WO2022137405A1 - 永久磁石式回転電機 - Google Patents

永久磁石式回転電機 Download PDF

Info

Publication number
WO2022137405A1
WO2022137405A1 PCT/JP2020/048277 JP2020048277W WO2022137405A1 WO 2022137405 A1 WO2022137405 A1 WO 2022137405A1 JP 2020048277 W JP2020048277 W JP 2020048277W WO 2022137405 A1 WO2022137405 A1 WO 2022137405A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
teeth
permanent magnet
electric machine
rotary electric
Prior art date
Application number
PCT/JP2020/048277
Other languages
English (en)
French (fr)
Inventor
晴之 米谷
亮治 宮武
拓郎 山田
賢治 田中
勝弘 平田
昇 新口
一晶 高原
寛典 鈴木
拓哉 伊東
Original Assignee
三菱電機株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人大阪大学 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/048277 priority Critical patent/WO2022137405A1/ja
Priority to JP2021532967A priority patent/JP7019105B1/ja
Priority to CN202080107942.3A priority patent/CN116670985A/zh
Priority to EP20966895.3A priority patent/EP4270745A4/en
Priority to US18/267,103 priority patent/US20240120817A1/en
Publication of WO2022137405A1 publication Critical patent/WO2022137405A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/005Magnetic gearings with physical contact between gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/40Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with flux distributors rotating around the magnets and within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This disclosure relates to a permanent magnet type rotary electric machine.
  • Patent Document 1 discloses a rotary electric machine which is a magnetic strain wave gearing device.
  • the magnetic strain wave gearing described in the above publication includes a stator (stator), a low-speed rotor that rotates at a low speed (first rotor), and a high-speed rotor (second rotor) that rotates at a high speed according to a gear ratio. ing.
  • the stator, low-speed rotor, and high-speed rotor are arranged in order from the outer peripheral side with the rotation axis as the center.
  • the stator contains a coil.
  • the coil is a coil for outputting the generated electric power or a coil for controlling the generated torque.
  • the speed of the high-speed rotor can be changed in a state where the high-speed rotor and the low-speed rotor are not in contact with the stator, so that maintenance for dealing with mechanical wear and the like can be performed. Can be reduced. This reduces the maintenance load. Further, when the magnetic strain wave gearing device is used as a generator, the power generation system can be miniaturized because a mechanical transmission is not required.
  • the stator coil (coil) is wound around the stator (stator) by distributed winding.
  • the capacitance of the stator coil wound by the distributed winding becomes large, the workability of the stator coil decreases. Therefore, when the capacity of the permanent magnet type rotary electric machine described in the above publication becomes large, the workability of the stator coil is lowered. Further, when the capacity of the stator coil wound by the centralized winding becomes large, the deterioration of the workability of the stator coil is suppressed.
  • stator coil of the permanent magnet type rotary electric machine described in the above publication is wound by centralized winding.
  • torque pulsation may occur depending on the number of concentrated windings and the like.
  • an index called a winding coefficient which indicates the ratio of the magnetic flux interlinking with the stator coil among the magnetic flux generated from the second magnetic pole piece (permanent magnet) is an evaluation of efficiency or output density. Used for. The larger the winding coefficient, the more the magnetic flux generated from the second magnetic pole piece is effectively interlinked with the stator coil, so that the efficiency or output density of the permanent magnet type rotary electric machine is large.
  • the efficiency or the output density is also affected by the acceleration / reduction ratio. Therefore, if only the winding coefficient is considered, the efficiency or output density may not be sufficiently improved.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a permanent magnet type rotary electric machine capable of suppressing the occurrence of torque pulsation and sufficiently improving efficiency or output density.
  • the permanent magnet type rotary electric machine of the present disclosure includes a stator, a first rotor, and a second rotor.
  • the stator includes a stator core, a plurality of stator teeth, a plurality of stator slots, a plurality of stator magnets, and a stator coil.
  • the stator core extends in a ring shape.
  • the stator teeth project from the stator core toward the center of the stator core.
  • Each of the plurality of stator slots is provided between the adjacent stator teeth among the plurality of stator teeth.
  • Each of the plurality of stator magnets is housed in each of the plurality of stator slots.
  • the stator coil is wound around each of the plurality of stator teeth.
  • the first rotor is arranged inside the stator core rather than the plurality of stator magnets.
  • the first rotor contains a plurality of first magnetic pole pieces.
  • the plurality of first magnetic pole pieces are arranged along the circumferential direction of the stator core at intervals from the stator.
  • the second rotor is arranged inside the stator core rather than the plurality of first magnetic pole pieces.
  • the second rotor contains a plurality of second magnetic pole pieces.
  • the plurality of second magnetic pole pieces are arranged along the circumferential direction of the stator core at intervals from the first rotor.
  • the plurality of second magnetic pole pieces have a permanent magnet.
  • the stator coil is wound around each of the plurality of stator teeth by a centralized winding.
  • the ratio of the number of stator slots to the number of poles of the second pole pieces of the second rotor is greater than 1.25 and less than 1.5, or greater than 1.5 and greater than 3.0. Is also small.
  • the ratio of the number of the stator slots to the number of poles of the plurality of second magnetic pole pieces of the second rotor is larger than 1.25 and smaller than 1.5. Or greater than 1.5 and less than 3.0. Therefore, it is possible to suppress the occurrence of torque pulsation, and it is possible to sufficiently improve efficiency or output density.
  • FIG. 1 It is a schematic diagram schematically showing the structure of the permanent magnet type rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a graph which shows roughly the relationship between the number of slots / the number of poles and a winding coefficient which concerns on Embodiment 1.
  • FIG. It is a graph which shows roughly the relationship between the number of slots / number of poles and the acceleration / deceleration ratio which concerns on Embodiment 1.
  • FIG. It is a graph which shows roughly the relationship between the number of slots / number of poles and winding coefficient ⁇ acceleration / reduction ratio which concerns on Embodiment 1.
  • FIG. It is a graph which shows roughly the relationship between the number of slots / the number of poles and the 5th order winding coefficient which concerns on Embodiment 1.
  • FIG. It is a graph which shows roughly the relationship between the number of slots / the number of poles and the 7th winding coefficient which concerns on Embodiment 1.
  • FIG. It is an enlarged view of the VII region of FIG.
  • FIG. It is a schematic diagram schematically showing the structure of the permanent magnet type rotary electric machine which concerns on Embodiment 2.
  • FIG. It is a schematic diagram schematically showing the structure of the stator of the permanent magnet type rotary electric machine which concerns on Embodiment 2.
  • FIG. It is a schematic diagram schematically showing the structure of the permanent magnet type rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a schematic diagram schematically showing the structure of the stator of the permanent magnet type rotary electric machine which concerns on Embodiment 3.
  • FIG. 1 It is a schematic diagram schematically showing the structure of the stator of the permanent magnet type rotary electric machine which concerns on Embodiment 4.
  • FIG. 2 It is a schematic diagram which shows schematic structure of the permanent magnet type rotary electric machine which concerns on Embodiment 5.
  • FIG. 5 It is a schematic diagram schematically showing the structure of the stator, the 1st power source, the 2nd power source and the 3rd power source of the permanent magnet type rotary electric machine which concerns on Embodiment 5.
  • Embodiment 1 The configuration of the permanent magnet type rotary electric machine 100 according to the first embodiment will be described with reference to FIG. In the present embodiment, the configuration and operation when the permanent magnet type rotary electric machine 100 is used as a generator will be described. However, in the configuration of the permanent magnet type rotary electric machine 100, the permanent magnet type rotary electric machine 100 is used as an electric machine. It is applicable even if it is done.
  • the permanent magnet type rotary electric machine 100 is a permanent magnet type rotary electric machine 100 having a speed change mechanism.
  • the permanent magnet type rotary electric machine 100 is a permanent magnet type rotary electric machine 100 having a three-phase winding.
  • the permanent magnet type rotary electric machine 100 includes a stator 1, a first rotor 2, and a second rotor 3.
  • the stator 1, the first rotor 2, and the second rotor 3 are arranged concentrically.
  • the stator 1 includes a stator core 11, a plurality of stator teeth 12, a plurality of stator slots 13, a plurality of stator magnets 15, and a stator coil 14.
  • the stator coil 14 is indicated by diagonal lines.
  • the number of the plurality of stator teeth 12, the number of the plurality of stator slots 13 and the number of the plurality of stator magnets 15 are the same.
  • the stator core 11 extends in a ring shape.
  • the center of the first rotor 2 and the center of the second rotor 3 are arranged at the same positions as the center C of the stator core 11.
  • the stator teeth 12 project from the stator core 11 toward the center C of the stator core 11.
  • Each of the plurality of stator slots 13 is provided between the stator teeth 12 adjacent to each other among the plurality of stator teeth 12.
  • the stator coil 14 is wound around each of the plurality of stator teeth 12.
  • the stator coil 14 is wound around each of the plurality of stator teeth 12 by a centralized winding. That is, the permanent magnet type rotary electric machine 100 according to the present embodiment is a centralized winding permanent magnet type rotary electric machine.
  • Each of the plurality of stator magnets 15 is housed in each of the plurality of stator slots 13. Each of the plurality of stator magnets 15 is sandwiched between the stator teeth 12 adjacent to each other among the plurality of stator teeth 12. Each of the plurality of stator magnets 15 is magnetized. The polar orientation of each of the plurality of stator magnets 15 is the same along the radial direction of the stator core 11. Therefore, for example, when the center C side of the stator core 11 of the plurality of stator magnets 15 is the N pole, the center C side of the stator core 11 of the plurality of stator teeth 12 is the S pole.
  • stator 1 and one stator teeth 12 constitute a pair of magnetic poles. Since the number of the plurality of stator teeth 12, the number of the plurality of stator slots 13 and the number of the plurality of stator magnets 15 are the same, the stator 1 has the same number of poles as the number of the plurality of stator slots 13. It has a logarithm. In this embodiment, the number of the plurality of stator slots 13 is NL . In the permanent magnet type rotary electric machine 100 shown in FIG. 1, NH is 54. The number of the plurality of stator slots 13 may be described as the number of slots.
  • the first rotor 2 is arranged inside the stator core 11 rather than the plurality of stator magnets 15.
  • the first rotor 2 is configured as a low speed rotor.
  • the first rotor 2 includes a plurality of first magnetic pole pieces 21.
  • the plurality of first magnetic pole pieces 21 are arranged along the circumferential direction of the stator core 11 at intervals from the stator 1.
  • the plurality of first magnetic pole pieces 21 are arranged in an annular shape.
  • the number of the plurality of first magnetic pole pieces 21 is NS .
  • NS is 66.
  • the second rotor 3 is arranged inside the stator core 11 with respect to the plurality of first magnetic pole pieces 21.
  • the second rotor 3 is configured as a high-speed rotor.
  • the second rotor 3 includes a plurality of second magnetic pole pieces 31 and a support portion 32.
  • the plurality of second magnetic pole pieces 31 are arranged along the circumferential direction of the stator core 11 at intervals from the first rotor 2.
  • the plurality of second magnetic pole pieces 31 are arranged in an annular shape.
  • the plurality of second magnetic pole pieces 31 are supported by the support portion 32.
  • the plurality of second magnetic pole pieces 31 are arranged on the outer periphery of the support portion 32.
  • the plurality of second magnetic pole pieces 31 have permanent magnets.
  • the number of the plurality of second magnetic pole pieces 31 is NH . Therefore, the number of pole pairs of the plurality of second magnetic pole pieces 31 is NH . Therefore, the number of poles of the plurality of second magnetic pole pieces 31 is 2NH .
  • NH is 12.
  • the ratio of the number of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 of the second rotor 3 is greater than 1.25 and less than 1.5. Greater than 1.5 and less than 3.0.
