the electric charge generated by the photodiode PD is selectively accumulated in the floating diffusion FDA and the floating diffusion FDB.
  • FIG. 8 shows an operation example of the pixel P1, where (A) shows the waveform of the light pulse L0, (B) shows the waveform of the reflected light pulse L1, and (C) shows the waveform of the control signal STGLA. And (D) shows the waveform of the control signal STGLB.
  • the light pulse L0 rises
  • the control signal STGLA rises
  • the control signal STGLB falls.
  • the optical pulse L0 falls
  • the control signal STGLA falls
  • the control signal STGLB rises.
  • the optical pulse L0 rises, the control signal STGLA rises, and the control signal STGLB falls at a timing t25 when the phase is delayed by 180 degrees from the timing t23. Then, at timing t26 in which the phase is delayed by 180 degrees from timing t25, the optical pulse L0 falls, the control signal STGLA falls, and the control signal STGLB rises.
  • the phase of the reflected light pulse L1 is shifted from the phase of the light pulse L0 by the phase ⁇ (FIG. 8(B)).
  • This phase ⁇ corresponds to the distance D from the light detection device 1 to the object 100.
  • the reflected light pulse L1 rises at a timing t22 which is delayed by a time corresponding to the phase ⁇ from the timing t21, and the reflected light pulse L1 falls at a timing t24 which is delayed by a time corresponding to the phase ⁇ from the timing t23. ..
  • the photodiode PD of the pixel P1 generates an electric charge in the period from timing t22 to t24 based on the reflected light pulse L1.
  • the transistor TGA transfers the charge generated by the photodiode PD to the floating diffusion FDA during the period when the control signal STGLA is at a high level (timing t22 to t23), and the transistor TGB has a control signal STGLB at a high level.
  • the charge generated by the photodiode PD is transferred to the floating diffusion FDB.
  • the charge QA is accumulated in the floating diffusion FDA during the period from timing t22 to t23
  • the charge QB is accumulated in the floating diffusion FDB during the period from timing t23 to t24.
  • the difference between the amount of charge of the charge QA and the amount of charge of the charge QB changes according to the phase ⁇ .
  • the charge difference ⁇ Q changes according to the distance D from the photodetector 1 to the object 100. Specifically, for example, the shorter the distance D, the more the charge QA and the less the charge QB. Further, for example, as the distance D increases, the charge QA decreases and the charge QB increases.
  • the pixel P1 repeats the operation at timings t21 to t25.
  • the charge QA is repeatedly accumulated in the floating diffusion FDA
  • the charge QB is repeatedly accumulated in the floating diffusion FDB.
  • the voltage VFDA of the floating diffusion FDA and the voltage VFDB of the floating diffusion FDB gradually decrease (FIGS. 7C and 7D).
  • the amount of change in voltage VFDA corresponds to the amount of charge QA
  • the amount of change in voltage VFDB corresponds to the amount of charge QB.
  • the degree of change in voltage VFDA is greater than the degree of change in voltage VFDB.
  • the light emitting unit 11 finishes the light emitting operation OP1 (FIG. 7(A)). Further, the drive unit 22 stops the generation of the control signals STGLA and STGLB at this timing t12, and sets the voltage of the control signals STGLA and STGLB to the low level (FIGS. 7E and 7F). As a result, the transistors TGA and TGB are turned off. In this way, the exposure period T1 ends.
  • the photodetecting device 1 performs the reading operation OP3.
  • the drive section 22 sets the voltage of the control signal SSELL to a high level.
  • the transistors SELA and SELB are both turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB.
  • the pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and outputs a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB. Output.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA
  • the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (see FIG. ), (H)).
  • the drive section 22 changes the voltage of the control signals SRSLA and SRSLB from low level to high level (FIG. 7(B)).
  • the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD (FIGS. 7C and 7D). In this way, the floating diffusions FDA and FDB are reset.
  • the drive unit 22 changes the voltages of the control signals SRSLA and SRSLB from the high level to the low level (FIG. 7(B)).
  • both the transistors RSTA and RSTB are turned off.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA
  • the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (FIG. 7). (G), (H)). That is, the AD conversion unit 25A performs AD conversion based on the pixel signal SIGA after the floating diffusion FDA is reset, and the AD conversion unit 25B performs AD conversion based on the pixel signal SIGB after the floating diffusion FDB is reset. Perform the conversion.
  • the AD conversion unit 25A generates a digital code CODE (digital code CODEA) by subtracting the digital value converted in the period of timing t17 to t18 from the digital value converted in the period of timing t13 to t14.
  • the AD conversion unit 25B generates a digital code CODE (digital code CODEB) by subtracting the digital value converted in the period of timing t17 to t18 from the digital value converted in the period of timing t13 to t14. ..
  • the reading unit 24 sequentially transfers these digital codes CODEA and CODEB to the processing unit 26 as an image signal DATA0.
  • the pixel value calculation unit 28 of the processing unit 26 calculates the pixel value of the pixel P1 based on, for example, the difference between the two digital codes CODEA and CODEB related to the pixel P1. This pixel value indicates a value for the distance D to the object 100.
  • the processing unit 26 uses the plurality of pixel values obtained from the plurality of pixels P in the pixel array 21 to generate the distance image PIC1 and outputs the distance image PIC1 as the image signal DATA.
  • FIG. 9A and 9B show an example of the image pickup operation of the photodetector 1, where FIG. 9A shows the waveform of the control signal SRSLB, FIG. 9B shows the waveform of the control signal STGLB, and FIG. 9C shows the control signal SRSLA.
  • (D) shows the waveform of the control signal STGLA
  • (E) shows the operation of the AD conversion section 25 (AD conversion section 25A) connected to the signal line SGLA related to the pixel P1
  • (F) Shows the operation of the AD conversion unit 25 (AD conversion unit 25B) connected to the signal line SGLB related to the pixel P1.
  • 10A to 10E show the operating state of the main part of the pixel P1.
  • the photodetector 1 first performs the exposure operation OP2.
  • the drive unit 22 lowers the voltage of the control signal SSELL.
  • the transistors SELA and SELB are both turned off, and the pixel P1 is electrically disconnected from the signal lines SGLA and SGLB.
  • the floating diffusions FDA and FDB of the pixel P1 selectively accumulate the charges generated by the photodiode PD. Specifically, the floating diffusion FDB accumulates the charge generated by the photodiode PD during the exposure period T2B, and the floating diffusion FDA accumulates the charge generated by the photodiode PD during the exposure period T2A.
  • the exposure time ratio RT (time length of exposure period T2B/time length of exposure period T2A) is dynamically set to, for example, about 1 to 100. In other words, “time length of exposure period T2B:time length of exposure period T2A” is set to, for example, about “1:1” to “100:1”.
  • the photodetector 1 performs the read operation OP3.
  • the drive section 22 sets the voltage of the control signal SSELL to a high level.
  • the transistors SELA and SELB are both turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB.
  • the pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and outputs a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA
  • the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB. The operation will be described in detail below.
  • the drive unit 22 sets the voltages of the control signals SRSLA and SRSLB to the high level (FIGS. 9A and 9C).
  • the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD. In this way, the floating diffusion FDA and FDB are reset.
  • the drive unit 22 changes the voltage of the control signal STGLB from low level to high level (FIG. 9(B)).
  • the transistor TGB is turned on.
  • the photodiode PD and the floating diffusion FDB are electrically connected as shown in FIG. 10A.
  • the drive unit 22 changes the voltage of the control signals SRSLA and SRSLB from the high level to the low level (FIGS. 9A and 9C).
  • both the transistors RSTA and RSTB are turned off.
  • the charge QA0 is accumulated in the floating diffusion FDA and the charge QB0 is accumulated in the floating diffusion FDB.
  • the exposure period T2B starts.
  • the charges generated by the photodiode PD are accumulated in the floating diffusion FDB as the charges QB1.
  • the drive unit 22 changes the voltage of the control signal STGLB from the high level to the low level (FIG. 9(B)).
  • the transistor TGB is turned off, and the photodiode PD and the floating diffusion FDB are electrically disconnected. In this way, the exposure period T2B ends.
  • the exposure period T2A starts.
  • the charges generated by the photodiode PD are accumulated in the photodiode PD, as shown in FIG. 10C.
  • the photodetecting device 1 performs the reading operation OP3.
  • the drive section 22 sets the voltage of the control signal SSELL to a high level.
  • the transistors SELA and SELB are both turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB.
  • the pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and outputs a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB. Output.
  • the charge QA0 is accumulated in the floating diffusion FDA, as shown in FIG. 10C.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 9(E)).
  • the digital value converted by the AD conversion unit 25A during this period is a value corresponding to the amount of electric charge QA0.
  • the drive unit 22 changes the voltage of the control signal STGLA from low level to high level (FIG. 9(D)).
  • the transistor TGA is turned on in the pixel P1.
  • the photodiode PD and the floating diffusion FDA are electrically connected as shown in FIG. 10D.
  • the charge generated by the photodiode PD is accumulated as the charge QA1 in the floating diffusion FDA.
  • the drive unit 22 changes the voltage of the control signal STGLA from the high level to the low level (FIG. 9(D)).
  • the transistor TGA is turned off and the photodiode PD and the floating diffusion FDA are electrically disconnected. In this way, the exposure period T2A ends.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 9 (E)).
  • the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (FIG. 9(F)).
  • the drive unit 22 changes the voltages of the control signals SRSLA and SRSLB from a low level to a high level (FIGS. 9A and 9C).
  • the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD. In this way, the floating diffusions FDA and FDB are reset.
  • the AD conversion unit 25A generates a digital code CODE (digital code CODEA) by subtracting the digital value converted at the timing t34 to t35 from the digital value converted at the timing t36 to t37.
  • CDS correlated double sampling
  • the AD conversion unit 25B also generates a digital code CODE (digital code CODEB) based on the digital value converted at the timings t36 to t37.
  • the reading unit 24 sequentially transfers these digital codes CODEA and CODEB to the processing unit 26 as an image signal DATA0.
  • the pixel value calculation unit 28 of the processing unit 26 calculates the pixel value of the pixel P based on, for example, the digital code CODEA relating to each pixel P and the exposure time ratio RT.
  • the processing unit 26 generates a captured image PIC2 using the plurality of pixel values obtained from the plurality of pixels P in the pixel array 21, and outputs the captured image PIC2 as the image signal DATA.
  • FIG. 11 shows an operation example of the exposure controller 27 and the pixel value calculator 28.
  • the amount of charge that can be stored in the photodiode PD is "1,000e-" or less (less than 1,000 electrons)
  • the amount of charge that can be stored in each of the floating diffusion FDA and FDB is "100,000e". -" or less (100,000 electrons or less).
  • the exposure amount at the taps A and B is indicated by the charge amount.
  • the exposure control unit 27 sets the exposure time ratio RT based on the digital code CODEB relating to a certain pixel P (reference pixel PR) of the plurality of pixels P in the pixel array 21.
  • the reference pixel PR is indicated by, for example, a control signal CTL supplied from the outside.
  • the external device can determine the reference pixel PR according to the scene, for example.
  • the pixel value calculation unit 28 calculates the pixel value of the pixel P based on, for example, the digital code CODEA relating to each pixel P and the exposure time ratio RT.
  • the photodetector 20 repeats this operation, for example, in frame period units. The operation will be described in detail below.
  • the light detection unit 20 of the light detection device 1 performs an image pickup operation (step S101). Specifically, the photodetector 20 performs the exposure operation OP2 and the read operation OP3 as shown in FIG. As a result, digital codes CODEA and CODEB for the plurality of pixels P of the pixel array 21 are obtained.
  • the exposure control unit 27 confirms whether the exposure amount at the tap B of the reference pixel PR is “1,000e ⁇ ” or less (step S102). Specifically, the exposure control unit 27 determines whether or not the amount of electric charge accumulated in the floating diffusion FDB in the reference pixel PR is "1,000 e-" or less based on the digital code CODEB related to the reference pixel PR. Check.
  • step S102 when the exposure amount at the tap B of the reference pixel PR is equal to or less than “1,000e ⁇ ” (“Y” in step S102), the exposure control unit 27 sets the exposure time ratio RT (of the exposure period T2B). It is confirmed whether or not (time length/time length of exposure period T2A) is "1" (step S103). That is, the exposure control unit 27 confirms whether "time length of exposure period T2B:time length of exposure period T2A" is "1:1".
  • step S103 When the exposure time ratio RT is “1” in step S103 (“Y” in step S103), the process proceeds to step S109.
  • step S104 the exposure control unit 27 sets the exposure time ratio RT to “1” (step S104). That is, in this case, since the exposure amount is the amount of charge that can be accumulated in the photodiode PD, the exposure control unit 27 sets the exposure time ratio RT to “1”. Then, the process proceeds to step S108.
  • step S102 when the exposure amount of the reference pixel PR at the tap B is larger than “1,000e ⁇ ” (“N” in step S102), the exposure control unit 27 determines that the exposure amount of the reference pixel PR at the tap B is increased. It is confirmed whether or not the value is "100,000e-" or less (step S105).
  • step S105 when the exposure amount of the reference pixel PR at the tap B is "100,000 e-" or less ("Y" in step S105), the exposure control unit 27 determines the exposure amount of the reference pixel PR at the tap B. It is confirmed whether or not the value obtained by dividing by the exposure time ratio RT is "1,000e-" or less (step S106).
  • step S106 when the value obtained by dividing the exposure amount at tap B of the reference pixel PR by the exposure time ratio RT is “1,000e ⁇ ” or less (“Y” in step S106), the process proceeds to step S109.
  • step S106 when the value obtained by dividing the exposure amount at the tap B of the reference pixel PR by the exposure time ratio RT is larger than “1,000e ⁇ ” (“N” in step S106), the exposure control unit 27 causes the exposure to be performed.
  • the time ratio RT is set to a value obtained by dividing the exposure amount at tap B of the reference pixel PR by "1,000e-" (step S107).
  • the pixel value calculation unit 28 determines the pixel value of each of the plurality of pixels P including the reference pixel PR to a value according to the exposure amount of the tap B of the pixel P. Specifically, the pixel value calculation unit 28 determines the pixel value of each pixel P to a value according to the digital code CODEB relating to the pixel P.
  • step S109 the pixel value calculation unit 28 determines the pixel value of each of the plurality of pixels P including the reference pixel PR according to the value obtained by multiplying the exposure amount of the tap A of the pixel P by the exposure time ratio RT. Determine the value.
  • step S105 when the exposure amount at the tap B of the reference pixel PR is larger than “100,000 e ⁇ ” (“N” in step S105), the exposure control unit 27 determines the time length of the exposure period T2A and the exposure period T2B. The total exposure time of the time length is shortened (step S110). That is, in this case, the exposure amount exceeds the charge amount that can be accumulated in the floating diffusion FDB and is saturated, so the exposure control unit 27 shortens the total exposure time.
  • the photodetection unit 20 repeats the operations of these steps S101 to S110, for example, in frame period units.
  • the reference pixel PR corresponds to a specific example of the "first pixel” in the present disclosure. Pixels P other than the reference pixel PR correspond to a specific example of the "second pixel” in the present disclosure.
  • the AD conversion unit 25B corresponds to a specific example of the “first AD conversion unit” in the present disclosure.
  • the AD conversion unit 25A corresponds to a specific example of the “second AD conversion unit” in the present disclosure.
  • the digital code CODEB corresponds to a specific example of the "first digital code” in the present disclosure.
  • the digital code CODEA corresponds to a specific example of the "second digital code” in the present disclosure.
  • the photodetector 1 can perform an imaging operation in addition to the distance measuring operation.
  • the photodetection device 1 for example, by combining the distance image PIC1 and the captured image PIC2, it is possible to synthesize a distance image having higher resolution.
  • the photodetector 20 that performs the distance measuring operation by the indirect method is used to perform the imaging operation. Since such an indirect method can realize high measurement accuracy, the photodetection apparatus 1 can further improve the accuracy of the distance image by performing an imaging operation.
  • the time length of the exposure period T2A and the time length of the exposure period T2B are set based on the exposure amount of the tap B of the reference pixel PR.
  • the exposure time ratio RT time length of exposure period T2B/time length of exposure period T2A
  • the exposure time ratio RT is appropriately set based on the information about the approximate exposure amount. can do.
  • the exposure time ratio RT can be appropriately set, so that the conversion efficiency can be freely set almost continuously. As a result, the photodetector 1 can perform the imaging operation while ensuring the dynamic range.
  • the pixel value of the pixel P is calculated based on the exposure time ratio RT thus set and the exposure amount of the tap A of the pixel P.
  • the exposure amount of the tap A of the pixel P is obtained by using the correlated double sampling, and the pixel value of the pixel P is obtained based on the obtained exposure amount and the exposure time ratio RT. It was calculated. As a result, the photodetector 1 can obtain the captured image PIC2 with less noise.
  • the time length of the exposure period T2A and the time length of the exposure period T2B are set based on the exposure amount of the tap B of the reference pixel, so that the exposure time ratio is appropriately set. Since it can be set, the imaging operation can be performed while ensuring the dynamic range.
  • the photodetector 1A includes a photodetector 20A, similar to the photodetector 1 according to the above-described embodiment (FIG. 1).
  • the light detection unit 20A has a processing unit 26A, similarly to the light detection unit 20 (FIG. 2) according to the above embodiment.
  • the processing unit 26A has an exposure control unit 27A.
  • the exposure control unit 27A is configured to set the time length of the exposure period T2A and the time length of the exposure period T2B in the imaging operation mode MI, similarly to the exposure control unit 27 according to the above-described embodiment.
  • the exposure control unit 27A divides the exposure period T2B into two, and sets the exposure periods T2A and T2B in the order of the exposure period T2B, the exposure period T2A, and the exposure period T2B.
  • FIG. 12 shows an example of the image pickup operation of the photodetector 1A.
  • 13A to 13G show the operation state of the main part of the pixel P1.
  • the drive unit 22 sets the voltages of the control signals SRSLA and SRSLB to the high level (FIGS. 12A and 12C).
  • the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD.
  • the drive unit 22 changes the voltage of the control signal STGLB from low level to high level (FIG. 12(B)).
  • the transistor TGB is turned on.
  • the photodiode PD and the floating diffusion FDB are electrically connected as shown in FIG. 13A.
  • the drive unit 22 changes the voltage of the control signals SRSLA and SRSLB from the high level to the low level (FIGS. 23(A) and (C)).
  • both the transistors RSTA and RSTB are turned off.
  • the electric charge QA0 is accumulated in the floating diffusion FDA
  • the electric charge QB0 is accumulated in the floating diffusion FDB.
  • the exposure period T2B starts.
  • the charges generated by the photodiode PD are accumulated in the floating diffusion FDB as the charges QB1.
  • the drive section 22 changes the voltage of the control signal STGLB from the high level to the low level (FIG. 12(B)).
  • the transistor TGB is turned off, and the photodiode PD and the floating diffusion FDB are electrically disconnected. In this way, the exposure period T2B ends once.
  • the exposure period T2A starts.
  • the electric charge generated by the photodiode PD is accumulated in the photodiode PD.
  • the charge QA0 is accumulated in the floating diffusion FDA, as shown in FIG. 13C.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 12(E)).
  • the digital value converted by the AD conversion unit 25A during this period is a value corresponding to the amount of electric charge QA0.
  • the drive unit 22 changes the voltage of the control signal STGLA from low level to high level (FIG. 12(D)).
  • the transistor TGA is turned on in the pixel P1.
  • the photodiode PD and the floating diffusion FDA are electrically connected as shown in FIG. 13D. Then, the electric charge generated by the photodiode PD is accumulated in the floating diffusion FDA as the electric charge QA1.
  • the drive unit 22 changes the voltage of the control signal STGLA from the high level to the low level (FIG. 9(D)).
  • the transistor TGA is turned off, and the photodiode PD and the floating diffusion FDA are electrically disconnected. In this way, the exposure period T2A ends. Then, the exposure period T2B starts again.
  • the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 12E).
  • the drive section 22 changes the voltage of the control signal SRSLA from low level to high level (FIG. 12(C)).
  • the transistor RSTA is turned on, and the voltage VFDA in the floating diffusion FDA is set to the power supply voltage VDD.
  • the drive section 22 changes the voltage of the control signal STGLB from the low level to the high level (FIG. 12(B)).
  • the transistor TGB is turned on in the pixel P1.
  • the photodiode PD and the floating diffusion FDB are electrically connected as shown in FIG. 13F. Then, the electric charge generated by the photodiode PD is accumulated as the electric charge QB1 in the floating diffusion FDB.
  • the drive unit 22 changes the voltage of the control signal STGLB from the high level to the low level (FIG. 12(B)).
  • the transistor TGB is turned off, and the photodiode PD and the floating diffusion FDB are electrically disconnected. In this way, the exposure period T2B ends.
  • the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (FIG. 12 (F)).
  • the AD conversion unit 25A generates a digital code CODE (digital code CODEA) by subtracting the digital value converted at the timings t44 to t45 from the digital value converted during the period from the timing t46 to t47.
  • the AD conversion unit 25B also generates a digital code CODE (digital code CODEB) based on the digital value converted at the timings t48 to t49.
  • the reading unit 24 sequentially transfers these digital codes CODEA and CODEB to the processing unit 26A as an image signal DATA0.
  • the exposure periods T2A and T2B are set in the order of the exposure period T2B, the exposure period T2A, and the exposure period T2B in the imaging operation.
  • the exposure amount of the tap A digital code CODEA
  • the exposure amount corresponding to the center value of the change range of the illuminance is set to the exposure amount corresponding to the center value of the change range of the illuminance. be able to.
  • FIG. 14 illustrates an operation example of the exposure control unit 27B and the pixel value calculation unit 28 according to this modification. Steps S101 to S104 and S106 to S110 are the same as those in the above embodiment (FIG. 11).
  • step S102 when the exposure amount at the tap B of the reference pixel PR is larger than “1,000e ⁇ ” (“N” in step S102), the exposure control unit 27B determines that the exposure amount at the tap B of the reference pixel PR is increased. It is confirmed whether or not it is "10,000e-" or less (step S115).
  • step S115 when the exposure amount of the reference pixel PR at the tap B is larger than “10,000e ⁇ ” (“N” in step S115), the exposure control unit 27B determines that the exposure amount of the reference pixel PR at the tap B is increased. It is confirmed whether or not it is "100,000e-" or less (step S116). If the exposure amount at tap B of the reference pixel PR is equal to or less than “100,000 e ⁇ ” (“Y” in step S116), this flow ends. If the exposure amount at the tap B of the reference pixel PR is larger than “100,000 e ⁇ ” (“N” in step S116), the process proceeds to step S110.
  • the exposure time ratio RT is set when the exposure amount of the tap B of the reference pixel PR is “10,000e ⁇ ” or less.
  • the exposure time ratio RT can be set so that the exposure amount does not deteriorate the linearity. ..
  • the image quality of the captured image PIC2 can be improved.
  • FIG. 15 shows an example of the pixel P in the pixel array 21C according to this modification.
  • the pixel array 21C has a plurality of control lines FDGL.
  • the control line FDGL is provided so as to extend in the horizontal direction (horizontal direction in FIG. 15), and a control signal SFDGL is applied to the control line FDGL by the drive unit 22C according to the present modification.
  • the pixel P has transistors FDGA and FDGB and capacitors CAPA and CAPB.
  • the transistors FDGA and FDGB are N-type MOS transistors in this example.
  • the gate of the transistor FDGA is connected to the control line FDGL, the drain is connected to the source of the capacitive element CAPA and the transistor RSTA, and the source is connected to the floating diffusion FDA, the drain of the transistor TGA, and the gate of the transistor AMPA.
  • One end of the capacitive element CAPA is connected to the drain of the transistor FDGA and the source of the transistor RSTA, and the other end is grounded.
  • the gate of the transistor FDGB is connected to the control line FDGL, the drain is connected to the capacitive element CAPB and the source of the transistor RSTB, and the source is connected to the floating diffusion FDB, the drain of the transistor TGB, and the gate of the transistor AMPB.
  • One end of the capacitive element CAPB is connected to the drain of the transistor FDGB and the source of the transistor RSTB, and the other end is grounded.
  • the transistors FDGA and FDGB are turned on based on the control signal SFDGL.
  • the floating diffusion FDA and the capacitive element CAPA are electrically connected, and the floating diffusion FDB and the capacitive element CAPB are electrically connected.
  • the capacitance values at the taps A and B can be increased, so that the amount of charge that can be accumulated at the taps A and B can be increased.
  • FIG. 16 shows an example of a pixel P in another pixel array 21D according to this modification.
  • the pixel array 21D has a plurality of control lines FDGLA and a plurality of control lines FDGLB.
  • the control line FDGLA is provided so as to extend in the horizontal direction (horizontal direction in FIG. 16), and the control signal SFDGLA is applied to the control line FDGLA by the drive unit 22D according to the present modification.
  • the control line FDGLB is provided so as to extend in the horizontal direction, and a control signal SFDGLB is applied to the control line FDGLB by the drive unit 22D according to the present modification.
  • the pixel P has transistors FDGA and FDGB and capacitors CAPA and CAPB.
  • the gate of the transistor FDGA is connected to the control line FDGLA.
  • the gate of the transistor FDGB is connected to the control line FDGLB.
  • the transistor FDGA is turned on based on the control signal SFDGLA.
  • the transistor FDGA By turning on the transistor FDGA, the floating diffusion FDA and the capacitive element CAPA are electrically connected. As a result, in the pixel P, the amount of charge that can be accumulated in the tap A can be increased.
  • the transistor FDGB is turned on based on the control signal SFDGLB. By turning on the transistor FDGB, the floating diffusion FDB and the capacitive element CAPB are electrically connected. As a result, in the pixel P, the amount of charge that can be accumulated in the tap B can be increased.
  • taps A and B can be individually set.
  • the settings can be set according to the roles of the taps A and B. Specifically, for example, if saturation occurs even if the "time length of the exposure period T2B: the time length of the exposure period T2A" is set to "100: 1", the transistor FDGA is turned off and the transistor FDGB is turned on. The ON state can be achieved, which can increase the amount of charge that can be accumulated in the tap B. In other words, the conversion efficiency in the tap B can be lowered and the conversion efficiency in the tap A can be increased.
  • FIG. 17 shows a configuration example of the pixel array 21D and the drive unit 22D in the photodetector 1D according to this modification.
  • the pixel array 21D has a plurality of pixels P.
  • the plurality of pixels P are divided into two groups G1 and G2 in this example.
  • the pixels P (pixels PG1) belonging to the group G1 are shown by thick lines
  • the pixels P (pixels PG2) belonging to the group G2 are shown by thin lines.
  • the pixel array 21D includes a plurality of control lines TGLA1, a plurality of control lines TGLA2, a plurality of control lines TGLB1, a plurality of control lines TGLB2, a plurality of control lines RSLA1, a plurality of control lines RSLA2, and a plurality of controls. It has a line RSLB1 and a plurality of control lines RSLB2.
  • the control line TGLA1 is provided so as to extend in the horizontal direction (horizontal direction in FIG. 17), and a control signal STGLA1 is applied to the control line TGLA1 by the drive unit 22D.
  • the control line TGLA2 is provided so as to extend in the horizontal direction, and a control signal STGLA2 is applied to the control line TGLA2 by the drive unit 22D.
  • the control line TGLB1 is provided so as to extend in the horizontal direction, and a control signal STGLB1 is applied to the control line TGLB1 by the drive unit 22D.
  • the control line TGLB2 is provided so as to extend in the horizontal direction, and a control signal STGLB2 is applied to the control line TGLB2 by the drive unit 22D.
  • the control line RSLA1 is provided so as to extend in the horizontal direction, and a control signal SRSLA1 is applied to the control line RSLA1 by the drive unit 22D.
  • the control line RSLA2 is provided so as to extend in the horizontal direction, and a control signal SRSLA2 is applied to the control line RSLA2 by the drive unit 22D.
  • the control line RSLB1 is provided so as to extend in the horizontal direction, and a control signal SRSLB1 is applied to the control line RSLB1 by the drive unit 22D.
  • the control line RSLB2 is provided so as to extend in the horizontal direction, and a control signal SRSLB2 is applied to the control line RSLB2 by the drive unit 22D.
  • Pixel PG1 is connected to control lines TGLA1, TGLB1, RSLA1, RSLB1.
  • the pixel PG2 is connected to the control lines TGLA2, TGLB2, RSLA2, RSLB2.
  • the exposure control unit 27D in the light detection device 1D sets the exposure time ratio RT (exposure time ratio RT1) based on the exposure amount of the tap B of a certain reference pixel PG1R among the plurality of pixels PG1 in the imaging operation mode MI.
  • the exposure time ratio RT (exposure time ratio RT2) is set based on the exposure amount of the tap B of a certain reference pixel PG2R among the plurality of pixels PG2.
  • the plurality of pixels PG1 can operate at the exposure time ratio RT1
  • the plurality of pixels PG2 can operate at the exposure time ratio RT2.
  • the reference pixel PG1R corresponds to a specific but not limitative example of “first pixel” in one embodiment of the present disclosure.
  • the reference pixel PG2R corresponds to a specific but not limitative example of “second pixel” in one embodiment of the disclosure.
  • the exposure time ratio RT1 corresponds to a specific but not limitative example of “first exposure time ratio” in one embodiment of the present disclosure.
  • the exposure time ratio RT2 corresponds to a specific but not limitative example of “second exposure time ratio” in one embodiment of the present disclosure.
  • the exposure time ratio RT is set based on the exposure amount of the tap B of a certain reference pixel among the plurality of pixels P, and the plurality of pixels P operate at the exposure time ratio RT.
  • the present invention is not limited to this. Instead of this, for example, the exposure time ratio RT may be set based on the exposure amount of the tap B of each pixel P so that the pixel P operates at the exposure time ratio RT.
  • the photodetector 1E according to this modification will be described in detail below.
  • FIG. 18 illustrates a configuration example of the photodetection unit 20E in the photodetection device 1E.
  • the photodetection section 20E is formed on the two semiconductor chips 30 and 40.
  • a pixel array 21E is formed on the semiconductor chip 30.
  • the pixel array 21E has a plurality of pixels P arranged in a matrix.
  • a plurality of circuits C arranged in a matrix are formed on the semiconductor chip 40.
  • the plurality of circuits C are provided corresponding to the plurality of pixels P, respectively.
  • the semiconductor chips 30 and 40 are overlaid on each other and electrically connected to each other. Specifically, the pixel P and the circuit C are electrically connected to each other by using, for example, a through electrode.
  • FIG. 19 shows a configuration example of the pixel P and the circuit C.
  • the circuit C has a drive unit 42, AD conversion units 45A and 45B, and a processing unit 46.
  • the drive unit 42, the AD conversion units 45A and 45B, and the processing unit 46 correspond to the drive unit 22, the AD conversion units 25A and 25B, and the processing unit 26 according to the above embodiments, respectively.
  • the drive unit 42 is configured to drive the pixel P based on an instruction from the processing unit 46. Specifically, the drive unit 42 supplies the control signal STGLA to the transistor TGA of the pixel P, supplies the control signal STGLB to the transistor TGB of the pixel P, and supplies the control signal to the transistor RSTA of the pixel P.
  • the SRSLA is supplied
  • the control signal SRSLB is supplied to the transistor RSTB of the pixel P
  • the control signal SSELL is supplied to the transistors SELA and SELB of the pixel P.
  • the drive unit 42 has a signal generation unit 43.
  • the signal generator 43 is configured to generate the control signals STGLA and STGLB.
  • the AD conversion unit 45A is configured to generate a digital code CODEA by performing AD conversion based on the voltage of the pixel signal SIGA supplied from the pixel P.
  • the AD conversion unit 45B is configured to generate a digital code CODEB by performing AD conversion based on the voltage of the pixel signal SIGB supplied from the pixel P.
  • the processing unit 46 is configured to control the operations of the pixels P and the circuit C by supplying control signals to the drive unit 42 and the AD conversion units 45A and 45B based on the instruction from the control unit 13.
  • the processing unit 46 has an exposure control unit 47 and a pixel value calculation unit 48.
  • the exposure control unit 47 is configured to set the time length of the exposure period T2A and the time length of the exposure period T2B in the imaging operation mode MI. Specifically, the exposure control unit 47 sets, for example, the ratio of the time length of the exposure period T2A and the time length of the exposure period T2B (exposure time ratio RT). Then, the processing unit 46 is configured to supply the driving unit 42 with information regarding the time lengths of the exposure periods T2A and T2B set by the exposure control unit 47.
  • the pixel value calculation unit 48 is configured to calculate the pixel value of the pixel P based on the digital codes CODEA and CODEB.
  • the pixel value indicates the value for the distance D to the object 100.
  • the pixel value indicates the amount of received light.
  • the light detection unit 20E can set the exposure time ratio RT in units of pixels P.
  • the pixel P corresponds to a specific but not limitative example of “first pixel” in one embodiment of the present disclosure.
  • the exposure control unit 47 corresponds to a specific but not limitative example of “first exposure control unit” in one embodiment of the present disclosure.
  • the drive unit 42 corresponds to a specific but not limitative example of “first drive unit” in one embodiment of the present disclosure.
  • the pixel value calculation unit 48 corresponds to a specific but not limitative example of “first pixel value calculation unit” in one embodiment of the present disclosure.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053 are shown as the functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjustment and a control device such as a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the imaging unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the imaging unit 12031 can output the electric signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes a function of ADAS (Advanced Driver Assistance System) that includes collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, a vehicle collision warning, or a vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the voice image output unit 12052 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to an occupant of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the image capturing unit 12101 provided on the front nose and the image capturing unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 included in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the front images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
  • FIG. 16 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors
  • the imaging range 12114 indicates The imaging range of the imaging part 12104 provided in a rear bumper or a back door is shown.
  • a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the image capturing units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image capturing units 12101 to 12104 may be a stereo camera including a plurality of image capturing elements, or may be an image capturing element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies an obstacle around the vehicle 12100 into an obstacle visible to the driver of the vehicle 12100 and an obstacle difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. Is performed by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the measurement accuracy in distance measurement can be improved, so that the vehicle collision avoidance or collision mitigation function, the follow-up running function based on the inter-vehicle distance, the vehicle speed maintenance running function, the vehicle collision warning function, The accuracy of the lane departure warning function of the vehicle can be improved.
  • the present technology is applied to a distance measuring device that measures the distance to the object 100, but the present invention is not limited to this. Instead of this, for example, the present technology may be applied to a time measuring device that measures the flight time of light from the light emitting unit emitting the light pulse L0 to the light receiving unit detecting the reflected light pulse L1. ..
  • the present technology can be configured as follows. According to the present technology having the following configuration, it is possible to perform an imaging operation while ensuring a dynamic range.
  • a first photoelectric conversion element capable of performing a photoelectric conversion operation to generate a first received light charge based on light, a first charge storage section capable of storing the first received charge, and a first photoelectric conversion element No. 2 charge storage section, a first switch capable of connecting the first photoelectric conversion element to the first charge storage section by being turned on, and the first photoelectric conversion element being turned on.
  • a first pixel having a second switch capable of connecting the element to the second charge storage unit, and The first photoelectric conversion element is stored in the first charge storage unit based on a first charge amount of the first received charge stored in the first charge storage unit.
  • a first exposure control unit capable of performing a first setting process for setting a second time length of a period, and a first exposure control unit.
  • a photodetector including a first switch and a first drive unit capable of controlling the operation of the second switch based on the result of the first setting process.
  • the photodetector according to (1) above further comprising a first pixel value calculation unit capable of calculating a first pixel value based on the first pixel value.
  • the first drive unit can control the operation of the first switch so as to maintain the first switch in an ON state during the first exposure period.
  • a first AD converter is further provided, The first pixel is capable of outputting a first voltage according to the first charge amount in the first charge storage section in a first period after the first exposure period. Has an output section, The first AD conversion unit can convert the first voltage into a first digital code in the first period.
  • the photodetector according to (3) wherein the first exposure control unit performs the first setting process based on the first digital code.
  • the second exposure period includes a first sub-exposure period and a second sub-exposure period after the first sub-exposure period.
  • the first drive unit maintains the second switch in an off state during the first sub-exposure period and maintains the second switch in an on state during the second sub-exposure period,
  • the photodetector according to any one of (2) to (5), wherein the operation of the second switch can be controlled.
  • a second AD converter is further provided,
  • the first pixel is capable of outputting a second voltage according to the amount of charge in the second charge storage section during a second period within the period of the first sub-exposure period, and the second pixel In the third period after the sub-exposure period of the above, the second output unit capable of outputting the third voltage corresponding to the second charge amount is provided.
  • the second AD converter is capable of converting a difference voltage between the second voltage in the second period and the third voltage in the third period into a second digital code,
  • the first exposure control unit can set the first exposure time ratio based on the first charge amount.
  • the first exposure controller controls the first time length and the second time length to be equal to each other when the first charge amount is smaller than a first threshold value.
  • the first exposure control unit may change the first charge amount according to the first charge amount.
  • the photodetector according to (9), wherein the first exposure time ratio can be set so that the first time length is longer than the second time length.
  • the first exposure control unit shortens a total time length of the first time length and the second time length when the first charge amount is larger than a third threshold value.
  • a second photoelectric conversion element capable of performing a photoelectric conversion operation for generating a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a third No. 4 charge storage unit, a third switch capable of connecting the second photoelectric conversion element to the third charge storage unit by being turned on, and the second photoelectric conversion unit being turned on. Further comprising a second pixel having a fourth switch capable of connecting the element to the fourth charge storage section.
  • the second photoelectric conversion element may further include the third photoelectric conversion element based on the third charge amount of the second received charge accumulated in the third charge accumulation unit.
  • the first drive unit can further control the operation of the third switch and the fourth switch based on the result of the second setting process.
  • the first pixel value calculation unit further includes a fourth charge amount of the second received charge accumulated in the fourth charge accumulation unit, the third time length, and the fourth time length.
  • a second photoelectric conversion element capable of performing a photoelectric conversion operation for generating a second received light charge based on light, a third charge storage unit capable of storing the second received charge, and a third No. 4 charge storage unit, a third switch capable of connecting the second photoelectric conversion element to the third charge storage unit by being turned on, and the second photoelectric conversion unit being turned on.
  • a second pixel having a fourth switch capable of connecting the element to the fourth charge storage unit, and The second photoelectric conversion element is accumulated in the third charge accumulating portion based on a third charge amount of the second received electric charge accumulated in the third charge accumulating portion.
  • a second exposure control unit capable of performing a second setting process for setting a fourth time length of the period, and a second exposure control unit.
  • a second drive unit capable of controlling the operation of the third switch and the fourth switch based on the result of the second setting process. Based on a fourth charge amount of the second received charge accumulated in the fourth charge accumulating portion, a third exposure time length, and a second exposure time ratio of the fourth exposure time length.
  • the photodetector according to any one of (2) to (11) above, further comprising a second pixel value calculation unit capable of calculating a pixel value of 2.
  • a second photoelectric conversion element capable of performing a photoelectric conversion operation for generating a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a third No. 4 charge storage unit, a third switch capable of connecting the second photoelectric conversion element to the third charge storage unit by being turned on, and the second photoelectric conversion unit being turned on. Further comprising a second pixel having a fourth switch capable of connecting the element to the fourth charge storage section.
  • the first drive unit can further control the operation of the third switch and the fourth switch based on the result of the first setting process.
  • the first pixel value calculation unit further includes a second pixel value based on a fourth charge amount of the second received charges accumulated in the fourth charge accumulation unit and the exposure time ratio.
  • the photodetector according to any one of (2) to (11) above.
  • the first pixel is A fifth switch capable of applying a predetermined voltage to the first charge storage unit by being turned on, It further has a sixth switch capable of applying the predetermined voltage to the second charge storage unit by being turned on.
  • the said 1st drive part can control the operation
  • an operation mode setting unit capable of setting the operation mode to one of a plurality of operation modes including the first operation mode is provided.
  • the first exposure control unit can perform the first setting process in the first operation mode.
  • the first drive unit is capable of controlling operations of the first switch and the second switch in the first operation mode based on a result of the first setting process,
  • the first pixel value calculation unit can calculate the pixel value based on the second charge amount and the exposure time ratio in the first operation mode.
  • (2) to (14) The photodetector according to claim 1.
  • a light emitting unit is further provided,
  • the plurality of operation modes includes a second operation mode,
  • the light emitting unit can emit an optical pulse by alternately repeating light emission and quenching in the second operation mode.
  • the first driving unit can alternately turn on the first switch and the second switch so as to be synchronized with the optical pulse
  • the first pixel value calculation unit can calculate the pixel value based on the first charge amount and the second charge amount in the second operation mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

