WO2022230567A1 - 全体統合制御型水素エネルギーシステム及びその運用方法 - Google Patents

全体統合制御型水素エネルギーシステム及びその運用方法 Download PDF

Info

Publication number
WO2022230567A1
WO2022230567A1 PCT/JP2022/015690 JP2022015690W WO2022230567A1 WO 2022230567 A1 WO2022230567 A1 WO 2022230567A1 JP 2022015690 W JP2022015690 W JP 2022015690W WO 2022230567 A1 WO2022230567 A1 WO 2022230567A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
power
station
renewable energy
power generation
Prior art date
Application number
PCT/JP2022/015690
Other languages
English (en)
French (fr)
Inventor
雅博 中原
翔大 井上
洋人 武内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021076549A external-priority patent/JP7509715B2/ja
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to AU2022266287A priority Critical patent/AU2022266287A1/en
Publication of WO2022230567A1 publication Critical patent/WO2022230567A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a total integrated control type hydrogen energy system and its operating method. It is suitable for application to energy systems.
  • Hydrogen utilization technology is still under development in recent years, and there are still many issues in terms of technology, cost, system, and infrastructure. ⁇ In the Fuel Cell Strategy Roadmap, Basic Hydrogen Strategy, and 5th Strategic Energy Plan, a policy to strengthen hydrogen utilization efforts toward the realization of a hydrogen society is indicated.
  • Patent Document 1 describes a method to operate a generator of a hydroelectric power plant at a high output in consideration of the amount of water stored in a regulating reservoir and a reverse regulating reservoir without performing manual calculations.
  • an invention has been disclosed that enables the creation of an operation plan that can further reduce the power generation cost of a thermal power plant.
  • Patent Document 2 discloses an invention for purchasing and storing power when the price is low and selling the power when the price is high in the power trading market where the price of power fluctuates over time.
  • Patent Documents 1 and 2 conventionally, hydrogen energy systems cooperate with existing thermal and hydroelectric power plants in depopulated areas in a timely manner, and operate these thermal and hydroelectric power plants. No proposals have been made for a system that contributes to facility operation from the perspective of economic profit for power generation companies.
  • the present invention has been made in consideration of the above points, and is a total integration capable of coordinating the hydrogen energy system and existing power generation facilities in a timely manner and improving the economic profit of the power generation business that operates the power generation facilities. It is intended to propose a controlled hydrogen energy system and its operation method.
  • a renewable energy power generation system that generates renewable energy
  • a thermal power, hydraulic power, or nuclear power to generate power
  • At least one of a power plant that supplies the generated electric power to a consumer, and a hydrogen station that is a facility for replenishing hydrogen as a fuel for a fuel cell vehicle wherein the renewable energy power generation system and/or the power plant produces hydrogen using surplus electric power and supplies the produced hydrogen to the hydrogen station, or supplies surplus hydrogen to the hydrogen station.
  • the hydrogen energy system with integrated control comprises a renewable energy power generation system that generates renewable energy; At least one of a power plant that generates power by thermal power, hydraulic power, or nuclear power and supplies the generated power to consumers; a first step in which the renewable energy power generation system and/or the power plant produces hydrogen using surplus power; and the renewable energy power generation system and/or the power plant supplies the produced hydrogen to the hydrogen station. and a second step of supplying.
  • a total integrated control type hydrogen energy system and its operating method are capable of coordinating the hydrogen energy system and existing power generation facilities in a timely manner and improving the economic profit of the power generation company operating the power generation facilities. can be realized.
  • FIG. 1 is a block diagram showing the overall configuration of an overall integrated control type hydrogen energy system according to the present embodiment
  • FIG. FIG. 2 is a conceptual diagram for explaining control hierarchies and owners by control hierarchies in the overall integrated control hydrogen energy system
  • It is a figure which shows the structural example of a renewable energy power generation system operation assistance screen.
  • FIG. 4 is a diagram showing processing contents of a renewable energy control device regarding power sales to EV stations and hydrogen sales to hydrogen stations
  • FIG. 5 is a diagram showing a configuration example of a power plant operation support screen
  • FIG. 3 is a diagram showing processing contents of a plant control device regarding opening control of a turbine extraction valve of an IGFC type thermal power plant
  • FIG. 4 is a diagram showing processing contents of a plant control device regarding sales of hydrogen to hydrogen stations;
  • FIG. 10 is a diagram showing a configuration example of an overall integrated control type hydrogen energy system operation support screen; It is a figure which shows the structural example of a consumer system operation assistance screen.
  • FIG. 4 is a diagram showing the processing contents of the consumer EMS control device regarding the sale of electricity to electric power companies and the sale of hydrogen to hydrogen stations;
  • FIG. 1, 1 generally indicates the totally integrated control type hydrogen energy system according to this embodiment.
  • This total integrated control type hydrogen energy system 1 is a local production and local consumption type hydrogen energy system, each of which includes one or more renewable energy power generation systems 2, thermal/hydroelectric power plants 3, hydrogen stations 4, EV stations 5 and cold regions. It is composed of a combined heat and power energy management system 6 and one total integrated control device 7.
  • the renewable energy power generation system 2 is a renewable energy power generation system owned by the renewable energy power generation business operator 10, and is hereinafter assumed to be a wind power generation system.
  • the renewable energy power generation system 2 includes a renewable energy power generation facility 11, a storage battery 12, a water electrolysis hydrogen production facility 13, a renewable energy control device 14, and the like.
  • the renewable energy power generation facility 11 is a wind power generation facility including wind turbines. Electric power generated by the renewable energy power generation equipment 11 is supplied to each consumer 30 via a power system 9 including a substation 8 .
  • the storage battery 12 is a storage battery for grid connection, and is used to stabilize the power output from the renewable energy power generation system 2 to the power grid 9 and to store surplus power.
  • the water electrolysis hydrogen production facility 13 is a facility for producing hydrogen by water electrolysis, and is composed of a water electrolytic bath and the like. Hydrogen produced by the water electrolysis hydrogen production equipment 13 is supplied to the hydrogen station 4 via a pipeline (not shown) or the like.
  • the renewable energy control device 14 is a control device that controls the operation of the entire renewable energy power generation system 2, and is composed of a computer device equipped with information processing resources such as a CPU (Central Processing Unit), a memory, and a communication device (not shown). .
  • the renewable energy control device 14 controls the renewable energy power generation system 2 to adjust the amount of power generated by the renewable energy power generation equipment 11 and store the surplus power generated by the renewable energy power generation equipment 11 in the storage battery 12 .
  • the renewable energy control device 14 controls the supply (selling) of surplus power to the EV station 5, and the control of producing hydrogen from the surplus power and supplying (selling) the produced hydrogen to the hydrogen station 4. I do.
  • the renewable energy control device 14 determines that the amount of power sold in the renewable energy power generation system 2 is the target amount of power sold based on the power purchase agreement (PPA (Power Purchase Agreement)) with the power company (hereinafter referred to as this is referred to as the target electric power sales), the electric power stored in the storage battery 12 exceeds the charging rating value of the storage battery 12, and the charging amount of the EV station 5 is insufficient. , controls the renewable energy power generation system 2 to supply (sell) the surplus power generated by the renewable energy power generation equipment 11 to the EV station 5 .
  • PPA Power Purchase Agreement
  • the renewable energy control device 14 determines that the amount of power sold in the renewable energy power generation system 2 has not reached the target amount of power sold based on the negotiated power transaction contract with the power company, and the amount of power stored in the storage battery 12 is 12, the EV station 5 is in a fully charged state (a state in which there is no vacant storage capacity), and the hydrogen station 4 has a vacant storage capacity of hydrogen.
  • the surplus power generated by the renewable energy power generation equipment 11 is used to operate the water electrolysis hydrogen production device 13 to produce hydrogen, and the produced hydrogen is supplied to the hydrogen station 4. It controls the renewable energy power generation system 2 so as to do so.
  • the thermal/hydroelectric power plant 3 is composed of at least one of a thermal power plant owned by the thermal/hydroelectric power operator 20 and a hydroelectric power plant owned by the hydroelectric power operator.
  • the thermal/hydroelectric power plant 3 may include not only the thermal power plant and the hydroelectric power plant, but also the nuclear power plant.
  • the thermal/hydroelectric power plant 3 includes a thermal/hydroelectric power generation facility 21, a water electrolysis hydrogen production facility 22, a plant control device 23, and the like.
  • the thermal/hydroelectric power generation facility 21 is a power generation facility that generates power by thermal power or hydropower (further nuclear power when a nuclear power plant is included in the thermal/hydroelectric power plant 3). It is supplied to each consumer 30 via the power system 9 .
  • the water electrolysis hydrogen production facility 22 is a facility for producing hydrogen by water electrolysis similar to the water electrolysis hydrogen production facility 13 of the renewable energy power generation system 2 . Hydrogen produced by the water electrolysis hydrogen production equipment 22 is supplied to the hydrogen station 4 via a pipeline or the like (not shown).
  • the plant control device 23 is a control device that controls the operation of the entire thermal/hydroelectric power plant 3, and is composed of a computer device equipped with information processing resources such as a CPU, memory, and communication device (not shown). The plant control device 23 adjusts the amount of power generated by the thermal/hydroelectric power generation facility 21 by controlling the thermal/hydroelectric power generation facility 21 .
  • the plant control device 23 controls to supply (sell) the surplus power generated by the thermal/hydroelectric power generation equipment 21 to the EV station 5 under the same conditions as those described above for the renewable energy control device 14.
  • the surplus electric power is used to operate the water electrolysis hydrogen production equipment 22 to produce hydrogen, and control is performed to supply (sell) the produced hydrogen to the hydrogen station 4 . Since the control content of the plant control device 23 at this time is the same as that of the renewable energy control device 14, the description here is omitted.
  • the thermal power plant is a coal-fired power plant with a CO 2 (carbon dioxide) storage facility installed.
  • An integrated coal gasification fuel cell cycle (IGFC) type thermal power plant that adds a fuel cell to an integrated coal gasification combined cycle (IGCC) type pulverized coal thermal power plant.
  • IGFC when it is in the form of extracting steam for improving the CO 2 pass-through rate from a turbine extraction valve (hereinafter simply referred to as a turbine extraction valve) according to the load operation of the thermal power plant
  • the hydrogen station 4 is supplied with excess hydrogen in the fuel cell for the vehicle.
  • the plant control device 23 determines that the amount of electric power sold at the thermal/hydroelectric power plant 3 (thermal power plant) is the target amount of electric power sold based on the power negotiation agreement with the electric power company. and the power stored in the fuel cell for the IGFC exceeds the on-site power required to operate the thermal power plant (hereinafter referred to as the target on-site power). Then, when given an instruction from the operator, the thermal/hydroelectric power plant 3 is controlled to supply (sell) the surplus hydrogen in the fuel cell to the hydrogen station 4 .
  • the plant control device 23 opens the turbine extraction valve to improve the CO pass-through rate. It controls the thermal/hydroelectric power plant 3 (thermal power plant). As a result, the amount of hydrogen produced by the CO shift reaction increases, and the increased amount of hydrogen is supplied to the fuel cell, thereby increasing the surplus hydrogen, that is, the amount of hydrogen supplied to the hydrogen station 4 .
  • the hydrogen station 4 is a facility for replenishing fuel cell vehicles (FCV: Fuel Cell Vehicle) with hydrogen.
  • FCV Fuel Cell Vehicle
  • hydrogen credits similar to carbon credits are given to users of the hydrogen station 4 (owners of fuel cell vehicles) in order to spread hydrogen energy widely in the region, and incentives are returned.
  • hydrogen credits will utilize blockchain technology to manage all transaction information, such as hydrogen sellers, purchasers, and sales dates. As a result, hydrogen credits can be developed smoothly.