  • the ratio of the number of the plurality of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 of the second rotor 3 is described as NS / 2NH .
  • the ratio of the number of the plurality of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 of the second rotor 3 may be described as the number of slots / the number of poles.
  • the stator 1, the first rotor 2, and the second rotor 3 are configured as a transmission. Specifically, the number N L of the plurality of stator slots 13, the number NS of the plurality of first magnetic pole pieces 21 and the number N H of the plurality of second magnetic pole pieces 31 satisfy the following relationship of number 1. In this case, the stator 1, the first rotor 2 and the second rotor 3 function as a transmission.
  • the number NS of the plurality of stator slots 13, the number N L of the plurality of first magnetic pole pieces 21 and the number N H of the plurality of second magnetic pole pieces 31 satisfy the above-mentioned relationship of the number 1. ing. Therefore, the stator 1, the first rotor 2, and the second rotor 3 function as a transmission. Negative torque is generated in the plurality of first rotors 2 due to the interaction between the magnetic force of the plurality of stator magnets 15 and the magnetic force of the plurality of two rotors. On the other hand, when the first rotor 2 is rotated by an external power, an input is obtained to the first rotor 2.
  • a current is passed through the stator 1 so that the second rotor 3 rotates in a free-run state.
  • the free-run state is a state in which the rotor can rotate by inertia.
  • the second rotor 3 rotates at a speed N L / N H times that of the first rotor 2.
  • the permanent magnet type rotary electric machine 100 functions as a transmission.
  • the second rotor 3 rotates at a rotation speed of N L / NH times that of the first rotor 2
  • an induced electromotive force is generated in the stator coil 14.
  • the generated power is output from the stator coil 14.
  • the acceleration / reduction ratio is a magnification of the rotation speed of the second rotor 3 with respect to the rotation speed of the first rotor 2.
  • the acceleration / reduction ratio, the number of the plurality of stator slots 13, and the number of the plurality of second rotors 3 satisfy the relationship of the following equation 2.
  • the ratio of the magnetic flux generated from the plurality of magnetic pole pieces that contributes to the power generation of the stator coil 14 is called the winding coefficient. At least a part of the magnetic flux generated from the plurality of second magnetic pole pieces 31 is interlinking with the stator coil 14, and the magnetic flux generated from the plurality of second magnetic pole pieces 31 contributes to the power generation of the stator coil 14. .. Therefore, the winding coefficient in the present embodiment is a ratio of the magnetic flux generated from the plurality of second magnetic pole pieces 31 that contributes to the power generation of the stator coil 14.
  • the winding coefficient is indicated by the following equation 3.
  • N is the spatial harmonic order.
  • the fundamental wave of the spatial harmonic order is 1.
  • is a shortness. The shortness is indicated by the following number 4.
  • Q' is the number of slots for each pole and each phase.
  • the number of phases is 3. It is shown using the following number 4, and when the right side of the number 5 is a decimal number, it is the smallest integer obtained by multiplying the value of the right side by an integer.
  • the efficiency or output of the permanent magnet type rotary electric machine is evaluated by the winding coefficient. There is. Therefore, it is evaluated that the efficiency or output density of the permanent magnet type rotary electric machine increases as the winding coefficient increases. That is, only the winding coefficient is used as an index for evaluation of the permanent magnet type rotary electric machine.
  • the permanent magnet type rotary electric machine 100 having a speed change mechanism like the permanent magnet type rotary electric machine 100 according to the present embodiment it is necessary to further consider the acceleration / reduction ratio of the second rotor 3.
  • Each of the winding coefficient and the acceleration / reduction ratio is calculated based on the number of stator teeth 12 and the number of poles of the second magnetic pole piece 31. Therefore, if the number of stator teeth 12 and the number of poles of the second magnetic pole piece 31 are determined only in consideration of the improvement of the winding coefficient, the required acceleration / reduction ratio may not be obtained.
  • the efficiency or output of the permanent magnet type rotary electric machine 100 is evaluated by the winding coefficient ⁇ acceleration / reduction ratio. That is, the winding coefficient ⁇ acceleration / reduction ratio is used as an index for evaluation of the permanent magnet type rotary electric machine 100.
  • the induced voltage generated in the stator coil 14 is the winding coefficient ⁇ acceleration / deceleration ratio. Proportional. Therefore, the efficiency or output density of the permanent magnet type rotary electric machine 100 is improved by increasing the winding coefficient ⁇ acceleration / reduction ratio.
  • FIG. 2 is a graph showing the relationship between NS / 2NH and the winding coefficient. As shown in FIG. 2, as NS / 2NH decreases, the winding coefficient increases. Therefore, when only the improvement of the winding coefficient is considered, it is desirable that NS / 2NH is small .
  • FIG. 3 is a graph showing the relationship between NS / 2NH and the acceleration / deceleration ratio. As shown in FIG. 3, as NS / 2NH increases, the acceleration / reduction ratio increases.
  • FIG. 4 is a graph showing the relationship between NS / 2NH and the winding coefficient ⁇ acceleration / deceleration ratio.
  • the range of N L / 2NS according to the present embodiment is a range surrounded by the alternate long and short dash line.
  • the point of NS / 2NH 1.5 is not included in the range of NS / 2NH according to the present embodiment.
  • the winding coefficient ⁇ acceleration / reduction ratio increases as NS / 2NH increases.
  • the winding coefficient ⁇ acceleration / reduction ratio is significantly larger than the increasing tendency.
  • the point P (1.2) corresponds to the case where NS / 2NH is 1.2.
  • the winding coefficient ⁇ acceleration / reduction ratio is, for example, 3.17.
  • the acceleration / reduction ratio when NS / 2NH is 1.2 is not sufficiently large.
  • the winding coefficient ⁇ acceleration / reduction ratio is, for example, 3.17. Therefore, the winding coefficient ⁇ acceleration / deceleration ratio when NS / 2NH is 1.239 is substantially the same as the winding coefficient ⁇ acceleration / deceleration ratio when NS / 2NH is 1.2. ..
  • the winding coefficient ⁇ acceleration / reduction ratio when NS / 2NH is 1.260 is, for example, 3.19.
  • the winding coefficient ⁇ acceleration / deceleration ratio when NS / 2NH is 1.260 is larger than the winding coefficient ⁇ acceleration / deceleration ratio when NS / 2NH is 1.2. Therefore, the winding coefficient ⁇ acceleration / deceleration ratio when NS / 2NH is 1.25 is larger than the winding coefficient ⁇ acceleration / deceleration ratio when NS / 2NH is 1.2. Further, the acceleration / deceleration ratio when NS / 2NH is 1.25 is larger than the acceleration / deceleration ratio when NS / 2NH is 1.2. Therefore, the acceleration / reduction ratio is sufficiently large. Therefore, it is preferable that NS / 2NH is larger than 1.25.
  • the winding coefficient ⁇ acceleration / reduction ratio is, for example, 3.46.
  • NS / 2NH when NS / 2NH is 1.5, the 5th order winding coefficient (spatial 5th harmonic) and the 7th order winding coefficient (spatial 7th order). Harmonics) are prominently large. Therefore, the performance of the permanent magnet type rotary electric machine 100 may deteriorate due to spatial harmonics such as torque fluctuation width (torque ripple) and loss due to harmonic flux. For example, when the fluctuation range of the torque is large, the permanent magnet type rotary electric machine 100 pulsates. The pulsation of the permanent magnet type rotary electric machine 100 due to the fluctuation of torque is called torque pulsation. Therefore, it is preferable that NS / 2NH is not 1.5.
  • the winding coefficient ⁇ acceleration / reduction ratio is 1 for NS / 2NH larger than 1.25. It is larger than the winding coefficient x acceleration / reduction ratio when it is smaller than .5. Therefore, it is more preferable that NS / 2NH is greater than 1.5 and less than 3.0 than when NS / 2NH is greater than 1.25 and less than 1.5.
  • NS / 2NH When NS / 2NH is 3.0, the number of the plurality of stator slots 13 is the same as the number of the stator slots 13 in the permanent magnet type rotary electric machine 100 of the distributed winding. Therefore, when NS / 2NH is 3, there is a problem in the distributed winding that the workability of the stator coil 14 deteriorates due to the large number of the plurality of stator slots 13. Further, when NS / 2N H is larger than 3, the workability of the stator coil 14 deteriorates as in the case where NS / 2N H is 3 . Therefore, it is not preferable that NS / 2NH is 3.0 or more.
  • the ratio of the number of the plurality of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 is 9. : 4.
  • NS / 2NH is 2.25.
  • Table 3 when NS / 2NH is 2.25, the winding coefficient ⁇ acceleration / reduction ratio is 3.39.
  • the point P (2.25) corresponds to the case where NS / 2NH is 2.25.
  • FIG. 7 is a schematic diagram showing a part of the permanent magnet type rotary electric machine 100 according to the first embodiment.
  • the entire permanent magnet type rotary electric machine 100 shown in FIG. 1 has a plurality of parts of the permanent magnet type rotary electric machine 100 shown in FIG. 7.
  • the entire permanent magnet type rotary electric machine 100 shown in FIG. 1 has six parts of the permanent magnet type rotary electric machine 100 shown in FIG. 7.
  • a part of the permanent magnet type rotary electric machine 100 shown in FIG. 7 is periodically arranged.
  • the number of stator slots 13 included in a part of the permanent magnet type rotary electric machine 100 shown in FIG. 7 is, for example, 9. Further, since the number of the second magnetic pole pieces 31 included in a part of the permanent magnet type rotary electric machine 100 shown in FIG. 7 is 2, the number of pole pairs of a part of the permanent magnet type rotary electric machine 100 shown in FIG. Is 4. Further, the number of the plurality of first magnetic pole pieces 21 included in a part of the permanent magnet type rotary electric machine 100 shown in FIG. 7 is 11.
  • the action and effect of the present embodiment will be described.
  • the number of the stator slots 13 with respect to the number of poles of the plurality of second magnetic pole pieces 31 of the second rotor 3 The ratio ( NS / 2NH ) is greater than 1.25 and less than 1.5, or greater than 1.5 and less than 3.0. Therefore, as shown in FIG. 4, the winding coefficient ⁇ acceleration / reduction ratio can be increased. Therefore, the efficiency or output density of the permanent magnet type rotary electric machine 100 is sufficiently improved. Also, NS / 2NH is not 1.5. Therefore, it is possible to prevent the fifth-order winding coefficient and the seventh-order winding coefficient from becoming prominently large.
  • the ratio of the number of the stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 is 9: 4.
  • NS / 2NH is 2.25.
  • NS / 2N H is 2 in the range where NS / 2N H is greater than 1.25 and less than 1.5 and in the range greater than 1.5 and less than 3.0.
  • the winding coefficient x acceleration / reduction ratio is the largest. Therefore, the efficiency or output density of the permanent magnet type rotary electric machine 100 is sufficiently improved.
  • Embodiment 2 Next, the configuration of the permanent magnet type rotary electric machine 100 according to the second embodiment will be described with reference to FIGS. 4 and 8.
  • the second embodiment has the same configuration and operation and effect as the first embodiment, unless otherwise specified. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the ratio of the number of the plurality of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 is 18:14. be.
  • the NS / 2NH according to the present embodiment is 1.286 .
  • FIG. 4 corresponds to the case where the point P (1.286) has a ratio of the number of the plurality of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 at 18:14.
  • FIG. 8 is a schematic view showing a part of the permanent magnet type rotary electric machine 100 according to the second embodiment. The entire permanent magnet type rotary electric machine 100 has a plurality of parts of the permanent magnet type rotary electric machine 100 shown in FIG.
  • the number of stator slots 13 included in a part of the permanent magnet type rotary electric machine 100 shown in FIG. 8 is 18. Further, since the number of the second magnetic pole pieces 31 included in a part of the permanent magnet type rotary electric machine 100 shown in FIG. 8 is 7, the number of pole pairs of a part of the permanent magnet type rotary electric machine 100 shown in FIG. Is 14. Further, the number of the first magnetic pole pieces 21 included in a part of the permanent magnet type rotary electric machine 100 shown in FIG. 8 is 25.
  • the stator coil 14 includes a plurality of coil portions C0.
  • the plurality of coil portions C0 are connected in parallel with each other.
  • One coil portion C0 is wound around each of the stator teeth 12 of 18 by a concentrated winding. Therefore, a parallel circuit is configured for each of the 18 stator teeth 12. Therefore, the induced voltage is equal to every 12 stator teeth of 18.
