WO2023089958A1 - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
WO2023089958A1
WO2023089958A1 PCT/JP2022/035881 JP2022035881W WO2023089958A1 WO 2023089958 A1 WO2023089958 A1 WO 2023089958A1 JP 2022035881 W JP2022035881 W JP 2022035881W WO 2023089958 A1 WO2023089958 A1 WO 2023089958A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
capacitor
switch
amplifier
Prior art date
Application number
PCT/JP2022/035881
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 池田
パリット カンチャナウィローグン
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023089958A1 publication Critical patent/WO2023089958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present disclosure relates to solid-state imaging devices.
  • a single-slope ADC Analog to Digital Converter
  • a current source is generally connected to the node on the installation side of the vertical signal line wired along the column, and the analog signal from this node is input to the ADC and converted to a digital signal.
  • solid-state imaging devices are being researched in which an amplifier is inserted between the node between the vertical signal line and the current source and the ADC.
  • the voltage of the analog signal is amplified by inserting an amplifier.
  • this amplifier it is necessary to provide a power supply on the power supply side of the amplifier in addition to the current source on the installation side of the vertical signal line.
  • the addition of the current source on the power supply side may increase the power consumption compared to the case where the voltage is not amplified.
  • Research is being conducted to suppress this increase in power consumption and shorten the settling time, but there is the problem that the amplifier output voltage changes depending on the DC voltage level (reset voltage level) of the input signal from the pixel. Occur. Therefore, when the reset level differs for each pixel, it becomes fixed pattern noise. Also, if each column circuit has an offset calibration mechanism, it affects the accuracy of calibration.
  • the present disclosure provides a solid-state imaging device that suppresses the above offset.
  • a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, an amplifier, a first capacitor, and a first switch.
  • a pixel circuit generates an input voltage by photoelectric conversion.
  • the first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain.
  • the input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current.
  • the second transistor is cascode-connected to an output-side current source that determines the potential of the amplifier output node according to the output of the first transistor, and to transistors of the output-side current source.
  • the amplifier amplifies the voltage at the amplifier output, comprises a third transistor and a fourth transistor, and outputs an amplified voltage from a node between the third transistor and the fourth transistor.
  • a first capacitor is connected between the gate of the third transistor and the amplifier output node.
  • a first switch supplies an output-side reference voltage between the gate of the third transistor and the first capacitor.
  • the output-side current source includes a fifth transistor having a source connected to a power supply voltage and a gate to which a bias voltage is applied, a source connected to the drain of the fifth transistor, and a drain connected to the amplifier output node. , and a sixth transistor having a cascode control voltage applied to its gate.
  • the bias voltage is applied through a second switch, one terminal is connected between the second switch and the gate of the fifth transistor, and the other terminal is connected to the power supply voltage. and a second capacitor.
  • the second switch may be connected to the drain of the sixth transistor, and the potential of the drain of the sixth transistor may be applied to the gate of the fifth transistor as a bias voltage.
  • a feedback circuit connecting between the amplifier output node and the gate of the first transistor may be provided.
  • a third capacitor, one end of which is connected to the first transistor, and the third capacitor a third switch connected between the other end and an input-side reference voltage; and a fourth switch connected between the other end of the third capacitor and the amplifier output node.
  • a feedback circuit connecting between the amplifier output node and the gate of the first transistor may be provided.
  • a third capacitor one end of which is connected to the first transistor, and the third capacitor a fifth switch connected between the other end and an output node that outputs the amplified voltage; and a sixth switch connected between the other end of the third capacitor and the amplifier output node. You may have more.
  • a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, and a feedback circuit.
  • a pixel circuit generates an input voltage by photoelectric conversion.
  • the first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain.
  • the input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current.
  • a second transistor is cascode-connected with an output current source and an output current source transistor that determines the potential of the amplifier output node according to the output of the first transistor.
  • the feedback circuit is a circuit connecting between the amplifier output node and the gate of the first transistor, and includes a third capacitor, a third switch, a fourth switch, a fourth capacitor, and a seventh switch. and an eighth switch.
  • a third capacitor has one end connected to the first transistor.
  • a third switch is connected between the other end of the third capacitor and an input-side reference voltage.
  • a fourth switch is connected between the other end of the third capacitor and the amplifier output node, turns on at the same timing as the third switch, and turns off at a different timing.
  • a fourth capacitor has one end connected to the first transistor.
  • a seventh switch is connected between the other end of the fourth capacitor and the input-side reference voltage.
  • An eighth switch is connected between the other end of the fourth capacitor and the amplifier output node.
  • the amplifier may further include an amplifier that amplifies the voltage at the amplifier output, includes a third transistor and a fourth transistor, and outputs an amplified voltage from a node between the third transistor and the fourth transistor.
  • a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, a ninth switch, and a feedback circuit.
  • a pixel circuit generates an input voltage by photoelectric conversion.
  • the first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain.
  • the input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current.
  • a second transistor is cascode-connected with an output current source and an output current source transistor that determines the potential of the amplifier output node according to the output of the first transistor.
  • a ninth switch is connected between the gate and the drain of the first transistor.
  • the feedback circuit is a feedback circuit connecting between the amplifier output node and the gate of the first transistor, and includes a third capacitor, a third switch, a fourth capacitor, a seventh switch, and an eighth switch. And prepare.
  • a third capacitor has one end connected to the first transistor.
  • a third switch is connected between the other end of the third capacitor and an input-side reference voltage.
  • a fourth capacitor has one end connected to the first transistor.
  • a seventh switch is connected between the other end of the fourth capacitor and the input-side reference voltage.
  • An eighth switch is connected between the other end of the fourth capacitor and the amplifier output node.
  • the output-side current source includes a fifth transistor having a source connected to a power supply voltage and a gate to which a bias voltage is applied, and a source connected to the drain of the fifth transistor and a drain connected to the amplifier output node. a sixth transistor connected and having a gate to which a cascode control voltage is applied.
  • the solid-state imaging device further includes a second switch that is connected to the drain of the sixth transistor and applies the potential of the drain of the sixth transistor as a bias voltage to the gate of the fifth transistor.
  • An amplifier that amplifies the voltage at the amplifier output may further include a third transistor and a fourth transistor, and outputting an amplified voltage from a node between the third transistor and the fourth transistor.
  • a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, and a period circuit.
  • a pixel circuit generates an input voltage by photoelectric conversion.
  • the first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain.
  • the input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current.
  • a second transistor is cascode-connected with an output current source and an output current source transistor that determines the potential of the amplifier output node according to the output of the first transistor.
  • the feedback circuit is a circuit connecting between the amplifier output node and the gate of the first transistor, and includes a third capacitor, a third switch, a fourth switch, a fourth capacitor, and a seventh switch. and an eighth switch.
  • a third capacitor has one end connected to the first transistor.
  • a third switch is connected between the other end of the third capacitor and an input-side reference voltage.
  • a fourth switch is connected between the other end of the third capacitor and the amplifier output node, turns on at the same timing as the third switch, and turns off at a different timing.
  • a fourth capacitor has one end connected to the first transistor.
  • a seventh switch is connected between the other end of the fourth capacitor and the input-side reference voltage.
  • An eighth switch is connected between the other end of the fourth capacitor and the amplifier output node. and a seventh transistor connected between the amplifier output node and a power supply voltage, the seventh transistor applying a voltage for reset speed-up control to the amplifier output node.
  • FIG. 1 is a block diagram showing an example of the configuration of an imaging device according to one embodiment
  • FIG. FIG. 2 is a diagram showing an example of a configuration of a laminated structure of an imaging element according to one embodiment
  • 1 is a diagram showing an example of the configuration of a solid-state imaging device according to one embodiment
  • FIG. 3 is a diagram showing an example of a pixel configuration according to one embodiment
  • FIG. 2 is a diagram showing an example of a constant current source circuit according to one embodiment;
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing
  • FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment
  • FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • FIG. 1 is a block diagram showing an example of the configuration of an imaging device 1 according to one embodiment.
  • the imaging device 1 is a device that captures image data (including frame data in moving images), and includes an optical system 100, a solid-state imaging device 20, and a processing circuit 120.
  • the imaging device 1 also includes a display unit 130, an operation unit 140, a bus 150, a frame memory 160, a storage unit 170, and a power supply unit 180.
  • the imaging device 1 may be a solid-state imaging device.
  • the imaging device 1 may be implemented in, as non-limiting examples, a digital camera such as a digital still camera, a terminal such as a smartphone having an imaging function, a personal computer, or an in-vehicle camera.
  • a digital camera such as a digital still camera
  • a terminal such as a smartphone having an imaging function
  • a personal computer or an in-vehicle camera.
  • the optical system 100 controls the light from the subject and guides it to the pixel area of the solid-state imaging device 20.
  • Optical system 100 comprises, for example, a lens and an aperture.
  • the solid-state image sensor 20 synchronizes with the vertical synchronization signal, acquires an analog signal based on the intensity of the light received by photoelectric conversion, converts it to a digital image signal by an ADC (Analog to Digital Converter), and outputs it.
  • the vertical synchronizing signal is a periodic signal with a predetermined frequency that indicates the timing of imaging.
  • the solid-state imaging device 20 outputs the generated image data to the processing circuit 120 via the signal line 190 .
  • the processing circuit 120 performs predetermined signal processing on the image data output from the solid-state imaging device 20.
  • This processing circuit 120 outputs the processed image via bus 150 to a suitable component, eg frame memory 160 or storage 170 .
  • the processing circuit 120 may be provided in the same chip as the solid-state image sensor 20, or may be provided in a chip different from the solid-state image sensor 20. Also, the processing circuit 120 may be partly provided in the same chip as the solid-state imaging device 20 and other parts may be provided in a different chip.
  • the display unit 130 displays image data.
  • the display unit 130 may be, as non-limiting examples, a liquid crystal panel or an organic EL (Electro Luminescence) panel.
  • the operation unit 140 generates an operation signal based on the user's operation.
  • the operation unit 140 includes, as non-limiting examples, input interfaces such as a touch panel, keyboard, mouse, and microphone.
  • the bus 150 is a path shared by the optical system 100, the solid-state image pickup device 20, the processing circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 to exchange data with each other. .
  • the frame memory 160 temporarily stores, for example, image data for processing.
  • the storage unit 170 stores various data such as image data.
  • an executable file or program of the software may be stored in the storage unit 170 .
  • the power supply unit 180 supplies power to the solid-state imaging device 20, the processing circuit 120, the display unit 130, and so on.
  • FIG. 2 is a diagram showing an example of the laminated structure of the solid-state imaging device 20 according to one embodiment.
  • the solid-state imaging device 20 includes a pixel layer 22 and a circuit layer 24.
  • the pixel layer 22 and the circuit layer 24 are constructed as stacked semiconductor layers. These layers are electrically connected through connections such as vias. Instead of vias, they may be connected by Cu--Cu bonds, micro-bumps, as non-limiting examples.
  • the laminated structure is not limited to the example in Fig. 2.
  • it may be configured with three or more layers.
  • a part of the pixel layer 22 may be provided with a circuit.
  • FIG. 3 is a block diagram showing a non-limiting configuration example of the solid-state imaging device 20 according to one embodiment.
  • the solid-state imaging device 20 includes a pixel array 200, a line selection circuit 210, a DAC (Digital to Analog Converter) 220, a timing control circuit 230, a constant current source circuit 30, an ADC 240, a line transfer circuit 250, An image processing circuit 260 is provided.
  • DAC Digital to Analog Converter
  • a plurality of pixels 202 including pixel circuits are arranged in a two-dimensional lattice.
  • a set of pixels 202 arranged horizontally in the drawing is referred to as a row (line)
  • a set of pixels 202 arranged vertically to the horizontal direction is referred to as a column (column).
  • lines and columns are defined as described above for the sake of explanation in the drawings, the definitions of lines and columns are not limited to this.
  • the pixel 202 includes at least a light receiving element and a circuit for outputting at appropriate timing the voltage or current output by the light receiving element through photoelectric conversion. Also, the pixel 202 may have an optical system such as a microlens that appropriately guides light to each light receiving element.
  • the pixels 202 generate analog pixel signals through photoelectric conversion under the control of the line selection circuit 210 . Each pixel 202 outputs a pixel signal to the constant current source circuit 30 via the vertical signal line 204 .
  • the line selection circuit 210 sequentially selects and drives the lines, and outputs analog pixel signals to the ADC 240 via the constant current source circuit 30.
  • DAC 220 generates a reference signal by DA (Digital to Analog) conversion and supplies it to ADC 240.
  • a reference signal as a non-limiting example, a signal such as a sawtooth wave, a square wave, or the like may be used.
  • the timing control circuit 230 controls the operation timing of each of the line selection circuit 210, DAC 220, constant current source circuit 30, ADC 240 and line transfer circuit 250 in synchronization with the vertical synchronization signal Vsync.
  • the ADC 240 uses the reference signal output by the DAC 220 to convert the analog input signal into a digital signal for each column.
  • ADC 240 supplies digital signals to image processing circuit 260 under the control of line transfer circuit 250 .
  • the line transfer circuit 250 controls the ADC 240 to sequentially output digital signals.
  • the image processing circuit 260 performs predetermined image processing on image data in which digital signals are arranged. This image processing circuit 260 outputs the processed image data to the processing circuit 120 .
  • the above-described circuits in the solid-state imaging device 20 are appropriately dispersed and arranged in the pixel layer 22 and the circuit layer 24.
  • the pixel array 200 may be placed on the pixel layer 22 and circuits other than the pixel array 200, such as the ADC 240, may be placed on the circuit layer 24.
  • the circuits arranged in each of the pixel layer 22 and the circuit layer 24 are not limited to this combination.
  • the pixel array 200, the constant current source circuit 30, and the comparator in the ADC 240 can be placed on the pixel layer 22, and the other circuits can be placed on the circuit layer 24.
  • FIG. 4 is a circuit diagram showing an example of a pixel 202 according to one embodiment.
  • the pixel 202 includes a photoelectric conversion element 205, a transfer transistor 206, a reset transistor 207, an amplification transistor 208, and a selection transistor 209.
  • the photoelectric conversion element 205 photoelectrically converts incident light to generate electric charges.
  • the photoelectric conversion element 205 includes, as non-limiting examples, a photodiode and an organic photoelectric conversion film.
  • the transfer transistor 206 is a transistor that transfers charges from the photoelectric conversion element 205 to the floating diffusion layer FD according to the transfer signal TRG from the line selection circuit 210.
  • the floating diffusion layer FD is a layer for accumulating the charge output from the photoelectric conversion element 205 and generating a voltage according to the amount of charge.
  • the voltage by the floating diffusion layer FD is reset and set at appropriate timing, and an appropriate analog signal is output through the vertical signal line 204 according to the height of the voltage.
  • the reset transistor 207 initializes the charges held in the floating diffusion layer FD according to the reset signal RST from the line selection circuit 210.
  • the amplification transistor 208 outputs a current of magnitude based on the voltage applied to the gate from the floating diffusion layer FD.
  • the selection transistor 209 is a transistor that outputs an amplified voltage signal as the pixel signal SIG according to the selection signal from the line selection circuit 210 .
  • N integer
  • the pixel signal of the n-th (n: integer of [1, N]) column is applied to the vertical signal line at the timing when the selection transistor 209 turns on.
  • 204-n to the constant current source circuit 30.
  • circuit of the pixel 202 may be configured as a circuit that is not limited to the one illustrated in FIG. 4 as long as it is a circuit that can appropriately generate pixel signals by photoelectric conversion.
  • FIG. 5 is a block diagram showing a non-limiting example of the constant current source circuit 30 according to one embodiment.
  • a column amplifier 300 is arranged for each column in the constant current source circuit 30 . That is, the constant current source circuit 30 has N column amplifiers 300 .
  • a pixel signal of the corresponding column is input to the n-th column amplifier 300-n via the vertical signal line 204-n.
  • the column amplifier 300-n amplifies the voltage of the pixel signal and outputs it to the ADC 240 via the signal line 302-n.
  • the column amplifier 300 is initialized at the timing when the auto-zero signal AZ from the timing control circuit 230 is input.
  • FIG. 6 is a block diagram illustrating a non-limiting example ADC 240 according to one embodiment.
  • a column ADC 241 and a latch circuit 246 are arranged for each column of the ADC 240 . That is, ADC 240 comprises N column ADCs 241 and latch circuits 246 respectively.
