WO2022137853A1 - User Equipment、無線アクセスネットワークノード、及びこれらの方法 - Google Patents

User Equipment、無線アクセスネットワークノード、及びこれらの方法 Download PDF

Info

Publication number
WO2022137853A1
WO2022137853A1 PCT/JP2021/041138 JP2021041138W WO2022137853A1 WO 2022137853 A1 WO2022137853 A1 WO 2022137853A1 JP 2021041138 W JP2021041138 W JP 2021041138W WO 2022137853 A1 WO2022137853 A1 WO 2022137853A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
pscell
processor
deactivated
node
Prior art date
Application number
PCT/JP2021/041138
Other languages
English (en)
French (fr)
Inventor
尚 二木
貞福 林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP21910007.0A priority Critical patent/EP4149148A4/en
Priority to JP2022571943A priority patent/JPWO2022137853A1/ja
Priority to US18/011,670 priority patent/US20230254901A1/en
Publication of WO2022137853A1 publication Critical patent/WO2022137853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to a wireless communication system, and particularly to deactivation of a secondary cell group (Secondary Cell Group (SCG)) in a multi-connectivity (e.g. Dual Connectivity).
  • SCG Secondary Cell Group
  • 3GPP The 3rd Generation Partnership Project (3GPP) has begun studying Release 17. 3GPP discusses efficient activation and deactivation mechanisms for secondary cell groups (SCGs) (see, eg, Non-Patent Documents 1-5). Deactivation of SCG makes it possible to deactivate one SCG including a primary SCG cell (Primary SCG Cell (PSCell)).
  • SCGs secondary cell groups
  • PSCell Primary SCG Cell
  • the SCG RRC reconfiguration can select the SCG activation state (activated or deactivated) when adding a PSCell, changing a PSCell, resuming RadioResourceControl (RRC) (resume), and handover. ..
  • RRC RadioResourceControl
  • PS Cell mobility will be supported while the SCG is deactivated.
  • PSCell mobility includes at least intra-Secondary Node (SN) PSCell Change and inter-SN PSCell Change.
  • the UE establishes and maintains uplink synchronization with PSCell during SCG deactivation and (re) activation. More specifically, it is discussed whether the UE needs to make random access to the PSCell (also known as Random Access Channel (RACH)) while the SCG is deactivated. In addition, it is being discussed whether the UE needs to perform random access (RACH) when (re) activating the PSCell from the deactivated state. In one example, there is a suggestion that the UE should trigger random access (RACH) to the PSCell while activating the PSCell from the deactivated state (see, for example, Proposal 3 of Non-Patent Document 2).
  • RACH Random Access Channel
  • deactivated SCG suggests that the UE keep the SCG configuration to avoid delays due to the settings when the SCG needs to be activated. (See, for example, Proposal 1 of Non-Patent Document 2 and Proposal 18 of Non-Patent Document 4). Similarly, it has been proposed that the network does not need to release the SCG configuration when the SCG is activated (see, for example, Proposal 18 in Non-Patent Document 4).
  • the inventor examined SCG deactivation and activation, and found various issues.
  • One of these challenges concerns when and how the UE makes random access to PSCell (RACH).
  • RACH random access to PSCell
  • the UE does not have to perform RACH when the SCG is deactivated when adding or changing the PSCell (when SCG is deactivated upon PSCell addition or PSCell change). It is also proposed that the UE does not have to perform RACH when the PSCell is changed while the SCG is being deactivated (when the PSCell is changed while the SCG is deactivated).
  • AS Access Stratum
  • K UPenc user plane keys
  • SCG bearers are set or updated when PSCell is added or changed. May need to be done.
  • the UE when the AS security key is set or updated, the UE must perform a procedure (specifically, the Reconfiguration with Sync procedure) that involves performing a RACH to the PSCell. Therefore, the UE not performing RACH to PSCell when adding or changing PSCell may be inconsistent or incompatible with the current 3GPP standard provisions.
  • the UE will RACH the new PS Cell for the first time when the SCG is subsequently activated. Try.
  • the UE has never succeeded in accessing the PSCell at this point, and the UE may fail RACH (SCG failure). This may prevent the UE from using the SCG in a timely manner when communication over the SCG is required.
  • the UE clears configured downlink assignment and configured uplink grant Type 2 upon SCell deactivation.
  • the configured downlink assignment allocates the downlink semi-persistent scheduling (SPS) resource to the UE.
  • SPS downlink semi-persistent scheduling
  • the RRC defines the cycle of the configured downlink assignment and the configured scheduling Radio Network Temporary Identifier (CS-RNTI), and the Physical Downlink Control Channel (PDCCH) that addresses the CS-RNTI is the Physical Downlink Shared Channel (PDSCH).
  • CS-RNTI Radio Network Temporary Identifier
  • PDCCH Physical Downlink Control Channel
  • configured uplink grant Type 2 allocates uplink SPS resources to the UE.
  • RRC defines the periodicity of the configured uplink grant and CS-RNTI, and the PDCCH addressing the CS-RNTI semi-persistently makes the Physical Uplink Shared Channel (PUSCH) resource semi-persistently.
  • PUSCH Physical Uplink Shared Channel
  • the configured grant Type 2 PUSCH transmission is semi-persistently by the UL grant in the valid activation Downlink Control Information (DCI) scrambled by the CS-RNTI (ie DCI format 0_0 or 0_1). Scheduled to.
  • DCI Downlink Control Information
  • the UE releases (releases, releases) the configuredSoundingReferenceSignal (SRS) and PhysicalUplinkControlChannel (PUCCH) resources. ), And clear the configured downlink assignment and configured uplink grant.
  • SRS SoundingReferenceSignal
  • PUCCH PhysicalUplinkControlChannel
  • the UE may clear the configured downlink assignment and the configured uplink grant Type 2. However, doing so will require the UE to reconfigure these radio resources when the SCG is activated. This may result in an increased delay in SCG activation.
  • the radio bearer that uses the SCG radio resource is an SCG bearer, a split bearer, or both.
  • An SCG radio bearer is a radio bearer that has a RadioLink Control (RLC) bearer only within the SCG associated with the SN.
  • RLC RadioLink Control
  • a split bearer is a radio bearer having both an RLC bearer in a master cell group (MasterCell Group (MCG)) associated with a MasterNode (MN) and an RLC bearer in an SCG.
  • the SCG bearer and the split bearer may be SN-terminated bearers or MN-terminated bearers.
  • the SN terminated bearer is a wireless bearer in which the Packet Data Convergence Protocol (PDCP) for that purpose is placed in the SN.
  • the MN terminated bearer is a wireless bearer in which the PDCP for that purpose is placed in the MN.
  • One of the objectives to be achieved by the embodiments disclosed herein is to provide an apparatus, method, and program that contributes to solving at least one of a plurality of problems including the above-mentioned problems. That is. It should be noted that this object is only one of the purposes that the embodiments disclosed herein seek to achieve. Other objectives or issues and novel features will be apparent from the description or accompanying drawings herein.
  • the first aspect is directed to UEs configured to support dual connectivity with the MCG associated with the master node and the SCG associated with the secondary node.
  • the UE includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor transfers to the PSCell according to the PSCell addition or PSCell mobility without waiting for future SCG activation. It is configured to perform random access.
  • the second aspect is directed to a radio access network (RAN) node configured to act as a master node associated with an MCG or a secondary node associated with an SCG in dual connectivity for the UE.
  • the RAN node includes at least one memory and at least one processor coupled to said at least one memory.
  • the at least one processor transfers to the PSCell according to the PSCell addition or PSCell mobility without waiting for future SCG activation. It is configured to indicate to the UE whether or not random access needs to be performed.
  • the third aspect is directed to a method performed by a UE configured to support dual connectivity with an MCG associated with a master node and an SCG associated with a secondary node.
  • a UE configured to support dual connectivity with an MCG associated with a master node and an SCG associated with a secondary node.
  • random access to the PSCell is performed according to the PSCell addition or PSCell mobility without waiting for future SCG activation. Including doing.
  • a fourth aspect is directed to a method performed by a radio access network (RAN) node configured to act as a master node associated with an MCG or a secondary node associated with an SCG in dual connectivity for the UE.
  • RAN radio access network
  • the SCG containing the PSCell is deactivated at the time of PSCell addition or PSCell mobility
  • random access to the PSCell is performed according to the PSCell addition or PSCell mobility without waiting for future SCG activation. Includes indicating to the UE whether or not it needs to be done.
  • a fifth aspect is directed to UEs configured to support dual connectivity with the MCG associated with the master node and the SCG associated with the secondary node.
  • the UE includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor associates with the configured downlink assignment associated with the PSCell contained in the SCG and with the PSCell while the SCG being configured with a radio bearer that uses the radio resources of the SCG is deactivated. It is configured to maintain one or both of the configured uplink grant Type 2.
  • a sixth aspect is directed to a radio access network (RAN) node configured to act as a master node associated with an MCG or a secondary node associated with an SCG in dual connectivity for the UE.
  • the RAN node includes at least one memory and at least one processor coupled to said at least one memory.
  • the at least one processor associates with the configured downlink assignment associated with the PSCell contained in the SCG and with the PSCell while the SCG being configured with a radio bearer that uses the radio resources of the SCG is deactivated. It is configured to maintain one or both of the configured uplink grant Type 2.
  • a seventh aspect is directed to a method performed by a UE configured to support dual connectivity with an MCG associated with a master node and an SCG associated with a secondary node.
  • the method configures a radio bearer that uses the radio resources of the SCG. While the SCG is deactivated, the configured downlink assignment associated with the PSCell contained in the SCG and the configured associated with the PSCell. Includes maintaining one or both of uplink grant Type 2.
  • the eighth aspect is directed to a method performed by a radio access network (RAN) node configured to act as a master node associated with an MCG or a secondary node associated with an SCG in dual connectivity for the UE.
  • the method configures a radio bearer that uses the radio resources of the SCG. While the SCG is deactivated, the configured downlink assignment associated with the PSCell contained in the SCG and the configured associated with the PSCell. Includes maintaining one or both of uplink grant Type 2.
  • RAN radio access network
  • the ninth aspect is directed to the program.
  • the program includes a set of instructions (software code) for causing the computer to perform the method according to the third, fourth, seventh, or eighth aspect described above when loaded into the computer.
  • the plurality of embodiments described below may be implemented independently or in combination as appropriate. These plurality of embodiments have novel features that differ from each other. Therefore, these plurality of embodiments contribute to solving different purposes or problems, and contribute to different effects.
  • LTE Long Term Evolution
  • 5G system 5th generation mobile communication system
  • LTE Long Term Evolution
  • LTE-Advanced 5th generation mobile communication system
  • FIG. 1 shows a configuration example of a wireless communication network according to a plurality of embodiments including the present embodiment.
  • the wireless communication network includes RAN node 1, RAN node 2, and UE3.
  • Each element (network function) shown in FIG. 1 is, for example, as a network element on dedicated hardware, as a running software instance on dedicated hardware, or on an application platform. It can be implemented as an instantiated virtualization function.
  • the RAN node 1 may be a Central Unit (e.g. eNB-CU or gNB-CU) in a cloud RAN (C-RAN) deployment, a CU and one or more Distributed Units (e.g. eNB-DUs). , Or a combination of gNB-DUs). C-RAN is also called CU / DU split. Further, the CU may include a Control Plane (CP) Unit (e.g. gNB-CU-CP) and one or more User Plane (UP) Units (e.g. gNB-CU-UP). Therefore, the RAN node 1 may be a CU-CP or a combination of a CU-CP and a CU-UP.
  • CP Control Plane
  • UP User Plane
  • the RAN node 2 may be a CU, or may be a combination of the CU and one or a plurality of DUs.
  • the RAN node 2 may be a CU-CP or a combination of a CU-CP and a CU-UP.
  • Each of the RAN nodes 1 and 2 may be an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (EUTRAN) node or a Next generation Radio Access Network (NG-RAN) node.
  • the EUTRAN node may be eNB or en-gNB.
  • the NG-RAN node may be gNB or ng-eNB.
  • the en-gNB is a node that provides the NR user plane and control plane protocol termination to the UE and operates as a secondary node (SN) of the E-UTRA-NR Dual Connectivity (EN-DC).
  • ng-eNB is a node that provides the E-UTRA user plane and control plane protocol termination to the UE and is connected to the 5GC via the NG interface.
  • the Radio Access Technology (RAT) of the RAN node 1 may be different from that of the RAN node 2.
  • RAT Radio Access Technology
  • RAN node 1 and RAN node 2 communicate with each other via the inter-node interface (i.e. X2 interface or Xn interface) 103.
  • the RAN node 1 and the RAN node 2 operate as a dual connectivity master node (MN) and a secondary node (SN), respectively.
  • MN1 master node
  • SN2 secondary node
  • UE3 communicates with MN1 and SN2 via air interfaces 101 and 102 to perform dual connectivity of master cell group (MCG) and secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • MR-DC Multi-Radio Dual Connectivity
  • MR-DC includes E-UTRA-NR Dual Connectivity (EN-DC), NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC), NR-E-UTRA Dual Connectivity (NE-DC), and NR- Includes NR Dual Connectivity (NR-DC).
  • the MN1 may be any of a master eNB (in EN-DC), a master ng-eNB (in NGEN-DC), and a master gNB (in NR-DC and NE-DC).
  • the SN2 may be any of en-gNB (in EN-DC), secondary ng-eNB (in NE-DC), and secondary gNB (in NR-DC and NGEN-DC).
  • EN-DC UE3 is connected to eNB which operates as MN1 and is connected to en-gNB which operates as SN2.
  • NGEN-DC UE3 is connected to ng-eNB which operates as MN1 and is connected to gNB which operates as SN2.
  • NE-DC it is connected to gNB which operates as MN1 and is connected to ng-eNB which operates as SN2.
  • UE3 is connected to one gNB (or gNB-DU) that operates as MN1 and is connected to another gNB (or gNB-DU) that operates as SN2.
  • MCG is a group of serving cells associated with (or provided with) MN1 and is a SpCell (i.e. Primary Cell (PCell)) and optionally one or more secondary cells (Secondary Cells).
  • SCells secondary Cells
  • an SCG is a group of serving cells associated with (or provided with) SN2, a Primary SCG Cell (PSCell) and optionally 1 or it. Including the above secondary cells (SecondaryCells (SCells)).
  • PSCell is a Special Cell (SpCell) of SCG and supports Physical Uplink Control Channel (PUCCH) transmission and contention-based Random Access.
  • LTE e.g. In LTE-DC and NE-DC
  • PSCell may be an abbreviation for Primary SCell.
  • the term "primary SCG cell” and its abbreviation "PSCell” are included in the cell group provided by the dual connectivity SN, have an uplink component carrier, and have an uplink control channel (e.g. PUCCH) Means the cell to which the resource is set.
  • the term “primary SCG cell” and its abbreviation "PSCell” are provided by SNs (e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC) that support 5G NR. It may mean Primary SCG Cell of the cell group to be used, or it means Primary SCell of the cell group provided by SN (e.g. eNB in LTE DC, or ng-eNB in NE-DC) that supports E-UTRA. You may.
  • MN1 and SN2 may have the configuration shown in FIG.
  • Each element (network function) shown in FIG. 2 is, for example, a virtualization function instantiated as a network element on dedicated hardware, as a software instance running on dedicated hardware, or on an application platform. Can be implemented as.
  • One or both of RAN nodes 1 and 2 may include, but is not limited to, CU21 and 1 or more DUs22 as shown in FIG.
  • the CU 21 and each DU 22 are connected by an interface 201.
  • the UE 3 is connected to at least one DU 22 via at least one air interface 202.
  • the CU 21 may be a logical node that hosts gNB's RadioResourceControl (RRC), ServiceDataAdaptationProtocol (SDAP), and PacketDataConvergenceProtocol (PDCP) protocols (or gNB's RRC and PDCPprotocols).
  • the DU22 may be a logical node that hosts the gNB's RadioLinkControl (RLC), MediumAccessControl (MAC), and Physical (PHY) layers. If CU21 is gNB-CU and DUs22 is gNB-DUs, interface 201 may be an F1 interface.
  • CU21 may include CU-CP and CU-UP.
  • FIG. 3 shows an example of the operation of UE3.
  • UE3 receives signaling for PSCell addition or PSCell mobility. Adding a PSCell involves adding a PSCell associated with SN2.
  • PSCell mobility may be intra-SN PSCell change (change), inter-SN (inter-SN) PSCell change, PSCell reconfiguration (reconfiguration), or SCG reconfiguration associated with handover (MN change). ..
  • UE3 receives an SN RRC Reconfiguration message from SN 2 via MN1 containing settings for PSCell.
  • the settings related to PSCell may include the SpCellConfig field included in the CellGroupConfig information element (InformationElement (IE)).
  • InformationElement InformationElement
  • the PSCell addition or PSCell mobility in step 301 may be accompanied by SCG deactivation.
  • the SCG may be deactivated during the addition of PSCell or PSCell mobility.
  • PSCell mobility may occur while the SCG is deactivated. In other words, during PS Cell mobility while the SCG is deactivated, the SCG may be kept in the deactivated state.
  • step 302 when the SCG is deactivated during the PSCell addition or PSCell mobility, the UE3 will randomly access the (new) PSCell in response to the PSCell addition or PSCell mobility without waiting for future SCG activation. I do. Random access may be referred to as RACH or RACH procedure.
  • UE3 is when one or more of the procedures for PSCell addition and PSCell mobility with SCG deactivation is performed, one or more of the PSCell addition and PSCell mobility procedures with specific SCG deactivation. , Random access to PSCell may be performed immediately without waiting for future SCG activation. If a PSCell addition or PSCell mobility procedure with other SCG deactivations is performed, UE3 may not immediately perform random access to the PSCells, but may do so for future SCG activations.
  • PSCell additions and PSCell mobility that cause UE3 to make random access to PSCell immediately tell UE3 to deactivate SCG, and for radio bearers that use SCG's radio resources.
  • the AS security key may be set or updated in UE3.
  • UE3 instructes UE3 to add PSCell or PSCell mobility deactivate SCG and triggers UE3 to set or update an AS security key for a radio bearer that uses SCG's radio resources, in the future Random access to the PS Cell may be performed immediately without waiting for SCG activation.
  • the radio bearer that uses the SCG radio resources may be an SCG bearer, a split bearer, or both.
  • the radio bearer that uses the radio resources of the SCG may be a data radio bearer (DRB) or a signaling radio bearer (SRB).
  • the AS security keys to be updated are the secondary node key (eg SK gNB ), RRC signaling integrity protection key (eg K RRCint ), RRC signaling encryption key (eg K RRCenc ), and user data integrity protection key (eg). It may be one or any combination of K UPint ) and the encryption key (eg K UPenc ) of the user data.
  • the UE when an AS security key is set or updated, the UE must perform a procedure (specifically, the Reconfiguration with Sync procedure) that involves performing a RACH to the PSCell. Must be. Therefore, the above behavior can make the behavior of UE3 consistent with the current 3GPP standard provisions when PSCell addition with SCG deactivation and PSCell mobility are performed.
  • a procedure specifically, the Reconfiguration with Sync procedure
  • SCG deactivation provides information indicating whether MN1 or SN2 needs to immediately add PSCell or randomly access PSCell in response to PSCell mobility without waiting for future SCG activation. It may be transmitted to UE3 in the procedure of PSCell addition or PSCell mobility accompanied by. In this case, UE3 may operate as shown in FIG. FIG. 4 shows an example of the operation of UE3.
  • UE3 receives information from MN1 or SN2 indicating whether it is necessary to perform random access to PSCell without waiting for future SCG activation in the procedure of adding PSCell or PSCell mobility.
  • random access to the (new) PSCell is made according to the information, immediately in response to PSCell addition or PSCell mobility, or at the time of future SCG activation.
  • MN1 or SN2 needs to add PSCell or randomly access PSCell in response to PSCell mobility when the AS security key of SCG needs to be set or updated without waiting for future SCG activation.
  • the MN1 or SN2 when the SCG containing the PSCell is deactivated when the PSCell is added, the MN1 or SN2 needs to randomly access the PSCell in response to the PSCell addition without waiting for future SCG activation. You may indicate to UE3 that there is, either explicitly or implicitly. Further or instead, MN1 or SN2 will respond to the PSCell change without waiting for future SCG activation when the PSCell is changed from the current one to a new cell while the PSCell is deactivated. It may indicate to UE3 that random access to a new PSCell needs to be made.
  • UE3 can confirm that it can connect to the (new) PSCell when adding or changing the PSCell, and can establish synchronization with the PSCell.
  • UE3 receives a TimeAdvance (TA) command from PSCell in random access in response to PSCell addition or PSCell change, starts the TimeAlignment timer (TAT), and maintains TAT operation while SCG is deactivated ( keep the TAT running).
  • TAT TimeAlignment timer
  • This can contribute to allowing UE3 to use SCG in a timely manner, omitting random access when the SCG is activated in the future. It can also contribute to improving the success rate of random access compared to the first random access at future SCG activation.
  • MN RRC Reconfiguration message generated by MN1, the SN RRC Reconfiguration message generated by SN2, and the MCG. It may be an information element (IE) or a flag included in any of the Medium Access Control (MAC) Control Element (CE) of.
  • MN1 or SN2 may include IE or a flag in the MNRRC Reconfiguration message, SNRRC Reconfiguration message, or MCGMACCE to indicate to UE3 whether random access to the PSCell needs to be done immediately. good.
  • the SN2 may send information indicating whether or not random access to the PSCell needs to be performed immediately to the UE3 using an RRC Reconfiguration message (SN RRC Reconfiguration message) generated by the SN2.
  • the SN RRC Reconfiguration message may be sent to UE3 via MN1 and MCG. That is, during the procedure of adding PSCell or causing PSCell mobility to UE3, SN2 sends an SN RRC Reconfiguration message (transparent container sent to UE3) to MN1 with an inter-node message (e.g. CG-Config), and MN1
  • the received SN RRC Reconfiguration message may be transmitted to UE3 using the MN RRC Reconfiguration message.
  • the procedure for causing PSCell addition or PSCell mobility to UE3 is, for example, an SN addition procedure, an SN modification procedure, an SN change procedure, a PSCell change procedure, or an inter-MN handover procedure.
  • the SN2 may use the PSCell random access channel setting included in the RRC Reconfiguration message to indicate to the UE3 whether it is necessary to immediately perform random access to the PSCell.
  • Random access channel settings for PSCell may be included in the reconfigurationWithSync field contained in the SpCellConfig field in CellGroupConfigIE for SCG. More specifically, the reconfigurationWithSync field includes a rach-ConfigDedicated field (rach-ConfigDedicatedIE), and the rach-ConfigDedicated field includes a CFRA field.
  • the CFRA field sets the radio resource for Contention-free random access (CFRA) to UE3.
  • the reconfigurationWithSync field may include a spCellConfigCommon field (ServingCellConfigCommonIE), and the spCellConfigCommon field may include an uplinkConfigCommon field (uplinkConfigCommonIE).
  • the uplinkConfigCommon field includes an initialUplinkBWP field (BWP-UplinkCommonIE), and the initialUplinkBWP field includes a rach-ConfigCommon field (rach-ConfigCommonIE).
  • SN2 includes the contention-free random access (CFRA) resource configuration in the PSCell's random access channel configuration to add PSCell or respond to PSCell mobility without waiting for future SCG activation. It may indicate to UE3 that random access to is required.
  • FIG. 5 shows an example of the operation of UE3.
  • UE3 receives a SN RRC Reconfiguration message that includes the random access channel configuration of PSCell during the procedure of adding PSCell or inducing PSCell mobility to UE3.
  • step 502 if the received random access channel configuration includes a CFRA resource configuration, UE3 will use the configured CFRA resource to randomly access the (new) PSCell without waiting for future SCG activation. I do.
  • the received random access channel setting does not include the CFRA resource setting but only the contention-based random access (CBRA) setting
  • UE3 adds the PSCell without performing random access to the PSCell.
  • PSCell mobility may be completed and random access to PSCell may be performed using the configured CBRA resource when the SCG is activated in the future.
  • UE3 may perform random access using the random access channel setting (e.g. CBRA resource) received from SN2.
  • MN1 may also determine if UE3 needs to make random access to PSCell immediately if it decides to deactivate SCG.
  • the MN1 may also notify the SN2 that the UE3 needs to immediately provide random access to the PSCell when notifying the SN2 of the SCG deactivate indication (or request thereof). Instead, MN1 notifies SN2 of an indication (or a request for it) to deactivate SCG, and SN2 responds by deciding whether UE3 should immediately make random access to PSCell. You may.
  • SN2 may also determine if UE3 needs to make random access to the PSCell immediately if it decides to deactivate the SCG.
  • UE3 of the present embodiment responds to PSCell addition or PSCell mobility when SCG is deactivated at the time of PSCell addition or PSCell mobility without waiting for future SCG activation (as described above. Random access to the new) PSCell may be made. After this random access, UE3 and the network (MN1 and SN2) may operate as follows.
  • UE3 may autonomously deactivate SCG after successful random access to PSCell. In other words, UE3 may autonomously deactivate SCG after confirming successful random access to PSCell. Similarly, SN2 may autonomously deactivate SCG after successful random access to PSCell by UE3.
  • FIG. 6 shows an example of the operation of UE3. In steps 601 and 602, UE3 operates in the same manner as in steps 301 and 302 of FIG. In step 603, UE3 autonomously deactivates the SCG after the random access to the PSCell is successfully completed. In the case of CFRA, successful completion may be determined by the reception of Random Access Response (RAR) by UE3.
  • RAR Random Access Response