  • a part of the permanent magnet type rotary electric machine 100 shown in FIG. 8 includes one coil portion C0 out of a plurality of coil portions C0. In a part of the permanent magnet type rotary electric machine 100 shown in FIG. 8, one coil portion C0 out of a plurality of coil portions C0 is shown.
  • the permanent magnet type rotary electric machine 100 is a permanent magnet type rotary electric machine 100 having a three-phase winding. Therefore, the number of the plurality of stator slots 13 is a multiple of 3. Further, since one second magnetic pole piece 31 includes two poles, the number of poles of the plurality of second magnetic pole pieces 31 of the second rotor 3 is a multiple of 2 (even number). Therefore, in the range where NS / 2N H is larger than 1.25 and smaller than 1.5, when NS / 2N H is 1.25 or more, the specific number of stator slots 13 is big.
  • the minimum number of stator slots 13 for NS / 2NH to be 1.45 is 87, and the number of poles of the second magnetic pole piece 31 is 60 (the number of the second magnetic pole pieces 31 is 30). Is).
  • each of the plurality of coil portions C0 is periodically arranged every 87 slots.
  • the number of times one coil portion C0 is wound around one stator teeth 12 needs to be an integer, the larger the number of the plurality of stator slots 13, the greater the degree of freedom in designing the winding of the coil portion C0. small. Further, when the number of the plurality of parallel circuits by each of the plurality of coil portions C0 is large, the number of turns of each of the plurality of coil portions C0 becomes small.
  • the ratio between the stator slot 13 and the number of poles of the second magnetic pole piece 31 is 12:10 ( NS /).
  • the degree of freedom in designing the winding is low.
  • Table 4 shows the phase and phase of the coil portion C0 wound around the plurality of stator teeth 12 according to the present embodiment.
  • the plurality of stator teeth 12 include the first stator teeth T101 to the eighteenth stator teeth T118.
  • the phases of the first stator teeth T101 to the eighteenth stator teeth T118 are each shifted by 140 degrees.
  • a three-phase current including a U phase, a V phase, and a W phase flows through the plurality of coil portions C0. Further, the plurality of coil portions C0 are wound around the stator teeth 12 in the forward direction or the reverse direction. The direction of the rotating magnetic field generated by the three-phase current is illustrated by the white arrow.
  • the phases of the adjacent stator teeth 12 are shifted by 140 degrees. Therefore, the stator teeth 12 of 18 shift the phase by a total of 2520 degrees. 2520 is a multiple of 360. Therefore, since the phase of the current is equal to each of the stator teeth 12 of 18, the induced voltage is equal to each of the stator teeth 12 of 18. Therefore, it is possible to suppress the generation of circulating current between the plurality of parallel circuits.
  • the ratio of the number of the plurality of stator slots 13 to the number of poles of the plurality of second magnetic pole pieces 31 is 18 :. It is 14. Therefore, since the number of the plurality of stator slots 13 is small, it is possible to suppress the degree of freedom in designing the winding. Further, a parallel circuit is configured for each of the 18 stator teeth 12. Therefore, it is possible to suppress the generation of circulating current.
  • Embodiment 3 the configuration of the permanent magnet type rotary electric machine 100 according to the third embodiment will be described with reference to FIGS. 10 and 11. Unless otherwise specified, the third embodiment has the same configuration and operation and effect as the second embodiment. Therefore, the same components as those in the second embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the stator coil 14 includes a first coil portion C1 and a second coil portion C2.
  • each of the plurality of coil portions C0 includes a first coil portion C1 and a second coil portion C2.
  • the second coil portion C2 is connected in parallel to the first coil portion C1.
  • the plurality of stator teeth 12 includes a plurality of first teeth portions T1 and a plurality of second teeth portions T2.
  • a first coil portion C1 is wound around each of the plurality of first teeth portions T1.
  • a second coil portion C2 is wound around each of the plurality of second teeth portions T2.
  • the number of the plurality of first teeth portions T1 is the same as the number of the plurality of second teeth portions T2.
  • Each of the plurality of first teeth portions T1 and each of the plurality of second teeth portions T2 are arranged alternately.
  • the plurality of first teeth portions T1 include the first first teeth portion T101 to the ninth first teeth portion T109.
  • the plurality of second teeth portions T2 include a first second teeth portion T201 to a ninth second teeth portion T209.
  • the number of the first teeth portion T1 and the number of the second teeth portions T2 are multiples of 9.
  • each of the first coil portion C1 and the second coil portion C2 constitutes a parallel circuit. Therefore, one coil unit C0 includes two parallel circuits.
  • the phase of the current of each phase in the first group is equal to the phase of the current of each phase in the second group.
  • the group 1 is a plurality of first teeth portions T1 and first coil portions C1.
  • the second group is a plurality of second teeth portions T2 and second coil portions C2.
  • the third group is a plurality of third teeth portions T3 and third coil portions C3.
  • the phases of the U-phase currents in one group are 0 degrees, 200 degrees, and 160 degrees.
  • the phases of the U-phase currents in the second group are 340 degrees, 180 degrees, and 20 degrees. Therefore, the total induced voltage is equal. Therefore, it is possible to suppress the occurrence of a phase difference between the parallel circuit of the first group and the parallel circuit of the second group. Therefore, it is possible to suppress the generation of circulating current.
  • each of the plurality of first teeth portions T1 and each of the plurality of second teeth portions T2 are arranged alternately. ing. Therefore, as shown in Table 5, the induced voltage of the first coil portion C1 wound around the plurality of first teeth portions T1 and the second coil portion C2 wound around the plurality of second teeth portions T2. The induced voltages are equal. Therefore, it is possible to suppress the generation of circulating current.
  • the stator coil 14 includes a first coil portion C1 and a second coil portion C2.
  • Each of the first coil portion C1 and the second coil portion C2 constitutes a parallel circuit. Therefore, the number of parallel circuits included in the permanent magnet type rotary electric machine 100 can be increased as compared with the case where the stator coil 14 constitutes one parallel circuit.
  • Embodiment 4 the configuration of the permanent magnet type rotary electric machine 100 according to the fourth embodiment will be described with reference to FIG. 12. Unless otherwise specified, the fourth embodiment has the same configuration and operation and effect as the third embodiment. Therefore, the same components as those in the third embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the plurality of first teeth portions T1 and the plurality of second teeth portions T2 are alternately arranged three by three.
  • the phase of the current of each phase in the first group is equal to the phase of the current of each phase in the second group.
  • the phases of the U-phase currents in one group are 0 degrees, 340 degrees, and 20 degrees.
  • the phases of the U-phase currents in the two groups are 200 degrees, 180 degrees, and 160 degrees. Therefore, the total induced voltage of the U phase in the first group is equal to the total induced voltage of the U phase in the second group. Therefore, it is possible to suppress the occurrence of a phase difference between the parallel circuit of the first group and the parallel circuit of the second group. Therefore, it is possible to suppress the generation of circulating current.
  • the action and effect of the present embodiment will be described.
  • the plurality of first teeth portions T1 and the plurality of second teeth portions T2 are alternately arranged three by three. There is. Therefore, as shown in Table 6, the induced voltage of the first coil portion C1 wound around the plurality of first teeth portions T1 and the second coil portion C2 wound around the plurality of second teeth portions T2. The induced voltages are equal. Therefore, it is possible to suppress the generation of circulating current.
  • the stator coil 14 includes a first coil portion C1 and a second coil portion C2.
  • Each of the first coil portion C1 and the second coil portion C2 constitutes a parallel circuit. Therefore, the number of parallel circuits included in the permanent magnet type rotary electric machine 100 can be increased as compared with the case where the stator coil 14 constitutes one parallel circuit.
  • Embodiment 5 the configuration of the permanent magnet type rotary electric machine 100 according to the fifth embodiment will be described with reference to FIGS. 13 and 14.
  • the fifth embodiment has the same configuration and operation and effect as the third embodiment, unless otherwise specified. Therefore, the same components as those in the third embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • two parallel circuits are configured for each of the 18 stator coils 14.
  • the permanent magnet type rotary electric machine 100 includes only one power supply, it is not possible to configure three parallel circuits for each of the stator coils 14 of 18.
  • the permanent magnet type rotary electric machine 100 further includes a first power source P1, a second power source P2, and a third power source P3.
  • Each of the first power supply P1, the second power supply P2, and the third power supply P3 is independent.
  • the phases of the first power supply P1, the second power supply P2, and the third power supply P3 are shifted by 20 degrees.
  • the plurality of stator teeth 12 includes a plurality of first teeth portions T1, a plurality of second teeth portions T2, and a plurality of third teeth portions T3.
  • the plurality of first teeth portions T1 are electrically connected to the first power supply P1.
  • the plurality of second teeth portions T2 are electrically connected to the second power source P2.
  • the plurality of third teeth portions T3 are electrically connected to the third power supply P3.
  • Each of the plurality of first teeth portions T1, each of the plurality of second teeth portions T2, and each of the plurality of third teeth portions T3 are connected to the stator core 11 so as to circulate in order.
  • the stator coil 14 includes a first coil portion C1, a second coil portion C2, and a third coil portion C3.
  • the third coil portion C3 is wound around each of the plurality of third teeth portions T3 by concentrated winding.
  • the plurality of first teeth portions T1 include the first first teeth portion T101 to the sixth first teeth portion T106.
  • the plurality of second teeth portions T2 include a first second teeth portion T201 to a sixth second teeth portion T206.
  • the plurality of third teeth portions T3 include a first third teeth portion T301 to a sixth third teeth portion T306.
  • the phase of the current of each phase in the first group is equal to the phase of the current of each phase in the second group.
  • the phases of the U-phase currents in one group are 0 degrees, 340 degrees, and 20 degrees.
  • the phases of the U-phase currents in the two groups are 200 degrees, 180 degrees, and 160 degrees. Therefore, the total induced voltage of the U phase in the first group is equal to the total induced voltage of the U phase in the second group. Therefore, it is possible to suppress the occurrence of a phase difference between the parallel circuit of the first group and the parallel circuit of the second group. Therefore, it is possible to suppress the generation of circulating current.
  • the phase of the current of each phase in the 1st group is out of phase with respect to the phase of the current of each phase in the 2nd group and the phase of the current in the 3rd group.
  • the phases of the U-phase currents in one group are 0 degrees and 180 degrees.
  • the U-phase currents in the second group are 200 degrees and 20 degrees.
  • the U-phase currents in the three groups are 340 degrees and 160 degrees. Therefore, the phase of the U-phase current in the second group is shifted by 20 degrees from the phase of the U-phase current in the first group.
  • the phase of the U-phase current in the third group is shifted by 20 degrees from the phase of the U-phase current in the second group. That is, the 2nd group is offset by 20 degrees from the 1st group and the 3rd group.
  • the phases of the first power supply P1, the second power supply P2, and the third power supply P3 are deviated by 20 degrees. Therefore, the phase shift of the first group, the second group, and the third group by 30 degrees is canceled by the shift of the first power supply P1, the second power supply P2, and the third power supply P3. As a result, the phases of the 1st group, the 2nd group and the 3rd group become equal to each other. Therefore, 3 parallel circuits can be configured for each of the 18 stator teeth 12.
  • stator 1 stator, 2 first rotor, 3 second rotor, 11 stator core, 12 stator teeth, 13 stator slot, 14 stator coil, 15 stator magnet, 21 first magnetic pole piece, 31 second Magnetic pole piece, 100 permanent magnet type rotary electric machine, C1 1st coil part, C2 2nd coil part, P1 1st power supply, P2 2nd power supply, P3 3rd power supply, T1 1st teeth part, T2 2nd teeth part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

