WO2022137311A1 - エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法 - Google Patents

エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法 Download PDF

Info

Publication number
WO2022137311A1
WO2022137311A1 PCT/JP2020/047796 JP2020047796W WO2022137311A1 WO 2022137311 A1 WO2022137311 A1 WO 2022137311A1 JP 2020047796 W JP2020047796 W JP 2020047796W WO 2022137311 A1 WO2022137311 A1 WO 2022137311A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
amount
guideline
unit
gas
Prior art date
Application number
PCT/JP2020/047796
Other languages
English (en)
French (fr)
Inventor
知義 小笠原
正洋 宇野
孝康 青山
優樹 田島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080107946.1A priority Critical patent/CN116745785A/zh
Priority to PCT/JP2020/047796 priority patent/WO2022137311A1/ja
Priority to KR1020237020038A priority patent/KR20230106682A/ko
Priority to JP2021521451A priority patent/JP6954497B1/ja
Priority to EP20966807.8A priority patent/EP4270276A4/en
Publication of WO2022137311A1 publication Critical patent/WO2022137311A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • the present invention relates to an energy operation support device, an energy operation support method, and an operation method of a steelworks that support the operation of an energy service in a steelworks so as to optimize the cost of the energy service.
  • the steel mill has a large number of factories from the upper process (blast furnace, coke oven, steelmaking process) to the lower process (rolling, surface treatment process).
  • B gas Blast Furnace gas
  • C gas Cokes gas
  • LD gas LD converter gas
  • M gas Mated gas
  • a facility called a gas holder which functions as a tank for storing gas
  • the amount of by-product gas stored in the gas holder increases (gas holder level).
  • the amount of by-product gas used is larger than the amount generated, the amount of gas used is satisfied by discharging the gas from the gas holder.
  • the amount of by-product gas generated becomes excessive with respect to the amount used and reaches the upper limit of the gas holder level, the excess gas is burned and released into the atmosphere.
  • there will be a shortage of gas so the amount used will be reduced by reducing the output of the power generation equipment, and if that is not possible, the operating level of the factory will be lowered.
  • the operation of electric power there are, for example, the operation of electric power and steam.
  • the output of the power generation facility is increased so as to reduce the amount of electric power purchased from the time zone when the unit price of electric power is high (generally in the daytime).
  • the amount of power generation is reduced.
  • the operation policy of such a power generation facility depends on the unit price.
  • steam operation it is generated in boilers that utilize waste heat from converters, sintering furnaces, etc., and is used for heat retention in pickling tanks in cold-rolling factories and in RH (vacuum degassing equipment). If there is a shortage, it will be extracted from the power generation facility (operation to obtain steam from the middle stage of the turbine, the amount of power generation will decrease) and purchase from outside the steelworks.
  • Patent Document 1 A plurality of techniques for operating such energy utility in a steel mill or a factory so as to be minimized from the viewpoint of cost have been published (for example, Patent Documents 1 to 3).
  • the technique of Patent Document 1 is the optimum obtained by the optimization method based on the re-evaluation function in which the evaluation index considering the variation of the state variables including the operation amount of the plant is added in the apparatus for optimizing the operation of the plant. Re-evaluate the solution. As a result, the influence of the variation of the state variables on the optimum solution can be grasped, and the evaluation function value of the optimum solution becomes more stable. In other words, it is possible to find a solution in which the fluctuation of the evaluation function value is small.
  • Patent Document 2 proposes an optimum design method that makes it possible to minimize operating costs, gas emissions, and the like.
  • the optimum capacity of the equipment when the load pattern of the plant (planned start / stop value of each equipment) is given is determined.
  • the technique of Patent Document 3 proposes a method of creating an operation plan even when the required reserve capacity of the power generation facility cannot be secured. This Patent Document 3 is obtained by adding a penalty function for calculating a value according to a shortage with respect to the required adjustment amount to the original objective function when the adjustment amount of the receivable power generation amount is smaller than the required adjustment amount.
  • the operation plan is generated so that the value of the extended objective function is minimized.
  • Patent Document 1 a stable solution can be obtained as the value of the cost function even in a situation where the operating conditions vary.
  • the technique of Patent Document 2 determines the optimum capacity of the equipment that minimizes the cost when the operation plan of the plant is given.
  • the techniques of Patent Documents 1 and 2 perform optimization calculations under a given operation plan and operating conditions, and the balance condition representing the energy balance, which is one of the operating conditions, is any amount of operation. When it is not satisfied, there is no optimum solution for the optimum calculation.
  • the technique of Patent Document 3 avoids a state where there is no optimum solution by considering an objective function in which the adjustment amount of the power generation amount is smaller than the specified value as a penalty and added to the objective function. If the condition is such that even the amount of power generation cannot be adjusted, there will be no optimal solution.
  • Patent Documents 1 to 3 operate effectively when they are operated without trouble, they are not an effective solution when the operating conditions are such that the optimum solution disappears. Even if the calculation of Patent Document 3 is performed so as to avoid a state where there is no optimum solution, there is a problem that an operation support measure for changing the operation plan of each factory cannot be presented to the operator.
  • the present invention has been made by focusing on the unsolved problems of the above-mentioned conventional examples, and in the situation where the energy service (at least one of by-product gas, steam, and electric power) in the steelworks is insufficient, each factory has a shortage of energy.
  • the purpose is to provide energy operation support equipment, energy operation support methods, and steelworks operation methods that can present the operator with the minimum necessary changes to the operation plan of the energy equipment.
  • the energy operation support device is designated from the actual value of the amount of energy used and the amount of energy consumed at the current time for each factory constituting the steel mill and the current time.
  • the operation information acquisition department that acquires the operation information of the energy equipment of the steelworks, the actual value / predicted value acquisition department, the unit price information acquisition department, and the operation information acquisition department, the operation conditions of the energy equipment.
  • the balance condition for the energy service is constructed, and the shortage amount determination variable for the energy service is added to the generation variable side of the balance condition to make it a constraint condition, and the total cost and shortage amount related to the energy operation of the steel mill.