  • successful completion is the confirmation of Contention Resolution by UE3 (reception of the 4th message (Msg4) by UE3, or C-RNTI (i.e. C-RNTI MACCE) sent by the 3rd message (Msg3)). It may be determined by PDCCH (reception of e.g. UL grant information but grant size is zero or invalid value) corresponding to.
  • successful completion may be determined by confirmation of Contention Resolution by UE3 (reception of i.e. message B (MsgB)).
  • UE3 may deactivate SCG in response to receiving an SCG deactivation indication from SN2 or MN1 after successful completion of random access to PSCell.
  • the SN2 or MN1 may send an SCG deactivation indication to the UE3 after confirming the successful random access to the PSCell by the UE3.
  • the SCG deactivation display may be transmitted from the MCG to the UE3 or may be transmitted directly from the SCG to the UE3.
  • the SCG deactivation indication may be sent from SN2 to UE3 via MN1.
  • the SCG deactivation indication may be transmitted to UE3 via physical layer signaling (DCI on e.g. PDCCH), via MAC layer signaling (e.g.
  • FIG. 7 shows an example of the operation of UE3.
  • UE3 operates in the same manner as in steps 301 and 302 of FIG.
  • UE3 deactivates SCG in response to receiving an indication of SCG deactivation from SN2 or MN1 after the random access to PSCell is successfully completed.
  • successful completion may be determined by confirmation of Contention Resolution by UE3 (reception of i.e. 4th message (Msg4)).
  • MsgB message B
  • MN1 or SN2 may indicate to UE3 whether step 603 of FIG. 6 or step 703 of FIG. 7 should be performed.
  • MN1 or SN2 may indicate to UE3 whether the SCG should be autonomously deactivated after the random access to the PSCell is successfully completed.
  • the UE 3 may receive information from the MN1 or SN2 indicating whether the SCG should be autonomously deactivated after the random access to the PSCell is successfully completed.
  • the UE 3 may determine whether to perform step 603 of FIG. 6 or step 703 of FIG. 7 according to the received information. This information may be included in the MN RRC Reconfiguration message or SN RRC Reconfiguration message sent to the UE 3 during the procedure for adding a PS Cell or inducing PS Cell mobility to the UE 3.
  • UE3 may activate SCG once during the period until UE3 randomly accesses PSCell and deactivates SCG upon completion of random access. Alternatively, UE3 may keep the SCG in the deactivated state during this period. In other words, UE3 may activate, validate, or restore only the settings required for random access to PSCell.
  • FIG. 8 shows an example of the operation of MN1, SN2, and UE3.
  • the MN1 or SN2 initiates a PSCell addition procedure or PSCell mobility procedure, which the MN1, SN2, and UE3 perform.
  • the PSCell addition procedure (SN addition procedure) is started by MN1.
  • the PSCell mobility procedure is initiated by MN1 or SN2.
  • the PSCell addition procedure and PSCell mobility procedure in step 801 involve deactivation of the SCG.
  • the PSCell mobility procedure may be initiated while the SCG is deactivated.
  • MN1 or SN2 instructs UE3 to deactivate the SCG.
  • the SN2 may send an SN RRC Reconfiguration message to the UE 3 via the MN1 containing instructions (or display) for SCG deactivation.
  • the SN RRC Reconfiguration message may include new or updated SCG settings in addition to SCG deactivation instructions (or display).
  • the MN1 may send the MNRRC Reconfiguration message carrying the SN RRC Reconfiguration message to the UE3.
  • the MN1 or SN2 may send information to the UE3 that explicitly or implicitly indicates whether random access to the PSCell needs to be done immediately without waiting for future SCG activation. ..
  • the information may be included in the above-mentioned SN RRC Reconfiguration message or MN RRC Reconfiguration message.
  • UE3 makes random access to PSCell. If the random access is successfully completed, UE3 deactivates the SCG (step 804).
  • SN2 or MN1 may send an SCG deactivation indication to UE3 (step 803), and UE3 may deactivate SCG in response to receiving such indication.
  • UE3 may autonomously deactivate SCG. In this case, the transmission in step 803 may be omitted.
  • UE3 may decide whether to autonomously deactivate SCG according to instructions from SN2 or MN1. The instruction may be included in the above-mentioned SN RRC Reconfiguration message or MN RRC Reconfiguration message transmitted in step 801.
  • the instruction in step 803 may be transmitted from DU22 of SN2 to UE3 by physical layer signaling (DCI on e.g. PDCCH) or MAC layer signaling (e.g. MAC CE).
  • DCI on e.g. PDCCH
  • MAC layer signaling e.g. MAC CE
  • the DU 22 may notify the CU 21 that the SCG deactivation is complete (or executed). Also, if SN2 decides to deactivate SCG, DU22 may decide.
  • the DU 22 may notify the CU 21 in advance of deactivating the SCG (or send information indicating the deactivation of the SCG), and may omit the notification to the CU 21 after executing the SCG deactivation in step 803.
  • the notification of deactivation from DU22 to CU21 may be transmitted, for example, by a UEContextModificationRequired, UEContextSetupResponse, UEContextModificationResponse, or a new Control Plane message from DU22 to CU21 of F1AP.
  • the deactivation notification may be sent by a User Plane message from the DU 22 to the CU 21.
  • the notification may be transmitted in DDDS (Downlink Data Delivery Status) or a newly defined frame.
  • FIG. 9 shows an example of the operation of MN1, SN2, and UE3.
  • FIG. 9 shows the details of the procedure shown in FIG.
  • Steps 901 to 906 are signaling and processing performed in the SN addition procedure or the SN correction procedure, and correspond to step 801 in FIG.
  • the signaling and processing of steps 901 to 906 is essentially the same as those of the existing SN addition procedure or SN modification procedure.
  • the SN Modification Required message (step 901) sent from the SN 2 to the MN1 in the SN-initiated SN modification procedure may include an SCG deactivation request (or display).
  • the SNAdditionRequest message or SNModificationRequest message sent from MN1 to SN2 in step 902 may include an SCG deactivation request (or display).
  • the SNAdditionRequestAcknowledge message or SNModificationRequestAcknowledge message sent from SN2 to MN1 in step 903 may include an SCG deactivation response (or display).
  • the MNRRC Reconfiguration message transmitted from MN1 to UE3 may include SCG settings and may include explicit or implicit SCG deactivation indications. These SCG settings and SCG deactivation indications may be included in the SN RRC Reconfiguration message carried by the MN RRC Reconfiguration message. Steps 907 to 909 are the same as steps 802 to 804 in FIG.
  • FIG. 10 shows an example of the operation of MN1, SN2, and UE3.
  • FIG. 10 shows the details of the procedure shown in FIG.
  • Steps 1001 to 1012 are signaling and processing performed in the inter-MN handover procedure, and correspond to step 801 in FIG.
  • the target SN2B is the same as the source SN2A.
  • the signaling and processing of steps 1001 to 1012 are essentially the same as those of the existing MN-to-MN handover procedure.
  • the SNAdditionRequest message sent from the target MN1B to the target SN2B in step 1002 may include an SCG deactivation request (or display).
  • the SNAdditionRequestAcknowledge message sent from the target SN2B to the target MN1B in step 1003 may include an SCG deactivation response (or display).
  • the MNRRC Reconfiguration message transmitted from MN1 to UE3 may include SCG settings and may include explicit or implicit SCG deactivation indications. These SCG settings and SCG deactivation indications may be included in the SN RRC Reconfiguration message carried by the MN RRC Reconfiguration message.
  • Steps 1013 to 1015 are the same as steps 802 to 804 in FIG.
  • the Time Alignment Timer (TAT) associated with SCG (PSCell of ie SCG) operates. Random access to the PSCell may be made regardless of whether it is running or expired. This can contribute to allowing UE3 to use SCG in a timely manner, omitting random access when the SCG is activated in the future.
  • FIG. 11 shows an example of the operation of UE3.
  • UE3 updates the AS security key for SCG.
  • the AS security keys to be updated are the secondary node key (eg SK gNB ), RRC signaling integrity protection key (eg K RRCint ), RRC signaling encryption key (eg K RRCenc ), and user data integrity protection key (eg). It may be one or any combination of K UPint ) and the encryption key (eg K UPenc ) of the user data.
  • UE3 makes random access to the PSCell regardless of whether the TAT associated with the SCG is running or has expired. These may be applied while the SCG is deactivated or may be applied when the SCG is deactivated.
  • the PSCell addition of this embodiment may be a conditional PSCell addition (CPA).
  • the PSCell mobility of the present embodiment may be a conditional handover (CHO) between MNs or a conditional PSCell change (CPC).
  • the conditional PSCell change may be a conditional PSCell change within the SN or a conditional PSCell change between SNs. If multiple candidate target cells belong to different candidate target MNs in a conditional handover between MNs, even if each candidate target MN (and each candidate target SN associated with that MN) decides whether to deactivate SCG. good. If multiple candidate target PSCells are set in a conditional PSCell change within the SN, the SN may decide whether to deactivate the SCG.
  • the MN or each candidate SN may decide whether to deactivate the SCG. If multiple candidate target PSCells belong to different candidate target SNs in a conditional PSCell change between SNs, the MN or each candidate target SN may decide whether to deactivate the SCG. Further, the information transmitted by the above-mentioned RRC messages (e.g. MN RRC Reconfiguration, SN RRC Reconfiguration) may be included in the Conditional Reconfiguration IE included in those RRC messages.
  • MN RRC Reconfiguration e.g. MN RRC Reconfiguration, SN RRC Reconfiguration
  • ⁇ Second embodiment> The configuration example of the wireless communication network according to the present embodiment is the same as the example shown in FIGS. 1 and 2.
  • the behavior of MN1, SN2, and UE3 with respect to the deactivation of the SCG associated with SN2 will be described below.
  • FIG. 12 shows an example of the operation of UE3.
  • UE3 deactivates an SCG configured with one or more radio bearers that use the SCG's radio resources.
  • the radio bearer may include an SCG bearer, a split bearer, or both.
  • An SCG radio bearer is a radio bearer that has an RLC bearer only within the SCG associated with the SN2.
  • a split bearer is a radio bearer having both an RLC bearer in an MCG and an RLC bearer in an SCG associated with MN1.
  • the SCG bearer and the split bearer may be SN-terminated bearers or MN1-terminated bearers.
  • the SN terminated bearer is a wireless bearer in which the PDCP for that purpose is arranged in SN2.
  • the MN terminated bearer is a wireless bearer in which the PDCP for that purpose is placed in MN1.
  • the radio bearer that uses the SCG radio resource may be a data radio bearer (DRB) or a signaling radio bearer (SRB).
  • step 1202 while the SCG being configured with a radio bearer that uses the SCG's radio resources is deactivated, the UE3 will have the configured downlink assignment associated with the PSCell and the configured uplink grant Type 2 associated with the PSCell. Maintain one or both. Similar to UE3, the network (ie SN (or SN2 and MN1)) is also configured downlink assignment and associated with PSCell while the SCG being configured with a radio bearer that uses the SCG's radio resources is deactivated. Maintain one or both of the configured uplink grant Type 2 associated with the PSCell. In step 1202, the UE 3 maintains the radio resource settings (including one or both of the configured downlink assignment and the configured uplink grant Type 2 associated with the PSCell), which may be ignored.
  • the network ie SN (or SN2 and MN1)
  • the UE 3 maintains the radio resource settings (including one or both of the configured downlink assignment and the configured uplink grant Type 2 associated with the PSCell), which may be ignored.
  • the SCG when the SCG is activated, UE3 and the network activate and enable the maintained radio resource settings, including one or both of the configured downlink assignment and configured uplink grant Type 2 associated with the PSCell. , Or may be restored.
  • the UE 3 when the SCG is activated, the UE 3 does not need to reconfigure these radio resources. Therefore, this can contribute to reducing the delay of SCG activation.
  • the configured downlink assignment allocates the downlink semi-persistent scheduling (SPS) resource to the UE.
  • the RRC defines the cycle of the configured downlink assignment and the configured scheduling Radio Network Temporary Identifier (CS-RNTI), and the Physical Downlink Control Channel (PDCCH) that addresses the CS-RNTI is the Physical Downlink Shared Channel (PDSCH). Allocate resources semi-persistently to the UE and activate configured downlink assignment.
  • configured uplink grant Type 2 allocates uplink SPS resources to the UE.
  • RRC defines the periodicity of the configured uplink grant and CS-RNTI, and the PDCCH addressing the CS-RNTI semi-persistently makes the Physical Uplink Shared Channel (PUSCH) resource semi-persistently.
  • PUSCH Physical Uplink Shared Channel
  • the configured grant Type 2 PUSCH transmission is semi-persistently by the UL grant in the valid activation Downlink Control Information (DCI) scrambled by the CS-RNTI (ie DCI format 0_0 or 0_1). Scheduled to.
  • DCI Downlink Control Information
  • the UE 3 may maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 only for the PS Cell while the SCG is deactivated. In other words, while the SCG is deactivated, the UE 3 may clear or release the configured downlink assignment and the configured uplink grant Type 2 associated with one or more SCells contained in the SCG. Alternatively, the UE 3 may maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 for all cells contained in the SCG while the SCG is deactivated.
  • FIG. 13 shows an example of the operation of UE3.
  • the motion shown in FIG. 13 can be combined with the motion shown in FIG. Step 1301 is similar to step 1201 in FIG. That is, in step 1301, the UE 3 deactivates an SCG configured with one or more radio bearers that use the SCG's radio resources. In step 1302, the UE3 still has the configured downlink assignment and configured uplink grant type associated with the PSCell, even if the UE3 does not maintain a valid uplink timing for the SCG while the SCG is deactivated. Maintain one or both of the two.
  • UE3 maintains one or both of configured downlink assignment and configured uplink grant Type 2 even if the PS Cell's Time Alignment Timer (TAT) expires while the SCG is deactivated.
  • UE3 may further maintain configured uplink grant Type 1.
  • the network ie, SN (or SN2 and MN1)
  • SN or SN2 and MN1
  • the network may further maintain configured uplink grant Type 1.
  • the UE 3 maintains the radio resource settings (including one or both of the configured downlink assignment and the configured uplink grant Type 2 associated with the PSCell), which may be ignored.
  • the SCG when the SCG is activated, UE3 and the network activate and enable the maintained radio resource settings, including one or both of the configured downlink assignment and configured uplink grant Type 2 associated with the PSCell. , Or may be restored.
  • the UE 3 when the SCG is activated, the UE 3 does not need to reconfigure these radio resources. Therefore, this can contribute to reducing the delay of SCG activation.
  • the information may be included in the SCG activation instructions (or notifications) sent from the MN1 or SN2 to the UE3.
  • the UE 3 may maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 only for the PS Cell while the SCG is deactivated. In other words, while the SCG is deactivated, the UE 3 may clear or release the configured downlink assignment and the configured uplink grant Type 2 associated with one or more SCells contained in the SCG. Alternatively, the UE 3 may maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 for all cells contained in the SCG while the SCG is deactivated.
  • FIG. 14 shows an example of the operation of UE3.
  • the motion shown in FIG. 14 can be combined with the motion shown in one or both of FIGS. 12 and 13.
  • Step 1401 is similar to step 1201 in FIG. 12 and step 1301 in FIG. That is, in step 1401, the UE 3 deactivates an SCG configured with one or more radio bearers that use the SCG's radio resources.
  • the UE3 may have one of the SRS resource settings and the PUCCH resource settings associated with the PSCell, even if the UE3 does not maintain valid uplink timing for the SCG. Keep both.
  • UE3 maintains one or both of the SRS resource settings and PUCCH resource settings associated with the PSCell even if the PS Cell's Time Alignment Timer (TAT) expires while the SCG is deactivated. Similar to UE3, the network (ie SN (or SN2 and MN1)) was associated with PSCell even though UE3 did not maintain valid uplink timing for SCG while SCG was deactivated. Maintain one or both of the SRS resource settings and the PUCCH resource settings. In step 1402, UE3 maintains the radio resource settings, including one or both of the SRS resource settings and the PUCCH resource settings associated with the PSCell, which may be ignored.
  • TAT Time Alignment Timer
  • the UE3 and the network activate, enable, or activate the maintained radio resource settings, including one or both of the SRS resource settings and the PUCCH resource settings associated with the PSCell. You may restore it.
  • the UE 3 when the SCG is activated, the UE 3 does not need to reconfigure these radio resources. Therefore, this can contribute to reducing the delay of SCG activation.
  • FIG. 15 shows an example of the operation of UE3.
  • the motion shown in FIG. 14 can be combined with the motion shown in any or any combination of FIGS. 12-14.
  • step 1501 UE3 provides information from MN1 or SN2 indicating whether one or both of configured downlink assignment and configured uplink grant Type 2 should be maintained for PSCell only or for all cells in SCG.
  • the network (SN2 or MN1) determines whether one or both of the configured downlink assignment and the configured uplink grant Type 2 should be maintained for PSCells only or for all cells in the SCG.
  • Information indicating the decision is transmitted to UE3.
  • the SN2 may transmit the information to the UE3 via the MN1.
  • the information may be transmitted to UE3 via the MN RRC Reconfiguration message, the SN RRC Reconfiguration message, or the MCG MAC CE.
  • the UE 3 maintains one or both of the configured downlink assignment and the configured uplink grant Type 2 while the SCG is deactivated according to the information received in step 1501.
  • UE3 should maintain one or both of the configured downlink assignment and configured uplink grant Type 2 associated with one or more SCells contained in the SCG while the SCG is activated.
  • SN2 or MN1 can provide UE3 with a decision as to whether or not it is present.
  • FIG. 16 shows an example of the operation of UE3.
  • the motion shown in FIG. 16 can be combined with the motion shown in any or any combination of FIGS. 12-15.
  • UE3 deactivates an SCG configured with one or more radio bearers that use the SCG's radio resources.
  • the radio bearer includes any or any combination of MN terminated SCG bearer, SN terminated SCG bearer, MN terminated split bearer, and SN terminated split bearer.
  • UE3 is required to reestablish the PDCP at the MCG's user plane protocol layer for the radio bearer when the RRC layer requests the PDCP reestablishment of the radio bearer while the SCG is deactivated. Do not perform PDCP re-establishment at the SCG's user plane protocol layer for the radio bearer.
  • the MCG user plane protocol layer performs PDCP re-establishment for MN terminated SCG bearers and MN terminated split bearers, MCG RLC re-establishment for split bearers, and MCG MAC reset for split bearers. do.
  • the SCG userplane protocol layer has corresponding behaviors such as PDCP re-establishment for SN terminated SCG bearers and SN terminated split bearers, SCG RLC re-establishment for SCG bearers and split bearers. , And SCG MAC reset for SCG bearers and split bearers. This can contribute to eliminating waste and simplifying the maintenance of SCG by UE3 while SCG is deactivated.
  • FIG. 17 shows an example of the operation of UE3.
  • the motion shown in FIG. 17 can be combined with the motion shown in any or any combination of FIGS. 12-16.
  • UE3 deactivates an SCG configured with one or more radio bearers that use the SCG's radio resources.
  • the radio bearer includes any or any combination of MN terminated SCG bearer, SN terminated SCG bearer, MN terminated split bearer, and SN terminated split bearer.
  • step 1702 when the RRC layer requests PDCP recovery for the radio bearer while the SCG is deactivated, the UE 3 is required to perform PDCP recovery at the user plane protocol layer of the MCG for the radio bearer. And do not perform PDCP recovery operations at the SCG's user plane protocol layer for the radio bearer.
  • the MCG user plane protocol layer performs PDCP recovery for MN terminated SCG bearers and MN terminated split bearers, MCG RLC re-establishment for split bearers, and MCG MAC reset for split bearers.
  • the SCG userplane protocol layer has corresponding behaviors such as PDCP recovery for SN terminated SCG bearers and SN terminated split bearers, SCG RLC re-establishment for SCG bearers and split bearers, and Do not run SCG MAC reset, for SCG bearers and split bearers. This can contribute to eliminating waste and simplifying the maintenance of SCG by UE3 while SCG is deactivated.
  • UE3 of the present embodiment may maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 associated with the PS Cell when PS Cell mobility is performed while the SCG is deactivated. Similarly, UE3 may maintain one or both of the SRS resource settings and PUCCH resource settings associated with the PSCell when PSCell mobility takes place while the SCG is deactivated.
  • PSCell mobility may be intra-SN PSCell change (change), inter-SN (inter-SN) PSCell change, PSCell reconfiguration (reconfiguration), or SCG reconfiguration associated with handover (MN change). ..
  • UE3 of this embodiment maintains the operation of the Time Alignment Timer (TAT) associated with the SCG while the SCG is deactivated, and PSCell responds to the expiration of the TAT while the SCG is deactivated. You may make random access to.
  • UE3 receives a Time Advance (TA) command from PSCell at the random access, restarts the Time Alignment timer (TAT), and keeps the TAT running while the SCG is deactivated. You may. This can contribute to allowing UE3 to use SCG in a timely manner, omitting random access when the SCG is activated in the future.
  • TA Time Advance
  • the configuration example of the wireless communication network according to the present embodiment is the same as the example shown in FIGS. 1 and 2.
  • UE3 does not use the SCG portion (SCG leg) of the split bearer and the uplink of the split bearer while the SCG with the split bearer is deactivated. (RLC)
  • the primary path may be set to MCG.
  • the UE3 and the network may set the uplink primary path of the split bearer in the SCG.
  • UE3 may autonomously change the uplink primary path of the split bearer to SCG in response to SCG activation.
  • the uplink primary path of the split bearer is SCG in response to the SCG activation. You may indicate to UE3 that it will be changed to.
  • UE 3 when the SCG is deactivated in the PS Cell addition or PS Cell mobility, the UE 3 randomly accesses the PS Cell according to the PS Cell addition or PS Cell mobility without waiting for the future SCG activation. In a third embodiment, the UE 3 randomly accesses the PS Cell upon expiration of the TAT while the SCG is deactivated.
  • These embodiments may be modified as follows. UE3 is designated by the serving beam (optimal beam or SN2) at the time of activating SCG, even though it maintains valid uplink synchronization (uplink timing) of SCG by any of these random accesses. If the beam) is different from the serving beam at the time the uplink synchronization was established, it may start with random access in PSCell.
  • the SCG deactivation may be referred to as SCG suspension or SCG suspension.
  • the state of the cell (PSCell only or PSCell and SCell) of the SCG while the SCG is deactivated may be a deactivated state or a dormancy state.
  • the dormancy state may be a state corresponding to or similar to the dormant state of LTE SCell, or may be a state corresponding to dormant BWP of 5G NR.
  • the SCG activation instruction (or display) is sent to UE3 via physical layer signaling (DCI on e.g. PDCCH) or MAC layer signaling (e.g. MAC CE), the MAC layer or physical of UE3.
  • the layer may indicate SCG activation to the RRC layer of UE3.
  • the SN2 DU22 transmits the SCG activation instruction (or display). May be started or triggered and the SN2 CU21 (e.g. gNB-CU) may be informed (or requested) to do so.
  • SCG deactivation may be initiated by MN1 or SN2.
  • SCG activation may be initiated by MN1 or SN2 or by UE3. If UE3 initiates this, UE3 may send an activation request using PUCCH (e.g. Scheduling Request (SR)), SRS, or RACH on the MCG (or SCG).
  • PUCCH Scheduling Request (SR)
  • SRS Seduling Request
  • RACH Radio Access Management Function
  • MN1 may determine SCG activation or SN2 may determine this.
  • SN2 may request SCG activation from MN1 and determine whether MN1 activates SCG in response to the request.
  • N1 may determine SCG deactivation and SN2 may determine this.
  • SN2 may request SCG deactivation from MN1 and determine whether MN1 deactivates SCG in response to the request.
  • UE3 when UE3 receives an SCG activation instruction (or display) from MN1 (or from SN2 via MN1) and makes random access in PSCell but fails (that is, SCG activation fails). , UE3 may report this in an RRC message (e.g. SCG Failure Information) to MN1.
  • RRC message e.g. SCG Failure Information
  • the failure type included in the SCG Failure Information message may be SCG reconfiguration failure, SCG activation failure, or another new value.
  • MN1 determines the SCG activation failure in IE (e.g.
  • SCG Reconfiguration Failure SCG Modification Failure
  • X2AP or XnAP
  • Cause value e.g.
  • SCG activation failure failed SCG activation
  • UE3 may stay at the initial BWP, first active BWP, or dormant BWP specified by SN2 while the SCG is deactivated, and perform the required RRM measurement there. good.
  • MN1 or SN2 when MN1 or SN2 activates SCG, MN1 or SN2 may be PSCell only, all cells belonging to SCG (i.e. PSCell and all SCells), or one or more selected as PSCell. You may instruct UE3 to activate SCells. When MN1 or SN2 activates SCG, MN1 or SN2 may instruct UE3 to switch directly to dormant BWP in response to SCell activation.
  • FIG. 18 is a block diagram showing a configuration example of MN1 according to the above-described embodiment.
  • the configuration of SN2 may be similar to the configuration shown in FIG.
  • the MN1 includes a Radio Frequency transceiver 1801, a network interface 1803, a processor 1804, and a memory 1805.
  • RF transceiver 1801 performs analog RF signal processing to communicate with UEs including UE3.
  • the RF transceiver 1801 may include a plurality of transceivers.
  • the RF transceiver 1801 is coupled with the antenna array 1802 and the processor 1804.
  • the RF transceiver 1801 receives the modulation symbol data from the processor 1804, generates a transmit RF signal, and supplies the transmit RF signal to the antenna array 1802. Further, the RF transceiver 1801 generates a baseband reception signal based on the received RF signal received by the antenna array 1802, and supplies the baseband reception signal to the processor 1804.
  • the RF transceiver 1801 may include an analog beamformer circuit for beamforming.
  • the analog beamformer circuit includes, for example, a plurality of phase shifters and a plurality of power amplifiers.
  • the network interface 1803 is used to communicate with the network node (e.g. MN1, as well as the control node and transfer node of the core network).