This light detection device comprises: a first pixel having a first photoelectric conversion element that generates a first light receiving charge, a first and a second charge accumulation unit that accumulate the first light receiving charges, a first switch that connects the first photoelectric conversion element to the firs charge accumulation unit, and a second switch that connects the first photoelectric conversion element to the second charge accumulation unit; a first exposure control unit that performs a first setting process for setting, on the basis of a first charge amount of first light receiving charges accumulated in the first charge accumulation unit, a first time length of a first exposure period in which the first photoelectric conversion element generates first light receiving charges to be accumulated in the first charge accumulation unit, and a second time length of a second exposure period in which the first photoelectric conversion element generates first light receiving charges to be accumulated in the second charge accumulation unit; and a first drive unit that controls the operation of the first and the second switches on the basis of the results of the first setting process.

Description

光検出装置Photodetector
 本開示は、光を検出可能な光検出装置に関する。 The present disclosure relates to a light detection device capable of detecting light.
 計測対象物までの距離を計測する際、しばしば、TOF(Time Of Flight)法が用いられる。このTOF法では、光を射出するとともに、計測対象物により反射された反射光を検出する。そして、TOF法では、光を射出したタイミングおよび反射光を検出したタイミングの間の時間差を計測することにより、計測対象物までの距離を計測する(例えば、特許文献1)。 When measuring the distance to the object to be measured, the TOF (Time Of Flight) method is often used. In this TOF method, light is emitted and the reflected light reflected by the measurement object is detected. Then, in the TOF method, the distance to the measurement object is measured by measuring the time difference between the timing at which light is emitted and the timing at which reflected light is detected (for example, Patent Document 1).
特開2013-076645号公報Japanese Unexamined Patent Publication No. 2013-0764645
 ところで、光検出装置では、計測対象物までの距離を計測する測距動作に加え、撮像動作を行いたい場合があり得る。撮像動作では、ダイナミックレンジを確保することが望ましい。 By the way, in the photodetector, there may be a case where it is desired to perform an imaging operation in addition to the distance measuring operation for measuring the distance to the object to be measured. In the image pickup operation, it is desirable to secure a dynamic range.
 ダイナミックレンジを確保しつつ撮像動作を行うことができる光検出装置を提供することが望ましい。 It is desirable to provide a photodetector that can perform imaging operations while ensuring a dynamic range.
 本開示の一実施の形態における光検出装置は、第1の画素と、第1の露光制御部と、第1の駆動部とを備えている。第1の画素は、光に基づいて第1の受光電荷を生成する光電変換動作を行うことが可能な第1の光電変換素子と、第1の受光電荷を蓄積可能な第1の電荷蓄積部および第2の電荷蓄積部と、オン状態になることにより第1の光電変換素子を第1の電荷蓄積部に接続可能な第1のスイッチと、オン状態になることにより第1の光電変換素子を第2の電荷蓄積部に接続可能な第2のスイッチとを有する。第1の露光制御部は、第1の電荷蓄積部に蓄積された第1の受光電荷の第1の電荷量に基づいて、第1の光電変換素子が第1の電荷蓄積部に蓄積される第1の受光電荷を生成する第1の露光期間の第1の時間長、および第1の光電変換素子が第2の電荷蓄積部に蓄積される第1の受光電荷を生成する第2の露光期間の第2の時間長を設定する第1の設定処理を行うことが可能に構成される。第1の駆動部は、第1の設定処理の結果に基づいて第1のスイッチおよび第2のスイッチの動作を制御可能に構成される。 The photodetector according to the embodiment of the present disclosure includes a first pixel, a first exposure controller, and a first driver. The first pixel includes a first photoelectric conversion element capable of performing a photoelectric conversion operation to generate a first received light charge based on light, and a first charge storage unit capable of storing the first received light charge. And a second charge storage portion, a first switch capable of connecting the first photoelectric conversion element to the first charge storage portion by being turned on, and a first photoelectric conversion element by being turned on And a second switch connectable to the second charge storage section. The first exposure control unit stores the first photoelectric conversion element in the first charge storage unit based on the first charge amount of the first received charge stored in the first charge storage unit. A first time length of a first exposure period for generating a first light-receiving charge, and a second exposure for generating a first light-receiving charge accumulated in a second charge storage section by the first photoelectric conversion element. It is possible to perform the first setting process for setting the second time length of the period. The first drive unit is configured to be able to control the operation of the first switch and the second switch based on the result of the first setting process.
 本開示の一実施の形態における光検出装置では、第1の光電変換素子により、第1の受光電荷が生成され、第1のスイッチがオン状態になることにより、この第1の受光電荷が第1の電荷蓄積部に蓄積され、第2のスイッチがオン状態になることにより、この第1の受光電荷が第2の電荷蓄積部に蓄積される。第1の電荷蓄積部に蓄積された第1の受光電荷の第1の電荷量に基づいて、第1の露光期間の第1の時間長、および第2の露光期間の第2の時間長を設定する第1の設定処理が行われる。第1の露光期間は、第1の光電変換素子が第1の電荷蓄積部に蓄積される第1の受光電荷を生成する期間であり、第2の露光期間は、第1の光電変換素子が第2の電荷蓄積部に蓄積される第1の受光電荷を生成する期間である。そして、この第1の設定処理の結果に基づいて、第1のスイッチおよび第2のスイッチの動作が制御される。 In the photodetector according to the embodiment of the present disclosure, the first photoelectric conversion element generates the first received light charge, and the first switch is turned on, so that the first received charge becomes the first light receiving charge. The first light receiving charge is stored in the first charge storage unit and the second switch is turned on, so that the first received light charge is stored in the second charge storage unit. Based on the first charge amount of the first received charge accumulated in the first charge storage unit, the first time length of the first exposure period and the second time length of the second exposure period are set. The first setting process for setting is performed. The first exposure period is a period in which the first photoelectric conversion element generates the first received light charge accumulated in the first charge storage section, and the second exposure period is the period in which the first photoelectric conversion element is generated. This is a period in which the first received light charges accumulated in the second charge accumulation unit are generated. Then, the operation of the first switch and the second switch is controlled based on the result of the first setting process.
本開示の一実施の形態に係る光検出装置の一構成例を表すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a photodetector device according to an embodiment of the present disclosure. 図1に示した光検出部の一構成例を表すブロック図である。FIG. 3 is a block diagram showing a configuration example of a photodetector section shown in FIG. 1. 図2に示した画素の一構成例を表す回路図である。FIG. 3 is a circuit diagram illustrating a configuration example of the pixel illustrated in FIG. 2. 図3に示した画素の要部断面構造の一例を表す断面図である。4 is a cross-sectional view illustrating an example of a cross-sectional structure of a main part of the pixel illustrated in FIG. 3. 図1に示した光検出装置の一構成例を表す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration example of the photodetector device illustrated in FIG. 1. 図1に示した光検出装置における測距動作の一例を表すタイミング図である。FIG. 6 is a timing chart showing an example of a distance measuring operation in the photodetector shown in FIG. 1. 図1に示した光検出装置における撮像動作の一例を表すタイミング図である。FIG. 6 is a timing diagram illustrating an example of an image pickup operation in the photodetector shown in FIG. 1. 図1に示した光検出装置における測距動作の一例を表すタイミング波形図である。FIG. 6 is a timing waveform chart showing an example of a distance measuring operation in the photodetector shown in FIG. 1. 図1に示した光検出装置における測距動作の一例を表す他のタイミング波形図である。It is another timing waveform diagram which shows an example of the distance measuring operation in the photodetector shown in FIG. 図1に示した光検出装置における撮像動作の一例を表すタイミング波形図である。FIG. 6 is a timing waveform chart showing an example of an image pickup operation in the photodetector shown in FIG. 1. 図2に示した画素の一動作状態を表す説明図である。It is explanatory drawing which shows one operation state of the pixel shown in FIG. 図2に示した画素の他の動作状態を表す説明図である。FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2. 図2に示した画素の他の動作状態を表す説明図である。FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2. 図2に示した画素の他の動作状態を表す説明図である。FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2. 図2に示した画素の他の動作状態を表す説明図である。FIG. 9 is an explanatory diagram illustrating another operation state of the pixel illustrated in FIG. 2. 図1に示した光検出装置における撮像動作の一例を表すフローチャートである。6 is a flowchart showing an example of an image pickup operation in the photodetector shown in FIG. 1. 変形例に係る光検出装置における撮像動作の一例を表すタイミング波形図である。FIG. 13 is a timing waveform chart illustrating an example of an image pickup operation in the photodetector according to the modification. 変形例に係る画素の一動作状態を表す説明図である。It is explanatory drawing which shows one operation state of the pixel which concerns on a modification. 変形例に係る画素の他の動作状態を表す説明図である。It is explanatory drawing showing the other operation state of the pixel which concerns on a modification. 変形例に係る画素の他の動作状態を表す説明図である。It is explanatory drawing showing the other operation state of the pixel which concerns on a modification. 変形例に係る画素の他の動作状態を表す説明図である。It is explanatory drawing which shows the other operation state of the pixel which concerns on a modification. 変形例に係る画素の他の動作状態を表す説明図である。It is explanatory drawing which shows the other operation state of the pixel which concerns on a modification. 変形例に係る画素の他の動作状態を表す説明図である。It is explanatory drawing which shows the other operation state of the pixel which concerns on a modification. 変形例に係る画素の他の動作状態を表す説明図である。It is explanatory drawing showing the other operation state of the pixel which concerns on a modification. 他の変形例に係る光検出装置における撮像動作の一例を表すフローチャートである。9 is a flowchart showing an example of an image pickup operation in a photodetector according to another modification. 他の変形例に係る画素の一構成例を表す回路図である。It is a circuit diagram which shows one composition example of the pixel which concerns on another modification. 他の変形例に係る画素の一構成例を表す回路図である。It is a circuit diagram which shows one composition example of the pixel which concerns on another modification. 他の変形例に係る画素アレイおよび駆動部の一構成例を表すブロック図である。FIG. 11 is a block diagram illustrating a configuration example of a pixel array and a driving unit according to another modification. 他の変形例に係る光検出部の一構成例を表す説明図である。It is explanatory drawing showing the structural example of the photon detection part which concerns on another modification. 図18に示した画素および回路の一構成例を表す回路図である。FIG. 19 is a circuit diagram illustrating a configuration example of the pixel and the circuit illustrated in FIG. 18. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram showing an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.移動体への応用例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment 2. Application example to mobile
<1.実施の形態>
[構成例]
 図1は、一実施の形態に係る光検出装置(光検出装置1)の一構成例を表すものである。光検出装置1は、2つの動作モードM(測距動作モードMDおよび撮像動作モードMI)を有している。測距動作モードMDは、インダイレクト方式により対象物100までの距離を計測する測距動作を行う動作モードであり、撮像動作モードMIは、対象物100を撮像する撮像動作を行うモードである。光検出装置1は、発光部11と、光学系12と、光検出部20と、制御部13とを備えている。
<1. Embodiment>
[Configuration example]
FIG. 1 shows a configuration example of a photodetector (photodetector 1) according to an embodiment. The photodetector 1 has two operation modes M (distance measuring operation mode MD and imaging operation mode MI). The distance measuring operation mode MD is an operation mode for performing a distance measuring operation for measuring the distance to the object 100 by an indirect method, and the imaging operation mode MI is a mode for performing an imaging operation for imaging the object 100. The photodetector 1 includes a light emitting unit 11, an optical system 12, a photodetector 20, and a control unit 13.
 発光部11は、測距動作モードMDにおいて、対象物100に向かって光パルスL0を射出するように構成される。発光部11は、制御部13からの指示に基づいて、発光および非発光を交互に繰り返す発光動作を行うことにより光パルスL0を射出するようになっている。発光部11は、例えば赤外光を射出する光源を有する。この光源は、例えば、レーザ光源やLED(Light Emitting Diode)などを用いて構成される。 The light emitting unit 11 is configured to emit an optical pulse L0 toward the object 100 in the distance measuring operation mode MD. The light emitting unit 11 emits the light pulse L0 by performing a light emitting operation in which light emission and non-light emission are alternately repeated based on an instruction from the control unit 13. The light emitting unit 11 has, for example, a light source that emits infrared light. This light source is configured using, for example, a laser light source or an LED (Light Emitting Diode).
 光学系12は、光検出部20の受光面Sにおいて像を結像させるレンズを含んで構成される。測距動作モードMDでは、この光学系12には、発光部11から射出され、対象物100により反射された光パルス(反射光パルスL1)が入射する。また、撮像動作モードMIでは、この光学系12には、被写体からの光が入射するようになっている。 The optical system 12 is configured to include a lens that forms an image on the light receiving surface S of the light detection unit 20. In the distance measurement operation mode MD, a light pulse (reflected light pulse L1) emitted from the light emitting unit 11 and reflected by the object 100 enters the optical system 12. Further, in the image pickup operation mode MI, the light from the subject enters the optical system 12.
 光検出部20は、制御部13からの指示に基づいて、光を検出することにより画像PICを生成するように構成される。具体的には、光検出部20は、測距動作モードMDでは、反射光パルスL1を受光することにより画像PIC(距離画像PIC1)を生成する。距離画像PIC1に含まれる複数の画素値のそれぞれは、対象物100までの距離Dについての値を示す。また、光検出部20は、撮像動作モードMIでは、光L2を受光することにより画像PIC(撮像画像PIC2)を生成する。撮像画像PIC2に含まれる複数の画素値のそれぞれは受光量を示す。そして、光検出部20は、生成した画像PICを画像信号DATAとして出力するようになっている。 The light detection unit 20 is configured to generate an image PIC by detecting light based on an instruction from the control unit 13. Specifically, in the distance measurement operation mode MD, the light detection unit 20 receives the reflected light pulse L1 to generate the image PIC (distance image PIC1). Each of the plurality of pixel values included in the distance image PIC1 indicates a value for the distance D to the object 100. Further, the photodetector 20 generates an image PIC (image PIC2) by receiving light L2 in the image pickup operation mode MI. Each of the plurality of pixel values included in the captured image PIC2 indicates the amount of received light. Then, the photodetector 20 outputs the generated image PIC as the image signal DATA.
 制御部13は、発光部11および光検出部20に制御信号を供給し、これらの動作を制御することにより、光検出装置1の動作を制御するものである。制御部13は、動作モード設定部14を有している。動作モード設定部14は、外部から供給された制御信号CTLに含まれる指示に基づいて、動作モードMを測距動作モードMDおよび撮像動作モードMIのうちの一方に設定する。制御部13は、動作モード設定部14が設定した動作モードMに応じて、発光部11および光検出部20の動作を制御するようになっている。 The control unit 13 supplies a control signal to the light emitting unit 11 and the photodetecting unit 20 to control the operations thereof, thereby controlling the operation of the photodetecting device 1. The control unit 13 has an operation mode setting unit 14. The operation mode setting unit 14 sets the operation mode M to one of the distance measurement operation mode MD and the imaging operation mode MI based on the instruction included in the control signal CTL supplied from the outside. The control unit 13 is configured to control the operations of the light emitting unit 11 and the light detection unit 20 according to the operation mode M set by the operation mode setting unit 14.
 図2は、光検出部20の一構成例を表すものである。光検出部20は、画素アレイ21と、駆動部22と、読出部24と、処理部26とを有している。 FIG. 2 shows an example of the configuration of the light detection unit 20. The light detection unit 20 includes a pixel array 21, a driving unit 22, a reading unit 24, and a processing unit 26.
 画素アレイ21は、マトリクス状に配置された複数の画素Pを有する。各画素Pは、画素信号SIGA,SIGBを出力するようになっている。 The pixel array 21 has a plurality of pixels P arranged in a matrix. Each pixel P outputs pixel signals SIGA and SIGB.
 図3は、画素Pの一構成例を表すものである。図4は、画素Pにおける要部の一構成例を表すものである。画素アレイ21は、複数の制御線TGLAと、複数の制御線TGLBと、複数の制御線RSLAと、複数の制御線RSLBと、複数の制御線SELLと、複数の信号線SGLAと、複数の信号線SGLBとを有している。制御線TGLAは、水平方向(図2,3における横方向)に延伸するように設けられ、この制御線TGLAには、駆動部22により制御信号STGLAが印加される。制御線TGLBは、水平方向に延伸するように設けられ、この制御線TGLBには、駆動部22により制御信号STGLBが印加される。制御線RSLAは、水平方向に延伸するように設けられ、この制御線RSLAには、駆動部22により制御信号SRSLAが印加される。制御線RSLBは、水平方向に延伸するように設けられ、この制御線RSLBには、駆動部22により制御信号SRSLBが印加される。制御線SELLは、水平方向に延伸するように設けられ、制御線SELLには、駆動部22により制御信号SSELLが印加される。信号線SGLAは、垂直方向(図2,3における縦方向)に延伸するように設けられ、読出部24に対して画素信号SIGAを伝える。信号線SGLBは、垂直方向に延伸するように設けられ、読出部24に対して画素信号SIGBを伝えるようになっている。 FIG. 3 shows an example of a configuration of pixel P. FIG. 4 shows an example of a configuration of a main part of the pixel P. The pixel array 21 includes a plurality of control line TGLA, a plurality of control line TGLB, a plurality of control line RSLA, a plurality of control line RSLB, a plurality of control line SELL, a plurality of signal lines SGLA, and a plurality of signals. It has a line SGLB. The control line TGLA is provided so as to extend in the horizontal direction (horizontal direction in FIGS. 2 and 3), and the drive unit 22 applies the control signal STGLA to the control line TGLA. The control line TGLB is provided so as to extend in the horizontal direction, and the drive unit 22 applies the control signal STGLB to the control line TGLB. The control line RSLA is provided so as to extend in the horizontal direction, and the drive unit 22 applies a control signal SRSLA to the control line RSLA. The control line RSLB is provided so as to extend in the horizontal direction, and the control signal SRSLB is applied to the control line RSLB by the drive unit 22. The control line SELL is provided so as to extend in the horizontal direction, and a control signal SSELL is applied to the control line SELL by the drive unit 22. The signal line SGLA is provided so as to extend in the vertical direction (longitudinal direction in FIGS. 2 and 3) and transmits the pixel signal SIGA to the reading unit 24. The signal line SGLB is provided so as to extend in the vertical direction, and transmits the pixel signal SIGB to the reading unit 24.
 画素Pは、フォトダイオードPDと、トランジスタTGA,TGBと、フローティングディフュージョンFDA,FDBと、トランジスタRSTA,RSTBと、トランジスタAMPA,AMPBと、トランジスタSELA,SELBとを有している。トランジスタTGA,TGB,RSTA,RSTB,AMPA,AMPB,SELA,SELBは、この例では、N型のMOS(Metal Oxide Semiconductor)トランジスタである。 The pixel P has a photodiode PD, transistors TGA and TGB, floating diffusions FDA and FDB, transistors RSTA and RSTB, transistors AMPA and AMPB, and transistors SELA and SELB. The transistors TGA, TGB, RSTA, RSTB, AMPA, AMPB, SELA, SELB are N-type MOS (Metal Oxide Semiconductor) transistors in this example.
 フォトダイオードPDは、受光量に応じて電荷を発生させる光電変換素子である。フォトダイオードPDのアノードは接地され、カソードはトランジスタTGA,TGBのソースに接続されている。この例では、フォトダイオードPDに蓄積可能な電荷量を、フローティングディフュージョンFDAに蓄積可能な電荷量、およびフローティングディフュージョンFDBに蓄積可能な電荷量よりも少なくしている。 The photodiode PD is a photoelectric conversion element that generates electric charges according to the amount of received light. The anode of the photodiode PD is grounded, and the cathode is connected to the sources of the transistors TGA and TGB. In this example, the amount of charge that can be stored in the photodiode PD is smaller than the amount of charge that can be stored in the floating diffusion FDA and the amount of charge that can be stored in the floating diffusion FDB.
 トランジスタTGAのゲートは制御線TGLAに接続され、ソースはフォトダイオードPDのカソードおよびトランジスタTGBのソースに接続され、ドレインはフローティングディフュージョンFDA、トランジスタRSTAのソース、およびトランジスタAMPAのゲートに接続されている。フローティングディフュージョンFDAは、フォトダイオードPDからトランジスタTGAを介して供給された電荷を蓄積するように構成され、例えば、図4に示したように、半導体基板9の表面に形成された拡散層を用いて構成される。この図3では、フローティングディフュージョンFDAを、容量素子のシンボルを用いて示している。この例では、フローティングディフュージョンFDAに蓄積可能な電荷量を、フォトダイオードPDに蓄積可能な電荷量よりも多くしている。トランジスタRSTAのゲートは制御線RSLAに接続され、ドレインには電源電圧VDDが供給され、ソースはフローティングディフュージョンFDA、トランジスタTGAのドレイン、およびトランジスタAMPAのゲートに接続される。トランジスタAMPAのゲートはフローティングディフュージョンFDA、トランジスタTGAのドレイン、およびトランジスタRSTAのソースに接続され、ドレインには電源電圧VDDが供給され、ソースはトランジスタSELAのドレインに接続されている。トランジスタSELAのゲートは制御線SELLに接続され、ドレインはトランジスタAMPAのソースに接続され、ソースは信号線SGLAに接続される。以下では、フォトダイオードPD、フローティングディフュージョンFDA、トランジスタRSTA,AMPA,SELAからなる回路を、タップAとも呼ぶ。 The gate of the transistor TGA is connected to the control line TGLA, the source is connected to the cathode of the photodiode PD and the source of the transistor TGB, and the drain is connected to the floating diffusion FDA, the source of the transistor RSTA, and the gate of the transistor AMPA. The floating diffusion FDA is configured to accumulate the electric charge supplied from the photodiode PD via the transistor TGA. For example, as shown in FIG. 4, a diffusion layer formed on the surface of the semiconductor substrate 9 is used. It is composed. In FIG. 3, the floating diffusion FDA is shown using a capacitive element symbol. In this example, the amount of charge that can be stored in the floating diffusion FDA is larger than the amount of charge that can be stored in the photodiode PD. The gate of the transistor RSTA is connected to the control line RSLA, the drain is supplied with a power supply voltage VDD, and the source is connected to the floating diffusion FDA, the drain of the transistor TGA, and the gate of the transistor AMPA. The gate of the transistor AMPA is connected to the floating diffusion FDA, the drain of the transistor TGA, and the source of the transistor RSTA, the drain is supplied with the power supply voltage VDD, and the source is connected to the drain of the transistor SELA. The gate of the transistor SELA is connected to the control line SELL, the drain is connected to the source of the transistor AMPA, and the source is connected to the signal line SGLA. Hereinafter, the circuit including the photodiode PD, the floating diffusion FDA, and the transistors RSTA, AMPA, and SELA is also referred to as tap A.
 トランジスタTGBのゲートは制御線TGLBに接続され、ソースはフォトダイオードPDのカソードおよびトランジスタTGAのソースに接続され、ドレインはフローティングディフュージョンFDB、トランジスタRSTBのソース、およびトランジスタAMPBのゲートに接続されている。フローティングディフュージョンFDBは、フォトダイオードPDからトランジスタTGBを介して供給された電荷を蓄積するように構成され、例えば、図4に示したように、半導体基板9の表面に形成された拡散層を用いて構成される。この図3では、フローティングディフュージョンFDAと同様に、フローティングディフュージョンFDBを、容量素子のシンボルを用いて示している。この例では、フローティングディフュージョンFDBに蓄積可能な電荷量を、フォトダイオードPDに蓄積可能な電荷量よりも多くしている。トランジスタRSTBのゲートは制御線RSLBに接続され、ドレインには電源電圧VDDが供給され、ソースはフローティングディフュージョンFDB、トランジスタTGBのドレイン、およびトランジスタAMPBのゲートに接続される。トランジスタAMPBのゲートはフローティングディフュージョンFDB、トランジスタTGBのドレイン、およびトランジスタRSTBのソースに接続され、ドレインには電源電圧VDDが供給され、ソースはトランジスタSELBのドレインに接続されている。トランジスタSELBのゲートは制御線SELLに接続され、ドレインはトランジスタAMPBのソースに接続され、ソースは信号線SGLBに接続される。以下では、フォトダイオードPD、フローティングディフュージョンFDB、トランジスタRSTB,AMPB,SELBからなる回路を、タップBとも呼ぶ。 The gate of the transistor TGB is connected to the control line TGLB, the source is connected to the cathode of the photodiode PD and the source of the transistor TGA, and the drain is connected to the floating diffusion FDB, the source of the transistor RSTB, and the gate of the transistor AMPB. The floating diffusion FDB is configured to accumulate the electric charge supplied from the photodiode PD via the transistor TGB. For example, as shown in FIG. 4, a diffusion layer formed on the surface of the semiconductor substrate 9 is used. It is composed. In FIG. 3, similarly to the floating diffusion FDA, the floating diffusion FDB is shown using the symbol of the capacitive element. In this example, the amount of charge that can be stored in the floating diffusion FDB is larger than the amount of charge that can be stored in the photodiode PD. The gate of the transistor RSTB is connected to the control line RSLB, the drain is supplied with the power supply voltage VDD, and the source is connected to the floating diffusion FDB, the drain of the transistor TGB, and the gate of the transistor AMPB. The gate of the transistor AMPB is connected to the floating diffusion FDB, the drain of the transistor TGB, and the source of the transistor RSTB, the power supply voltage VDD is supplied to the drain, and the source is connected to the drain of the transistor SELB. The gate of the transistor SELB is connected to the control line SELL, the drain is connected to the source of the transistor AMPB, and the source is connected to the signal line SGLB. Hereinafter, the circuit including the photodiode PD, the floating diffusion FDB, and the transistors RSTB, AMPB, and SELB is also referred to as tap B.
 この構成により、画素Pでは、トランジスタRSTAがオン状態になることによりフローティングディフュージョンFDAがリセットされ、トランジスタRSTBがオン状態になることによりフローティングディフュージョンFDBがリセットされる。そして、トランジスタTGA,TGBのうちのいずれか1つがオン状態になることにより、フォトダイオードPDにより生成された電荷がフローティングディフュージョンFDAおよびフローティングディフュージョンFDBに選択的に蓄積される。そして、トランジスタSELA,SELBがオン状態になることにより、画素Pは、フローティングディフュージョンFDAに蓄積された電荷の量に応じた画素信号SIGAを出力するとともに、フローティングディフュージョンFDBに蓄積された電荷の量に応じた画素信号SIGBを出力するようになっている。 With this configuration, in the pixel P, the floating diffusion FDA is reset by turning on the transistor RSTA, and the floating diffusion FDB is reset by turning on the transistor RSTB. Then, by turning on one of the transistors TGA and TGB, the charges generated by the photodiode PD are selectively accumulated in the floating diffusion FDA and the floating diffusion FDB. When the transistors SELA and SELB are turned on, the pixel P outputs the pixel signal SIGA corresponding to the amount of charges accumulated in the floating diffusion FDA, and the amount of charges accumulated in the floating diffusion FDB is changed. The corresponding pixel signal SIGB is output.
 駆動部22(図2)は、処理部26からの指示に基づいて、複数の画素Pを駆動するように構成される。具体的には、駆動部22は、制御線TGLAに対して制御信号STGLAを印加し、制御線TGLBに対して制御信号STGLBを印加し、制御線RSLAに対して制御信号SRSLAを印加し、制御線RSLBに対して制御信号SRSLBを印加し、制御線SELLに対して制御信号SSELLを印加するようになっている。駆動部22は、信号生成部23を有している。信号生成部23は、制御信号STGLA,STGLBを生成するように構成される。駆動部22は、信号生成部23が生成した単一の制御信号STGLAを複数の制御線TGLAに印加するとともに、信号生成部23が生成した単一の制御信号STGLBを複数の制御線TGLBに印加するようになっている。 The drive unit 22 (FIG. 2) is configured to drive the plurality of pixels P based on an instruction from the processing unit 26. Specifically, the drive unit 22 applies the control signal STGLA to the control line TGLA, the control signal STGLB to the control line TGLB, and the control signal SRSLA to the control line RSLA to perform control. The control signal SRSLB is applied to the line RSLB, and the control signal SSELL is applied to the control line SELL. The drive unit 22 has a signal generation unit 23. The signal generator 23 is configured to generate the control signals STGLA and STGLB. The drive unit 22 applies the single control signal STGLA generated by the signal generation unit 23 to the plurality of control lines TGLA, and applies the single control signal STGLB generated by the signal generation unit 23 to the plurality of control lines TGLB. It is designed to do.
 読出部24は、画素アレイ21から信号線SGL(信号線SGLA,SGLB)を介して供給された画素信号SIG(画素信号SIGA,SIGB)に基づいてAD(Analog to Digital)変換を行うことにより、画像信号DATA0を生成するように構成される。 The reading unit 24 performs AD (Analog to Digital) conversion based on the pixel signal SIG (pixel signal SIGA, SIGB) supplied from the pixel array 21 via the signal line SGL (signal line SGLA, SGLB). It is configured to generate the image signal DATA0.
 読出部24は、複数のAD変換部25と、バス配線BUSとを有している。複数のAD変換部25は、複数の信号線SGL(信号線SGLA,SGLB)にそれぞれ対応して設けられている。AD変換部25は、対応する信号線SGLを介して供給された画素信号SIGの電圧に基づいてAD変換を行うことにより、デジタルコードCODEを生成するように構成される。そして、AD変換部25は、デジタルコードCODEをバス配線BUSに供給するようになっている。 The reading unit 24 has a plurality of AD conversion units 25 and a bus line BUS. The plurality of AD conversion units 25 are provided corresponding to the plurality of signal lines SGL (signal lines SGLA, SGLB), respectively. The AD conversion unit 25 is configured to generate a digital code CODE by performing AD conversion based on the voltage of the pixel signal SIG supplied via the corresponding signal line SGL. Then, the AD conversion unit 25 supplies the digital code CODE to the bus wiring BUS.