  • the operator determines the objective function including the decision variable and calculates the decision variable so that the objective function approaches the optimum value so that the constraint condition is satisfied, and the operator based on the shortage calculated by the optimization calculation unit. It is equipped with an operation guideline transmission unit that transmits the operation guideline.
  • the energy operation support method includes the actual values of the amount of energy generated and consumed at the current time for each factory constituting the steel mill, and the energy used from the current time to the designated time.
  • the actual value / predicted value acquisition step to acquire the predicted value of the generated amount and the consumption amount
  • the unit price information acquisition step to acquire the unit price information necessary for calculating the total cost of energy operation of the steel mill, and the steel mill's
  • the operation conditions of the energy equipment are used as the determinants for energy.
  • An objective function that composes the balance condition of the utility adds the shortage determination variable of the energy utility to the generation variable side of the balance condition to make it a constraint condition, and includes the total cost related to the energy operation of the steel mill and the shortage determination variable. And convey the operation guideline to the operator based on the optimization calculation step that calculates the decision variable so that the objective function approaches the optimum value so as to satisfy the constraint condition, and the shortage amount calculated in the optimization calculation step. It has an operation guideline transmission step.
  • the operating method of the steelworks changes the operating conditions of the energy equipment based on the above-mentioned energy operation support method, or changes the operating conditions of the manufacturing equipment in the steelworks.
  • the energy operation support device when the energy service in the steelworks is insufficient, the operator of each factory needs the minimum necessary energy equipment operation plan. Proposals for changes can be presented.
  • the energy operation support device is a device that supports the optimization of the cost of the energy service in the operation of the energy service in the steelworks.
  • the energy service includes at least one of the by-product gas, steam, and electric power generated in the steelworks.
  • the energy operation support device 1 of the present embodiment is composed of an information processing device such as a personal computer or a workstation, and has an energy service record / prediction database DB 1, a unit price information database DB 2, and operation information. It includes a database DB 3, an optimization calculation unit 4, an operation guideline creation unit 5, and a guidance unit 6.
  • the optimization calculation unit 4 and the operation guideline creation unit 5 are realized by executing a computer program by an arithmetic processing unit such as a CPU in the information processing device.
  • the energy service record / prediction database DB1 is composed of a non-volatile storage device, and the amount of energy service (by-product gas, steam, electric power) generated and consumed by multiple factories that make up the steel mill.
  • the value and the predicted value of the generated amount and the consumption amount of the energy service from the current time to the specified time are stored.
  • B gas generation amount it is predicted using the current time generation amount and blast furnace operation information.
  • the predicted value is created assuming that the amount generated at the current time will continue into the future, but when the blast furnace is in a closed wind state, the amount generated is predicted to be zero.
  • the amount of C gas generated it is predicted using the amount generated at the current time and the amount of carbon charge for each coke oven kiln.
  • the amount of LD gas generation it is predicted using a smelting plan.
  • the M gas consumption in the factory is predicted by using the slab charging plan in the heating furnace and the M gas consumption at the current time.
  • FIG. 2 is the data of the energy role of the A factory constituting the steelworks stored in the energy use record / prediction database DB1.
  • the by-product gas of the data for this energy role is B gas (Blast Furnace gas), C gas (Cokes gas), LD gas (LDconverter gas), and M, which is a mixture of these gases directly or mixed to adjust the calorific value. It is a gas (Mixed gas).
  • the electric power is electric power generated from TRT (fire top pressure recovery turbine power generation facility) and CDQ (Cokes Dry Quenching System).
  • steam is steam generated according to the operation of a converter or a sintering furnace.
  • the data of the energy role of the factory A in FIG. 2 includes the actual amount of energy generated SJ and the actual amount of consumption DJ at the current time, and the amount of energy used from the current time to the designated time (for example, 180 minutes later).
  • the predicted value SY and the predicted consumption value DY are stored.
  • the energy service record / prediction database DB1 along with the energy service data of the A factory shown in FIG. 2, the current time generation amount of the energy service of other factories (B factory, C factory ...) is recorded.
  • the value SJ and the actual consumption value DJ, and the predicted energy generation amount SY and the predicted consumption amount DY from the current time to the designated time are stored.
  • the unit price information database DB2 stores information such as an electric power unit price, a steam unit price, a heavy oil unit price, and a pure water unit price for supplying a boiler.
  • the operation information database DB3 shows the stop time and restart of energy equipment (power generation equipment, TRT, CDQ, gas holder, mixed gas production equipment) when there is a plan to stop due to factors such as periodic inspections and troubles. Operation information such as time is stored.
  • the optimization calculation unit 4 performs an optimization calculation that outputs the total cost of energy operation of the steelworks as a determinant of the operation conditions of the energy equipment so as to be the minimum or a value in the vicinity of the minimum. Specifically, the optimization calculation unit 4 uses a mathematical formula that preforms the constraint conditions and total cost related to energy operation support as a mixed integer planning problem, which is one of the mathematical calculation problems, into an energy service performance / prediction database. By inputting the information of DB1, the information of the unit price information database DB2, and the information of the operation information database DB3, the shortage determination variable and the consumption variable, which will be described later, are calculated, and the total cost F to be optimized is calculated.
  • a branch-and-bound method or the like can be used as a method for solving a mixed integer programming problem.
  • a branch-and-bound method or the like can be used.
  • the prior art document "Predictive control of hybrid system and its application to process control", System / Control / Information, Vol. .46, No.3, pp.110-119, 2002 ".
  • the operation guideline creation unit 5 creates an operation guideline based on the shortage amount X of the predetermined energy service calculated by the optimization calculation unit 4.
  • the operation guideline creation unit 5 has an operation guideline for purchasing external energy for a predetermined energy service, an operation guideline for purchasing external energy and reducing the usage amount of the predetermined energy equipment, or an operation guideline.