  • the column ADC 241 is a circuit that converts analog pixel signals into digital signals.
  • This column ADC 241 comprises capacitors 242 , 243 , a comparator 244 and a counter 245 .
  • CDS Correlated Double Sampling
  • processing may also be performed by the column ADC 241 .
  • the comparator 244 is a comparator that compares the reference signal output from the DAC 220 and the pixel signal of the corresponding column.
  • the comparator 244 has a pair of input terminals, one of which receives the reference signal via the capacitor 242 and the other receives the pixel signal via the capacitor 243 .
  • Comparator 244 supplies the comparison result to counter 245 .
  • the counter 245 counts the count value until the comparison result is reversed.
  • the counter 245 outputs a signal indicating the count value to the latch circuit 246 as a digital signal.
  • the latch circuit 246 is a circuit that holds digital signals.
  • the latch circuit 246 outputs the digital signal to the image processing circuit 260 in synchronization with the sync signal output from the line transfer circuit 250 .
  • Fig. 7 is a diagram showing another example of ADC 240. As shown in FIG. 7, in column ADC 241, capacitors 242 and 243 can be connected in parallel to one of the input terminals (inverting input terminal or non-inverting input terminal) of comparator 244. This also allows the input amplitude of comparator 244 to be reduced compared to ADC 240 of FIG.
  • FIG. 8 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment
  • FIG. 9 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG.
  • the column amplifier 300 includes transistors MP01, MP02, MP03, MN01, MN02, MN03, MN04, MN05, capacitors C01, C02, C03, C04, C05, C06, C07, C08, C09, and switches Sw01, Sw02, Sw03. , Sw04, Sw05, Sw06, Sw07, Sw08, and Sw09 are provided.
  • the column amplifier 300 is a circuit that appropriately amplifies the signals output from the pixels 202 belonging to each column and outputs them to the column ADCs 241 corresponding to the columns of the ADCs 240, as described above.
  • the transistor when the transistor is indicated as MNxx, it may be an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor), and when MPxx is indicated, it may be a p-channel It may be a MOSFET.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor
  • the transistor MP01 is a transistor that controls the signal input to the column amplifier 300.
  • Transistor MP01 has a source connected to vertical signal line 204 and a drain connected to a reference voltage (eg, ground voltage) via transistors MN01 and MN02.
  • Pixel 202 generates a pixel signal by photoelectric conversion, and applies this voltage as input voltage Vin to the source of transistor MP01 via vertical signal line 204 .
  • the switch Sw02 is a switch that opens and closes the path between the gate and drain of the transistor MP01 according to the auto-zero signal PAZOUT.
  • a capacitor C01 is placed between the gate of the transistor MP01 and the reference node of the reference voltage. Capacitor C01 holds the potential difference between the Vgate potential and the amplifier output potential.
  • a capacitor C02 is provided between the transistor MP01 and the reference voltage Vss. Capacitor C02 holds the potential of Vgate with respect to reference voltage Vss.
  • Transistors MN01, MN02 and capacitor C03 operate as a reference-side current source that flows current from the drain of transistor MP01 according to bias voltage Vbn. These elements combine to act as a current source. Therefore, the combination is not limited as long as it operates appropriately as a current source.
  • the transistors MP02 and MP03 are connected in series with the power supply voltage. That is, the transistor MP02 has a source connected to the power supply voltage Vdd and a drain connected to the source of the transistor MP03.
  • the transistor MP03 has a source connected to the drain of the transistor MP02 and a drain connected to the amplifier output node.
  • the bias voltage Vbp rectified by the capacitor C07 is applied to the gate of the transistor MP02 at the timing when the switch Sw07 turns on. This transistor MP02 acts as a current source on the power supply side.
  • Transistor MP03 and transistor MN03 share a drain and are cascode-connected. A voltage is applied to the gates of these transistors so that they operate properly as a cascode connection. A voltage Vcp for cascode connection rectified by a capacitor C08 is applied to the gate of the transistor MP03 at the timing when the switch Sw08 turns on. Similarly, the voltage Vcn for cascode connection rectified by the capacitor C05 is applied to the gate of the transistor MN03 at the timing when the switch Sw05 turns on. From a node between these cascode-connected transistors, an output voltage is appropriately controlled by a buffer and output.
  • the switch Sw04 is a switch that controls the reset of the output side of the column amplifier 300 based on the auto-zero signal PAZVR1.
  • switch Sw04 is turned on by auto-zero signal PAZVR1, current flows so that the voltage at one end of capacitor C01 becomes Vr1.
  • the switch Sw03 is a switch that is turned on exclusively with the switch Sw04. For example, as shown in FIG. 9, PAZVR1 and POPD are controlled so that switch Sw03 and switch Sw04 are not turned on at the same timing. For this reason, the switch Sw03 is turned on in the state of being appropriately reset to Vr1, and an appropriate signal is output to the output terminal. That is, it is reset by the auto-zero signal PAZVR1 at the timing before reading the pixel signal, and the reset state is released appropriately at the timing at which the pixel signal is read.
  • the transistors MN04 and MN05 act as buffers (or amplifiers) that amplify the voltage applied to the gate of the transistor MN04 and output it.
  • the transistor MN04 has a drain connected to the power supply voltage Vdd and a source connected to the drain of the transistor MN05.
  • the source of transistor MN05 is connected to reference voltage Vss.
  • a capacitor C06 is provided between the gate of the transistor MN04 and the drains (amplifier output nodes) of the cascode-connected transistors MP03 and MN03.
  • a node between the capacitor C06 and the gate of the transistor MN04 is connected to Vr2 through the switch Sw06.
  • the drain of transistor MN05 is connected to transistor MN04 and the source of transistor MN02, which is the current source in the input stage, via capacitor C04, and the source is connected to reference voltage Vss.
  • a switch Sw09 Connected to the gate of transistor MN05 are a switch Sw09 for applying a driving voltage to boost the output signal and a capacitor C09.
  • a boost voltage VBbst is applied to the gate of transistor MN05 via switch Sw09.
  • the gate potential Vgate of transistor MP01 is reset to Vr1 and Vr2, and appropriate potentials determined by the performance of the capacitor.
  • the switches Sw02, Sw03, and Sw04 are turned off to complete the reset of the transistor MP01. After that, by turning off the switch Sw06, the offset voltage (reset voltage) - (set voltage) and pixel current offset (reset current) - (set current) independent of the reset voltage level of the pixel can be obtained.
  • the offset can be removed by arranging the capacitor between the amplifier and the output stage amplifier.
  • the output level shift and offset removal of the auto-zero switch (switch Sw02) are performed at the timing of reset settling.
  • This offset is stored on capacitor C06 on reset and canceled at the node of Vout on set.
  • an offset can be set in the column amplifier 300 that is independent of pixel reset.
  • FIG. 10 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment
  • FIG. 11 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG.
  • the column amplifier 300 implements the reset to Vr2, which was performed at the output stage in the first embodiment, at the input stage.
  • the column amplifier 300 has a feedback circuit from the output stage to the input stage including a capacitor C10 and a switch Sw10 between the gate of the transistor MP01 and the amplifier output.
  • the feedback circuit further includes a capacitor C11 connected to one end of the voltage VSshsn at a node between the capacitor C10 and the switch Sw10, and a switch Sw11 connected to the potential Vr1 when turned on.
  • the voltage Vgate is reset by turning on the switch Sw02 with the auto-zero signal PAZOUT and then turning it off. Switch the switch Sw11 on and off at the same timing. After switches Sw02, Sw11 have been switched off, signal PF2 switches switch Sw10 from off to on. By switching in this way, the potential of Vout is fixed at the timing of reset settling.
  • offset can be removed by arranging a feedback circuit from the output stage of the amplifier output. Output level shift and autozero signal switch removal occurs at reset. Therefore, as in the first embodiment described above, this offset is stored in capacitor C11 at reset and canceled at the node of Vout at set. As a result, an offset can be set in the column amplifier 300 that is independent of pixel reset. Furthermore, since the load capacitance in the amplifier output can be made smaller than in the first embodiment, it is also possible to achieve faster settling.
  • FIG. 12 is a diagram showing another example of the second embodiment.
  • the output stage buffer amplifier
  • Vout may be output from the output node of the amplifier.
  • FIG. 13 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment
  • FIG. 14 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG.
  • the column amplifier 300 is reset by a switch connecting the gate and drain of the transistor MP01.
  • the potential that serves as the reference for the amplifier output is determined by self-bias.
  • the switches Sw01, Sw05, Sw08, and Sw09 may be turned on at appropriate timing, for example, when the switch Sw13 is turned on, and turned off earlier than when the switch Sw13 is turned off.
  • transistor MN06 is connected to the source of transistor MN03.
  • Transistor MN06 is a transistor provided in parallel with transistor MN02, its source is connected to the drain of transistor MN07 and its gate is shared with the gates of transistors MN01, MN02 and MN07.
  • Transistor MN07 has its source connected to reference voltage Vss. In this configuration, transistors MN06 and MN07 form a current source in the amplifier output stage.
  • Vgate and transistor MP02 are determined according to the autozero signal.
  • switches Sw12 and Sw13 turn on switches Sw04 and Sw10 turn on and switch Sw14 turns off, so the amplifier output is also reset.
  • the level shift of the amplifier output can be performed at the timing of the pixel signal setting from the reset settling.
  • switches Sw12 and Sw13 are turned off and switch Sw14 is turned on.
  • Vgate starts up.
  • Sw04 and Sw10 are turned off and the reset is completed.
  • the Vgate and amplifier output current sources are determined at the timing of pixel reset settling. After that, the amplifier output voltage at reset is fixed. Therefore, an offset voltage (reset voltage) - (set voltage) and a pixel current offset (reset current) - (set current) independent of the pixel reset voltage level are obtained. As a result, it is possible to omit the bias of the current source on the p-channel side (for example, Vpb in FIG. 8).
  • FIG. 15 is a diagram showing another example of the third embodiment. As in the second embodiment described above, the output stage may be omitted.
  • FIG. 16 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment
  • FIG. 17 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG.
  • the column amplifier 300 may perform bias control of the current source of the amplifier output stage of the third embodiment in the configuration including the output stage amplifier of the first embodiment.
  • the switches Sw01, Sw05, Sw08, and Sw09 may be turned on at appropriate timing, for example, when the switch Sw13 is turned on, and turned off earlier than when the switch Sw13 is turned off.
  • the output level shift and switch removal by the auto-zero signal are performed at the timing of reset settling.
  • the offset is stored in capacitor C06 and canceled when the pixel signal is set.
  • the Vgate and amplifier output current sources are determined by the auto-zero signal.
  • the amplifier output is also reset because the switch Sw14 is turned off at the timing when the switches Sw12 and Sw13 are turned on. Then, by turning off the switch Sw06 during reset settling, the amplifier output voltage is fixed. Therefore, an offset voltage (reset voltage) - (set voltage) and a pixel current offset (reset current) - (set current) independent of the pixel reset voltage level are obtained.
  • the transistor MP02 is self-biased, it is possible to reduce the number of circuits connected to the voltage Vr1 compared to the first embodiment.
  • FIG. 18 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment
  • FIG. 19 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG.
  • the column amplifier 300 is configured to feed back the output voltage Vout of the output stage instead of the reference for setting Vr1 in the first embodiment.
  • the level shift of the output and the removal of the switch by the autozel signal are performed at the timing of reset settling.
  • the offset is stored in capacitor C06 and canceled when the pixel signal is set.
  • the Vgate and amplifier output current sources are determined by the auto-zero signal. Since switch Sw15 turns on at the same timing as Vgate is reset, the potential of output voltage Vout can be referenced via capacitor C01. After that, by turning on the switch Sw03, the amplifier output settles to the voltage at the timing when the switch Sw15 is turned on. After that, by turning off the switch Sw06, an offset voltage (reset voltage) - (set voltage) and a pixel current offset (reset current) - (set current) independent of the pixel reset voltage level are obtained.
  • FIG. 20 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment
  • FIG. 21 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG.
  • the column amplifier 300 has a transistor MN08 that performs reset speed-up control on the amplifier output.
  • the transistor MN08 has a drain connected to the power supply voltage Vdd, a source connected to the amplifier output, and a gate to which a voltage Patch for reset speed-up control is applied.
  • Vgate settling time may be insufficient.
  • Vgate is forcibly raised at Vgate reset timing via transistor MN08. As a result, a sufficient settling time can be ensured.
  • Fig. 22 shows a p-channel transistor MP04 that replaces the transistor that controls reset acceleration control.
  • the transistor MP04 has a source connected to the power supply voltage Vdd, a drain connected to the amplifier output, and a gate to which a signal XPatch for controlling reset acceleration control is applied.
  • the signal XPatch may be the signal Patch with the High and Low switched.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 23 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display section 12062 and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 24 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 24 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided in the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the imaging device 1 in FIG. 1 can be applied to the imaging unit 12031.
  • FIG. By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to suppress the power consumption of the column amplifier, so it is possible to reduce the power consumption of the entire vehicle system.
  • the output-side current source is a fifth transistor MP02, the source of which is connected to the supply voltage and the gate of which a bias voltage is applied; a sixth transistor MP03 having a source connected to the drain of the fifth transistor MP02, a drain connected to the amplifier output node, and a gate to which a cascode control voltage is applied;
  • the solid-state imaging device according to (1) comprising:
  • the second switch Sw13 is connected to the drain of the sixth transistor MP03, and applies the potential of the drain of the sixth transistor MP03 as a bias voltage to the gate of the fifth transistor MP02.
  • the solid-state imaging device according to (3) is connected to the drain of the sixth transistor MP03, and applies the potential of the drain of the sixth transistor MP03 as a bias voltage to the gate of the fifth transistor MP02.
  • a feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01, a third capacitor C01, one end of which is connected to the first transistor MP01; a fifth switch Sw15 connected between the other end of the third capacitor C01 and an output node that outputs the amplified voltage; a sixth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node;
  • a pixel circuit that generates an input voltage Vin by photoelectric conversion; a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain; input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current; output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors; A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01, a third capacitor C01, one end of which is connected to the first transistor MP01; a third switch Sw04 connected between the other end of the third capacitor C01 and the input-side reference voltage Vr1; a fourth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node, turned on at the same timing as the third switch, and turned off at
  • an amplifier for amplifying the voltage at the amplifier output comprising a third transistor MN04 and a fourth transistor MN05 and outputting an amplified voltage from a node between the third transistor MN04 and the fourth transistor MN05;
  • (9) a pixel circuit that generates an input voltage Vin by photoelectric conversion; a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain; input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current; output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors; a ninth switch Sw12 connected between the gate and drain of the first transistor MP01; A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01, a third capacitor C01, one end of which is connected to the first transistor MP01; a third switch Sw04 connected between the other end of the third capacitor C01 and the input-side reference voltage Vr1; a fourth capacitor C10, one end of which is connected to the first transistor MP01;
  • (11) a pixel circuit that generates an input voltage Vin by photoelectric conversion; a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain; input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current; output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors; A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01, a third capacitor C01, one end of which is connected to the first transistor MP01; a third switch Sw04 connected between the other end of the third capacitor C01 and the input-side reference voltage Vr1; a fourth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node, turned on at the same timing as the third switch, and turned off at

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

[Problem] To provide a solid-state imaging element with which offset is suppressed. [Solution] This solid-state imaging element comprises: a pixel circuit; a first and a second transistor; an input-side current source; an amplifier; a first capacitor; and a first switch. The pixel circuit generates an input voltage through photoelectric conversion. In the first transistor, the input voltage is applied from the source, and a voltage corresponding to the voltage between the source and the gate is output from the drain. The input-side current source is connected to a reference node having a prescribed reference voltage, and supplies a prescribed current. The second transistor is cascode-connected to an output-side current source and a transistor of the output-side current source that determine the potential of an amplifier output node in accordance with the output of the first transistor. The amplifier: amplifies the voltage of the amplifier output; comprises a third transistor and a fourth transistor; and outputs an amplified voltage from a node between the third transistor and the fourth transistor. The first capacitor is connected between the gate of the third transistor and the amplifier output node. The first switch supplies an output-side reference voltage between the gate of the third transistor and the first capacitor.

Description

固体撮像素子Solid-state image sensor
 本開示は、固体撮像素子に関する。 The present disclosure relates to solid-state imaging devices.