 バス配線BUSは、複数の配線を有し、AD変換部25から出力されたデジタルコードCODEを伝えるように構成される。読出部24は、このバス配線BUSを用いて、複数のAD変換部25から供給された複数のデジタルコードCODEを、画像信号DATA0として、処理部26に順次転送するようになっている。 The bus wiring BUS has a plurality of wirings and is configured to transmit the digital code CODE output from the AD conversion unit 25. Using this bus wiring BUS, the reading unit 24 sequentially transfers a plurality of digital code CODEs supplied from the plurality of AD conversion units 25 to the processing unit 26 as an image signal DATA0.
 処理部26は、制御部13からの指示に基づいて、駆動部22および読出部24に制御信号を供給することにより、光検出部20の動作を制御するように構成される。処理部26は、露光制御部27と、画素値算出部28とを有している。 The processing unit 26 is configured to control the operation of the light detection unit 20 by supplying a control signal to the driving unit 22 and the reading unit 24 based on an instruction from the control unit 13. The processing unit 26 has an exposure control unit 27 and a pixel value calculation unit 28.
 露光制御部27は、撮像動作モードMIにおいて、フォトダイオードPDがフローティングディフュージョンFDAに蓄積される電荷を生成する期間(露光期間T2A)の時間長、およびフォトダイオードPDがフローティングディフュージョンFDBに蓄積される電荷を生成する期間(露光期間T2B)の時間長を設定するように構成される。具体的には、露光制御部27は、例えば、露光期間T2Aの時間長および露光期間T2Bの時間長の比(露光時間比RT)を設定する。露光時間比RTは、この例では、露光期間T2Bの時間長を露光期間T2Aの時間長で除算したものである。そして、処理部26は、露光制御部27が設定した露光期間T2A,T2Bの時間長についての情報を、駆動部22に供給するようになっている。 In the image pickup operation mode MI, the exposure control unit 27 determines the time length of the period (exposure period T2A) in which the photodiode PD accumulates electric charges accumulated in the floating diffusion FDA, and the electric charges accumulated in the photodiode PD in the floating diffusion FDB. Is configured to set the time length of the period (exposure period T2B) for generating the. Specifically, the exposure control unit 27 sets, for example, the ratio of the time length of the exposure period T2A and the time length of the exposure period T2B (exposure time ratio RT). In this example, the exposure time ratio RT is obtained by dividing the time length of the exposure period T2B by the time length of the exposure period T2A. Then, the processing unit 26 supplies the driving unit 22 with information about the time lengths of the exposure periods T2A and T2B set by the exposure control unit 27.
 画素値算出部28は、画素アレイ21における複数の画素Pに係るデジタルコードCODEに基づいて、複数の画素Pのそれぞれの画素値を算出するように構成される。測距動作モードMDでは、画素値は、対象物100までの距離Dについての値を示す。処理部26は、画素アレイ21における複数の画素Pの画素値を用いて距離画像PIC1を生成し、この距離画像PIC1を画像信号DATAとして出力する。また、撮像動作モードMIでは、画素値は、受光量を示す。処理部26は、画素アレイ21における複数の画素Pの画素値を用いて撮像画像PIC2を生成し、この撮像画像PIC2を画像信号DATAとして出力するようになっている。 The pixel value calculation unit 28 is configured to calculate the pixel value of each of the plurality of pixels P based on the digital code CODE relating to the plurality of pixels P in the pixel array 21. In the distance measurement operation mode MD, the pixel value indicates the value for the distance D to the object 100. The processing unit 26 generates the distance image PIC1 using the pixel values of the plurality of pixels P in the pixel array 21, and outputs the distance image PIC1 as the image signal DATA. Further, in the imaging operation mode MI, the pixel value indicates the amount of received light. The processing unit 26 is configured to generate a captured image PIC2 by using the pixel values of the plurality of pixels P in the pixel array 21, and output the captured image PIC2 as an image signal DATA.
 図5は、光検出装置1の一構成例を表すものである。基板90の基板上には、発光部11、光検出部20、およびホルダ91が配置されている。ホルダ91には、開口部91A,91Bが設けられている。発光部11は、基板90の基板上における、この開口部91Aに対応する位置に配置され、光検出部20は、基板90の基板上における、開口部91Bに対応する位置に配置される。ホルダ91は、カバーガラス93を保持している。カバーガラス93は、発光部11および光検出部20を、埃や外部雰囲気から保護するように構成される。カバーガラス93には、光拡散膜94および赤外フィルタ95が設けられる。光拡散膜94は、カバーガラス93における発光部11に対応する領域に設けられ、光パルスL0を拡散するように構成される。赤外フィルタ95は、カバーガラス93における光検出部20に対応する領域に設けられ、赤外光を透過するように構成される。ホルダ91の開口部91Bには、レンズホルダ92が設けられている。レンズホルダ92は、レンズ12A,12Bを保持している。このレンズ12A,12Bは、光学系12を構成する。 FIG. 5 shows a configuration example of the photodetector 1. The light emitting unit 11, the light detection unit 20, and the holder 91 are arranged on the substrate of the substrate 90. The holder 91 is provided with openings 91A and 91B. The light emitting unit 11 is arranged on the substrate of the substrate 90 at a position corresponding to the opening 91A, and the light detecting unit 20 is arranged at a position on the substrate of the substrate 90 corresponding to the opening 91B. The holder 91 holds the cover glass 93. The cover glass 93 is configured to protect the light emitting unit 11 and the light detection unit 20 from dust and the external atmosphere. The cover glass 93 is provided with a light diffusing film 94 and an infrared filter 95. The light diffusion film 94 is provided in a region of the cover glass 93 corresponding to the light emitting unit 11, and is configured to diffuse the light pulse L0. The infrared filter 95 is provided in a region of the cover glass 93 corresponding to the photodetector 20, and is configured to transmit infrared light. A lens holder 92 is provided in the opening 91B of the holder 91. The lens holder 92 holds the lenses 12A and 12B. The lenses 12A and 12B form an optical system 12.
 ここで、フォトダイオードPDは、本開示における「第1の光電変換素子」の一具体例に対応する。フローティングディフュージョンFDBは、本開示における「第1の電荷蓄積部」の一具体例に対応する。フローティングディフュージョンFDAは、本開示における「第2の電荷蓄積部」の一具体例に対応する。トランジスタTGBは、本開示における「第1のスイッチ」の一具体例に対応する。トランジスタTGAは、本開示における「第2のスイッチ」の一具体例に対応する。トランジスタAMPB,SELBは、本開示における「第1の出力部」の一具体例に対応する。トランジスタAMPA,SELAは、本開示における「第2の出力部」の一具体例に対応する。露光制御部27は、本開示における「第1の露光制御部」の一具体例に対応する。露光期間T2Bは、本開示における「第1の露光期間」の一具体例に対応する。露光期間T2Aは、本開示における「第2の露光期間」の一具体例に対応する。露光時間比RTは、本開示における「第1の露光時間比」の一具体例に対応する。駆動部22は、本開示における「第1の駆動部」の一具体例に対応する。画素値算出部28は、本開示における「第1の画素値算出部」の一具体例に対応する。 Here, the photodiode PD corresponds to a specific but not limitative example of “first photoelectric conversion element” in one embodiment of the present disclosure. The floating diffusion FDB corresponds to a specific but not limitative example of “first charge storage section” in one embodiment of the disclosure. The floating diffusion FDA corresponds to a specific but not limitative example of “second charge storage section” in one embodiment of the present disclosure. The transistor TGB corresponds to a specific example of the "first switch" in the present disclosure. The transistor TGA corresponds to a specific example of the "second switch" in the present disclosure. The transistors AMPB and SELB correspond to a specific but not limitative example of “first output section” in one embodiment of the disclosure. The transistors AMPA and SELA correspond to a specific but not limitative example of “second output section” in one embodiment of the disclosure. The exposure control unit 27 corresponds to a specific but not limitative example of “first exposure control unit” in one embodiment of the present disclosure. The exposure period T2B corresponds to a specific but not limitative example of “first exposure period” in one embodiment of the present disclosure. The exposure period T2A corresponds to a specific but not limitative example of “second exposure period” in one embodiment of the present disclosure. The exposure time ratio RT corresponds to a specific but not limitative example of “first exposure time ratio” in one embodiment of the present disclosure. The drive unit 22 corresponds to a specific example of the “first drive unit” in the present disclosure. The pixel value calculation unit 28 corresponds to a specific but not limitative example of “first pixel value calculation unit” in one embodiment of the present disclosure.
[動作および作用]
 続いて、本実施の形態の光検出装置1の動作および作用について説明する。
[Operation and action]
Next, the operation and action of the photodetector 1 according to the present embodiment will be described.
(全体動作概要)
 まず、図1~3を参照して、光検出装置1の全体動作概要を説明する。対象物100までの距離を計測する測距動作を行う場合には、光検出装置1は、測距動作モードMDで動作する。この測距動作モードMDでは、光検出装置1は、発光動作OP1を行うことにより光パルスL0を射出するとともに、露光動作OP2を行うことにより、対象物100により反射された反射光パルスL1を受光し、複数の画素PのそれぞれにおけるフローティングディフュージョンFDA,FDBに電荷を選択的に蓄積する。そして、光検出装置1は、読出動作OP3を行うことにより、複数の画素Pから信号線SGLを介して供給された画素信号SIGに基づいてAD変換を行い、画像信号DATA0を生成する。そして、光検出装置1は、画像信号DATA0に基づいて距離画像PIC1を生成し、この距離画像PIC1を画像信号DATAとして出力する。
(Overview of overall operation)
First, with reference to FIGS. 1 to 3, an outline of the overall operation of the photodetection device 1 will be described. When performing a distance measuring operation for measuring the distance to the object 100, the photodetector 1 operates in the distance measuring operation mode MD. In this distance measurement operation mode MD, the light detection device 1 emits the light pulse L0 by performing the light emission operation OP1 and receives the reflected light pulse L1 reflected by the object 100 by performing the exposure operation OP2. Then, the charge is selectively accumulated in the floating diffusion FDA and FDB in each of the plurality of pixels P. Then, the photodetector 1 performs AD conversion based on the pixel signal SIG supplied from the plurality of pixels P via the signal line SGL by performing the read operation OP3, and generates the image signal DATA0. Then, the photodetector 1 generates a distance image PIC1 based on the image signal DATA0, and outputs the distance image PIC1 as an image signal DATA.
 また、対象物100を撮像する撮像動作を行う場合には、光検出装置1は、撮像動作モードMIで動作する。この撮像動作モードMIでは、光検出装置1は、露光動作OP2を行うことにより、光L2を受光し、複数の画素PのそれぞれにおけるフローティングディフュージョンFDA,FDBに電荷を選択的に蓄積する。そして、光検出装置1は、読出動作OP3を行うことにより、複数の画素Pから信号線SGLを介して供給された画素信号SIGに基づいてAD変換を行い、画像信号DATA0を生成する。そして、光検出装置1は、画像信号DATA0に基づいて撮像画像PIC2を生成し、この撮像画像PIC2を画像信号DATAとして出力する。 Further, when performing an imaging operation for imaging the object 100, the photodetector 1 operates in the imaging operation mode MI. In this imaging operation mode MI, the photodetector 1 receives the light L2 by performing the exposure operation OP2, and selectively accumulates charges in the floating diffusion FDA and FDB in each of the plurality of pixels P. Then, the photodetection device 1 performs the read operation OP3 to perform AD conversion based on the pixel signal SIG supplied from the plurality of pixels P via the signal line SGL to generate the image signal DATA0. Then, the photodetection device 1 generates a captured image PIC2 based on the image signal DATA0 and outputs this captured image PIC2 as the image signal DATA.
(詳細動作)
 図6A,6Bは、光検出装置1における動作の一例を表すものであり、図6Aは、測距動作モードMDにおける測距動作を示し、図6Bは、撮像動作モードMIにおける撮像動作を示す。この図6A,6Bにおいて、上端は画素アレイ21の最上部を示し、下端は画素アレイ21の最下部を示す。
(Detailed operation)
6A and 6B show an example of the operation in the photodetector 1, FIG. 6A shows the distance measuring operation in the distance measuring operation mode MD, and FIG. 6B shows the imaging operation in the imaging operation mode MI. In FIGS. 6A and 6B, the upper end indicates the uppermost portion of the pixel array 21, and the lower end indicates the lowermost portion of the pixel array 21.
 測距動作モードMDでは、光検出装置1は、図6Aに示したように、タイミングt1~t2の期間において、発光動作OP1および露光動作OP2を行う。具体的には、制御部13は、発光部11の動作を制御し、発光部11は、発光および非発光を交互に繰り返す発光動作OP1を行うことにより光パルスL0を射出する。また、制御部13は、光検出部20の動作を制御し、光検出部20の駆動部22は、画素アレイ21における複数の画素Pを駆動する。複数の画素Pは、対象物100により反射された反射光パルスL1を受光する。そして、光検出装置1は、タイミングt2~t3の期間において、読出動作OP3を行う。具体的には、駆動部22は、画素アレイ21における複数の画素Pを、画素ライン単位で順次駆動し、複数の画素Pは、画素信号SIGを、信号線SGL(信号線SGLA,SGLB)を介して読出部24に供給する。そして、読出部24は、この画素信号SIGに基づいてAD変換を行うことにより、画像信号DATA0を生成する。光検出装置1は、このような発光動作OP1および露光動作OP2と、読出動作OP3とを交互に繰り返す。処理部26は、画像信号DATA0に基づいて、各画素値が距離Dについての値を示す距離画像PIC1を生成する。 In the distance measurement operation mode MD, as shown in FIG. 6A, the photodetector 1 performs the light emission operation OP1 and the exposure operation OP2 during the period from timing t1 to t2. Specifically, the control unit 13 controls the operation of the light emitting unit 11, and the light emitting unit 11 emits the light pulse L0 by performing the light emitting operation OP1 that alternately repeats light emission and non-light emission. Further, the control unit 13 controls the operation of the light detection unit 20, and the drive unit 22 of the light detection unit 20 drives the plurality of pixels P in the pixel array 21. The plurality of pixels P receive the reflected light pulse L1 reflected by the object 100. Then, the photodetection device 1 performs the read operation OP3 during the period from timing t2 to timing t3. Specifically, the drive unit 22 sequentially drives the plurality of pixels P in the pixel array 21 in pixel line units, and the plurality of pixels P outputs the pixel signal SIG and the signal line SGL (signal lines SGLA and SGLB). It is supplied to the reading unit 24 via. Then, the reading unit 24 generates the image signal DATA0 by performing AD conversion based on the pixel signal SIG. The photodetector 1 alternately repeats the light emitting operation OP1 and the exposing operation OP2 and the reading operation OP3. The processing unit 26 generates a distance image PIC1 in which each pixel value indicates a value for the distance D based on the image signal DATA0.
 撮像動作モードMIでは、光検出装置1は、図6Bに示したように、タイミングt4~t5の期間において、露光動作OP2を行う。具体的には、制御部13は、光検出部20の動作を制御し、光検出部20の駆動部22は、画素アレイ21における複数の画素Pを駆動する。そして、光検出装置1は、タイミングt5~t6の期間において、読出動作OP3を行う。具体的には、駆動部22は、画素アレイ21における複数の画素Pを、画素ライン単位で順次駆動し、複数の画素Pは、画素信号SIGを、信号線SGL(信号線SGLA,SGLB)を介して読出部24に供給する。そして、読出部24は、この画素信号SIGに基づいてAD変換を行うことにより、画像信号DATA0を生成する。光検出装置1は、このような露光動作OP2および読出動作OP3を交互に繰り返す。処理部26は、画像信号DATA0に基づいて、各画素値が受光量を示す撮像画像PIC2を生成する。 In the imaging operation mode MI, the photodetection device 1 performs the exposure operation OP2 in the period of timing t4 to t5, as shown in FIG. 6B. Specifically, the control unit 13 controls the operation of the light detection unit 20, and the drive unit 22 of the light detection unit 20 drives the plurality of pixels P in the pixel array 21. Then, the photodetection device 1 performs the read operation OP3 during the period from timing t5 to t6. Specifically, the drive unit 22 sequentially drives the plurality of pixels P in the pixel array 21 in pixel line units, and the plurality of pixels P outputs the pixel signal SIG and the signal line SGL (signal lines SGLA and SGLB). It is supplied to the reading unit 24 via. Then, the reading unit 24 generates the image signal DATA0 by performing AD conversion based on the pixel signal SIG. The photodetector 1 alternately repeats such an exposure operation OP2 and a read operation OP3. The processing unit 26 generates a captured image PIC2 in which each pixel value indicates the amount of received light, based on the image signal DATA0.
(測距動作について)
 次に、測距動作モードMDにおける、対象物100までの距離を計測する測距動作について詳細に説明する。以下では、複数の画素Pのうちのある画素P(画素P1)に着目し、着目した画素P1の動作を例に挙げて詳細に説明する。
(About distance measurement operation)
Next, the distance measuring operation for measuring the distance to the object 100 in the distance measuring operation mode MD will be described in detail. In the following, a certain pixel P (pixel P1) among the plurality of pixels P will be focused on, and the operation of the focused pixel P1 will be described in detail by taking as an example.
 図7は、光検出装置1の測距動作の一例を表すものであり、(A)は発光部11が射出する光パルスL0の波形を示し、(B)は制御信号SRSLA,SRSLBの波形を示し、(C)はフローティングディフュージョンFDAにおける電圧VFDAの波形を示し、(D)はフローティングディフュージョンFDBにおける電圧VFDBの波形を示し、(E)は制御信号STGLAの波形を示し、(F)は制御信号STGLBの波形を示し、(G)は画素P1に係る信号線SGLAに接続されたAD変換部25(AD変換部25A)の動作を示し、(H)は画素P1に係る信号線SGLBに接続されたAD変換部25(AD変換部25B)の動作を示す。 7A and 7B show an example of the distance measuring operation of the photodetector 1, where FIG. 7A shows the waveform of the light pulse L0 emitted by the light emitting unit 11, and FIG. 7B shows the waveforms of the control signals SRSLA and SRSLB. (C) shows the waveform of the voltage VFDA in the floating diffusion FDA, (D) shows the waveform of the voltage VFDB in the floating diffusion FDB, (E) shows the waveform of the control signal STGLA, and (F) shows the control signal. The waveform of STGLB is shown, (G) shows the operation of the AD conversion unit 25 (AD conversion unit 25A) connected to the signal line SGLA related to the pixel P1, and (H) is connected to the signal line SGLB related to the pixel P1. The operation of the AD converter 25 (AD converter 25B) will be described.
 光検出装置1は、まず、発光動作OP1および露光動作OP2を行う。この露光動作OP2において、駆動部22は、制御信号SSELLの電圧を低レベルにする。これにより、画素P1では、トランジスタSELA,SELBはともにオフ状態になり、画素P1は信号線SGLA,SGLBと電気的に切り離される。画素P1のフローティングディフュージョンFDA,FDBは、フォトダイオードPDが生成した電荷を選択的に蓄積する。そして、光検出装置1は、読出動作OP3を行う。この読出動作OP3において、駆動部22は、制御信号SSELLの電圧を高レベルにする。これにより、画素P1では、トランジスタSELA,SELBはともにオン状態になり、画素P1は信号線SGLA,SGLBと電気的に接続される。画素P1は、フローティングディフュージョンFDAに蓄積された電荷の量に応じた画素信号SIGAを信号線SGLAに出力するとともに、フローティングディフュージョンFDBに蓄積された電荷の量に応じた画素信号SIGBを信号線SGLBに出力する。AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行い、AD変換部25Bは、信号線SGLBの電圧に基づいてAD変換を行う。以下に、この動作について詳細に説明する。 First, the photodetector 1 performs light emission operation OP1 and exposure operation OP2. In this exposure operation OP2, the drive section 22 sets the voltage of the control signal SSELL to a low level. As a result, in the pixel P1, the transistors SELA and SELB are both turned off, and the pixel P1 is electrically disconnected from the signal lines SGLA and SGLB. The floating diffusions FDA and FDB of the pixel P1 selectively accumulate the charges generated by the photodiode PD. Then, the photodetector 1 performs the read operation OP3. In this read operation OP3, the drive section 22 sets the voltage of the control signal SSELL to a high level. As a result, in the pixel P1, both the transistors SELA and SELB are turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB. The pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB. Output. The AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA, and the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB. The operation will be described in detail below.
 タイミングt11より前の期間において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルにする(図7(B))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオン状態になり、フローティングディフュージョンFDA,FDBにおける電圧VFDA,VFDBは電源電圧VDDに設定される(図7(C),(D))。このようにして、フローティングディフュージョンFDA,FDBはリセットされる。 In the period before the timing t11, the drive unit 22 sets the voltages of the control signals SRSLA and SRSLB to the high level (FIG. 7(B)). As a result, in the pixel P1, the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD (FIGS. 7C and 7D). In this way, the floating diffusions FDA and FDB are reset.
 そして、タイミングt11において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルから低レベルに変化させる(図7(B))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオフ状態になる。また、発光部11は、このタイミングt11において、発光および非発光を交互に繰り返す発光動作OP1を開始する(図7(A))。そして、駆動部22は、このタイミングt11において、制御信号STGLA,STGLBの生成を開始する(図7(E),(F))。制御信号STGLA,STGLBは、高レベルと低レベルとを交互に繰り返す信号である。制御信号STGLBの位相は、制御信号STGLAの位相よりも180度だけ遅れている。図7(A),(E)に示したように、光パルスL0の周波数は、制御信号STGLAの周波数と同じであり、光パルスL0の位相は、制御信号STGLAの位相と同じである。すなわち、制御部13は、光パルスL0と制御信号STGLA,STGLBが同期するように、発光部11および光検出部20の動作を制御する。 Then, at the timing t11, the drive unit 22 changes the voltage of the control signals SRSLA and SRSLB from the high level to the low level (FIG. 7(B)). As a result, in the pixel P1, both the transistors RSTA and RSTB are turned off. Further, at this timing t11, the light emitting unit 11 starts the light emitting operation OP1 in which light emission and non-light emission are alternately repeated (FIG. 7 (A)). Then, the drive unit 22 starts generating the control signals STGLA and STGLB at this timing t11 (FIGS. 7E and 7F). The control signals STGLA and STGLB are signals that alternately repeat high level and low level. The phase of the control signal STGLB lags the phase of the control signal STGLA by 180 degrees. As shown in FIGS. 7A and 7E, the frequency of the light pulse L0 is the same as the frequency of the control signal STGLA, and the phase of the light pulse L0 is the same as the phase of the control signal STGLA. That is, the control unit 13 controls the operations of the light emitting unit 11 and the light detection unit 20 so that the light pulse L0 and the control signals STGLA and STGLB are synchronized.
 このようにして、このタイミングt11において露光期間T1が開始する。この露光期間T1において、画素P1では、フォトダイオードPDが、光パルスL0に応じた反射光パルスL1に基づいて電荷を生成する。トランジスタTGAは、制御信号STGLAに基づいてオンオフし、トランジスタTGBは、制御信号STGLBに基づいてオンオフする。すなわち、トランジスタTGA,TGBのいずれか一方がオン状態になる。これにより、フォトダイオードPDにより生成された電荷がフローティングディフュージョンFDAおよびフローティングディフュージョンFDBに選択的に蓄積される。 In this way, the exposure period T1 starts at this timing t11. In the exposure period T1, in the pixel P1, the photodiode PD generates an electric charge based on the reflected light pulse L1 corresponding to the light pulse L0. The transistor TGA is turned on/off based on the control signal STGLA, and the transistor TGB is turned on/off based on the control signal STGLB. That is, one of the transistors TGA and TGB is turned on. As a result, the electric charge generated by the photodiode PD is selectively accumulated in the floating diffusion FDA and the floating diffusion FDB.
 図8は、画素P1の一動作例を表すものであり、(A)は光パルスL0の波形を示し、(B)は反射光パルスL1の波形を示し、(C)は制御信号STGLAの波形を示し、(D)は制御信号STGLBの波形を示す。この例では、タイミングt21において、光パルスL0が立ち上がり、制御信号STGLAが立ち上がり、制御信号STGLBが立ち下がる。そして、タイミングt21から位相が180度だけ遅れたタイミングt23において、光パルスL0が立ち下がり、制御信号STGLAが立ち下がり、制御信号STGLBが立ち上がる。同様に、タイミングt23から位相が180度だけ遅れたタイミングt25において、光パルスL0が立ち上がり、制御信号STGLAが立ち上がり、制御信号STGLBが立ち下がる。そして、タイミングt25から位相が180度だけ遅れたタイミングt26において、光パルスL0が立ち下がり、制御信号STGLAが立ち下がり、制御信号STGLBが立ち上がる。 FIG. 8 shows an operation example of the pixel P1, where (A) shows the waveform of the light pulse L0, (B) shows the waveform of the reflected light pulse L1, and (C) shows the waveform of the control signal STGLA. And (D) shows the waveform of the control signal STGLB. In this example, at the timing t21, the light pulse L0 rises, the control signal STGLA rises, and the control signal STGLB falls. Then, at a timing t23 where the phase is delayed by 180 degrees from the timing t21, the optical pulse L0 falls, the control signal STGLA falls, and the control signal STGLB rises. Similarly, the optical pulse L0 rises, the control signal STGLA rises, and the control signal STGLB falls at a timing t25 when the phase is delayed by 180 degrees from the timing t23. Then, at timing t26 in which the phase is delayed by 180 degrees from timing t25, the optical pulse L0 falls, the control signal STGLA falls, and the control signal STGLB rises.
 反射光パルスL1の位相は、光パルスL0の位相よりも位相φだけずれる(図8(B))。この位相φは、光検出装置1から対象物100までの距離Dに対応する。この例では、タイミングt21よりも位相φに対応する時間だけ遅れたタイミングt22において反射光パルスL1が立ち上がり、タイミングt23よりも位相φに対応する時間だけ遅れたタイミングt24において反射光パルスL1が立ち下がる。画素P1のフォトダイオードPDは、この反射光パルスL1に基づいて、タイミングt22~t24の期間において電荷を生成する。 The phase of the reflected light pulse L1 is shifted from the phase of the light pulse L0 by the phase φ (FIG. 8(B)). This phase φ corresponds to the distance D from the light detection device 1 to the object 100. In this example, the reflected light pulse L1 rises at a timing t22 which is delayed by a time corresponding to the phase φ from the timing t21, and the reflected light pulse L1 falls at a timing t24 which is delayed by a time corresponding to the phase φ from the timing t23. .. The photodiode PD of the pixel P1 generates an electric charge in the period from timing t22 to t24 based on the reflected light pulse L1.
 トランジスタTGAは、制御信号STGLAが高レベルである期間(タイミングt22~t23の期間)において、フォトダイオードPDにより生成された電荷をフローティングディフュージョンFDAに転送し、トランジスタTGBは、制御信号STGLBが高レベルである期間(タイミングt23~t25の期間)において、フォトダイオードPDにより生成された電荷をフローティングディフュージョンFDBに転送する。これにより、タイミングt22~t23の期間において、フローティングディフュージョンFDAに電荷QAが蓄積され、タイミングt23~t24の期間において、フローティングディフュージョンFDBに電荷QBが蓄積される。 The transistor TGA transfers the charge generated by the photodiode PD to the floating diffusion FDA during the period when the control signal STGLA is at a high level (timing t22 to t23), and the transistor TGB has a control signal STGLB at a high level. In a certain period (timing t23 to t25), the charge generated by the photodiode PD is transferred to the floating diffusion FDB. As a result, the charge QA is accumulated in the floating diffusion FDA during the period from timing t22 to t23, and the charge QB is accumulated in the floating diffusion FDB during the period from timing t23 to t24.
 この電荷QAの電荷量および電荷QBの電荷量の差(電荷差ΔQ)は、位相φに応じて変化する。言い換えれば、電荷差ΔQは、光検出装置1から対象物100までの距離Dに応じて変化する。具体的には、例えば、距離Dが短いほど電荷QAが多くなるとともに電荷QBが少なくなる。また、例えば、距離Dが遠いほど電荷QAが少なくなるとともに電荷QBが多くなる。 The difference between the amount of charge of the charge QA and the amount of charge of the charge QB (charge difference ΔQ) changes according to the phase φ. In other words, the charge difference ΔQ changes according to the distance D from the photodetector 1 to the object 100. Specifically, for example, the shorter the distance D, the more the charge QA and the less the charge QB. Further, for example, as the distance D increases, the charge QA decreases and the charge QB increases.
 図7,8に示したように、画素P1は、タイミングt21~t25における動作を繰り返す。これにより、フローティングディフュージョンFDAには、電荷QAが繰り返し蓄積され、フローティングディフュージョンFDBには、電荷QBが繰り返し蓄積される。これにより、フローティングディフュージョンFDAの電圧VFDA、およびフローティングディフュージョンFDBの電圧VFDBは、徐々に低下していく(図7(C),(D))。電圧VFDAにおける電圧変化量は電荷QAの電荷量に対応し、電圧VFDBにおける電圧変化量は電荷QBの電荷量に対応する。この例では、電圧VFDAの変化度合いは、電圧VFDBの変化度合いよりも大きい。 As shown in FIGS. 7 and 8, the pixel P1 repeats the operation at timings t21 to t25. As a result, the charge QA is repeatedly accumulated in the floating diffusion FDA, and the charge QB is repeatedly accumulated in the floating diffusion FDB. As a result, the voltage VFDA of the floating diffusion FDA and the voltage VFDB of the floating diffusion FDB gradually decrease (FIGS. 7C and 7D). The amount of change in voltage VFDA corresponds to the amount of charge QA, and the amount of change in voltage VFDB corresponds to the amount of charge QB. In this example, the degree of change in voltage VFDA is greater than the degree of change in voltage VFDB.
 そして、タイミングt12において、発光部11は発光動作OP1を終了する(図7(A))。また、駆動部22は、このタイミングt12において、制御信号STGLA,STGLBの生成を停止し、制御信号STGLA,STGLBの電圧を低レベルにする(図7(E),(F))。これにより、トランジスタTGA,TGBはオフ状態になる。このようにして、露光期間T1が終了する。 Then, at the timing t12, the light emitting unit 11 finishes the light emitting operation OP1 (FIG. 7(A)). Further, the drive unit 22 stops the generation of the control signals STGLA and STGLB at this timing t12, and sets the voltage of the control signals STGLA and STGLB to the low level (FIGS. 7E and 7F). As a result, the transistors TGA and TGB are turned off. In this way, the exposure period T1 ends.
 その後、タイミングt13~t16の期間において、光検出装置1は読出動作OP3を行う。この読出動作OP3では、駆動部22は、制御信号SSELLの電圧を高レベルに設定する。これにより、画素P1では、トランジスタSELA,SELBがともにオン状態になり、画素P1は信号線SGLA,SGLBと電気的に接続される。画素P1は、フローティングディフュージョンFDAに蓄積された電荷の量に応じた画素信号SIGAを信号線SGLAに出力するとともに、フローティングディフュージョンFDBに蓄積された電荷の量に応じた画素信号SIGBを信号線SGLBに出力する。 After that, in the period from timing t13 to timing t16, the photodetecting device 1 performs the reading operation OP3. In this read operation OP3, the drive section 22 sets the voltage of the control signal SSELL to a high level. As a result, in the pixel P1, the transistors SELA and SELB are both turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB. The pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and outputs a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB. Output.