永久磁石式回転電機(100)は、固定子(1)と、第1回転子(2)と、第2回転子(3)とを備えている。固定子(1)は、固定子鉄心(11)と、複数の固定子ティース(12)と、複数の固定子スロット(13)と、複数の固定子磁石(15)と、固定子コイル(14)とを含んでいる。第1回転子(2)は、複数の固定子磁石(15)よりも固定子鉄心(11)の内側に配置されている。第2回転子(3)は、複数の第1磁極片(21)よりも固定子鉄心(11)の内側に配置されている。第2回転子(3)は、複数の第2磁極片(31)を含んでいる。第2回転子(3)の複数の第2磁極片(31)の極数に対する複数の固定子スロット(13)の数の割合は、1.25よりも大きく1.5よりも小さいか、1.5よりも大きく3.0よりも小さい。

Description

永久磁石式回転電機
 本開示は、永久磁石式回転電機に関するものである。
 従来、固定子と回転子とが接触していない状態で回転子の回転速度を変更することができる回転電機がある。例えば、特開2016-135014号公報(特許文献1)には、磁気波動歯車装置である回転電機が開示されている。上記公報に記載された磁気波動歯車装置は、ステータ(固定子)、低速で回転する低速ロータ(第1回転子)および変速比に応じて高速で回転する高速ロータ(第2回転子)を備えている。ステータ、低速ロータおよび高速ロータは、回転軸を中心に順に外周側から配置されている。ステータは、コイルを含んでいる。コイルは、発電した電力を出力するためのコイル、または発生したトルクを制御するためのコイルである。
 上記公報に記載の磁気波動歯車装置によれば、高速回転子および低速回転子がステータに接触していない状態で高速回転子の速度が変えられるため、機械的な摩耗などに対応するためのメンテナンスを低減することができる。これにより、メンテナンスの負荷が小さくなる。また、磁気波動歯車装置が発電機として用いられた場合には、機械式の変速機が不要であるため、発電システムを小型化することができる。
特開2016-135014号公報
 しかしながら、上記公報に記載の永久磁石式回転電機(磁気波動歯車装置)では、固定子コイル(コイル)は、分布巻によって固定子(ステータ)に巻き回されている。分布巻によって巻き回された固定子コイルの容量が大きくなる場合には、固定子コイルの工作性が低下する。このため、上記公報に記載の永久磁石式回転電機の容量が大きくなる場合には、固定子コイルの工作性が低下する。また、集中巻によって巻き回された固定子コイルの容量が大きくなる場合には、固定子コイルの工作性の低下が抑制される。このため、固定子コイルの工作性の低下の抑制のためには、上記公報に記載の永久磁石式回転電機の固定子コイルが集中巻によって巻き回されることが好ましい。しかし、集中巻の回数等によってはトルク脈動が生じることがある。
 また、集中巻の永久磁石式回転電機では、第2磁極片(永久磁石)から生じた磁束のうち固定子コイルに鎖交した磁束の割合を示す巻線係数という指標が効率あるいは出力密度の評価のために用いられている。巻線係数が大きいほど、第2磁極片から生じた磁束が有効に固定子コイルに鎖交するため、永久磁石式回転電機の効率あるいは出力密度が大きい。しかしながら、上記公報に記載の永久磁石式回転電機のように、変速機構を有する永久磁石式回転電機では、効率あるいは出力密度は、増減速比にも影響を受ける。このため、巻線係数のみが考慮された場合には、効率あるいは出力密度が十分に向上しないことがある。
 本開示は上記課題に鑑みてなされたものであり、その目的は、トルク脈動が生じることを抑制でき、かつ効率あるいは出力密度を十分に向上できる永久磁石式回転電機を提供することである。
 本開示の永久磁石式回転電機は、固定子と、第1回転子と、第2回転子とを備えている。固定子は、固定子鉄心と、複数の固定子ティースと、複数の固定子スロットと、複数の固定子磁石と、固定子コイルとを含んでいる。固定子鉄心は、環状に延在している。固定子ティースは、固定子鉄心から固定子鉄心の中心に向かって突出している。複数の固定子スロットの各々は、複数の固定子ティースのうち隣り合う固定子ティース同士の間にそれぞれ設けられている。複数の固定子磁石の各々は、複数の固定子スロットの各々にそれぞれ収納されている。固定子コイルは、複数の固定子ティースの各々に巻き回されている。第1回転子は、複数の固定子磁石よりも固定子鉄心の内側に配置されている。第1回転子は、複数の第1磁極片を含んでいる。複数の第1磁極片は、固定子から間隔を空けて固定子鉄心の周方向に沿って配置されている。第2回転子は、複数の第1磁極片よりも固定子鉄心の内側に配置されている。第2回転子は、複数の第2磁極片を含んでいる。複数の第2磁極片は、第1回転子から間隔を空けて固定子鉄心の周方向に沿って配置されている。複数の第2磁極片は、永久磁石を有している。固定子コイルは、複数の固定子ティースの各々に集中巻によって巻き回されている。第2回転子の複数の第2磁極片の極数に対する複数の固定子スロットの数の割合は、1.25よりも大きく1.5よりも小さいか、1.5よりも大きく3.0よりも小さい。
 本開示の永久磁石式回転電機によれば、第2回転子の複数の第2磁極片の極数に対する複数の固定子スロットの数の割合は、1.25よりも大きく1.5よりも小さいか、1.5よりも大きく3.0よりも小さい。このため、トルク脈動が生じることを抑制することができ、かつ効率あるいは出力密度を十分に向上できる。
実施の形態1に係る永久磁石式回転電機の構成を概略的に示す模式図である。 実施の形態1に係るスロット数/極数と巻線係数との関係を概略的に示すグラフである。 実施の形態1に係るスロット数/極数と増減速比との関係を概略的に示すグラフである。 実施の形態1に係るスロット数/極数と巻線係数×増減速比との関係を概略的に示すグラフである。 実施の形態1に係るスロット数/極数と5次巻線係数との関係を概略的に示すグラフである。 実施の形態1に係るスロット数/極数と7次巻線係数との関係を概略的に示すグラフである。 図1のVII領域の拡大図である。 実施の形態2に係る永久磁石式回転電機の構成を概略的に示す模式図である。 実施の形態2に係る永久磁石式回転電機の固定子の構成を概略的に示す模式図である。 実施の形態3に係る永久磁石式回転電機の構成を概略的に示す模式図である。 実施の形態3に係る永久磁石式回転電機の固定子の構成を概略的に示す模式図である。 実施の形態4に係る永久磁石式回転電機の固定子の構成を概略的に示す模式図である。 実施の形態5に係る永久磁石式回転電機の構成を概略的に示す模式図である。 実施の形態5に係る永久磁石式回転電機の固定子、第1電源、第2電源および第3電源の構成を概略的に示す模式図である。
 以下、実施の形態について図に基づいて説明する。なお、以下では、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。
 実施の形態1.
 図1を用いて、実施の形態1に係る永久磁石式回転電機100の構成を説明する。本実施の形態では、永久磁石式回転電機100が発電機として用いられた場合における構成および動作が説明されるが、永久磁石式回転電機100の構成は、永久磁石式回転電機100が電動機として用いられた場合であっても適用可能である。
 本実施の形態に係る永久磁石式回転電機100は、変速機構を有する永久磁石式回転電機100である。永久磁石式回転電機100は、三相巻線の永久磁石式回転電機100である。
 図1に示されるように、永久磁石式回転電機100は、固定子1と、第1回転子2と、第2回転子3とを含んでいる。固定子1、第1回転子2および第2回転子3は、同心円状に配置されている。
 固定子1は、固定子鉄心11と、複数の固定子ティース12と、複数の固定子スロット13と、複数の固定子磁石15と、固定子コイル14とを含んでいる。なお、図1等では、固定子コイル14は斜線によって示されている。複数の固定子ティース12の数、複数の固定子スロット13の数および複数の固定子磁石15の数は、同じである。
 固定子鉄心11は、環状に延在している。第1回転子2の中心および第2回転子3の中心は、固定子鉄心11の中心Cと同じ位置に配置されている。固定子ティース12は、固定子鉄心11から固定子鉄心11の中心Cに向かって突出している。複数の固定子スロット13の各々は、複数の固定子ティース12のうち隣り合う固定子ティース12同士の間にそれぞれ設けられている。固定子コイル14は、複数の固定子ティース12の各々に巻き回されている。固定子コイル14は、複数の固定子ティース12の各々に集中巻によって巻き回されている。すなわち、本実施の形態に係る永久磁石式回転電機100は、集中巻の永久磁石式回転電機である。
 複数の固定子磁石15の各々は、複数の固定子スロット13の各々にそれぞれ収納されている。複数の固定子磁石15の各々は、複数の固定子ティース12のうち隣り合う固定子ティース12同士によって挟み込まれている。複数の固定子磁石15の各々は、着磁されている。複数の固定子磁石15の各々の極性の向きは、固定子鉄心11の径方向に沿って同じである。このため、例えば、複数の固定子磁石15の固定子鉄心11の中心C側がN極である場合には、複数の固定子ティース12の固定子鉄心11の中心C側がS極である。
 1つの固定子磁石15および1つの固定子ティース12は、一対の磁極を構成している。複数の固定子ティース12の数、複数の固定子スロット13の数および複数の固定子磁石15の数が同じであるため、固定子1は、複数の固定子スロット13の数と同じ数の極対数を有している。本実施の形態において、複数の固定子スロット13の数は、Nである。図1に示される永久磁石式回転電機100では、Nは、54である。なお、複数の固定子スロット13の数は、スロット数と記載されることもある。