 固体撮像素子といった画素においては、アナログ信号をデジタル信号に変換するためにシングルスロープ型の ADC (Analog to Digital Converter) が用いられる。 ADC をカラムごとに配置する場合、一般に、カラムに沿って配線された垂直信号線の設置側のノードに電流源が接続され、このノードからのアナログ信号が ADC に入力され、デジタル信号へと変換される。例えば、電圧を増幅する目的において、垂直信号線及び電流源の間のノードと ADC との間にアンプを挿入した固体撮像素子が研究されている。 In pixels such as solid-state imaging devices, a single-slope ADC (Analog to Digital Converter) is used to convert analog signals to digital signals. When an ADC is arranged for each column, a current source is generally connected to the node on the installation side of the vertical signal line wired along the column, and the analog signal from this node is input to the ADC and converted to a digital signal. be done. For example, for the purpose of amplifying the voltage, solid-state imaging devices are being researched in which an amplifier is inserted between the node between the vertical signal line and the current source and the ADC.
 このような形態では、アンプを挿入することでアナログ信号の電圧を増幅する。このアンプを駆動するためには、垂直信号線の設置側の電流源に加えて、アンプの電源側にも電源を備える必要がある。この電源側の電流源の追加により電圧を増幅しない場合と比較して消費電力が増大してしまうおそれがある。このような消費電力の増大を抑え、さらに、セトリング時間を短縮する研究がされているが、画素からの入力信号のDC電圧レベル (リセット電圧レベル) に依存して、アンプ出力電圧が変わる問題が発生する。このため、画素ごとにリセットレベルが異なる場合には、固定パターンノイズとなる。また、カラム回路ごとにオフセットキャリブレーション機構を持つ場合には、キャリブレーションの精度に影響を与える。 In such a form, the voltage of the analog signal is amplified by inserting an amplifier. In order to drive this amplifier, it is necessary to provide a power supply on the power supply side of the amplifier in addition to the current source on the installation side of the vertical signal line. The addition of the current source on the power supply side may increase the power consumption compared to the case where the voltage is not amplified. Research is being conducted to suppress this increase in power consumption and shorten the settling time, but there is the problem that the amplifier output voltage changes depending on the DC voltage level (reset voltage level) of the input signal from the pixel. Occur. Therefore, when the reset level differs for each pixel, it becomes fixed pattern noise. Also, if each column circuit has an offset calibration mechanism, it affects the accuracy of calibration.
特開2011-029726号公報Japanese Patent Application Laid-Open No. 2011-029726
 そこで、本開示では、上記のオフセットを抑制する固体撮像素子を提供する。 Therefore, the present disclosure provides a solid-state imaging device that suppresses the above offset.
 一実施形態によれば、固体撮像素子は、画素回路と、第1トランジスタと、入力側電流源と、第2トランジスタと、増幅器と、第1キャパシタと、第1スイッチと、を備える。画素回路は、光電変換により入力電圧を生成する。第1トランジスタは、ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する。入力側電流源は、所定基準電圧の基準ノードに接続され、所定電流を供給する。第2トランジスタは、前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する出力側電流源及び出力側電流源のトランジスタと、カスコード接続される。増幅器は、前記アンプ出力における電圧を増幅する増幅器であって、第3トランジスタ及び第4トランジスタを備え、第3トランジスタ及び第4トランジスタの間のノードから増幅電圧を出力する。第1キャパシタは、前記第3トランジスタのゲートと、前記アンプ出力ノードとの間に接続される。第1スイッチは、前記第3トランジスタのゲートと、前記第1キャパシタとの間に、出力側基準電圧を供給する。 According to one embodiment, a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, an amplifier, a first capacitor, and a first switch. A pixel circuit generates an input voltage by photoelectric conversion. The first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain. The input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current. The second transistor is cascode-connected to an output-side current source that determines the potential of the amplifier output node according to the output of the first transistor, and to transistors of the output-side current source. The amplifier amplifies the voltage at the amplifier output, comprises a third transistor and a fourth transistor, and outputs an amplified voltage from a node between the third transistor and the fourth transistor. A first capacitor is connected between the gate of the third transistor and the amplifier output node. A first switch supplies an output-side reference voltage between the gate of the third transistor and the first capacitor.
 前記出力側電流源は、ソースが電源電圧と接続され、ゲートにバイアス電圧が印加される、第5トランジスタと、ソースが前記第5トランジスタのドレインと接続され、ドレインが前記アンプ出力ノードと接続され、ゲートにカスコード制御電圧が印加される、第6トランジスタと、を備えてもよい。 The output-side current source includes a fifth transistor having a source connected to a power supply voltage and a gate to which a bias voltage is applied, a source connected to the drain of the fifth transistor, and a drain connected to the amplifier output node. , and a sixth transistor having a cascode control voltage applied to its gate.
 前記バイアス電圧は、第2スイッチを介して印加され、前記第2スイッチと、前記第5トランジスタのゲートとの間に、一方の端子が接続され、他方の端子が前記電源電圧に接続される、第2キャパシタと、を備えてもよい。 The bias voltage is applied through a second switch, one terminal is connected between the second switch and the gate of the fifth transistor, and the other terminal is connected to the power supply voltage. and a second capacitor.
 前記第2スイッチは、前記第6トランジスタのドレインと接続され、前記第6トランジスタのドレインの電位をバイアス電圧として前記第5トランジスタのゲートに印加してもよい。 The second switch may be connected to the drain of the sixth transistor, and the potential of the drain of the sixth transistor may be applied to the gate of the fifth transistor as a bias voltage.
 前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であってもよく、この場合、前記第1トランジスタに一端が接続される、第3キャパシタと、前記第3キャパシタの他端と、入力側基準電圧との間に接続される第3スイッチと、前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続される第4スイッチと、をさらに備えてもよい。 A feedback circuit connecting between the amplifier output node and the gate of the first transistor may be provided. In this case, a third capacitor, one end of which is connected to the first transistor, and the third capacitor a third switch connected between the other end and an input-side reference voltage; and a fourth switch connected between the other end of the third capacitor and the amplifier output node. good.
 前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であってもよく、この場合、前記第1トランジスタに一端が接続される、第3キャパシタと、前記第3キャパシタの他端と、前記増幅電圧を出力する出力ノードとの間に接続される第5スイッチと、前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続される第6スイッチと、をさらに備えてもよい。 A feedback circuit connecting between the amplifier output node and the gate of the first transistor may be provided. In this case, a third capacitor, one end of which is connected to the first transistor, and the third capacitor a fifth switch connected between the other end and an output node that outputs the amplified voltage; and a sixth switch connected between the other end of the third capacitor and the amplifier output node. You may have more.
 一実施形態によれば、固体撮像素子は、画素回路と、第1トランジスタと、入力側電流源と、第2トランジスタと、帰還回路と、を備える。画素回路は、光電変換により入力電圧を生成する。第1トランジスタは、ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する。入力側電流源は、所定基準電圧の基準ノードに接続され、所定電流を供給する。第2トランジスタは、前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される。帰還回路は、前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する回路であって、第3キャパシタと、第3スイッチと、第4スイッチと、第4キャパシタと、第7スイッチと、第8スイッチと、を備える。第3キャパシタは、前記第1トランジスタに一端が接続される。第3スイッチは、前記第3キャパシタの他端と、入力側基準電圧との間に接続される。第4スイッチは、前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続され、前記第3スイッチと同じタイミングでオンし、異なるタイミングでオフする。第4キャパシタは、前記第1トランジスタに一端が接続される。第7スイッチは、前記第4キャパシタの他端と、前記入力側基準電圧との間に接続される。第8スイッチは、前記第4キャパシタの他端と、前記アンプ出力ノードとの間に接続される。 According to one embodiment, a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, and a feedback circuit. A pixel circuit generates an input voltage by photoelectric conversion. The first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain. The input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current. A second transistor is cascode-connected with an output current source and an output current source transistor that determines the potential of the amplifier output node according to the output of the first transistor. The feedback circuit is a circuit connecting between the amplifier output node and the gate of the first transistor, and includes a third capacitor, a third switch, a fourth switch, a fourth capacitor, and a seventh switch. and an eighth switch. A third capacitor has one end connected to the first transistor. A third switch is connected between the other end of the third capacitor and an input-side reference voltage. A fourth switch is connected between the other end of the third capacitor and the amplifier output node, turns on at the same timing as the third switch, and turns off at a different timing. A fourth capacitor has one end connected to the first transistor. A seventh switch is connected between the other end of the fourth capacitor and the input-side reference voltage. An eighth switch is connected between the other end of the fourth capacitor and the amplifier output node.
 前記アンプ出力における電圧を増幅する増幅器であり、第3トランジスタ及び第4トランジスタを備え、第3トランジスタ及び第4トランジスタの間のノードから増幅電圧を出力する、増幅器、をさらに備えてもよい。 The amplifier may further include an amplifier that amplifies the voltage at the amplifier output, includes a third transistor and a fourth transistor, and outputs an amplified voltage from a node between the third transistor and the fourth transistor.
 一実施形態によれば、固体撮像素子は、画素回路と、第1トランジスタと、入力側電流源と、第2トランジスタと、第9スイッチと、帰還回路とを備える。画素回路は、光電変換により入力電圧を生成する。第1トランジスタは、ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する。入力側電流源は、所定基準電圧の基準ノードに接続され、所定電流を供給する。第2トランジスタは、前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される。第9スイッチは、前記第1トランジスタのゲート及びドレイン間に接続される。帰還回路は、前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であり、第3キャパシタと、第3スイッチと、第4キャパシタと、第7スイッチと、第8スイッチと、を備える。第3キャパシタは、前記第1トランジスタに一端が接続される。第3スイッチは、前記第3キャパシタの他端と、入力側基準電圧との間に接続される。第4キャパシタは、前記第1トランジスタに一端が接続される。第7スイッチは、前記第4キャパシタの他端と、前記入力側基準電圧との間に接続される。第8スイッチは、前記第4キャパシタの他端と、前記アンプ出力ノードとの間に接続される。また、前記出力側電流源は、ソースが電源電圧と接続され、ゲートにバイアス電圧が印加される、第5トランジスタと、ソースが前記第5トランジスタのドレインと接続され、ドレインが前記アンプ出力ノードと接続され、ゲートにカスコード制御電圧が印加される、第6トランジスタと、を備える。固体撮像素子はさらに、前記第6トランジスタのドレインと接続され、前記第6トランジスタのドレインの電位をバイアス電圧として前記第5トランジスタのゲートに印加する、第2スイッチを備える。 According to one embodiment, a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, a ninth switch, and a feedback circuit. A pixel circuit generates an input voltage by photoelectric conversion. The first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain. The input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current. A second transistor is cascode-connected with an output current source and an output current source transistor that determines the potential of the amplifier output node according to the output of the first transistor. A ninth switch is connected between the gate and the drain of the first transistor. The feedback circuit is a feedback circuit connecting between the amplifier output node and the gate of the first transistor, and includes a third capacitor, a third switch, a fourth capacitor, a seventh switch, and an eighth switch. And prepare. A third capacitor has one end connected to the first transistor. A third switch is connected between the other end of the third capacitor and an input-side reference voltage. A fourth capacitor has one end connected to the first transistor. A seventh switch is connected between the other end of the fourth capacitor and the input-side reference voltage. An eighth switch is connected between the other end of the fourth capacitor and the amplifier output node. The output-side current source includes a fifth transistor having a source connected to a power supply voltage and a gate to which a bias voltage is applied, and a source connected to the drain of the fifth transistor and a drain connected to the amplifier output node. a sixth transistor connected and having a gate to which a cascode control voltage is applied. The solid-state imaging device further includes a second switch that is connected to the drain of the sixth transistor and applies the potential of the drain of the sixth transistor as a bias voltage to the gate of the fifth transistor.
 前記アンプ出力における電圧を増幅する増幅器であって、第3トランジスタ及び第4トランジスタを備え、第3トランジスタ及び第4トランジスタの間のノードから増幅電圧を出力する、増幅器、をさらに備えてもよい。 An amplifier that amplifies the voltage at the amplifier output may further include a third transistor and a fourth transistor, and outputting an amplified voltage from a node between the third transistor and the fourth transistor.
 一実施形態によれば、固体撮像素子は、画素回路と、第1トランジスタと、入力側電流源と、第2トランジスタと、期間回路と、を備える。画素回路は、光電変換により入力電圧を生成する。第1トランジスタは、ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する。入力側電流源は、所定基準電圧の基準ノードに接続され、所定電流を供給する。第2トランジスタは、前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される。帰還回路は、前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する回路であって、第3キャパシタと、第3スイッチと、第4スイッチと、第4キャパシタと、第7スイッチと、第8スイッチと、を備える。第3キャパシタは、前記第1トランジスタに一端が接続される。第3スイッチは、前記第3キャパシタの他端と、入力側基準電圧との間に接続される。第4スイッチは、前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続され、前記第3スイッチと同じタイミングでオンし、異なるタイミングでオフする。第4キャパシタは、前記第1トランジスタに一端が接続される。第7スイッチは、前記第4キャパシタの他端と、前記入力側基準電圧との間に接続される。第8スイッチは、前記第4キャパシタの他端と、前記アンプ出力ノードとの間に接続される。また、前記アンプ出力ノードと、電源電圧と、の間に接続される第7トランジスタであって、前記アンプ出力ノードにリセット高速化制御する電圧を印加する、第7トランジスタと、を備える。 According to one embodiment, a solid-state imaging device includes a pixel circuit, a first transistor, an input-side current source, a second transistor, and a period circuit. A pixel circuit generates an input voltage by photoelectric conversion. The first transistor receives the input voltage from its source and outputs a voltage corresponding to the voltage between the source and gate from its drain. The input-side current source is connected to a reference node of a predetermined reference voltage and supplies a predetermined current. A second transistor is cascode-connected with an output current source and an output current source transistor that determines the potential of the amplifier output node according to the output of the first transistor. The feedback circuit is a circuit connecting between the amplifier output node and the gate of the first transistor, and includes a third capacitor, a third switch, a fourth switch, a fourth capacitor, and a seventh switch. and an eighth switch. A third capacitor has one end connected to the first transistor. A third switch is connected between the other end of the third capacitor and an input-side reference voltage. A fourth switch is connected between the other end of the third capacitor and the amplifier output node, turns on at the same timing as the third switch, and turns off at a different timing. A fourth capacitor has one end connected to the first transistor. A seventh switch is connected between the other end of the fourth capacitor and the input-side reference voltage. An eighth switch is connected between the other end of the fourth capacitor and the amplifier output node. and a seventh transistor connected between the amplifier output node and a power supply voltage, the seventh transistor applying a voltage for reset speed-up control to the amplifier output node.
一実施形態に係る撮像装置の構成の一例を示すブロック図。1 is a block diagram showing an example of the configuration of an imaging device according to one embodiment; FIG. 一実施形態に係る撮像素子の積層構造の構成の一例を示す図。FIG. 2 is a diagram showing an example of a configuration of a laminated structure of an imaging element according to one embodiment; 一実施形態に係る固体撮像素子の構成の一例を示す図。1 is a diagram showing an example of the configuration of a solid-state imaging device according to one embodiment; FIG. 一実施形態に係る画素の構成の一例を示す図。FIG. 3 is a diagram showing an example of a pixel configuration according to one embodiment; 一実施形態に係る定電流源回路の一例を示す図。FIG. 2 is a diagram showing an example of a constant current source circuit according to one embodiment; 一実施形態に係る ADC の一例を示す図。The figure which shows an example of ADC which concerns on one Embodiment. 一実施形態に係る ADC の一例を示す図。The figure which shows an example of ADC which concerns on one Embodiment. 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプのタイミングチャートの一例を示す図。FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプのタイミングチャートの一例を示す図。FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプのタイミングチャートの一例を示す図。FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプのタイミングチャートの一例を示す図。FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプのタイミングチャートの一例を示す図。FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプのタイミングチャートの一例を示す図。FIG. 4 is a diagram showing an example of a timing chart of a column amplifier according to one embodiment; 一実施形態に係るカラムアンプの一例を示す図。FIG. 4 is a diagram showing an example of a column amplifier according to one embodiment; 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
 以下、図面を参照して本開示における実施形態の説明をする。図面は、説明のために用いるものであり、実際の装置における各部の構成の形状、サイズ、又は、他の構成とのサイズの比等が図に示されている通りである必要はない。また、図面は、簡略化して書かれているため、図に書かれている以外にも実装上必要な構成は、適切に備えるものとする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The drawings are used for explanation, and it is not necessary that the shapes, sizes, ratios, etc. of the configuration of each part in the actual apparatus are as shown in the drawings. In addition, since the drawings are drawn in a simplified manner, it is assumed that configurations necessary for mounting other than those shown in the drawings are appropriately provided.