  • the network interface 1803 may include, for example, a network interface card (NIC) compliant with the IEEE802.3 series.
  • NIC network interface card
  • Processor 1804 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Processor 1804 may include a plurality of processors.
  • the processor 1804 is a modem processor (e.g. Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (e.g. Central Processing Unit (CPU) or Micro Processing Unit (MPU) that performs control plane processing. ) May be included.
  • DSP Digital Signal Processor
  • a protocol stack processor e.g. Central Processing Unit (CPU) or Micro Processing Unit (MPU) that performs control plane processing.
  • Processor 1804 may include a digital beamformer module for beamforming.
  • the digital beamformer module may include a MultipleInputMultipleOutput (MIMO) encoder and precoder.
  • MIMO MultipleInputMultipleOutput
  • Memory 1805 is composed of a combination of volatile memory and non-volatile memory.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask ReadOnlyMemory (MROM), Electrically ErasableProgrammableROM (EEPROM), flash memory, or hard disk drive, or any combination thereof.
  • Memory 1805 may include storage located away from processor 1804. In this case, processor 1804 may access memory 1805 via network interface 1803 or an I / O interface (not shown).
  • the memory 1805 may store one or more software modules (computer programs) 1806 including instruction groups and data for performing processing by the MN1 described in the plurality of embodiments described above.
  • the processor 1804 may be configured to read the software module 1806 from memory 1805 and execute it to perform the processing of MN1 described in the embodiments described above.
  • the MN1 does not have to include the RF transceiver 1801 (and the antenna array 1802).
  • FIG. 19 is a block diagram showing a configuration example of UE3.
  • Radio Frequency (RF) transceiver 1901 performs analog RF signal processing to communicate with MN1 and SN2.
  • the RF transceiver 1901 may include a plurality of transceivers.
  • the analog RF signal processing performed by the RF transceiver 1901 includes frequency up-conversion, frequency down-conversion, and amplification.
  • the RF transceiver 1901 is coupled with the antenna array 1902 and the baseband processor 1903.
  • the RF transceiver 1901 receives the modulation symbol data (or OFDM symbol data) from the baseband processor 1903, generates a transmit RF signal, and supplies the transmit RF signal to the antenna array 1902.
  • the RF transceiver 1901 generates a baseband reception signal based on the received RF signal received by the antenna array 1902, and supplies the baseband reception signal to the baseband processor 1903.
  • the RF transceiver 1901 may include an analog beamformer circuit for beamforming.
  • the analog beamformer circuit includes, for example, a plurality of phase shifters and a plurality of power amplifiers.
  • the baseband processor 1903 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing includes (a) data compression / restoration, (b) data segmentation / concatenation, (c) transmission format (transmission frame) generation / decomposition, and (d) transmission path coding / decoding. , (E) Modulation (symbol mapping) / demodulation, and (f) Generation of OFDM symbol data (baseband OFDM signal) by Inverse Fast Fourier Transform (IFFT).
  • the control plane processing includes layer 1 (e.g. transmission power control), layer 2 (e.g. radio resource management, and hybrid automatic repeat request (HARQ) processing), and layer 3 (signaling related to e.g. attach, mobility, and call management). Includes communication management.
  • the digital baseband signal processing by the baseband processor 1903 performs signal processing of the ServiceDataAdaptationProtocol (SDAP) layer, PacketDataConvergenceProtocol (PDCP) layer, RadioLinkControl (RLC) layer, MAC layer, and PHY layer. It may be included. Further, the control plane processing by the baseband processor 1903 may include the processing of the Non-Access Stratum (NAS) protocol, the RRC protocol, and the MAC CE.
  • SDAP ServiceDataAdaptationProtocol
  • PDCP PacketDataConvergenceProtocol
  • RLC RadioLinkControl
  • the baseband processor 1903 may perform MIMO encoding and precoding for beamforming.
  • the baseband processor 1903 may include a modem processor (e.g. DSP) that performs digital baseband signal processing and a protocol stack processor (e.g. CPU or MPU) that performs control plane processing.
  • a modem processor e.g. DSP
  • a protocol stack processor e.g. CPU or MPU
  • the protocol stack processor that performs the control plane processing may be shared with the application processor 1904 described later.
  • the application processor 1904 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1904 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1904 is a system software program (Operating System (OS)) read from memory 1906 or a memory (not shown) and various application programs (eg, call application, web browser, mailer, camera operation application, music playback). By executing the application), various functions of UE3 are realized.
  • OS Operating System
  • the baseband processor 1903 and application processor 1904 may be integrated on one chip, as shown by the dashed line (1905) in FIG.
  • the baseband processor 1903 and application processor 1904 may be implemented as one System on Chip (SoC) device 1905.
  • SoC devices are sometimes referred to as system Large Scale Integration (LSI) or chipsets.
  • the memory 1906 is a volatile memory, a non-volatile memory, or a combination thereof.
  • the memory 1906 may include a plurality of physically independent memory devices. Volatile memory is, for example, SRAM or DRAM or a combination thereof. Non-volatile memory can be MROM, EEPROM, flash memory, or a hard disk drive, or any combination thereof.
  • the memory 1906 may include an external memory device accessible from the baseband processor 1903, application processor 1904, and SoC 1905.
  • the memory 1906 may include an internal memory device integrated in the baseband processor 1903, the application processor 1904, or the SoC 1905. Further, the memory 1906 may include the memory in the Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1906 may store one or more software modules (computer programs) 1907 including instruction groups and data for performing processing by UE3 described in the plurality of embodiments described above.
  • the baseband processor 1903 or application processor 1904 is configured to read the software module 1907 from memory 1906 and execute it to perform the processing of UE3 described with reference to the drawings in the above embodiments. May be done.
  • control plane processing and operation performed by the UE 3 described in the above embodiments is performed by at least one of the RF transceiver 1901 and the antenna array 1902, that is, the baseband processor 1903 and the application processor 1904, and the software module 1907. It can be realized by the memory 1906 that stores the above.
  • each of the processors included in the MN1, SN2, and UE3 provides instructions for causing the computer to perform the algorithm described with reference to the drawings.
  • This program is stored using various types of non-transitory computer readable medium and can be supplied to a computer.
  • Non-temporary computer-readable media include various types of tangible storage media.
  • non-temporary computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), optomagnetic recording media (eg optomagnetic disks), CompactDiscReadOnlyMemory (CD-ROM), CD- Includes R, CD-R / W, semiconductor memory (eg, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer readable media. Examples of temporary computer readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • UE User Equipment
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • processor coupled to the at least one memory, Equipped with The at least one processor is configured with a wireless bearer that uses the radio resources of the SCG. While the SCG is deactivated, the configured downlink assignment associated with the Primary SCG Cell (PSCell) contained in the SCG. And configured to maintain one or both of the configured uplink grant Type 2 associated with the PSCell.
  • PSCell Primary SCG Cell
  • the at least one processor is further for the radio bearer when the Radio Resource Control (RRC) layer requests the Packet Data Convergence Protocol (PDCP) reestablishment of the radio bearer while the SCG is deactivated.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the operation required for the PDCP re-establishment is performed in the user plane protocol layer of the MCG, and the operation for PDCP re-establishment is not performed in the user plane protocol layer of the SCG for the radio bearer.
  • Ru UE described in Appendix 1.
  • the at least one processor also for the radio bearer when the Radio Resource Control (RRC) layer requests Packet Data Convergence Protocol (PDCP) recovery of the radio bearer while the SCG is deactivated.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the operation required for the PDCP recovery is performed at the user plane protocol layer of the MCG, and the operation for the PDCP recovery is not performed at the user plane protocol layer of the SCG for the radio bearer.
  • UE according to Appendix 1 or 2.
  • the at least one processor is further configured to maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 even if the UE does not maintain valid uplink timing for the SCG. Be done, The UE according to any one of the appendices 1 to 3. (Appendix 5)
  • the at least one processor further associates with the configured Sounding Reference Signal (SRS) resource configuration associated with the PSCell and with the PSCell even if the UE does not maintain valid uplink timing for the SCG.
  • SRS Sounding Reference Signal
  • the UE Configured to maintain one or both of the configured Physical Uplink Control Channel (PUCCH) resources.
  • the UE according to any one of the appendices 1 to 4.
  • the at least one processor further maintains one or both of the configured downlink assignment and the configured uplink grant Type 2 even if the PSCell's Time Alignment Timer expires while the SCG is deactivated.
  • the at least one processor can further configure the configured Sounding Reference Signal (SRS) resource associated with the PSCell and the PSCell even if the Time Alignment Timer of the PSCell expires while the SCG is deactivated.
  • SRS Sounding Reference Signal
  • the at least one processor is further configured with a configured downlink assignment associated with one or more SCells contained in the SCG and configured associated with the one or more SCells while the SCG is deactivated. Configured to maintain one or both of uplink grant Type 2, The UE according to any one of the appendices 1 to 7. (Appendix 9) The at least one processor indicates whether one or both of the configured downlink assignment and the configured uplink grant Type 2 should be maintained for the PSCell alone or for all the cells contained in the SCG.
  • PUCCH Physical Uplink Control Channel
  • the UE Configured to receive information from said master node or said secondary node, The UE according to any one of the appendices 1 to 8. (Appendix 10) The at least one processor is configured to activate one or both of the maintained configured downlink assignment and the configured uplink grant Type 2 associated with the PS Cell when the SCG is activated. , The UE according to any one of the appendices 1 to 9. (Appendix 11) The at least one processor is configured to set the uplink primary path of the split bearer to the MCG without using the SCG portion of the split bearer while the SCG is deactivated. The UE according to any one of the appendices 1 to 10.
  • the at least one processor is configured to ignore one or both of the configured downlink assignment and the configured uplink grant Type 2 associated with the PSCell while the SCG is deactivated.
  • the UE according to any one of the appendices 1 to 11.
  • the at least one processor is to maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 associated with the PSCell when PSCell mobility is performed while the SCG is deactivated. Composed, The UE according to any one of the appendices 1 to 12.
  • the radio bearer is at least one of an SCG bearer terminated by the master node, an SCG bearer terminated by the secondary node, a split bearer terminated by the master node, or a split bearer terminated by the secondary node.
  • the UE according to any one of the appendices 1 to 13.
  • a radio access network (RAN) node configured to act as a master node associated with a Master Cell Group (MCG) or a secondary node associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • UE User Equipment
  • the configured downlink assignment associated with the Primary SCG Cell (PSCell) contained in the SCG. And configured to maintain one or both of the configured uplink grant Type 2 associated with the PSCell.
  • RAN node. The at least one processor is further configured to maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 even if the UE does not maintain valid uplink timing for the SCG. Be done, The RAN node described in Appendix 15.
  • the at least one processor further associates with the configured Sounding Reference Signal (SRS) resource configuration associated with the PSCell and with the PSCell even if the UE does not maintain valid uplink timing for the SCG.
  • SRS Sounding Reference Signal
  • the at least one processor is further configured with a configured downlink assignment associated with one or more SCells contained in the SCG and configured associated with the one or more SCells while the SCG is deactivated. Configured to maintain one or both of uplink grant Type 2, The RAN node according to any one of Supplementary note 15 to 17. (Appendix 19) The at least one processor indicates whether one or both of the configured downlink assignment and the configured uplink grant Type 2 should be maintained for the PSCell alone or for all the cells contained in the SCG.
  • PUCCH Physical Uplink Control Channel
  • (Appendix 20) A method performed by User Equipment (UE) configured to support dual connectivity with the Master Cell Group (MCG) associated with the master node and the Secondary Cell Group (SCG) associated with the secondary node.
  • UE User Equipment
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • PSCell Primary SCG Cell
  • a radio access network (RAN) node configured to act as a master node associated with a Master Cell Group (MCG) or a secondary node associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE). It is a method performed by A configured downlink assignment associated with the Primary SCG Cell (PSCell) contained in the SCG and associated with the PS Cell while the SCG is deactivated while the radio bearer is configured to use the radio resources of the SCG. Prepare to maintain one or both of configured uplink grant Type 2 Method.
  • (Appendix 22) Performed by a computer implemented in User Equipment (UE) configured to support dual connectivity with the Master Cell Group (MCG) associated with the master node and the Secondary Cell Group (SCG) associated with the secondary node.
  • a computer program that causes the computer to do the method comprises a configured downlink assignment and the PSCell associated with a Primary SCG Cell (PSCell) contained in the SCG while the SCG being configured with a radio bearer that uses the radio resources of the SCG is deactivated.
  • PSCell Primary SCG Cell
  • a radio access network (RAN) node configured to act as a master node associated with a Master Cell Group (MCG) or a secondary node associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the method comprises a configured downlink assignment and the PSCell associated with a Primary SCG Cell (PSCell) contained in the SCG while the SCG being configured with a radio bearer that uses the radio resources of the SCG is deactivated. Provided to maintain one or both of the configured uplink grant Type 2 associated with Computer program.
  • PSCell Primary SCG Cell
  • UE User Equipment
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • at least one memory With at least one processor coupled to the at least one memory, Equipped with When the SCG containing the PS Cell is deactivated at the time of Primary SCG Cell (PSCell) addition or PS Cell mobility, the at least one processor responds to the PS Cell addition or PS Cell mobility without waiting for future SCG activation. Is configured to perform random access to the PSCell.
  • PSCell Primary SCG Cell
  • UE User Equipment
  • the information shown is configured to be received from the master node or the secondary node.
  • the information comprises a random access channel configuration for the PSCell contained in the RRC Reconfiguration message for the secondary node.
  • the random access channel setting includes the contention-free random access (CFRA) resource setting to allow random access to the PSCell in response to the PSCell addition or PSCell mobility without waiting for future SCG activation.
  • CFRA contention-free random access
  • the information comprises a flag contained in any of the RRC Reconfiguration message of the master node, the RRC Reconfiguration message of the secondary node, and the Medium Access Control (MAC) Control Element (CE) of the MCG.
  • the PSCell addition or PSCell mobility instructs the UE to deactivate the SCG and causes the UE to set or update an Access Stratum (AS) security key for a radio bearer that uses the radio resources of the SCG. , UE described in Appendix A1.
  • AS Access Stratum
  • the at least one processor may set an Access Stratum (AS) security key for a radio bearer instructing the UE that the PSCell addition or PSCell mobility deactivates the SCG and using the radio resources of the SCG. If the update is triggered to the UE, it is configured to randomly access the PSCell in response to the PSCell addition or PSCell mobility without waiting for future SCG activation.
  • AS Access Stratum
  • the PSCell mobility includes a PSCell change, a PSCell reconfiguration, or an SCG reconfiguration that accompanies the change of the master node. The UE according to any one of the appendices A1 to A7.
  • Deactivation of the SCG during the PS Cell mobility comprises keeping the SCG in the deactivated state during PS Cell mobility while the SCG is deactivated.
  • the UE according to any one of the appendices A1 to A8.
  • the at least one processor is configured to autonomously deactivate the SCG after successful random access to the PSCell.
  • the UE according to any one of the appendices A1 to A9.
  • the at least one processor is to deactivate the SCG in response to receiving an indication of SCG deactivation from the secondary node or the master node after the random access to the PSCell is successfully completed. Composed, The UE according to any one of the appendices A1 to A9.
  • the at least one processor is configured to receive information from the master node or the secondary node indicating whether or not the SCG should be autonomously deactivated after the random access to the PSCell is successfully completed. Be done, The UE according to any one of the appendices A1 to A11.
  • the at least one processor also operates the Time Alignment Timer associated with the SCG when the Access Stratum (AS) security key for the radio bearer that uses the radio resources of the SCG needs to be updated. It is configured to make random access to the PSCell regardless of whether it has expired or expired.
  • the UE according to any one of the appendices A1 to A12.
  • the at least one processor is configured with a radio bearer that uses the radio resources of the SCG. While the SCG is deactivated, the configured downlink assignment associated with the PSCell and the configured uplink associated with the PSCell. Configured to maintain one or both of grant Type 2, The UE according to any one of the appendices A1 to A13.
  • the at least one processor is further for the radio bearer when the Radio Resource Control (RRC) layer requests the Packet Data Convergence Protocol (PDCP) reestablishment of the radio bearer while the SCG is deactivated.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the operation required for the PDCP re-establishment is performed in the user plane protocol layer of the MCG, and the operation for PDCP re-establishment is not performed in the user plane protocol layer of the SCG for the radio bearer.
  • Ru UE described in Appendix A14.
  • the at least one processor also for the radio bearer when the Radio Resource Control (RRC) layer requests Packet Data Convergence Protocol (PDCP) recovery of the radio bearer while the SCG is deactivated.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the at least one processor is further configured to maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 even if the UE does not maintain valid uplink timing for the SCG. Be done, The UE according to any one of Supplementary A14 to A16.
  • the at least one processor further associates with the configured Sounding Reference Signal (SRS) resource configuration associated with the PSCell and with the PSCell even if the UE does not maintain valid uplink timing for the SCG. Configured to maintain one or both of the configured Physical Uplink Control Channel (PUCCH) resources.
  • SRS Sounding Reference Signal
  • PUCCH Physical Uplink Control Channel
  • the at least one processor further maintains one or both of the configured downlink assignment and the configured uplink grant Type 2 even if the PSCell's Time Alignment Timer expires while the SCG is deactivated. Is configured as The UE according to any one of Supplementary A14 to A16.
  • the at least one processor can further configure the configured Sounding Reference Signal (SRS) resource associated with the PSCell and the PSCell even if the Time Alignment Timer of the PSCell expires while the SCG is deactivated. Configured to maintain one or both of the settings for the Physical Uplink Control Channel (PUCCH) resource associated with.
  • PUCCH Physical Uplink Control Channel
  • the at least one processor is further configured with a configured downlink assignment associated with one or more SCells contained in the SCG and configured associated with the one or more SCells while the SCG is deactivated. Configured to maintain one or both of uplink grant Type 2, The UE according to any one of the appendices A14 to A20. (Appendix A22) The at least one processor indicates whether one or both of the configured downlink assignment and the configured uplink grant Type 2 should be maintained for the PSCell alone or for all the cells contained in the SCG. Configured to receive information from said master node or said secondary node, The UE according to any one of the appendices A14 to A21.
  • a radio access network (RAN) node configured to act as a master node associated with a Master Cell Group (MCG) or a secondary node associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • UE User Equipment
  • at least one memory With at least one processor coupled to the at least one memory, Equipped with When the SCG containing the PS Cell is deactivated at the time of Primary SCG Cell (PSCell) addition or PS Cell mobility, the at least one processor responds to the PS Cell addition or PS Cell mobility without waiting for future SCG activation. It is configured to indicate to the UE whether or not it is necessary to perform random access to the PSCell.
  • RAN node When the SCG containing the PS Cell is deactivated at the time of Primary SCG Cell (PSCell) addition or PS Cell mobility, the at least one processor responds to the PS Cell addition or PS Cell mobility without waiting for future SCG activation. It is configured to indicate to the UE whether or not
  • the secondary node to indicate to the UE whether the at least one processor needs to randomly access the PSCell in response to the PSCell addition or PSCell mobility without waiting for future SCG activation. Configured to use the PSCell's random access channel configuration contained in the RRC Reconfiguration message.
  • the at least one processor may include the contention-free random access (CFRA) resource configuration in the random access channel configuration to the PSCell in response to the PSCell addition or PSCell mobility without waiting for future SCG activation. Indicates to the UE that random access to The RAN node described in Appendix A24.
  • CFRA contention-free random access
  • the master node to indicate to the UE whether the at least one processor needs to randomly access the PSCell in response to the PSCell addition or PSCell mobility without waiting for future SCG activation.
  • RRC Reconfiguration message RRC Reconfiguration message of the secondary node, and the flag contained in any of the Medium Access Control (MAC) Control Element (CE) of the MCG.
  • the at least one processor may set an Access Stratum (AS) security key for a radio bearer instructing the UE that the PSCell addition or PSCell mobility deactivates the SCG and using the radio resources of the SCG.
  • AS Access Stratum
  • the RAN node according to any one of Supplementary A23 to A26.
  • the at least one processor is configured to autonomously deactivate the SCG after successful random access to the PSCell.
  • the at least one processor is configured to send an indication of SCG deactivation to the UE after a successful random access to the PSCell is completed.
  • the at least one processor is configured to indicate to the UE whether the SCG should be autonomously deactivated after the random access to the PSCell is successfully completed.
  • the RAN node according to any one of Supplementary A23 to A29.
  • the at least one processor is configured with a radio bearer that uses the radio resources of the SCG. While the SCG is deactivated, the configured downlink assignment associated with the PSCell and the configured uplink associated with the PSCell. Configured to maintain one or both of grant Type 2, The RAN node according to any one of Supplementary A23 to A30.
  • the at least one processor is further configured to maintain one or both of the configured downlink assignment and the configured uplink grant Type 2 even if the UE does not maintain valid uplink timing for the SCG. Be done, The RAN node described in Appendix A31. (Appendix A33) The at least one processor further associates with the configured Sounding Reference Signal (SRS) resource configuration associated with the PSCell and with the PSCell even if the UE does not maintain valid uplink timing for the SCG. Configured to maintain one or both of the configured Physical Uplink Control Channel (PUCCH) resources. RAN node according to Appendix A31 or A32.
  • SRS Sounding Reference Signal
  • the at least one processor is further configured with a configured downlink assignment associated with one or more SCells contained in the SCG and configured associated with the one or more SCells while the SCG is deactivated. Configured to maintain one or both of uplink grant Type 2, The RAN node according to any one of Supplementary A31 to A33. (Appendix A35) The at least one processor indicates whether one or both of the configured downlink assignment and the configured uplink grant Type 2 should be maintained for the PSCell alone or for all the cells contained in the SCG. Configured to send information to the UE, The RAN node according to any one of Supplementary A31 to A34.
  • (Appendix A36) A method performed by User Equipment (UE) configured to support dual connectivity with the Master Cell Group (MCG) associated with the master node and the Secondary Cell Group (SCG) associated with the secondary node.
  • UE User Equipment
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • RAN radio access network node configured to act as a master node associated with a Master Cell Group (MCG) or a secondary node associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE).
  • RAN radio access network
  • a radio access network (RAN) node configured to act as a master node associated with a Master Cell Group (MCG) or a secondary node associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • UE User Equipment
  • MN Master Node
  • SN Secondary node
  • UE User Equipment
  • Memory 1806 Modules 1903 Baseband Processor 1904 Application Processor 1906 Memory 1907 Modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