  • the EV station 5 is a facility for supplying electric power, which is a power source, to an electric vehicle (EV).
  • the EV station 5 supplies electric power to electric vehicles while accumulating electric power supplied from the electric power system 9, the renewable energy power generation system 2, and/or the thermal/hydroelectric power generation plant 3 in a storage battery or the like as necessary.
  • the combined heat and power type energy management system 6 is a system that simultaneously performs power generation and heat supply owned by each power consumer 30 living in a cold region. It is configured with a hydrogen cylinder 33, a consumer EMS (Energy Management System) control device 34, and the like.
  • EMS Electronicgy Management System
  • the cogeneration facility 31 is a facility that outputs electric power and heat obtained using sunlight and geothermal heat, and is composed of a solar power generation system, a geothermal power generation system, and the like.
  • the water electrolysis/thermal decomposition hydrogen production facility 32 is a facility for producing hydrogen by water electrolysis or thermal decomposition using the electric power and/or heat output from the combined heat and power supply facility 31 .
  • the hydrogen produced by the water electrolysis/pyrolysis hydrogen production facility 32 is stored in a compressed hydrogen cylinder 33, and then supplied to a fuel cell vehicle using a filling device (not shown) to be used as fuel, or used as a fuel for the fuel cell vehicle. It is supplied (sold) to the hydrogen station 4 via the
  • the same hydrogen credit as the hydrogen credit given to the user of the hydrogen station 4 may be given to the user.
  • the consumer EMS control device 34 measures in real time the power consumption of various loads owned by the consumer 30 such as lighting and air conditioners, and the measurement results are sent to the renewable energy control device 14 of the renewable energy power generation system 2, thermal power, It is a computer device having a function of notifying the plant control device 23 of the hydroelectric power plant 3 .
  • the consumer EMS control device 34 controls to increase or decrease the power consumption of various loads according to instructions from the renewable energy control device 14 and the plant control device 23, and controls the power generated by the cogeneration equipment 31. It also controls the sale of surplus power to power companies.
  • the consumer EMS control device 34 also supports the supply (selling) of the hydrogen produced by the water electrolysis/thermal decomposition hydrogen production equipment 32 to the hydrogen station 4 . A specific method of such support will be described later.
  • the total integrated control device 7 is a business operator (hereinafter referred to as a total integrated management business operator) who manages the total integrated control type hydrogen energy system 1, such as an aggregator or a microgrid owner who manages the power supply and demand of an integrated region. is a computer device owned by The overall integrated control device 7 is connected to the renewable energy control device 14 of the renewable energy power generation system 2 and the plant control device 23 of the thermal/hydroelectric power plant 3 via the network NW.
  • a total integrated management business operator who manages the total integrated control type hydrogen energy system 1, such as an aggregator or a microgrid owner who manages the power supply and demand of an integrated region.
  • the overall integrated control device 7 is connected to the renewable energy control device 14 of the renewable energy power generation system 2 and the plant control device 23 of the thermal/hydroelectric power plant 3 via the network NW.
  • the amount of power generated by the renewable energy power generation system 2 and the thermal/hydroelectric power plant 3 can be increased or decreased, or via the renewable energy control device 14 and the plant control device 23 By increasing or decreasing the amount of power consumption of each consumer 30, the power supply and demand balance in the entire jurisdiction area is adjusted.
  • FIG. 2 shows the state of the control hierarchy and owners by control hierarchy in this overall integrated control type hydrogen energy system 1 .
  • the total integrated controller 7 owned by the total integrated management business operator 35 is positioned at the top of hierarchical control.
  • the renewable energy control device 14 of the renewable energy power generation system 2 owned by the renewable energy power generation business operator 10 and the plant control device 23 of the thermal/hydroelectric power plant 3 owned by the thermal/hydroelectric power generation business operator 20 , and the customer EMS control device 34 of each customer 30 is located at the lowest layer of the control hierarchy.
  • the renewable energy control device 14 and the plant control device 23 acquire various measured values from each consumer EMS control device 34, formulate a power generation plan based on these acquired measured values, and generate renewable energy according to the planned power generation plan. It controls the power generation system 2 and the thermal/hydroelectric power plant 3 .
  • the total integrated control device 7 receives the power generation plan of the renewable energy power generation system 2 and the thermal/hydroelectric power plant 3 acquired from the renewable energy control device 14 and the plant control device 23, and the power generation plan via the renewable energy control device 14 and the plant control device 23. Based on the various measured values of each consumer obtained by the The power consumption of each consumer 30 is increased or decreased by demand response via the control device 23 .
  • Configuration of various screens and processing contents of each control device (2-1) Configuration of the renewable energy power generation system operation support screen and processing content of the renewable energy control device 4 shows a renewable energy power generation system operation support screen 40 that can be displayed on the energy control device 14 (FIG. 1).
  • This renewable energy power generation system operation support screen 40 is a screen for supporting the operation of the renewable energy power generation system 2 by the renewable energy power generation company 10 (FIG. 1).
  • this renewable energy power generation system operation support screen 40 includes a renewable energy power generation system configuration display area 41 arranged on the left side of the screen, a KPI indicator display area 42 arranged on the right side of the screen, and a renewable energy power generation system economic balance simulator area. 43.
  • a schematic configuration diagram 50 showing the schematic configuration of the renewable energy power generation system 2 is displayed.
  • the connection relationship between the renewable energy power generation system 2 and the hydrogen station 4 and the connection relationship between the renewable energy power generation system 2 and the EV station 5 are also displayed in this schematic configuration diagram 50 .
  • a dashed line surrounds a portion on the schematic configuration diagram 50 corresponding to a component that can be an income KPI (Income KPI) or an outcome KPI (Outcome KPI) in the renewable energy power generation system 2.
  • shaped frames 51A and 51B are displayed.
  • “Income KPI (Key Performance Indicator)” here refers to income other than income obtained from the power negotiation agreement (power PPA) with the power company of the renewable energy generator 10 (Fig. 1).
  • the income from selling electricity in the electricity trading market, the income from selling hydrogen to the hydrogen station 4, and the income from selling electricity to the EV station 5 are the income KPI of the renewable energy power generation system 2.
  • a blue broken-line frame 51A surrounds each location corresponding to the power trading market, the hydrogen station 4, and the EV station 5 in the schematic configuration diagram 50. Is displayed.
  • the "outcome KPI" here refers to the cost required for maintenance of the renewable energy power generation system 2.
  • the maintenance cost of the storage battery 12 and the maintenance cost of the water electrolysis hydrogen production facility 13 correspond to the outcome KPI of the renewable energy power generation system 2 . Therefore, in the renewable energy power generation system configuration display area 41, for example, a red dashed frame 51B is displayed so as to surround each location corresponding to the storage battery 12 and the water electrolysis hydrogen production facility 13 in the schematic configuration diagram 50. be done.
  • a power sensor (hereinafter referred to as a sold power amount measurement sensor) that measures the amount of power sold from the renewable energy power generation system 2 to the power company, A battery charging amount measuring sensor installed in the storage battery 12 for measuring the current charging amount of the storage battery 12, and a hydrogen filling amount measuring sensor installed in the hydrogen station 4 for measuring the hydrogen filling amount of the hydrogen station 4 , and an EV station charge amount measuring sensor installed in the EV station 5 for measuring the charge amount of the EV station 5, and measurement value columns 52A to 52D are displayed in association with each other.
  • a power sensor hereinafter referred to as a sold power amount measurement sensor
  • the measurement sensors corresponding to the renewable energy control device 14 power sales measurement sensor, battery charge amount measurement sensor, hydrogen filling amount measurement sensor, or EV station charge amount measurement sensor
  • the current measurement values of the measurement sensors obtained by the communication are displayed.
  • a start button 53 is displayed at a location corresponding to the water electrolysis hydrogen production facility 13 in the schematic configuration diagram 50 of the renewable energy power generation system 2.
  • This start button 53 is displayed as disabled at the beginning, and after that, the renewable energy power generation system 2 is in a state where hydrogen can be supplied to the hydrogen station 4.
  • the amount of electric power to be sold has not been reached, the amount of electric power stored in the storage battery 12 has exceeded the charging rating value of the storage battery 12 (the battery has been fully charged), and the amount of charge in the storage battery of the EV station 5 has been charged. It is displayed effectively when the battery exceeds the rated value (when the battery is fully charged).
  • the operator clicks or taps the start button 53 when the start button 53 is displayed as enabled to issue an instruction to the water electrolysis hydrogen production facility 13 to produce hydrogen.
  • device 14 can be provided. Then, when such an instruction is input, the renewable energy control device 14 uses the surplus power generated by the renewable energy power generation equipment 11 to operate the water electrolysis hydrogen production equipment 13 to produce hydrogen.
  • the renewable energy power generation system 2 is controlled to supply hydrogen to the hydrogen station 4 .
  • the KPI indicator display area 42 KPIs mainly related to the profit of the renewable energy power generation system 2 are displayed.
  • the KPI indicator display area 42 is provided with an electric power PPA amount column 54A, an electric power market index value column 54B, a hydrogen station hydrogen supply amount column 54C, and an EV station electricity supply amount column 54D.
  • the electric power PPA amount column 54A displays the electric power sold and the amount of electric power sold in the current time slot in the power PPA (power PPA) with the electric power company, respectively. Each unit price of electric power and electric energy in the current time slot in the electric power trading market acquired by the control device 14 from the electric power trading market is displayed.
  • the hydrogen station hydrogen supply amount column 54C displays the unit price of hydrogen when supplying (selling) hydrogen to the hydrogen station 4, which is determined by the contract with the owner of the hydrogen station 4, or the like.
  • the EV station electricity supply column 54D displays the current time slot for supplying (selling) electricity to the EV station 5 determined by the contract with the owner of the EV station 5 and the amount of electricity. Each unit price is displayed separately.
  • the renewable energy power generation system economic balance simulator area 43 is the economic balance up to the current term in the renewable energy power generation system 2, that is, the value obtained by subtracting the sum of all the above-mentioned outcome KPIs from the sum of all the above-mentioned income KPIs. This is the area for simulation.
  • This renewable energy power generation system economic balance simulator area 43 includes a contract power PPA column 55A, an electric power market profit column 55B, an electric power sales profit column 55C to the EV station 5, a hydrogen sales profit column 55D to the hydrogen station 4, and a water electrolyzer.
  • a maintenance cost column 55E, a storage battery maintenance cost column 55F, and a renewable energy power generation system profit/loss calculation simulator 56 are displayed.
  • the electric power market profit column 55B displays the amount of profit up to the current term from the sale of electric power in the electric power trading market
  • the electric power sale profit column 55C to the EV station 5 displays The amount of profit to date is displayed.
  • the hydrogen sales profit column 55D to the hydrogen station 4 the amount of profit for the current period up to the present due to the supply (sales) of the hydrogen produced by the water electrolysis hydrogen production equipment 13 to the hydrogen station 4 is displayed.
  • the water electrolysis tank maintenance cost column 55E displays the maintenance cost of the water electrolysis hydrogen production facility 13 required up to the current term
  • the storage battery maintenance cost column 55F displays the maintenance cost of the storage battery 12 required up to the current term. cost is displayed.
  • the renewable energy power generation system profit and loss calculation simulator 56 obtains by selling the profit obtained by selling power based on the power negotiation contract with the power company and the surplus power on the power trading market or by selling the power to the EV station 5.
  • Renewable energy power generation system 2 for the current period which is obtained by subtracting the maintenance cost of the renewable energy power generation system 2 from the sum of the profit obtained and the profit obtained by supplying (selling) the hydrogen produced from the surplus electricity to the hydrogen station 4
  • This is a simulator that calculates the profit and loss of The profit/loss amount of the renewable energy power generation system 2 up to the current term calculated by the renewable energy power generation system profit/loss calculation simulator 56 is displayed in the current profit/loss column 57 .