 第1回転子2は、複数の固定子磁石15よりも固定子鉄心11の内側に配置されている。本実施の形態において、第1回転子2は、低速回転子として構成されている。第1回転子2は、複数の第1磁極片21を含んでいる。複数の第1磁極片21は、固定子1から間隔を空けて固定子鉄心11の周方向に沿って配置されている。複数の第1磁極片21は、環状に配置されている。本実施の形態において、複数の第1磁極片21の数は、Nである。図1に示される永久磁石式回転電機100では、Nは、66である。
 第2回転子3は、複数の第1磁極片21よりも固定子鉄心11の内側に配置されている。本実施の形態において、第2回転子3は、高速回転子として構成されている。第2回転子3は、複数の第2磁極片31と、支持部32とを含んでいる。複数の第2磁極片31は、第1回転子2から間隔を空けて固定子鉄心11の周方向に沿って配置されている。複数の第2磁極片31は、環状に配置されている。複数の第2磁極片31は、支持部32によって支持されている。複数の第2磁極片31は、支持部32の外周に配置されている。
 複数の第2磁極片31は、永久磁石を有している。本実施の形態において、複数の第2磁極片31の数は、Nである。このため、複数の第2磁極片31の極対数は、Nである。よって、複数の第2磁極片31の極数は、2Nである。図1に示される永久磁石式回転電機100では、Nは、12である。
 第2回転子3の複数の第2磁極片31の極数に対する複数の固定子スロット13の数の割合(N/2N)は、1.25よりも大きく1.5よりも小さいか、1.5よりも大きく3.0よりも小さい。なお、本実施の形態において、第2回転子3の複数の第2磁極片31の極数に対する複数の固定子スロット13の数の割合は、N/2Nと記載される。また、第2回転子3の複数の第2磁極片31の極数に対する複数の固定子スロット13の数の割合は、スロット数/極数と記載されることもある。
 次に、実施の形態1に係る永久磁石式回転電機100の変速機としての構成を説明する。
 固定子1、第1回転子2および第2回転子3は、変速機として構成されている。具体的には、複数の固定子スロット13の数N、複数の第1磁極片21の数Nおよび複数の第2磁極片31の数Nが以下の数1の関係を満たしている場合には、固定子1、第1回転子2および第2回転子3は、変速機として機能する。
Figure JPOXMLDOC01-appb-M000001
 本実施の形態において、複数の固定子スロット13の数N、複数の第1磁極片21の数Nおよび複数の第2磁極片31の数Nは、上記の数1の関係を満たしている。このため、固定子1、第1回転子2および第2回転子3は、変速機として機能する。複数の固定子磁石15の磁力および複数の2回転子の磁力の相互作用によって、複数の第1回転子2に負のトルクが生じる。これに対して、第1回転子2が外部動力によって回転することで、第1回転子2に入力が得られる。
 第1回転子2に入力が得られた状態において、第2回転子3がフリーラン状態で回転するように固定子1に電流が流される。なお、フリーラン状態とは、回転子が惰性によって回転可能な状態のことである。数1においてN=N+Nが満たされる場合には、第2回転子3は、第1回転子2のN/N倍の速度で回転する。これにより、永久磁石式回転電機100は、変速機として機能する。また、第2回転子3が第1回転子2のN/N倍の回転速度で回転することで、固定子コイル14に誘導起電力が生じる。これにより、固定子コイル14から発電電力が出力される。
 増減速比は、第2回転子3の回転速度の第1回転子2の回転速度に対する倍率である。増減速比、複数の固定子スロット13の数および複数の第2回転子3の数は、以下の数2の関係を満たす。
Figure JPOXMLDOC01-appb-M000002
 次に、永久磁石式回転電機100の効率あるいは出力密度について説明する。
 複数の磁極片から生じる磁束のうち固定子コイル14の発電に寄与する割合は、巻線係数と呼ばれている。複数の第2磁極片31から生じる磁束のうち少なくとも一部の磁束が固定子コイル14に鎖交することで、複数の第2磁極片31から生じた磁束が固定子コイル14の発電に寄与する。このため、本実施の形態における巻線係数は、複数の第2磁極片31から生じた磁束のうち固定子コイル14の発電に寄与する割合である。巻線係数は、以下の数3によって示される。
Figure JPOXMLDOC01-appb-M000003
 nは、空間高調波次数である。また、空間調和次数の基本波は、1である。また、βは、短節度である。短節度は、以下の数4によって示される。
Figure JPOXMLDOC01-appb-M000004
 q’は、毎極毎相のスロット数である。本実施の形態において、相数は、3である。以下の数4を用いて示され、数5の右辺が小数になる場合は右辺の値が整数倍されて得られる最小の整数である。
Figure JPOXMLDOC01-appb-M000005
 従来、集中巻の固定子コイル14を有しておりかつ変速機構を有していない比較例に係る永久磁石式回転電機では、巻線係数によって永久磁石式回転電機の効率あるいは出力が評価されている。このため、巻線係数が大きくなるほど永久磁石式回転電機の効率あるいは出力密度が高くなると評価されている。すなわち、巻線係数のみが永久磁石式回転電機の評価のための指標として用いられている。
 しかしながら、本実施の形態に係る永久磁石式回転電機100のように変速機構を有する永久磁石式回転電機100では、第2回転子3の増減速比がさらに考慮される必要がある。巻線係数および増減速比の各々は、固定子ティース12の数および第2磁極片31の極数に基づいて算出される。このため、巻線係数の向上のみが考慮されて固定子ティース12の数および第2磁極片31の極数が定められた場合には、必要な増減速比が得られない可能性がある。
 したがって、本実施の形態に係る永久磁石式回転電機100では、巻線係数×増減速比によって永久磁石式回転電機100の効率あるいは出力が評価される。すなわち、巻線係数×増減速比が永久磁石式回転電機100の評価のための指標として用いられる。
 具体的には、第2回転子3の磁石量(複数の第2磁極片31から生じる磁束の量)が同じであれば、固定子コイル14に生じる誘起電圧は巻線係数×増減速比に比例する。このため、巻線係数×増減速比が大きくなることによって永久磁石式回転電機100の効率あるいは出力密度が向上する。
 続いて、図2~図6を用いて、巻線係数、増減速比、巻線係数×増減速比とN/2Nとの関係について詳細に説明する。
 図2は、N/2Nと巻線係数との関係を示すグラフである。図2に示されるように、N/2Nが低下するにつれて、巻線係数が増加する。このため、巻線係数の向上のみが考慮される場合には、N/2Nが小さいことが望ましい。図3は、N/2Nと増減速比との関係を示すグラフである。図3に示されるように、N/2Nが増加するにつれて、増減速比が増加する。
 図4は、N/2Nと巻線係数×増減速比との関係を示すグラフである。本実施の形態に係るN/2Nの範囲は、一点鎖線によって囲まれた範囲である。なお、N/2N=1.5の点は、本実施の形態に係るN/2Nの範囲に含まれない。
 図4に示されるように、N/2Nが1.25よりも大きく1.5よりも小さい範囲においては、N/2Nが増加するにつれて、巻線係数×増減速比が増加する傾向がある。N/2Nが1.2である場合には、巻線係数×増減速比は、増加傾向から突出して大きい。図4では、点P(1.2)がN/2Nが1.2である場合に対応する。表1に示されるように、具体的には、N/2Nが1.2である場合における巻線係数×増減速比は、例えば、3.17である。
Figure JPOXMLDOC01-appb-T000006
 しかしながら、N/2Nが1.2である場合における増減速比は、十分に大きくない。また、N/2Nが1.239である場合における巻線係数×増減速比は、例えば、3.17である。このため、N/2Nが1.239である場合における巻線係数×増減速比は、N/2Nが1.2である場合における巻線係数×増減速比と略同じである。また、表2に示されるように、N/2Nが1.260である場合における巻線係数×増減速比は、例えば、3.19である。
Figure JPOXMLDOC01-appb-T000007
 このため、N/2Nが1.260である場合における巻線係数×増減速比は、N/2Nが1.2である場合における巻線係数×増減速比よりも大きい。よって、N/2Nが1.25である場合における巻線係数×増減速比は、N/2Nが1.2である場合における巻線係数×増減速比よりも大きい。また、N/2Nが1.25である場合における増減速比は、N/2Nが1.2である場合における増減速比よりも大きい。このため、増減速比が十分に大きい。よって、N/2Nが1.25よりも大きいことが好ましい。
 N/2Nが1.5の場合には、巻線係数×増減速比は突出して大きい。図4では、点P(1.5)がN/2Nが1.5である場合に対応する。
 表3に示されるように、具体的には、N/2Nが1.5である場合における巻線係数×増減速比は、例えば、3.46である。
Figure JPOXMLDOC01-appb-T000008