 タイミングt13~t14の期間において、AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行い、AD変換部25Bは、信号線SGLBの電圧に基づいてAD変換を行う(図7(G),(H))。タイミングt14において、駆動部22は、制御信号SRSLA,SRSLBの電圧を低レベルから高レベルに変化させる(図7(B))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオン状態になり、フローティングディフュージョンFDA,FDBにおける電圧VFDA,VFDBは電源電圧VDDに設定される(図7(C),(D))。このようにして、フローティングディフュージョンFDA,FDBはリセットされる。タイミングt15において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルから低レベルに変化させる(図7(B))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオフ状態になる。そして、タイミングt15~t16の期間において、AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行い、AD変換部25Bは、信号線SGLBの電圧に基づいてAD変換を行う(図7(G),(H))。すなわち、AD変換部25Aは、フローティングディフュージョンFDAがリセットされた後の画素信号SIGAに基づいてAD変換を行い、AD変換部25Bは、フローティングディフュージョンFDBがリセットされた後の画素信号SIGBに基づいてAD変換を行う。 In the period from timing t13 to t14, the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA, and the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (see FIG. ), (H)). At timing t14, the drive section 22 changes the voltage of the control signals SRSLA and SRSLB from low level to high level (FIG. 7(B)). As a result, in the pixel P1, the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD (FIGS. 7C and 7D). In this way, the floating diffusions FDA and FDB are reset. At timing t15, the drive unit 22 changes the voltages of the control signals SRSLA and SRSLB from the high level to the low level (FIG. 7(B)). As a result, in the pixel P1, both the transistors RSTA and RSTB are turned off. Then, in the period from timing t15 to t16, the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA, and the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (FIG. 7). (G), (H)). That is, the AD conversion unit 25A performs AD conversion based on the pixel signal SIGA after the floating diffusion FDA is reset, and the AD conversion unit 25B performs AD conversion based on the pixel signal SIGB after the floating diffusion FDB is reset. Perform the conversion.
 AD変換部25Aは、タイミングt13~t14の期間において変換されたデジタル値からタイミングt17~t18の期間において変換されたデジタル値を減算することによりデジタルコードCODE(デジタルコードCODEA)を生成する。同様に、AD変換部25Bは、タイミングt13~t14の期間において変換されたデジタル値からタイミングt17~t18の期間において変換されたデジタル値を減算することによりデジタルコードCODE(デジタルコードCODEB)を生成する。読出部24は、これらのデジタルコードCODEA,CODEBを、画像信号DATA0として、処理部26に順次転送する。 The AD conversion unit 25A generates a digital code CODE (digital code CODEA) by subtracting the digital value converted in the period of timing t17 to t18 from the digital value converted in the period of timing t13 to t14. Similarly, the AD conversion unit 25B generates a digital code CODE (digital code CODEB) by subtracting the digital value converted in the period of timing t17 to t18 from the digital value converted in the period of timing t13 to t14. .. The reading unit 24 sequentially transfers these digital codes CODEA and CODEB to the processing unit 26 as an image signal DATA0.
 処理部26の画素値算出部28は、例えば、画素P1に係る2つのデジタルコードCODEA,CODEBの差に基づいて、画素P1の画素値を算出する。この画素値は、対象物100までの距離Dについての値を示す。処理部26は、画素アレイ21における複数の画素Pから得られた複数の画素値を用いて距離画像PIC1を生成し、この距離画像PIC1を画像信号DATAとして出力する。 The pixel value calculation unit 28 of the processing unit 26 calculates the pixel value of the pixel P1 based on, for example, the difference between the two digital codes CODEA and CODEB related to the pixel P1. This pixel value indicates a value for the distance D to the object 100. The processing unit 26 uses the plurality of pixel values obtained from the plurality of pixels P in the pixel array 21 to generate the distance image PIC1 and outputs the distance image PIC1 as the image signal DATA.
(撮像動作について)
 次に、撮像動作モードMIにおける、対象物100を撮像する撮像動作について詳細に説明する。
(About imaging operation)
Next, the imaging operation for imaging the target object 100 in the imaging operation mode MI will be described in detail.
 図9は、光検出装置1の撮像動作の一例を表すものであり、(A)は制御信号SRSLBの波形を示し、(B)は制御信号STGLBの波形を示し、(C)は制御信号SRSLAの波形を示し、(D)は制御信号STGLAの波形を示し、(E)は画素P1に係る信号線SGLAに接続されたAD変換部25(AD変換部25A)の動作を示し、(F)は画素P1に係る信号線SGLBに接続されたAD変換部25(AD変換部25B)の動作を示す。図10A~10Eは、画素P1の要部の動作状態を表すものである。 9A and 9B show an example of the image pickup operation of the photodetector 1, where FIG. 9A shows the waveform of the control signal SRSLB, FIG. 9B shows the waveform of the control signal STGLB, and FIG. 9C shows the control signal SRSLA. , (D) shows the waveform of the control signal STGLA, (E) shows the operation of the AD conversion section 25 (AD conversion section 25A) connected to the signal line SGLA related to the pixel P1, and (F). Shows the operation of the AD conversion unit 25 (AD conversion unit 25B) connected to the signal line SGLB related to the pixel P1. 10A to 10E show the operating state of the main part of the pixel P1.
 光検出装置1は、まず、露光動作OP2を行う。この露光動作OP2において、駆動部22は、制御信号SSELLの電圧を低レベルにする。これにより、画素P1では、トランジスタSELA,SELBはともにオフ状態になり、画素P1は信号線SGLA,SGLBと電気的に切り離される。画素P1のフローティングディフュージョンFDA,FDBは、フォトダイオードPDが生成した電荷を選択的に蓄積する。具体的には、フローティングディフュージョンFDBは、露光期間T2BにおいてフォトダイオードPDが生成した電荷を蓄積し、フローティングディフュージョンFDAは、露光期間T2AにおいてフォトダイオードPDが生成した電荷を蓄積する。露光時間比RT(露光期間T2Bの時間長/露光期間T2Aの時間長)は、例えば1~100程度に動的に設定される。言い換えれば、“露光期間T2Bの時間長:露光期間T2Aの時間長”は、例えば“1:1”~“100:1”程度に設定される。そして、光検出装置1は、読出動作OP3を行う。この読出動作OP3において、駆動部22は、制御信号SSELLの電圧を高レベルにする。これにより、画素P1では、トランジスタSELA,SELBはともにオン状態になり、画素P1は信号線SGLA,SGLBと電気的に接続される。画素P1は、フローティングディフュージョンFDAに蓄積された電荷の量に応じた画素信号SIGAを信号線SGLAに出力するとともに、フローティングディフュージョンFDBに蓄積された電荷の量に応じた画素信号SIGBを信号線SGLBに出力する。AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行い、AD変換部25Bは、信号線SGLBの電圧に基づいてAD変換を行う。以下に、この動作について詳細に説明する。 The photodetector 1 first performs the exposure operation OP2. In this exposure operation OP2, the drive unit 22 lowers the voltage of the control signal SSELL. As a result, in the pixel P1, the transistors SELA and SELB are both turned off, and the pixel P1 is electrically disconnected from the signal lines SGLA and SGLB. The floating diffusions FDA and FDB of the pixel P1 selectively accumulate the charges generated by the photodiode PD. Specifically, the floating diffusion FDB accumulates the charge generated by the photodiode PD during the exposure period T2B, and the floating diffusion FDA accumulates the charge generated by the photodiode PD during the exposure period T2A. The exposure time ratio RT (time length of exposure period T2B/time length of exposure period T2A) is dynamically set to, for example, about 1 to 100. In other words, “time length of exposure period T2B:time length of exposure period T2A” is set to, for example, about “1:1” to “100:1”. Then, the photodetector 1 performs the read operation OP3. In this read operation OP3, the drive section 22 sets the voltage of the control signal SSELL to a high level. As a result, in the pixel P1, the transistors SELA and SELB are both turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB. The pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and outputs a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB. Output. The AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA, and the AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB. The operation will be described in detail below.
 タイミングt31より前の期間において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルにする(図9(A),(C))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオン状態になり、フローティングディフュージョンFDA,FDBにおける電圧VFDA,VFDBは電源電圧VDDに設定される。このようにして、フローティングディフュージョンFDA,FDBはリセットされる。 In the period before the timing t31, the drive unit 22 sets the voltages of the control signals SRSLA and SRSLB to the high level (FIGS. 9A and 9C). As a result, in the pixel P1, the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD. In this way, the floating diffusion FDA and FDB are reset.
 次に、タイミングt31において、駆動部22は、制御信号STGLBの電圧を低レベルから高レベルに変化させる(図9(B))。これにより、画素P1では、トランジスタTGBがオン状態になる。タイミングt31~t32の期間(期間T11)では、図10Aに示したように、フォトダイオードPDおよびフローティングディフュージョンFDBが電気的に接続される。 Next, at timing t31, the drive unit 22 changes the voltage of the control signal STGLB from low level to high level (FIG. 9(B)). As a result, in the pixel P1, the transistor TGB is turned on. In the period from timing t31 to t32 (period T11), the photodiode PD and the floating diffusion FDB are electrically connected as shown in FIG. 10A.
 次に、タイミングt32において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルから低レベルに変化させる(図9(A),(C))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオフ状態になる。このとき、フローティングディフュージョンFDAに電荷QA0が蓄積されるとともに、フローティングディフュージョンFDBに電荷QB0が蓄積される。このようにして、露光期間T2Bが開始する。タイミングt32~t33の期間(期間T12)では、図10Bに示したように、フォトダイオードPDが生成した電荷がフローティングディフュージョンFDBに電荷QB1として蓄積される。このようにして、フローティングディフュージョンFDBには電荷QB(=QB0+QB1)が蓄積される。 Next, at timing t32, the drive unit 22 changes the voltage of the control signals SRSLA and SRSLB from the high level to the low level (FIGS. 9A and 9C). As a result, in the pixel P1, both the transistors RSTA and RSTB are turned off. At this time, the charge QA0 is accumulated in the floating diffusion FDA and the charge QB0 is accumulated in the floating diffusion FDB. In this way, the exposure period T2B starts. In the period from timing t32 to t33 (period T12), as shown in FIG. 10B, the charges generated by the photodiode PD are accumulated in the floating diffusion FDB as the charges QB1. In this way, the charge QB (=QB0+QB1) is accumulated in the floating diffusion FDB.
 次に、タイミングt33において、駆動部22は、制御信号STGLBの電圧を高レベルから低レベルに変化させる(図9(B))。これにより、画素P1では、トランジスタTGBがオフ状態になり、フォトダイオードPDおよびフローティングディフュージョンFDBが電気的に切り離される。このようにして、露光期間T2Bが終了する。 Next, at timing t33, the drive unit 22 changes the voltage of the control signal STGLB from the high level to the low level (FIG. 9(B)). As a result, in the pixel P1, the transistor TGB is turned off, and the photodiode PD and the floating diffusion FDB are electrically disconnected. In this way, the exposure period T2B ends.
 そして、このタイミングt33において、露光期間T2Aが開始する。タイミングt33~t35の期間(期間T13)では、図10Cに示したように、フォトダイオードPDが生成した電荷がフォトダイオードPDに蓄積される。 Then, at this timing t33, the exposure period T2A starts. In the period from timing t33 to t35 (period T13), the charges generated by the photodiode PD are accumulated in the photodiode PD, as shown in FIG. 10C.
 その後、タイミングt34~t37の期間において、光検出装置1は読出動作OP3を行う。この読出動作OP3では、駆動部22は、制御信号SSELLの電圧を高レベルに設定する。これにより、画素P1では、トランジスタSELA,SELBがともにオン状態になり、画素P1は信号線SGLA,SGLBと電気的に接続される。画素P1は、フローティングディフュージョンFDAに蓄積された電荷の量に応じた画素信号SIGAを信号線SGLAに出力するとともに、フローティングディフュージョンFDBに蓄積された電荷の量に応じた画素信号SIGBを信号線SGLBに出力する。 After that, in the period from timing t34 to timing t37, the photodetecting device 1 performs the reading operation OP3. In this read operation OP3, the drive section 22 sets the voltage of the control signal SSELL to a high level. As a result, in the pixel P1, the transistors SELA and SELB are both turned on, and the pixel P1 is electrically connected to the signal lines SGLA and SGLB. The pixel P1 outputs a pixel signal SIGA corresponding to the amount of electric charge accumulated in the floating diffusion FDA to the signal line SGLA, and outputs a pixel signal SIGB corresponding to the amount of electric charge accumulated in the floating diffusion FDB to the signal line SGLB. Output.
 このタイミングt34~t35の期間では、図10Cに示したように、フローティングディフュージョンFDAには、電荷QA0が蓄積されている。このタイミングt34~t35の期間において、AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行う(図9(E))。この期間においてAD変換部25Aにより変換されたデジタル値は、電荷QA0の電荷量に応じた値である。 During this period from timing t34 to t35, the charge QA0 is accumulated in the floating diffusion FDA, as shown in FIG. 10C. During the period from timing t34 to timing t35, the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 9(E)). The digital value converted by the AD conversion unit 25A during this period is a value corresponding to the amount of electric charge QA0.
 次に、タイミングt35において、駆動部22は、制御信号STGLAの電圧を低レベルから高レベルに変化させる(図9(D))。これにより、画素P1では、トランジスタTGAがオン状態になる。タイミングt35~t36の期間(期間T14)では、図10Dに示したように、フォトダイオードPDおよびフローティングディフュージョンFDAが電気的に接続される。そして、フォトダイオードPDが生成した電荷がフローティングディフュージョンFDAに電荷QA1として蓄積される。このようにして、フローティングディフュージョンFDAには電荷QA(=QA0+QA1)が蓄積される。 Next, at timing t35, the drive unit 22 changes the voltage of the control signal STGLA from low level to high level (FIG. 9(D)). As a result, the transistor TGA is turned on in the pixel P1. In the period from timing t35 to t36 (period T14), the photodiode PD and the floating diffusion FDA are electrically connected as shown in FIG. 10D. Then, the charge generated by the photodiode PD is accumulated as the charge QA1 in the floating diffusion FDA. In this way, the charge QA (=QA0+QA1) is accumulated in the floating diffusion FDA.
 次に、タイミングt36において、駆動部22は、制御信号STGLAの電圧を高レベルから低レベルに変化させる(図9(D))。これにより、画素P1では、トランジスタTGAがオフ状態になり、フォトダイオードPDおよびフローティングディフュージョンFDAが電気的に切り離される。このようにして、露光期間T2Aが終了する。 Next, at timing t36, the drive unit 22 changes the voltage of the control signal STGLA from the high level to the low level (FIG. 9(D)). As a result, in the pixel P1, the transistor TGA is turned off and the photodiode PD and the floating diffusion FDA are electrically disconnected. In this way, the exposure period T2A ends.
 タイミングt36~t37の期間(期間T15)では、図10Eに示したように、フローティングディフュージョンFDAには、電荷QA(=QA0+QA1)が蓄積されている。AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行う(図9(E))。この期間T15においてAD変換部25Aにより変換されたデジタル値は、電荷QA(=QA0+QA1)の電荷量に応じた値である。 During the period from timing t36 to t37 (period T15), as shown in FIG. 10E, the charge QA (= QA0 + QA1) is accumulated in the floating diffusion FDA. The AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 9 (E)). The digital value converted by the AD conversion unit 25A in the period T15 is a value corresponding to the charge amount of the charge QA (=QA0+QA1).
 また、このタイミングt36~t37の期間(期間T15)では、図10Eに示したように、フローティングディフュージョンFDBには、電荷QB(=QB0+QB1)が蓄積されている。AD変換部25Bは、信号線SGLBの電圧に基づいてAD変換を行う(図9(F))。この期間においてAD変換部25Bにより変換されたデジタル値は、電荷QB(=QB0+QB1)の電荷量に応じた値である。 During the period from the timing t36 to t37 (period T15), the electric charge QB (=QB0+QB1) is accumulated in the floating diffusion FDB, as shown in FIG. 10E. The AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (FIG. 9(F)). The digital value converted by the AD conversion unit 25B in this period is a value corresponding to the charge amount of the charge QB (=QB0+QB1).
 次に、タイミングt37において、駆動部22は、制御信号SRSLA,SRSLBの電圧を低レベルから高レベルに変化させる(図9(A),(C))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオン状態になり、フローティングディフュージョンFDA,FDBにおける電圧VFDA,VFDBは電源電圧VDDに設定される。このようにして、フローティングディフュージョンFDA,FDBはリセットされる。 Next, at the timing t37, the drive unit 22 changes the voltages of the control signals SRSLA and SRSLB from a low level to a high level (FIGS. 9A and 9C). As a result, in the pixel P1, the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD. In this way, the floating diffusions FDA and FDB are reset.
 AD変換部25Aは、タイミングt36~t37の期間において変換されたデジタル値からタイミングt34~t35において変換されたデジタル値を減算することによりデジタルコードCODE(デジタルコードCODEA)を生成する。このデジタルコードCODEAは、露光期間T2Aにおいて蓄積された電荷QA1(=QA-QA0)の電荷量に応じた値である。すなわち、AD変換部25Aは、いわゆる相関2重サンプリング(CDS;Correlated double sampling)の原理を利用してデジタルコードCODEAを生成する。AD変換部25Aでは、このような相関2重サンプリングを行うようにしたので、ノイズ成分(この例では電荷QA0)を取り除くことができ、その結果、撮像画像の画質を高めることができる。 The AD conversion unit 25A generates a digital code CODE (digital code CODEA) by subtracting the digital value converted at the timing t34 to t35 from the digital value converted at the timing t36 to t37. The digital code CODEA has a value corresponding to the amount of charge QA1 (=QA-QA0) accumulated in the exposure period T2A. That is, the AD conversion unit 25A generates the digital code CODEA using the principle of so-called correlated double sampling (CDS). Since the AD converter 25A is configured to perform such correlated double sampling, the noise component (charge QA0 in this example) can be removed, and as a result, the image quality of the captured image can be improved.
 また、AD変換部25Bは、タイミングt36~t37において変換されたデジタル値に基づいてデジタルコードCODE(デジタルコードCODEB)を生成する。このデジタルコードCODEBは、露光期間T2Bにおいて蓄積された電荷QB(=QB0+QB1)の電荷量に応じた値である。 The AD conversion unit 25B also generates a digital code CODE (digital code CODEB) based on the digital value converted at the timings t36 to t37. The digital code CODEB has a value corresponding to the charge amount of the charge QB (=QB0+QB1) accumulated in the exposure period T2B.
 読出部24は、これらのデジタルコードCODEA,CODEBを、画像信号DATA0として、処理部26に順次転送する。 The reading unit 24 sequentially transfers these digital codes CODEA and CODEB to the processing unit 26 as an image signal DATA0.
 処理部26の画素値算出部28は、後述するように、例えば、各画素Pに係るデジタルコードCODEAおよび露光時間比RTに基づいて、その画素Pの画素値を算出する。処理部26は、画素アレイ21における複数の画素Pから得られた複数の画素値を用いて撮像画像PIC2を生成し、この撮像画像PIC2を画像信号DATAとして出力する。 As will be described later, the pixel value calculation unit 28 of the processing unit 26 calculates the pixel value of the pixel P based on, for example, the digital code CODEA relating to each pixel P and the exposure time ratio RT. The processing unit 26 generates a captured image PIC2 using the plurality of pixel values obtained from the plurality of pixels P in the pixel array 21, and outputs the captured image PIC2 as the image signal DATA.
 図11は、露光制御部27および画素値算出部28の一動作例を表すものである。この例では、フォトダイオードPDに蓄積可能な電荷量は“1,000e-”以下(電子千個分以下)であり、フローティングディフュージョンFDA,FDBのそれぞれに蓄積可能な電荷量は、“100,000e-”以下(電子十万個分以下)である。以下では、タップA,Bにおける露光量を電荷量で示している。 FIG. 11 shows an operation example of the exposure controller 27 and the pixel value calculator 28. In this example, the amount of charge that can be stored in the photodiode PD is "1,000e-" or less (less than 1,000 electrons), and the amount of charge that can be stored in each of the floating diffusion FDA and FDB is "100,000e". -" or less (100,000 electrons or less). In the following, the exposure amount at the taps A and B is indicated by the charge amount.
 露光制御部27は、画素アレイ21における複数の画素Pのうちのある画素P(基準画素PR)に係るデジタルコードCODEBに基づいて露光時間比RTを設定する。基準画素PRは、例えば、外部から供給された制御信号CTLにより指示される。外部の装置は、例えば、シーンに応じて、基準画素PRを決定することができる。画素値算出部28は、例えば、各画素Pに係るデジタルコードCODEAおよび露光時間比RTに基づいて、その画素Pの画素値を算出する。光検出部20は、例えばフレーム期間単位で、この動作を繰り返す。以下に、この動作について詳細に説明する。 The exposure control unit 27 sets the exposure time ratio RT based on the digital code CODEB relating to a certain pixel P (reference pixel PR) of the plurality of pixels P in the pixel array 21. The reference pixel PR is indicated by, for example, a control signal CTL supplied from the outside. The external device can determine the reference pixel PR according to the scene, for example. The pixel value calculation unit 28 calculates the pixel value of the pixel P based on, for example, the digital code CODEA relating to each pixel P and the exposure time ratio RT. The photodetector 20 repeats this operation, for example, in frame period units. The operation will be described in detail below.
 まず、光検出装置1の光検出部20は、撮像動作を行う(ステップS101)。具体的には、光検出部20は、図9に示したように、露光動作OP2および読出動作OP3を行う。これにより、画素アレイ21の複数の画素PについてのデジタルコードCODEA,CODEBが得られる。 First, the light detection unit 20 of the light detection device 1 performs an image pickup operation (step S101). Specifically, the photodetector 20 performs the exposure operation OP2 and the read operation OP3 as shown in FIG. As a result, digital codes CODEA and CODEB for the plurality of pixels P of the pixel array 21 are obtained.
 次に、露光制御部27は、基準画素PRのタップBにおける露光量が“1,000e-”以下であるかどうかを確認する(ステップS102)。具体的には、露光制御部27は、基準画素PRに係るデジタルコードCODEBに基づいて、基準画素PRにおけるフローティングディフュージョンFDBに蓄積された電荷の量が“1,000e-”以下であるかどうかを確認する。 Next, the exposure control unit 27 confirms whether the exposure amount at the tap B of the reference pixel PR is “1,000e−” or less (step S102). Specifically, the exposure control unit 27 determines whether or not the amount of electric charge accumulated in the floating diffusion FDB in the reference pixel PR is "1,000 e-" or less based on the digital code CODEB related to the reference pixel PR. Check.
 ステップS102において、基準画素PRのタップBにおける露光量が“1,000e-”以下である場合(ステップS102において“Y”)には、露光制御部27は、露光時間比RT(露光期間T2Bの時間長/露光期間T2Aの時間長)が“1”であるかどうかを確認する(ステップS103)。すなわち、露光制御部27は、“露光期間T2Bの時間長:露光期間T2Aの時間長”が“1:1”であるかどうかを確認する。 In step S102, when the exposure amount at the tap B of the reference pixel PR is equal to or less than “1,000e−” (“Y” in step S102), the exposure control unit 27 sets the exposure time ratio RT (of the exposure period T2B). It is confirmed whether or not (time length/time length of exposure period T2A) is "1" (step S103). That is, the exposure control unit 27 confirms whether "time length of exposure period T2B:time length of exposure period T2A" is "1:1".
 ステップS103において、露光時間比RTが“1”である場合(ステップS103において“Y”)には、ステップS109に進む。 When the exposure time ratio RT is “1” in step S103 (“Y” in step S103), the process proceeds to step S109.
 ステップS103において、露光時間比RTが“1”ではない場合(ステップS103において“N”)には、露光制御部27は、露光時間比RTを“1”に設定する(ステップS104)。すなわち、この場合には、露光量がフォトダイオードPDに蓄積可能な電荷量であるので、露光制御部27は、露光時間比RTを“1”に設定する。そして、ステップS108に進む。 If the exposure time ratio RT is not "1" in step S103 ("N" in step S103), the exposure control unit 27 sets the exposure time ratio RT to "1" (step S104). That is, in this case, since the exposure amount is the amount of charge that can be accumulated in the photodiode PD, the exposure control unit 27 sets the exposure time ratio RT to “1”. Then, the process proceeds to step S108.
 ステップS102において、基準画素PRのタップBにおける露光量が“1,000e-”より多い場合(ステップS102において“N”)には、露光制御部27は、基準画素PRのタップBにおける露光量が“100,000e-”以下であるかどうかを確認する(ステップS105)。 In step S102, when the exposure amount of the reference pixel PR at the tap B is larger than “1,000e−” (“N” in step S102), the exposure control unit 27 determines that the exposure amount of the reference pixel PR at the tap B is increased. It is confirmed whether or not the value is "100,000e-" or less (step S105).
 ステップS105において、基準画素PRのタップBにおける露光量が“100,000e-”以下である場合(ステップS105において“Y”)には、露光制御部27は、基準画素PRのタップBにおける露光量を露光時間比RTで除算した値が“1,000e-”以下であるかどうかを確認する(ステップS106)。 In step S105, when the exposure amount of the reference pixel PR at the tap B is "100,000 e-" or less ("Y" in step S105), the exposure control unit 27 determines the exposure amount of the reference pixel PR at the tap B. It is confirmed whether or not the value obtained by dividing by the exposure time ratio RT is "1,000e-" or less (step S106).
 ステップS106において、基準画素PRのタップBにおける露光量を露光時間比RTで除算した値が“1,000e-”以下である場合(ステップS106において“Y”)には、ステップS109に進む。 In step S106, when the value obtained by dividing the exposure amount at tap B of the reference pixel PR by the exposure time ratio RT is “1,000e−” or less (“Y” in step S106), the process proceeds to step S109.
 ステップS106において、基準画素PRのタップBにおける露光量を露光時間比RTで除算した値が“1,000e-”より多い場合(ステップS106において“N”)には、露光制御部27は、露光時間比RTを、基準画素PRのタップBにおける露光量を“1,000e-”で除算した値に設定する(ステップS107)。 In step S106, when the value obtained by dividing the exposure amount at the tap B of the reference pixel PR by the exposure time ratio RT is larger than “1,000e−” (“N” in step S106), the exposure control unit 27 causes the exposure to be performed. The time ratio RT is set to a value obtained by dividing the exposure amount at tap B of the reference pixel PR by "1,000e-" (step S107).
 そして、ステップS108では、画素値算出部28は、基準画素PRを含む複数の画素Pのそれぞれの画素値を、その画素PのタップBの露光量に応じた値に決定する。具体的には、画素値算出部28は、各画素Pの画素値を、その画素Pに係るデジタルコードCODEBに応じた値に決定する。 Then, in step S108, the pixel value calculation unit 28 determines the pixel value of each of the plurality of pixels P including the reference pixel PR to a value according to the exposure amount of the tap B of the pixel P. Specifically, the pixel value calculation unit 28 determines the pixel value of each pixel P to a value according to the digital code CODEB relating to the pixel P.
 また、ステップS109では、画素値算出部28は、基準画素PRを含む複数の画素Pのそれぞれの画素値を、その画素PのタップAの露光量に露光時間比RTを乗算した値に応じた値に決定する。 Further, in step S109, the pixel value calculation unit 28 determines the pixel value of each of the plurality of pixels P including the reference pixel PR according to the value obtained by multiplying the exposure amount of the tap A of the pixel P by the exposure time ratio RT. Determine the value.
 ステップS105において、基準画素PRのタップBにおける露光量が“100,000e-”より多い場合(ステップS105において“N”)には、露光制御部27は、露光期間T2Aの時間長および露光期間T2Bの時間長の合計露光時間を短くする(ステップS110)。すなわち、この場合には、露光量が、フローティングディフュージョンFDBの蓄積可能な電荷量を超えており、飽和しているので、露光制御部27は、合計露光時間を短くする。 In step S105, when the exposure amount at the tap B of the reference pixel PR is larger than “100,000 e−” (“N” in step S105), the exposure control unit 27 determines the time length of the exposure period T2A and the exposure period T2B. The total exposure time of the time length is shortened (step S110). That is, in this case, the exposure amount exceeds the charge amount that can be accumulated in the floating diffusion FDB and is saturated, so the exposure control unit 27 shortens the total exposure time.
 以上でこのフローは終了する。光検出部20は、例えばフレーム期間単位で、これらのステップS101~S110の動作を繰り返す。 This is the end of this flow. The photodetection unit 20 repeats the operations of these steps S101 to S110, for example, in frame period units.
 ここで、基準画素PRは、本開示における「第1の画素」の一具体例に対応する。基準画素PR以外の画素Pは、本開示における「第2の画素」の一具体例に対応する。AD変換部25Bは、本開示における「第1のAD変換部」の一具体例に対応する。AD変換部25Aは、本開示における「第2のAD変換部」の一具体例に対応する。デジタルコードCODEBは、本開示における「第1のデジタルコード」の一具体例に対応する。デジタルコードCODEAは、本開示における「第2のデジタルコード」の一具体例に対応する。 Here, the reference pixel PR corresponds to a specific example of the "first pixel" in the present disclosure. Pixels P other than the reference pixel PR correspond to a specific example of the "second pixel" in the present disclosure. The AD conversion unit 25B corresponds to a specific example of the “first AD conversion unit” in the present disclosure. The AD conversion unit 25A corresponds to a specific example of the “second AD conversion unit” in the present disclosure. The digital code CODEB corresponds to a specific example of the "first digital code" in the present disclosure. The digital code CODEA corresponds to a specific example of the "second digital code" in the present disclosure.
 以上のように、光検出装置1では、測距動作に加えて撮像動作を行うことができる。これにより、光検出装置1では、例えば、距離画像PIC1および撮像画像PIC2を組み合わせることにより、より高い解像度を有する距離画像を合成することができる。特に、光検出装置1では、インダイレクト方式で測距動作を行う光検出部20を用いて、撮像動作を行うようにした。このようなインダイレクト方式では、高い計測精度を実現することができるので、光検出装置1では、さらに撮像動作を行うことにより、距離画像の精度をさらに高めることができる。 As described above, the photodetector 1 can perform an imaging operation in addition to the distance measuring operation. Thereby, in the photodetection device 1, for example, by combining the distance image PIC1 and the captured image PIC2, it is possible to synthesize a distance image having higher resolution. In particular, in the photodetector 1, the photodetector 20 that performs the distance measuring operation by the indirect method is used to perform the imaging operation. Since such an indirect method can realize high measurement accuracy, the photodetection apparatus 1 can further improve the accuracy of the distance image by performing an imaging operation.
 また、光検出装置1では、基準画素PRのタップBの露光量に基づいて、露光期間T2Aの時間長および露光期間T2Bの時間長を設定するようにした。具体的には、例えば、基準画素PRのタップBの露光量に基づいて、露光時間比RT(露光期間T2Bの時間長/露光期間T2Aの時間長)を設定するようにした。これにより、光検出装置1では、基準画素PRのタップBの露光量に基づいて、おおよその露光量を把握し、このおおよその露光量についての情報に基づいて、露光時間比RTを適切に設定することができる。このように、光検出装置1では、露光時間比RTを適切に設定することができるので、変換効率をほぼ連続的に自由に設定することができる。その結果、光検出装置1は、ダイナミックレンジを確保しつつ撮像動作を行うことができる。 Further, in the photodetector 1, the time length of the exposure period T2A and the time length of the exposure period T2B are set based on the exposure amount of the tap B of the reference pixel PR. Specifically, for example, the exposure time ratio RT (time length of exposure period T2B/time length of exposure period T2A) is set based on the exposure amount of the tap B of the reference pixel PR. Thereby, in the photodetector 1, the approximate exposure amount is grasped based on the exposure amount of the tap B of the reference pixel PR, and the exposure time ratio RT is appropriately set based on the information about the approximate exposure amount. can do. As described above, in the photodetector 1, the exposure time ratio RT can be appropriately set, so that the conversion efficiency can be freely set almost continuously. As a result, the photodetector 1 can perform the imaging operation while ensuring the dynamic range.