User Equipmemnt(3)は、プライマリSCGセル(PSCell)追加又はPSCellモビリティの際に当該PSCellを含むセカンダリセルグループ(SCG)がデアクティベートされるとき、将来のSCGアクティベーションまで待たずにPSCell追加又はPSCellモビリティに応じてPSCellへのランダムアクセスを行う。これは、例えば、SCGがデアクティベートされるときのランダムアクセスを適正化することに寄与できる。

Description

User Equipment、無線アクセスネットワークノード、及びこれらの方法
 本開示は、無線通信システムに関し、特にmulti-connectivity(e.g. Dual Connectivity)でのセカンダリセルグループ(Secondary Cell Group(SCG))のデアクティベーションに関する。
 The 3rd Generation Partnership Project(3GPP)は、Release 17の検討を開始している。3GPPは、セカンダリセルグループ(SCG)のための効率的な(efficient)アクティベーション及びデアクティベーション・メカニズムを議論している(例えば、非特許文献1-5を参照)。SCGのデアクティベーションは、プライマリSCGセル(Primary SCG Cell(PSCell))含む1つのSCGをデアクティベートすることを可能にする。
 この3GPPの議論では、PSCell追加、PSCell変更、Radio Resource Control (RRC)再開(resume)、及びハンドオーバの際に、SCG RRC reconfiguration がSCGアクティベーション状態(activated又はdeactivated)を選択できることが検討されている。この議論では、SCGがデアクティベートされている間のPSCellモビリティがサポートされることが合意されている。現時点ではPSCellモビリティの定義は明確でないが、PSCellモビリティは、少なくともintra-Secondary Node (SN) PSCell Change及びinter-SN PSCell Changeを含むと推定できる。
 SCGのデアクティベーション及び(再)アクティベーションが行われる間、UEがPSCellとのアップリンク同期をいつどのように確立し維持するかについても議論されている。より具体的には、SCGがデアクティベートされている間にUEがPSCellへのランダムアクセス(Random Access Channel(RACH)とも呼ばれる)を行う必要があるか否かについて議論されている。加えて、PSCellをdeactivated stateから(再)アクティベートするとき、UEがランダムアクセス(RACH)を行う必要があるか否かについて議論されている。一例では、PSCellをdeactivated stateからアクティベートする間に、UEがPSCellへのランダムアクセス(RACH)をトリガーするべきであるとの提案がある(例えば、非特許文献2のProposal 3を参照)。対照的に、SCGに関連付けられたTime Alignment Timer(TAT)がまだ動作している(running)間にSCGが(再)アクティベートされるとき、UEはランダムアクセス(RACH)を行わずに通常のSCG動作(normal SCG operation)を開始してもよいことも提案されている(例えば、非特許文献3のProposal 9を参照)。この提案は、SCGに関連付けられたTATが動作している(running)間にSCGがデアクティベートされるとき、UEはTATの動作をキープすることを前提としている。また、PSCellが変更され且つSCGがデアクティベートされるとき、UEはランダムアクセス(RACH)を行わないことも提案されている(例えば、非特許文献3のProposal 17を参照)。
 さらにまた、デアクティベートされたSCGの基本コンセプトでは、SCGがアクティベートされる必要があるときの設定による遅延(delay)を避けるために、UEはSCG設定(SCG configuration)をキープすることが提案されている(例えば、非特許文献2のProposal 1、及び非特許文献4のProposal 18を参照)。同様に、SCGがアクティベートされるとき、ネットワークはSCG設定をリリースする必要がないことが提案されている(例えば、非特許文献4のProposal 18を参照)。
Ericsson, "Efficient SCG (de)activation", R2-2010062, 3GPP TSG-RAN WG2 #112-e, November 2-13, 2020 MediaTek Inc. "Discussion on SCG suspension", R2-2009439, 3GPP TSG-RAN WG2 #112-e, November 2-13, 2020 Huawei, "Discussion on SCG deactivation and activation", R2-2010124, 3GPP TSG-RAN WG2 #112-e, November 2-13, 2020 Nokia, Nokia Shanghai Bell, "On fast deactivation/activation of SCG", R2-2009547, 3GPP TSG-RAN WG2 #112-e, November 2-13, 2020 ZTE, "Summary of Offline Discussion on SCG (de)activation", R3-207003, 3GPP TSG-RAN WG3 #110-e, November 2-12, 2020
 発明者は、SCGデアクティベーション及びアクティベーションについて検討し、様々な課題を見出した。これらの課題の1つは、UEがPSCellへのランダムアクセス(RACH)をいつどのように行うかに関する。上述のように、PSCell追加又はPSCell変更の際にSCGがデアクティベートされるとき(when SCG is deactivated upon PSCell addition or PSCell change)、UEはRACHを行わなくてもよいことが提案されている。また、SCGがデアクティベートされている間にPSCellが変更されるとき(when the PSCell is changed while the SCG is deactivated)、UEはRACHを行わなくてもよいことが提案されている。
 しかしながら、現在の3GPP標準によると、PSCell追加及びPSCell変更の際に、SCGベアラ(bearers)のためのAccess Stratum(AS)セキュリティ鍵(keys) (e.g. ユーザープレーン鍵(KUPenc))が設定又は更新される必要がある場合がある。そして、現在の3GPP標準によると、ASセキュリティ鍵が設定又は更新されるとき、UEは、PSCellへのRACHを行うことを含む手順(具体的には、Reconfiguration with Sync手順)を行わなければならない。したがって、PSCell追加及びPSCell変更の際にUEがPSCellへのRACHを行わないことは、現在の3GPP標準の規定と矛盾する(inconsistent)又は相容れない(incompatible)かもしれない。
 また、もしPSCell追加の際に当該PSCellを含むSCGがデアクティベートされるときにUEがPSCellへのRACHを行わないなら、UEは、SCGがその後にアクティベートされるときに新たなPSCellに初めてRACHを試みる。同様に、もしSCGがデアクティベートされている間にPSCellが古いそれから新たなセルに変更されるとき(when the PSCell is changed while the SCG is deactivated)にUEが新たなPSCellへのRACHを行わないなら、UEは、SCGがその後にアクティベートされるときに新たなPSCellに初めてRACHを試みる。しかし、UEはこの時点でPSCellへのアクセスがまだ一度も成功しておらず、UEはRACHを失敗する可能性がある(SCG failure)。このことは、SCGでの通信が必要とされるときにUEがSCGをタイムリーに使用することを妨げるかもしれない。
 発明者が得た他の課題は、SCGがデアクティベートされている間のUEの動作に関する。具体的には、SCGがデアクティベートされるとき、UEがSCGに関するどの設定をキープするべきであるかが明確でない。3GPP標準における現在のMulti-Radio Dual Connectivity(MR-DC)の規定によると、SCellデアクティベーションの際に、UEは、configured downlink assignmentおよびconfigured uplink grant Type 2をクリアする。なお、configured downlink assignmentは、ダウンリンクsemi-persistent scheduling(SPS)リソースをUEに割り当てる。configured downlink assignmentでは、RRCがconfigured downlink assignmentの周期及びconfigured scheduling Radio Network Temporary Identifier(CS-RNTI)を定義し、当該CS-RNTIをアドレスするPhysical Downlink Control Channel(PDCCH)がPhysical Downlink Shared Channel(PDSCH)リソースを半静的(semi-persistently)にUEに割り当て、configured downlink assignmentをアクティベートする。一方、configured uplink grant Type 2は、アップリンクSPSリソースをUEに割り当てる。configured uplink grant Type 2では、RRCがconfigured uplink grantの周期(periodicity)及びCS-RNTIを定義し、当該CS-RNTIをアドレスするPDCCHがPhysical Uplink Shared Channel(PUSCH)リソースを半静的(semi-persistently)にUEに割り当て、configured uplink grantをアクティベートする。言い換えると、configured grant Type 2 PUSCH送信は、当該CS-RNTIによりスクランブルされたvalid activation Downlink Control Information(DCI)(つまり、DCI format 0_0又は0_1)内のUL grantによって、半静的(semi-persistently)にスケジュールされる。加えて、現在のMR-DCの規定によると、SCGに関連付けられたTATが満了したとき、UEは、configured Sounding Reference Signal(SRS)リソース及びPhysical Uplink Control Channel(PUCCH)リソースをリリース(解放、解除)し、configured downlink assignmentおよびconfigured uplink grantをクリア(clear)する。
 これらの規定に従うと、例えば、SCGの無線リソースを使用する無線ベアラが設定されているSCGがデアクティベートされるとき、UEは、configured downlink assignmentおよびconfigured uplink grant Type 2をクリアすることが考えられる。しかしながら、そうすると、当該SCGがアクティベートされるとき、UEはこれらの無線リソースを再度設定される必要がある。このことは、SCG activationの遅延の増加をもたらすかもしれない。なお、SCGの無線リソースを使用する無線ベアラは、SCGベアラ若しくはスプリットベアラ又は両方である。SCG無線ベアラは、SNに関連付けられたSCG内のみにRadio Link Control(RLC)ベアラを持つ無線ベアラである。一方、スプリットベアラは、Master Node(MN)に関連付けられたマスターセルグループ(Master Cell Group(MCG))内のRLCベアラ及びSCG内のRLCベアラの両方を持つ無線ベアラである。SCGベアラ及びスプリットベアラはSNにより終端される(SN terminated)ベアラであってもよいし、MNにより終端される(MN terminated)ベアラであってもよい。SN terminatedベアラは、そのためのPacket Data Convergence Protocol(PDCP)がSNに配置される無線ベアラである。MN terminatedベアラは、そのためのPDCPがMNに配置される無線ベアラである。
 本明細書に開示される実施形態が達成しようとする目的の1つは、上述された課題を含む複数の課題のうち少なくとも1つを解決することに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様は、マスターノードに関連付けられたMCG及びセカンダリノードに関連付けられたSCGを用いるデュアルコネクティビティをサポートするよう構成されたUEに向けられる。当該UEは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、PSCell追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うよう構成される。
 第2の態様は、UEのためのデュアルコネクティビティにおいてMCGに関連付けられたマスターノード又はSCGに関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、PSCell追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すよう構成される。
 第3の態様は、マスターノードに関連付けられたMCG及びセカンダリノードに関連付けられたSCGを用いるデュアルコネクティビティをサポートするよう構成されたUEにより行われる方法に向けられる。当該方法は、PSCell追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うことを含む。
 第4の態様は、UEのためのデュアルコネクティビティにおいてMCGに関連付けられたマスターノード又はSCGに関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法に向けられる。当該方法は、PSCell追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すことを含む。
 第5の態様は、マスターノードに関連付けられたMCG及びセカンダリノードに関連付けられたSCGを用いるデュアルコネクティビティをサポートするよう構成されたUEに向けられる。当該UEは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される。
 第6の態様は、UEのためのデュアルコネクティビティにおいてMCGに関連付けられたマスターノード又はSCGに関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される。
 第7の態様は、マスターノードに関連付けられたMCG及びセカンダリノードに関連付けられたSCGを用いるデュアルコネクティビティをサポートするよう構成されたUEにより行われる方法に向けられる。当該方法は、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを含む。
 第8の態様は、UEのためのデュアルコネクティビティにおいてMCGに関連付けられたマスターノード又はSCGに関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法に向けられる。当該方法は、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを含む。
 第9の態様は、プログラムに向けられる。当該プログラムは、コンピュータに読み込まれた場合に、上述の第3、第4、第7、又は第8の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、上述された課題を含むSCGデアクティベーション及びアクティベーションに関する複数の課題のうち少なくとも1つを解決することに寄与する装置、方法、及びプログラムを提供できる。
実施形態に係る無線通信ネットワークの構成例を示す図である。 実施形態に係るセカンダリノードの構成例を示す図である。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUE及びRANノードによって行われる処理の一例を示すシーケンス図である。 実施形態に係るUE及びRANノードによって行われる処理の一例を示すシーケンス図である。 実施形態に係るUE及びRANノードによって行われる処理の一例を示すシーケンス図である。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUE及びRANノードによって行われる処理の一例を示すフローチャートである。 実施形態に係るUE及びRANノードによって行われる処理の一例を示すフローチャートである。 実施形態に係るUE及びRANノードによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るUEによって行われる処理の一例を示すフローチャートである。 実施形態に係るRANノードの構成例を示すブロック図である。 実施形態に係るUEの構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
 以下に示される複数の実施形態は、3GPP Long Term Evolution (LTE)システム及び第5世代移動通信システム(5G system)を主な対象として説明される。しかしながら、これらの実施形態は、3GPPのmulti-connectivity(e.g. Dual Connectivity)と類似の技術をサポートする他の無線通信システムに適用されてもよい。なお、本明細書で使用されるLTEとの用語は、特に断らない限り、5G Systemとのインターワーキングを可能とするためのLTE及びLTE-Advancedの改良・発展を含む。
<第1の実施形態>
 図1は、本実施形態を含む複数の実施形態に係る無線通信ネットワークの構成例を示している。図1の例では、無線通信ネットワークは、RANノード1、RANノード2、及びUE3を含む。図1に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア(dedicated hardware)上のネットワークエレメントとして、専用ハードウェア上で動作する(running)ソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化(instantiated)された仮想化機能として実装されることができる。
 RANノード1は、cloud RAN(C-RAN)配置(deployment)におけるCentral Unit(e.g. eNB-CU、又はgNB-CU)であってもよいし、CU及び1又は複数のDistributed Units(e.g. eNB-DUs、又はgNB-DUs)の組み合わせであってもよい。C-RANは、CU/DU splitとも呼ばれる。さらに、CUは、Control Plane (CP) Unit(e.g. gNB-CU-CP)及び1又はそれ以上のUser Plane (UP) Unit(e.g. gNB-CU-UP)を含んでもよい。したがって、RANノード1は、CU-CPであってもよく、CU-CP及びCU-UPの組み合わせであってもよい。同様に、RANノード2は、CUであってもよいし、CU及び1又は複数DUsの組み合わせであってもよい。RANノード2は、CU-CPであってもよく、CU-CP及びCU-UPの組み合わせであってもよい。
 RANノード1及び2の各々は、Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network(EUTRAN)ノード又はNext generation Radio Access Network(NG-RAN)ノードであってもよい。EUTRANノードは、eNB又はen-gNBであってもよい。NG-RANノードは、gNB又はng-eNBであってもよい。en-gNBは、UEへのNRユーザープレーン及びコントールプレーン・プロトコル終端を提供し、E-UTRA-NR Dual Connectivity(EN-DC)のセカンダリノード(SN)として動作するノードである。ng-eNBは、UEへのE-UTRAユーザープレーン及びコントールプレーン・プロトコル終端を提供し、NGインタフェースを介して5GCに接続されるノードである。RANノード1のRadio Access Technology(RAT)は、RANノード2のそれと異なっていてもよい。
 RANノード1及びRANノード2は、ノード間インタフェース(i.e. X2インタフェース又はXnインタフェース)103を介して互いに通信する。RANノード1及びRANノード2は、それぞれデュアルコネクティビティのマスターノード(MN)及びセカンダリノード(SN)として動作する。以下では、RANノード1をMN1と呼ぶことがあり、RANノード2をSN2と呼ぶことがある。UE3は、エアインタフェース101及び102を介してMN1及びSN2と通信し、マスターセルグループ(MCG)及びセカンダリセルグループ(SCG)のデュアルコネクティビティを行う。
 このデュアルコネクティビティは、Multi-Radio Dual Connectivity (MR-DC)であってもよい。MR-DCは、E-UTRA-NR Dual Connectivity(EN-DC)、NG-RAN E-UTRA-NR Dual Connectivity(NGEN-DC)、NR-E-UTRA Dual Connectivity(NE-DC)、及びNR-NR Dual Connectivity(NR-DC)を含む。これに応じて、MN1は、マスターeNB(in EN-DC)、マスターng-eNB(in NGEN-DC)、及びマスターgNB(in NR-DC and NE-DC)のいずれであってもよい。同様に、SN2は、en-gNB(in EN-DC)、セカンダリng-eNB(in NE-DC)、及びセカンダリgNB(in NR-DC and NGEN-DC)のいずれであってもよい。EN-DCでは、UE3は、MN1として動作するeNBに接続されるとともに、SN2として動作するen-gNBに接続される。NGEN-DCでは、UE3は、MN1として動作するng-eNBに接続されるとともに、SN2として動作するgNBに接続される。NE-DCでは、MN1として動作するgNBに接続されるとともに、SN2として動作するng-eNBに接続される。NR-DCでは、UE3は、MN1として動作する1つのgNB(又はgNB-DU)に接続されるとともに、SN2として動作する他のgNB(又はgNB-DU)に接続される。
 MCGは、MN1に関連付けられた(又は提供される)サービングセルのグループであり、SpCell(i.e. プライマリセル(Primary Cell(PCell))及び必要に応じて(optionally)1又はそれ以上のセカンダリセル(Secondary Cells(SCells))を含む。一方、SCGは、SN2に関連付けられた(又は提供される)サービングセルのグループであり、プライマリSCGセル(Primary SCG Cell (PSCell)及び必要に応じて(optionally)1又はそれ以上のセカンダリセル(Secondary Cells(SCells))を含む。PSCellは、SCGのSpecial Cell(SpCell)であり、Physical Uplink Control Channel(PUCCH)送信及びcontention-based Random Accessをサポートする。なお、LTE(e.g. LTE-DC及びNE-DC)では、PSCellは、Primary SCellの略語であってもよい。
 本明細書で使用される用語“プライマリSCGセル”及びその略語“PSCell”は、デュアルコネクティビティのSNによって提供されるセルグループに含まれ、アップリンク・コンポーネントキャリアを持ち、且つアップリンク制御チャネル(e.g. PUCCH)リソースを設定されるセルを意味する。具体的には、用語“プライマリSCGセル”及びその略語“PSCell”は、5G NRをサポートするSN(e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC)によって提供されるセルグループのPrimary SCG Cellを意味してもよいし、E-UTRAをサポートするSN(e.g. eNB in LTE DC, or ng-eNB in NE-DC)によって提供されるセルグループのPrimary SCellを意味してもよい。
 MN1及びSN2のうち一方又は両方は、図2に示される構成を有してもよい。図2に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア上のネットワークエレメントとして、専用ハードウェア上で動作するソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化された仮想化機能として実装されることができる。RANノード1及び2のうち一方又は両方は、これには限定されないが、図2に示されるようにCU21及び1又はそれ以上のDUs22を含んでもよい。CU21及び各DU22の間はインタフェース201によって接続される。UE3は、少なくとも1つのエアインタフェース202を介して、少なくとも1つのDU22に接続される。
 CU21は、gNBのRadio Resource Control(RRC)、Service Data Adaptation Protocol(SDAP)、及びPacket Data Convergence Protocol(PDCP)protocols(又はgNBのRRC及びPDCP protocols)をホストする論理ノードであってもよい。DU22は、gNBのRadio Link Control(RLC)、Medium Access Control(MAC)、及びPhysical(PHY)layersをホストする論理ノードであってもよい。CU21がgNB-CUでありDUs22がgNB-DUsであるなら、インタフェース201はF1インタフェースであってもよい。CU21は、CU-CP及びCU-UPを含んでもよい。