 しかしながら、図5および図6に示されるように、N/2Nが1.5である場合には、5次巻線係数(空間5次高調波)および7次巻線係数(空間7次高調波)が突出して大きい。このため、トルクの変動幅(トルクリップル)および高調波磁束による損失等の空間高調波によって永久磁石式回転電機100の性能が悪化する可能性がある。例えば、トルクの変動幅が大きい場合には、永久磁石式回転電機100が脈動する。トルクの変動による永久磁石式回転電機100の脈動は、トルク脈動と呼ばれる。したがって、N/2Nが1.5ではないことが好ましい。
 図4に示されるように、N/2Nが1.5よりも大きく3.0よりも小さい場合における巻線係数×増減速比は、N/2Nが1.25よりも大きく1.5よりも小さい場合における巻線係数×増減速比よりも大きい。このため、N/2Nが1.5よりも大きく3.0よりも小さいことは、N/2Nが1.25よりも大きく1.5よりも小さい場合よりもさらに好ましい。
 N/2Nが3.0の場合には、複数の固定子スロット13の数が分布巻の永久磁石式回転電機100における固定子スロット13の数と同じである。このため、N/2Nが3の場合には、複数の固定子スロット13が多いことによって固定子コイル14の工作性が悪化するという分布巻における問題点がある。また、N/2Nが3よりも大きい場合には、N/2Nが3である場合と同様に固定子コイル14の工作性が悪化する。したがって、N/2Nが3.0以上であることは好ましくない。
 次に、図1、図4および図7を用いて、本実施の形態に係る永久磁石式回転電機100について詳細に説明する。
 図1および図7に示されるように、本実施の形態に係る永久磁石式回転電機100では、複数の固定子スロット13の数と複数の第2磁極片31の極数との比は、9:4である。本実施の形態に係る永久磁石式回転電機100では、N/2Nは、2.25である。表3に示されるように、N/2Nが2.25である場合、巻線係数×増減速比は3.39である。また、図4では、点P(2.25)がN/2Nが2.25である場合に対応する。
 図7は、実施の形態1に係る永久磁石式回転電機100の一部を示す模式図である。図1に示される永久磁石式回転電機100の全体は、図7に示される永久磁石式回転電機100の一部を複数有している。具体的には、図1に示される永久磁石式回転電機100の全体は、図7に示される永久磁石式回転電機100の一部を6つ有している。図7に示される永久磁石式回転電機100の一部は、周期的に配置されている。
 図7に示される永久磁石式回転電機100の一部が含んでいる固定子スロット13の数は、例えば、9である。また、図7に示される永久磁石式回転電機100の一部が含んでいる第2磁極片31の数は2であるため、図7に示される永久磁石式回転電機100の一部の極対数は、4である。また、図7に示される永久磁石式回転電機100の一部が含んでいる複数の第1磁極片21の数は、11である。
 続いて、本実施の形態の作用効果を説明する。
 実施の形態1に係る永久磁石式回転電機100によれば、図1に示されるように、第2回転子3の複数の第2磁極片31の極数に対する複数の固定子スロット13の数の割合(N/2N)は、1.25よりも大きく1.5よりも小さいか、1.5よりも大きく3.0よりも小さい。このため、図4に示されるように、巻線係数×増減速比を大きくすることができる。したがって、永久磁石式回転電機100の効率あるいは出力密度が十分に向上する。また、N/2Nは、1.5ではない。このため、5次巻線係数および7次巻線係数が突出して大きくなることを抑制することができる。よって、トルクの変動幅(トルクリップル)および高調波磁束による損失等によるトルク脈動が生じることを抑制することができる。したがって、永久磁石式回転電機100の性能が悪化することを抑制することができる。
 図1および図7に示されるように、複数の固定子スロット13の数と複数の第2磁極片31の極数との比は、9:4である。複数の固定子スロット13の数と複数の第2磁極片31の極数との比が9:4である場合、N/2Nは2.25である。図4に示されるように、N/2Nが1.25よりも大きく1.5よりも小さい範囲および1.5よりも大きく3.0よりも小さい範囲において、N/2Nが2.25の場合における巻線係数×増減速比は最も大きい。このため、永久磁石式回転電機100の効率または出力密度が十分に向上する。
 実施の形態2.
 次に、図4および図8を用いて、実施の形態2に係る永久磁石式回転電機100の構成を説明する。実施の形態2は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
 図8に示されるように、実施の形態2に係る永久磁石式回転電機100では、複数の固定子スロット13の数と複数の第2磁極片31の極数との比は、18:14である。表2に示されるように、本実施の形態に係るN/2Nは、1.286である。なお、図4では、点P(1.286)が複数の固定子スロット13の数と複数の第2磁極片31の極数との比が18:14である場合に対応する。図8は、実施の形態2に係る永久磁石式回転電機100の一部を示す模式図である。永久磁石式回転電機100の全体は、図8に示される永久磁石式回転電機100の一部を複数有している。
 例えば、図8に示される永久磁石式回転電機100の一部が含んでいる固定子スロット13の数は、18である。また、図8に示される永久磁石式回転電機100の一部が含んでいる第2磁極片31の数は7であるため、図8に示される永久磁石式回転電機100の一部の極対数は、14である。また、図8に示される永久磁石式回転電機100の一部が含んでいる第1磁極片21の数は、25である。
 本実施の形態において、固定子コイル14は、複数のコイル部C0を含んでいる。複数のコイル部C0は、互いに並列に接続されている。1つのコイル部C0は、18の固定子ティース12の各々に集中巻によって巻き回されている。このため、18の固定子ティース12ごとに並列回路が構成される。よって、誘起電圧は、18の固定子ティース12ごとに等しい。図8に示される永久磁石式回転電機100の一部は、複数のコイル部C0のうち1つのコイル部C0を含んでいる。なお、図8に示される永久磁石式回転電機100の一部では、複数のコイル部C0のうち1つのコイル部C0が図示されている。
 次に、N/2Nが1.25よりも大きく1.5よりも小さい範囲における、具体的な固定子スロット13および第2回転子3の第2磁極片31の極数を検討する。永久磁石式回転電機100は、三相巻線の永久磁石式回転電機100である。このため、複数の固定子スロット13の数は3の倍数である。また、1つの第2磁極片31が2つの極を含んでいるため、第2回転子3の複数の第2磁極片31の極数は、2の倍数(偶数)である。このため、N/2Nが1.25よりも大きく1.5よりも小さい範囲において、N/2Nが1.25以上となる場合には、具体的な固定子スロット13の数は大きい。
 例えば、N/2Nが1.45となるための最小の固定子スロット13の数は87であり、第2磁極片31の極数は60である(第2磁極片31の数が30である)。この場合、複数のコイル部C0の各々は、87スロットごとに周期的に配置される。
 1つのコイル部C0が1つの固定子ティース12に巻き回される回数は整数である必要があるため、複数の固定子スロット13の数が大きいほど、コイル部C0の巻線の設計自由度が小さい。また、複数のコイル部C0の各々による複数の並列回路の数が大きい場合には複数のコイル部C0の各々の巻数が小さくなる。
 また、複数の並列回路同士の誘起電圧が異なる場合には複数の並列回路同士に循環電流が生じるため永久磁石式回転電機100の効率が悪化する。このため、複数のコイル部C0の数を単純に増やすことで複数の並列回路の数を多くすることはできない。よって、複数の並列回路の数を増加させることで複数のコイル部C0の巻線の設計自由度の低下を抑制することは困難である。
 以上より、N/2Nが1.45である永久磁石式回転電機100では、例えば、固定子スロット13と第2磁極片31の極数との比が12:10である(N/2Nが1.20である)場合と比べて、巻線の設計自由度が低い。
 表4は、本実施の形態に係る複数の固定子ティース12に巻き回されたコイル部C0の相および位相を示す。
Figure JPOXMLDOC01-appb-T000009
 図9および表4に示されるように、本実施の形態において、複数の固定子ティース12は、第1の固定子ティースT101~第18の固定子ティースT118を含んでいる。第1の固定子ティースT101~第18の固定子ティースT118の各々の位相は、それぞれ140度ずつずれている。本実施の形態において、複数のコイル部C0には、U相、V相およびW相からなる三相電流が流れる。また、複数のコイル部C0は、順方向または逆方向に沿って固定子ティース12に巻き回される。三相電流によって生じる回転磁界の方向は、白抜き矢印によって図示されている。
 表4に示されるように、隣り合う固定子ティース12同士における位相は、140度ずれている。このため、18の固定子ティース12によって、位相が計2520度ずれる。2520は、360の倍数である。よって、電流の位相が18の固定子ティース12ごとに等しくなるため、誘起電圧が18の固定子ティース12ごとに等しくなる。したがって、複数の並列回路同士に循環電流が生じることを抑制することができる。
 続いて、本実施の形態の作用効果を説明する。
 実施の形態2に係る永久磁石式回転電機100によれば、図8に示されるように、複数の固定子スロット13の数と複数の第2磁極片31の極数との比は、18:14である。このため、複数の固定子スロット13の数が小さいため、巻線の設計自由度が小さくなることを抑制することができる。また、18の固定子ティース12ごとに並列回路が構成される。よって、循環電流が生じることを抑制することができる。