  • the renewable energy power generation business operator 10 manufactures hydrogen with surplus power based on the profit and loss amount of the renewable energy power generation system 2 up to the current term displayed in the current term profit and loss column 57, and supplies hydrogen to the hydrogen station. 4 to determine whether or not to supply (sell) it. Then, when the renewable energy power generator 10 determines that the hydrogen should be sold and the start button 53 is effectively displayed in the renewable energy power generation system configuration display area 41, the start button 53 is pressed. By doing so, it is possible to produce hydrogen with the surplus power and sell the produced hydrogen to the hydrogen station 4 .
  • FIG. 4 shows the processing contents of the renewable energy control device 14 of the renewable energy power generation system 2 regarding the sale of electricity to the EV station 5 and the sale of hydrogen to the hydrogen station 4 .
  • the renewable energy control device 14 measures the amount of power sold from the renewable energy generation system 2 to the power system 9 measured by the above-described power sales measurement sensor, and the amount of power sold to the target electric power company based on the negotiated power transaction contract. (hereinafter referred to as the target power sale amount) (S1), and whether or not the calculated difference is greater than 0 (that is, whether or not the power sale amount has reached the target power sale amount) is determined (S2).
  • the renewable energy control device 14 calculates the difference between the rated charge amount of the storage battery 12 and the measurement value of the battery charge amount measurement sensor that measures the charge amount of the storage battery 12 (S3). It is determined whether or not there is (that is, whether or not the storage battery 12 is in a fully charged state) (S4).
  • the renewable energy control device 14 calculates the difference between the rated charge amount of the EV station 5 and the measured value of the EV station charge amount measurement sensor that measures the charge amount of the EV station 5 (S5). It is determined whether or not the difference is less than 0 (that is, whether or not the EV station 5 is available) (S6).
  • the renewable energy control device 14 calculates the difference between the rated value of the hydrogen filling amount in the hydrogen station 4 and the measured value of the hydrogen filling amount measurement sensor that measures the hydrogen filling amount of the hydrogen station 4 (S7). It is determined whether or not the difference is greater than 0 (that is, whether or not the hydrogen station 4 is available) (S8).
  • the renewable energy control device 14 determines that the amount of electric power sold has not reached the target amount of electric power sold and that the storage battery 12 is in a fully charged state (S9), and if there is a free space in the EV station 5 (S10 ) to start charging the EV station 5 (S11).
  • the renewable energy control device 14 determines that the actual amount of electric power sales is smaller than the target amount of electric power sales and that the storage battery 12 is in a fully charged state (S9), and the EV station 5 is not available (S12 ) and there is a vacant hydrogen station 4 (S13, S14), the start button 53 is effectively displayed in the renewable energy power generation system configuration display area 41 of the renewable energy power generation system operation support screen 40 (FIG. 3). After that, when the start button 53 is pressed by the operator (S15), the renewable energy control device 14 starts operating the water electrolysis hydrogen production equipment 13 (S16) to supply hydrogen to the hydrogen station 4. Supply (sales) is started (S17).
  • FIG. 5 is a power plant operation support screen that can be displayed on the plant control device 23 (FIG. 1) of the thermal/hydroelectric power plant 3 by a predetermined operation. 60.
  • This power plant operation support screen 60 is a screen for supporting the operation of the thermal/hydroelectric power plant 3 by the thermal/hydroelectric power generator 20 (FIG. 1).
  • the thermal/hydroelectric power plant 3 is a thermal power plant
  • the thermal/hydroelectric power plant 21 (FIG. 1) is a thermal power plant
  • the thermal power plant is a carbon dioxide (CO 2 ) storage facility.
  • the IGFC is an IGCC-type pulverized coal-fired power generation facility with a fuel cell added, and is a type of IGFC that extracts steam to improve the CO2 pass-through rate from a turbine extraction valve according to the load operation of the power plant. It is a configuration example of a power plant operation support screen 60 in a certain case. Therefore, in the following description of FIGS. 5 and 6, the thermal/hydroelectric power generator 20 is called the thermal power generator, and the thermal/hydroelectric power plant 3 is called the thermal power plant.
  • this power plant operation support screen 60 has a thermal power plant configuration display area 61 arranged on the left side of the screen and a KPI indicator display area arranged on the right side of the screen. 62 and a thermal power plant facility economic balance simulator area 63 .
  • a schematic configuration diagram 70 representing a schematic configuration of the corresponding thermal power plant is displayed.
  • the connection relationship between the thermal power plant and the hydrogen station 4 is also displayed in this schematic configuration diagram 70 .
  • broken-line frames 71A and 71B are displayed so as to surround portions on the schematic configuration diagram 70 corresponding to components that can be income KPIs and outcome KPIs in the thermal power plant. .
  • income KPIs for such a thermal power plant include income from selling electricity in the electricity trading market and income from selling hydrogen to the hydrogen station 4 .
  • a blue broken-line frame 71A is displayed so as to surround respective portions corresponding to the power trading market and the hydrogen station 4 in the schematic configuration diagram 70.
  • thermal power plant configuration display area 71 for example, a red dashed frame 71B is displayed so as to surround the portion corresponding to the gasification furnace in the schematic configuration diagram 70.
  • the thermal power plant configuration display area 61 there are a sold power amount measurement sensor that measures the amount of power sold from the thermal power plant to the electric power system 9 (FIG. 1), and the output power of the fuel cell that outputs the in-house power for the IGFC.
  • Measured value columns 72A to 72C are displayed in association with the in-house electric power measuring sensor for measuring the CO pass-through rate and the CO pass-through rate measuring sensor for measuring the CO pass-through rate, respectively. Then, in these measurement value columns 72A to 72C, the values of the measurement sensors obtained by communication with the corresponding measurement sensors (power sales measurement sensor, on-site power measurement sensor, or CO pass-through rate measurement sensor) of the plant control device 23 are displayed. Each current measurement is displayed.
  • a switch 73 is displayed at a location corresponding to the pipeline or the like connecting the thermal power plant and the hydrogen station 4 in the schematic configuration diagram 70 of the thermal power plant.
  • This switch 73 is displayed as disabled at the beginning, and after that, it is in a state where hydrogen can be supplied to the hydrogen station 4. It is effectively displayed when the target power sales amount is not reached and the power stored in the fuel cell that provides the on-site power for the IGFC exceeds the target on-site power.
  • the operator instructs the plant control device 23 to supply hydrogen produced by CO transfer to the hydrogen station. can give. Then, when such an instruction is input, the plant control device 23 controls the thermal power plant so as to supply the hydrogen station 4 with the hydrogen produced by the CO shift.
  • the KPI indicator display area 62 mainly displays KPIs related to the profit of the above-mentioned thermal power plant.
  • the KPI indicator display area 62 is provided with an electric power PPA amount column 74A, an electric power market index value column 74B, a hydrogen station hydrogen supply amount column 74C, and an EV station electricity supply amount column 74D.
  • the thermal power plant facility economic balance simulator area 63 simulates the economic balance of the current term up to the present in the corresponding thermal power plant, that is, the value obtained by subtracting the sum of all the above-mentioned outcome KPIs from the sum of all the above-mentioned income KPIs. It is an area for The thermal power plant equipment economic balance simulator area 63 includes a contract power PPA column 75A, an electric power market profit column 75B, a hydrogen sales profit column 75C to the hydrogen station 4, a fuel purchase cost column 75D, and a thermal power plant profit and loss calculation simulator 76. is displayed.
  • the fuel purchase cost column 75D stores the purchase cost up to the current term for the coal gas to be fed into the gasification furnace in the thermal power plant.
  • the profit obtained by selling power based on the power negotiation contract with the electric power company is the profit obtained by selling surplus power on the power trading market.
  • the amount of profit and loss in the thermal power plant for the current term obtained by subtracting the cost of purchasing fuel for the gasifier from the sum of the profits obtained by supplying (selling) hydrogen to the hydrogen station 4, is the current term. It is displayed in the profit and loss column 77 .
  • the thermal power generation business operator determines whether or not to supply (sell) the surplus hydrogen to the hydrogen station 4 based on the amount of profit and loss of the thermal power plant up to the present in the current term displayed in the current term profit and loss column 77. can judge. Then, when the thermal power generation business operator determines that the surplus hydrogen should be sold and the switch 73 displayed in the thermal power plant configuration display area 61 is displayed as valid, the switch 73 is pressed. By operating, surplus hydrogen can be sold to the hydrogen station 4 .
  • the thermal/hydroelectric power plant 3 is a thermal power plant
  • the thermal/hydroelectric power plant 21 is a thermal power plant
  • the thermal power plant is equipped with a carbon dioxide (CO 2 ) storage facility.
  • CO 2 carbon dioxide
  • the plant control device 23 calculates the difference between the amount of power sold from the thermal power generation system to the power system 9 measured by the above-described power sales measurement sensor and the target power sale amount based on the negotiated power transaction contract with the power company. (S20), and it is determined whether or not the calculated difference is greater than 0 (that is, whether or not the power sale amount has reached the target power sale amount) (S21).
  • the plant control device 23 also calculates the difference between the preset target value of the CO pass-through rate (hereinafter referred to as the target CO pass-through rate) and the CO pass-through rate measured by the above-described CO pass-through rate sensor. (S22), and it is determined whether or not the calculated difference is greater than 0 (that is, whether or not the current CO pass-through rate has reached the CO target pass-through rate) (S23).
  • the plant control device 23 controls the thermal power plant. Then, a command to open the turbine extraction valve is given to the thermal power plant to increase the CO pass-through rate (S25). As a result, the amount of hydrogen produced by the CO shift reaction and supplied to the fuel cell for on-site power is increased.
  • FIG. 7 shows the processing contents of the plant control device 23 regarding the sale of hydrogen to the hydrogen station 4.
  • the plant control device 23 calculates the difference between the amount of electric power sold from the thermal power generation system to the electric power company measured by the electric power sold amount measuring sensor and the target amount of electric power sold based on the negotiated power transaction contract (S30). , whether or not the calculated difference is greater than 0 (that is, whether or not the power sale amount has reached the target power sale amount) (S31).
  • the plant control device 23 also calculates the difference between the output power of the fuel cell measured by the in-house voltage measurement sensor and the target in-house power (S32), and determines whether the calculated difference is greater than 0 (that is, the fuel cell is greater than the target internal power) (S33).
  • the plant control device 23 performs the power plant operation described above with reference to FIG.
  • the switch 73 displayed in the thermal power plant configuration display area 61 of the support screen 60 is activated and then pressed (S35, S36), the supply (sale) of hydrogen to the hydrogen station 4 is started. Start (S37).
  • the thermal/hydroelectric power plant includes a thermal/hydroelectric power generation facility 21 and a water electrolysis hydrogen production facility 22. is operated to produce hydrogen, and the produced hydrogen is supplied (sold) to the hydrogen station 4. Since it becomes a structure, description here is omitted. Further, the processing contents of the plant control device 23 regarding hydrogen sales to the hydrogen station 4 in this case are the same as the processing contents described above with reference to FIG.
  • This total integrated control type hydrogen energy system operation support screen 80 is for supporting the operation of the total integrated control type hydrogen energy system 1 (FIG. 1) by the total integrated management operator 35 (FIG. 1) such as an aggregator or microgrid owner. This is the screen of
  • this total integrated control type hydrogen energy system operation support screen 80 consists of an overall system configuration display area 81 and a control system selection area 82 arranged on the left side of the screen, and a KPI indicator display area 83 arranged on the right side of the screen and an overall and a system economic balance simulator area 84 .
  • a schematic configuration diagram 90 showing the schematic configuration of the overall integrated control type hydrogen energy system 1 is displayed.