  • a plurality of operation guideline data such as an operation guideline for reducing the usage amount of a predetermined energy facility are stored in a table (see, for example, FIG. 9).
  • the operation guideline creation unit 5 selects the operation guideline data corresponding to the shortage amount X of the energy utility calculated by the optimization calculation unit 4.
  • the guidance unit 6 displays the operation guideline data corresponding to the shortage amount X selected by the operation guideline creation unit 5 on the guidance screen.
  • the operator changes the operating conditions of the energy equipment by referring to the operation guideline data information output on the guidance screen.
  • step ST1 the actual energy value SJ and the actual consumption amount DJ of all the energy service of the A factory, the B factory, the C factory, etc. stored in the energy service record / prediction database DB1 are used.
  • step ST2 Reads the energy consumption predicted value SY and the consumption amount predicted value DY from the current time to the specified time.
  • step ST2 the purchase unit price of electric power, steam, pure water for supplying a self-generated boiler, etc. stored in the unit price information database DB2 is read.
  • step ST3 the operation information of the energy equipment (power generation equipment, TRT, CDQ, gas holder, mixed gas production equipment) stored in the operation information database DB3 is read.
  • step ST6 based on the information read in steps ST1, 2, and 3, the shortage determination variable is on the left side of the equation representing the balance condition of the energy utility in which the generation variable Si on the left side and the consumption variable Di on the right side are equal.
  • X X ⁇ 0
  • the constraint condition shown in the following equation (1) is established. This constraint is a condition that should hold at each time.
  • X + S 1 + S 2 + ... + S N D 1 + D 2 + ... + DM ...
  • step ST8 under the constraint condition of the equation (1), the total cost F having the objective function as the minimum value or a value in the vicinity of the minimum value and the shortage amount determination variable X are calculated.
  • the coefficient of determination variable X is a minute value
  • the weight constant C is set so that the CX at this time is sufficiently larger than the total cost F, the gas will not be insufficient.
  • the shortage determination variable X is substantially zero.
  • the insufficient amount determining variable X can be set to a insufficient amount having a value larger than 0.
  • step ST9 the operating conditions of the energy equipment (power generation equipment, TRT, CDQ, gas holder, mixed gas production equipment) calculated in step ST8 are set, and then the optimization calculation process is terminated.
  • the actual value / predicted value acquisition unit and the actual value / predicted value acquisition step described in the present invention correspond to the energy service actual / predicted database DB1, and the unit price information acquisition unit described in the present invention.
  • the unit price information acquisition step corresponds to the unit price information database DB2.
  • the operation information acquisition unit and the operation information acquisition step described in the present invention correspond to the operation information database DB3
  • the operation guideline transmission unit and the operation guideline transmission step described in the present invention correspond to the operation guideline creation unit 5. And it corresponds to the guidance unit 6.
  • FIG. 4 shows a situation in which a trouble occurs in a coke oven of a steel mill and the amount of C gas generated is systematically reduced. From 30 minutes to 50 minutes, the amount of C gas generated decreases and the shortage increases. is doing.
  • FIG. 5 is a graph showing changes in the level of the gas holder storing the B gas, the C gas, the linz-Donaw gas A, and the linz-Donaw gas B when a trouble occurs in the coke oven with time.
  • FIG. 6 shows the change over time in the amount of power generated by the power generation equipment when a trouble occurs in the coke oven
  • FIG. 7 shows the amount of by-product gas used as fuel when the trouble occurs in the coke oven. Shows the amount of heavy oil, which is an externally purchased fuel, when a trouble occurs in a coke oven.
  • the period average of the C gas shortage amount for 30 to 50 minutes after the start of operation is about 500 [GJ / h].
  • the operation of the energy operation support device 1 when a trouble occurs in the coke oven in the above situation will be described.
  • the actual amount of energy generated SJ and the actual amount of consumption DJ at the current time of all the energy services of the A factory, the B factory, the C factory, etc. and the designated time from the current time.
  • the purchase unit price of electric power, steam, pure water for boiler supply, etc. is read (step ST2 in FIG. 3), and the operation information of the energy equipment (power generation equipment, TRT, CDQ, gas holder, mixed gas production equipment) is read (Fig.). Step 3 ST3).
  • the constraint condition of the above-mentioned equation (1) is set by using the shortage amount determination variable X (step ST6 in FIG. 3).
  • the objective function (total cost F + value obtained by multiplying the shortage amount determination variable X by the weight constant C) is set to the minimum value or a value in the vicinity of the minimum under the constraint condition of the equation (1).
  • the operating conditions of the obtained energy equipment power generation equipment, TRT, CDQ, gas holder, mixed gas production equipment
  • the operation guideline creation unit 5 of the energy operation support device 1 makes the shortage amount X (500 [GJ / h]) calculated by the optimization calculation unit 4 correspond to the plurality of operation guideline data shown in FIG. Select the operation guideline for purchasing city gas and reducing the amount of hot air furnace used in 2 ”.
  • the guidance unit 6 of the energy operation support device 1 displays on the guidance screen of "purchase of city gas and reduction of hot air furnace usage".
  • the operator of each factory can quickly change the operating conditions of the energy equipment by referring to the operation guideline of "purchasing city gas and reducing the amount of hot air furnace used" output on the guidance screen.
  • the energy operation support device 1 is similarly used even when the energy utility such as other by-product gas, steam, and electric power is insufficient. Provide operational support.
  • the energy operation support device 1 of the present embodiment calculates the shortage amount by the optimization calculation based on the constraint condition using the generation variable Si, the consumption variable Di, and the shortage amount determination variable X, and the energy equipment (power generation equipment). , TRT, CDQ, gas holder, mixed gas production equipment) are set. For this reason, when the energy service (at least one of by-product gas, steam, and electric power) is insufficient at the steelworks, the operator of each factory should be presented with the minimum necessary changes to the operation plan of the energy equipment. Can be done. In addition, by changing the operating conditions of the energy equipment or the operating conditions of the manufacturing equipment in the steelworks based on the proposed change of the operating conditions, the steelworks that realize the optimum operation of the energy equipment. Can operate.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