 図1は、一実施形態に係る撮像装置 1 の構成の一例を示すブロック図である。撮像装置 1 は、画像データ (動画におけるフレームデータを含む) を撮像する装置であり、光学系 100 と、固体撮像素子 20 と、処理回路 120 と、を備える。また、撮像装置 1 は、表示部 130 と、操作部 140 と、バス 150 と、フレームメモリ 160 と、記憶部 170 と、電源部 180 と、を備える。撮像装置 1 は、固体撮像装置であってもよい。 FIG. 1 is a block diagram showing an example of the configuration of an imaging device 1 according to one embodiment. The imaging device 1 is a device that captures image data (including frame data in moving images), and includes an optical system 100, a solid-state imaging device 20, and a processing circuit 120. The imaging device 1 also includes a display unit 130, an operation unit 140, a bus 150, a frame memory 160, a storage unit 170, and a power supply unit 180. The imaging device 1 may be a solid-state imaging device.
 撮像装置 1 は、限定されない例として、デジタルスチルカメラといったデジタルカメラ、撮像機能を有するスマートフォン、パーソナルコンピュータといった端末、また、車載カメラ等に実装されてもよい。 The imaging device 1 may be implemented in, as non-limiting examples, a digital camera such as a digital still camera, a terminal such as a smartphone having an imaging function, a personal computer, or an in-vehicle camera.
 光学系 100 は、被写体からの光を制御して、固体撮像素子 20 の画素領域へと導く。光学系 100 は、例えば、レンズ及び開口を備える。 The optical system 100 controls the light from the subject and guides it to the pixel area of the solid-state imaging device 20. Optical system 100 comprises, for example, a lens and an aperture.
 固体撮像素子 20 は、垂直同期信号に同期して、光電変換により受光した光の強度に基づいたアナログ信号を取得し、 ADC (Analog to Digital Converter) によりデジタル画像信号に変換して出力する。ここで、垂直同期信号は、撮像のタイミングを示す所定周波数の周期信号である。固体撮像素子 20 は、生成した画像データを処理回路 120 に信号線 190 を介して出力する。 The solid-state image sensor 20 synchronizes with the vertical synchronization signal, acquires an analog signal based on the intensity of the light received by photoelectric conversion, converts it to a digital image signal by an ADC (Analog to Digital Converter), and outputs it. Here, the vertical synchronizing signal is a periodic signal with a predetermined frequency that indicates the timing of imaging. The solid-state imaging device 20 outputs the generated image data to the processing circuit 120 via the signal line 190 .
 処理回路 120 は、固体撮像素子 20 から出力された画像データに対して、所定の信号処理を実行する。この処理回路 120 は、バス 150 を介して処理した画像を適切な構成要素、例えば、フレームメモリ 160 又は記憶部 170 に出力する。処理回路 120 は、固体撮像素子 20 と同じチップ内に備えられてもよいし、固体撮像素子 20 とは異なるチップ内に備えられてもよい。また、処理回路 120 は、その一部が固体撮像素子 20 と同じチップ内に、他の箇所が異なるチップ内に備えられてもよい。 The processing circuit 120 performs predetermined signal processing on the image data output from the solid-state imaging device 20. This processing circuit 120 outputs the processed image via bus 150 to a suitable component, eg frame memory 160 or storage 170 . The processing circuit 120 may be provided in the same chip as the solid-state image sensor 20, or may be provided in a chip different from the solid-state image sensor 20. Also, the processing circuit 120 may be partly provided in the same chip as the solid-state imaging device 20 and other parts may be provided in a different chip.
 表示部 130 は、画像データを表示する。表示部 130 は、限定されない例として、液晶パネル、有機 EL (Electro Luminescence) パネルであってもよい。 The display unit 130 displays image data. The display unit 130 may be, as non-limiting examples, a liquid crystal panel or an organic EL (Electro Luminescence) panel.
 操作部 140 は、ユーザの操作に基づいて操作信号を生成する。操作部 140 は、限定されない例として、タッチパネル、キーボード、マウス、マイクといった入力インタフェースを備える。 The operation unit 140 generates an operation signal based on the user's operation. The operation unit 140 includes, as non-limiting examples, input interfaces such as a touch panel, keyboard, mouse, and microphone.
 バス 150 は、光学系 100 、固体撮像素子 20 、処理回路 120 、表示部 130 、操作部 140 、フレームメモリ 160 、記憶部 170 及び電源部 180 が互いにデータ等を送受信するために共有する経路である。 The bus 150 is a path shared by the optical system 100, the solid-state image pickup device 20, the processing circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 to exchange data with each other. .
 フレームメモリ 160 は、例えば、画像データを処理するために一時的に保持する。 The frame memory 160 temporarily stores, for example, image data for processing.
 記憶部 170 は、画像データ等の種々のデータを記憶する。処理回路 120 がソフトウェアによる情報処理がハードウェアを用いて具体的に実現される場合には、当該ソフトウェアの実行ファイル又はプログラムが記憶部 170 に格納されていてもよい。 The storage unit 170 stores various data such as image data. When the processing circuit 120 specifically implements information processing by software using hardware, an executable file or program of the software may be stored in the storage unit 170 .
 電源部 180 は、固体撮像素子 20 、処理回路 120 、表示部 130 等に電源を供給する。 The power supply unit 180 supplies power to the solid-state imaging device 20, the processing circuit 120, the display unit 130, and so on.
 図2は、一実施形態に係る固体撮像素子 20 の積層構造の一例を示す図である。固体撮像素子 20 は、画素層 22 と、回路層 24 と、を備える。画素層 22 は、回路層 24 とは、積層された半導体層として構成される。これらの層は、ビア等の接続部を介して電気的に接続される。ビアではなく、限定されない例として、 Cu - Cu 結合、マイクロバンプにより接続されてもよい。 FIG. 2 is a diagram showing an example of the laminated structure of the solid-state imaging device 20 according to one embodiment. The solid-state imaging device 20 includes a pixel layer 22 and a circuit layer 24. The pixel layer 22 and the circuit layer 24 are constructed as stacked semiconductor layers. These layers are electrically connected through connections such as vias. Instead of vias, they may be connected by Cu--Cu bonds, micro-bumps, as non-limiting examples.
 積層構造は、図2の例に限定されるものではない。例えば、 3 層以上の層を有して構成されていてもよい。また、画素層 22 の一部に回路が備えられていてもよい。 The laminated structure is not limited to the example in Fig. 2. For example, it may be configured with three or more layers. Also, a part of the pixel layer 22 may be provided with a circuit.
 図3は、一実施形態に係る固体撮像素子 20 の限定されない一構成例を示すブロック図である。固体撮像素子 20 は、画素アレイ 200 と、ライン選択回路 210 と、DAC (Digital to Analog Converter) 220 と、タイミング制御回路 230 と、定電流源回路 30 と、 ADC 240 と、ライン転送回路 250 と、画像処理回路 260 と、を備える。 FIG. 3 is a block diagram showing a non-limiting configuration example of the solid-state imaging device 20 according to one embodiment. The solid-state imaging device 20 includes a pixel array 200, a line selection circuit 210, a DAC (Digital to Analog Converter) 220, a timing control circuit 230, a constant current source circuit 30, an ADC 240, a line transfer circuit 250, An image processing circuit 260 is provided.
 画素アレイ 200 は、画素回路を含む複数の画素 202 が 2 次元格子状に配列される。以下、図面において水平方向に配列された画素 202 の集合を行 (ライン) と記載し、水平方向に垂直な方向に配列された画素 202 の集合を列 (カラム) と記載する。なお、図面における説明上ラインとカラムを上記のように定義したが、ラインとカラムの定義は、これに限定されるものではない。 In the pixel array 200, a plurality of pixels 202 including pixel circuits are arranged in a two-dimensional lattice. Hereinafter, a set of pixels 202 arranged horizontally in the drawing is referred to as a row (line), and a set of pixels 202 arranged vertically to the horizontal direction is referred to as a column (column). Although the lines and columns are defined as described above for the sake of explanation in the drawings, the definitions of lines and columns are not limited to this.
 画素 202 は、少なくとも受光素子と、当該受光素子が光電変換により出力する電圧又は電流を適切なタイミングで出力する回路と、を備える。また、画素 202 は、それぞれの受光素子に対して適切に光を導くマイクロレンズ等の光学系を備えていてもよい。画素 202 は、ライン選択回路 210 の制御に基づいて、光電変換により、アナログの画素信号を生成する。画素 202 のそれぞれは、垂直信号線 204 を介して画素信号を定電流源回路 30 に出力する。 The pixel 202 includes at least a light receiving element and a circuit for outputting at appropriate timing the voltage or current output by the light receiving element through photoelectric conversion. Also, the pixel 202 may have an optical system such as a microlens that appropriately guides light to each light receiving element. The pixels 202 generate analog pixel signals through photoelectric conversion under the control of the line selection circuit 210 . Each pixel 202 outputs a pixel signal to the constant current source circuit 30 via the vertical signal line 204 .
 ライン選択回路 210 は、ラインを順に選択して駆動し、アナログの画素信号を、定電流源回路 30 を介して ADC 240 に出力する。 The line selection circuit 210 sequentially selects and drives the lines, and outputs analog pixel signals to the ADC 240 via the constant current source circuit 30.
 DAC 220 は、DA (Digital to Analog) 変換により参照信号を生成し、 ADC 240 に供給する。参照信号として、限定されない例として、のこぎり波、矩形波等の信号が用いられてもよい。 DAC 220 generates a reference signal by DA (Digital to Analog) conversion and supplies it to ADC 240. As a reference signal, as a non-limiting example, a signal such as a sawtooth wave, a square wave, or the like may be used.
 タイミング制御回路 230 は、垂直同期信号 Vsync に同期して、ライン選択回路 210 、DAC 220、定電流源回路 30 、ADC 240 及びライン転送回路 250 のそれぞれの動作タイミングを制御する。 The timing control circuit 230 controls the operation timing of each of the line selection circuit 210, DAC 220, constant current source circuit 30, ADC 240 and line transfer circuit 250 in synchronization with the vertical synchronization signal Vsync.
 ADC 240 は、DAC 220 が出力する参照信号を用いて、カラムごとにアナログの入力信号をデジタル信号に変換する。ADC 240 は、ライン転送回路 250 の制御に基づいてデジタル信号を画像処理回路 260 に供給する。 The ADC 240 uses the reference signal output by the DAC 220 to convert the analog input signal into a digital signal for each column. ADC 240 supplies digital signals to image processing circuit 260 under the control of line transfer circuit 250 .
 ライン転送回路 250 は、ADC 240 を制御して、デジタル信号を順に出力する。 The line transfer circuit 250 controls the ADC 240 to sequentially output digital signals.
 画像処理回路 260 は、デジタル信号を配列した画像データに対して所定の画像処理を実行する。この画像処理回路 260 は、処理後の画像データを処理回路 120 へと出力する。 The image processing circuit 260 performs predetermined image processing on image data in which digital signals are arranged. This image processing circuit 260 outputs the processed image data to the processing circuit 120 .
 固体撮像素子 20 内の上述の回路は、画素層 22 と、回路層 24 と、に適切に分散して配置される。一例として、画素アレイ 200 が画素層 22 に配置され、画素アレイ 200 以外の ADC 240 等の回路は、回路層 24 に配置されてもよい。画素層 22 と回路層 24 とのそれぞれに配置する回路は、この組み合わせに限定されない。例えば、画素アレイ 200 と、定電流源回路 30 と、ADC 240 内のコンパレータとを画素層 22 に配置し、それ以外の回路を回路層 24 に配置することもできる。 The above-described circuits in the solid-state imaging device 20 are appropriately dispersed and arranged in the pixel layer 22 and the circuit layer 24. As an example, the pixel array 200 may be placed on the pixel layer 22 and circuits other than the pixel array 200, such as the ADC 240, may be placed on the circuit layer 24. The circuits arranged in each of the pixel layer 22 and the circuit layer 24 are not limited to this combination. For example, the pixel array 200, the constant current source circuit 30, and the comparator in the ADC 240 can be placed on the pixel layer 22, and the other circuits can be placed on the circuit layer 24.
 図4は、一実施形態に係る画素 202 の一例を示す回路図である。画素 202 は、光電変換素子 205 と、転送トランジスタ 206 と、リセットトランジスタ 207 と、増幅トランジスタ 208 と、選択トランジスタ 209 と、を備える。 FIG. 4 is a circuit diagram showing an example of a pixel 202 according to one embodiment. The pixel 202 includes a photoelectric conversion element 205, a transfer transistor 206, a reset transistor 207, an amplification transistor 208, and a selection transistor 209.
 光電変換素子 205 は、入射光を光電変換して電荷を生成する。光電変換素子 205 は、限定されない例として、フォトダイオード、有機光電変換膜を備えて構成される。 The photoelectric conversion element 205 photoelectrically converts incident light to generate electric charges. The photoelectric conversion element 205 includes, as non-limiting examples, a photodiode and an organic photoelectric conversion film.
 転送トランジスタ 206 は、ライン選択回路 210 からの転送信号 TRG にしたがって、光電変換素子 205 のから浮遊拡散層 FD へと電荷を転送するトランジスタである。 The transfer transistor 206 is a transistor that transfers charges from the photoelectric conversion element 205 to the floating diffusion layer FD according to the transfer signal TRG from the line selection circuit 210.
 浮遊拡散層 FD は、光電変換素子 205 から出力される電荷を蓄積し、電荷量に応じた電圧を生成するための層である。浮遊拡散層 FD による電圧は、適切なタイミングでリセット及びセットされ、その電圧の高さにより、適切なアナログ信号を垂直信号線 204 を介して出力する。 The floating diffusion layer FD is a layer for accumulating the charge output from the photoelectric conversion element 205 and generating a voltage according to the amount of charge. The voltage by the floating diffusion layer FD is reset and set at appropriate timing, and an appropriate analog signal is output through the vertical signal line 204 according to the height of the voltage.
 リセットトランジスタ 207 は、ライン選択回路 210 からのリセット信号 RST にしたがって、浮遊拡散層 FD に保持されている電荷を初期化する。 The reset transistor 207 initializes the charges held in the floating diffusion layer FD according to the reset signal RST from the line selection circuit 210.
 増幅トランジスタ 208 は、浮遊拡散層 FD からゲートに印加される電圧に基づいた大きさの電流を出力する。 The amplification transistor 208 outputs a current of magnitude based on the voltage applied to the gate from the floating diffusion layer FD.
 選択トランジスタ 209 は、ライン選択回路 210 からの選択信号にしたがって、増幅された電圧の信号を画素信号 SIG として出力するトランジスタである。画素アレイ 200 に属する画素 202 のカラム数を N (N: 整数) として、第 n (n: [1, N] の整数) カラムの画素信号は、選択トランジスタ 209 がオンとなるタイミングで垂直信号線 204-n を介して定電流源回路 30 へと伝送される。以下、上記の n 及び N をそれぞれカラムの番号及びカラム数として使用して説明する。 The selection transistor 209 is a transistor that outputs an amplified voltage signal as the pixel signal SIG according to the selection signal from the line selection circuit 210 . Assuming that the number of columns of pixels 202 belonging to the pixel array 200 is N (N: integer), the pixel signal of the n-th (n: integer of [1, N]) column is applied to the vertical signal line at the timing when the selection transistor 209 turns on. 204-n to the constant current source circuit 30. Hereinafter, description will be made using the above n and N as the column number and the number of columns, respectively.
 なお、画素 202 の回路は、光電変換により画素信号を適切に生成することができる回路であれば、図4に例示したものに限定されない回路として構成されてもよい。 Note that the circuit of the pixel 202 may be configured as a circuit that is not limited to the one illustrated in FIG. 4 as long as it is a circuit that can appropriately generate pixel signals by photoelectric conversion.