 また、光検出装置1では、このようにして設定した露光時間比RTと、画素PのタップAの露光量とに基づいて、その画素Pの画素値を算出するようにした。特に、光検出装置1では、相関2重サンプリングを用いて、その画素PのタップAの露光量を求め、求めた露光量と、露光時間比RTとに基づいて、その画素Pの画素値を算出するようにした。これにより、光検出装置1では、ノイズの少ない撮像画像PIC2を得ることができる。 Further, in the photodetector 1, the pixel value of the pixel P is calculated based on the exposure time ratio RT thus set and the exposure amount of the tap A of the pixel P. Particularly, in the photodetection device 1, the exposure amount of the tap A of the pixel P is obtained by using the correlated double sampling, and the pixel value of the pixel P is obtained based on the obtained exposure amount and the exposure time ratio RT. It was calculated. As a result, the photodetector 1 can obtain the captured image PIC2 with less noise.
[効果]
 以上のように本実施の形態では、基準画素のタップBの露光量に基づいて、露光期間T2Aの時間長、および露光期間T2Bの時間長を設定するようにしたので、露光時間比を適切に設定することができるため、ダイナミックレンジを確保しつつ撮像動作を行うことができる。
[effect]
As described above, in the present embodiment, the time length of the exposure period T2A and the time length of the exposure period T2B are set based on the exposure amount of the tap B of the reference pixel, so that the exposure time ratio is appropriately set. Since it can be set, the imaging operation can be performed while ensuring the dynamic range.
[変形例1]
 上記実施の形態では、撮像動作において、1つの露光期間T2Bおよび1つの露光期間T2Aを設けたが、これに限定されるものではない。以下に、本変形例に係る光検出装置1Aについて詳細に説明する。
[Modification 1]
In the above embodiment, one exposure period T2B and one exposure period T2A are provided in the imaging operation, but the present invention is not limited to this. The photodetector 1A according to this modification will be described in detail below.
 本変形例に係る光検出装置1Aは、上記実施の形態に係る光検出装置1(図1)と同様に、光検出部20Aを備えている。光検出部20Aは、上記実施の形態に係る光検出部20(図2)と同様に、処理部26Aを有している。処理部26Aは、露光制御部27Aを有している。露光制御部27Aは、上記実施の形態に係る露光制御部27と同様に、撮像動作モードMIにおいて、露光期間T2Aの時間長および露光期間T2Bの時間長を設定するように構成される。露光制御部27Aは、露光期間T2Bを2つに分け、露光期間T2B、露光期間T2A、露光期間T2Bの順に、露光期間T2A,T2Bを設定するようになっている。 The photodetector 1A according to the present modification includes a photodetector 20A, similar to the photodetector 1 according to the above-described embodiment (FIG. 1). The light detection unit 20A has a processing unit 26A, similarly to the light detection unit 20 (FIG. 2) according to the above embodiment. The processing unit 26A has an exposure control unit 27A. The exposure control unit 27A is configured to set the time length of the exposure period T2A and the time length of the exposure period T2B in the imaging operation mode MI, similarly to the exposure control unit 27 according to the above-described embodiment. The exposure control unit 27A divides the exposure period T2B into two, and sets the exposure periods T2A and T2B in the order of the exposure period T2B, the exposure period T2A, and the exposure period T2B.
 図12は、光検出装置1Aの撮像動作の一例を表すものである。図13A~13Gは、画素P1の要部の動作状態を表すものである。 FIG. 12 shows an example of the image pickup operation of the photodetector 1A. 13A to 13G show the operation state of the main part of the pixel P1.
 タイミングt41より前の期間において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルにする(図12(A),(C))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオン状態になり、フローティングディフュージョンFDA,FDBにおける電圧VFDA,VFDBは電源電圧VDDに設定される。 In the period before the timing t41, the drive unit 22 sets the voltages of the control signals SRSLA and SRSLB to the high level (FIGS. 12A and 12C). As a result, in the pixel P1, the transistors RSTA and RSTB are both turned on, and the voltages VFDA and VFDB in the floating diffusions FDA and FDB are set to the power supply voltage VDD.
 次に、タイミングt41において、駆動部22は、制御信号STGLBの電圧を低レベルから高レベルに変化させる(図12(B))。これにより、画素P1では、トランジスタTGBがオン状態になる。タイミングt41~t42の期間(期間T21)では、図13Aに示したように、フォトダイオードPDおよびフローティングディフュージョンFDBが電気的に接続される。 Next, at timing t41, the drive unit 22 changes the voltage of the control signal STGLB from low level to high level (FIG. 12(B)). As a result, in the pixel P1, the transistor TGB is turned on. During the period from timing t41 to t42 (period T21), the photodiode PD and the floating diffusion FDB are electrically connected as shown in FIG. 13A.
 次に、タイミングt42において、駆動部22は、制御信号SRSLA,SRSLBの電圧を高レベルから低レベルに変化させる(図23(A),(C))。これにより、画素P1では、トランジスタRSTA,RSTBがともにオフ状態になる。このとき、フローティングディフュージョンFDAに電荷QA0が蓄積されるとともに、フローティングディフュージョンFDBに電荷QB0が蓄積される。このようにして、露光期間T2Bが開始する。タイミングt42~t43の期間(期間T22)では、図13Bに示したように、フォトダイオードPDが生成した電荷がフローティングディフュージョンFDBに電荷QB1として蓄積される。 Next, at timing t42, the drive unit 22 changes the voltage of the control signals SRSLA and SRSLB from the high level to the low level (FIGS. 23(A) and (C)). As a result, in the pixel P1, both the transistors RSTA and RSTB are turned off. At this time, the electric charge QA0 is accumulated in the floating diffusion FDA, and the electric charge QB0 is accumulated in the floating diffusion FDB. In this way, the exposure period T2B starts. In the period from timing t42 to t43 (period T22), as shown in FIG. 13B, the charges generated by the photodiode PD are accumulated in the floating diffusion FDB as the charges QB1.
 次に、タイミングt43において、駆動部22は、制御信号STGLBの電圧を高レベルから低レベルに変化させる(図12(B))。これにより、画素P1では、トランジスタTGBがオフ状態になり、フォトダイオードPDおよびフローティングディフュージョンFDBが電気的に切り離される。このようにして、露光期間T2Bが一旦終了する。 Next, at timing t43, the drive section 22 changes the voltage of the control signal STGLB from the high level to the low level (FIG. 12(B)). As a result, in the pixel P1, the transistor TGB is turned off, and the photodiode PD and the floating diffusion FDB are electrically disconnected. In this way, the exposure period T2B ends once.
 そして、このタイミングt43において、露光期間T2Aが開始する。タイミングt43~t45の期間(期間T23)では、図13Cに示したように、フォトダイオードPDが生成した電荷がフォトダイオードPDに蓄積される。 Then, at this timing t43, the exposure period T2A starts. During the period from timing t43 to t45 (period T23), as shown in FIG. 13C, the electric charge generated by the photodiode PD is accumulated in the photodiode PD.
 タイミングt44~t45の期間では、図13Cに示したように、フローティングディフュージョンFDAには、電荷QA0が蓄積されている。このタイミングt44~t45の期間において、AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行う(図12(E))。この期間においてAD変換部25Aにより変換されたデジタル値は、電荷QA0の電荷量に応じた値である。 During the period from timing t44 to t45, the charge QA0 is accumulated in the floating diffusion FDA, as shown in FIG. 13C. During the period from timing t44 to timing t45, the AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 12(E)). The digital value converted by the AD conversion unit 25A during this period is a value corresponding to the amount of electric charge QA0.
 次に、タイミングt45において、駆動部22は、制御信号STGLAの電圧を低レベルから高レベルに変化させる(図12(D))。これにより、画素P1では、トランジスタTGAがオン状態になる。タイミングt45~t46の期間(期間T24)では、図13Dに示したように、フォトダイオードPDおよびフローティングディフュージョンFDAが電気的に接続される。そして、フォトダイオードPDが生成した電荷がフローティングディフュージョンFDAに電荷QA1として蓄積される。 Next, at timing t45, the drive unit 22 changes the voltage of the control signal STGLA from low level to high level (FIG. 12(D)). As a result, the transistor TGA is turned on in the pixel P1. During the period from timing t45 to timing t46 (period T24), the photodiode PD and the floating diffusion FDA are electrically connected as shown in FIG. 13D. Then, the electric charge generated by the photodiode PD is accumulated in the floating diffusion FDA as the electric charge QA1.
 次に、タイミングt46において、駆動部22は、制御信号STGLAの電圧を高レベルから低レベルに変化させる(図9(D))。これにより、画素P1では、トランジスタTGAがオフ状態になり、フォトダイオードPDおよびフローティングディフュージョンFDAが電気的に切り離される。このようにして、露光期間T2Aが終了する。そして、露光期間T2Bが再度開始する。 Next, at timing t46, the drive unit 22 changes the voltage of the control signal STGLA from the high level to the low level (FIG. 9(D)). As a result, in the pixel P1, the transistor TGA is turned off, and the photodiode PD and the floating diffusion FDA are electrically disconnected. In this way, the exposure period T2A ends. Then, the exposure period T2B starts again.
 タイミングt46~t47の期間(期間T25)では、図13Eに示したように、フローティングディフュージョンFDAには、電荷QA(=QA0+QA1)が蓄積されている。AD変換部25Aは、信号線SGLAの電圧に基づいてAD変換を行う(図12(E))。この期間T25においてAD変換部25Aにより変換されたデジタル値は、電荷QA(=QA0+QA1)の電荷量に応じた値である。 During the period from timing t46 to t47 (period T25), as shown in FIG. 13E, the charge QA (= QA0 + QA1) is accumulated in the floating diffusion FDA. The AD conversion unit 25A performs AD conversion based on the voltage of the signal line SGLA (FIG. 12E). The digital value converted by the AD conversion unit 25A in the period T25 is a value corresponding to the charge amount of the charge QA (=QA0+QA1).
 次に、タイミングt47において、駆動部22は、制御信号SRSLAの電圧を低レベルから高レベルに変化させる(図12(C))。これにより、画素P1では、トランジスタRSTAがオン状態になり、フローティングディフュージョンFDAにおける電圧VFDAは電源電圧VDDに設定される。また、このタイミングt47において、駆動部22は、制御信号STGLBの電圧を低レベルから高レベルに変化させる(図12(B))。これにより、画素P1では、トランジスタTGBがオン状態になる。タイミングt47~t48の期間(期間T26)では、図13Fに示したように、フォトダイオードPDおよびフローティングディフュージョンFDBが電気的に接続される。そして、フォトダイオードPDが生成した電荷がフローティングディフュージョンFDBに電荷QB1として蓄積される。 Next, at timing t47, the drive section 22 changes the voltage of the control signal SRSLA from low level to high level (FIG. 12(C)). As a result, in the pixel P1, the transistor RSTA is turned on, and the voltage VFDA in the floating diffusion FDA is set to the power supply voltage VDD. Further, at the timing t47, the drive section 22 changes the voltage of the control signal STGLB from the low level to the high level (FIG. 12(B)). As a result, the transistor TGB is turned on in the pixel P1. In the period from timing t47 to t48 (period T26), the photodiode PD and the floating diffusion FDB are electrically connected as shown in FIG. 13F. Then, the electric charge generated by the photodiode PD is accumulated as the electric charge QB1 in the floating diffusion FDB.
 次に、タイミングt48において、駆動部22は、制御信号STGLBの電圧を高レベルから低レベルに変化させる(図12(B))。これにより、画素P1では、トランジスタTGBがオフ状態になり、フォトダイオードPDおよびフローティングディフュージョンFDBが電気的に切り離される。このようにして、露光期間T2Bが終了する。 Next, at the timing t48, the drive unit 22 changes the voltage of the control signal STGLB from the high level to the low level (FIG. 12(B)). As a result, in the pixel P1, the transistor TGB is turned off, and the photodiode PD and the floating diffusion FDB are electrically disconnected. In this way, the exposure period T2B ends.
 タイミングt48~t49の期間(期間T27)では、図13Gに示したように、フローティングディフュージョンFDBには、電荷QB(=QB0+QB1)が蓄積されている。AD変換部25Bは、信号線SGLBの電圧に基づいてAD変換を行う(図12(F))。この期間においてAD変換部25Bにより変換されたデジタル値は、電荷QB(=QB0+QB1)の電荷量に応じた値である。 During the period from timing t48 to t49 (period T27), as shown in FIG. 13G, the charge QB (= QB0 + QB1) is accumulated in the floating diffusion FDB. The AD conversion unit 25B performs AD conversion based on the voltage of the signal line SGLB (FIG. 12 (F)). The digital value converted by the AD conversion unit 25B in this period is a value corresponding to the charge amount of the charge QB (=QB0+QB1).
 AD変換部25Aは、タイミングt46~t47の期間において変換されたデジタル値からタイミングt44~t45において変換されたデジタル値を減算することによりデジタルコードCODE(デジタルコードCODEA)を生成する。このデジタルコードCODEAは、露光期間T2Aにおいて蓄積された電荷QA1(=QA-QA0)の電荷量に応じた値である。 The AD conversion unit 25A generates a digital code CODE (digital code CODEA) by subtracting the digital value converted at the timings t44 to t45 from the digital value converted during the period from the timing t46 to t47. The digital code CODEA has a value corresponding to the amount of charge QA1 (=QA-QA0) accumulated in the exposure period T2A.
 また、AD変換部25Bは、タイミングt48~t49において変換されたデジタル値に基づいてデジタルコードCODE(デジタルコードCODEB)を生成する。このデジタルコードCODEBは、2つの露光期間T2Bにおいて蓄積された電荷QB(=QB0+QB1)の電荷量に応じた値である。 The AD conversion unit 25B also generates a digital code CODE (digital code CODEB) based on the digital value converted at the timings t48 to t49. This digital code CODEB has a value corresponding to the amount of charge QB (=QB0+QB1) accumulated in the two exposure periods T2B.
 読出部24は、これらのデジタルコードCODEA,CODEBを、画像信号DATA0として、処理部26Aに順次転送する。 The reading unit 24 sequentially transfers these digital codes CODEA and CODEB to the processing unit 26A as an image signal DATA0.
 このように、光検出装置1Aでは、撮像動作において、露光期間T2B、露光期間T2A、露光期間T2Bの順に、露光期間T2A,T2Bを設定する。これにより、光検出装置1Aでは、例えば、露光期間において照度が単調に変化する場合に、タップAの露光量(デジタルコードCODEA)を、その照度の変化範囲の中心値に対応する露光量にすることができる。 In this way, in the photodetector 1A, the exposure periods T2A and T2B are set in the order of the exposure period T2B, the exposure period T2A, and the exposure period T2B in the imaging operation. As a result, in the photodetector 1A, for example, when the illuminance changes monotonically during the exposure period, the exposure amount of the tap A (digital code CODEA) is set to the exposure amount corresponding to the center value of the change range of the illuminance. be able to.
[変形例2]
 上記実施の形態では、撮像動作において、基準画素PRのタップBの露光量が、フローティングディフュージョンFDA,FDBの蓄積可能な電荷量である“100,000e-”以下である場合に、露光時間比RTを設定するようにしたが、これに限定されるものではない。以下に、本変形例に係る光検出装置1Bについて詳細に説明する。
[Modification 2]
In the above embodiment, in the imaging operation, when the exposure amount of the tap B of the reference pixel PR is "100,000 e-" or less, which is the amount of charge that can be accumulated in the floating diffusion FDA and FDB, the exposure time ratio RT However, the present invention is not limited to this. Hereinafter, the photodetector 1B according to the present modification will be described in detail.
 図14は、本変形例に係る露光制御部27Bおよび画素値算出部28の一動作例を表すものである。ステップS101~S104,S106~S110については、上記実施の形態の場合(図11)と同様である。 FIG. 14 illustrates an operation example of the exposure control unit 27B and the pixel value calculation unit 28 according to this modification. Steps S101 to S104 and S106 to S110 are the same as those in the above embodiment (FIG. 11).
 ステップS102において、基準画素PRのタップBにおける露光量が“1,000e-”より多い場合(ステップS102において“N”)には、露光制御部27Bは、基準画素PRのタップBにおける露光量が“10,000e-”以下であるかどうかを確認する(ステップS115)。 In step S102, when the exposure amount at the tap B of the reference pixel PR is larger than “1,000e−” (“N” in step S102), the exposure control unit 27B determines that the exposure amount at the tap B of the reference pixel PR is increased. It is confirmed whether or not it is "10,000e-" or less (step S115).
 ステップS115において、基準画素PRのタップBにおける露光量が“10,000e-”より多い場合(ステップS115において“N”)には、露光制御部27Bは、基準画素PRのタップBにおける露光量が“100,000e-”以下であるかどうかを確認する(ステップS116)。基準画素PRのタップBにおける露光量が“100,000e-”以下である場合(ステップS116において“Y”)には、このフローは終了する。また、基準画素PRのタップBにおける露光量が“100,000e-”より多い場合(ステップS116において“N”)には、ステップS110に進む。 In step S115, when the exposure amount of the reference pixel PR at the tap B is larger than “10,000e−” (“N” in step S115), the exposure control unit 27B determines that the exposure amount of the reference pixel PR at the tap B is increased. It is confirmed whether or not it is "100,000e-" or less (step S116). If the exposure amount at tap B of the reference pixel PR is equal to or less than “100,000 e−” (“Y” in step S116), this flow ends. If the exposure amount at the tap B of the reference pixel PR is larger than “100,000 e−” (“N” in step S116), the process proceeds to step S110.
 これにより、光検出装置1Bでは、基準画素PRのタップBの露光量が“10,000e-”以下である場合に、露光時間比RTを設定する。これにより、例えば、タップBにおける露光量が“10,000e-”を超えるとリニアリティが悪化する場合において、リニアリティが悪化するような露光量にならないように、露光時間比RTを設定することができる。その結果、光検出装置1Bでは、撮像画像PIC2の画質を高めることができる。 With this, in the photodetector 1B, the exposure time ratio RT is set when the exposure amount of the tap B of the reference pixel PR is “10,000e−” or less. Thereby, for example, when the linearity deteriorates when the exposure amount on the tap B exceeds "10,000e-", the exposure time ratio RT can be set so that the exposure amount does not deteriorate the linearity. .. As a result, in the photodetector 1B, the image quality of the captured image PIC2 can be improved.
[変形例3]
 上記実施の形態では、フォトダイオードPDが生成した電荷を蓄積するフローティングディフュージョンFDA,FDBを設けたが、これに限定されるものではなく、これに加え、さらに容量素子を設けてもよい。以下に、いくつか例を挙げて、本変形例について説明する。
[Modification 3]
Although the floating diffusions FDA and FDB for accumulating the charges generated by the photodiode PD are provided in the above-described embodiment, the present invention is not limited to this, and a capacitive element may be further provided in addition to this. This modification will be described below with some examples.
 図15は、本変形例に係る画素アレイ21Cにおける画素Pの一例を表すものである。画素アレイ21Cは、複数の制御線FDGLを有している。制御線FDGLは、水平方向(図15における横方向)に延伸するように設けられ、この制御線FDGLには、本変形例に係る駆動部22Cにより制御信号SFDGLが印加される。 FIG. 15 shows an example of the pixel P in the pixel array 21C according to this modification. The pixel array 21C has a plurality of control lines FDGL. The control line FDGL is provided so as to extend in the horizontal direction (horizontal direction in FIG. 15), and a control signal SFDGL is applied to the control line FDGL by the drive unit 22C according to the present modification.
 画素Pは、トランジスタFDGA,FDGBと、容量素子CAPA,CAPBとを有している。トランジスタFDGA,FDGBは、この例では、N型のMOSトランジスタである。 The pixel P has transistors FDGA and FDGB and capacitors CAPA and CAPB. The transistors FDGA and FDGB are N-type MOS transistors in this example.
 トランジスタFDGAのゲートは制御線FDGLに接続され、ドレインには容量素子CAPAおよびトランジスタRSTAのソースに接続され、ソースはフローティングディフュージョンFDA、トランジスタTGAのドレイン、およびトランジスタAMPAのゲートに接続される。容量素子CAPAの一端はトランジスタFDGAのドレインおよびトランジスタRSTAのソースに接続され、他端は接地されている。 The gate of the transistor FDGA is connected to the control line FDGL, the drain is connected to the source of the capacitive element CAPA and the transistor RSTA, and the source is connected to the floating diffusion FDA, the drain of the transistor TGA, and the gate of the transistor AMPA. One end of the capacitive element CAPA is connected to the drain of the transistor FDGA and the source of the transistor RSTA, and the other end is grounded.
 トランジスタFDGBのゲートは制御線FDGLに接続され、ドレインには容量素子CAPBおよびトランジスタRSTBのソースに接続され、ソースはフローティングディフュージョンFDB、トランジスタTGBのドレイン、およびトランジスタAMPBのゲートに接続される。容量素子CAPBの一端はトランジスタFDGBのドレインおよびトランジスタRSTBのソースに接続され、他端は接地されている。 The gate of the transistor FDGB is connected to the control line FDGL, the drain is connected to the capacitive element CAPB and the source of the transistor RSTB, and the source is connected to the floating diffusion FDB, the drain of the transistor TGB, and the gate of the transistor AMPB. One end of the capacitive element CAPB is connected to the drain of the transistor FDGB and the source of the transistor RSTB, and the other end is grounded.
 制御信号SFDGLに基づいて、トランジスタFDGA,FDGBはオン状態になる。トランジスタFDGA,FDGBをオン状態にすることにより、フローティングディフュージョンFDAおよび容量素子CAPAが電気的に接続されるとともに、フローティングディフュージョンFDBおよび容量素子CAPBが電気的に接続される。これにより、画素Pでは、タップA,Bにおける容量値を大きくすることができるので、タップA,Bにおいて蓄積可能な電荷量を増やすことができる。 The transistors FDGA and FDGB are turned on based on the control signal SFDGL. By turning on the transistors FDGA and FDGB, the floating diffusion FDA and the capacitive element CAPA are electrically connected, and the floating diffusion FDB and the capacitive element CAPB are electrically connected. As a result, in the pixel P, the capacitance values at the taps A and B can be increased, so that the amount of charge that can be accumulated at the taps A and B can be increased.
 図16は、本変形例に係る他の画素アレイ21Dにおける画素Pの一例を表すものである。画素アレイ21Dは、複数の制御線FDGLAと、複数の制御線FDGLBとを有している。制御線FDGLAは、水平方向(図16における横方向)に延伸するように設けられ、この制御線FDGLAには、本変形例に係る駆動部22Dにより制御信号SFDGLAが印加される。制御線FDGLBは、水平方向に延伸するように設けられ、この制御線FDGLBには、本変形例に係る駆動部22Dにより制御信号SFDGLBが印加される。 FIG. 16 shows an example of a pixel P in another pixel array 21D according to this modification. The pixel array 21D has a plurality of control lines FDGLA and a plurality of control lines FDGLB. The control line FDGLA is provided so as to extend in the horizontal direction (horizontal direction in FIG. 16), and the control signal SFDGLA is applied to the control line FDGLA by the drive unit 22D according to the present modification. The control line FDGLB is provided so as to extend in the horizontal direction, and a control signal SFDGLB is applied to the control line FDGLB by the drive unit 22D according to the present modification.
 画素Pは、トランジスタFDGA,FDGBと、容量素子CAPA,CAPBとを有している。トランジスタFDGAのゲートは制御線FDGLAに接続される。トランジスタFDGBのゲートは制御線FDGLBに接続される。 The pixel P has transistors FDGA and FDGB and capacitors CAPA and CAPB. The gate of the transistor FDGA is connected to the control line FDGLA. The gate of the transistor FDGB is connected to the control line FDGLB.
 制御信号SFDGLAに基づいて、トランジスタFDGAはオン状態になる。トランジスタFDGAをオン状態にすることにより、フローティングディフュージョンFDAおよび容量素子CAPAが電気的に接続される。これにより、画素Pでは、タップAにおいて蓄積可能な電荷量を増やすことができる。同様に、制御信号SFDGLBに基づいて、トランジスタFDGBはオン状態になる。トランジスタFDGBをオン状態にすることにより、フローティングディフュージョンFDBおよび容量素子CAPBが電気的に接続される。これにより、画素Pでは、タップBにおいて蓄積可能な電荷量を増やすことができる。 The transistor FDGA is turned on based on the control signal SFDGLA. By turning on the transistor FDGA, the floating diffusion FDA and the capacitive element CAPA are electrically connected. As a result, in the pixel P, the amount of charge that can be accumulated in the tap A can be increased. Similarly, the transistor FDGB is turned on based on the control signal SFDGLB. By turning on the transistor FDGB, the floating diffusion FDB and the capacitive element CAPB are electrically connected. As a result, in the pixel P, the amount of charge that can be accumulated in the tap B can be increased.
 このように、画素Pでは、タップA,Bにおいて、個別に設定を行うことができる。これにより、例えば、タップA,Bの役割に応じた設定にすることができる。具体的には、例えば、露光期間T2Bの時間長:露光期間T2Aの時間長”を“100:1”に設定しても飽和が生じる場合には、トランジスタFDGAをオフ状態にするとともにトランジスタFDGBをオン状態にすることができる。これにより、タップBにおいて蓄積可能な電荷量を増やすことができる。言い換えれば、タップBにおける変換効率を低くし、タップAにおける変換効率を高くすることができる。 In this way, in the pixel P, taps A and B can be individually set. As a result, for example, the settings can be set according to the roles of the taps A and B. Specifically, for example, if saturation occurs even if the "time length of the exposure period T2B: the time length of the exposure period T2A" is set to "100: 1", the transistor FDGA is turned off and the transistor FDGB is turned on. The ON state can be achieved, which can increase the amount of charge that can be accumulated in the tap B. In other words, the conversion efficiency in the tap B can be lowered and the conversion efficiency in the tap A can be increased.
[変形例4]
 上記実施の形態では、撮像動作において、画素アレイ21における全ての画素Pが、同じ露光時間比RTで動作するようにしたが、これに限定されるものではない。これに代えて、例えば、画素アレイにおける複数の画素Pを複数のグループに分け、同じグループに属する複数の画素Pが、同じ露光時間比RTで動作するようにしてもよい。以下に、2つのグループを設けた光検出装置1Dを例に挙げて詳細に説明する。
[Modification example 4]
In the above embodiment, in the imaging operation, all the pixels P in the pixel array 21 operate at the same exposure time ratio RT, but the present invention is not limited to this. Instead of this, for example, a plurality of pixels P in the pixel array may be divided into a plurality of groups so that the plurality of pixels P belonging to the same group operate at the same exposure time ratio RT. The photodetection device 1D having two groups will be described in detail below as an example.
 図17は、本変形例に係る光検出装置1Dにおける画素アレイ21Dおよび駆動部22Dの一構成例を表すものである。画素アレイ21Dは、複数の画素Pを有している。複数の画素Pは、この例では2つのグループG1,G2に分けられている。この図17では、グループG1に属する画素P(画素PG1)を太線で示し、グループG2に属する画素P(画素PG2)を細線で示している。 FIG. 17 shows a configuration example of the pixel array 21D and the drive unit 22D in the photodetector 1D according to this modification. The pixel array 21D has a plurality of pixels P. The plurality of pixels P are divided into two groups G1 and G2 in this example. In FIG. 17, the pixels P (pixels PG1) belonging to the group G1 are shown by thick lines, and the pixels P (pixels PG2) belonging to the group G2 are shown by thin lines.
 画素アレイ21Dは、複数の制御線TGLA1と、複数の制御線TGLA2と、複数の制御線TGLB1と、複数の制御線TGLB2と、複数の制御線RSLA1と、複数の制御線RSLA2と、複数の制御線RSLB1と、複数の制御線RSLB2とを有している。制御線TGLA1は、水平方向(図17おける横方向)に延伸するように設けられ、この制御線TGLA1には、駆動部22Dにより制御信号STGLA1が印加される。制御線TGLA2は、水平方向に延伸するように設けられ、この制御線TGLA2には、駆動部22Dにより制御信号STGLA2が印加される。制御線TGLB1は、水平方向に延伸するように設けられ、この制御線TGLB1には、駆動部22Dにより制御信号STGLB1が印加される。制御線TGLB2は、水平方向に延伸するように設けられ、この制御線TGLB2には、駆動部22Dにより制御信号STGLB2が印加される。制御線RSLA1は、水平方向に延伸するように設けられ、この制御線RSLA1には、駆動部22Dにより制御信号SRSLA1が印加される。制御線RSLA2は、水平方向に延伸するように設けられ、この制御線RSLA2には、駆動部22Dにより制御信号SRSLA2が印加される。制御線RSLB1は、水平方向に延伸するように設けられ、この制御線RSLB1には、駆動部22Dにより制御信号SRSLB1が印加される。制御線RSLB2は、水平方向に延伸するように設けられ、この制御線RSLB2には、駆動部22Dにより制御信号SRSLB2が印加される。 The pixel array 21D includes a plurality of control lines TGLA1, a plurality of control lines TGLA2, a plurality of control lines TGLB1, a plurality of control lines TGLB2, a plurality of control lines RSLA1, a plurality of control lines RSLA2, and a plurality of controls. It has a line RSLB1 and a plurality of control lines RSLB2. The control line TGLA1 is provided so as to extend in the horizontal direction (horizontal direction in FIG. 17), and a control signal STGLA1 is applied to the control line TGLA1 by the drive unit 22D. The control line TGLA2 is provided so as to extend in the horizontal direction, and a control signal STGLA2 is applied to the control line TGLA2 by the drive unit 22D. The control line TGLB1 is provided so as to extend in the horizontal direction, and a control signal STGLB1 is applied to the control line TGLB1 by the drive unit 22D. The control line TGLB2 is provided so as to extend in the horizontal direction, and a control signal STGLB2 is applied to the control line TGLB2 by the drive unit 22D. The control line RSLA1 is provided so as to extend in the horizontal direction, and a control signal SRSLA1 is applied to the control line RSLA1 by the drive unit 22D. The control line RSLA2 is provided so as to extend in the horizontal direction, and a control signal SRSLA2 is applied to the control line RSLA2 by the drive unit 22D. The control line RSLB1 is provided so as to extend in the horizontal direction, and a control signal SRSLB1 is applied to the control line RSLB1 by the drive unit 22D. The control line RSLB2 is provided so as to extend in the horizontal direction, and a control signal SRSLB2 is applied to the control line RSLB2 by the drive unit 22D.
 画素PG1は、制御線TGLA1,TGLB1,RSLA1,RSLB1に接続される。画素PG2は、制御線TGLA2,TGLB2,RSLA2,RSLB2に接続される。 Pixel PG1 is connected to control lines TGLA1, TGLB1, RSLA1, RSLB1. The pixel PG2 is connected to the control lines TGLA2, TGLB2, RSLA2, RSLB2.
 光検出装置1Dにおける露光制御部27Dは、撮像動作モードMIにおいて、複数の画素PG1のうちのある基準画素PG1RのタップBの露光量に基づいて露光時間比RT(露光時間比RT1)を設定するとともに、複数の画素PG2のうちのある基準画素PG2RのタップBの露光量に基づいて露光時間比RT(露光時間比RT2)を設定する。そして、複数の画素PG1は露光時間比RT1で動作し、複数の画素PG2は露光時間比RT2で動作することができる。 The exposure control unit 27D in the light detection device 1D sets the exposure time ratio RT (exposure time ratio RT1) based on the exposure amount of the tap B of a certain reference pixel PG1R among the plurality of pixels PG1 in the imaging operation mode MI. At the same time, the exposure time ratio RT (exposure time ratio RT2) is set based on the exposure amount of the tap B of a certain reference pixel PG2R among the plurality of pixels PG2. Then, the plurality of pixels PG1 can operate at the exposure time ratio RT1, and the plurality of pixels PG2 can operate at the exposure time ratio RT2.
 ここで、基準画素PG1Rは、本開示における「第1の画素」の一具体例に対応する。基準画素PG2Rは、本開示における「第2の画素」の一具体例に対応する。露光時間比RT1は、本開示における「第1の露光時間比」の一具体例に対応する。露光時間比RT2は、本開示における「第2の露光時間比」の一具体例に対応する。 Here, the reference pixel PG1R corresponds to a specific but not limitative example of “first pixel” in one embodiment of the present disclosure. The reference pixel PG2R corresponds to a specific but not limitative example of “second pixel” in one embodiment of the disclosure. The exposure time ratio RT1 corresponds to a specific but not limitative example of “first exposure time ratio” in one embodiment of the present disclosure. The exposure time ratio RT2 corresponds to a specific but not limitative example of “second exposure time ratio” in one embodiment of the present disclosure.
[変形例5]
 上記実施の形態では、撮像動作において、複数の画素Pのうちのある基準画素のタップBの露光量に基づいて露光時間比RTを設定し、その複数の画素Pがその露光時間比RTで動作するようにしたが、これに限定されるものではない。これに代えて、例えば、各画素PのタップBの露光量に基づいて露光時間比RTを設定し、その画素Pがその露光時間比RTで動作するようにしてもよい。以下に、この変形例に係る光検出装置1Eについて詳細に説明する。
[Modification 5]