最適化計算部(4)と、運用指針伝達部(5)、(6)とを備えている。最適化計算部は、実績値・予測値取得部(DB1)、単価情報取得部(DB2)及び稼働情報取得部(DB3)から得られた情報に基づき、エネルギー設備の運用条件を決定変数とし、エネルギー用役の収支条件を構成し、エネルギー用役の不足量決定変数を収支条件の発生変数側に付加して制約条件としている。そして、最適化計算部は、製鉄所のエネルギー運用に係る総コストと不足量決定変数を含む目的関数を定め、制約条件を満たすように目的関数が最適値に漸近するように決定変数を演算する。また、運用指針伝達部は、最適化計算部で演算した不足量に基づいて運用者に運用指針を伝達する。

Description

エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法
 本発明は、製鉄所におけるエネルギー用役の運用において、エネルギー用役のコストを最適化するように支援するエネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法に関する。
 製鉄所は上工程(高炉、コークス炉、製鋼工程)から下工程(圧延、表面処理工程)にかけて多数の工場を有する。上工程では、発熱成分を含有する副生ガスであるBガス(Blast Furnaceガス)、Cガス(Cokesガス)、LDガス(LDconverterガス)が発生する。
 これらのガスを直接的に、又は混合して熱量調整したMガス(Mixedガス)として、圧延工場の加熱炉や発電設備の燃料として使用する運用が行われている。
 ここで、ガスの発生量と使用量の乖離の調整には、ガスを貯蔵するタンクの役割を持つガスホルダという設備が用いられる。例えば、副生ガスの発生量が使用量よりも多くなる局面では、ガスホルダに副生ガスが蓄えられることで、その貯蔵量(ガスホルダレベル)が上昇する。反対に、副生ガスの使用量が発生量よりも多くなる局面では、ガスホルダからガスを払い出すことで使用量を充足させる。
 副生ガスの発生量が使用量に対して過大となり、ガスホルダレベルの上限まで達した場合は、余剰となるガスは大気中に燃焼放散される。一方、反対の場合はガス不足となるため、発電設備の出力を下げることで使用量を抑制し、それで対処できない場合は、工場の操業レベルを低下させる。
 副生ガスの運用以外には、例えば電力や蒸気の運用がある。電力の運用では、電力単価の高い時間帯(一般的に昼間)からの電力購入量を低下させるように発電設備の出力を上げて運用する。電力単価の安い時間帯(一般的に夜間)では、発電量を低下させている。このような発電設備の運用方針は、単価に依存する。蒸気の運用では、転炉、焼結炉などの排熱を利用したボイラで発生し、冷延工場などの酸洗槽の保温やRH(真空脱ガス設備)で使用される。そして、不足する場合には、発電設備からの抽気(タービン中段から蒸気を得る操作,発電量は低下)と製鉄所外から購入する。
 このような製鉄所もしくは工場におけるエネルギー用役を、コストの観点で最小となるように運用する技術が複数公表されている(例えば、特許文献1~3)。
 特許文献1の技術は、プラントの運用を適正化する装置において、プラントの操作量を含む状態変数のバラツキを考慮した評価指数が加味された再評価関数に基づいて、最適化手法で求めた最適解を再評価する。これにより、状態変数のバラツキが最適解に与える影響を把握し、より最適解の評価関数値が安定する。つまり、評価関数値の変動が少ないような解を見出すことがなされている。
 また、特許文献2の技術は、運用費用・ガス排出量等の最小化を実現可能とした最適設計方法を提案している。この特許文献2では、プラントの負荷パターン(各機器の起動・停止計画値)が与えられた時の機器の最適容量を決定している。
 さらに、特許文献3の技術は、発電設備の要求予備力を確保できない場合であっても運転計画を作成する手法を提案している。この特許文献3は、確保可能な発電量の調整量が要求調整量よりも小さい場合に、要求調整量に対する不足分に応じた値を算出するペナルティ関数を、本来の目的関数に加えて得られる拡張目的関数の値が最小になるように、運転計画を生成するものである。
 特許文献1の技術は、操業条件のバラツキがある状況でもコスト関数の値として安定した解が求まる。また、特許文献2の技術は、プラントの運転計画が与えられたときに、コストが最小となるような機器の最適容量を決定している。これら特許文献1、2の技術は、与えられた運転計画や操業条件の下で最適化計算を行うものであるが、その操業条件の一つであるエネルギーバランスを表す収支条件がいかなる操作量でも満たされないときには、最適計算としては最適解がない状態となる。
 また、特許文献3の技術は、発電量の調整量が規定値よりも小さい場合は、それをペナルティとして目的関数に加味した目的関数を考えることで、最適解がない状態を回避しているが、発電量の調整量すらなくなるような条件になると、最適解がない状態となる。
特開2009-70200号公報 特開2006-48475号公報 特開2016-93016号公報
 製鉄所の操業では,突発的な要因(トラブル)で工場が停止することや工場の稼働計画が悪い場合に、発生するガス量、電力量及び蒸気が不足することでエネルギーバランスを表す収支式が成り立たなくなり、最適計算で解が求まらない。このような場合には、運用者は各工場の運転計画自体を変更し、消費量を低下させることで収支式が成り立つようにしている。このとき、運転計画の変更は、不足量に応じて行われるべきであり、過剰に工場を停止させるような運転計画を立案すると、生産量の低下により製鉄所全体としてのコストが増大してしまう。したがって、必要最小限の運転計画に留めるべきである。
 しかし、前述した特許文献1~3の技術は、トラブルなく操業している場合には有効に動作するが、最適解がなくなる程度の操業条件となると有効な解決策とはならない。
 最適解がない状態を回避するような特許文献3の計算を行ったとしても、各工場の運転計画を変更するような運用支援策を運用者に提示できないという課題がある。
 本発明は、上記従来例の未解決の課題に着目してなされたものであり、製鉄所におけるエネルギー用役(副生ガス、蒸気、電力の少なくとも一つ)が不足する局面において、各工場の運用者にエネルギー設備の運転計画の必要最小限の変更案を提示することができるエネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法を提供することを目的としている。
 上記目的を達成するために、本発明の一態様に係るエネルギー運用支援装置は、製鉄所を構成する工場毎の現時刻のエネルギー用役の発生量及び消費量の実績値と、現時刻から指定時刻までのエネルギー用役の発生量及び消費量の予測値を取得する実績値・予測値取得部と、製鉄所のエネルギー運用にかかる総コストの計算に必要となる単価情報を取得する単価情報取得部と、製鉄所のエネルギー設備の稼働情報を取得する稼働情報取得部と、実績値・予測値取得部、単価情報取得部及び稼働情報取得部から得られた情報に基づき、エネルギー設備の運用条件を決定変数とし、エネルギー用役の収支条件を構成し、エネルギー用役の不足量決定変数を収支条件の発生変数側に付加して制約条件とし、製鉄所のエネルギー運用に係る総コストと不足量決定変数を含む目的関数を定め、制約条件を満たすように目的関数が最適値に漸近するように決定変数を演算する最適化計算部と、最適化計算部で演算した不足量に基づいて運用者に運用指針を伝達する運用指針伝達部と、を備えている。