  • a renewable energy control button 91 associated with the renewable energy power generation system 2 (FIG. 1) and a thermal/hydroelectric power plant control button 92 associated with the thermal/hydroelectric power plant 3 are displayed. is displayed. Furthermore, below the renewable energy control button 91 in the control system selection area 82, the amount of profit and loss of the renewable energy power generation system 2 up to the current term is displayed. On the lower side, the amount of profit and loss of the thermal/hydroelectric power plant 3 for the current period up to the present is displayed.
  • the display screen can be changed from the overall integrated control type hydrogen energy system operation support screen 80 to FIG. It is possible to switch to the above-described renewable energy power generation system operation support screen 40, and by pressing the thermal power/hydroelectric power plant control button 92, the display screen can be changed from this overall integrated control type hydrogen energy system operation support screen 80. It is possible to switch to the power plant operation support screen 60 described above.
  • the overall integrated management operator 35 can use the renewable energy power generation system operation support screen 40 and the power plant operation support screen 60 to control the operation of the renewable energy power generation system 2 and the thermal/hydroelectric power plant 3. Thereby, the profit of the entire integrated control type hydrogen energy system 1 can be maximized.
  • the KPI indicator display area 83 KPIs related to the earnings of the entire integrated control-type hydrogen energy system 1 are displayed.
  • the KPI indicator display area 83 is provided with an electric power PPA amount column 93A, an electric power market index value column 93B, a hydrogen station hydrogen supply amount column 93C, and an EV station electricity supply amount column 93D.
  • KPI indicators of the renewable energy power generation system operation support screen 40 described above with reference to FIG. The same information as the information displayed in the electric power PPA amount column 54A, the electric power market index value column 54B, the hydrogen station hydrogen supply amount column 54C, and the EV station electricity supply amount column 54D in the display area 42 is displayed.
  • the overall system economic balance simulator area 84 is an area for simulating the economic balance up to the current term in the overall integrated control type hydrogen energy system 1.
  • 94C, a column 94D of a profit from hydrogen sales to the hydrogen station 4, a column 94E of purchased fuel, a column 94F of pure water purchased, and an entire system profit/loss calculation simulator 95 are displayed.
  • the power market profit column 94B displays the amount of profit up to the current term from selling power in the power trading market for the entire integrated control-type hydrogen energy system 1, and the power selling profit column 94C to the EV station 5. shows the amount of profit for the current term up to the present due to power sales to the EV station 5 in the entire integrated control type hydrogen energy system 1 .
  • the hydrogen sales profit column 94D to the hydrogen station 4 the profit and loss for the present term up to the present due to the supply (sales) of hydrogen to the hydrogen station 4 in the entire integrated control type hydrogen energy system 1 is displayed.
  • the fuel purchase amount column 94E the cost required for purchasing fuel for power generation in the entire integrated control type hydrogen energy system 1 up to the current term is displayed
  • the pure water purchase amount column 94F the total integrated control type The cost required to purchase pure water for power generation up to the current term for the entire hydrogen energy system 1 is displayed.
  • the pure water purchase amount column 94F the amount of profit and loss for the entire integrated control-type hydrogen energy system 1 up to the current term is displayed.
  • the profit obtained by selling power based on the power negotiation contract with the power company and the surplus power in the overall integrated control type hydrogen energy system 1 are sold on the power trading market. total integrated control from the sum of the profit obtained by the above, the profit obtained by selling electricity to the EV station 5, and the profit obtained by supplying (selling) the surplus hydrogen to the hydrogen station 4
  • the overall integrated management business operator 35 determines the renewable energy power generation system 2 It can be determined whether or not surplus hydrogen in the thermal/hydroelectric power plant 3 should be supplied (sold) to the hydrogen station 4 . Then, when the overall integrated management business operator 35 determines that the surplus hydrogen should be sold, the display screen is switched to the renewable energy power generation system operation support screen 40 or the power plant operation support screen 60 as described above. , the operation of the renewable energy power generation system 2 and the thermal/hydroelectric power plant 3 can be controlled so as to maximize the profit of the overall integrated control type hydrogen energy system 1 as a whole.
  • FIG. 9 shows a customer system operation support screen 100 that can be displayed on the customer EMS control device 34 by a predetermined operation.
  • This consumer system operation support screen 100 is a screen for assisting the operation of the cogeneration energy management system 6 (FIG. 1) owned by the consumer 30 (FIG. 1).
  • this customer system operation support screen 100 consists of a customer system configuration display area 101 arranged on the left side of the screen, a KPI indicator display area 102 and a cogeneration system economic balance simulator area 103 arranged on the right side of the screen. consists of
  • a schematic configuration diagram 110 of a partial configuration of the overall integrated control type hydrogen energy system 1 centering on the combined heat and power energy management system 6 is displayed.
  • a plurality of consumers using the same service line are treated as a group of consumers, and a sold electricity amount measurement sensor that measures the amount of electricity sold by the customer group to the electric power company is displayed.
  • a hydrogen filling amount measuring sensor installed in the hydrogen station 4 for measuring the hydrogen filling amount of the hydrogen station 4 and measurement value columns 111A and 111B are displayed.
  • the current measurement of the measurement sensor acquired by communication with the corresponding measurement sensor (sold electric power amount measurement sensor or hydrogen filling amount measurement sensor) of the consumer EMS control device 34 Each value is displayed.
  • a switch 112 is displayed at a location corresponding to the water electrolysis hydrogen production facility in the schematic configuration diagram 110 of the partial configuration of the overall integrated control type hydrogen energy system 1.
  • This switch 112 is initially displayed as disabled, and after that, the state in which the consumer 30 can supply (sell) hydrogen to the hydrogen station 4. does not reach the target electric power sales amount based on the bilateral electricity transaction contract, and the hydrogen station 4 has a free hydrogen filling capacity.
  • the consumer 30 clicks or taps the switch 112 when the switch 112 is displayed to be effective, thereby causing the water electrolysis/thermal decomposition hydrogen of the combined heat and power energy management system 6 of the consumer 30.
  • Settings can be made to supply (sell) the hydrogen produced by the production facility 32 (FIG. 1) to the hydrogen station 4 via the fuel cell vehicle.
  • the customer's EMS control device 34 instructs the hydrogen station 4 to extract the hydrogen filled in the fuel cell vehicle of the customer 30 by sucking it up. do.
  • hydrogen can be transported to the hydrogen station 4 and supplied (sold) using the fuel cell vehicle of the consumer 30 as a carrier.
  • the KPI indicator display area 102 displays the KPI related to the profit of the cogeneration energy management system 6 of the corresponding consumer 30 .
  • the KPI indicator display area 102 is provided with an electric power PPA amount column 113A, an electric power market index value column 113B, a hydrogen station hydrogen supply amount column 113C, and a geothermal temperature/thermoelectric conversion efficiency column 113D.
  • the electric power PPA amount column 113A displays the electric power sold and the amount of electric power sold in the current time zone in the negotiated power transaction contract concluded by the corresponding consumer 30 with the electric power company, and the electric power market index value column 113B displays , the unit price of electricity and the amount of electricity at the time of selling electricity in the current time period specified in the negotiated electricity transaction contract are displayed.
  • the hydrogen station hydrogen supply amount column 113C the unit price of hydrogen when supplying (selling) hydrogen to the hydrogen station 4 is displayed, which is determined by the contract with the owner of the hydrogen station 4 or the like. Further, the geothermal temperature/thermoelectric conversion efficiency column 113D displays the current geothermal temperature and the current thermoelectric exchange efficiency of the combined heat and power supply facility 31 (FIG. 1).
  • the cogeneration system economic balance simulator area 103 is an area for simulating the economic balance up to the current term in the cogeneration energy management system 6 of the customer 30 .
  • a contract power PPA column 114A, a hydrogen sales profit column 114B to the hydrogen station 4, and a cogeneration system profit and loss calculation simulator 115 are displayed.
  • the contract power PPA column 114A displays an inequality that represents the magnitude relationship between the current sales target value for the current term and the actual sales value up to the current term by selling power to the electric power company based on the negotiated power transaction contract. .
  • the hydrogen sales profit column 114B to the hydrogen station 4 the amount of profit up to the current term due to supplying (selling) the hydrogen produced by the water electrolysis/thermal decomposition hydrogen production equipment 32 (Fig. 1) to the hydrogen station 4 is displayed.
  • the combined heat and power system profit and loss calculation simulator 115 is obtained by supplying (selling) the hydrogen produced from the profit obtained by selling electricity based on the electricity negotiation contract with the electric power company and the surplus electricity to the hydrogen station 4. It is a simulator that calculates the total of the profit and the profit as the profit of the cogeneration type energy management system 6 up to the present in the current period. The profit amount of the cogeneration type energy management system 6 up to the current term calculated by the cogeneration type system profit and loss calculation simulator 115 is displayed in the net profit column 116 .
  • the consumer 30 manufactures hydrogen from the surplus electricity and supplies (sells) hydrogen to the hydrogen station 4 based on the profit amount of the cogeneration energy management system 6 up to the current term displayed in the net profit column 116 . ) can decide whether or not to When the customer 30 determines that the hydrogen should be sold and the switch 112 is displayed as enabled in the customer system configuration display area 101, the customer 30 presses the switch 112 to obtain the surplus power. Hydrogen can be produced and the produced hydrogen can be made available for sale to the hydrogen station 4 .
  • FIG. 10 shows the processing contents of the consumer EMS control device 34 of the combined heat and power energy management system 6 regarding the sale of electricity to the electric power company and the sale of hydrogen to the hydrogen station 4 .
  • the consumer EMS control device 34 calculates the amount of power sold from the corresponding consumer group to the power company measured by the above-described power sales measurement sensor, and the target power of these consumer groups based on the negotiated power transaction contract.
  • the difference between the amount of power sold to the company (hereinafter referred to as the target amount of power sold) is calculated (S40), and whether the calculated difference is greater than 0 reached) is determined (S41).
  • the consumer EMS control device 34 calculates the difference between the rated hydrogen charging amount in the hydrogen station 4 and the measured value of the hydrogen charging amount measurement sensor that measures the hydrogen charging amount in the hydrogen station 4 (S42), and calculates It is determined whether or not the calculated difference is greater than 0 (that is, whether or not the hydrogen station 4 is available) (S43).
  • the consumer EMS control device 34 instructs the electric power company to start selling electric power.
  • the cogeneration energy management system 6 of the consumer 30 is controlled (S45).
  • the consumer EMS control device 34 if the sold power amount has reached the target sold power amount (S46) and there is a vacancy in the hydrogen station 4 (S47), the switch 112 ( 9) is effectively displayed (S48). After that, when the switch 112 is pressed by the consumer 30 (S49, S50), the consumer EMS control device 34 can supply (sell) hydrogen using the fuel cell vehicle of the consumer 30 as a carrier. A purchase request is sent to the hydrogen station 4 (S51).
  • the overall integrated control type hydrogen energy system 1 the renewable energy power generation system 2, the thermal/hydroelectric power plant 3, and the combined heat and power energy management system 6 of each consumer 30, and the hydrogen energy system are timely controlled. While cooperating, the economic profit of the renewable energy power generation business operator 10, the thermal/hydroelectric power generation business operator 20, and the consumer 30 can be improved.
  • the hydrogen produced by the cogeneration energy management system 6 of each consumer 30 is supplied (sold) to the hydrogen station 4 using the fuel cell vehicle as a carrier.
  • the present invention is not limited to this.
  • the hydrogen produced by the energy management system 6 may be supplied (sold) to the hydrogen station 4 .