 以下では、SN2に関連付けられたSCGのデアクティベーションに関するMN1、SN2、及びUE3の動作について説明される。図3は、UE3の動作の一例を示している。ステップ301では、UE3は、PSCell追加又はPSCellモビリティのためのシグナリングを受信する。PSCell追加は、SN2に関連付けられたPSCellを追加することを含む。PSCellモビリティは、SN内(intra-SN)PSCell変更(change)、SN間(inter-SN)PSCell変更、PSCell再構成(reconfiguration)、又はハンドオーバ(MN変更)に伴うSCG再構成であってもよい。幾つかの実装では、UE3は、PSCellに関する設定を含むSN RRC ReconfigurationメッセージをSN2からMN1を介して受信する。PSCellに関する設定は、CellGroupConfig情報要素(Information Element(IE))に包含されているSpCellConfigフィールドを含んでもよい。
 ステップ301のPSCell追加又はPSCellモビリティは、SCGのデアクティベーションを伴ってもよい。PSCell追加又はPSCellモビリティの際にSCGがデアクティベートされもよい。PSCellモビリティは、SCGがデアクティベートされている間に行われてもよい。言い換えると、SCGがデアクティベートされている間のPSCellモビリティのとき、SCGはデアクティベート状態のままキープ(維持)されてもよい。
 ステップ302では、UE3は、PSCell追加又はPSCellモビリティの際にSCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに、PSCell追加又はPSCellモビリティに応じて(新たな)PSCellへのランダムアクセスを行う。ランダムアクセスはRACH又はRACH手順と呼ばれてもよい。
 幾つかの実装では、UE3は、SCGデアクティベーションを伴うPSCell追加及びPSCellモビリティに関する複数の手順のうち、1又は複数の特定のSCGデアクティベーションを伴うPSCell追加及びPSCellモビリティ手順のいずれかが行われるとき、将来のSCGアクティベーションまで待たずに直ちにPSCellへのランダムアクセスを行ってもよい。その他のSCGデアクティベーションを伴うPSCell追加又はPSCellモビリティ手順が行われる場合、UE3は、PSCellへのランダムアクセスを直ちに行わず、将来のSCGアクティベーションの際にこれを行ってもよい。
 幾つかの実装では、PSCellへのランダムアクセスを直ちに行うことをUE3に引き起こすPSCell追加及びPSCellモビリティは、SCGをデアクティベーションするようUE3に指示し、且つSCGの無線リソースを使用する無線ベアラのためのASセキュリティ鍵の設定又は更新をUE3に引き起こしてもよい。言い換えると、UE3は、PSCell追加又はPSCellモビリティがSCGをデアクティベートするようUE3に指示し且つSCGの無線リソースを使用する無線ベアラのためのASセキュリティ鍵の設定又は更新をUE3に引き起こすなら、将来のSCGアクティベーションまで待たずに直ちにPSCellへのランダムアクセスを行ってもよい。SCGの無線リソースを使用する無線ベアラは、SCGベアラ若しくはスプリットベアラ又は両方であってもよい。SCGの無線リソースを使用する無線ベアラは、データ無線ベアラ(data radio bearer(DRB))であってもよいし、シグナリング無線ベアラ(signalling radio bearer(SRB))であってもよい。更新されるASセキュリティ鍵は、セカンダリノード鍵(e.g. S-KgNB)、RRCシグナリングのインテグリティ・プロテクション鍵(e.g. KRRCint)、RRCシグナリングの暗号鍵(e.g. KRRCenc)、ユーザデータのインテグリティ・プロテクション鍵(e.g. KUPint)、及びユーザデータの暗号鍵(e.g. KUPenc)のうち1つ又は任意の組み合わせであってもよい。上述したように、現在の3GPP標準によると、ASセキュリティ鍵が設定又は更新されるとき、UEは、PSCellへのRACHを行うことを含む手順(具体的には、Reconfiguration with Sync手順)を行わなければならない。したがって、上述の動作は、SCGデアクティベーションを伴うPSCell追加及びPSCellモビリティが行われる場合のUE3の動作を現在の3GPP標準の規定と一貫性のあるものにすることができる。
 幾つかの実装では、MN1又はSN2は、将来のSCGアクティベーションまで待たずにPSCell追加又はPSCellモビリティに応じてPSCellへのランダムアクセスを直ちに行う必要があるか否かを示す情報を、SCGデアクティベーションを伴うPSCell追加又はPSCellモビリティの手順において、UE3に送信してもよい。この場合、UE3は、図4に示されるように動作してもよい。図4は、UE3の動作の一例を示している。ステップ401では、UE3は、PSCell追加又はPSCellモビリティの手順において、将来のSCGアクティベーションまで待たずにPSCellへのランダムアクセスを行う必要があるか否かを示す情報を、MN1又はSN2から受信する。ステップ401では、この受信した情報に従って、当該情報に従って、PSCell追加又はPSCellモビリティに応じて直ちに、又は将来のSCGアクティベーションの際に、(新たな)PSCellへのランダムアクセスを行う。
 一例では、MN1又はSN2は、SCGのASセキュリティ鍵の設定又は更新が必要であるときに、将来のSCGアクティベーションまで待たずにPSCell追加又はPSCellモビリティに応じてPSCellへのランダムアクセスが行われる必要があることをUE3に明示的又は暗示的に示してもよい。これは、SCGデアクティベーションを伴うPSCell追加及びPSCellモビリティが行われる場合のUE3の動作を現在の3GPP標準の規定と一貫性のあるものにすることに寄与できる。
 他の例では、MN1又はSN2は、PSCell追加の際に当該PSCellを含むSCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずにPSCell追加に応じてPSCellへのランダムアクセスが行われる必要があることをUE3に明示的又は暗示的に示してもよい。さらに又はこれに代えて、MN1又はSN2は、PSCellがデアクティベートされている間にPSCellが現在のそれから新たなセルに変更されるとき、将来のSCGアクティベーションまで待たずにPSCell変更に応じて新たなPSCellへのランダムアクセスが行われる必要があることをUE3に示してもよい。これにより、UE3は、PSCell追加又はPSCell変更のときに(新たな)PSCellに接続可能であることを確認でき且つPSCellとの同期を確立できる。UE3は、PSCell追加又はPSCell変更に応じたランダムアクセスにおいてTime Advance(TA)コマンドをPSCellから受信し、Time Alignmentタイマ(TAT)開始し、そしてSCGがデアクティベートされている間TATの動作を維持(keep the TAT running)してもよい。これは、SCGが将来アクティベートされるときにランダムアクセスを省略しSCGをタイムリーに使用することをUE3に可能にすることに寄与できる。また、これは、将来のSCGアクティベーションのときの初めてランダムアクセスを行う場合に比べて、ランダムアクセスの成功率を改善することに寄与できる。
 PSCellへのランダムアクセスを直ちに行う必要があるか否かをUE3に明示的に又は暗示的に示す情報は、MN1によって生成されるMN RRC Reconfigurationメッセージ、SN2によって生成されるSN RRC Reconfigurationメッセージ、及びMCGのMedium Access Control (MAC) Control Element (CE)のいずれかに含まれる情報要素(IE)又はフラグであってもよい。言い換えるとMN1又はSN2は、PSCellへのランダムアクセスを直ちに行う必要があるか否かをUE3に示すために、MN RRC Reconfigurationメッセージ、SN RRC Reconfigurationメッセージ、又はMCG MAC CEにIE又はフラグを含めてもよい。
 SN2は、PSCellへのランダムアクセスを直ちに行う必要があるか否かを示す情報を、SN2により生成されるRRC Reconfigurationメッセージ(SN RRC Reconfigurationメッセージ)を用いてUE3に送信してもよい。当該SN RRC Reconfigurationメッセージは、MN1及びMCGを介してUE3に送られてもよい。すなわち、PSCell追加又はPSCellモビリティをUE3に引き起こす手順の間に、SN2はSN RRC Reconfigurationメッセージ(UE3に送信されるトランスペアレントコンテナ)をinter-nodeメッセージ(e.g. CG-Config)でMN1に送り、MN1は、受信したSN RRC ReconfigurationメッセージをUE3にMN RRC Reconfigurationメッセージを用いて送信してもよい。PSCell追加又はPSCellモビリティをUE3に引き起こす手順は、例えば、SN追加手順、SN修正(modification)手順、SN変更手順、PSCell変更手順、又はMN間(inter-MN)ハンドオーバ手順である。
 SN2は、PSCellへのランダムアクセスを直ちに行う必要があるか否かをUE3に示すために、RRC Reconfigurationメッセージに含まれるPSCellのランダムアクセスチャネル設定を用いてもよい。PSCellのランダムアクセスチャネル設定は、SCGに関するCellGroupConfig IE内のSpCellConfigフィールドに含まれるreconfigurationWithSyncフィールドに包含されてもよい。より具体的には、当該reconfigurationWithSyncフィールドはrach-ConfigDedicatedフィールド(rach-ConfigDedicated IE)を含み、当該rach-ConfigDedicatedフィールドはCFRAフィールドを含む。当該CFRAフィールドは、Contention-free random access(CFRA)のための無線リソースをUE3に設定する。さらに、当該reconfigurationWithSyncフィールドはspCellConfigCommonフィールド(ServingCellConfigCommon IE)を含み、当該spCellConfigCommonフィールドはuplinkConfigCommonフィールド(uplinkConfigCommon IE)を含んでもよい。uplinkConfigCommonフィールドはinitialUplinkBWPフィールド(BWP-UplinkCommon IE)を含み、当該initialUplinkBWPフィールドはrach-ConfigCommonフィールド(rach-ConfigCommon IE)を含む。
 幾つかの実装では、SN2は、PSCellのランダムアクセスチャネル設定にcontention-free random access(CFRA)リソースの設定を含めることによって、将来のSCGアクティベーションまで待たずにPSCell追加又はPSCellモビリティに応じてPSCellへのランダムアクセスが行われる必要があることUE3に示してもよい。図5は、UE3の動作の一例を示している。ステップ501では、UE3は、PSCell追加又はPSCellモビリティをUE3に引き起こす手順の間に、PSCellのランダムアクセスチャネル設定を包含するSN RRC Reconfigurationメッセージを受信する。ステップ502では、受信した当該ランダムアクセスチャネル設定がCFRAリソースの設定を含むなら、UE3は、将来のSCGアクティベーションまで待たずに当該設定されたCFRAリソースを用いて(新たな)PSCellへのランダムアクセスを行う。これに対して、受信した当該ランダムアクセスチャネル設定がCFRAリソースの設定を含まずにcontention-based random access(CBRA)の設定のみを含むなら、UE3は、PSCellへのランダムアクセスを行わずにPSCell追加又はPSCellモビリティを完了し、SCGが将来アクティベートされるときに当該設定されたCBRAリソースを用いてPSCellへのランダムアクセスを行ってもよい。なお、将来SCGがMN1の指示(又は要求)でアクティベートされる場合にも、UE3はSN2から受信していた当該ランダムアクセスチャネル設定(e.g. CBRAリソース)を用いてランダムアクセスを行ってもよい。
 幾つかの実装では、MN1は、SCGをデアクティベートすることを決定した場合に、PSCellへのランダムアクセスをUE3が直ちに行う必要があるか否かも決定してもよい。MN1は、SCGデアクティベートする表示(又はその要求)をSN2に通知するときに、PSCellへのランダムアクセスをUE3が直ちに行う必要があることもSN2に通知してもよい。これに代えて、MN1は、SCGをデアクティベートする表示(又はその要求)をSN2へ通知し、SN2はこれに応答して、PSCellへのランダムアクセスをUE3が直ちに行う必要があるか否かも決定してもよい。また別の幾つかの実装では、SN2は、SCGをデアクティベートすることを決定した場合に、PSCellへのランダムアクセスをUE3が直ちに行う必要があるか否かも決定してもよい。
 以上に説明されたように、本実施形態のUE3は、PSCell追加又はPSCellモビリティの際にSCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに、PSCell追加又はPSCellモビリティに応じて(新たな)PSCellへのランダムアクセスを行ってもよい。このランダムアクセスの後、UE3及びネットワーク(MN1及びSN2)は以下のように動作してもよい。
 幾つかの実装では、UE3は、PSCellへのランダムアクセスが成功裏に完了した後に、SCGを自律的にデアクティベートしてもよい。言い換えると、UE3は、PSCellへのランダムアクセスの成功を確認した後に、SCGを自律的にデアクティベートしてもよい。同様に、SN2は、UE3によるPSCellへのランダムアクセスが成功裏に完了した後に、SCGを自律的にデアクティベートしてもよい。図6は、UE3の動作の一例を示している。ステップ601及び602では、UE3は、図3のステップ301及び302で行われるのと同様に動作する。ステップ603では、UE3は、PSCellへのランダムアクセスが成功裏に完了した後にSCGを自律的にデアクティベートする。CFRAの場合、成功裏の完了は、UE3によるRandom Access Response (RAR)の受信によって決定されてもよい。4ステップCBRAの場合、成功裏の完了は、UE3によるContention Resolutionの確認(i.e. 第4メッセージ(Msg4)の受信、又は第3メッセージ(Msg3)で送信したC-RNTI(i.e. C-RNTI MAC CE)に対応するPDCCH(e.g. ULグラント情報を含むがグラントサイズがゼロ又は無効値)の受信)によって決定されてもよい。2ステップCBRAの場合、成功裏の完了は、UE3によるContention Resolutionの確認(i.e.メッセージB(MsgB)の受信)によって決定されてもよい。
 他の実装では、UE3は、PSCellへのランダムアクセスが成功裏に完了した後に、SN2又はMN1からSCGデアクティベーションの表示を受信したことに応答して、SCGをデアクティベートしてもよい。SN2又はMN1は、UE3によるPSCellへのランダムアクセスの成功を確認した後に、SCGデアクティベーションの表示をUE3に送信してもよい。当該SCGデアクティベーション表示は、MCGからUE3に送信されてもよいし、SCGからUE3に直接送信されてもよい。当該SCGデアクティベーション表示は、SN2からUE3にMN1を介して送られてもよい。当該SCGデアクティベーション表示は、物理レイヤのシグナリング(e.g. PDCCH上のDCI)を介して、MACレイヤのシグナリング(e.g. MAC CE)を介して、又はRRCレイヤのシグナリングを介して、UE3に送信されてもよい。図7は、UE3の動作の一例を示している。ステップ701及び702では、UE3は、図3のステップ301及び302で行われるのと同様に動作する。ステップ703では、UE3は、PSCellへのランダムアクセスが成功裏に完了した後に、SN2又はMN1からSCGデアクティベーションの表示を受信したことに応答して、SCGをデアクティベートする。4ステップCBRAの場合、成功裏の完了は、UE3によるContention Resolutionの確認(i.e. 第4メッセージ(Msg4)の受信)によって決定されてもよい。2ステップCBRAの場合、成功裏の完了は、UE3によるContention Resolutionの確認(i.e.メッセージB(MsgB)の受信)によって決定されてもよい。
 MN1又はSN2は、図6のステップ603と図7のステップ703のどちらを行うべきかをUE3に示してもよい。言い換えると、MN1又はSN2は、PSCellへのランダムアクセスが成功裏に完了した後にSCGを自律的にデアクティベートするべきか否かをUE3に示してもよい。UE3は、PSCellへのランダムアクセスが成功裏に完了した後にSCGを自律的にデアクティベートするべきか否かを示す情報を、MN1又はSN2から受信してもよい。UE3は、受信した当該情報に従って、図6のステップ603と図7のステップ703のどちらを行うべきかを判断してもよい。この情報は、PSCell追加又はPSCellモビリティをUE3に引き起こす手順の間にUE3に送られるMN RRC Reconfigurationメッセージ又はSN RRC Reconfigurationメッセージに含まれてもよい。
 UE3がPSCellへのランダムアクセスを行い且つランダムアクセスの完了に応じてSCGをデアクティベートするまで期間のあいだ、UE3は、SCGをいったんアクティベートしてもよい。これに代えて、この期間のあいだUE3は、SCGをデアクティベート状態のままキープしてもよい。言い換えると、UE3は、PSCellへのランダムアクセスに必要な設定のみをアクティベート、有効化(validate)、又はリストアしてもよい。
 図8は、MN1、SN2、及びUE3の動作の一例を示している。ステップ801では、MN1又はSN2がPSCell追加手順又はPSCellモビリティ手順を開始し、MN1、SN2、及びUE3がこれを実行する。PSCell追加手順(SN追加手順)はMN1によって開始される。PSCellモビリティ手順はMN1又はSN2によって開始される。ステップ801のPSCell追加手順及びPSCellモビリティ手順は、SCGのデアクティベーションを伴う。PSCellモビリティ手順は、SCGがデアクティベートされている間に開始されてもよい。
 PSCell追加手順及びPSCellモビリティ手順の間に、MN1又はSN2は、SCGをデアクティベートするようUE3に指示する。PSCell追加手順及びPSCellモビリティ手順の間に、SN2は、SCGデアクティベーションの指示(又は表示)を含むSN RRC ReconfigurationメッセージをUE3にMN1を介して送信してもよい。当該SN RRC Reconfigurationメッセージは、SCGデアクティベーションの指示(又は表示)に加えて新たな又は更新されるSCG設定を含んでもよい。MN1は、当該SN RRC Reconfigurationメッセージを運ぶMN RRC ReconfigurationメッセージをUE3に送信してもよい。
 ステップ801では、MN1又はSN2は、将来のSCGアクティベーションまで待たずにPSCellへのランダムアクセスを直ちに行う必要があるか否かを明示的に又は暗示的に示す情報をUE3に送信してもよい。当該情報は、上述のSN RRC Reconfigurationメッセージ又はMN RRC Reconfigurationメッセージに含まれてもよい。
 ステップ802では、UE3はPSCellへのランダムアクセスを行う。当該ランダムアクセスが成功裏に完了したなら、UE3はSCGをデアクティベートする(ステップ804)。ある実装では、SN2又はMN1は、SCGデアクティベーション表示をUE3に送信し(ステップ803)、当該表示の受信に応答してUE3はSCGをデアクティベートしてもよい。他の実装では、UE3は自律的にSCGをデアクティベートしてもよい。この場合、ステップ803の送信は省略されてもよい。さらに他の実装では、UE3は、SN2又はMN1からの指示に従って、自律的にSCGをデアクティベートするか否かを決定してもよい。当該指示は、ステップ801で送信される上述のSN RRC Reconfigurationメッセージ又はMN RRC Reconfigurationメッセージに含まれてもよい。
 なお、ステップ803の指示は、SN2のDU22からUE3へ物理レイヤのシグナリング(e.g. PDCCH上のDCI)又はMACレイヤのシグナリング(e.g. MAC CE)で送信されてもよい。この場合、DU22はCU21へSCGデアクティベーション完了(又は実行)の通知をしてもよい。また、SCGをデアクティベートすることをSN2が決定する場合、DU22がこれを決定してもよい。DU22は予めCU21へSCGをデアクティベートすることを通知し(又はSCGのデアクティベーションを示す情報を送信し)、ステップ803でSCGデアクティベーションを実行した後にCU21への通知を省略してもよい。なお、DU22からCU21へのデアクティベーションの通知は、例えばF1APのUE Context Modification Required、UE Context Setup Response、UE Context Modification Response、又はDU22からCU21への新たなControl Planeメッセージで送信されてもよい。これに代えて、デアクティベーションの通知は、DU22からCU21へのUser Planeメッセージで送信されてもよい。この場合、例えばDDDS(Downlink Data Delivery Status)、又は新しく規定されるフレーム(frame)で当該通知が送信されてもよい。
 図9は、MN1、SN2、及びUE3の動作の一例を示している。図9は、図8に示された手順の詳細を示している。ステップ901~906は、SN追加手順又はSN修正手順で行われるシグナリング及び処理であり、図8のステップ801に相当する。ステップ901~906のシグナリング及び処理は、既存のSN追加手順又はSN修正手順のそれらと基本的に同一である。ただし、SNにより開始される(SN-initiated)SN修正手順においてSN2からMN1に送られるSN Modification Requiredメッセージ(ステップ901)は、SCGデアクティベーション要求(又は表示)を含んでもよい。同様に、ステップ902においてMN1からSN2へ送られるSN Addition Requestメッセージ又はSN Modification Requestメッセージは、SCGデアクティベーション要求(又は表示)を含んでもよい。ステップ903においてSN2からMN1へ送られるSN Addition Request Acknowledgeメッセージ又はSN Modification Request Acknowledgeメッセージは、SCGデアクティベーション応答(又は表示)を含んでもよい。ステップ904において、MN1からUE3に送信されるMN RRC Reconfigurationメッセージは、SCG設定を含み、明示的又は暗示的なSCGデアクティベーション表示を含んでもよい。これらのSCG設定及びSCGデアクティベーション表示は、MN RRC Reconfigurationメッセージによって運ばれるSN RRC Reconfigurationメッセージに含まれてもよい。ステップ907~909は、図8のステップ802~804と同様である。
 図10は、MN1、SN2、及びUE3の動作の一例を示している。図10は、図8に示された手順の詳細を示している。ステップ1001~1012は、MN間ハンドオーバ手順で行われるシグナリング及び処理であり、図8のステップ801に相当する。なお、SN変更なしのMN間ハンドオーバ(inter-MN handover without SN change)の場合、ターゲットSN2BはソースSN2Aと同じである。ステップ1001~1012のシグナリング及び処理は、既存のMN間ハンドオーバ手順のそれらと基本的に同一である。ただし、ステップ1002においてターゲットMN1BからターゲットSN2Bへ送られるSN Addition Requestメッセージは、SCGデアクティベーション要求(又は表示)を含んでもよい。ステップ1003においてターゲットSN2BからターゲットMN1Bへ送られるSN Addition Request Acknowledgeメッセージは、SCGデアクティベーション応答(又は表示)を含んでもよい。ステップ1006において、MN1からUE3に送信されるMN RRC Reconfigurationメッセージは、SCG設定を含み、明示的又は暗示的なSCGデアクティベーション表示を含んでもよい。これらのSCG設定及びSCGデアクティベーション表示は、MN RRC Reconfigurationメッセージによって運ばれるSN RRC Reconfigurationメッセージに含まれてもよい。ステップ1013~1015は、図8のステップ802~804と同様である。
 本実施形態のUE3は、SCGの無線リソースを使用する無線ベアラのためのASセキュリティ鍵が更新される必要があるとき、SCG(i.e. SCGのPSCell)に関連付けられたTime Alignment Timer(TAT)が動作(running)しているか満了しているかに関わらず、PSCellへのランダムアクセスを行ってもよい。これは、SCGが将来アクティベートされるときにランダムアクセスを省略しSCGをタイムリーに使用することをUE3に可能にすることに寄与できる。図11は、UE3の動作の一例を示している。ステップ1101では、UE3は、SCGのためのASセキュリティ鍵を更新する。更新されるASセキュリティ鍵は、セカンダリノード鍵(e.g. S-KgNB)、RRCシグナリングのインテグリティ・プロテクション鍵(e.g. KRRCint)、RRCシグナリングの暗号鍵(e.g. KRRCenc)、ユーザデータのインテグリティ・プロテクション鍵(e.g. KUPint)、及びユーザデータの暗号鍵(e.g. KUPenc)のうち1つ又は任意の組み合わせであってもよい。ステップ1102では、UE3は、SCGに関連付けられたTATが動作しているか満了しているかに関わらず、PSCellへのランダムアクセスを行う。これらは、SCGがデアクティベートされている間に適用されてもよいし、SCGがデアクティベートされる場合に適用されてもよい。