 また、本発明の一態様に係るエネルギー運用支援方法は、製鉄所を構成する工場毎の現時刻のエネルギー用役の発生量及び消費量の実績値と、現時刻から指定時刻までのエネルギー用役の発生量及び消費量の予測値を取得する実績値・予測値取得ステップと、製鉄所のエネルギー運用にかかる総コストの計算に必要となる単価情報を取得する単価情報取得ステップと、製鉄所のエネルギー設備の稼働情報を取得する稼働情報取得ステップと、実績値・予測値取得ステップ、単価情報取得ステップ及び稼働情報取得ステップから得られた情報に基づき、エネルギー設備の運用条件を決定変数とし、エネルギー用役の収支条件を構成し、エネルギー用役の不足量決定変数を収支条件の発生変数側に付加して制約条件とし、製鉄所のエネルギー運用に係る総コストと不足量決定変数を含む目的関数を定め、制約条件を満たすように目的関数が最適値に漸近するように決定変数を演算する最適化計算ステップと、最適化計算ステップで演算した不足量に基づいて運用者に運用指針を伝達する運用指針伝達ステップと、を備えている。
 さらに、本発明の一態様に係る製鉄所の操業方法は、上述したエネルギー運用支援方法に基づきエネルギー設備の運用条件を変更し、または、製鉄所内の製造設備の操業条件を変更する。
 本発明に係るエネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法によると、製鉄所におけるエネルギー用役が不足する局面において、各工場の運用者にエネルギー設備の運転計画の必要最小限の変更案を提示することができる。
本発明に係るエネルギー運用支援装置の構成を示すブロック図である。 本発明に係るエネルギー運用支援装置のエネルギー用役実績・予測データベースに格納されている所定の工場のエネルギー用役のデータである。 本発明に係るエネルギー運用支援装置の最適化計算部が行う最適化計算処理を説明するフローチャートである。 製鉄所のコークス炉でトラブルが発生したときのCガス発生量及びCガス不足量の経時的変化を示すグラフである。 製鉄所においてBガス、Cガス、転炉ガスA、転炉ガスBを貯蔵しているガスホルダの経時的レベル変化を示すグラフである。 製鉄所のコークス炉でトラブルが発生したときの発電設備の発電量の経時的変化を示すグラフである。 製鉄所のコークス炉でトラブルが発生したときの副生ガス量の経時的変化を示すグラフである。 製鉄所のコークス炉でトラブルが発生したときの外部購入燃料である重油量の経時的変化を示すグラフである。 本発明に係るエネルギー運用支援装置の運用指針作成部に記憶されている運用指針データである。
 次に、図面を参照して、本発明に係る実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 本発明に係る一実施形態であるエネルギー運用支援装置は、製鉄所におけるエネルギー用役の運用において、エネルギー用役のコストを最適化するように支援する装置である。
 エネルギー用役には、製鉄所内で発生した副生ガス、蒸気、及び電力のうちの少なくとも一つが含まれる。
 図1に示すように、本実施形態のエネルギー運用支援装置1は、パーソナルコンピュータやワークステーション等の情報処理装置によって構成され、エネルギー用役実績・予測データベースDB1と、単価情報データベースDB2と、稼働情報データベースDB3と、最適化計算部4と、運用指針作成部5と、ガイダンス部6と、を備えている。最適化計算部4及び運用指針作成部5は、情報処理装置内のCPU等の演算処理装置がコンピュータプログラムを実行することによって実現される。
 エネルギー用役実績・予測データベースDB1は、不揮発性の記憶装置によって構成されており、製鉄所を構成する複数の工場のエネルギー用役(副生ガス、蒸気、電力)の発生量及び消費量の実績値と、現時刻から指定時刻までのエネルギー用役の発生量及び消費量の予測値が格納されている。
 Bガス発生量の場合、現時刻の発生量と高炉稼働情報を用いて予測する。高炉が稼働しているときは、現時刻の発生量が将来まで続くと仮定して予測値を作成するが、高炉が休風状態のときは発生量が0となるように予測する。
 Cガス発生量の場合、現時刻の発生量とコークス炉窯毎の装炭量を用いて予測する。
 LDガス発生量の場合、吹錬計画を用いて予測する。
 工場でのMガス消費量は、加熱炉におけるスラブ装入計画や現時刻のMガス消費量を用いて予測される。
 図2は、エネルギー用役実績・予測データベースDB1に記憶されている製鉄所を構成するA工場のエネルギー用役のデータである。このエネルギー用役のデータの副生ガスは、Bガス(Blast Furnaceガス)、Cガス(Cokesガス)、LDガス(LDconverterガス)、これらのガスを直接的に、又は混合して熱量調整したMガス(Mixedガス)である。また、電力は、TRT(炉頂圧回収タービン発電設備)、CDQ(Cokes Dry Quenching System)から発生する電力である。また、蒸気は、転炉や焼結炉の操業にしたがって発生する蒸気である。そして、図2のA工場のエネルギー用役のデータは、現時刻の発生量実績値SJ及び消費量実績値DJと、現時刻から指定時刻(例えば180分後)までのエネルギー用役の発生量予測値SY及び消費量予測値DYが格納されている。
 また、エネルギー用役実績・予測データベースDB1には、図2で示したA工場のエネルギー用役のデータとともに、他の工場(B工場、C工場…)のエネルギー用役の現時刻の発生量実績値SJ及び消費量実績値DJと、現時刻から指定時刻までのエネルギー用役の発生量予測値SY及び消費量予測値DYが格納されている。
 単価情報データベースDB2は、電力単価、蒸気単価、重油単価、ボイラ供給用の純水単価などの情報が格納されている。
 稼働情報データベースDB3は、エネルギー設備(発電設備、TRT、CDQ、ガスホルダ、混合ガス製造設備)が定期点検やトラブル等の要因で停止する計画がある場合に、それらエネルギー設備の停止時刻、再稼働の時刻などの稼働情報が格納されている。
 最適化計算部4は、製鉄所のエネルギー運用にかかる総コストを、最小、或いは最小の近傍の値になるようなエネルギー設備の運用条件を決定変数として出力する最適化計算を行う。この最適化計算部4は、具体的には、エネルギー運用支援に関する制約条件や総コストを数理計算問題の一つである混合整数計画問題として予め定式化した数式に、エネルギー用役実績・予測データベースDB1の情報、単価情報データベースDB2の情報及び稼働情報データベースDB3の情報が入力されることで、後述する不足量決定変数、消費変数を演算するとともに、最適化すべき総コストFを演算する。なお、混合整数計画問題の解法については、分枝限定法等を用いることができ、例えば先行技術文献である「ハイブリッドシステムの予測制御とそのプロセス制御への適用”、システム/制御/情報、Vol.46、No.3、pp.110-119、2002」に記載されている。
 運用指針作成部5は、最適化計算部4で演算した所定のエネルギー用役の不足量Xに基づいて運用指針を作成する。具体的には、運用指針作成部5には、所定のエネルギー用役に対して、外部エネルギーを購入する運用指針、外部エネルギーを購入するとともに所定のエネルギー設備の使用量をダウンさせる運用指針、或いは、所定のエネルギー設備の使用量をダウンさせる運用指針などの複数の運用指針データがテーブル化されて格納されている(例えば、図9参照)。そして、運用指針作成部5は、最適化計算部4で演算したエネルギー用役の不足量Xに対応した運用指針データを選択する。
 ガイダンス部6は、運用指針作成部5で選択した不足量Xに対応した運用指針データを、ガイダンス画面に表示する。そして、運用者は、ガイダンス画面に出力された運用指針データ情報を参考にしてエネルギー設備の運用条件を変更する。