  • a pipeline or the like connects between the renewable energy power generation system 2 and the thermal/hydroelectric power plant 3 and the hydrogen station 4, and the renewable energy power generation system 2 and the
  • the case where the hydrogen produced in the thermal/hydroelectric power plant 3 is supplied (sold) to the hydrogen station 4 has been described, but the present invention is not limited to this, and the renewable energy power generation system 2 and the thermal/hydroelectric power plant 3
  • the hydrogen produced in (1) may be transported by a vehicle such as an automobile and supplied (sold) to the hydrogen station 4 .
  • hydrogen produced by the renewable energy power generation system 2, the thermal/hydroelectric power plant 3, and the combined heat and power type energy management system 6 of each consumer 30 is supplied to the hydrogen station 4.
  • the present invention is not limited to this, and such hydrogen may be supplied (sold) to facilities having equipment that operates on hydrogen energy.
  • the present invention is suitable for application to a total integrated control hydrogen energy system that utilizes hydrogen energy for local production for local consumption.
  • Renewable energy control device 20 Thermal/hydroelectric power generation company, 21 Thermal/hydroelectric power generation facility, 23 Plant control device, 30 Consumer, 31 Combined heat and power supply facility, 32 Water electrolysis/ Pyrolysis hydrogen production equipment 33 Compressed hydrogen cylinder 35 Overall integrated management operator 40 Renewable energy power generation system operation support screen 60 Power plant operation support screen 80 Overall integrated control type hydrogen Energy system operation support screen, 100 -- Consumer system operation support screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

再生可能エネルギーを発電する再生可能エネルギー発電システム、及び、火力、水力又は原子力により発電し、発電した電力を需要家に供給する発電プラントの少なくとも一方と、燃料電池自動車に対して燃料である水素を補給するための施設である水素ステーションとを設け、再生可能エネルギー発電システム及び又は発電プラントが、余剰電力を用いて水素を製造し、製造した水素を水素ステーションに供給し、又は、余剰となった水素を水素ステーションに供給するようにした。

Description

全体統合制御型水素エネルギーシステム及びその運用方法
 本発明は全体統合制御型水素エネルギーシステム及びその運用方法に関し、例えば、既存の再生可能エネルギー発電システム及び火力・水力発電プラントと連携しながら地産地消型で水素エネルギーを利活用する全体統合型水素エネルギーシステムに適用して好適なものである。
 我が国の水素・燃料電池の技術開発は、1970年代に発生したオイルショックの経験を踏まえ、長期的な視野に立って新エネルギーの開発を目的として1974年から開始された「サンシャイン計画」や、省エネルギー技術の開発を目的として1978年から1993年まで行われた「ムーンライト計画」の中で水素エネルギーや燃料電池発電技術の開発が開始されたことに始まる。
 水素の利活用技術は、近年においても開発途上であり、技術面、コスト面、制度面及びインフラ面で未だ多くの課題があるものの、近年、国が策定した第4次エネルギー基本計画や、水素・燃料電池戦略ロードマップ、水素基本戦略及び第5次エネルギー基本計画において、水素社会の実現に向けて水素利用の取り組みを強化していく方針が示されている。
 このような国の水素利用の取り組みを遂行する場合、過疎地域における地産地消エネルギーシステムを実現するためにも、既存の発電所の電源と協調しながら地域のエネルギー需要に水素エネルギーを組み入れていくことが合理的である。このためにも水素エネルギーシステムが過疎地域に存在する既存の火力・水力発電所とタイムリーに協調し、かつ事業者の経済収益の観点に立つ設備運用に資するシステムの構築が今後必要となると考えられる。
 また将来的に水素エネルギーを地域に根付かせるためにも水素取引市場の創設と共に水素エネルギー事業を加速させる可能性もあり、並行して電力取引市場における例えば非化石取引市場においても取引対象となった場合においては、水素エネルギーシステム事業者においては電力取引市場についても新たな市場となる。
特開2017-201443号公報 特開2009-303411号公報
 発電や売電に関する発明として、特許文献1には、手作業による計算を行わずとも、調整池及び逆調整池の貯水量を考慮して、水力発電所の発電機を高い出力で運転できるような、更に火力発電所の発電コストを抑えられるような運転計画を立案できるようにする発明が開示されている。また特許文献2には、電力価格が経時的に変動する電力取引市場において、低価格時に電力を購入・蓄電し、高価格時に売電するための発明が開示されている。
 しかしながら、これら特許文献1や特許文献2を含めて、従来、水素エネルギーシステムが過疎地域に存在する既存の火力・水力発電所とタイムリーに協調し、かつ、これら火力・水力発電所を運用する発電事業者の経済収益の観点に立つ設備運用に資するシステムについての提言は行われていない。
 本発明は以上の点を考慮してなされたもので、水素エネルギーシステムと既存の発電施設とをタイムリーに協調させ、かつ、発電施設を運用する発電事業者の経済収益を向上させ得る全体統合制御型水素エネルギーシステム及びその運用方法を提案しようとするものである。
 かかる課題を解決するため本発明においては、水素エネルギーを利活用する全体統合制御型水素エネルギーシステムにおいて、再生可能エネルギーを発電する再生可能エネルギー発電システム、及び、火力、水力又は原子力により発電し、発電した電力を需要家に供給する発電プラントの少なくとも一方と、燃料電池自動車に対して燃料である水素を補給するための施設である水素ステーションとを設け、前記再生可能エネルギー発電システム及び又は前記発電プラントは、余剰電力を用いて水素を製造し、製造した前記水素を前記水素ステーションに供給し、又は、余剰となった水素を前記水素ステーションに供給するようにした。
 また本発明においては、水素エネルギーを利活用する全体統合制御型水素エネルギーシステムの運用方法であって、前記全体統合制御型水素エネルギーシステムは、再生可能エネルギーを発電する再生可能エネルギー発電システム、及び、火力、水力又は原子力により発電し、発電した電力を需要家に供給する発電プラントの少なくとも一方と、燃料電池自動車に対して燃料である水素を補給するための施設である水素ステーションとを有し、前記再生可能エネルギー発電システム及び又は前記発電プラントが、余剰電力を用いて水素を製造する第1のステップと、前記再生可能エネルギー発電システム及び又は前記発電プラントが、製造した前記水素を前記水素ステーションに供給する第2のステップとを設けるようにした。
 本発明によれば、水素エネルギーシステムと既存の発電施設とをタイムリーに協調させ、かつ、発電施設を運用する発電事業者の経済収益を向上させ得る全体統合制御型水素エネルギーシステム及びその運用方法を実現できる。
本実施の形態による全体統合制御型水素エネルギーシステムの全体構成を示すブロック図である。 本全体統合制御型水素エネルギーシステムにおける制御階層及び制御階層別オーナの説明に供する概念図である。 再エネ発電システム運転支援画面の構成例を示す図である。 EVステーションへの売電及び水素ステーションへの水素販売に関する再エネ制御装置の処理内容を示す図である。 発電プラント運転支援画面の構成例を示す図である。 IGFC型の火力発電設備のタービン抽気弁の開放制御に関するプラント制御装置の処理内容を示す図である。 水素ステーションへの水素の販売に関するプラント制御装置の処理内容を示す図である。 全体統合制御型水素エネルギーシステム運転支援画面の構成例を示す図である。 需要家システム運転支援画面の構成例を示す図である。 電力会社への売電及び水素ステーションへの水素販売に関する需要家EMS制御装置の処理内容を示す図である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)本実施の形態による全体統合制御型水素エネルギーシステムの構成
 図1において、1は全体として本実施の形態による全体統合制御型水素エネルギーシステムを示す。この全体統合制御型水素エネルギーシステム1は、地産地消型の水素エネルギーシステムであり、それぞれ1又は複数の再エネ発電システム2、火力・水力発電プラント3、水素ステーション4、EVステーション5及び寒冷地向けの熱電併給型エネルギー管理システム6と、1つの全体統合制御装置7とを備えて構成される。
 再エネ発電システム2は、再エネ発電事業者10が所有する再生可能エネルギーの発電システムであり、以下においては、風力発電システムであるものとする。再エネ発電システム2は、再エネ発電設備11、蓄電池12、水電解水素製造設備13及び再エネ制御装置14などから構成される。
 再エネ発電設備11は、風車などを含む風力発電設備である。再エネ発電設備11により発電された電力が変電所8を含む電力系統9を経由して各需要家30に供給される。また蓄電池12は、系統連系用の蓄電池であり、再エネ発電システム2から電力系統9に出力する電力を安定化させたり、余剰電力を蓄えるために利用される。水電解水素製造設備13は、水電解により水素を製造する設備であり、水電解槽などから構成される。水電解水素製造設備13により製造された水素が図示しないパイプライン等を経由して水素ステーション4に供給される。
 再エネ制御装置14は、再エネ発電システム2全体の動作を制御する制御装置であり、図示しないCPU(Central Processing Unit)、メモリ及び通信装置などの情報処理資源を備えたコンピュータ装置から構成される。再エネ制御装置14は、再エネ発電システム2を制御することにより、再エネ発電設備11の発電電力量を調整したり、再エネ発電設備11により発電された余剰電力を蓄電池12に蓄電させる。
 また再エネ制御装置14は、余剰電力をEVステーション5に供給(売電)するための制御や、余剰電力で水素を製造させ、製造した水素を水素ステーション4に供給(販売)するための制御を行う。
 実際上、再エネ制御装置14は、再エネ発電システム2における売電電力量が、電力会社との電力相対取引契約(電力PPA(Power Purchase Agreement))に基づく目標とする売電電力量(以下、これを目標売電電力量と呼ぶ)に達しておらず、かつ、蓄電池12に蓄えられた電力量が蓄電池12の充電定格値を超えており、さらにEVステーション5の充電量に不足がある場合には、再エネ発電設備11により発電された余剰電力をEVステーション5に供給(売電)するよう再エネ発電システム2を制御する。