In the above-described embodiment, in the imaging operation, the exposure time ratio RT is set based on the exposure amount of the tap B of a certain reference pixel among the plurality of pixels P, and the plurality of pixels P operate at the exposure time ratio RT. However, the present invention is not limited to this. Instead of this, for example, the exposure time ratio RT may be set based on the exposure amount of the tap B of each pixel P so that the pixel P operates at the exposure time ratio RT. The photodetector 1E according to this modification will be described in detail below.
 図18は、光検出装置1Eにおける光検出部20Eの一構成例を表すものである。光検出部20Eは、2枚の半導体チップ30,40に形成される。半導体チップ30には、画素アレイ21Eが形成される。画素アレイ21Eは、マトリクス状に配置された複数の画素Pを有する。半導体チップ40には、マトリクス状に配置された複数の回路Cが形成される。複数の回路Cは、複数の画素Pにそれぞれ対応して設けられる。半導体チップ30,40は互いに重ね合わされ、互いに電気的に接続される。具体的には、画素Pおよび回路Cは、例えば貫通電極などを用いて互いに電気的に接続される。 FIG. 18 illustrates a configuration example of the photodetection unit 20E in the photodetection device 1E. The photodetection section 20E is formed on the two semiconductor chips 30 and 40. A pixel array 21E is formed on the semiconductor chip 30. The pixel array 21E has a plurality of pixels P arranged in a matrix. A plurality of circuits C arranged in a matrix are formed on the semiconductor chip 40. The plurality of circuits C are provided corresponding to the plurality of pixels P, respectively. The semiconductor chips 30 and 40 are overlaid on each other and electrically connected to each other. Specifically, the pixel P and the circuit C are electrically connected to each other by using, for example, a through electrode.
 図19は、画素Pおよび回路Cの一構成例を表すものである。回路Cは、駆動部42と、AD変換部45A,45Bと、処理部46とを有している。駆動部42、AD変換部45A,45B、および処理部46は、上記実施の形態に係る駆動部22、AD変換部25A,25B、および処理部26にそれぞれ対応する。 FIG. 19 shows a configuration example of the pixel P and the circuit C. The circuit C has a drive unit 42, AD conversion units 45A and 45B, and a processing unit 46. The drive unit 42, the AD conversion units 45A and 45B, and the processing unit 46 correspond to the drive unit 22, the AD conversion units 25A and 25B, and the processing unit 26 according to the above embodiments, respectively.
 駆動部42は、処理部46からの指示に基づいて、画素Pを駆動するように構成される。具体的には、駆動部42は、画素PのトランジスタTGAに対して制御信号STGLAを供給し、画素PのトランジスタTGBに対して制御信号STGLBを供給し、画素PのトランジスタRSTAに対して制御信号SRSLAを供給し、画素PのトランジスタRSTBに対して制御信号SRSLBを供給し、画素PのトランジスタSELA,SELBに対して制御信号SSELLを供給するようになっている。駆動部42は、信号生成部43を有している。信号生成部43は、制御信号STGLA,STGLBを生成するように構成される。 The drive unit 42 is configured to drive the pixel P based on an instruction from the processing unit 46. Specifically, the drive unit 42 supplies the control signal STGLA to the transistor TGA of the pixel P, supplies the control signal STGLB to the transistor TGB of the pixel P, and supplies the control signal to the transistor RSTA of the pixel P. The SRSLA is supplied, the control signal SRSLB is supplied to the transistor RSTB of the pixel P, and the control signal SSELL is supplied to the transistors SELA and SELB of the pixel P. The drive unit 42 has a signal generation unit 43. The signal generator 43 is configured to generate the control signals STGLA and STGLB.
 AD変換部45Aは、画素Pから供給された画素信号SIGAの電圧に基づいてAD変換を行うことにより、デジタルコードCODEAを生成するように構成される。AD変換部45Bは、画素Pから供給された画素信号SIGBの電圧に基づいてAD変換を行うことにより、デジタルコードCODEBを生成するように構成される The AD conversion unit 45A is configured to generate a digital code CODEA by performing AD conversion based on the voltage of the pixel signal SIGA supplied from the pixel P. The AD conversion unit 45B is configured to generate a digital code CODEB by performing AD conversion based on the voltage of the pixel signal SIGB supplied from the pixel P.
 処理部46は、制御部13からの指示に基づいて、駆動部42およびAD変換部45A,45Bに制御信号を供給することにより、画素Pおよび回路Cの動作を制御するように構成される。処理部46は、露光制御部47と、画素値算出部48とを有している。 The processing unit 46 is configured to control the operations of the pixels P and the circuit C by supplying control signals to the drive unit 42 and the AD conversion units 45A and 45B based on the instruction from the control unit 13. The processing unit 46 has an exposure control unit 47 and a pixel value calculation unit 48.
 露光制御部47は、撮像動作モードMIにおいて、露光期間T2Aの時間長および露光期間T2Bの時間長を設定するように構成される。具体的には、露光制御部47は、例えば、露光期間T2Aの時間長および露光期間T2Bの時間長の比(露光時間比RT)を設定する。そして、処理部46は、露光制御部47が設定した露光期間T2A,T2Bの時間長についての情報を、駆動部42に供給するようになっている。 The exposure control unit 47 is configured to set the time length of the exposure period T2A and the time length of the exposure period T2B in the imaging operation mode MI. Specifically, the exposure control unit 47 sets, for example, the ratio of the time length of the exposure period T2A and the time length of the exposure period T2B (exposure time ratio RT). Then, the processing unit 46 is configured to supply the driving unit 42 with information regarding the time lengths of the exposure periods T2A and T2B set by the exposure control unit 47.
 画素値算出部48は、デジタルコードCODEA,CODEBに基づいて、画素Pの画素値を算出するように構成される。測距動作モードMDでは、画素値は、対象物100までの距離Dについての値を示す。撮像動作モードMIでは、画素値は、受光量を示す。 The pixel value calculation unit 48 is configured to calculate the pixel value of the pixel P based on the digital codes CODEA and CODEB. In the distance measurement operation mode MD, the pixel value indicates the value for the distance D to the object 100. In the imaging operation mode MI, the pixel value indicates the amount of received light.
 この構成により、光検出部20Eでは、画素P単位で露光時間比RTを設定することができる。 With this configuration, the light detection unit 20E can set the exposure time ratio RT in units of pixels P.
 ここで、画素Pは、本開示における「第1の画素」の一具体例に対応する。露光制御部47は、本開示における「第1の露光制御部」の一具体例に対応する。駆動部42は、本開示における「第1の駆動部」の一具体例に対応する。画素値算出部48は、本開示における「第1の画素値算出部」の一具体例に対応する。 Here, the pixel P corresponds to a specific but not limitative example of “first pixel” in one embodiment of the present disclosure. The exposure control unit 47 corresponds to a specific but not limitative example of “first exposure control unit” in one embodiment of the present disclosure. The drive unit 42 corresponds to a specific but not limitative example of “first drive unit” in one embodiment of the present disclosure. The pixel value calculation unit 48 corresponds to a specific but not limitative example of “first pixel value calculation unit” in one embodiment of the present disclosure.
[その他の変形例]
 また、これらの変形例のうちの2以上を組み合わせてもよい。
[Other modifications]
Also, two or more of these modifications may be combined.
<2.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<2. Application to mobiles>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 15, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjustment and a control device such as a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the imaging unit 12031 is connected to the vehicle outside information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The imaging unit 12031 can output the electric signal as an image or as distance measurement information. The light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes a function of ADAS (Advanced Driver Assistance System) that includes collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, a vehicle collision warning, or a vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図15の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The voice image output unit 12052 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to an occupant of the vehicle or the outside of the vehicle. In the example of FIG. 15, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
 図16は、撮像部12031の設置位置の例を示す図である。 FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
 図16では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 16, the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example. The image capturing unit 12101 provided on the front nose and the image capturing unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 included in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The front images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
 なお、図16には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 16 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, and the imaging range 12114 indicates The imaging range of the imaging part 12104 provided in a rear bumper or a back door is shown. For example, by overlaying image data captured by the image capturing units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the image capturing units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image capturing units 12101 to 12104 may be a stereo camera including a plurality of image capturing elements, or may be an image capturing element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining, it is possible to extract as the preceding vehicle a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and that travels in substantially the same direction as the vehicle 12100 at a predetermined speed (for example, 0 km / h or more). it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies an obstacle around the vehicle 12100 into an obstacle visible to the driver of the vehicle 12100 and an obstacle difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the images captured by the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. Is performed by the procedure for determining. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。これにより、車両制御システム12000では、測距における計測精度を高くすることができるので、車両の衝突回避あるいは衝突緩和機能、車間距離に基づく追従走行機能、車速維持走行機能、車両の衝突警告機能、車両のレーン逸脱警告機能等の精度を高めることができる。 Above, an example of the vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. As a result, in the vehicle control system 12000, the measurement accuracy in distance measurement can be improved, so that the vehicle collision avoidance or collision mitigation function, the follow-up running function based on the inter-vehicle distance, the vehicle speed maintenance running function, the vehicle collision warning function, The accuracy of the lane departure warning function of the vehicle can be improved.
 以上、実施の形態および変形例、ならびにそれらの具体的な応用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。 The present technology has been described above with reference to the embodiments and modified examples, and specific application examples thereof, but the present technology is not limited to these embodiments and the like, and various modifications are possible.
 例えば、上記の各実施の形態では、本技術を、対象物100までの距離を計測する測距装置に適用したが、これに限定されるものではない。これに代えて、例えば、本技術を、発光部が光パルスL0を射出してから受光部が反射光パルスL1を検出するまでの光の飛行時間を計測する時間計測装置に適用してもよい。 For example, in each of the above-described embodiments, the present technology is applied to a distance measuring device that measures the distance to the object 100, but the present invention is not limited to this. Instead of this, for example, the present technology may be applied to a time measuring device that measures the flight time of light from the light emitting unit emitting the light pulse L0 to the light receiving unit detecting the reflected light pulse L1. ..
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Note that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、ダイナミックレンジを確保しつつ撮像動作を行うことができる。 The present technology can be configured as follows. According to the present technology having the following configuration, it is possible to perform an imaging operation while ensuring a dynamic range.
(1)光に基づいて第1の受光電荷を生成する光電変換動作を行うことが可能な第1の光電変換素子と、前記第1の受光電荷を蓄積可能な第1の電荷蓄積部および第2の電荷蓄積部と、オン状態になることにより前記第1の光電変換素子を前記第1の電荷蓄積部に接続可能な第1のスイッチと、オン状態になることにより前記第1の光電変換素子を前記第2の電荷蓄積部に接続可能な第2のスイッチとを有する第1の画素と、
 前記第1の電荷蓄積部に蓄積された前記第1の受光電荷の第1の電荷量に基づいて、前記第1の光電変換素子が前記第1の電荷蓄積部に蓄積される前記第1の受光電荷を生成する第1の露光期間の第1の時間長、および前記第1の光電変換素子が前記第2の電荷蓄積部に蓄積される前記第1の受光電荷を生成する第2の露光期間の第2の時間長を設定する第1の設定処理を行うことが可能な第1の露光制御部と、
 前記第1の設定処理の結果に基づいて前記第1のスイッチおよび前記第2のスイッチの動作を制御可能な第1の駆動部と
 を備えた光検出装置。
(2)前記第2の電荷蓄積部に蓄積された前記第1の受光電荷の第2の電荷量と、前記第1の時間長および前記第2の時間長の第1の露光時間比とに基づいて第1の画素値を算出可能な第1の画素値算出部をさらに備えた
 前記(1)に記載の光検出装置。
(3)前記第1の駆動部は、前記第1の露光期間において、前記第1のスイッチをオン状態に維持するように、前記第1のスイッチの動作を制御可能である
 前記(2)に記載の光検出装置。
(4)第1のAD変換部をさらに備え、
 前記第1の画素は、前記第1の露光期間の後の第1の期間において、前記第1の電荷蓄積部における前記第1の電荷量に応じた第1の電圧を出力可能な第1の出力部を有し、
 前記第1のAD変換部は、前記第1の期間において、前記第1の電圧を第1のデジタルコードに変換可能であり、
 前記第1の露光制御部は、前記第1のデジタルコードに基づいて前記第1の設定処理を行う
 前記(3)に記載の光検出装置。
(5)前記第1の露光期間は、前記第2の露光期間をはさむ2つのサブ露光期間を含む
 前記(3)または(4)に記載の光検出装置。
(6)前記第2の露光期間は、第1のサブ露光期間と、前記第1のサブ露光期間の後の第2のサブ露光期間とを含み、
 前記第1の駆動部は、前記第1のサブ露光期間において前記第2のスイッチをオフ状態に維持し、前記第2のサブ露光期間において前記第2のスイッチをオン状態に維持するように、前記第2のスイッチの動作を制御可能である
 前記(2)から(5)のいずれかに記載の光検出装置。
(7)第2のAD変換部をさらに備え、
 前記第1の画素は、前記第1のサブ露光期間の期間内の第2の期間において、前記第2の電荷蓄積部における電荷量に応じた第2の電圧を出力可能であり、前記第2のサブ露光期間の後の第3の期間において、前記第2の電荷量に応じた第3の電圧を出力可能な第2の出力部を有し、
 前記第2のAD変換部は、前記第2の期間における前記第2の電圧および前記第3の期間における前記第3の電圧との差電圧を第2のデジタルコードに変換可能であり、
 前記第1の画素値算出部は、前記第2のデジタルコードおよび前記第1の露光時間比に基づいて前記画素値を算出可能である
 前記(6)に記載の光検出装置。
(8)前記第1の露光制御部は、前記第1の電荷量に基づいて前記第1の露光時間比を設定することが可能である
 前記(2)から(7)のいずれかに記載の光検出装置。
(9)前記第1の露光制御部は、前記第1の電荷量が第1のしきい値より小さい場合に、前記第1の時間長および前記第2の時間長が互いに等しくなるように前記第1の露光時間比を設定可能である
 前記(8)に記載の光検出装置。
(10)前記第1の露光制御部は、前記第1の電荷量が前記第1のしきい値より大きく第2のしきい値より小さい場合に、前記第1の電荷量に応じて、前記第1の時間長が前記第2の時間長よりも長くなるように、前記第1の露光時間比を設定可能である
 前記(9)に記載の光検出装置。
(11)前記第1の露光制御部は、前記第1の電荷量が第3のしきい値より大きい場合に、前記第1の時間長および前記第2の時間長の合計時間長を短くすることにより、前記第1の時間長および前記第2の時間長を設定可能である
 前記(2)から(10)のいずれかに記載の光検出装置。
(12)光に基づいて第2の受光電荷を生成する光電変換動作を行うことが可能な第2の光電変換素子と、前記第2の受光電荷を蓄積可能な第3の電荷蓄積部および第4の電荷蓄積部と、オン状態になることにより前記第2の光電変換素子を前記第3の電荷蓄積部に接続可能な第3のスイッチと、オン状態になることにより前記第2の光電変換素子を前記第4の電荷蓄積部に接続可能な第4のスイッチとを有する第2の画素をさらに備え、
 前記第1の露光制御部は、さらに、前記第3の電荷蓄積部に蓄積された前記第2の受光電荷の第3の電荷量に基づいて、前記第2の光電変換素子が前記第3の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第3の露光期間の第3の時間長、および前記第2の光電変換素子が前記第4の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第4の露光期間の第4の時間長を設定する第2の設定処理を行うことが可能であり、
 前記第1の駆動部は、さらに、前記第2の設定処理の結果に基づいて前記第3のスイッチおよび前記第4のスイッチの動作を制御可能であり、
 前記第1の画素値算出部は、さらに、前記第4の電荷蓄積部に蓄積された前記第2の受光電荷の第4の電荷量と、前記第3の時間長および前記第4の時間長の第2の露光時間比とに基づいて第2の画素値を算出可能である
 前記(2)から(11)のいずれかに記載の光検出装置。
(13)光に基づいて第2の受光電荷を生成する光電変換動作を行うことが可能な第2の光電変換素子と、前記第2の受光電荷を蓄積可能な第3の電荷蓄積部および第4の電荷蓄積部と、オン状態になることにより前記第2の光電変換素子を前記第3の電荷蓄積部に接続可能な第3のスイッチと、オン状態になることにより前記第2の光電変換素子を前記第4の電荷蓄積部に接続可能な第4のスイッチとを有する第2の画素と、
 前記第3の電荷蓄積部に蓄積された前記第2の受光電荷の第3の電荷量に基づいて、前記第2の光電変換素子が前記第3の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第3の露光期間の第3の時間長、および前記第2の光電変換素子が前記第4の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第4の露光期間の第4の時間長を設定する第2の設定処理を行うことが可能な第2の露光制御部と、
 前記第2の設定処理の結果に基づいて前記第3のスイッチおよび前記第4のスイッチの動作を制御可能な第2の駆動部と、
 前記第4の電荷蓄積部に蓄積された前記第2の受光電荷の第4の電荷量と、前記第3の時間長および前記第4の時間長の第2の露光時間比とに基づいて第2の画素値を算出可能な第2の画素値算出部と
 をさらに備えた
 前記(2)から(11)のいずれかに記載の光検出装置。
(14)光に基づいて第2の受光電荷を生成する光電変換動作を行うことが可能な第2の光電変換素子と、前記第2の受光電荷を蓄積可能な第3の電荷蓄積部および第4の電荷蓄積部と、オン状態になることにより前記第2の光電変換素子を前記第3の電荷蓄積部に接続可能な第3のスイッチと、オン状態になることにより前記第2の光電変換素子を前記第4の電荷蓄積部に接続可能な第4のスイッチとを有する第2の画素をさらに備え、
 前記第1の駆動部は、さらに、前記第1の設定処理の結果に基づいて前記第3のスイッチおよび前記第4のスイッチの動作を制御可能であり、
 前記第1の画素値算出部は、さらに、前記第4の電荷蓄積部に蓄積された前記第2の受光電荷の第4の電荷量と、前記露光時間比とに基づいて第2の画素値を算出可能である
 前記(2)から(11)のいずれかに記載の光検出装置。
(15)前記第1の画素は、
 オン状態になることにより、前記第1の電荷蓄積部に所定の電圧を印加可能な第5のスイッチと、
 オン状態になることにより、前記第2の電荷蓄積部に前記所定の電圧を印加可能な第6のスイッチと
 をさらに有し、
 前記第1の駆動部は、さらに、前記第1の設定処理に基づいて前記第5のスイッチおよび前記第6のスイッチの動作を制御可能である
 前記(2)から(14)のいずれかに記載の光検出装置。
(16)動作モードを、第1の動作モードを含む複数の動作モードのうちの1つに設定可能な動作モード設定部をさらに備え、
 前記第1の露光制御部は、前記第1の動作モードにおいて前記第1の設定処理を行うことが可能であり、
 前記第1の駆動部は、前記第1の動作モードにおいて、前記第1の設定処理の結果に基づいて前記第1のスイッチおよび前記第2のスイッチの動作を制御可能であり、
 前記第1の画素値算出部は、前記第1の動作モードにおいて、前記第2の電荷量および前記露光時間比に基づいて前記画素値を算出可能である
 前記(2)から(14)のいずれかに記載の光検出装置。
(17)発光部をさらに備え、
 前記複数の動作モードは、第2の動作モードを含み、
 前記発光部は、前記第2の動作モードにおいて、発光と消光を交互に繰り返すことにより光パルスを射出可能であり、
 前記第1の駆動部は、前記第2の動作モードにおいて、前記光パルスに同期するように、前記第1のスイッチおよび前記第2のスイッチを交互にオン状態にすることが可能であり、
 前記第1の画素値算出部は、前記第2の動作モードにおいて、前記第1の電荷量および前記第2の電荷量に基づいて前記画素値を算出可能である
 前記(16)に記載の光検出装置。
(1) A first photoelectric conversion element capable of performing a photoelectric conversion operation to generate a first received light charge based on light, a first charge storage section capable of storing the first received charge, and a first photoelectric conversion element No. 2 charge storage section, a first switch capable of connecting the first photoelectric conversion element to the first charge storage section by being turned on, and the first photoelectric conversion element being turned on. A first pixel having a second switch capable of connecting the element to the second charge storage unit, and
The first photoelectric conversion element is stored in the first charge storage unit based on a first charge amount of the first received charge stored in the first charge storage unit. A first time length of a first exposure period for generating a received light charge, and a second exposure for generating the first received charge accumulated in the second charge storage section by the first photoelectric conversion element. A first exposure control unit capable of performing a first setting process for setting a second time length of a period, and a first exposure control unit.
A photodetector including a first switch and a first drive unit capable of controlling the operation of the second switch based on the result of the first setting process.
(2) The second charge amount of the first received charge accumulated in the second charge accumulating portion and the first exposure time ratio of the first time length and the second time length. The photodetector according to (1) above, further comprising a first pixel value calculation unit capable of calculating a first pixel value based on the first pixel value.
(3) The first drive unit can control the operation of the first switch so as to maintain the first switch in an ON state during the first exposure period. The photodetector described.
(4) A first AD converter is further provided,
The first pixel is capable of outputting a first voltage according to the first charge amount in the first charge storage section in a first period after the first exposure period. Has an output section,
The first AD conversion unit can convert the first voltage into a first digital code in the first period.
The photodetector according to (3), wherein the first exposure control unit performs the first setting process based on the first digital code.
(5) The photodetector according to (3) or (4), wherein the first exposure period includes two sub-exposure periods sandwiching the second exposure period.
(6) The second exposure period includes a first sub-exposure period and a second sub-exposure period after the first sub-exposure period.
The first drive unit maintains the second switch in an off state during the first sub-exposure period and maintains the second switch in an on state during the second sub-exposure period, The photodetector according to any one of (2) to (5), wherein the operation of the second switch can be controlled.
(7) A second AD converter is further provided,
The first pixel is capable of outputting a second voltage according to the amount of charge in the second charge storage section during a second period within the period of the first sub-exposure period, and the second pixel In the third period after the sub-exposure period of the above, the second output unit capable of outputting the third voltage corresponding to the second charge amount is provided.
The second AD converter is capable of converting a difference voltage between the second voltage in the second period and the third voltage in the third period into a second digital code,
The photodetector according to (6), wherein the first pixel value calculation unit can calculate the pixel value based on the second digital code and the first exposure time ratio.
(8) The first exposure control unit can set the first exposure time ratio based on the first charge amount. Light detection device.
(9) The first exposure controller controls the first time length and the second time length to be equal to each other when the first charge amount is smaller than a first threshold value. The photodetector according to (8) above, wherein the first exposure time ratio can be set.
(10) When the first charge amount is larger than the first threshold value and smaller than a second threshold value, the first exposure control unit may change the first charge amount according to the first charge amount. The photodetector according to (9), wherein the first exposure time ratio can be set so that the first time length is longer than the second time length.
(11) The first exposure control unit shortens a total time length of the first time length and the second time length when the first charge amount is larger than a third threshold value. The photodetector according to any one of (2) to (10), wherein the first time length and the second time length can be set accordingly.
(12) A second photoelectric conversion element capable of performing a photoelectric conversion operation for generating a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a third No. 4 charge storage unit, a third switch capable of connecting the second photoelectric conversion element to the third charge storage unit by being turned on, and the second photoelectric conversion unit being turned on. Further comprising a second pixel having a fourth switch capable of connecting the element to the fourth charge storage section.
In the first exposure control unit, the second photoelectric conversion element may further include the third photoelectric conversion element based on the third charge amount of the second received charge accumulated in the third charge accumulation unit. A third time length of a third exposure period for generating the second received electric charge accumulated in the charge accumulating portion, and the second photoelectric conversion element in which the second photoelectric conversion element is accumulated in the fourth charge accumulating portion. It is possible to perform a second setting process for setting the fourth time length of the fourth exposure period for generating the received charge of 2.
The first drive unit can further control the operation of the third switch and the fourth switch based on the result of the second setting process.
The first pixel value calculation unit further includes a fourth charge amount of the second received charge accumulated in the fourth charge accumulation unit, the third time length, and the fourth time length. The photodetector according to any one of (2) to (11) above, wherein the second pixel value can be calculated based on the second exposure time ratio of the above.
(13) A second photoelectric conversion element capable of performing a photoelectric conversion operation for generating a second received light charge based on light, a third charge storage unit capable of storing the second received charge, and a third No. 4 charge storage unit, a third switch capable of connecting the second photoelectric conversion element to the third charge storage unit by being turned on, and the second photoelectric conversion unit being turned on. A second pixel having a fourth switch capable of connecting the element to the fourth charge storage unit, and
The second photoelectric conversion element is accumulated in the third charge accumulating portion based on a third charge amount of the second received electric charge accumulated in the third charge accumulating portion. A third time length of a third exposure period for generating received light charges, and a fourth exposure for generating the second received light charges accumulated by the second photoelectric conversion element in the fourth charge accumulation unit. A second exposure control unit capable of performing a second setting process for setting a fourth time length of the period, and a second exposure control unit.
A second drive unit capable of controlling the operation of the third switch and the fourth switch based on the result of the second setting process.
Based on a fourth charge amount of the second received charge accumulated in the fourth charge accumulating portion, a third exposure time length, and a second exposure time ratio of the fourth exposure time length. The photodetector according to any one of (2) to (11) above, further comprising a second pixel value calculation unit capable of calculating a pixel value of 2.
(14) A second photoelectric conversion element capable of performing a photoelectric conversion operation for generating a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a third No. 4 charge storage unit, a third switch capable of connecting the second photoelectric conversion element to the third charge storage unit by being turned on, and the second photoelectric conversion unit being turned on. Further comprising a second pixel having a fourth switch capable of connecting the element to the fourth charge storage section.
The first drive unit can further control the operation of the third switch and the fourth switch based on the result of the first setting process.
The first pixel value calculation unit further includes a second pixel value based on a fourth charge amount of the second received charges accumulated in the fourth charge accumulation unit and the exposure time ratio. The photodetector according to any one of (2) to (11) above.
(15) The first pixel is
A fifth switch capable of applying a predetermined voltage to the first charge storage unit by being turned on,
It further has a sixth switch capable of applying the predetermined voltage to the second charge storage unit by being turned on.
The said 1st drive part can control the operation|movement of the said 5th switch and the said 6th switch further based on the said 1st setting process. In any one of said (2) to (14). Photo detector.
(16) Further, an operation mode setting unit capable of setting the operation mode to one of a plurality of operation modes including the first operation mode is provided.
The first exposure control unit can perform the first setting process in the first operation mode.
The first drive unit is capable of controlling operations of the first switch and the second switch in the first operation mode based on a result of the first setting process,
The first pixel value calculation unit can calculate the pixel value based on the second charge amount and the exposure time ratio in the first operation mode. (2) to (14) The photodetector according to claim 1.
(17) A light emitting unit is further provided,
The plurality of operation modes includes a second operation mode,
The light emitting unit can emit an optical pulse by alternately repeating light emission and quenching in the second operation mode.
In the second operation mode, the first driving unit can alternately turn on the first switch and the second switch so as to be synchronized with the optical pulse,
The first pixel value calculation unit can calculate the pixel value based on the first charge amount and the second charge amount in the second operation mode. The light according to (16) above. Detection device.
 本出願は、日本国特許庁において2019年3月1日に出願された日本特許出願番号2019-037454号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2019-037454 filed on March 1, 2019 at the Japan Patent Office, and this application is made by referring to all the contents of this application. Be used for.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, but they are included in the appended claims and their equivalents. Be understood to be