 次に、最適化計算部4が行う最適化計算処理について、図3のフローチャートを参照して説明する。
 先ず、ステップST1では、エネルギー用役実績・予測データベースDB1に記憶されているA工場、B工場、C工場…の全てのエネルギー用役の現時刻の発生量実績値SJ及び消費量実績値DJと、現時刻から指定時刻までのエネルギー用役の発生量予測値SY及び消費量予測値DYを読み込む。
 次いで、ステップST2では、単価情報データベースDB2に記憶されている電力、蒸気、自家発ボイラ供給用の純水などの購入単価を読み込む。
 次いで、ステップST3では、稼働情報データベースDB3に記憶されているエネルギー設備(発電設備、TRT、CDQ、ガスホルダ、混合ガス製造設備)の稼働情報を読み込む。
 次いで、ステップST4では、制約条件を立てるために、ステップST1で読み込んだ情報に基づいて、発生変数Si(i=1,2,…N)を設定する。ここで、i=1,2,…Nは、工場やエネルギー設備を表す添字である。なお、工場の場合は、実績値または予測値となるが、エネルギー設備の場合は決定変数となる。
 次いで、ステップST5では、制約条件を立てるために、ステップST1で読み込んだ情報に基づいて、消費変数Di(i=1,2,…M)を設定する。ここで、i=1,2,…Mも、工場やエネルギー設備を表す添字である。なお、工場の場合は、実績値または予測値となるが、エネルギー設備の場合は決定変数となる。
 次いで、ステップST6では、ステップST1、2、3で読み込んだ情報に基づいて、左辺の発生変数Siと右辺の消費変数Diとが等しいエネルギー用役の収支条件を表す式の左辺に不足量決定変数X(X≧0)を加えることで、以下の(1)式に示す制約条件を立てる。この制約条件は、各時刻で成り立つべき条件である。
 X+S+S+…+S=D+D+…+D  …(1)
 次いで、ステップST7では、最小、或いは最小の近傍の値となるべき目的関数を設定する。これは、単価情報や使用量を使った総コストFに、不足量決定変数Xに重み定数Cを掛けた値を足したものである。
  (目的関数)= F + CX
 次いで、ステップST8では、(1)式の制約条件下で、目的関数を最小、或いは最小の近傍の値とする総コストFと、不足量決定変数Xを演算する。
 ここで、不足量決定変数Xが微小な値であったとして、このときのCXが総コストFより、十分に大きくなるように重み定数Cを設定しておけば、ガスが不足しない局面での最適計算では、不足量決定変数Xは実質的に0となる。一方、ガスが不足する局面では不足量決定変数Xは0より大きな値となる不足量とすることができる。
 次いで、ステップST9では、ステップST8で演算したエネルギー設備(発電設備、TRT、CDQ、ガスホルダ、混合ガス製造設備)の運用条件を設定し、その後に、最適化計算処理を終了する。
 ここで、本発明に記載されている実績値・予測値取得部及び実績値・予測値取得ステップが、エネルギー用役実績・予測データベースDB1に対応し、本発明に記載されている単価情報取得部及び単価情報取得ステップが単価情報データベースDB2に対応する。また、本発明に記載されている稼働情報取得部及び稼働情報取得ステップが稼働情報データベースDB3に対応し、本発明に記載されている運用指針伝達部及び運用指針伝達ステップが、運用指針作成部5及びガイダンス部6に対応している。
 次に、製鉄所の操業でトラブルが発生したときの状況を、図4から図8を参照して説明する。
 図4は、製鉄所のコークス炉でトラブルが発生し、Cガス発生量を計画的に低下させた状況を示しており、30分から50分間、Cガスの発生量が低下して不足量が増大している。
 図5は、コークス炉でトラブルが発生したときのBガス、Cガス、転炉ガスA、転炉ガスBを貯蔵しているガスホルダの経時的レベル変化を示すグラフである。運用者は、Cガス発生量の低下を予期することで、事前にCガスのガスホルダのガスレベルを高く保つとともに、運用開始後30分からCガスのガスホルダ内のCガスを徐々に使用するようにしている。
 図6は、コークス炉でトラブルが発生したときの発電設備の発電量の経時的変化を示し、図7はコークス炉でトラブルが発生したときの使用燃料である副生ガス量を示し、図8は、コークス炉でトラブルが発生したときの外部購入燃料である重油量を示している。これら図6から図8から明らかなように、Cガス発生量が低下しても発電量の急激な変化は望ましくないので、徐々に発電量の出力を低下させ、重油の購入量を多くしている。ここで、図4で示すように、運用開始後30分から50分間のCガス不足量の期間平均は、約500[GJ/h]である。
 次に、上記のような状況のコークス炉のトラブル発生時におけるエネルギー運用支援装置1の動作について説明する。
 エネルギー運用支援装置1の最適化計算部4では、A工場、B工場、C工場…の全てのエネルギー用役の現時刻の発生量実績値SJ及び消費量実績値DJと、現時刻から指定時刻までのエネルギー用役の発生量予測値SY及び消費量予測値DYを読み込む(図3のステップST1)。次いで、電力、蒸気、ボイラ供給用の純水などの購入単価を読み込み(図3のステップST2)、エネルギー設備(発電設備、TRT、CDQ、ガスホルダ、混合ガス製造設備)の稼働情報を読み込む(図3のステップST3)。そして、発生変数Si(i=1,2,…N)を設定し(図3のステップST4)、消費変数Di(i=1,2,…M)を設定し、(図3のステップST5)、不足量決定変数Xを使用して前述した(1)式の制約条件を立てる(図3のステップST6)。
 そして、目的関数(総コストF+不足量決定変数Xに重み定数Cを掛けた値)を(1)式の制約条件下で最小、或いは最小の近傍の値とする。そして、得られたエネルギー設備(発電設備、TRT、CDQ、ガスホルダ、混合ガス製造設備)の運用条件を設定する(図3のステップST9)。
 また、エネルギー運用支援装置1の運用指針作成部5は、最適化計算部4で演算した不足量X(500[GJ/h])を、図9に示す複数の運用指針データに対応させ、「2」の都市ガス購入と熱風炉使用量ダウンの運用指針を選択する。
 そして、エネルギー運用支援装置1のガイダンス部6は、「都市ガス購入と熱風炉使用量ダウン」のガイダンス画面に表示する。
 これにより、各工場の運用者は、ガイダンス画面に出力された「都市ガス購入と熱風炉使用量ダウン」という運用指針を参考にして、エネルギー設備の運用条件を迅速に変更することができる。
 なお、製鉄所の操業においてCガスが不足する状況について説明したが、他の副生ガス、蒸気、電力などのエネルギー用役が不足する状況であっても、同様に、エネルギー運用支援装置1は運用支援を行う。
 したがって、本実施形態のエネルギー運用支援装置1は、発生変数Si、消費変数Di、不足量決定変数Xを使用した制約条件に基づいて、最適化計算で不足量を算出し、エネルギー設備(発電設備、TRT、CDQ、ガスホルダ、混合ガス製造設備)の運用条件を設定している。このため、製鉄所におけるエネルギー用役(副生ガス、蒸気、電力の少なくとも一つ)が不足する局面において、各工場の運用者にエネルギー設備の運転計画の必要最小限の変更案を提示することができる。
 また、提示された運用条件の変更案に基づいて、エネルギー設備の運用条件を変更し、または、製鉄所内の製造設備の操業条件を変更することによって、エネルギー設備の最適運用を実現する製鉄所の操業ができる。
1 エネルギー運用支援装置
4 最適化計算部
5 運用指針作成部
6 ガイダンス部
C 重み定数
F 最適化すべき総コスト
X 不足量決定変数
DB1 エネルギー用役実績・予測データベース
DB2 単価情報データベース
DB3 稼働情報データベース
Si(i=1,2,…N) 発生変数
Di(i=1,2,…M) 消費変数