 図5は、一実施形態に係る定電流源回路 30 の限定されない一例を示すブロック図である。定電流源回路 30 には、カラムごとにカラムアンプ 300 が配置される。すなわち、定電流源回路 30 は、 N 個のカラムアンプ 300 を備える。 FIG. 5 is a block diagram showing a non-limiting example of the constant current source circuit 30 according to one embodiment. A column amplifier 300 is arranged for each column in the constant current source circuit 30 . That is, the constant current source circuit 30 has N column amplifiers 300 .
 n 個目のカラムアンプ 300-n には、垂直信号線 204-n を介して対応するカラムの画素信号が入力される。カラムアンプ 300-n は、当該画素信号の電圧を増幅し、信号線 302-n を介して ADC 240 へと出力する。画素信号の増幅前の電圧を入力電圧 Vin とし、増幅後の電圧を出力電圧 Vout とする。また、カラムアンプ 300 は、タイミング制御回路 230 からのオートゼロ信号 AZ が入力されるタイミングで初期化される。 A pixel signal of the corresponding column is input to the n-th column amplifier 300-n via the vertical signal line 204-n. The column amplifier 300-n amplifies the voltage of the pixel signal and outputs it to the ADC 240 via the signal line 302-n. Let the voltage of the pixel signal before amplification be the input voltage Vin, and the voltage after amplification be the output voltage Vout. Also, the column amplifier 300 is initialized at the timing when the auto-zero signal AZ from the timing control circuit 230 is input.
 図6は、一実施形態に係る ADC 240 の限定されない一例を示すブロック図である。 ADC 240 は、カラムごとに、カラム ADC 241 と、ラッチ回路 246 と、が配置される。すなわち、 ADC 240 は、それぞれ N 個のカラム ADC 241 及びラッチ回路 246 を備える。 FIG. 6 is a block diagram illustrating a non-limiting example ADC 240 according to one embodiment. A column ADC 241 and a latch circuit 246 are arranged for each column of the ADC 240 . That is, ADC 240 comprises N column ADCs 241 and latch circuits 246 respectively.
 カラム ADC 241 は、アナログ画素信号をデジタル信号に変換する回路である。この カラム ADC 241 は、キャパシタ 242 、 243 と、コンパレータ 244 と、カウンタ 245 と、を備える。カラム ADC 241 により CDS (Correlated Double Sampling) 処理がさらに実行されてもよい。 The column ADC 241 is a circuit that converts analog pixel signals into digital signals. This column ADC 241 comprises capacitors 242 , 243 , a comparator 244 and a counter 245 . CDS (Correlated Double Sampling) processing may also be performed by the column ADC 241 .
 コンパレータ 244 は、DAC 220 から出力される参照信号と、対応するカラムの画素信号とを比較する比較器である。コンパレータ 244 は、一対の入力端子が設けられ、それらの一方にキャパシタ 242 を介して参照信号が入力され、他方にキャパシタ 243 を介して画素信号が入力される。コンパレータ 244 は、比較結果をカウンタ 245 に供給する。 The comparator 244 is a comparator that compares the reference signal output from the DAC 220 and the pixel signal of the corresponding column. The comparator 244 has a pair of input terminals, one of which receives the reference signal via the capacitor 242 and the other receives the pixel signal via the capacitor 243 . Comparator 244 supplies the comparison result to counter 245 .
 カウンタ 245 は、タイミング制御回路 230 の制御にしたがい、比較結果が反転するまでの期間に亘り、計数値を計数する。カウンタ 245 は、計数値を示す信号をデジタル信号としてラッチ回路 246 に出力する。 Under the control of the timing control circuit 230, the counter 245 counts the count value until the comparison result is reversed. The counter 245 outputs a signal indicating the count value to the latch circuit 246 as a digital signal.
 ラッチ回路 246 は、デジタル信号を保持する回路である。ラッチ回路 246 は、ライン転送回路 250 から出力される同期信号に同期して、デジタル信号を画像処理回路 260 へと出力する。 The latch circuit 246 is a circuit that holds digital signals. The latch circuit 246 outputs the digital signal to the image processing circuit 260 in synchronization with the sync signal output from the line transfer circuit 250 .
 図7は、 ADC 240 の別の例を示す図である。この図7に示すように、 カラム ADC 241 において、コンパレータ 244 の入力端子の一方 (反転入力端子又は非反転入力端子) にキャパシタ 242 、 243 を並列に接続することもできる。これにより、コンパレータ 244 の入力振幅を図6の ADC 240 と比較して低下させることもできる。 Fig. 7 is a diagram showing another example of ADC 240. As shown in FIG. 7, in column ADC 241, capacitors 242 and 243 can be connected in parallel to one of the input terminals (inverting input terminal or non-inverting input terminal) of comparator 244. This also allows the input amplitude of comparator 244 to be reduced compared to ADC 240 of FIG.
 以上において、固体撮像素子 20 の全体的な処理の流れについて説明した。本開示においては、定電流源回路 30 のカラムアンプ 300 のいくつかの限定されない実施形態について説明する。 The above describes the overall processing flow of the solid-state imaging device 20 . This disclosure describes several non-limiting embodiments of the column amplifier 300 of the constant current source circuit 30.
 (第1実施形態)
 図8は、一実施形態に係るカラムアンプ 300 の一構成例を示す回路図であり、図9は、図8のカラムアンプ 300 におけるタイミングチャートの一例を示す図である。カラムアンプ 300 は、 トランジスタ MP01 、 MP02 、 MP03 、 MN01 、 MN02 、 MN03 、MN04 、 MN05 と、キャパシタ C01 、 C02 、 C03 、 C04 、 C05 、 C06 、 C07 、 C08 、 C09 と、スイッチ Sw01 、 Sw02 、 Sw03 、 Sw04 、 Sw05 、 Sw06 、 Sw07 、 Sw08 、 Sw09 と、を備える。カラムアンプ 300 は、上述したように、カラムごとに属する画素 202 から出力された信号を適切に増幅して ADC 240 のカラムに対応するカラム ADC 241 へと出力する回路である。
(First embodiment)
FIG. 8 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment, and FIG. 9 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG. The column amplifier 300 includes transistors MP01, MP02, MP03, MN01, MN02, MN03, MN04, MN05, capacitors C01, C02, C03, C04, C05, C06, C07, C08, C09, and switches Sw01, Sw02, Sw03. , Sw04, Sw05, Sw06, Sw07, Sw08, and Sw09 are provided. The column amplifier 300 is a circuit that appropriately amplifies the signals output from the pixels 202 belonging to each column and outputs them to the column ADCs 241 corresponding to the columns of the ADCs 240, as described above.
 以下、トランジスタの符号において、 MNxx と記載されている場合には n チャネルの MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor) であってもよく、 MPxx と記載されている場合には p チャネルの MOSFET であってもよい。 In the following, when the transistor is indicated as MNxx, it may be an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor), and when MPxx is indicated, it may be a p-channel It may be a MOSFET.
 トランジスタ MP01 は、カラムアンプ 300 への信号の入力を制御するトランジスタである。トランジスタ MP01 は、ソースが垂直信号線 204 に接続され、ドレインが基準電圧 (例えば、接地電圧) とトランジスタ MN01 、 MN02 を介して接続される。画素 202 は、光電変換により画素信号を生成し、この電圧を入力電圧 Vin として垂直信号線 204 を介してトランジスタ MP01 のソースに印加する。 The transistor MP01 is a transistor that controls the signal input to the column amplifier 300. Transistor MP01 has a source connected to vertical signal line 204 and a drain connected to a reference voltage (eg, ground voltage) via transistors MN01 and MN02. Pixel 202 generates a pixel signal by photoelectric conversion, and applies this voltage as input voltage Vin to the source of transistor MP01 via vertical signal line 204 .
 スイッチ Sw02 は、オートゼロ信号 PAZOUT にしたがい、トランジスタ MP01 のゲートとドレインとの間の経路を開閉するスイッチである。 The switch Sw02 is a switch that opens and closes the path between the gate and drain of the transistor MP01 according to the auto-zero signal PAZOUT.
 キャパシタ C01 は、トランジスタ MP01 のゲートと、基準電圧の基準ノードとの間に配置される。キャパシタ C01 は、 Vgate の電位と、アンプ出力電位との電位差を保持する。 A capacitor C01 is placed between the gate of the transistor MP01 and the reference node of the reference voltage. Capacitor C01 holds the potential difference between the Vgate potential and the amplifier output potential.
 キャパシタ C02 は、トランジスタ MP01 と基準電圧 Vss との間に備えられる。キャパシタ C02 は、基準電圧 Vss に対する Vgate の電位を保持する。 A capacitor C02 is provided between the transistor MP01 and the reference voltage Vss. Capacitor C02 holds the potential of Vgate with respect to reference voltage Vss.
 トランジスタ MN01 、 MN02 及びキャパシタ C03 は、バイアス電圧 Vbn にしたがって、トランジスタ MP01 のドレインから電流を流す基準側の電流源として動作する。これらの要素は、組み合わせて電流源として動作する。このため、電流源として適切に動作するのであれば、この組み合わせに限定されるものではない。 Transistors MN01, MN02 and capacitor C03 operate as a reference-side current source that flows current from the drain of transistor MP01 according to bias voltage Vbn. These elements combine to act as a current source. Therefore, the combination is not limited as long as it operates appropriately as a current source.
 トランジスタ MP02 及び トランジスタ MP03 は、電源電圧に直列に接続される。すなわち、トランジスタ MP02 は、ソースが電源電圧 Vdd と接続され、ドレインがトランジスタ MP03 のソースと接続される。トランジスタ MP03 は、ソースがトランジスタ MP02 のドレインと接続され、ドレインがアンプ出力ノードと接続される。トランジスタ MP02 は、ゲートにキャパシタ C07 により整流されたバイアス電圧 Vbp がスイッチ Sw07 がオンするタイミングで印加される。このトランジスタ MP02 は、電源側の電流源として動作する。 The transistors MP02 and MP03 are connected in series with the power supply voltage. That is, the transistor MP02 has a source connected to the power supply voltage Vdd and a drain connected to the source of the transistor MP03. The transistor MP03 has a source connected to the drain of the transistor MP02 and a drain connected to the amplifier output node. The bias voltage Vbp rectified by the capacitor C07 is applied to the gate of the transistor MP02 at the timing when the switch Sw07 turns on. This transistor MP02 acts as a current source on the power supply side.
 トランジスタ MP03 及びトランジスタ MN03 は、ドレインを共有し、カスコード接続される。これらのトランジスタのゲートには、カスコード接続として適切に動作するための電圧がそれぞれ印加される。トランジスタ MP03 のゲートには、キャパシタ C08 により整流されたカスコード接続するための電圧 Vcp がスイッチ Sw08 がオンするタイミングで印加される。トランジスタ MN03 のゲートには、同様に、キャパシタ C05 により整流されたカスコード接続するための電圧 Vcn がスイッチ Sw05 がオンするタイミングで印加される。カスコード接続されるこれらのトランジスタの間のノードから、出力電圧が適切にバッファにより制御されて出力される。  Transistor MP03 and transistor MN03 share a drain and are cascode-connected. A voltage is applied to the gates of these transistors so that they operate properly as a cascode connection. A voltage Vcp for cascode connection rectified by a capacitor C08 is applied to the gate of the transistor MP03 at the timing when the switch Sw08 turns on. Similarly, the voltage Vcn for cascode connection rectified by the capacitor C05 is applied to the gate of the transistor MN03 at the timing when the switch Sw05 turns on. From a node between these cascode-connected transistors, an output voltage is appropriately controlled by a buffer and output.
 スイッチ Sw04 は、カラムアンプ 300 の出力側のリセットをオートゼロ信号 PAZVR1 に基づいて制御するスイッチである。オートゼロ信号 PAZVR1 によりスイッチ Sw04 がオンすると、キャパシタ C01 の一方端の電圧が Vr1 となるように電流が流れる。 The switch Sw04 is a switch that controls the reset of the output side of the column amplifier 300 based on the auto-zero signal PAZVR1. When switch Sw04 is turned on by auto-zero signal PAZVR1, current flows so that the voltage at one end of capacitor C01 becomes Vr1.
 スイッチ Sw03 は、スイッチ Sw04 と排他的にオンとなるスイッチである。例えば、図9に示すように、 PAZVR1 と POPD は、スイッチSw03 とスイッチ Sw04 とが同じタイミングにはオンとならないように制御される。このため、適切に Vr1 にリセットされた状態でスイッチ Sw03 がオンとなり、出力端に適切な信号を出力する。すなわち、画素信号を読み取る前のタイミングにおいて、オートゼロ信号 PAZVR1 によりリセットし、画素信号を読み取るタイミングにおいて、適切にリセット状態を解除する。 The switch Sw03 is a switch that is turned on exclusively with the switch Sw04. For example, as shown in FIG. 9, PAZVR1 and POPD are controlled so that switch Sw03 and switch Sw04 are not turned on at the same timing. For this reason, the switch Sw03 is turned on in the state of being appropriately reset to Vr1, and an appropriate signal is output to the output terminal. That is, it is reset by the auto-zero signal PAZVR1 at the timing before reading the pixel signal, and the reset state is released appropriately at the timing at which the pixel signal is read.
 トランジスタ MN04 及びトランジスタ MN05 は、トランジスタ MN04 のゲートに印加される電圧を増幅して出力するバッファ (又は増幅器) として動作する。トランジスタ MN04 は、ドレインが電源電圧 Vdd に接続され、ソースがトランジスタ MN05 のドレインと接続される。トランジスタ MN05は、ソースが基準電圧 Vss と接続される。 The transistors MN04 and MN05 act as buffers (or amplifiers) that amplify the voltage applied to the gate of the transistor MN04 and output it. The transistor MN04 has a drain connected to the power supply voltage Vdd and a source connected to the drain of the transistor MN05. The source of transistor MN05 is connected to reference voltage Vss.
 本実施形態においては、トランジスタ MN04 のゲートと、カスコード接続されるトランジスタ MP03 、 MN03 のドレイン (アンプ出力ノード) との間にキャパシタ C06 を備える。キャパシタ C06 と、トランジスタ MN04 のゲート間のノードは、スイッチ Sw06 を介して Vr2 と接続される。 In this embodiment, a capacitor C06 is provided between the gate of the transistor MN04 and the drains (amplifier output nodes) of the cascode-connected transistors MP03 and MN03. A node between the capacitor C06 and the gate of the transistor MN04 is connected to Vr2 through the switch Sw06.
 トランジスタ MN05 は、ドレインがトランジスタ MN04 及び入力段における電流源であるトランジスタ MN02 のソースとキャパシタ C04 を介して接続され、ソースが基準電圧 Vss と接続される。トランジスタ MN05 のゲートには、出力信号をブーストするために駆動する電圧を印加するためのスイッチ Sw09 と、キャパシタ C09 と、が接続される。スイッチ Sw09 を介してトランジスタ MN05 のゲートにブースト電圧 VBbst が印加される。 The drain of transistor MN05 is connected to transistor MN04 and the source of transistor MN02, which is the current source in the input stage, via capacitor C04, and the source is connected to reference voltage Vss. Connected to the gate of transistor MN05 are a switch Sw09 for applying a driving voltage to boost the output signal and a capacitor C09. A boost voltage VBbst is applied to the gate of transistor MN05 via switch Sw09.
 それぞれのスイッチに印加される電圧は、図9に示される。まず、リセット期間においては、オートゼロ信号 PAZOUT 、 PAZVR1 、 PAZVR2 が High となり、これらの信号によりオンとなるスイッチと接続されるキャパシタの電位がリセットされる。 The voltage applied to each switch is shown in Fig. 9. First, in the reset period, the auto-zero signals PAZOUT, PAZVR1, and PAZVR2 become High, and the potentials of the capacitors connected to the switches that are turned on by these signals are reset.
 この状態において、トランジスタ MP01 のゲート電位 Vgate が Vr1 及び Vr2 と、キャパシタの性能により決定される適切な電位にリセットされる。 In this state, the gate potential Vgate of transistor MP01 is reset to Vr1 and Vr2, and appropriate potentials determined by the performance of the capacitor.
 ゲート電位 Vgate のリセットが完了する十分な時間が経過した後に、スイッチ Sw02 、 Sw03 、 Sw04 がオフされて、トランジスタ MP01 のリセットが完了する。その後に、スイッチ Sw06 がオフすることで、画素のリセット電圧レベルに依存しないオフセット電圧 (リセット電圧) - (セット電圧) 及び画素電流のオフセット (リセット電流) - (セット電流) を取得できる。 After sufficient time has elapsed to complete the reset of the gate potential Vgate, the switches Sw02, Sw03, and Sw04 are turned off to complete the reset of the transistor MP01. After that, by turning off the switch Sw06, the offset voltage (reset voltage) - (set voltage) and pixel current offset (reset current) - (set current) independent of the reset voltage level of the pixel can be obtained.