Claims (17)

  1.  光に基づいて第1の受光電荷を生成する光電変換動作を行うことが可能な第1の光電変換素子と、前記第1の受光電荷を蓄積可能な第1の電荷蓄積部および第2の電荷蓄積部と、オン状態になることにより前記第1の光電変換素子を前記第1の電荷蓄積部に接続可能な第1のスイッチと、オン状態になることにより前記第1の光電変換素子を前記第2の電荷蓄積部に接続可能な第2のスイッチとを有する第1の画素と、
     前記第1の電荷蓄積部に蓄積された前記第1の受光電荷の第1の電荷量に基づいて、前記第1の光電変換素子が前記第1の電荷蓄積部に蓄積される前記第1の受光電荷を生成する第1の露光期間の第1の時間長、および前記第1の光電変換素子が前記第2の電荷蓄積部に蓄積される前記第1の受光電荷を生成する第2の露光期間の第2の時間長を設定する第1の設定処理を行うことが可能な第1の露光制御部と、
     前記第1の設定処理の結果に基づいて前記第1のスイッチおよび前記第2のスイッチの動作を制御可能な第1の駆動部と
     を備えた光検出装置。
    A first photoelectric conversion element capable of performing a photoelectric conversion operation for generating a first received light charge based on light, a first charge storage section capable of storing the first received charge, and a second charge An accumulator, a first switch capable of connecting the first photoelectric conversion element to the first charge accumulation section by being turned on, and a first switch converting the first photoelectric conversion element by being turned on. A first pixel having a second switch connectable to a second charge storage section;
    The first photoelectric conversion element is stored in the first charge storage unit based on a first charge amount of the first received charge stored in the first charge storage unit. A first time length of a first exposure period for generating a received light charge, and a second exposure for generating the first received charge accumulated in the second charge storage section by the first photoelectric conversion element. A first exposure control unit capable of performing a first setting process for setting a second time length of a period, and a first exposure control unit.
    A photodetector including a first switch and a first drive unit capable of controlling the operation of the second switch based on the result of the first setting process.
  2.  前記第2の電荷蓄積部に蓄積された前記第1の受光電荷の第2の電荷量と、前記第1の時間長および前記第2の時間長の第1の露光時間比とに基づいて第1の画素値を算出可能な第1の画素値算出部をさらに備えた
     請求項1に記載の光検出装置。
    Based on the second charge amount of the first received charge accumulated in the second charge storage unit, and the first exposure time ratio of the first time length and the second time length. The photodetector according to claim 1, further comprising a first pixel value calculation unit capable of calculating the pixel value of 1.
  3.  前記第1の駆動部は、前記第1の露光期間において、前記第1のスイッチをオン状態に維持するように、前記第1のスイッチの動作を制御可能である
     請求項2に記載の光検出装置。
    The photodetection according to claim 2, wherein the first driving unit can control the operation of the first switch so as to keep the first switch on during the first exposure period. apparatus.
  4.  第1のAD変換部をさらに備え、
     前記第1の画素は、前記第1の露光期間の後の第1の期間において、前記第1の電荷蓄積部における前記第1の電荷量に応じた第1の電圧を出力可能な第1の出力部を有し、
     前記第1のAD変換部は、前記第1の期間において、前記第1の電圧を第1のデジタルコードに変換可能であり、
     前記第1の露光制御部は、前記第1のデジタルコードに基づいて前記第1の設定処理を行う
     請求項3に記載の光検出装置。
    Further comprising a first AD converter,
    The first pixel is capable of outputting a first voltage according to the first charge amount in the first charge storage section in a first period after the first exposure period. Has an output section,
    The first AD conversion unit can convert the first voltage into a first digital code in the first period.
    The photodetector according to claim 3, wherein the first exposure control unit performs the first setting process based on the first digital code.
  5.  前記第1の露光期間は、前記第2の露光期間をはさむ2つのサブ露光期間を含む
     請求項3に記載の光検出装置。
    The photodetector according to claim 3, wherein the first exposure period includes two sub-exposure periods that sandwich the second exposure period.
  6.  前記第2の露光期間は、第1のサブ露光期間と、前記第1のサブ露光期間の後の第2のサブ露光期間とを含み、
     前記第1の駆動部は、前記第1のサブ露光期間において前記第2のスイッチをオフ状態に維持し、前記第2のサブ露光期間において前記第2のスイッチをオン状態に維持するように、前記第2のスイッチの動作を制御可能である
     請求項2に記載の光検出装置。
    The second exposure period includes a first sub-exposure period and a second sub-exposure period after the first sub-exposure period.
    The first drive unit maintains the second switch in an off state during the first sub-exposure period and maintains the second switch in an on state during the second sub-exposure period, The photodetector according to claim 2, wherein the operation of the second switch can be controlled.
  7.  第2のAD変換部をさらに備え、
     前記第1の画素は、前記第1のサブ露光期間の期間内の第2の期間において、前記第2の電荷蓄積部における電荷量に応じた第2の電圧を出力可能であり、前記第2のサブ露光期間の後の第3の期間において、前記第2の電荷量に応じた第3の電圧を出力可能な第2の出力部を有し、
     前記第2のAD変換部は、前記第2の期間における前記第2の電圧および前記第3の期間における前記第3の電圧との差電圧を第2のデジタルコードに変換可能であり、
     前記第1の画素値算出部は、前記第2のデジタルコードおよび前記第1の露光時間比に基づいて前記画素値を算出可能である
     請求項6に記載の光検出装置。
    Further comprising a second AD converter,
    The first pixel can output a second voltage according to the amount of electric charge in the second charge storage unit in the second period within the period of the first sub-exposure period, and the second pixel can output the second voltage. In the third period after the sub-exposure period of the above, the second output unit capable of outputting the third voltage corresponding to the second charge amount is provided.
    The second AD converter is capable of converting a difference voltage between the second voltage in the second period and the third voltage in the third period into a second digital code,
    The photodetector according to claim 6, wherein the first pixel value calculation unit can calculate the pixel value based on the second digital code and the first exposure time ratio.
  8.  前記第1の露光制御部は、前記第1の電荷量に基づいて前記第1の露光時間比を設定することが可能である
     請求項2に記載の光検出装置。
    The photodetector according to claim 2, wherein the first exposure control unit can set the first exposure time ratio based on the first charge amount.
  9.  前記第1の露光制御部は、前記第1の電荷量が第1のしきい値より小さい場合に、前記第1の時間長および前記第2の時間長が互いに等しくなるように前記第1の露光時間比を設定可能である
     請求項8に記載の光検出装置。
    The first exposure control unit sets the first time length and the second time length to be equal to each other when the first charge amount is smaller than a first threshold value. The photodetector according to claim 8, wherein the exposure time ratio can be set.
  10.  前記第1の露光制御部は、前記第1の電荷量が前記第1のしきい値より大きく第2のしきい値より小さい場合に、前記第1の電荷量に応じて、前記第1の時間長が前記第2の時間長よりも長くなるように、前記第1の露光時間比を設定可能である
     請求項9に記載の光検出装置。
    When the first charge amount is larger than the first threshold value and smaller than the second threshold value, the first exposure control unit determines the first charge amount according to the first charge amount. The light detection device according to claim 9, wherein the first exposure time ratio can be set so that the time length is longer than the second time length.
  11.  前記第1の露光制御部は、前記第1の電荷量が第3のしきい値より大きい場合に、前記第1の時間長および前記第2の時間長の合計時間長を短くすることにより、前記第1の時間長および前記第2の時間長を設定可能である
     請求項2に記載の光検出装置。
    The first exposure control unit shortens the total time length of the first time length and the second time length when the first charge amount is larger than a third threshold value, The photodetector according to claim 2, wherein the first time length and the second time length can be set.
  12.  光に基づいて第2の受光電荷を生成する光電変換動作を行うことが可能な第2の光電変換素子と、前記第2の受光電荷を蓄積可能な第3の電荷蓄積部および第4の電荷蓄積部と、オン状態になることにより前記第2の光電変換素子を前記第3の電荷蓄積部に接続可能な第3のスイッチと、オン状態になることにより前記第2の光電変換素子を前記第4の電荷蓄積部に接続可能な第4のスイッチとを有する第2の画素をさらに備え、
     前記第1の露光制御部は、さらに、前記第3の電荷蓄積部に蓄積された前記第2の受光電荷の第3の電荷量に基づいて、前記第2の光電変換素子が前記第3の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第3の露光期間の第3の時間長、および前記第2の光電変換素子が前記第4の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第4の露光期間の第4の時間長を設定する第2の設定処理を行うことが可能であり、
     前記第1の駆動部は、さらに、前記第2の設定処理の結果に基づいて前記第3のスイッチおよび前記第4のスイッチの動作を制御可能であり、
     前記第1の画素値算出部は、さらに、前記第4の電荷蓄積部に蓄積された前記第2の受光電荷の第4の電荷量と、前記第3の時間長および前記第4の時間長の第2の露光時間比とに基づいて第2の画素値を算出可能である
     請求項2に記載の光検出装置。
    A second photoelectric conversion element capable of performing a photoelectric conversion operation to generate a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a fourth charge A storage section; a third switch that can connect the second photoelectric conversion element to the third charge storage section by being turned on; and a second switch that connects the second photoelectric conversion element by turning on. Further comprising a second pixel with a fourth switch connectable to a fourth charge store
    In the first exposure control unit, the second photoelectric conversion element is further based on the third charge amount of the second received charge accumulated in the third charge storage unit. The third time length of the third exposure period for generating the second received charge accumulated in the charge storage unit, and the second photoelectric conversion element in which the second photoelectric conversion element is accumulated in the fourth charge storage unit. It is possible to perform a second setting process for setting a fourth time length of a fourth exposure period for generating two received electric charges,
    The first drive unit can further control the operation of the third switch and the fourth switch based on the result of the second setting process.
    The first pixel value calculation unit further includes a fourth charge amount of the second received charge accumulated in the fourth charge storage unit, the third time length, and the fourth time length. The photodetector according to claim 2, wherein the second pixel value can be calculated based on the second exposure time ratio of the above.
  13.  光に基づいて第2の受光電荷を生成する光電変換動作を行うことが可能な第2の光電変換素子と、前記第2の受光電荷を蓄積可能な第3の電荷蓄積部および第4の電荷蓄積部と、オン状態になることにより前記第2の光電変換素子を前記第3の電荷蓄積部に接続可能な第3のスイッチと、オン状態になることにより前記第2の光電変換素子を前記第4の電荷蓄積部に接続可能な第4のスイッチとを有する第2の画素と、
     前記第3の電荷蓄積部に蓄積された前記第2の受光電荷の第3の電荷量に基づいて、前記第2の光電変換素子が前記第3の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第3の露光期間の第3の時間長、および前記第2の光電変換素子が前記第4の電荷蓄積部に蓄積される前記第2の受光電荷を生成する第4の露光期間の第4の時間長を設定する第2の設定処理を行うことが可能な第2の露光制御部と、
     前記第2の設定処理の結果に基づいて前記第3のスイッチおよび前記第4のスイッチの動作を制御可能な第2の駆動部と、
     前記第4の電荷蓄積部に蓄積された前記第2の受光電荷の第4の電荷量と、前記第3の時間長および前記第4の時間長の第2の露光時間比とに基づいて第2の画素値を算出可能な第2の画素値算出部と
     をさらに備えた
     請求項2に記載の光検出装置。
    A second photoelectric conversion element capable of performing a photoelectric conversion operation to generate a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a fourth charge A storage section; a third switch that can connect the second photoelectric conversion element to the third charge storage section by being turned on; and a second switch that connects the second photoelectric conversion element by turning on. A second pixel having a fourth switch that can be connected to a fourth charge storage unit, and
    The second photoelectric conversion element is accumulated in the third charge storage unit based on the third charge amount of the second received charge accumulated in the third charge storage unit. The third time length of the third exposure period for generating the received light charge, and the fourth exposure for which the second photoelectric conversion element generates the second received light charge accumulated in the fourth charge storage unit. A second exposure control unit capable of performing a second setting process for setting a fourth time length of the period, and a second exposure control unit.
    A second drive unit capable of controlling the operation of the third switch and the fourth switch based on the result of the second setting process.
    A second based on the fourth charge amount of the second received charge accumulated in the fourth charge storage unit and the second exposure time ratio of the third time length and the fourth time length. The photodetector according to claim 2, further comprising a second pixel value calculation unit capable of calculating the pixel value of 2.
  14.  光に基づいて第2の受光電荷を生成する光電変換動作を行うことが可能な第2の光電変換素子と、前記第2の受光電荷を蓄積可能な第3の電荷蓄積部および第4の電荷蓄積部と、オン状態になることにより前記第2の光電変換素子を前記第3の電荷蓄積部に接続可能な第3のスイッチと、オン状態になることにより前記第2の光電変換素子を前記第4の電荷蓄積部に接続可能な第4のスイッチとを有する第2の画素をさらに備え、
     前記第1の駆動部は、さらに、前記第1の設定処理の結果に基づいて前記第3のスイッチおよび前記第4のスイッチの動作を制御可能であり、
     前記第1の画素値算出部は、さらに、前記第4の電荷蓄積部に蓄積された前記第2の受光電荷の第4の電荷量と、前記露光時間比とに基づいて第2の画素値を算出可能である
     請求項2に記載の光検出装置。
    A second photoelectric conversion element capable of performing a photoelectric conversion operation to generate a second received light charge based on light, a third charge storage section capable of storing the second received charge, and a fourth charge A storage section; a third switch that can connect the second photoelectric conversion element to the third charge storage section by being turned on; and a second switch that connects the second photoelectric conversion element by turning on. Further comprising a second pixel with a fourth switch connectable to a fourth charge store
    The first drive unit can further control the operation of the third switch and the fourth switch based on the result of the first setting process.
    The first pixel value calculation unit further determines the second pixel value based on the fourth charge amount of the second received charge accumulated in the fourth charge storage unit and the exposure time ratio. The photodetector according to claim 2, which is capable of calculating
  15.  前記第1の画素は、
     オン状態になることにより、前記第1の電荷蓄積部に所定の電圧を印加可能な第5のスイッチと、
     オン状態になることにより、前記第2の電荷蓄積部に前記所定の電圧を印加可能な第6のスイッチと
     をさらに有し、
     前記第1の駆動部は、さらに、前記第1の設定処理に基づいて前記第5のスイッチおよび前記第6のスイッチの動作を制御可能である
     請求項2に記載の光検出装置。
    The first pixel is
    A fifth switch capable of applying a predetermined voltage to the first charge storage unit by being turned on,
    It further has a sixth switch capable of applying the predetermined voltage to the second charge storage unit by being turned on.
    The photodetector according to claim 2, wherein the first drive unit is further capable of controlling the operations of the fifth switch and the sixth switch based on the first setting process.
  16.  動作モードを、第1の動作モードを含む複数の動作モードのうちの1つに設定可能な動作モード設定部をさらに備え、
     前記第1の露光制御部は、前記第1の動作モードにおいて前記第1の設定処理を行うことが可能であり、
     前記第1の駆動部は、前記第1の動作モードにおいて、前記第1の設定処理の結果に基づいて前記第1のスイッチおよび前記第2のスイッチの動作を制御可能であり、
     前記第1の画素値算出部は、前記第1の動作モードにおいて、前記第2の電荷量および前記露光時間比に基づいて前記画素値を算出可能である
     請求項2に記載の光検出装置。
    Further provided with an operation mode setting unit capable of setting the operation mode to one of a plurality of operation modes including the first operation mode.
    The first exposure control unit is capable of performing the first setting process in the first operation mode,
    The first drive unit is capable of controlling operations of the first switch and the second switch in the first operation mode based on a result of the first setting process,
    The photodetection device according to claim 2, wherein the first pixel value calculation unit can calculate the pixel value based on the second charge amount and the exposure time ratio in the first operation mode.
  17.  発光部をさらに備え、
     前記複数の動作モードは、第2の動作モードを含み、
     前記発光部は、前記第2の動作モードにおいて、発光と消光を交互に繰り返すことにより光パルスを射出可能であり、
     前記第1の駆動部は、前記第2の動作モードにおいて、前記光パルスに同期するように、前記第1のスイッチおよび前記第2のスイッチを交互にオン状態にすることが可能であり、
     前記第1の画素値算出部は、前記第2の動作モードにおいて、前記第1の電荷量および前記第2の電荷量に基づいて前記画素値を算出可能である
     請求項16に記載の光検出装置。
    Further equipped with a light emitting unit,
    The plurality of operation modes includes a second operation mode,
    The light emitting unit can emit an optical pulse by alternately repeating light emission and quenching in the second operation mode.
    In the second operation mode, the first driving unit can alternately turn on the first switch and the second switch so as to be synchronized with the optical pulse,
    The light detection according to claim 16, wherein the first pixel value calculation unit can calculate the pixel value based on the first charge amount and the second charge amount in the second operation mode. apparatus.
PCT/JP2020/002912 2019-03-01 2020-01-28 Light detection device WO2020179288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-037454 2019-03-01
JP2019037454A JP2020141362A (en) 2019-03-01 2019-03-01 Photodetector