 実施の形態3.
 次に、図10および図11を用いて、実施の形態3に係る永久磁石式回転電機100の構成を説明する。実施の形態3は、特に説明しない限り、上記の実施の形態2と同一の構成および作用効果を有している。したがって、上記の実施の形態2と同一の構成には同一の符号を付し、説明を繰り返さない。
 図10に示されるように、実施の形態3に係る永久磁石式回転電機100では、固定子コイル14は、第1コイル部C1と、第2コイル部C2とを含んでいる。本実施の形態において、複数のコイル部C0の各々は、第1コイル部C1と、第2コイル部C2とを含んでいる。第2コイル部C2は、第1コイル部C1に並列に接続されている。
 複数の固定子ティース12は、複数の第1ティース部T1と、複数の第2ティース部T2とを含んでいる。複数の第1ティース部T1の各々には、第1コイル部C1が巻き回されている。複数の第2ティース部T2の各々には、第2コイル部C2が巻き回されている。複数の第1ティース部T1の数は、複数の第2ティース部T2の数と同じである。複数の第1ティース部T1の各々と複数の第2ティース部T2の各々とは、交互に配置されている。
 図11に示されるように、複数の第1ティース部T1は、第1の第1ティース部T101~第9の第1ティース部T109を含んでいる。複数の第2ティース部T2は、第1の第2ティース部T201~第9の第2ティース部T209を含んでいる。第1ティース部T1の数および第2ティース部T2の数は、9の倍数である。
 本実施の形態においては、第1コイル部C1および第2コイル部C2の各々が並列回路を構成している。このため、1つのコイル部C0が2つの並列回路を含んでいる。
 1群における各相の電流の位相は、2群における各相の電流の位相と等しい。なお、1群は、複数の第1ティース部T1および第1コイル部C1である。2群は、複数の第2ティース部T2および第2コイル部C2である。3群は、複数の第3ティース部T3および第3コイル部C3である。表5に示されるように、例えば、1群におけるU相の電流の位相は、0度、200度、160度である。
Figure JPOXMLDOC01-appb-T000010
 また、2群におけるU相の電流の位相は、340度、180度、20度である。このため、合計の誘起電圧は等しい。よって、1群の並列回路と2群の並列回路との間で位相差が生じることが抑制される。したがって、循環電流が生じることを抑制することができる。
 続いて、本実施の形態の作用効果を説明する。
 実施の形態3に係る永久磁石式回転電機100によれば、図10に示されるように、複数の第1ティース部T1の各々と複数の第2ティース部T2の各々とは、交互に配置されている。このため、表5に示されるように、複数の第1ティース部T1に巻き回された第1コイル部C1の誘起電圧と複数の第2ティース部T2に巻き回された第2コイル部C2の誘起電圧は等しい。よって、循環電流が生じることを抑制することができる。
 図10に示されるように、固定子コイル14は、第1コイル部C1と、第2コイル部C2とを含んでいる。第1コイル部C1および第2コイル部C2の各々は、並列回路を構成している。このため、固定子コイル14が1つの並列回路を構成している場合よりも、永久磁石式回転電機100に含まれる並列回路の数を増やすことができる。
 実施の形態4.
 次に、図12を用いて、実施の形態4に係る永久磁石式回転電機100の構成を説明する。実施の形態4は、特に説明しない限り、上記の実施の形態3と同一の構成および作用効果を有している。したがって、上記の実施の形態3と同一の構成には同一の符号を付し、説明を繰り返さない。
 図12に示されるように、実施の形態4に係る永久磁石式回転電機100では、複数の第1ティース部T1と複数の第2ティース部T2とは、3つずつ交互に配置されている。
 1群における各相の電流の位相は、2群における各相の電流の位相と等しい。表6に示されるように、例えば、1群におけるU相の電流の位相は、0度、340度、20度である。
Figure JPOXMLDOC01-appb-T000011
 また、2群におけるU相の電流の位相は、200度、180度、160度である。このため、1群におけるU相の合計の誘起電圧と2群におけるU相の合計の誘起電圧とは等しい。よって、1群の並列回路と2群の並列回路との間で位相差が生じることが抑制される。したがって、循環電流が生じることを抑制することができる。
 続いて、本実施の形態の作用効果を説明する。
 実施の形態4に係る永久磁石式回転電機100によれば、図12に示されるように、複数の第1ティース部T1と複数の第2ティース部T2とは、3つずつ交互に配置されている。このため、表6に示されるように、複数の第1ティース部T1に巻き回された第1コイル部C1の誘起電圧と複数の第2ティース部T2に巻き回された第2コイル部C2の誘起電圧は等しい。よって、循環電流が生じることを抑制することができる。
 図12に示されるように、固定子コイル14は、第1コイル部C1と、第2コイル部C2とを含んでいる。第1コイル部C1および第2コイル部C2の各々は、並列回路を構成している。このため、固定子コイル14が1つの並列回路を構成している場合よりも、永久磁石式回転電機100に含まれる並列回路の数を増やすことができる。
 実施の形態5.
 次に、図13および図14を用いて、実施の形態5に係る永久磁石式回転電機100の構成を説明する。実施の形態5は、特に説明しない限り、上記の実施の形態3と同一の構成および作用効果を有している。したがって、上記の実施の形態3と同一の構成には同一の符号を付し、説明を繰り返さない。
 実施の形態3および4によれば、18の固定子コイル14ごとに2つの並列回路が構成される。しかしながら、永久磁石式回転電機100が電源を1つしか含んでいない場合には、18の固定子コイル14ごとに3つの並列回路を構成することはできない。
 図13に示されるように、実施の形態5に係る永久磁石式回転電機100では、永久磁石式回転電機100は、第1電源P1、第2電源P2および第3電源P3をさらに含んでいる。第1電源P1、第2電源P2および第3電源P3の各々は、独立している。第1電源P1、第2電源P2および第3電源P3の位相は、20度ずつずれている。
 複数の固定子ティース12は、複数の第1ティース部T1と、複数の第2ティース部T2と、複数の第3ティース部T3とを含んでいる。複数の第1ティース部T1は、第1電源P1に電気的に接続されている。複数の第2ティース部T2は、第2電源P2に電気的に接続されている。複数の第3ティース部T3は、第3電源P3に電気的に接続されている。複数の第1ティース部T1の各々、複数の第2ティース部T2の各々および複数の第3ティース部T3の各々は、順に循環するように固定子鉄心11に接続されている。
 固定子コイル14は、第1コイル部C1と、第2コイル部C2と、第3コイル部C3とを含んでいる。第3コイル部C3は、複数の第3ティース部T3の各々に集中巻によって巻き回されている。
 図14に示されるように、複数の第1ティース部T1は、第1の第1ティース部T101~第6の第1ティース部T106を含んでいる。複数の第2ティース部T2は、第1の第2ティース部T201~第6の第2ティース部T206を含んでいる。複数の第3ティース部T3は、第1の第3ティース部T301~第6の第3ティース部T306を含んでいる。
 1群における各相の電流の位相は、2群における各相の電流の位相と等しい。表7に示されるように、例えば、1群におけるU相の電流の位相は、0度、340度、20度である。
Figure JPOXMLDOC01-appb-T000012
 また、2群におけるU相の電流の位相は、200度、180度、160度である。このため、1群におけるU相の合計の誘起電圧と2群におけるU相の合計の誘起電圧とは等しい。よって、1群の並列回路と2群の並列回路との間で位相差が生じることが抑制される。したがって、循環電流が生じることを抑制することができる。
 1群における各相の電流の位相は、2群における各相の電流および3群における電流の位相に対してずれている。例えば、1群におけるU相の電流の位相は、0度、180度である。また、2群におけるU相の電流は、200度、20度である。また、3群におけるU相の電流は、340度、160度である。このため、2群におけるU相の電流の位相は、1群におけるU相の電流の位相よりも20度ずれている。また、3群におけるU相の電流の位相は、2群におけるU相の電流の位相よりも20度ずれている。すなわち、2群は、1群および3群に対して20度ずつずれている。
 続いて、本実施の形態の作用効果を説明する。
 実施の形態5に係る永久磁石式回転電機100によれば、第1電源P1、第2電源P2および第3電源P3の位相は、20度ずつずれている。このため、1群、2群および3群の位相の30度ずつのずれは、第1電源P1、第2電源P2および第3電源P3のずれによって打ち消されることで解消される。これにより、1群、2群および3群の各々の位相は、等しくなる。よって、18の固定子ティース12ごとに3の並列回路を構成することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 固定子、2 第1回転子、3 第2回転子、11 固定子鉄心、12 固定子ティース、13 固定子スロット、14 固定子コイル、15 固定子磁石、21 第1磁極片、31 第2磁極片、100 永久磁石式回転電機、C1 第1コイル部、C2 第2コイル部、P1 第1電源、P2 第2電源、P3 第3電源、T1 第1ティース部、T2 第2ティース部。