Claims (5)

  1.  製鉄所を構成する工場毎の現時刻のエネルギー用役の発生量及び消費量の実績値と、現時刻から指定時刻までのエネルギー用役の発生量及び消費量の予測値を取得する実績値・予測値取得部と、
     前記製鉄所のエネルギー運用にかかる総コストの計算に必要となる単価情報を取得する単価情報取得部と、
     前記製鉄所のエネルギー設備の稼働情報を取得する稼働情報取得部と、
     前記実績値・予測値取得部、前記単価情報取得部及び前記稼働情報取得部から得られた情報に基づき、前記エネルギー設備の運用条件を決定変数とし、前記エネルギー用役の収支条件を構成し、前記エネルギー用役の不足量決定変数を前記収支条件の発生変数側に付加して制約条件とし、前記製鉄所のエネルギー運用に係る総コストと前記不足量決定変数を含む目的関数を定め、前記制約条件を満たすように前記目的関数が最適値に漸近するように決定変数を演算する最適化計算部と、
     前記最適化計算部で演算した前記不足量に基づいて運用者に運用指針を伝達する運用指針伝達部と、を備えていることを特徴とするエネルギー運用支援装置。
  2.  前記運用指針伝達部は、前記不足量に応じて複数の運用指針から一つの運用指針を選択して運用者に伝達することを特徴とする請求項1に記載のエネルギー運用支援装置。
  3.  製鉄所を構成する工場毎の現時刻のエネルギー用役の発生量及び消費量の実績値と、現時刻から指定時刻までのエネルギー用役の発生量及び消費量の予測値を取得する実績値・予測値取得ステップと、
     前記製鉄所のエネルギー運用にかかる総コストの計算に必要となる単価情報を取得する単価情報取得ステップと、
     前記製鉄所のエネルギー設備の稼働情報を取得する稼働情報取得ステップと、
     前記実績値・予測値取得ステップ、前記単価情報取得ステップ及び前記稼働情報取得ステップから得られた情報に基づき、前記エネルギー設備の運用条件を決定変数とし、前記エネルギー用役の収支条件を構成し、前記エネルギー用役の不足量決定変数を前記収支条件の発生変数側に付加して制約条件とし、前記製鉄所のエネルギー運用に係る総コストと前記不足量決定変数を含む目的関数を定め、前記制約条件を満たすように前記目的関数が最適値に漸近するように決定変数を演算する最適化計算ステップと、
     前記最適化計算ステップで演算した前記不足量に基づいて運用者に運用指針を伝達する運用指針伝達ステップと、を備えていることを特徴とするエネルギー運用支援方法。
  4.  前記運用指針伝達ステップは、前記不足量に応じて複数の運用指針から一つの運用指針を選択して運用者に伝達することを特徴とする請求項3に記載のエネルギー運用支援方法。
  5.  請求項3又は4に記載のエネルギー運用支援方法に基づきエネルギー設備の運用条件を変更し、または、製鉄所内の製造設備の操業条件を変更することを特徴とする製鉄所の操業方法。
PCT/JP2020/047796 2020-12-22 2020-12-22 エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法 WO2022137311A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080107946.1A CN116745785A (zh) 2020-12-22 2020-12-22 能量运用辅助装置、方法及钢铁厂的操作方法
PCT/JP2020/047796 WO2022137311A1 (ja) 2020-12-22 2020-12-22 エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法
KR1020237020038A KR20230106682A (ko) 2020-12-22 2020-12-22 에너지 운용 지원 장치, 에너지 운용 지원 방법 및 제철소의 조업 방법
JP2021521451A JP6954497B1 (ja) 2020-12-22 2020-12-22 エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法
EP20966807.8A EP4270276A4 (en) 2020-12-22 2020-12-22 ENERGY OPERATION SUPPORT APPARATUS, ENERGY OPERATION SUPPORT METHOD AND STEEL ROLLING MILL OPERATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047796 WO2022137311A1 (ja) 2020-12-22 2020-12-22 エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法