 また再エネ制御装置14は、再エネ発電システム2における売電電力量が電力会社との電力相対取引契約に基づく目標売電電力量に達しておらず、かつ、蓄電池12に蓄えられた電力量が蓄電池12の充電定格値を超えており、さらにEVステーション5が満充電の状態(蓄電可能量に空きがない状態)にあり、かつ、水素ステーション4における水素の蓄積量に空きがある場合であって、オペレータから指示が与えられたときには、再エネ発電設備11により発電された余剰電力を利用して水電解水素製造装置13を稼働させて水素を製造させ、製造された水素を水素ステーション4に供給するよう再エネ発電システム2を制御する。
 火力・水力発電プラント3は、火力・水力発電事業者20が所有する火力発電所と、水力発電事業者が所有する水力発電所との少なくとも一方から構成される。ただし、火力発電所及び水力発電所だけでなく、原子力発電所を火力・水力発電プラント3に含めるようにしてもよい。火力・水力発電プラント3は、火力・水力発電設備21、水電解水素製造設備22及びプラント制御装置23などを備えて構成される。
 火力・水力発電設備21は、火力又は水力(火力・水力発電プラント3に原子力発電所を含める場合にはさらに原子力)により発電する発電設備であり、火力・水力発電設備21により発電された電力が電力系統9を経由して各需要家30に供給される。また水電解水素製造設備22は、再エネ発電システム2の水電解水素製造設備13と同様の水電解により水素を製造する設備である。水電解水素製造設備22により製造された水素が図示しないパイプライン等を介して水素ステーション4に供給される。
 プラント制御装置23は、火力・水力発電プラント3全体の動作を制御する制御装置であり、図示しないCPU、メモリ及び通信装置などの情報処理資源を備えたコンピュータ装置から構成される。プラント制御装置23は、火力・水力発電設備21を制御することにより、火力・水力発電設備21の発電電力量を調整する。
 またプラント制御装置23は、再エネ制御装置14について上述した条件と同様の条件の下で、火力・水力発電設備21により発電された余剰電力をEVステーション5に供給(売電)するための制御や、余剰電力で水電解水素製造設備22を稼働させることにより水素を製造させ、製造させた水素を水素ステーション4に供給(販売)するための制御を行う。このときのプラント制御装置23の制御内容は、再エネ制御装置14と同様であるため、ここでの説明は省略する。
 なお火力・水力発電プラント3が火力発電所であり、火力・水力発電設備21が火力発電設備である場合であって、その火力発電設備が、CO(二酸化炭素)貯留設備が敷設された石炭ガス化複合発電(IGCC:Integrated coal Gasification Combined Cycle)型の微粉炭火力発電設備に燃料電池を追設した石炭ガス化燃料電池複合発電(IGFC:Integrated coal Gasification Fuel cell Cycle)型の火力発電設備であり、CO転嫁率を向上させるための水蒸気を、タービンの抽気弁(以下、これを単にタービン抽気弁と呼ぶ)から火力発電所の負荷運用に応じて抽出する形態のものであるときには、IGFC用の燃料電池において余剰する水素を水素ステーション4に供給する仕組みとなる。
 実際上、火力・水力発電設備21がIGFCの場合、プラント制御装置23は、火力・水力発電プラント3(火力発電所)における売電電力量が電力会社との電力相対取引契約に基づく目標売電電力量に達しておらず、かつ、IGFC用の燃料電池に蓄えている電力が火力発電所を稼働させるために必要な所内電力(以下、これを目標所内電力と呼ぶ)を超過している場合であって、オペレータから指示が与えられたときには、かかる燃料電池において余剰している水素を水素ステーション4に供給(販売)するよう火力・水力発電プラント3を制御する。
 この際、プラント制御装置23は、CO転嫁率がその目標値(以下、これをCO目標転嫁率と呼ぶ)に達していない場合には、かかるタービン抽気弁を開放させてCO転嫁率を向上させるよう火力・水力発電プラント3(火力発電所)を制御する。この結果、COシフト反応による水素の生成量が増加し、増加した水素が燃料電池に供給されることにより、余剰分の水素、つまり水素ステーション4に供給される水素量を増加させる。
 水素ステーション4は、燃料電池自動車(FCV:Fuel Cell Vehicle)に対して燃料である水素を補給するための施設である。本実施の形態においては、地域に幅広く水素エネルギーを普及させるために炭素クレジットと同様の水素クレジットを水素ステーション4の利用者(燃料電池自動車の所有者)に付与し、インセンティブを還元する。また水素クレジットは、ブロックチェーン技術を活用して水素の販売者や購入者及び販売日時などのすべての取引情報が管理される仕組みとする。これにより水素クレジットを円滑に展開することができる。
 またEVステーション5は、電気自動車(EV:Electric Vehicle)に対して動力源である電力を補給するための施設である。EVステーション5は、電力系統9や、再エネ発電システム2及び又は火力・水力発電プラント3から供給される電力を必要に応じて蓄電池等に蓄電しながら電気自動車に電力を供給する。
 熱電併給型エネルギー管理システム6は、寒冷地に居住する電力の需要家30がそれぞれ所有する発電及び熱供給を同時に行うシステムであり、熱電併給設備31、水電解/熱分解水素製造設備32、圧縮水素ボンベ33及び需要家EMS(Energy Management System)制御装置34などを備えて構成される。
 熱電併給設備31は、太陽光や地熱を利用して得られた電力及び熱を出力する設備であり、太陽光発電システム及び地熱発電システムなどから構成される。また水電解/熱分解水素製造設備32は、熱電併給設備31から出力された電力及び又は熱を利用して水電解又は熱分解により水素を製造する設備である。水電解/熱分解水素製造設備32により製造された水素は、圧縮水素ボンベ33に蓄えられた後、図示しない充填装置を用いて燃料電池自動車に補給されて燃料として利用されたり、燃料電池自動車を経由して水素ステーション4に供給(販売)される。
 なお、このようにして熱電併給型エネルギー管理システム6により製造された水素についても、水素ステーション4の利用者に付与される水素クレジットと同じ水素クレジットをその利用者に付与するようにしてもよい。
 需要家EMS制御装置34は、照明やエアコンディショナといった需要家30が保有する各種負荷の電力使用量をリアルタイムで計測し、計測結果を再エネ発電システム2の再エネ制御装置14や、火力・水力発電プラント3のプラント制御装置23に通知する機能を有するコンピュータ装置である。需要家EMS制御装置34は、かかる再エネ制御装置14やプラント制御装置23からの指示に応じて各種負荷の消費電力量を増加又は減少させる制御や、熱電併給設備31が発電した電力のうちの余剰電力を電力会社に販売する制御も行う。
 また需要家EMS制御装置34は、水電解/熱分解水素製造設備32により製造された水素を水素ステーション4に供給(販売)するための支援をも行う。かかる支援の具体的な方法については後述する。
 全体統合制御装置7は、地域一体の電力需給を統合管理するアグリゲータやマイクログリッドオーナなど、全体統合制御型水素エネルギーシステム1を管理する事業者(以下、これを全体統合管理事業者と呼ぶ)35が所有するコンピュータ装置である。全体統合制御装置7は、ネットワークNWを介して再エネ発電システム2の再エネ制御装置14や、火力・水力発電プラント3のプラント制御装置23と接続されており、ネットワークNWを介してこれら再エネ制御装置14やプラント制御装置23に指示を与えることにより、再エネ発電システム2や火力・水力発電プラント3の発電電力量を増加又は減少させたり、再エネ制御装置14やプラント制御装置23を介して各需要家30の消費電力量を増加又は減少させるなどして管轄地域全体における電力の需給バランスを調整する。
 図2は、本全体統合制御型水素エネルギーシステム1における制御階層及び制御階層別オーナの様子を示す。この図2に示すように、本全体統合制御型水素エネルギーシステム1では、全体統合管理事業者35が所有する全体統合制御装置7が階層制御の最上位に位置する。また、次の制御階層に再エネ発電事業者10が所有する再エネ発電システム2の再エネ制御装置14と、火力・水力発電事業者20が所有する火力・水力発電プラント3のプラント制御装置23とが位置し、各需要家30の需要家EMS制御装置34は、制御階層の最下位層に位置する。
 そして再エネ制御装置14及びプラント制御装置23は、各需要家EMS制御装置34から各種計測値を取得し、取得したこれらの計測値に基づいて発電計画を立案し、立案した発電計画に従って再エネ発電システム2や火力・水力発電プラント3を制御する。
 また全体統合制御装置7は、再エネ制御装置14及びプラント制御装置23から取得した再エネ発電システム2及び火力・水力発電プラント3の発電計画や、再エネ制御装置14及びプラント制御装置23を経由して取得した各需要家の各種計測値に基づいて、電力の需給バランスを調整すべく再エネ制御装置14やプラント制御装置23に発電量の増減を指示したり、再エネ制御装置14及びプラント制御装置23を経由したデマンドレスポンスにより各需要家30の電力消費量を増減させる。
(2)各種画面の構成及び各制御装置の処理内容
(2-1)再エネ発電システム運転支援画面の構成及び再エネ制御装置の処理内容
 図3は、所定操作により再エネ発電システム2の再エネ制御装置14(図1)に表示させ得る再エネ発電システム運転支援画面40を示す。この再エネ発電システム運転支援画面40は、再エネ発電事業者10(図1)による再エネ発電システム2の運転を支援するための画面である。
 実際上、この再エネ発電システム運転支援画面40は、画面左側に配置された再エネ発電システム構成表示領域41と、画面右側に配置されたKPIインジケータ表示領域42及び再エネ発電システム経済収支シミュレータ領域43とから構成される。
 そして再エネ発電システム構成表示領域41には、再エネ発電システム2の概略構成を表す概略構成図50が表示される。なお、この概略構成図50には、再エネ発電システム2及び水素ステーション4間の接続関係や、再エネ発電システム2及びEVステーション5間の接続関係も表示される。
 また再エネ発電システム構成表示領域41には、再エネ発電システム2においてインカムKPI(Income KPI)やアウトカムKPI(Outcome KPI)となり得る構成要素に対応する概略構成図50上の箇所を取り囲むように破線状の枠体51A,51Bが表示される。
 ここでの「インカムKPI(Key Performance Indicator)」とは、再エネ発電事業者10(図1)の電力会社との電力相対取引契約(電力PPA)により得られる収益以外の収益を指す。本実施の形態の場合、電力取引市場での売電による収益と、水素ステーション4への水素の販売による収益と、EVステーション5への売電による収益とが再エネ発電システム2のインカムKPIに該当する。このため再エネ発電システム構成表示領域41には、概略構成図50における電力取引市場、水素ステーション4及びEVステーション5に対応する各箇所をそれぞれ取り囲むように、例えば青色の破線状の枠体51Aが表示される。
 また、ここでの「アウトカムKPI」とは、再エネ発電システム2の保守に要する費用を指す。本実施の形態の場合、蓄電池12の保守費用と、水電解水素製造設備13の保守費用とが再エネ発電システム2のアウトカムKPIに該当する。このため再エネ発電システム構成表示領域41には、かかる概略構成図50における蓄電池12及び水電解水素製造設備13に対応する各箇所をそれぞれ取り囲むように、例えば赤色の破線状の枠体51Bが表示される。
 さらに再エネ発電システム構成表示領域41には、再エネ発電システム2から電力会社への売電電力量を計測する電力センサ(以下、これを売電電力量計測センサと呼ぶ)と、再エネ発電システム2の蓄電池12に設置された、当該蓄電池12の現在の充電量を計測する電池充電量計測センサと、水素ステーション4に設置された、当該水素ステーション4の水素充填量を計測する水素充填量計測センサと、EVステーション5に設置された、EVステーション5の充電量を計測するEVステーション充電量計測センサとにそれぞれ対応させて計測値欄52A~52Dが表示される。そして、これらの計測値欄52A~52D内に、再エネ制御装置14が対応する計測センサ(売電電力量計測センサ、電池充電量計測センサ、水素充填量計測センサ又はEVステーション充電量計測センサ)との通信により取得したその計測センサの現在の計測値がそれぞれ表示される。