Claims (6)

  1.  環状に延在する固定子鉄心と、前記固定子鉄心から前記固定子鉄心の中心に向かって突出している複数の固定子ティースと、前記複数の固定子ティースのうち隣り合う固定子ティース同士の間にそれぞれ設けられた複数の固定子スロットと、前記複数の固定子スロットの各々にそれぞれ収納された複数の固定子磁石と、前記複数の固定子ティースの各々に巻き回された固定子コイルとを含む固定子と、
     前記固定子から間隔を空けて前記固定子鉄心の前記周方向に沿って配置された複数の第1磁極片を含み、かつ前記複数の固定子磁石よりも前記固定子鉄心の内側に配置された第1回転子と、
     前記第1回転子から間隔を空けて前記固定子鉄心の周方向に沿って配置されかつ永久磁石を有する複数の第2磁極片を含み、かつ前記複数の第1磁極片よりも前記固定子鉄心の内側に配置された第2回転子とを備え、
     前記固定子コイルは、前記固定子ティースに集中巻によって巻き回されており、
     前記第2回転子の前記複数の第2磁極片の極数に対する前記複数の固定子スロットの数の割合は、1.25よりも大きく1.5よりも小さいか、1.5よりも大きく3.0よりも小さい、永久磁石式回転電機。
  2.  前記複数の固定子スロットの数と前記複数の第2磁極片の極数との比は、9:4である、請求項1に記載の永久磁石式回転電機。
  3.  前記複数の固定子スロットの数と前記複数の第2磁極片の極数との比は、18:14である、請求項1に記載の永久磁石式回転電機。
  4.  前記固定子コイルは、第1コイル部と、前記第1コイル部に並列に接続された第2コイル部とを含み、
     前記複数の固定子ティースは、前記第1コイル部が巻き回された複数の第1ティース部と、前記第2コイル部が巻き回された複数の第2ティース部とを含み、
     前記複数の第1ティース部の数は、前記複数の第2ティース部の数と同じであり、
     前記複数の第1ティース部の各々と前記複数の第2ティース部の各々とは、交互に配置されている、請求項3に記載の永久磁石式回転電機。
  5.  前記固定子コイルは、第1コイル部と、前記第1コイル部に並列に接続された第2コイル部とを含み、
     前記複数の固定子ティースは、前記第1コイル部が巻き回された複数の第1ティース部と、前記第2コイル部が巻き回された複数の第2ティース部とを含み、
     前記複数の第1ティース部の数は、前記複数の第2ティース部の数と同じであり、
     前記複数の第1ティース部と前記複数の第2ティース部とは、3つずつ交互に配置されている、請求項3に記載の永久磁石式回転電機。
  6.  第1電源、第2電源および第3電源をさらに備え、
     前記複数の固定子ティースは、前記第1電源に電気的に接続された複数の第1ティース部、前記第2電源に電気的に接続された複数の第2ティース部および前記第3電源に接続された複数の第3ティース部を含み、
     前記複数の第1ティース部の各々、前記複数の第2ティース部の各々および前記複数の第3ティース部の各々は、順に循環するように前記固定子鉄心に接続されており、
     前記第1電源、前記第2電源および前記第3電源の位相は、20度ずつずれている、請求項3に記載の永久磁石式回転電機。
PCT/JP2020/048277 2020-12-23 2020-12-23 永久磁石式回転電機 WO2022137405A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/048277 WO2022137405A1 (ja) 2020-12-23 2020-12-23 永久磁石式回転電機
JP2021532967A JP7019105B1 (ja) 2020-12-23 2020-12-23 永久磁石式回転電機
CN202080107942.3A CN116670985A (zh) 2020-12-23 2020-12-23 永磁式旋转电机
EP20966895.3A EP4270745A4 (en) 2020-12-23 2020-12-23 ELECTRIC LATHE WITH PERMANENT MAGNET
US18/267,103 US20240120817A1 (en) 2020-12-23 2020-12-23 Permanent magnet-type rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048277 WO2022137405A1 (ja) 2020-12-23 2020-12-23 永久磁石式回転電機

Publications (1)

Publication Number Publication Date
WO2022137405A1 true WO2022137405A1 (ja) 2022-06-30

Family

ID=80912408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048277 WO2022137405A1 (ja) 2020-12-23 2020-12-23 永久磁石式回転電機

Country Status (5)

Country Link
US (1) US20240120817A1 (ja)
EP (1) EP4270745A4 (ja)
JP (1) JP7019105B1 (ja)
CN (1) CN116670985A (ja)
WO (1) WO2022137405A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127869A1 (en) * 2008-06-03 2011-06-02 Magnomatics Limited Magnetic gear
WO2015137392A1 (ja) * 2014-03-12 2015-09-17 株式会社Ihi 環状磁極部材及び磁気波動歯車装置
WO2015178111A1 (ja) * 2014-05-20 2015-11-26 株式会社Ihi 磁気波動歯車装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625147B2 (ja) * 2009-04-13 2011-02-02 パナソニック株式会社 同期電動機駆動システム
US10404124B2 (en) * 2015-10-28 2019-09-03 Mitsubishi Electric Corporation Rotary electric machine
JP6650336B2 (ja) * 2016-04-28 2020-02-19 日立オートモティブシステムズエンジニアリング株式会社 回転電機
EP3934072A4 (en) * 2019-02-26 2022-04-06 Panasonic Intellectual Property Management Co., Ltd. MAGNETIC GEAR MOTOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127869A1 (en) * 2008-06-03 2011-06-02 Magnomatics Limited Magnetic gear
WO2015137392A1 (ja) * 2014-03-12 2015-09-17 株式会社Ihi 環状磁極部材及び磁気波動歯車装置
WO2015178111A1 (ja) * 2014-05-20 2015-11-26 株式会社Ihi 磁気波動歯車装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270745A4

Also Published As

Publication number Publication date
CN116670985A (zh) 2023-08-29
US20240120817A1 (en) 2024-04-11
JP7019105B1 (ja) 2022-02-14
JPWO2022137405A1 (ja) 2022-06-30
EP4270745A1 (en) 2023-11-01
EP4270745A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
JP4270942B2 (ja) 電動機
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP4543793B2 (ja) 交流モータおよびその制御装置
JPWO2019045017A1 (ja) 電磁装置
JP2010178442A (ja) 外転型永久磁石回転電機およびそれを用いたエレベータ装置
JP6604621B1 (ja) 発電電動機およびその製造方法
JP5431886B2 (ja) モータ
JP5419991B2 (ja) 永久磁石式同期モータ
JP5605721B2 (ja) 回転電機
US20080290754A1 (en) AC Motor
JP7019105B1 (ja) 永久磁石式回転電機
JP2009291069A (ja) 円筒リニアモータ及びそれを用いた車両
JP6035957B2 (ja) 回転機
JP7090828B1 (ja) 永久磁石式回転電機
JP2010088271A (ja) 永久磁石式同期電動機
JP2006109611A (ja) 複合3相ハイブリッド型回転電機
JP5734135B2 (ja) 電気機械およびその製造方法
JP2004289919A (ja) 永久磁石モータ
JP6191375B2 (ja) 電動発電機及びそれを備えたエンジンユニット
WO2010122760A1 (ja) 車両用交流発電機
JPWO2014115278A1 (ja) 同期電動機
US8395294B2 (en) AC motor with loop windings and improved magnetic flux paths
JP5617017B2 (ja) 外転型永久磁石回転電機およびそれを用いたエレベータ装置
JP7244270B2 (ja) バーニアモータ
KR20210054941A (ko) 공기압축기용 모터

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021532967

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267103

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202080107942.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966895

Country of ref document: EP

Effective date: 20230724