 本実施形態によれば、アンプと出力段の増幅器との間にキャパシタを配置することで、オフセットを除去することができる。出力のレベルシフトと、オートゼロスイッチ (スイッチ Sw02) のオフセットの除去は、リセットセトリングのタイミングに行う。このオフセットは、リセット時にはキャパシタ C06 に保存され、セット時には Vout のノードにおいてキャンセルされる。この結果、画素のリセットに依存しないオフセットをカラムアンプ 300 に設定することができる。 According to this embodiment, the offset can be removed by arranging the capacitor between the amplifier and the output stage amplifier. The output level shift and offset removal of the auto-zero switch (switch Sw02) are performed at the timing of reset settling. This offset is stored on capacitor C06 on reset and canceled at the node of Vout on set. As a result, an offset can be set in the column amplifier 300 that is independent of pixel reset.
 (第2実施形態)
 図10は、一実施形態に係るカラムアンプ 300 の一構成例を示す回路図であり、図11は、図10のカラムアンプ 300 におけるタイミングチャートの一例を示す図である。カラムアンプ 300 は、第1実施形態においては出力段で行っていた Vr2 へのリセットを、入力段側で実装したものである。
(Second embodiment)
FIG. 10 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment, and FIG. 11 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG. The column amplifier 300 implements the reset to Vr2, which was performed at the output stage in the first embodiment, at the input stage.
 カラムアンプ 300 は、トランジスタ MP01 のゲートと、アンプ出力との間に、キャパシタ C10 と、スイッチ Sw10 と、を含む出力段から入力段への帰還回路を備える。帰還回路は、さらに、キャパシタ C10 とスイッチ Sw10 との間のノードに、電圧 VSshsn が一端に接続されるキャパシタ C11 と、オンすることで電位 Vr1 と接続するスイッチ Sw11 と、を備える。 The column amplifier 300 has a feedback circuit from the output stage to the input stage including a capacitor C10 and a switch Sw10 between the gate of the transistor MP01 and the amplifier output. The feedback circuit further includes a capacitor C11 connected to one end of the voltage VSshsn at a node between the capacitor C10 and the switch Sw10, and a switch Sw11 connected to the potential Vr1 when turned on.
 画素のリセットセトリングのタイミングにおいて、電圧 Vgate を、オートゼロ信号 PAZOUT によりスイッチ Sw02 をオンした後にオフにすることでリセットする。同じタイミングで、スイッチ Sw11 のオンオフを切り替える。スイッチ Sw02 、 Sw11 がオフされた後に、信号 PF2 により、スイッチ Sw10 をオフからオンに切り替える。このように切り替えることで、リセットセトリングのタイミングで、 Vout の電位が固定される。 At the timing of pixel reset settling, the voltage Vgate is reset by turning on the switch Sw02 with the auto-zero signal PAZOUT and then turning it off. Switch the switch Sw11 on and off at the same timing. After switches Sw02, Sw11 have been switched off, signal PF2 switches switch Sw10 from off to on. By switching in this way, the potential of Vout is fixed at the timing of reset settling.
 このようにスイッチを切り替えることで、画素リセット電圧レベルに依存しないオフセット電圧 (リセット電圧) - (セット電圧) 及び画素電流オフセット (リセット電流) - (セット電流) を取得できる。 By switching the switches in this way, the offset voltage (reset voltage) - (set voltage) and pixel current offset (reset current) - (set current) independent of the pixel reset voltage level can be obtained.
 本実施形態によれば、アンプ出力の出力段からの帰還回路を配置することで、オフセットを除去することが可能である。出力レベルシフト及びオートゼロ信号のスイッチの除去は、リセット時に行う。このため、前述の第1実施形態と同様に、このオフセットは、リセット時にはキャパシタ C11 に保存され、セット時には Vout のノードにおいてキャンセルされる。この結果、画素のリセットに依存しないオフセットをカラムアンプ 300 に設定することができる。さらに、アンプ出力における負荷容量を第1実施形態と比較して小さくすることができるため、セトリングの高速化を実現することもできる。 According to this embodiment, offset can be removed by arranging a feedback circuit from the output stage of the amplifier output. Output level shift and autozero signal switch removal occurs at reset. Therefore, as in the first embodiment described above, this offset is stored in capacitor C11 at reset and canceled at the node of Vout at set. As a result, an offset can be set in the column amplifier 300 that is independent of pixel reset. Furthermore, since the load capacitance in the amplifier output can be made smaller than in the first embodiment, it is also possible to achieve faster settling.
 図12は、第2実施形態の別の例を示す図である。このように、回路の設計上の制約や、また、十分な出力信号の強度がある場合には、出力段のバッファ (増幅器) を省略し、アンプの出力ノードから Vout を出力する形態としてもよい。 FIG. 12 is a diagram showing another example of the second embodiment. In this way, if there are circuit design restrictions or sufficient output signal strength, the output stage buffer (amplifier) may be omitted and Vout may be output from the output node of the amplifier. .
 (第3実施形態)
 図13は、一実施形態に係るカラムアンプ 300 の一構成例を示す回路図であり、図14は、図13のカラムアンプ 300 におけるタイミングチャートの一例を示す図である。本実施形態では、カラムアンプ 300 は、トランジスタ MP01 においてゲートとドレインとを接続するスイッチによりリセットする。また、アンプ出力の基準となる電位を、セルフバイアスにより決定する。スイッチ Sw01 、 Sw05 、 Sw08 、 Sw09 は、適切なタイミング、例えば、スイッチ Sw13 がオンするタイミングでオンし、スイッチ Sw13 がオフするタイミングより早くオフしてもよい。
(Third Embodiment)
FIG. 13 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment, and FIG. 14 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG. In this embodiment, the column amplifier 300 is reset by a switch connecting the gate and drain of the transistor MP01. Also, the potential that serves as the reference for the amplifier output is determined by self-bias. The switches Sw01, Sw05, Sw08, and Sw09 may be turned on at appropriate timing, for example, when the switch Sw13 is turned on, and turned off earlier than when the switch Sw13 is turned off.
 本実施形態では、トランジスタ MN03 のソースにトランジスタ MN06 のドレインが接続される。トランジスタ MN06 は、トランジスタ MN02 と並列して備えられるトランジスタであり、ソースがトランジスタ MN07 のドレインと接続され、ゲートがトランジスタ MN01 、 MN02 及び MN07 のゲートと共有される。トランジスタ MN07 は、ソースが基準電圧 Vss と接続される。このように形成することで、トランジスタ MN06 及び MN07 により、アンプ出力段における電流源が形成される。 In this embodiment, the drain of transistor MN06 is connected to the source of transistor MN03. Transistor MN06 is a transistor provided in parallel with transistor MN02, its source is connected to the drain of transistor MN07 and its gate is shared with the gates of transistors MN01, MN02 and MN07. Transistor MN07 has its source connected to reference voltage Vss. In this configuration, transistors MN06 and MN07 form a current source in the amplifier output stage.
 リセットセトリングのタイミングにおいて、 Vgate 及びトランジスタ MP02 をオートゼロ信号にしたがって決定する。スイッチ Sw12 、 Sw13 がオンするタイミングにおいて、スイッチ Sw04 、Sw10 がオンし、スイッチ Sw14 がオフするため、アンプ出力もリセットされる。アンプ出力のレベルシフトは、リセットセトリングから画素信号のセットのタイミングに行うことができる。 At the timing of reset settling, Vgate and transistor MP02 are determined according to the autozero signal. At the timing when switches Sw12 and Sw13 turn on, switches Sw04 and Sw10 turn on and switch Sw14 turns off, so the amplifier output is also reset. The level shift of the amplifier output can be performed at the timing of the pixel signal setting from the reset settling.
 アンプ出力がリセットされた後に、スイッチ Sw12 、 Sw13 がオフし、スイッチ Sw14 がオンする。このタイミングで、 Vgate が立ち上がる。 Vgate がオートゼロレベルまでリセットされた後に、 Sw04 、 Sw10 がオフとなり、リセットが完了する。 After the amplifier output is reset, switches Sw12 and Sw13 are turned off and switch Sw14 is turned on. At this timing, Vgate starts up. After Vgate is reset to auto-zero level, Sw04 and Sw10 are turned off and the reset is completed.
 本実施形態では、画素リセットセトリングのタイミングで Vgate 及びアンプ出力の電流源が決定される。その後に、リセット時のアンプ出力電圧が固定される。このため、画素リセット電圧レベルに依存しないオフセット電圧 (リセット電圧) - (セット電圧) 及び画素電流オフセット (リセット電流) - (セット電流) が取得される。この結果、 p チャネル側の電流源のバイアス (例えば、図8における Vpb) を省略することが可能となる。 In this embodiment, the Vgate and amplifier output current sources are determined at the timing of pixel reset settling. After that, the amplifier output voltage at reset is fixed. Therefore, an offset voltage (reset voltage) - (set voltage) and a pixel current offset (reset current) - (set current) independent of the pixel reset voltage level are obtained. As a result, it is possible to omit the bias of the current source on the p-channel side (for example, Vpb in FIG. 8).
 図15は、第3実施形態の別の例を示す図である。前述の第2実施形態と同様に、出力段を省略してもよい。 FIG. 15 is a diagram showing another example of the third embodiment. As in the second embodiment described above, the output stage may be omitted.
 (第4実施形態)
 図16は、一実施形態に係るカラムアンプ 300 の一構成例を示す回路図であり、図17は、図16のカラムアンプ 300 におけるタイミングチャートの一例を示す図である。カラムアンプ 300 は、第1実施形態における出力段の増幅器を備える構成において、第3実施形態のアンプ出力段の電流源のバイアス制御をしてもよい。スイッチ Sw01 、 Sw05 、 Sw08 、 Sw09 は、適切なタイミング、例えば、スイッチ Sw13 がオンするタイミングでオンし、スイッチ Sw13 がオフするタイミングより早くオフしてもよい。
(Fourth embodiment)
FIG. 16 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment, and FIG. 17 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG. The column amplifier 300 may perform bias control of the current source of the amplifier output stage of the third embodiment in the configuration including the output stage amplifier of the first embodiment. The switches Sw01, Sw05, Sw08, and Sw09 may be turned on at appropriate timing, for example, when the switch Sw13 is turned on, and turned off earlier than when the switch Sw13 is turned off.
 本実施形態では、出力のレベルシフトと、オートゼロ信号によるスイッチ除去は、リセットセトリングのタイミングで実行される。オフセットは、キャパシタ C06 に保存され、画素信号セット時にキャンセルされる。 In this embodiment, the output level shift and switch removal by the auto-zero signal are performed at the timing of reset settling. The offset is stored in capacitor C06 and canceled when the pixel signal is set.
 画素のリセットセトリングのタイミングにおいて、 Vgate 及びアンプ出力の電流源をオートゼロ信号により決定する。前述の第3実施形態と同様に、スイッチ Sw12 、 Sw13 がオンするタイミングにおいて、スイッチ Sw14 がオフするため、アンプ出力もリセットされる。そして、リセットセトリングの間にスイッチ Sw06 がオフすることで、アンプ出力電圧が固定される。このため、画素リセット電圧レベルに依存しないオフセット電圧 (リセット電圧) - (セット電圧) 及び画素電流オフセット (リセット電流) - (セット電流) が取得される。 At the timing of pixel reset settling, the Vgate and amplifier output current sources are determined by the auto-zero signal. As in the third embodiment described above, the amplifier output is also reset because the switch Sw14 is turned off at the timing when the switches Sw12 and Sw13 are turned on. Then, by turning off the switch Sw06 during reset settling, the amplifier output voltage is fixed. Therefore, an offset voltage (reset voltage) - (set voltage) and a pixel current offset (reset current) - (set current) independent of the pixel reset voltage level are obtained.
 さらに、トランジスタ MP02 をセルフバイアスしているため、第1実施形態と比べて 電圧 Vr1 と接続する回路を削減することが可能となる。 Furthermore, since the transistor MP02 is self-biased, it is possible to reduce the number of circuits connected to the voltage Vr1 compared to the first embodiment.
 (第5実施形態)
 図18は、一実施形態に係るカラムアンプ 300 の一構成例を示す回路図であり、図19は、図18のカラムアンプ 300 におけるタイミングチャートの一例を示す図である。カラムアンプ 300 は、第1実施形態においては Vr1 を設定していた基準の代わりに出力段の出力電圧 Vout を帰還させる構成としたものである。
(Fifth embodiment)
FIG. 18 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment, and FIG. 19 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG. The column amplifier 300 is configured to feed back the output voltage Vout of the output stage instead of the reference for setting Vr1 in the first embodiment.
 本実施形態では、出力のレベルシフトと、オートゼル信号によるスイッチ除去は、リセットセトリングのタイミングで実行される。オフセットは、キャパシタ C06 に保存され、画素信号セット時にキャンセルされる。 In this embodiment, the level shift of the output and the removal of the switch by the autozel signal are performed at the timing of reset settling. The offset is stored in capacitor C06 and canceled when the pixel signal is set.
 画素のリセットセトリングのタイミングにおいて、 Vgate 及びアンプ出力の電流源をオートゼロ信号により決定する。 Vgate のリセットと同じタイミングでスイッチ Sw15 がオンとなるため、キャパシタ C01 を介して、出力電圧 Vout の電位を参照することができる。その後に、スイッチ Sw03 をオンにすることで、アンプ出力がスイッチ Sw15 がオンしているタイミングの電圧となるようにセトリングする。さらにその後に、スイッチ Sw06 をオフすることで、画素リセット電圧レベルに依存しないオフセット電圧 (リセット電圧) - (セット電圧) 及び画素電流オフセット (リセット電流) - (セット電流) が取得される。 At the timing of pixel reset settling, the Vgate and amplifier output current sources are determined by the auto-zero signal. Since switch Sw15 turns on at the same timing as Vgate is reset, the potential of output voltage Vout can be referenced via capacitor C01. After that, by turning on the switch Sw03, the amplifier output settles to the voltage at the timing when the switch Sw15 is turned on. After that, by turning off the switch Sw06, an offset voltage (reset voltage) - (set voltage) and a pixel current offset (reset current) - (set current) independent of the pixel reset voltage level are obtained.
 さらに、出力電圧 Vout を参照電圧として用いることで、 Vr1 の追加を必要しないため、基準となる電圧源を削減することができる。 Furthermore, by using the output voltage Vout as the reference voltage, it is not necessary to add Vr1, so the reference voltage source can be reduced.
 (第6実施形態)
 画素からの信号が過大である場合には、オートゼロ期間が短いため、十分にリセットができない場合がある。本実施形態では、この対策として、オートゼロ信号に合わせてリセット高速化制御を行う。
(Sixth embodiment)
If the signal from the pixel is too large, the auto-zero period may be too short to achieve sufficient resetting. In the present embodiment, as a countermeasure against this, reset speed-up control is performed in accordance with the auto-zero signal.
 図20は、一実施形態に係るカラムアンプ 300 の一構成例を示す回路図であり、図21は、図20のカラムアンプ 300 におけるタイミングチャートの一例を示す図である。カラムアンプ 300 は、アンプ出力に対して、リセット高速化制御を実行するトランジスタ MN08 を備える。トランジスタ MN08 は、ドレインが電源電圧 Vdd に接続され、ソースがアンプ出力と接続され、ゲートにリセット高速化制御のための電圧 Patch が印加される。 FIG. 20 is a circuit diagram showing one configuration example of the column amplifier 300 according to one embodiment, and FIG. 21 is a diagram showing one example of a timing chart in the column amplifier 300 of FIG. The column amplifier 300 has a transistor MN08 that performs reset speed-up control on the amplifier output. The transistor MN08 has a drain connected to the power supply voltage Vdd, a source connected to the amplifier output, and a gate to which a voltage Patch for reset speed-up control is applied.