 加えて、再エネ発電システム構成表示領域41には、再エネ発電システム2の概略構成図50における水電解水素製造設備13に対応する箇所にスタートボタン53が表示される。このスタートボタン53は、初期時には無効表示されており、その後、再エネ発電システム2が水素ステーション4に水素を供給できる状態、本実施の形態においては、再エネ発電システム2における売電電力量が目標売電電力量に達しておらず、かつ、蓄電池12に蓄えられた電力量が蓄電池12の充電定格値を超えており(満充電状態となった)、さらにEVステーション5の蓄電池の充電量が充電量定格値を超えた(満充電状態となった)ときに有効表示される。
 かくして、オペレータは、このスタートボタン53が有効表示された場合に当該スタートボタン53をクリック又はタップにより押圧操作することによって、水電解水素製造設備13により水素を製造すべき旨の指示を再エネ制御装置14に与えることができる。そして再エネ制御装置14は、このような指示が入力された場合、再エネ発電設備11により発電された余剰電力を利用して水電解水素製造設備13を稼働させて水素を製造させ、製造した水素を水素ステーション4に供給するよう再エネ発電システム2を制御する。
 一方、KPIインジケータ表示領域42には、主に再エネ発電システム2の収益に関連するKPIが表示される。実際上、KPIインジケータ表示領域42には、電力PPA量欄54A、電力市場指標値欄54B、水素ステーション水素供給量欄54C及びEVステーション電気供給量欄54Dが設けられている。
 そして電力PPA量欄54Aには、電力会社との電力相対取引契約(電力PPA)における現在の時間帯の売電電力及び売電電力量がそれぞれ表示され、電力市場指標値欄54Bには、再エネ制御装置14が電力取引市場から取得した当該電力取引市場における現在の時間帯での電力及び電力量の各単価がそれぞれ表示される。
 また水素ステーション水素供給量欄54Cには、水素ステーション4のオーナとの契約等により決定された、当該水素ステーション4に水素を供給(販売)する際の水素の単価が表示される。さらにEVステーション電気供給量欄54Dには、EVステーション5のオーナとの契約等により決定された、当該EVステーション5に電気を供給(売電)する場合における現在の時間帯の電力及び電力量の各単価がそれぞれ表示される。
 他方、再エネ発電システム経済収支シミュレータ領域43は、再エネ発電システム2における当期の現在までの経済収支、つまり上述したすべてのインカムKPIの合計から上述したすべてのアウトカムKPIの合計を減算した値をシミュレーションするための領域である。
 この再エネ発電システム経済収支シミュレータ領域43には、契約電力PPA欄55A、電力市場利益欄55B、EVステーション5への売電利益欄55C、水素ステーション4への水素販売利益欄55D、水電解槽保守費欄55E及び蓄電池保守費欄55Fと、再エネ発電システム損益計算シミュレータ56とが表示される。
 そして契約電力PPA欄55Aには、電力相対取引契約(電力PPA)に基づく電力会社への売電による当期の売上の目標値と、当期の現在までの売上の実際値との大小関係を表す不等式が表示される。
 また電力市場利益欄55Bには、電力取引市場での売電による当期の現在までの利益額が表示され、EVステーション5への売電利益欄55Cには、EVステーション5への売電による当期の現在までの利益額が表示される。さらに水素ステーション4への水素販売利益欄55Dには、水電解水素製造設備13により製造した水素を水素ステーション4に供給(販売)したことによる当期の現在までの利益額が表示される。
 さらに水電解槽保守費欄55Eには、当期の現在までに要した水電解水素製造設備13の保守費用が表示され、蓄電池保守費欄55Fには、当期の現在までに要した蓄電池12の保守費用が表示される。
 再エネ発電システム損益計算シミュレータ56は、電力会社との電力相対取引契約に基づく売電により得られた利益と、余剰電力を電力取引市場で売電し又はEVステーション5に売電することにより得られた利益と、余剰電力により製造した水素を水素ステーション4に供給(販売)したことにより得られた利益との合計から、再エネ発電システム2の保守費用を減算した当期の再エネ発電システム2の損益を算出するシミュレータである。この再エネ発電システム損益計算シミュレータ56により算出された当期の現在までの再エネ発電システム2の損益額が当期損益欄57に表示される。
 これにより再エネ発電事業者10(図1)は、かかる当期損益欄57に表示された当期の現在までの再エネ発電システム2の損益額に基づいて、余剰電力で水素を製造して水素ステーション4に供給(販売)すべきか否かを判断することができる。そして再エネ発電事業者10は、かかる水素を販売すべきと判断した場合であって、再エネ発電システム構成表示領域41にスタートボタン53が有効表示されているときには、当該スタートボタン53を押圧操作することによって余剰電力で水素を製造し、製造した水素を水素ステーション4に販売することができる。
 図4は、EVステーション5への売電及び水素ステーション4への水素販売に関する再エネ発電システム2の再エネ制御装置14の処理内容を示す。
 再エネ制御装置14は、上述の売電電力量計測センサにより計測された再エネ発電システム2から電力系統9への売電電力量と、電力相対取引契約に基づく目標とする電力会社への売電電力量(以下、これを目標売電電力量と呼ぶ)との差分を算出し(S1)、算出した差分が0よりも大きいか否か(つまり売電電力量が目標売電電力量に達しているか否か)を判定する(S2)。
 また再エネ制御装置14は、蓄電池12の充電量定格値と、蓄電池12の充電量を計測する電池充電量計測センサの計測値との差分を算出し(S3)、算出した差分が0未満であるか否か(つまり蓄電池12が満充電状態にあるか否か)を判定する(S4)。
 同様に、再エネ制御装置14は、EVステーション5の充電量定格値と、EVステーション5の充電量を計測するEVステーション充電量計測センサの計測値との差分を算出し(S5)、算出した差分が0未満であるか否か(つまりEVステーション5に空きがあるか否か)を判定する(S6)。
 さらに再エネ制御装置14は、水素ステーション4における水素の充填量定格値と、水素ステーション4の水素充填量を計測する水素充填量計測センサの計測値との差分を算出し(S7)、算出した差分が0よりも大きいか否か(つまり水素ステーション4に空きがあるか否か)を判定する(S8)。
 そして再エネ制御装置14は、売電電力量が目標売電電力量に達しておらず、かつ、蓄電池12が満充電状態にある場合であって(S9)、EVステーション5に空きがあるときには(S10)、EVステーション5への充電を開始させる(S11)。
 また再エネ制御装置14は、目標売電電力量に対して実際の売電電力量が少なく、かつ、蓄電池12が満充電状態にある場合であって(S9)、EVステーション5に空きがなく(S12)、かつ水素ステーション4に空きがあるときには(S13,S14)、再エネ発電システム運転支援画面40(図3)の再エネ発電システム構成表示領域41にスタートボタン53を有効表示させる。そして再エネ制御装置14は、この後、かかるスタートボタン53がオペレータにより押圧操作されると(S15)、水電解水素製造設備13の稼働を開始させて(S16)、水素ステーション4への水素の供給(販売)を開始させる(S17)。
(2-2)発電プラント運転支援画面の構成及びプラント制御装置の処理内容
 図5は、所定操作により火力・水力発電プラント3のプラント制御装置23(図1)に表示させ得る発電プラント運転支援画面60を示す。この発電プラント運転支援画面60は、火力・水力発電事業者20(図1)による火力・水力発電プラント3の運転を支援するための画面である。
 なお図5は、火力・水力発電プラント3が火力発電プラント、火力・水力発電設備21(図1)が火力発電設備であり、その火力発電設備が、二酸化炭素(CO)貯留設備が敷設されたIGCC型の微粉炭火力発電設備に燃料電池を追設したIGFCであり、CO転嫁率を向上させるための水蒸気を、タービン抽気弁から発電所の負荷運用に応じて抽出するタイプのものである場合における発電プラント運転支援画面60の構成例である。このため、以下の図5及び図6の説明においては、火力・水力発電事業者20を火力発電事業者、火力・水力発電プラント3を火力発電プラントと呼ぶものとする。
 この発電プラント運転支援画面60は、再エネ発電システム運転支援画面40(図3)と同様に、画面左側に配置された火力発電プラント構成表示領域61と、画面右側に配置されたKPIインジケータ表示領域62及び火力発電プラント設備経済収支シミュレータ領域63とから構成される。
 そして火力発電プラント構成表示領域61には、対応する火力発電プラントの概略構成を表す概略構成図70が表示される。なお、この概略構成図70には、その火力発電プラント及び水素ステーション4間の接続関係も表示される。
 また火力発電プラント構成表示領域61には、火力発電プラントにおいてインカムKPIやアウトカムKPIとなり得る構成要素に対応する概略構成図70上の箇所を取り囲むように破線状の枠体71A,71Bが表示される。
 本実施の形態の場合、かかる火力発電プラントにおけるインカムKPIとしては、電力取引市場での売電による収益と、水素ステーション4への水素の販売による収益とがある。このため火力発電プラント構成表示領域61には、かかる概略構成図70における電力取引市場及び水素ステーション4に対応する各箇所をそれぞれ取り囲むように、例えば青色の破線状の枠体71Aが表示される。
 また火力発電プラントにおけるアウトカムKPIとしては、ガス化炉に投入する石炭ガスの購入費がある。このため火力発電プラント構成表示領域71には、かかる概略構成図70におけるガス化炉に対応する箇所を取り囲むように、例えば赤色の破線状の枠体71Bが表示される。
 さらに火力発電プラント構成表示領域61には、火力発電プラントから電力系統9(図1)への売電電力量を計測する売電電力量計測センサと、IGFC用の所内電力を出力する燃料電池の出力電力を計測する所内電力計測センサと、CO転嫁率を計測するためのCO転嫁率計測センサとにそれぞれ対応させて計測値欄72A~72Cが表示される。そして、これらの計測値欄72A~72C内に、プラント制御装置23が対応する計測センサ(売電電力量計測センサ、所内電力計測センサ又はCO転嫁率計測センサ)との通信により取得したその計測センサの現在の計測値がそれぞれ表示される。
 加えて、火力発電プラント構成表示領域61には、火力発電プラントの概略構成図70における火力発電プラント及び水素ステーション4間を接続するパイプライン等に対応する箇所にスイッチ73が表示される。このスイッチ73は、初期時には無効表示されており、その後、水素ステーション4に水素を供給できる状態、本実施の形態においては、火力発電プラントにおける売電電力量が電力会社との電力相対取引契約に基づく目標売電電力量に達しておらず、かつ、IGFC用の所内電力を提供する燃料電池に蓄えている電力が目標所内電力を超過している状態となったときに有効表示される。
 かくして、オペレータは、このスイッチ73が有効表示された場合に当該スイッチ73をクリック又はタップにより押圧操作することにより、CO転嫁により製造された水素を水素ステーションに供給するようプラント制御装置23に指示を与えることができる。そして、このような指示が入力された場合、プラント制御装置23は、CO転嫁により製造された水素を水素ステーション4に供給するよう火力発電プラントを制御する。
 一方、KPIインジケータ表示領域62には、主に上述の火力発電プラントの収益に関連するKPIが表示される。実際上、KPIインジケータ表示領域62には、電力PPA量欄74A、電力市場指標値欄74B、水素ステーション水素供給量欄74C及びEVステーション電気供給量欄74Dが設けられている。そして、これら電力PPA量欄74A、電力市場指標値欄74B、水素ステーション水素供給量欄74C及びEVステーション電気供給量欄74Dには、図3について上述した再エネ発電システム運転支援画面40のKPIインジケータ表示領域42における電力PPA量欄54A、電力市場指標値欄54B、水素ステーション水素供給量欄54C及びEVステーション電気供給量欄54Dにそれぞれ表示される情報と同じ情報が表示される。
 火力発電プラント設備経済収支シミュレータ領域63は、対応する火力発電プラントにおける当期の現在までの経済収支、つまり上述したすべてのインカムKPIの合計から上述したすべてのアウトカムKPIの合計を減算した値をシミュレーションするための領域である。この火力発電プラント設備経済収支シミュレータ領域63には、契約電力PPA欄75A、電力市場利益欄75B、水素ステーション4への水素販売利益欄75C及び燃料購入費欄75Dと、火力発電プラント損益計算シミュレータ76とが表示される。
 そして契約電力PPA欄75A、電力市場利益欄75B及び水素ステーション4への水素販売利益欄75Cには、図3について上述した再エネ発電システム運転支援画面40の再エネ発電システム経済収支シミュレータ領域43における契約電力PPA欄55A、電力市場利益欄55B及び水素ステーション4への水素販売利益欄55Dと同様の情報がそれぞれ表示される。また燃料購入費欄75Dには、かかる火力発電プラントにおけるガス化炉に投入する石炭ガスの当期の現在までの購入費が格納される。