Publications (1)

Publication Number Publication Date
WO2020179288A1 true WO2020179288A1 (en) 2020-09-10

Family

ID=72280676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002912 WO2020179288A1 (en) 2019-03-01 2020-01-28 Light detection device

Country Status (2)

Country Link
JP (1) JP2020141362A (en)
WO (1) WO2020179288A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176811A (en) * 2021-05-17 2022-11-30 ソニーセミコンダクタソリューションズ株式会社 Optical detection device, optical detection system, and optical detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119837A (en) * 2009-12-01 2011-06-16 Hirotsu Kazuko Solid-state imaging element
JP2016092593A (en) * 2014-11-04 2016-05-23 キヤノン株式会社 Imaging device and control method for the same
WO2017169216A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Solid-state imaging element, solid-state imaging element drive method, and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119837A (en) * 2009-12-01 2011-06-16 Hirotsu Kazuko Solid-state imaging element
JP2016092593A (en) * 2014-11-04 2016-05-23 キヤノン株式会社 Imaging device and control method for the same
WO2017169216A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Solid-state imaging element, solid-state imaging element drive method, and electronic device

Also Published As

Publication number Publication date
JP2020141362A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2019146527A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2020170861A1 (en) Event signal detection sensor and control method
US11950009B2 (en) Solid-state image sensor
JP7148269B2 (en) Solid-state imaging device and imaging device
JPWO2019239722A1 (en) Solid-state image sensor, image sensor, and control method for solid-state image sensor
WO2019150785A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2022024574A1 (en) Solid-state imaging device and control method therefor
WO2022075190A1 (en) Solid-state imaging device
WO2020179288A1 (en) Light detection device
WO2022149388A1 (en) Imaging device and ranging system
WO2022153746A1 (en) Imaging device
WO2017203752A1 (en) Image pickup device and control method
WO2021220682A1 (en) Imaging device
WO2021192460A1 (en) Sensing device and electronic apparatus
US20230108619A1 (en) Imaging circuit and imaging device
WO2021181856A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP7129983B2 (en) Imaging device
JP2022141460A (en) Solid-state imaging sensor and imaging device
WO2020090311A1 (en) Solid-state imaging element
WO2022244321A1 (en) Optical detection device, optical detection system, and optical detection method
WO2022137993A1 (en) Comparator and solid-state imaging element
WO2023089958A1 (en) Solid-state imaging element
WO2023153104A1 (en) Signal generation circuit and light detection device
WO2021124628A1 (en) Solid-state imaging element and imaging device
WO2022209368A1 (en) Solid-state imaging element and solid-state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765580

Country of ref document: EP

Kind code of ref document: A1