Publications (1)

Publication Number Publication Date
WO2022137311A1 true WO2022137311A1 (ja) 2022-06-30

Family

ID=78119236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047796 WO2022137311A1 (ja) 2020-12-22 2020-12-22 エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法

Country Status (5)

Country Link
EP (1) EP4270276A4 (ja)
JP (1) JP6954497B1 (ja)
KR (1) KR20230106682A (ja)
CN (1) CN116745785A (ja)
WO (1) WO2022137311A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057841A1 (ja) * 2022-09-13 2024-03-21 Jfeスチール株式会社 エネルギー運用支援システム、情報処理装置、表示端末装置、エネルギー運用支援方法および製鉄所の操業方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174359A1 (ja) * 2014-05-16 2015-11-19 Jfeスチール株式会社 エネルギー需給運用ガイダンス装置及び製鉄所内のエネルギー需給運用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048475A (ja) 2004-08-06 2006-02-16 Fuji Electric Systems Co Ltd プラント最適設計方法
JP4857228B2 (ja) 2007-09-14 2012-01-18 Jfeスチール株式会社 プラント運用適正化装置
JP2016093016A (ja) 2014-11-06 2016-05-23 富士電機株式会社 運転計画生成装置、運転計画生成方法及びプログラム
CN106991539B (zh) * 2017-04-11 2020-06-16 中国科学院过程工程研究所 一种能源系统优化调度方法及装置
KR102231347B1 (ko) * 2018-12-19 2021-03-24 주식회사 포스코 부생가스 수급예측에 기초한 발전출력 제어장치 및 제어방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174359A1 (ja) * 2014-05-16 2015-11-19 Jfeスチール株式会社 エネルギー需給運用ガイダンス装置及び製鉄所内のエネルギー需給運用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Predictive Control of Hybrid Systems and Its Application to Process Control", SYSTEMS/CONTROL/INFORMATION, vol. 46, no. 3, 2002, pages 110 - 119
See also references of EP4270276A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057841A1 (ja) * 2022-09-13 2024-03-21 Jfeスチール株式会社 エネルギー運用支援システム、情報処理装置、表示端末装置、エネルギー運用支援方法および製鉄所の操業方法
JP7485241B1 (ja) 2022-09-13 2024-05-16 Jfeスチール株式会社 エネルギー運用支援システム、情報処理装置およびエネルギー運用支援方法

Also Published As

Publication number Publication date
JPWO2022137311A1 (ja) 2022-06-30
CN116745785A (zh) 2023-09-12
JP6954497B1 (ja) 2021-10-27
EP4270276A1 (en) 2023-11-01
KR20230106682A (ko) 2023-07-13
EP4270276A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
KR101771985B1 (ko) 에너지 수급 운용 가이던스 장치 및 제철소 내의 에너지 수급 운용 방법
CN112072712B (zh) 综合能源系统多时间尺度优化调度方法、系统及存储介质
JP4003553B2 (ja) 副生ガスを用いた発電方法および発電設備
JP4550914B2 (ja) エネルギーシステム運転計画作成装置および方法
Zeng et al. A novel multi-period mixed-integer linear optimization model for optimal distribution of byproduct gases, steam and power in an iron and steel plant
Wei et al. A MINLP model for multi-period optimization considering couple of gas-steam-electricity and time of use electricity price in steel plant
WO2022137311A1 (ja) エネルギー運用支援装置、エネルギー運用支援方法及び製鉄所の操業方法
Li et al. Combined capacity and operation optimisation of lithium-ion battery energy storage working with a combined heat and power system
CN111950808A (zh) 基于综合需求响应的综合能源系统随机鲁棒优化运行方法
WO2021200118A1 (ja) 製鉄所におけるエネルギー運用条件の最適計算方法、製鉄所におけるエネルギー運用条件の最適計算装置、及び製鉄所の操業方法
JP2021005311A (ja) エネルギー運用支援装置及びエネルギー運用支援方法
KR102231347B1 (ko) 부생가스 수급예측에 기초한 발전출력 제어장치 및 제어방법
TWI755986B (zh) 能源運用支援裝置,能源運用支援方法及煉鋼廠的運轉方法
CN116760066A (zh) 考虑电弧炉调控与风电功率波动的双时间尺度调控方法
WO2022230567A1 (ja) 全体統合制御型水素エネルギーシステム及びその運用方法
Qiu et al. Optimization of Gas–Steam–Electricity Network of Typical Iron and Steel Enterprise
JP4340104B2 (ja) 鉄鋼生産工場の操業最適化方法
JPH0844403A (ja) エネルギー需給調整方法
Larsson Process integration in the steel industry: Possibilities to analyse energy use and environmental impacts for an integrated steel mill
Maneschijn et al. Investigating load shift potential through the use of off-gas holders on South African steel plants
JP3550931B2 (ja) 気体送給量制御方法
JP6365553B2 (ja) 電力調整方法
BI et al. The State of the Art and Future Perspective of Intelligent Blast Furnace Ironmaking
JP7485241B1 (ja) エネルギー運用支援システム、情報処理装置およびエネルギー運用支援方法
Wang et al. A Multi-objective Optimal Scheduling Method by Considering Energy and Production for Integrated Energy System in Steel Industry

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521451

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237020038

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107946.1

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023012228

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023012228

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230619

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966807

Country of ref document: EP

Effective date: 20230724