 垂直信号線 204 を伝達してきた画素信号における前ラインの画素アクセス時において、アンプ出力が小さい場合、オートゼロ信号 PAZOUT がオンすると、 Vgate のセトリング時間が不足する場合がある。この対策として、トランジスタ MN08 を介して Vgate のリセットタイミングにおいて、 Vgate を強制的に引き上げる。この結果、セトリング時間を十分に確保することができる。 When the pixel signal transmitted through the vertical signal line 204 is accessed in the previous line, if the amplifier output is small and the auto-zero signal PAZOUT is turned on, the Vgate settling time may be insufficient. As a countermeasure, Vgate is forcibly raised at Vgate reset timing via transistor MN08. As a result, a sufficient settling time can be ensured.
 図22は、リセット高速化制御を制御するトランジスタを p チャネルのトランジスタ MP04 に代替したものである。トランジスタ MP04 は、ソースが電源電圧 Vdd に接続され、ドレインがアンプ出力に接続され、ゲートにリセット高速化制御を制御する信号 XPatch が印加される。信号 XPatch は、信号 Patch の High と Low が入れ替わったものでよい。 Fig. 22 shows a p-channel transistor MP04 that replaces the transistor that controls reset acceleration control. The transistor MP04 has a source connected to the power supply voltage Vdd, a drain connected to the amplifier output, and a gate to which a signal XPatch for controlling reset acceleration control is applied. The signal XPatch may be the signal Patch with the High and Low switched.
 移動体への応用例
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
Application Examples to Mobile Objects The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図23は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 23 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図23に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 23, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図23の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 23, an audio speaker 12061, a display section 12062 and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図24は、撮像部12031の設置位置の例を示す図である。 FIG. 24 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図24では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 24, the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図24には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 24 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided in the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、図1の撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、カラムアンプの消費電力を抑制することができるため、車両システム全体の消費電力を削減することが可能となる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above. Specifically, the imaging device 1 in FIG. 1 can be applied to the imaging unit 12031. FIG. By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to suppress the power consumption of the column amplifier, so it is possible to reduce the power consumption of the entire vehicle system.
 前述した実施形態は、以下のような形態としてもよい。なお、以下において、符号は、限定されない具体的な実装の一例として示すものであり、これらの符号により以下の請求の範囲が狭められるものではなく、前述のそれぞれの実施形態において説明されている種々の他の例をも包含ことに留意されたい。 The above-described embodiment may be in the following form. In the following, reference numerals are shown as examples of non-limiting specific implementations, and these numerals do not narrow the scope of the following claims. Note that it also includes other examples of
(1)
 光電変換により入力電圧Vinを生成する、画素回路と、
 ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタMP01と、
 所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源MN01, MN02と、
 前記第1トランジスタMP01の出力に応じてアンプ出力ノードの電位を決定する、出力側電流源MP02, MP03及び出力側電流源のトランジスタとカスコード接続される第2トランジスタMN03と、
 前記アンプ出力における電圧を増幅する増幅器であって、第3トランジスタMN04及び第4トランジスタMN05を備え、第3トランジスタMN04及び第4トランジスタMN05の間のノードから増幅電圧を出力する、増幅器と、
 前記第3トランジスタのゲートと、前記アンプ出力ノードとの間に接続される、第1キャパシタC06と、
 前記第3トランジスタMN04のゲートと、前記第1キャパシタC06との間に、出力側基準電圧Vr2を供給する第1スイッチSw06と、
 を備える、固体撮像素子。
(1)
a pixel circuit that generates an input voltage Vin by photoelectric conversion;
a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain;
input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors;
an amplifier for amplifying the voltage at the amplifier output, the amplifier comprising a third transistor MN04 and a fourth transistor MN05 and outputting an amplified voltage from a node between the third transistor MN04 and the fourth transistor MN05;
a first capacitor C06 connected between the gate of the third transistor and the amplifier output node;
a first switch Sw06 that supplies an output-side reference voltage Vr2 between the gate of the third transistor MN04 and the first capacitor C06;
A solid-state image sensor.
(2)
 前記出力側電流源は、
  ソースが電源電圧と接続され、ゲートにバイアス電圧が印加される、第5トランジスタMP02と、
  ソースが前記第5トランジスタMP02のドレインと接続され、ドレインが前記アンプ出力ノードと接続され、ゲートにカスコード制御電圧が印加される、第6トランジスタMP03と、
 を備える、(1)に記載の固体撮像素子。
(2)
The output-side current source is
a fifth transistor MP02, the source of which is connected to the supply voltage and the gate of which a bias voltage is applied;
a sixth transistor MP03 having a source connected to the drain of the fifth transistor MP02, a drain connected to the amplifier output node, and a gate to which a cascode control voltage is applied;
The solid-state imaging device according to (1), comprising:
(3)
 前記バイアス電圧は、第2スイッチSw07,Sw13を介して印加され、
 前記第2スイッチと、前記第5トランジスタMP02のゲートとの間に、一方の端子が接続され、他方の端子が前記電源電圧に接続される、第2キャパシタC07と、を備える、
 (2)に記載の固体撮像素子。
(3)
The bias voltage is applied through second switches Sw07 and Sw13,
a second capacitor C07, one terminal of which is connected between the second switch and the gate of the fifth transistor MP02, and the other terminal of which is connected to the power supply voltage;
The solid-state imaging device according to (2).
(4)
 前記第2スイッチSw13は、前記第6トランジスタMP03のドレインと接続され、前記第6トランジスタMP03のドレインの電位をバイアス電圧として前記第5トランジスタMP02のゲートに印加する、
 (3)に記載の固体撮像素子。
(Four)
The second switch Sw13 is connected to the drain of the sixth transistor MP03, and applies the potential of the drain of the sixth transistor MP03 as a bias voltage to the gate of the fifth transistor MP02.
The solid-state imaging device according to (3).
(5)
 前記アンプ出力ノードと、前記第1トランジスタMP01のゲートとの間を接続する帰還回路であって、
  前記第1トランジスタMP01に一端が接続される、第3キャパシタC01と、
  前記第3キャパシタC01の他端と、入力側基準電圧Vr1との間に接続される第3スイッチSw04と、
  前記第3キャパシタC01の他端と、前記アンプ出力ノードとの間に接続される第4スイッチSw03と、
 をさらに備える、(3)に記載の固体撮像素子。
(Five)
A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01,
a third capacitor C01, one end of which is connected to the first transistor MP01;
a third switch Sw04 connected between the other end of the third capacitor C01 and an input-side reference voltage Vr1;
a fourth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node;
The solid-state imaging device according to (3), further comprising:
(6)
 前記アンプ出力ノードと、前記第1トランジスタMP01のゲートとの間を接続する帰還回路であって、
  前記第1トランジスタMP01に一端が接続される、第3キャパシタC01と、
  前記第3キャパシタC01の他端と、前記増幅電圧を出力する出力ノードとの間に接続される第5スイッチSw15と、
  前記第3キャパシタC01の他端と、前記アンプ出力ノードとの間に接続される第6スイッチSw03と、
 をさらに備える、(3)に記載の固体撮像素子。
(6)
A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01,
a third capacitor C01, one end of which is connected to the first transistor MP01;
a fifth switch Sw15 connected between the other end of the third capacitor C01 and an output node that outputs the amplified voltage;
a sixth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node;
The solid-state imaging device according to (3), further comprising:
(7)
 光電変換により入力電圧Vinを生成する、画素回路と、
 ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタMP01と、
 所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源MN01, MN02と、
 前記第1トランジスタMP01の出力に応じてアンプ出力ノードの電位を決定する、出力側電流源MP02, MP03及び出力側電流源のトランジスタとカスコード接続される第2トランジスタMN03と、
 前記アンプ出力ノードと、前記第1トランジスタMP01のゲートとの間を接続する帰還回路であって、
  前記第1トランジスタMP01に一端が接続される、第3キャパシタC01と、
  前記第3キャパシタC01の他端と、入力側基準電圧Vr1との間に接続される、第3スイッチSw04と、
  前記第3キャパシタC01の他端と、前記アンプ出力ノードとの間に接続され、前記第3スイッチと同じタイミングでオンし、異なるタイミングでオフする、第4スイッチSw03と、
  前記第1トランジスタMP01に一端が接続される、第4キャパシタC10と、
  前記第4キャパシタC10の他端と、前記入力側基準電圧Vr1との間に接続される、第7スイッチSw11と、
  前記第4キャパシタC10の他端と、前記アンプ出力ノードとの間に接続される第8スイッチSw10と、
 を備える帰還回路と、
 を備える、固体撮像素子。
(7)
a pixel circuit that generates an input voltage Vin by photoelectric conversion;
a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain;
input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors;
A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01,
a third capacitor C01, one end of which is connected to the first transistor MP01;
a third switch Sw04 connected between the other end of the third capacitor C01 and the input-side reference voltage Vr1;
a fourth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node, turned on at the same timing as the third switch, and turned off at a different timing;
a fourth capacitor C10, one end of which is connected to the first transistor MP01;
a seventh switch Sw11 connected between the other end of the fourth capacitor C10 and the input-side reference voltage Vr1;
an eighth switch Sw10 connected between the other end of the fourth capacitor C10 and the amplifier output node;
a feedback circuit comprising
A solid-state image sensor.
(8)
 前記アンプ出力における電圧を増幅する増幅器であって、第3トランジスタMN04及び第4トランジスタMN05を備え、第3トランジスタMN04及び第4トランジスタMN05の間のノードから増幅電圧を出力する、増幅器、
 をさらに備える、(7)に記載の固体撮像素子。
(8)
an amplifier for amplifying the voltage at the amplifier output, the amplifier comprising a third transistor MN04 and a fourth transistor MN05 and outputting an amplified voltage from a node between the third transistor MN04 and the fourth transistor MN05;
The solid-state imaging device according to (7), further comprising:
(9)
 光電変換により入力電圧Vinを生成する、画素回路と、
 ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタMP01と、
 所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源MN01, MN02と、
 前記第1トランジスタMP01の出力に応じてアンプ出力ノードの電位を決定する、出力側電流源MP02, MP03及び出力側電流源のトランジスタとカスコード接続される第2トランジスタMN03と、
 前記第1トランジスタMP01のゲート及びドレイン間に接続される、第9スイッチSw12と、
 前記アンプ出力ノードと、前記第1トランジスタMP01のゲートとの間を接続する帰還回路であって、
  前記第1トランジスタMP01に一端が接続される、第3キャパシタC01と、
  前記第3キャパシタC01の他端と、入力側基準電圧Vr1との間に接続される、第3スイッチSw04と、
  前記第1トランジスタMP01に一端が接続される、第4キャパシタC10と、
  前記第4キャパシタC10の他端と、前記入力側基準電圧Vr1との間に接続される、第7スイッチSw11と、
  前記第4キャパシタC10の他端と、前記アンプ出力ノードとの間に接続される第8スイッチSw10と、
 を備える帰還回路と、
 を備え、
 前記出力側電流源は、
  ソースが電源電圧と接続され、ゲートにバイアス電圧が印加される、第5トランジスタMP02と、
  ソースが前記第5トランジスタMP02のドレインと接続され、ドレインが前記アンプ出力ノードと接続され、ゲートにカスコード制御電圧が印加される、第6トランジスタMP03と、
 を備え、
 前記第6トランジスタMP03のドレインと接続され、前記第6トランジスタMP03のドレインの電位をバイアス電圧として前記第5トランジスタMP02のゲートに印加する、第2スイッチSw13、
 を備える、
 固体撮像素子。
(9)
a pixel circuit that generates an input voltage Vin by photoelectric conversion;
a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain;
input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors;
a ninth switch Sw12 connected between the gate and drain of the first transistor MP01;
A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01,
a third capacitor C01, one end of which is connected to the first transistor MP01;
a third switch Sw04 connected between the other end of the third capacitor C01 and the input-side reference voltage Vr1;
a fourth capacitor C10, one end of which is connected to the first transistor MP01;
a seventh switch Sw11 connected between the other end of the fourth capacitor C10 and the input-side reference voltage Vr1;
an eighth switch Sw10 connected between the other end of the fourth capacitor C10 and the amplifier output node;
a feedback circuit comprising
with
The output-side current source is
a fifth transistor MP02, the source of which is connected to the supply voltage and the gate of which a bias voltage is applied;
a sixth transistor MP03 having a source connected to the drain of the fifth transistor MP02, a drain connected to the amplifier output node, and a gate to which a cascode control voltage is applied;
with
a second switch Sw13 connected to the drain of the sixth transistor MP03 and applying the potential of the drain of the sixth transistor MP03 as a bias voltage to the gate of the fifth transistor MP02;
comprising
Solid-state image sensor.
(10)
 前記アンプ出力における電圧を増幅する増幅器であって、第3トランジスタMN04及び第4トランジスタMN05を備え、第3トランジスタMN04及び第4トランジスタMN05の間のノードから増幅電圧を出力する、増幅器、
 をさらに備える、(9)に記載の固体撮像素子。
(Ten)
an amplifier for amplifying the voltage at the amplifier output, the amplifier comprising a third transistor MN04 and a fourth transistor MN05 and outputting an amplified voltage from a node between the third transistor MN04 and the fourth transistor MN05;
The solid-state imaging device according to (9), further comprising:
(11)
 光電変換により入力電圧Vinを生成する、画素回路と、
 ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタMP01と、
 所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源MN01, MN02と、
 前記第1トランジスタMP01の出力に応じてアンプ出力ノードの電位を決定する、出力側電流源MP02, MP03及び出力側電流源のトランジスタとカスコード接続される第2トランジスタMN03と、
 前記アンプ出力ノードと、前記第1トランジスタMP01のゲートとの間を接続する帰還回路であって、
  前記第1トランジスタMP01に一端が接続される、第3キャパシタC01と、
  前記第3キャパシタC01の他端と、入力側基準電圧Vr1との間に接続される、第3スイッチSw04と、
  前記第3キャパシタC01の他端と、前記アンプ出力ノードとの間に接続され、前記第3スイッチと同じタイミングでオンし、異なるタイミングでオフする、第4スイッチSw03と、
  前記第1トランジスタMP01に一端が接続される、第4キャパシタC10と、
  前記第4キャパシタC10の他端と、前記入力側基準電圧Vr1との間に接続される、第7スイッチSw11と、
  前記第4キャパシタC10の他端と、前記アンプ出力ノードとの間に接続される第8スイッチSw10と、
 を備える帰還回路と、
 前記アンプ出力ノードと、電源電圧と、の間に接続される第7トランジスタであって、前記アンプ出力ノードにリセット高速化制御する電圧を印加する、第7トランジスタと、
 を備える、固体撮像素子。
(11)
a pixel circuit that generates an input voltage Vin by photoelectric conversion;
a first transistor MP01 to which the input voltage is applied from the source and which outputs a voltage corresponding to the voltage between the source and the gate from the drain;
input-side current sources MN01 and MN02 connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
output-side current sources MP02 and MP03 that determine the potential of the amplifier output node according to the output of the first transistor MP01, and a second transistor MN03 that is cascode-connected to the output-side current source transistors;
A feedback circuit connecting between the amplifier output node and the gate of the first transistor MP01,
a third capacitor C01, one end of which is connected to the first transistor MP01;
a third switch Sw04 connected between the other end of the third capacitor C01 and the input-side reference voltage Vr1;
a fourth switch Sw03 connected between the other end of the third capacitor C01 and the amplifier output node, turned on at the same timing as the third switch, and turned off at a different timing;
a fourth capacitor C10, one end of which is connected to the first transistor MP01;
a seventh switch Sw11 connected between the other end of the fourth capacitor C10 and the input-side reference voltage Vr1;
an eighth switch Sw10 connected between the other end of the fourth capacitor C10 and the amplifier output node;
a feedback circuit comprising
a seventh transistor connected between the amplifier output node and a power supply voltage, the seventh transistor applying a voltage for reset speed-up control to the amplifier output node;
A solid-state image sensor.
 本開示の態様は、前述した実施形態に限定されるものではなく、想到しうる種々の変形も含むものであり、本開示の効果も前述の内容に限定されるものではない。各実施形態における構成要素は、適切に組み合わされて適用されてもよい。すなわち、特許請求の範囲に規定された内容及びその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Aspects of the present disclosure are not limited to the above-described embodiments, but include various conceivable modifications, and the effects of the present disclosure are not limited to the above-described contents. The components in each embodiment may be appropriately combined and applied. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present disclosure derived from the content defined in the claims and equivalents thereof.