 本実施形態のPSCell追加は、条件付き(conditional)PSCell追加(CPA)であってもよい。本実施形態のPSCellモビリティは、MN間条件付きハンドオーバ(CHO)又は条件付きPSCell変更(CPC)であってもよい。条件付きPSCell変更は、SN内条件付きPSCell変更であってもよいし、SN間条件付きPSCell変更であってもよい。MN間条件付きハンドオーバにおいて複数の候補ターゲットセルが異なる候補ターゲットMNsに属する場合、SCGをデアクティベートするか否かを各候補ターゲットMN(および当該MNに関連付けられる各候補ターゲットSN)が決定してもよい。SN内条件付きPSCell変更において複数の候補ターゲットPSCellsが設定される場合、SCGをデアクティベートするか否かをSNが決定してもよい。条件付きPSCell追加において複数の候補PSCellsが異なる候補SNsに属する場合、SCGをデアクティベートするか否かをMN又は各候補SNが決定してもよい。SN間条件付きPSCell変更において複数の候補ターゲットPSCellsが異なる候補ターゲットSNsに属する場合、SCGをデアクティベートするか否かをMN又は各候補ターゲットSNが決定してもよい。また、上述のRRCメッセージ(e.g. MN RRC Reconfiguration, SN RRC Reconfiguration)で送信される情報は、それらRRCメッセージに包含されるConditional Reconfiguration IEに含まれてもよい。
<第2の実施形態>
 本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様である。以下では、SN2に関連付けられたSCGのデアクティベーションに関するMN1、SN2、及びUE3の動作について説明される。
 図12は、UE3の動作の一例を示している。ステップ1201では、UE3は、SCGの無線リソースを使用する1又はそれ以上の無線ベアラを設定されているSCGをデアクティベートする。当該無線ベアラは、SCGベアラ若しくはスプリットベアラ又は両方を含んでもよい。SCG無線ベアラは、SN2に関連付けられたSCG内のみにRLCベアラを持つ無線ベアラである。一方、スプリットベアラは、MN1に関連付けられたMCG内のRLCベアラ及びSCG内のRLCベアラの両方を持つ無線ベアラである。SCGベアラ及びスプリットベアラはSNにより終端される(SN terminated)ベアラであってもよいし、MN1により終端される(MN terminated)ベアラであってもよい。SN terminatedベアラは、そのためのPDCPがSN2に配置される無線ベアラである。MN terminatedベアラは、そのためのPDCPがMN1に配置される無線ベアラである。SCGの無線リソースを使用する無線ベアラは、データ無線ベアラ(DRB)であってもよいし、シグナリング無線ベアラ(SRB)であってもよい。
 ステップ1202では、SCGの無線リソースを使用する無線ベアラを設定されているSCGがデアクティベートされている間、UE3は、PSCellに関連付けられたconfigured downlink assignmentおよびPSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持する。UE3と同様に、SCGの無線リソースを使用する無線ベアラを設定されているSCGがデアクティベートされている間、ネットワーク(つまりSN(又はSN2及びMN1))も、PSCellに関連付けられたconfigured downlink assignmentおよびPSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持する。ステップ1202では、UE3は、無線リソース設定(PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を含む)を維持するが、これを無視してもよい。この後に、SCGがアクティベートされるとき、UE3及びネットワークは、維持されていた無線リソース設定(PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を含む)をアクティベート、有効化、又はリストアしてもよい。図12の動作によれば、SCGがアクティベートされるとき、UE3はこれらの無線リソースを再度設定される必要がない。しがって、このことは、SCG activationの遅延を低減することに寄与できる。
 なお、configured downlink assignmentは、ダウンリンクsemi-persistent scheduling(SPS)リソースをUEに割り当てる。configured downlink assignmentでは、RRCがconfigured downlink assignmentの周期及びconfigured scheduling Radio Network Temporary Identifier(CS-RNTI)を定義し、当該CS-RNTIをアドレスするPhysical Downlink Control Channel(PDCCH)がPhysical Downlink Shared Channel(PDSCH)リソースを半静的(semi-persistently)にUEに割り当て、configured downlink assignmentをアクティベートする。一方、configured uplink grant Type 2は、アップリンクSPSリソースをUEに割り当てる。configured uplink grant Type 2では、RRCがconfigured uplink grantの周期(periodicity)及びCS-RNTIを定義し、当該CS-RNTIをアドレスするPDCCHがPhysical Uplink Shared Channel(PUSCH)リソースを半静的(semi-persistently)にUEに割り当て、configured uplink grantをアクティベートする。言い換えると、configured grant Type 2 PUSCH送信は、当該CS-RNTIによりスクランブルされたvalid activation Downlink Control Information(DCI)(つまり、DCI format 0_0又は0_1)内のUL grantによって、半静的(semi-persistently)にスケジュールされる。
 図12の動作では、SCGがデアクティベートされている間、UE3は、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方を、PSCellに関してのみ維持してもよい。言い換えると、SCGがデアクティベートされている間、UE3は、SCGに含まれる1又はそれ以上のSCellに関連付けられたconfigured downlink assignment及びconfigured uplink grant Type 2をクリア又は解放してもよい。これに代えて、SCGがデアクティベートされている間、UE3は、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方を、SCGに含まれる全てのセルに関して維持してもよい。
 図13は、UE3の動作の一例を示している。図13に示された動作は、図12に示された動作と組み合わされることができる。ステップ1301は図12のステップ1201と同様である。すなわち、ステップ1301では、UE3は、SCGの無線リソースを使用する1又はそれ以上の無線ベアラを設定されているSCGをデアクティベートする。ステップ1302では、SCGがデアクティベートされている間、UE3がSCGの有効な(valid)アップリンク・タイミングを維持していなくても、UE3は、PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を維持する。言い換えると、UE3は、SCGがデアクティベートされている間にPSCellのTime Alignment Timer(TAT)が満了しても、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方を維持する。UE3は、configured uplink grant Type 1をさらに維持してもよい。UE3と同様に、SCGがデアクティベートされている間、UE3がSCGの有効なアップリンク・タイミングを維持していなくても、ネットワーク(つまりSN(又はSN2及びMN1))は、PSCellに関連付けられたconfigured downlink assignmentおよびPSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持する。ネットワークは、configured uplink grant Type 1をさらに維持してもよい。ステップ1302では、UE3は、無線リソース設定(PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を含む)を維持するが、これを無視してもよい。この後に、SCGがアクティベートされるとき、UE3及びネットワークは、維持されていた無線リソース設定(PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を含む)をアクティベート、有効化、又はリストアしてもよい。図13の動作によれば、SCGがアクティベートされるとき、UE3はこれらの無線リソースを再度設定される必要がない。しがって、このことは、SCG activationの遅延を低減することに寄与できる。
 なお、維持されていた無線リソース設定(PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を含む)をアクティベート、有効化、又はリストアすることをUE3に許可する(又は指示する)情報が、MN1又はSN2からUE3へ送信されるSCGのアクティベーションの指示(又は通知)に含まれてもよい。
 図13の動作では、SCGがデアクティベートされている間、UE3は、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方を、PSCellに関してのみ維持してもよい。言い換えると、SCGがデアクティベートされている間、UE3は、SCGに含まれる1又はそれ以上のSCellに関連付けられたconfigured downlink assignment及びconfigured uplink grant Type 2をクリア又は解放してもよい。これに代えて、SCGがデアクティベートされている間、UE3は、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方を、SCGに含まれる全てのセルに関して維持してもよい。
 図14は、UE3の動作の一例を示している。図14に示された動作は、図12及び図13の一方又は両方に示された動作と組み合わされることができる。ステップ1401は図12のステップ1201及び図13のステップ1301と同様である。すなわち、ステップ1401では、UE3は、SCGの無線リソースを使用する1又はそれ以上の無線ベアラを設定されているSCGをデアクティベートする。ステップ1402では、SCGがデアクティベートされている間、UE3がSCGの有効なアップリンク・タイミングを維持していなくても、UE3は、PSCellに関連付けられたSRSリソース設定およびPUCCHリソース設定のうち一方又は両方を維持する。言い換えると、UE3は、SCGがデアクティベートされている間にPSCellのTime Alignment Timer(TAT)が満了しても、PSCellに関連付けられたSRSリソース設定およびPUCCHリソース設定のうち一方又は両方を維持する。UE3と同様に、SCGがデアクティベートされている間、UE3がSCGの有効なアップリンク・タイミングを維持していなくても、ネットワーク(つまりSN(又はSN2及びMN1))は、PSCellに関連付けられたSRSリソース設定およびPUCCHリソース設定のうち一方又は両方を維持する。ステップ1402では、UE3は、無線リソース設定(PSCellに関連付けられたSRSリソース設定およびPUCCHリソース設定のうち一方又は両方を含む)を維持するが、これを無視してもよい。この後に、SCGがアクティベートされるとき、UE3及びネットワークは、維持されていた無線リソース設定(PSCellに関連付けられたSRSリソース設定およびPUCCHリソース設定のうち一方又は両方を含む)をアクティベート、有効化、又はリストアしてもよい。図14の動作によれば、SCGがアクティベートされるとき、UE3はこれらの無線リソースを再度設定される必要がない。しがって、このことは、SCG activationの遅延を低減することに寄与できる。
 図15は、UE3の動作の一例を示している。図14に示された動作は、図12~図14のいずれか又は任意の組み合わせに示された動作と組み合わされることができる。ステップ1501では、UE3は、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方がPSCellのみに関して維持されるべきか又はSCGの全セルに関して維持されるべきかを示す情報を、MN1又はSN2から受信する。言い換えると、ネットワーク(SN2又はMN1)は、configured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方がPSCellのみに関して維持されるべきか又はSCGの全セルに関して維持されるべきかを決定し、この決定を示す情報をUE3に送信する。SN2は、当該情報をUE3にMN1を介して送信してもよい。当該情報は、MN RRC Reconfigurationメッセージ、SN RRC Reconfigurationメッセージ、又はMCG MAC CEを介してUE3に送信されてもよい。ステップ1502では、UE3は、ステップ1501で受信した情報に従って、SCGがデアクティベートされている間、configured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を維持する。図15の動作によれば、SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignment及びconfigured uplink grant Type 2のうち一方又は両方をSCGがアクティベートされているあいだUE3が維持するべきであるか否かについての決定をSN2又はMN1がUE3に提供できる。
 図16は、UE3の動作の一例を示している。図16に示された動作は、図12~図15のいずれか又は任意の組み合わせに示された動作と組み合わされることができる。ステップ1601では、UE3は、SCGの無線リソースを使用する1又はそれ以上の無線ベアラを設定されているSCGをデアクティベートする。当該無線ベアラは、MN terminated SCGベアラ、SN terminated SCGベアラ、MN terminatedスプリットベアラ、及びSN terminated スプリットベアラのいずれか又は任意の組み合わせを含む。
 ステップ1602では、UE3は、SCGがデアクティベートされている間にRRCレイヤが当該無線ベアラのPDCP再確立を要求するとき、当該無線ベアラのためのMCGのユーザープレーンプロトコル・レイヤにおいてPDCP再確立に必要な動作を行い、当該無線ベアラのためのSCGのユーザープレーンプロトコル・レイヤにおいてPDCP再確立のための動作を行わない。例えば、MCGのユーザープレーンプロトコル・レイヤは、MN terminated SCGベアラ及びMN terminatedスプリットベアラのためのPDCP re-establishment、スプリットベアラのためのMCG RLC re-establishment、並びにスプリットベアラのためのMCG MAC resetを実行する。これに対して、SCGのユーザープレーンプロトコル・レイヤは、対応する動作、例えば、SN terminated SCGベアラ及びSN terminatedスプリットベアラのためのPDCP re-establishment、SCGベアラ及びスプリットベアラのためのSCG RLC re-establishment、並びにSCGベアラ及びスプリットベアラのためのSCG MAC reset、を実行しない。このことは、SCGがデアクティベートされている間のUE3によるSCGの維持において無駄を省き、簡易化することに寄与できる。
 図17は、UE3の動作の一例を示している。図17に示された動作は、図12~図16のいずれか又は任意の組み合わせに示された動作と組み合わされることができる。ステップ1701では、UE3は、SCGの無線リソースを使用する1又はそれ以上の無線ベアラを設定されているSCGをデアクティベートする。当該無線ベアラは、MN terminated SCGベアラ、SN terminated SCGベアラ、MN terminatedスプリットベアラ、及びSN terminated スプリットベアラのいずれか又は任意の組み合わせを含む。
 ステップ1702では、UE3は、SCGがデアクティベートされている間にRRCレイヤが当該無線ベアラのPDCPリカバリを要求するとき、当該無線ベアラのためのMCGのユーザープレーンプロトコル・レイヤにおいてPDCPリカバリに必要な動作を行い、当該無線ベアラのためのSCGのユーザープレーンプロトコル・レイヤにおいてPDCPリカバリのための動作を行わない。例えば、MCGのユーザープレーンプロトコル・レイヤは、MN terminated SCGベアラ及びMN terminatedスプリットベアラのためのPDCPリカバリ、スプリットベアラのためのMCG RLC re-establishment、並びにスプリットベアラのためのMCG MAC resetを実行する。これに対して、SCGのユーザープレーンプロトコル・レイヤは、対応する動作、例えば、SN terminated SCGベアラ及びSN terminatedスプリットベアラのためのPDCP リカバリ、SCGベアラ及びスプリットベアラのためのSCG RLC re-establishment、並びにSCGベアラ及びスプリットベアラのためのSCG MAC reset、を実行しない。このことは、SCGがデアクティベートされている間のUE3によるSCGの維持において無駄を省き、簡易化することに寄与できる。
 本実施形態のUE3は、SCGがデアクティベートされている間にPSCellモビリティが行われるとき、PSCellに関連付けられたconfigured downlink assignmentおよびconfigured uplink grant Type 2のうち一方又は両方を維持してもよい。同様に、UE3は、SCGがデアクティベートされている間にPSCellモビリティが行われるとき、PSCellに関連付けられたSRSリソース設定およびPUCCHリソース設定のうち一方又は両方を維持してもよい。PSCellモビリティは、SN内(intra-SN)PSCell変更(change)、SN間(inter-SN)PSCell変更、PSCell再構成(reconfiguration)、又はハンドオーバ(MN変更)に伴うSCG再構成であってもよい。
<第3の実施形態>
 本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様である。本実施形態のUE3は、SCGがデアクティベートされている間にSCGに関連付けられたTime Alignment Timer(TAT)の動作を維持し、SCGがデアクティベートされている間の当該TATの満了に応じてPSCellへのランダムアクセスを行ってもよい。UE3は、当該ランダムアクセスにおいてTime Advance(TA)コマンドをPSCellから受信し、Time Alignmentタイマ(TAT)を再開し、そしてSCGがデアクティベートされている間TATの動作を維持(keep the TAT running)してもよい。これは、SCGが将来アクティベートされるときにランダムアクセスを省略しSCGをタイムリーに使用することをUE3に可能にすることに寄与できる。
<第4の実施形態>
 本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様である。UE3は、スプリットベアラが設定されたSCGがデアクティベートされている間、UE3及びネットワーク(つまりMN1又はSN2)は、当該スプリットベアラのSCG部分(SCG leg)を使用せず、当該スプリットベアラのアップリンク(RLC)プライマリパスをMCGにセットしてもよい。そして、スプリットベアラが設定されたSCGがアクティベートされるとき、UE3及びネットワークは、当該スプリットベアラのアップリンク・プライマリパスをSCGにセットしてもよい。UE3は、SCGアクティベーションに応じて自律的に当該スプリットベアラのアップリンク・プライマリパスをSCGに変更してもよい。さらに又はこれに代えて、ネットワーク(つまりMN1又はSN2)は、SCGをアクティベートするときに、又は事前にSCGを設定するときに、SCGアクティベーションに応じて当該スプリットベアラのアップリンク・プライマリパスがSCGに変更されることをUE3に示してもよい。
<その他の実施形態>
 第1の実施形態では、UE3はPSCell追加又はPSCellモビリティにおいてSCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずにPSCell追加又はPSCellモビリティに応じてPSCellへのランダムアクセスを行う。第3の実施形態では、UE3は、SCGがデアクティベートされている間のTATの満了に応じてPSCellへのランダムアクセスを行う。これらの実施形態は以下のように変形されてもよい。UE3は、これらのランダムアクセスのいずれかによってSCGの有効なアップリンク同期(アップリンク・タイミング)を維持しているとしても、SCGをアクティベートする時点のサービング・ビーム(最適なビーム又はSN2により指定されたビーム)がアップリンク同期を確立した時点のサービング・ビームと異なる場合、PSCellでのランダムアクセスから開始してもよい。
 上述の実施形態では、SCGデアクティベートは、SCGサスペンド(suspend)又はSCGサスペンション(suspension)と呼ばれてもよい。また、SCGがデアクティベートされている間の当該SCGのセル(PSCellのみ、又はPSCellとSCell)の状態は、deactivated状態でもよいし、dormancy状態でもよい。さらに、dormancy状態は、LTE SCellのdormant状態に相当又は類似の状態でもよいし、5G NRのdormant BWPに相当するものでもよい。
 上述の実施形態において、SCGアクティベート指示(又は表示)が物理レイヤのシグナリング(e.g. PDCCH上のDCI)又はMACレイヤのシグナリング(e.g. MAC CE)を介してUE3に送られる場合、UE3のMACレイヤ又は物理レイヤは、SCGアクティベーションをUE3のRRCレイヤに示してもよい。
 上述の実施形態において、SCGアクティベート指示(又は表示)がSN2(SCG)によってMN1(MCG)を介して行われる場合、SN2のDU22(e.g. gNB-DU)は、SCGアクティベート指示(又は表示)の送信を開始又はトリガーし、SN2のCU21(e.g. gNB-CU)にそれを行うように知らせてもよい(又は要求してもよい)。
 上述の実施形態において、SCGデアクティベーションは、MN1又はSN2によって開始されてもよい。一方、SCGアクティベーションは、MN1又はSN2によって開始されてもよいし、UE3によって開始されてもよい。UE3がこれを開始する場合、UE3は、MCG(またはSCG)でPUCCH (e.g. Scheduling Request(SR))、SRS、又はRACHを用いてアクティベーション要求を送信してもよい。
 上述の実施形態において、MN1がSCGアクティベーションを決定してもよいし、SN2がこれを決定してもよい。あるいは、SN2がSCGアクティベーションをMN1に要求し、当該要求に応答してMN1がSCGをアクティベートするか否かを決定してもよい。同様に、N1がSCGデアクティベーションを決定してもよいし、SN2がこれを決定してもよい。あるいは、SN2がSCGデアクティベーションをMN1に要求し、当該要求に応答してMN1がSCGをデアクティベートするか否かを決定してもよい。
 上述の実施形態において、UE3がSCGアクティベーション指示(又は表示)をMN1から(又はMN1を介してSN2から)受信し、PSCellにおいてランダムアクセスを行ったが失敗した場合(つまり、SCGアクティベーション失敗)、UE3はMN1へのRRCメッセージ(e.g. SCG Failure Information)で、これを報告してもよい。このとき、SCG Failure Informationメッセージに包含されるfailure typeは、SCG reconfiguration failure、SCG activation failure、又は他の新たな値でもよい。MN1は、当該RRCメッセージの受信に応答して、SCGアクティベーション失敗をX2AP(又はXnAP)のIE(e.g. SCG Reconfiguration Failure, SCG Modification Failure)、又はSN2へのX2AP(XnAP)メッセージのCause値(e.g. SCG activation failure, failed SCG activation)でSN2へ通知してもよい。
 上述の実施形態において、UE3は、SCGがデアクティベートされている間、SN2から指定されるinitial BWP、first active BWP、又はdormant BWPに滞在(camp)し、そこで必要なRRM measurementを実行してもよい。
 上述の実施形態において、MN1又はSN2がSCGをアクティベートするとき、MN1又はSN2は、PSCellのみ、SCGに属する全てのセル(i.e. PSCell及び全てのSCells)、又はPSCellと選択された1又はそれ以上のSCells、をアクティベートするようにUE3に指示してもよい。MN1又はSN2がSCGをアクティベートするとき、MN1又はSN2は、SCellのアクティベーションに応じて直接dormant BWPへ切り替える(switchする)ようUE3に指示してもよい。
 続いて以下では、上述の複数の実施形態に係るMN1、SN2及びUE3の構成例について説明する。図18は、上述の実施形態に係るMN1の構成例を示すブロック図である。SN2の構成も、図18に示された構成と同様であってもよい。図18を参照すると、MN1は、Radio Frequencyトランシーバ1801、ネットワークインターフェース1803、プロセッサ1804、及びメモリ1805を含む。RFトランシーバ1801は、UE3を含むUEsと通信するためにアナログRF信号処理を行う。RFトランシーバ1801は、複数のトランシーバを含んでもよい。RFトランシーバ1801は、アンテナアレイ1802及びプロセッサ1804と結合される。RFトランシーバ1801は、変調シンボルデータをプロセッサ1804から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ1802に供給する。また、RFトランシーバ1801は、アンテナアレイ1802によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1804に供給する。RFトランシーバ1801は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ネットワークインターフェース1803は、ネットワークノード(e.g. MN1、並びにコアネットワークの制御ノード及び転送ノード)と通信するために使用される。ネットワークインターフェース1803は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1804は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。プロセッサ1804は、複数のプロセッサを含んでもよい。例えば、プロセッサ1804は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g. Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g. Central Processing Unit(CPU)又はMicro Processing Unit(MPU))を含んでもよい。プロセッサ1804は、ビームフォーミングのためのデジタルビームフォーマ・モジュールを含んでもよい。デジタルビームフォーマ・モジュールは、Multiple Input Multiple Output(MIMO)エンコーダ及びプリコーダを含んでもよい。
 メモリ1805は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ1805は、プロセッサ1804から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1804は、ネットワークインターフェース1803又は図示されていないI/Oインタフェースを介してメモリ1805にアクセスしてもよい。
 メモリ1805は、上述の複数の実施形態で説明されたMN1による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1806を格納してもよい。いくつかの実装において、プロセッサ1804は、当該ソフトウェアモジュール1806をメモリ1805から読み出して実行することで、上述の実施形態で説明されたMN1の処理を行うよう構成されてもよい。
 なお、MN1がCU(e.g. eNB-CU又はgNB-CU)又はCU-CPである場合、MN1は、RFトランシーバ1801(及びアンテナアレイ1802)を含まなくてもよい。
 図19は、UE3の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ1901は、MN1及びSN2と通信するためにアナログRF信号処理を行う。RFトランシーバ1901は、複数のトランシーバを含んでもよい。RFトランシーバ1901により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1901は、アンテナアレイ1902及びベースバンドプロセッサ1903と結合される。RFトランシーバ1901は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1903から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ1902に供給する。また、RFトランシーバ1901は、アンテナアレイ1902によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1903に供給する。RFトランシーバ1901は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ベースバンドプロセッサ1903は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g. 送信電力制御)、レイヤ2(e.g. 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g. アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、ベースバンドプロセッサ1903によるデジタルベースバンド信号処理は、Service Data Adaptation Protocol(SDAP)レイヤ、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1903によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ1903は、ビームフォーミングのためのMIMOエンコーディング及びプリコーディングを行ってもよい。
 ベースバンドプロセッサ1903は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g. DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g. CPU又はMPU)を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1904と共通化されてもよい。
 アプリケーションプロセッサ1904は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1904は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1904は、メモリ1906又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、UE3の各種機能を実現する。
 幾つかの実装において、図19に破線(1905)で示されているように、ベースバンドプロセッサ1903及びアプリケーションプロセッサ1904は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1903及びアプリケーションプロセッサ1904は、1つのSystem on Chip(SoC)デバイス1905として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1906は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1906は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、MROM、EEPROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1906は、ベースバンドプロセッサ1903、アプリケーションプロセッサ1904、及びSoC1905からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1906は、ベースバンドプロセッサ1903内、アプリケーションプロセッサ1904内、又はSoC1905内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1906は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1906は、上述の複数の実施形態で説明されたUE3による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1907を格納してもよい。幾つかの実装において、ベースバンドプロセッサ1903又はアプリケーションプロセッサ1904は、当該ソフトウェアモジュール1907をメモリ1906から読み出して実行することで、上述の実施形態で図面を用いて説明されたUE3の処理を行うよう構成されてもよい。
 なお、上述の実施形態で説明されたUE3によって行われるコントロールプレーン処理及び動作は、RFトランシーバ1901及びアンテナアレイ1902を除く他の要素、すなわちベースバンドプロセッサ1903及びアプリケーションプロセッサ1904の少なくとも一方とソフトウェアモジュール1907を格納したメモリ1906とによって実現されることができる。
 図18及び図19を用いて説明したように、上述の実施形態に係るMN1、SN2、及びUE3が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
UE。
(付記2)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)再確立を要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立に必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立のための動作を行わないよう構成される、
付記1に記載のUE。
(付記3)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)リカバリを要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリに必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリのための動作を行わないよう構成される、
付記1又は2に記載のUE。
(付記4)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記1~3のいずれか1項に記載のUE。
(付記5)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
付記1~4のいずれか1項に記載のUE。
(付記6)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記1~3のいずれか1項に記載のUE。
(付記7)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
付記1~3及び6のいずれか1項に記載のUE。
(付記8)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記1~7のいずれか1項に記載のUE。
(付記9)
 前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記マスターノード又は前記セカンダリノードから受信するよう構成される、
付記1~8のいずれか1項に記載のUE。
(付記10)
 前記少なくとも1つのプロセッサは、前記SCGがアクティベートされるとき、前記PSCellに関連付けられた前記維持されていた前記configured downlink assignmentおよび前記configured uplink grant Type 2のうち一方又は両方を有効化するよう構成される、
付記1~9のいずれか1項に記載のUE。
(付記11)
 前記少なくとも1つのプロセッサは、前記SCGがデアクティベートされている間、スプリットベアラのSCG部分を使用せず、前記スプリットベアラのアップリンク・プライマリパスを前記MCGにセットするよう構成される、
付記1~10のいずれか1項に記載のUE。
(付記12)
 前記少なくとも1つのプロセッサは、前記SCGがデアクティベートされている間、前記PSCellに関連付けられた前記configured downlink assignmentおよび前記configured uplink grant Type 2のうち一方又は両方を無視するよう構成される、
付記1~11のいずれか1項に記載のUE。
(付記13)
 前記少なくとも1つのプロセッサは、前記SCGがデアクティベートされている間にPSCellモビリティが行われるとき、前記PSCellに関連付けられた前記configured downlink assignmentおよび前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記1~12のいずれか1項に記載のUE。
(付記14)
 前記無線ベアラは、前記マスターノードにより終端されるSCGベアラ、前記セカンダリノードにより終端されるSCGベアラ、前記マスターノードにより終端されるスプリットベアラ、又は前記セカンダリノードにより終端されるスプリットベアラのうち少なくとも1つを含む、
付記1~13のいずれか1項に記載のUE。
(付記15)
 User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
RANノード。
(付記16)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記15に記載のRANノード。
(付記17)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
付記15又は16に記載のRANノード。
(付記18)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記15~17のいずれか1項に記載のRANノード。
(付記19)
 前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記UEに送信するよう構成される、
付記15~18のいずれか1項に記載のRANノード。
(付記20)
 マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)により行われる方法であって、
 前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
方法。
(付記21)
 User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
方法。
(付記22)
 マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)に実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムであって、
 前記方法は、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
コンピュータプログラム。
(付記23)
 User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードに実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムであって、
 前記方法は、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
コンピュータプログラム。
(付記A1)
 マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うよう構成される、
UE。
(付記A2)
 前記少なくとも1つのプロセッサは、前記PSCell追加又はPSCellモビリティの手順において、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを示す情報を、前記マスターノード又は前記セカンダリノードから受信するよう構成される、
付記A1に記載のUE。
(付記A3)
 前記情報は、前記セカンダリノードのRRC Reconfigurationメッセージに含まれる前記PSCellのランダムアクセスチャネル設定を備える、
付記A2に記載のUE。
(付記A4)
 前記ランダムアクセスチャネル設定は、contention-free random access(CFRA)リソースの設定を含むことによって、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスが行われる必要があることを前記UEに示す、
付記A3に記載のUE。
(付記A5)
 前記情報は、前記マスターノードのRRC Reconfigurationメッセージ、前記セカンダリノードのRRC Reconfigurationメッセージ、及び前記MCGのMedium Access Control (MAC) Control Element (CE)のいずれかに含まれるフラグを備える、
付記A2に記載のUE。
(付記A6)
 前記PSCell追加又はPSCellモビリティは、前記SCGをデアクティベートするよう前記UEに指示し、前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵の設定又は更新を前記UEに引き起こす、
付記A1に記載のUE。
(付記A7)
 前記少なくとも1つのプロセッサは、前記PSCell追加又はPSCellモビリティが前記SCGをデアクティベートするよう前記UEに指示し且つ前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵の設定又は更新を前記UEに引き起こすなら、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うよう構成される、
付記A1に記載のUE。
(付記A8)
 前記PSCellモビリティは、PSCell変更、PSCell再構成、又は前記マスターノードの変更に伴うSCG再構成を含む、
付記A1~A7のいずれか1項に記載のUE。
(付記A9)
 前記PSCellモビリティの際の前記SCGのデアクティベーションは、前記SCGがデアクティベートされている間のPSCellモビリティの際に前記SCGをデアクティベート状態のまま維持することを含む、
付記A1~A8のいずれか1項に記載のUE。
(付記A10)
 前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、前記SCGを自律的にデアクティベートするよう構成される、
付記A1~A9のいずれか1項に記載のUE。
(付記A11)
 前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、前記セカンダリノード又は前記マスターノードからSCGデアクティベーションの表示を受信したことに応答して、前記SCGをデアクティベートするよう構成される、
付記A1~A9のいずれか1項に記載のUE。
(付記A12)
 前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に前記SCGを自律的にデアクティベートするべきか否かを示す情報を、前記マスターノード又は前記セカンダリノードから受信するよう構成される、
付記A1~A11のいずれか1項に記載のUE。
(付記A13)
 前記少なくとも1つのプロセッサは、さらに、前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵が更新される必要があるとき、前記SCGに関連付けられたTime Alignment Timerが動作しているか満了しているかに関わらず、前記PSCellへのランダムアクセスを行うよう構成される、
付記A1~A12のいずれか1項に記載のUE。
(付記A14)
 前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記PSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A1~A13のいずれか1項に記載のUE。
(付記A15)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)再確立を要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立に必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立のための動作を行わないよう構成される、
付記A14に記載のUE。
(付記A16)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)リカバリを要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリに必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリのための動作を行わないよう構成される、
付記A14又はA15に記載のUE。
(付記A17)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A14~A16のいずれか1項に記載のUE。
(付記A18)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
付記A14~A17のいずれか1項に記載のUE。
(付記A19)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A14~A16のいずれか1項に記載のUE。
(付記A20)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
付記A14~A16及び19のいずれか1項に記載のUE。
(付記A21)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A14~A20のいずれか1項に記載のUE。
(付記A22)
 前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記マスターノード又は前記セカンダリノードから受信するよう構成される、
付記A14~A21のいずれか1項に記載のUE。
(付記A23)
 User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すよう構成される、
RANノード。
(付記A24)
 前記少なくとも1つのプロセッサは、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すために、前記セカンダリノードのRRC Reconfigurationメッセージに含まれる前記PSCellのランダムアクセスチャネル設定を用いるよう構成される、
付記A23に記載のRANノード。
(付記A25)
 前記少なくとも1つのプロセッサは、前記ランダムアクセスチャネル設定にcontention-free random access(CFRA)リソースの設定を含めることによって、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスが行われる必要があることを前記UEに示す、
付記A24に記載のRANノード。
(付記A26)
 前記少なくとも1つのプロセッサは、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すために、前記マスターノードのRRC Reconfigurationメッセージ、前記セカンダリノードのRRC Reconfigurationメッセージ、及び前記MCGのMedium Access Control (MAC) Control Element (CE)のいずれかに含まれるフラグを用いるよう構成される、
付記A23に記載のRANノード。
(付記A27)
 前記少なくとも1つのプロセッサは、前記PSCell追加又はPSCellモビリティが前記SCGをデアクティベートするよう前記UEに指示し且つ前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵の設定又は更新を前記UEに引き起こすなら、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があることを前記UEに示すよう構成される、
付記A23~A26のいずれか1項に記載のRANノード。
(付記A28)
 前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、前記SCGを自律的にデアクティベートするよう構成される、
付記A23~A27のいずれか1項に記載のRANノード。
(付記A29)
 前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、SCGデアクティベーションの表示を前記UEに送信するよう構成される、
付記A23~A27のいずれか1項に記載のRANノード。
(付記A30)
 前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に前記SCGを自律的にデアクティベートするべきか否かを、前記UEに示すよう構成される、
付記A23~A29のいずれか1項に記載のRANノード。
(付記A31)
 前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記PSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A23~A30のいずれか1項に記載のRANノード。
(付記A32)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A31に記載のRANノード。
(付記A33)
 前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
付記A31又はA32に記載のRANノード。
(付記A34)
 前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
付記A31~A33のいずれか1項に記載のRANノード。
(付記A35)
 前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記UEに送信するよう構成される、
付記A31~A34のいずれか1項に記載のRANノード。
(付記A36)
 マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)により行われる方法であって、
 Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うことを備える、
方法。
(付記A37)
 User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すことを備える、
方法。
(付記A38)
 マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)に実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムであって、
 前記方法は、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うことを備える、
コンピュータプログラム。
(付記A39)
 User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードに実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムであって、
 前記方法は、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すことを備える、
コンピュータプログラム。
 この出願は、2020年12月23日に出願された日本出願特願2020-213547を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 マスターノード(Master Node(MN))
2 セカンダリノード(Secondary Node(SN))
3 User Equipment(UE)
1804 プロセッサ
1805 メモリ
1806 モジュール(modules)
1903 ベースバンドプロセッサ
1904 アプリケーションプロセッサ
1906 メモリ
1907 モジュール(modules)