1: 撮像装置、
 100: 光学系、
 120: 処理回路、
 130: 表示部、
 140: 操作部、
 150: バス、
 160: フレームメモリ、
 170: 記憶部、
 180: 電源部、
 190: 信号線、
20: 固体撮像素子、
 22: 画素層、
 24: 回路層、
 200: 画素アレイ、
  202: 画素、
   204: 垂直信号線、
   205: 光電変換素子、
   206: 転送トランジスタ、
   207: リセットトランジスタ、
   208: 増幅トランジスタ、
   209: 選択トランジスタ、
 210: ライン選択回路、
 220: DAC、
 230: タイミング制御回路、
 240: ADC、
 250: ライン転送回路、
 260: 画像処理回路、
30: 定電流源回路、
 300: カラムアンプ、
 302: 信号線、
1: imager,
100: optics,
120: processing circuit,
130: Display,
140: Operation unit,
150: bus,
160: frame memory,
170: Memory,
180: power supply,
190: signal line,
20: Solid-state image sensor,
22: pixel layer,
24: circuit layer,
200: pixel array,
202: pixel,
204: vertical signal line,
205: photoelectric conversion element,
206: transfer transistor,
207: reset transistor,
208: amplification transistor,
209: selection transistor,
210: line selection circuit,
220: DACs,
230: timing control circuit,
240: ADC,
250: line transfer circuit,
260: image processing circuit,
30: constant current source circuit,
300: column amplifier,
302: signal line,

Claims (11)

  1.  光電変換により入力電圧を生成する、画素回路と、
     ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタと、
     所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源と、
     前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される第2トランジスタと、
     前記アンプ出力ノードにおける電圧を増幅する増幅器であって、第3トランジスタ及び第4トランジスタを備え、第3トランジスタ及び第4トランジスタの間のノードから増幅電圧を出力する、増幅器と、
     前記第3トランジスタのゲートと、前記アンプ出力ノードとの間に接続される、第1キャパシタと、
     前記第3トランジスタのゲートと、前記第1キャパシタとの間に、出力側基準電圧を供給する第1スイッチと、
     を備える、固体撮像素子。
    a pixel circuit that generates an input voltage by photoelectric conversion;
    a first transistor to which the input voltage is applied from the source and which outputs from the drain a voltage corresponding to the voltage between the source and the gate;
    an input-side current source connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
    a second transistor cascode-connected to an output-side current source and a transistor of the output-side current source, the second transistor determining the potential of the amplifier output node according to the output of the first transistor;
    an amplifier that amplifies the voltage at the amplifier output node, the amplifier comprising a third transistor and a fourth transistor and outputting an amplified voltage from a node between the third transistor and the fourth transistor;
    a first capacitor connected between the gate of the third transistor and the amplifier output node;
    a first switch that supplies an output-side reference voltage between the gate of the third transistor and the first capacitor;
    A solid-state image sensor.
  2.  前記出力側電流源は、
      ソースが電源電圧と接続され、ゲートにバイアス電圧が印加される、第5トランジスタと、
      ソースが前記第5トランジスタのドレインと接続され、ドレインが前記アンプ出力ノードと接続され、ゲートにカスコード制御電圧が印加される、第6トランジスタと、
     を備える、請求項1に記載の固体撮像素子。
    The output-side current source is
    a fifth transistor having a source connected to a power supply voltage and having a gate biased to a bias voltage;
    a sixth transistor having a source connected to the drain of the fifth transistor, a drain connected to the amplifier output node, and a gate to which a cascode control voltage is applied;
    2. The solid-state imaging device according to claim 1, comprising:
  3.  前記バイアス電圧は、第2スイッチを介して印加され、
     前記第2スイッチと、前記第5トランジスタのゲートとの間に、一方の端子が接続され、他方の端子が前記電源電圧に接続される、第2キャパシタと、を備える、
     請求項2に記載の固体撮像素子。
    the bias voltage is applied through a second switch,
    a second capacitor having one terminal connected between the second switch and the gate of the fifth transistor and the other terminal connected to the power supply voltage;
    3. The solid-state imaging device according to claim 2.
  4.  前記第2スイッチは、前記第6トランジスタのドレインと接続され、前記第6トランジスタのドレインの電位をバイアス電圧として前記第5トランジスタのゲートに印加する、
     請求項3に記載の固体撮像素子。
    The second switch is connected to the drain of the sixth transistor, and applies the potential of the drain of the sixth transistor as a bias voltage to the gate of the fifth transistor.
    4. The solid-state imaging device according to claim 3.
  5.  前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であって、
      前記第1トランジスタに一端が接続される、第3キャパシタと、
      前記第3キャパシタの他端と、入力側基準電圧との間に接続される第3スイッチと、
      前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続される第4スイッチと、
     をさらに備える、請求項3に記載の固体撮像素子。
    A feedback circuit connecting between the amplifier output node and the gate of the first transistor,
    a third capacitor, one end of which is connected to the first transistor;
    a third switch connected between the other end of the third capacitor and an input-side reference voltage;
    a fourth switch connected between the other end of the third capacitor and the amplifier output node;
    4. The solid-state imaging device according to claim 3, further comprising:
  6.  前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であって、
      前記第1トランジスタに一端が接続される、第3キャパシタと、
      前記第3キャパシタの他端と、前記増幅電圧を出力する出力ノードとの間に接続される第5スイッチと、
      前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続される第6スイッチと、
     をさらに備える、請求項3に記載の固体撮像素子。
    A feedback circuit connecting between the amplifier output node and the gate of the first transistor,
    a third capacitor, one end of which is connected to the first transistor;
    a fifth switch connected between the other end of the third capacitor and an output node that outputs the amplified voltage;
    a sixth switch connected between the other end of the third capacitor and the amplifier output node;
    4. The solid-state imaging device according to claim 3, further comprising:
  7.  光電変換により入力電圧を生成する、画素回路と、
     ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタと、
     所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源と、
     前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される第2トランジスタと、
     前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であって、
      前記第1トランジスタに一端が接続される、第3キャパシタと、
      前記第3キャパシタの他端と、入力側基準電圧との間に接続される、第3スイッチと、
      前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続され、前記第3スイッチと同じタイミングでオンし、異なるタイミングでオフする、第4スイッチと、
      前記第1トランジスタに一端が接続される、第4キャパシタと、
      前記第4キャパシタの他端と、前記入力側基準電圧との間に接続される、第7スイッチと、
      前記第4キャパシタの他端と、前記アンプ出力ノードとの間に接続される第8スイッチと、
     を備える帰還回路と、
     を備える、固体撮像素子。
    a pixel circuit that generates an input voltage by photoelectric conversion;
    a first transistor to which the input voltage is applied from the source and which outputs from the drain a voltage corresponding to the voltage between the source and the gate;
    an input-side current source connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
    a second transistor cascode-connected to an output-side current source and a transistor of the output-side current source, the second transistor determining the potential of the amplifier output node according to the output of the first transistor;
    A feedback circuit connecting between the amplifier output node and the gate of the first transistor,
    a third capacitor, one end of which is connected to the first transistor;
    a third switch connected between the other end of the third capacitor and an input-side reference voltage;
    a fourth switch connected between the other end of the third capacitor and the amplifier output node, turned on at the same timing as the third switch, and turned off at a different timing;
    a fourth capacitor having one end connected to the first transistor;
    a seventh switch connected between the other end of the fourth capacitor and the input-side reference voltage;
    an eighth switch connected between the other end of the fourth capacitor and the amplifier output node;
    a feedback circuit comprising
    A solid-state image sensor.
  8.  前記アンプ出力ノードにおける電圧を増幅する増幅器であって、第3トランジスタ及び第4トランジスタを備え、第3トランジスタ及び第4トランジスタの間のノードから増幅電圧を出力する、増幅器、
     をさらに備える、請求項7に記載の固体撮像素子。
    an amplifier for amplifying the voltage at the amplifier output node, the amplifier comprising a third transistor and a fourth transistor and outputting an amplified voltage from a node between the third transistor and the fourth transistor;
    8. The solid-state imaging device according to claim 7, further comprising:
  9.  光電変換により入力電圧を生成する、画素回路と、
     ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタと、
     所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源と、
     前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される第2トランジスタと、
     前記第1トランジスタのゲート及びドレイン間に接続される、第9スイッチと、
     前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であって、
      前記第1トランジスタに一端が接続される、第3キャパシタと、
      前記第3キャパシタの他端と、入力側基準電圧との間に接続される、第3スイッチと、
      前記第1トランジスタに一端が接続される、第4キャパシタと、
      前記第4キャパシタの他端と、前記入力側基準電圧との間に接続される、第7スイッチと、
      前記第4キャパシタの他端と、前記アンプ出力ノードとの間に接続される第8スイッチと、
     を備える帰還回路と、
     を備え、
     前記出力側電流源は、
      ソースが電源電圧と接続され、ゲートにバイアス電圧が印加される、第5トランジスタと、
      ソースが前記第5トランジスタのドレインと接続され、ドレインが前記アンプ出力ノードと接続され、ゲートにカスコード制御電圧が印加される、第6トランジスタと、
     を備え、
     前記第6トランジスタのドレインと接続され、前記第6トランジスタのドレインの電位をバイアス電圧として前記第5トランジスタのゲートに印加する、第2スイッチ、
     を備える、
     固体撮像素子。
    a pixel circuit that generates an input voltage by photoelectric conversion;
    a first transistor to which the input voltage is applied from the source and which outputs from the drain a voltage corresponding to the voltage between the source and the gate;
    an input-side current source connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
    a second transistor that determines the potential of an amplifier output node according to the output of the first transistor and that is cascode-connected to the output-side current source and the transistor of the output-side current source;
    a ninth switch connected between the gate and drain of the first transistor;
    A feedback circuit connecting between the amplifier output node and the gate of the first transistor,
    a third capacitor, one end of which is connected to the first transistor;
    a third switch connected between the other end of the third capacitor and an input-side reference voltage;
    a fourth capacitor having one end connected to the first transistor;
    a seventh switch connected between the other end of the fourth capacitor and the input-side reference voltage;
    an eighth switch connected between the other end of the fourth capacitor and the amplifier output node;
    a feedback circuit comprising
    with
    The output-side current source is
    a fifth transistor having a source connected to a power supply voltage and having a gate biased to a bias voltage;
    a sixth transistor having a source connected to the drain of the fifth transistor, a drain connected to the amplifier output node, and a gate to which a cascode control voltage is applied;
    with
    a second switch connected to the drain of the sixth transistor and applying the potential of the drain of the sixth transistor as a bias voltage to the gate of the fifth transistor;
    comprising
    Solid-state image sensor.
  10.  前記アンプ出力ノードにおける電圧を増幅する増幅器であって、第3トランジスタ及び第4トランジスタを備え、第3トランジスタ及び第4トランジスタの間のノードから増幅電圧を出力する、増幅器、
     をさらに備える、請求項9に記載の固体撮像素子。
    an amplifier for amplifying the voltage at the amplifier output node, the amplifier comprising a third transistor and a fourth transistor and outputting an amplified voltage from a node between the third transistor and the fourth transistor;
    10. The solid-state imaging device according to claim 9, further comprising:
  11.  光電変換により入力電圧を生成する、画素回路と、
     ソースから前記入力電圧が印加され、ソースとゲートとの間の電圧に応じた電圧をドレインから出力する、第1トランジスタと、
     所定基準電圧の基準ノードに接続され、所定電流を供給する入力側電流源と、
     前記第1トランジスタの出力に応じてアンプ出力ノードの電位を決定する、出力側電流源及び出力側電流源のトランジスタとカスコード接続される第2トランジスタと、
     前記アンプ出力ノードと、前記第1トランジスタのゲートとの間を接続する帰還回路であって、
      前記第1トランジスタに一端が接続される、第3キャパシタと、
      前記第3キャパシタの他端と、入力側基準電圧との間に接続される、第3スイッチと、
      前記第3キャパシタの他端と、前記アンプ出力ノードとの間に接続され、前記第3スイッチと同じタイミングでオンし、異なるタイミングでオフする、第4スイッチと、
      前記第1トランジスタに一端が接続される、第4キャパシタと、
      前記第4キャパシタの他端と、前記入力側基準電圧との間に接続される、第7スイッチと、
      前記第4キャパシタの他端と、前記アンプ出力ノードとの間に接続される第8スイッチと、
     を備える帰還回路と、
     前記アンプ出力ノードと、電源電圧と、の間に接続される第7トランジスタであって、前記アンプ出力ノードにリセット高速化制御する電圧を印加する、第7トランジスタと、
     を備える、固体撮像素子。
    a pixel circuit that generates an input voltage by photoelectric conversion;
    a first transistor to which the input voltage is applied from the source and which outputs from the drain a voltage corresponding to the voltage between the source and the gate;
    an input-side current source connected to a reference node of a predetermined reference voltage and supplying a predetermined current;
    a second transistor cascode-connected to an output-side current source and a transistor of the output-side current source, the second transistor determining the potential of the amplifier output node according to the output of the first transistor;
    A feedback circuit connecting between the amplifier output node and the gate of the first transistor,
    a third capacitor, one end of which is connected to the first transistor;
    a third switch connected between the other end of the third capacitor and an input-side reference voltage;
    a fourth switch connected between the other end of the third capacitor and the amplifier output node, turned on at the same timing as the third switch, and turned off at a different timing;
    a fourth capacitor having one end connected to the first transistor;
    a seventh switch connected between the other end of the fourth capacitor and the input-side reference voltage;
    an eighth switch connected between the other end of the fourth capacitor and the amplifier output node;
    a feedback circuit comprising
    a seventh transistor connected between the amplifier output node and a power supply voltage, the seventh transistor applying a voltage for reset speed-up control to the amplifier output node;
    A solid-state image sensor.
PCT/JP2022/035881 2021-11-22 2022-09-27 Solid-state imaging element WO2023089958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189624 2021-11-22
JP2021189624 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023089958A1 true WO2023089958A1 (en) 2023-05-25

Family

ID=86396797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035881 WO2023089958A1 (en) 2021-11-22 2022-09-27 Solid-state imaging element

Country Status (1)

Country Link
WO (1) WO2023089958A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021053A1 (en) * 2016-07-28 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 Image pickup element
WO2021157148A1 (en) * 2020-02-03 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Solid-state image capturing element, and image capturing device
WO2022074940A1 (en) * 2020-10-08 2022-04-14 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device
WO2022196079A1 (en) * 2021-03-15 2022-09-22 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging sensor and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021053A1 (en) * 2016-07-28 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 Image pickup element
WO2021157148A1 (en) * 2020-02-03 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Solid-state image capturing element, and image capturing device
WO2022074940A1 (en) * 2020-10-08 2022-04-14 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device
WO2022196079A1 (en) * 2021-03-15 2022-09-22 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging sensor and imaging device

Similar Documents

Publication Publication Date Title
TWI820078B (en) solid-state imaging element
US11832013B2 (en) Solid-state image sensor, imaging device, and method of controlling solid-state image sensor
US11582416B2 (en) Solid-state image sensor, imaging device, and method of controlling solid-state image sensor
JP7148269B2 (en) Solid-state imaging device and imaging device
JP2020072317A (en) Sensor and control method
JP7181868B2 (en) Analog-to-digital converter, solid-state imaging device, and analog-to-digital converter control method
US11800256B2 (en) Solid-state image sensor, imaging device, and method of controlling solid-state image sensor
WO2021117350A1 (en) Solid-state imaging element and imaging device
WO2020129657A1 (en) Sensor and control method
US20220368849A1 (en) Sensing device, electronic apparatus, and method for controlling sensing device
JP2021170691A (en) Imaging element, method for control, and electronic apparatus
WO2022196079A1 (en) Solid-state imaging sensor and imaging device
WO2022153746A1 (en) Imaging device
US11283417B2 (en) Amplification circuit, imaging device, and control method of amplification circuit
WO2023089958A1 (en) Solid-state imaging element
JP7129983B2 (en) Imaging device
JP2023040318A (en) Imaging circuit and imaging apparatus
KR102673021B1 (en) Solid-state imaging device, imaging device, and control method of solid-state imaging device
WO2023067961A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2022004125A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2022137993A1 (en) Comparator and solid-state imaging element
WO2022249736A1 (en) Imaging device and electronic apparatus
WO2023058345A1 (en) Imaging device
WO2021124628A1 (en) Solid-state imaging element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895244

Country of ref document: EP

Kind code of ref document: A1