Claims (62)

  1.  マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うよう構成される、
    UE。
  2.  前記少なくとも1つのプロセッサは、前記PSCell追加又はPSCellモビリティの手順において、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを示す情報を、前記マスターノード又は前記セカンダリノードから受信するよう構成される、
    請求項1に記載のUE。
  3.  前記情報は、前記セカンダリノードのRRC Reconfigurationメッセージに含まれる前記PSCellのランダムアクセスチャネル設定を備える、
    請求項2に記載のUE。
  4.  前記ランダムアクセスチャネル設定は、contention-free random access(CFRA)リソースの設定を含むことによって、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスが行われる必要があることを前記UEに示す、
    請求項3に記載のUE。
  5.  前記情報は、前記マスターノードのRRC Reconfigurationメッセージ、前記セカンダリノードのRRC Reconfigurationメッセージ、及び前記MCGのMedium Access Control (MAC) Control Element (CE)のいずれかに含まれるフラグを備える、
    請求項2に記載のUE。
  6.  前記PSCell追加又はPSCellモビリティは、前記SCGをデアクティベートするよう前記UEに指示し、前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵の設定又は更新を前記UEに引き起こす、
    請求項1に記載のUE。
  7.  前記少なくとも1つのプロセッサは、前記PSCell追加又はPSCellモビリティが前記SCGをデアクティベートするよう前記UEに指示し且つ前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵の設定又は更新を前記UEに引き起こすなら、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うよう構成される、
    請求項1に記載のUE。
  8.  前記PSCellモビリティは、PSCell変更、PSCell再構成、又は前記マスターノードの変更に伴うSCG再構成を含む、
    請求項1~7のいずれか1項に記載のUE。
  9.  前記PSCellモビリティの際の前記SCGのデアクティベーションは、前記SCGがデアクティベートされている間のPSCellモビリティの際に前記SCGをデアクティベート状態のまま維持することを含む、
    請求項1~8のいずれか1項に記載のUE。
  10.  前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、前記SCGを自律的にデアクティベートするよう構成される、
    請求項1~9のいずれか1項に記載のUE。
  11.  前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、前記セカンダリノード又は前記マスターノードからSCGデアクティベーションの表示を受信したことに応答して、前記SCGをデアクティベートするよう構成される、
    請求項1~9のいずれか1項に記載のUE。
  12.  前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に前記SCGを自律的にデアクティベートするべきか否かを示す情報を、前記マスターノード又は前記セカンダリノードから受信するよう構成される、
    請求項1~11のいずれか1項に記載のUE。
  13.  前記少なくとも1つのプロセッサは、さらに、前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵が更新される必要があるとき、前記SCGに関連付けられたTime Alignment Timerが動作しているか満了しているかに関わらず、前記PSCellへのランダムアクセスを行うよう構成される、
    請求項1~12のいずれか1項に記載のUE。
  14.  前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記PSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項1~13のいずれか1項に記載のUE。
  15.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)再確立を要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立に必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立のための動作を行わないよう構成される、
    請求項14に記載のUE。
  16.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)リカバリを要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリに必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリのための動作を行わないよう構成される、
    請求項14又は15に記載のUE。
  17.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項14~16のいずれか1項に記載のUE。
  18.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
    請求項14~17のいずれか1項に記載のUE。
  19.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項14~16のいずれか1項に記載のUE。
  20.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
    請求項14~16及び19のいずれか1項に記載のUE。
  21.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項14~20のいずれか1項に記載のUE。
  22.  前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記マスターノード又は前記セカンダリノードから受信するよう構成される、
    請求項14~21のいずれか1項に記載のUE。
  23.  User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すよう構成される、
    RANノード。
  24.  前記少なくとも1つのプロセッサは、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すために、前記セカンダリノードのRRC Reconfigurationメッセージに含まれる前記PSCellのランダムアクセスチャネル設定を用いるよう構成される、
    請求項23に記載のRANノード。
  25.  前記少なくとも1つのプロセッサは、前記ランダムアクセスチャネル設定にcontention-free random access(CFRA)リソースの設定を含めることによって、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスが行われる必要があることを前記UEに示す、
    請求項24に記載のRANノード。
  26.  前記少なくとも1つのプロセッサは、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すために、前記マスターノードのRRC Reconfigurationメッセージ、前記セカンダリノードのRRC Reconfigurationメッセージ、及び前記MCGのMedium Access Control (MAC) Control Element (CE)のいずれかに含まれるフラグを用いるよう構成される、
    請求項23に記載のRANノード。
  27.  前記少なくとも1つのプロセッサは、前記PSCell追加又はPSCellモビリティが前記SCGをデアクティベートするよう前記UEに指示し且つ前記SCGの無線リソースを使用する無線ベアラのためのAccess Stratum(AS)セキュリティ鍵の設定又は更新を前記UEに引き起こすなら、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があることを前記UEに示すよう構成される、
    請求項23~26のいずれか1項に記載のRANノード。
  28.  前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、前記SCGを自律的にデアクティベートするよう構成される、
    請求項23~27のいずれか1項に記載のRANノード。
  29.  前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に、SCGデアクティベーションの表示を前記UEに送信するよう構成される、
    請求項23~27のいずれか1項に記載のRANノード。
  30.  前記少なくとも1つのプロセッサは、前記PSCellへのランダムアクセスが成功裏に完了した後に前記SCGを自律的にデアクティベートするべきか否かを、前記UEに示すよう構成される、
    請求項23~29のいずれか1項に記載のRANノード。
  31.  前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記PSCellに関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項23~30のいずれか1項に記載のRANノード。
  32.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項31に記載のRANノード。
  33.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
    請求項31又は32に記載のRANノード。
  34.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項31~33のいずれか1項に記載のRANノード。
  35.  前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記UEに送信するよう構成される、
    請求項31~34のいずれか1項に記載のRANノード。
  36.  マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)により行われる方法であって、
     Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うことを備える、
    方法。
  37.  User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すことを備える、
    方法。
  38.  マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)に実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行うことを備える、
    非一時的なコンピュータ可読媒体。
  39.  User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードに実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、Primary SCG Cell(PSCell)追加又はPSCellモビリティの際に前記PSCellを含む前記SCGがデアクティベートされるとき、将来のSCGアクティベーションまで待たずに前記PSCell追加又はPSCellモビリティに応じて前記PSCellへのランダムアクセスを行う必要があるか否かを前記UEに示すことを備える、
    非一時的なコンピュータ可読媒体。
  40.  マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    UE。
  41.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)再確立を要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立に必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCP再確立のための動作を行わないよう構成される、
    請求項40に記載のUE。
  42.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間にRadio Resource Control(RRC)レイヤが前記無線ベアラのPacket Data Convergence Protocol(PDCP)リカバリを要求するとき、前記無線ベアラのための前記MCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリに必要な動作を行い、前記無線ベアラのための前記SCGのユーザープレーンプロトコル・レイヤにおいて前記PDCPリカバリのための動作を行わないよう構成される、
    請求項40又は41に記載のUE。
  43.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項40~42のいずれか1項に記載のUE。
  44.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
    請求項40~43のいずれか1項に記載のUE。
  45.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項40~42のいずれか1項に記載のUE。
  46.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間に前記PSCellのTime Alignment Timerが満了しても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
    請求項40~42及び45のいずれか1項に記載のUE。
  47.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項40~46のいずれか1項に記載のUE。
  48.  前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記マスターノード又は前記セカンダリノードから受信するよう構成される、
    請求項40~47のいずれか1項に記載のUE。
  49.  前記少なくとも1つのプロセッサは、前記SCGがアクティベートされるとき、前記PSCellに関連付けられた前記維持されていた前記configured downlink assignmentおよび前記configured uplink grant Type 2のうち一方又は両方を有効化するよう構成される、
    請求項40~48のいずれか1項に記載のUE。
  50.  前記少なくとも1つのプロセッサは、前記SCGがデアクティベートされている間、スプリットベアラのSCG部分を使用せず、前記スプリットベアラのアップリンク・プライマリパスを前記MCGにセットするよう構成される、
    請求項40~49のいずれか1項に記載のUE。
  51.  前記少なくとも1つのプロセッサは、前記SCGがデアクティベートされている間、前記PSCellに関連付けられた前記configured downlink assignmentおよび前記configured uplink grant Type 2のうち一方又は両方を無視するよう構成される、
    請求項40~50のいずれか1項に記載のUE。
  52.  前記少なくとも1つのプロセッサは、前記SCGがデアクティベートされている間にPSCellモビリティが行われるとき、前記PSCellに関連付けられた前記configured downlink assignmentおよび前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項40~51のいずれか1項に記載のUE。
  53.  前記無線ベアラは、前記マスターノードにより終端されるSCGベアラ、前記セカンダリノードにより終端されるSCGベアラ、前記マスターノードにより終端されるスプリットベアラ、又は前記セカンダリノードにより終端されるスプリットベアラのうち少なくとも1つを含む、
    請求項40~52のいずれか1項に記載のUE。
  54.  User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    RANノード。
  55.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項54に記載のRANノード。
  56.  前記少なくとも1つのプロセッサは、さらに、前記UEが前記SCGの有効なアップリンク・タイミングを維持していなくても、前記PSCellに関連付けられたconfigured Sounding Reference Signal(SRS)リソースの設定および前記PSCellに関連付けられたPhysical Uplink Control Channel(PUCCH)リソースの設定のうち一方又は両方を維持するよう構成される、
    請求項54又は55に記載のRANノード。
  57.  前記少なくとも1つのプロセッサは、さらに、前記SCGがデアクティベートされている間、前記SCGに含まれる1又はそれ以上のSCellsに関連付けられたconfigured downlink assignmentおよび前記1又はそれ以上のSCellsに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持するよう構成される、
    請求項54~56のいずれか1項に記載のRANノード。
  58.  前記少なくとも1つのプロセッサは、前記configured downlink assignment及び前記configured uplink grant Type 2のうち一方又は両方が前記PSCellのみに関して維持されるべきか又は前記SCGに含まれる全てのセルに関して維持されるべきかを示す情報を前記UEに送信するよう構成される、
    請求項54~57のいずれか1項に記載のRANノード。
  59.  マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)により行われる方法であって、
     前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
    方法。
  60.  User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
    方法。
  61.  マスターノードに関連付けられたMaster Cell Group(MCG)及びセカンダリノードに関連付けられたSecondary Cell Group(SCG)を用いるデュアルコネクティビティをサポートするよう構成されたUser Equipment(UE)に実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
    非一時的なコンピュータ可読媒体。
  62.  User Equipment(UE)のためのデュアルコネクティビティにおいてMaster Cell Group(MCG)に関連付けられたマスターノード又はSecondary Cell Group(SCG)に関連付けられたセカンダリノードとして動作するよう構成された無線アクセスネットワーク(RAN)ノードに実装されたコンピュータによって実行された場合に、方法を行うことを前記コンピュータに引き起こすコンピュータプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記SCGの無線リソースを使用する無線ベアラを設定されている前記SCGがデアクティベートされている間、前記SCGに含まれるPrimary SCG Cell(PSCell)に関連付けられたconfigured downlink assignmentおよび前記PSCellに関連付けられたconfigured uplink grant Type 2のうち一方又は両方を維持することを備える、
    非一時的なコンピュータ可読媒体。
PCT/JP2021/041138 2020-12-23 2021-11-09 User Equipment、無線アクセスネットワークノード、及びこれらの方法 WO2022137853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21910007.0A EP4149148A4 (en) 2020-12-23 2021-11-09 USER EQUIPMENT, WIRELESS ACCESS NETWORK NODE, AND ASSOCIATED METHODS
JP2022571943A JPWO2022137853A1 (ja) 2020-12-23 2021-11-09
US18/011,670 US20230254901A1 (en) 2020-12-23 2021-11-09 User equipment, radio access network node, and methods therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020213547 2020-12-23
JP2020-213547 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022137853A1 true WO2022137853A1 (ja) 2022-06-30

Family

ID=82157600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041138 WO2022137853A1 (ja) 2020-12-23 2021-11-09 User Equipment、無線アクセスネットワークノード、及びこれらの方法

Country Status (4)

Country Link
US (1) US20230254901A1 (ja)
EP (1) EP4149148A4 (ja)
JP (1) JPWO2022137853A1 (ja)
WO (1) WO2022137853A1 (ja)

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Efficient SCG (de)activation", R2-2010062, 3GPP TSG-RAN WG2 #112-E, 2 November 2020 (2020-11-02)
HUAWEI (RAPPORTEUR): "[AT112-e][230][eDCCA] Progressing FFS points of efficient SCG activation and deactivation (Huawei)", 3GPP DRAFT; R2-2010733, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 16 November 2020 (2020-11-16), XP051955308 *
HUAWEI: "Discussion on SCG deactivation and activation", R2-2010124, 3GPP TSG-RAN WG2 #112-E, 2 November 2020 (2020-11-02)
INTERDIGITAL: "Inter-node signaling to support activation/deactivation of SCG", 3GPP DRAFT; R3-205963, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 22 October 2020 (2020-10-22), XP051945571 *
MEDIATEK INC: "Discussion on SCG suspension", R2-2009439, 3GPP TSG-RAN WG2 #112-E, 2 November 2020 (2020-11-02)
NOKIA, NOKIA SHANGHAI BELL: "On fast deactivation/activation of SCG", R2-2009547, 3GPP TSG-RAN WG2 #112-E, 2 November 2020 (2020-11-02)
See also references of EP4149148A4
ZTE CORPORATION, SANECHIPS: "CR to clarify smtc field in case of SCell addition", 3GPP DRAFT; R2-2009236, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 23 October 2020 (2020-10-23), XP051942223 *
ZTE: "Summary of Offline Discussion on SCG (de)activation", R3-207003, 3GPP TSG-RAN WG3 #110-E, 2 November 2020 (2020-11-02)

Also Published As

Publication number Publication date
EP4149148A4 (en) 2023-12-27
JPWO2022137853A1 (ja) 2022-06-30
EP4149148A1 (en) 2023-03-15
US20230254901A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2021161622A1 (ja) Ranノード、無線端末、及びこれらのための方法
JP7444227B2 (ja) 第1の無線局、第2の無線局、無線端末、及び通信制御方法
US10595306B2 (en) Systems and methods for a physical uplink control channel on a secondary cell
JP6438478B2 (ja) マルチ接続性オペレーションのためのシステムおよび方法
JP7170730B2 (ja) ビーム失敗回復方法、装置およびデバイス
EP3413625B1 (en) Method of handling secondary cell group configuration in secondary node change
JP5872022B2 (ja) セルラ通信システムにおいて2次セルを初期設定するための方法、ユーザ機器、および基地局
JP6617770B2 (ja) 無線端末及び無線局並びにこれらの方法
JP2017505056A (ja) デュアル接続性オペレーションのためのシステムおよび方法
JP2017503393A (ja) マルチ接続性オペレーションのためのシステムおよび方法
JP2017505057A (ja) デュアル接続性オペレーションのためのシステムおよび方法
WO2021019921A1 (ja) マスターノード、セカンダリノード、及びこれらの方法
JP7392722B2 (ja) マスターノード、セカンダリノード、及びこれらの方法
JP2023517427A (ja) 固定および低モビリティのユーザ機器のためのタイミングアドバンスの簡略化
JP2023519587A (ja) 端末装置及び基地局
KR20230048098A (ko) 스몰 데이터 송신을 위한 유휴/비활성 이동성
US20230388919A1 (en) Mobility for small data transmission procedure
WO2022137853A1 (ja) User Equipment、無線アクセスネットワークノード、及びこれらの方法
JP2024504216A (ja) 無線通信のための方法、装置、及びコンピュータプログラム製品
WO2024024460A1 (ja) 中央ユニット、分散ユニット、無線アクセスネットワークノード、ue、及びこれらの方法
JP7416201B2 (ja) 無線アクセスネットワークノード、User Equipment、及びこれらの方法
WO2023286421A1 (ja) 無線アクセスネットワークノード及びその方法
JP2023541507A (ja) 通信方法、通信装置及び通信媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571943

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021910007

Country of ref document: EP

Effective date: 20221209

NENP Non-entry into the national phase

Ref country code: DE