 また火力発電プラント損益計算シミュレータ76では、電力会社との電力相対取引契約に基づく売電により得られた利益と、余剰電力を電力取引市場で売電したことにより得られた利益と、余剰分の水素を水素ステーション4に供給(販売)したことにより得られた利益との合計から、ガス化炉の燃料の購入費用を減算することにより得られた、当期のその火力発電プラントにおける損益額が当期損益欄77に表示される。
 これにより火力発電事業者は、かかる当期損益欄77に表示された当期の現在までの火力発電プラントの損益額に基づいて、余剰分の水素を水素ステーション4に供給(販売)すべきか否かを判断することができる。そして火力発電事業者は、かかる余剰分の水素を販売すべきと判断した場合であって、火力発電プラント構成表示領域61に表示されたスイッチ73が有効表示されているときには、当該スイッチ73を押圧操作することによって余剰分の水素を水素ステーション4に販売することができる。
 図6は、上述のように火力・水力発電プラント3が火力発電プラント、火力・水力発電設備21が火力発電設備であり、その火力発電設備が、二酸化炭素(CO)貯留設備が敷設されたIGCC型の微粉炭火力発電設備に燃料電池を追設したIGFCであり、CO転嫁率を向上させるための水蒸気を、タービン抽気弁から発電所の負荷運用に応じて抽出する形態である場合における、タービン抽気弁の開放制御に関するプラント制御装置23の処理内容を示す。
 プラント制御装置23は、上述の売電電力量計測センサにより計測された火力発電システムから電力系統9への売電電力量と、電力会社との電力相対取引契約に基づく目標売電電力量との差分を算出し(S20)、算出した差分が0よりも大きいか否か(つまり売電電力量が目標売電電力量に達しているか否か)を判定する(S21)。
 またプラント制御装置23は、予め設定されているCO転嫁率の目標値(以下、これをCO目標転嫁率と呼ぶ)と、上述のCO転嫁率センサにより計測されたCO転嫁率との差分を算出し(S22)、算出した差分が0よりも大きいか(つまり現在のCO転嫁率がCO目標転嫁率に達しているか)否かを判定する(S23)。
 そしてプラント制御装置23は、目標売電電力量に対して実際の売電電力量が少なく、かつ、現在のCO転嫁率がCO目標転嫁率に達していない場合には(S24)、火力発電プラントを制御してタービン抽気弁を開放すべき旨の指令を火力発電設備に与えることによりCO転嫁率を上昇させる(S25)。この結果、COシフト反応により生成されて所内電力用の燃料電池に供給される水素の量が増加する。
 一方、図7は、水素ステーション4への水素の販売に関するプラント制御装置23の処理内容を示す。プラント制御装置23は、上述の売電電力量計測センサにより計測された火力発電システムから電力会社への売電電力量と、かかる電力相対取引契約に基づく目標売電電力量との差分を算出し(S30)、算出した差分が0よりも大きいか否か(つまり売電電力量が目標売電電力量に達しているか否か)を判定する(S31)。
 またプラント制御装置23は、所内電圧計測センサにより計測された燃料電池の出力電力と、目標所内電力との差分を算出し(S32)、算出した差分が0よりも大きいか否か(つまり燃料電池の出力電力が目標所内電力よりも大きいか否か)を判定する(S33)。
 そしてプラント制御装置23は、売電電力量が目標売電電力量に達しておらず、かつ、燃料電池の出力電力が目標所内電力よりも大きい場合には(S34)、図5について上述した発電プラント運転支援画面60の火力発電プラント構成表示領域61に表示されたスイッチ73を有効表示させ、その後、このスイッチが押圧操作されると(S35,S36)、水素ステーション4への水素の供給(販売)を開始させる(S37)。
 なお、火力・水力発電プラントが図1のように火力・水力発電設備21及び水電解水素製造設備22を備え、火力・水力発電設備21で発電した余剰電力を利用して水電解水素製造設備22を稼働して水素を製造し、製造した水素を水素ステーション4に供給(販売)する場合における発電プラント運転支援画面60の構成は、図3について上述した再エネ発電システム運転支援画面40と同様の構成となるため、ここでの説明は省略する。また、この場合における水素ステーション4への水素販売に関するプラント制御装置23の処理内容は図4について上述した処理内容と同様であるため、ここでの説明は省略する。
(2-3)全体統合制御型水素エネルギーシステム運転支援画面の構成及び全体統合制御装置の処理内容
 図8は、所定操作により全体統合制御装置7(図1)に表示させ得る全体統合制御型水素エネルギーシステム運転支援画面80を示す。この全体統合制御型水素エネルギーシステム運転支援画面80は、アグリゲータやマイクログリッドオーナ等の全体統合管理事業者35(図1)による全体統合制御型水素エネルギーシステム1(図1)の運転を支援するための画面である。
 実際上、この全体統合制御型水素エネルギーシステム運転支援画面80は、画面左側に配置された全体システム構成表示領域81及び制御システム選択領域82と、画面右側に配置されたKPIインジケータ表示領域83及び全体システム経済収支シミュレータ領域84とから構成される。
 そして全体システム構成表示領域81には、全体統合制御型水素エネルギーシステム1全体の概略構成を表す概略構成図90が表示される。
 また制御システム選択領域82には、再エネ発電システム2(図1)と対応付けられた再エネ制御ボタン91と、火力・水力発電プラント3と対応付けられた火力・水力発電プラント制御ボタン92とが表示される。さらに制御システム選択領域82における再エネ制御ボタン91の下側には、再エネ発電システム2の当期の現在までの損益額が表示され、制御システム選択領域82における火力・水力発電プラント制御ボタン92の下側には、火力・水力発電プラント3の当期の現在までの損益額が表示される。
 そして全体統合制御型水素エネルギーシステム運転支援画面80では、再エネ制御ボタン91をクリック又はタップなどにより押圧操作することにより、表示画面をこの全体統合制御型水素エネルギーシステム運転支援画面80から図3について上述した再エネ発電システム運転支援画面40に切り替えることができ、また火力・水力発電プラント制御ボタン92を押圧操作することにより、表示画面をこの全体統合制御型水素エネルギーシステム運転支援画面80から図について上述した発電プラント運転支援画面60に切り替えることができる。
 これにより全体統合管理事業者35は、これら再エネ発電システム運転支援画面40や発電プラント運転支援画面60を用いて再エネ発電システム2や火力・水力発電プラント3の運転を制御することができ、これにより全体統合制御型水素エネルギーシステム1全体としての利益を最大化させることができる。
 一方、KPIインジケータ表示領域83には、全体統合制御型水素エネルギーシステム1全体の収益に関連するKPIが表示される。実際上、KPIインジケータ表示領域83には、電力PPA量欄93A、電力市場指標値欄93B、水素ステーション水素供給量欄93C及びEVステーション電気供給量欄93Dが設けられている。
 そして、これら電力PPA量欄93A、電力市場指標値欄93B、水素ステーション水素供給量欄93C及びEVステーション電気供給量欄93Dには、図3について上述した再エネ発電システム運転支援画面40のKPIインジケータ表示領域42における電力PPA量欄54A、電力市場指標値欄54B、水素ステーション水素供給量欄54C及びEVステーション電気供給量欄54Dにそれぞれ表示される情報と同じ情報が表示される。
 また全体システム経済収支シミュレータ領域84は、全体統合制御型水素エネルギーシステム1における当期の現在までの経済収支をシミュレーションするための領域であり、契約電力PPA欄94A、電力市場利益欄94B、EVステーション5への売電利益欄94C、水素ステーション4への水素販売利益欄94D、燃料購入量欄94E及び純水購入量欄94Fと、全体システム損益計算シミュレータ95とが表示される。
 そして契約電力PPA欄94Aには、全体統合制御型水素エネルギーシステム1の全体での電力相対取引契約に基づく電力会社への売電による当期の売上の目標値と、当期の現在までの売上の実際値との大小関係を表す不等式が表示される。
 また、電力市場利益欄94Bには、全体統合制御型水素エネルギーシステム1全体での電力取引市場での売電による当期の現在までの利益額が表示され、EVステーション5への売電利益欄94Cには、全体統合制御型水素エネルギーシステム1全体でのEVステーション5への売電による当期の現在までの利益額が表示される。また水素ステーション4への水素販売利益欄94Dには、全体統合制御型水素エネルギーシステム1全体での水素ステーション4に水素を供給(販売)したことによる当期の現在までの損益が表示される。
 さらに燃料購入量欄94Eには、全体統合制御型水素エネルギーシステム1全体で当期の現在までに発電用の燃料購入に要した費用が表示され、純水購入量欄94Fには、全体統合制御型水素エネルギーシステム1全体で当期の現在までに発電用の純水購入に要した費用が表示される。さらに純水購入量欄94Fの下側には、全体統合制御型水素エネルギーシステム1全体での当期の現在までの損益額が表示される。
 全体システム損益計算シミュレータ95では、全体統合制御型水素エネルギーシステム1全体での、電力会社との電力相対取引契約に基づく売電により得られた利益と、余剰電力を電力取引市場で売電したことにより得られた利益と、EVステーション5に売電することにより得られた利益と、余剰分の水素を水素ステーション4に供給(販売)したことにより得られた利益との合計から、全体統合制御型水素エネルギーシステム1全体での燃料や純水の購入に要した費用の合計を減算することにより得られた、当期の現在までの全体統合制御型水素エネルギーシステム1全体での損益が当期損益欄96に表示される。
 これにより全体統合管理事業者35(図1)は、かかる当期損益欄96に表示された当期の現在までの全体統合制御型水素エネルギーシステム1全体での損益額に基づいて、再エネ発電システム2や火力・水力発電プラント3における余剰分の水素を水素ステーション4に供給(販売)すべきか否かを判断することができる。そして全体統合管理事業者35は、かかる余剰分の水素を販売すべきと判断した場合には、上述のように表示画面を再エネ発電システム運転支援画面40や発電プラント運転支援画面60に切り替えて、全体統合制御型水素エネルギーシステム1全体としての利益を最大化するよう再エネ発電システム2や火力・水力発電プラント3の運転を制御することができる。
(2-4)需要家システム運転支援画面の構成及び需要家EMS制御装置の処理内容
 図9は、所定操作により需要家EMS制御装置34に表示させ得る需要家システム運転支援画面100を示す。この需要家システム運転支援画面100は、需要家30(図1)が所有する熱電併給型エネルギー管理システム6(図1)の運転を支援するための画面である。
 実際上、この需要家システム運転支援画面100は、画面左側に配置された需要家システム構成表示領域101と、画面右側に配置されたKPIインジケータ表示領域102及び熱電併給型システム経済収支シミュレータ領域103とから構成される。
 そして需要家システム構成表示領域101には、各需要家30が所有する熱電併給型エネルギー管理システム6を構成する太陽光発電パネル、地熱発電システム及び圧縮水素ボンベなどの要素を表すアイコンと、水素ステーション4及び燃料電池自動車などのアイコンとを含む、熱電併給型エネルギー管理システム6を中心とした本全体統合制御型水素エネルギーシステム1の一部構成の概略構成図110が表示される。
 また需要家システム構成表示領域101には、同じ引込線を利用する複数の需要家を一塊の需要家群として、これら需要家群が電力会社に売電した電力量を計測する売電電力量計測センサと、水素ステーション4に設置された、当該水素ステーション4の水素充填量を計測する水素充填量計測センサとにそれぞれ対応させて計測値欄111A,111Bが表示される。そして、これらの計測値欄111A,111B内に、需要家EMS制御装置34が対応する計測センサ(売電電力量計測センサ又は水素充填量計測センサ)との通信により取得したその計測センサの現在の計測値がそれぞれ表示される。
 さらに需要家システム構成表示領域101には、本全体統合制御型水素エネルギーシステム1の一部構成の概略構成図110における水電解水素製造設備に対応する箇所にスイッチ112が表示される。このスイッチ112は、初期時には無効表示されており、その後、需要家30が水素ステーション4に水素を供給(販売)できる状態、本実施の形態においては、需要家群の電力会社への売電電力量が電力相対取引契約に基づく目標売電電力量に達しておらず、かつ、水素ステーション4における水素の充填容量に空きがあるときに有効表示される。
 かくして、需要家30は、このスイッチ112が有効表示された場合に当該スイッチ112をクリック又はタップにより押圧操作することによって、その需要家30の熱電併給型エネルギー管理システム6の水電解/熱分解水素製造設備32(図1)により製造された水素を、燃料電池自動車を介して水素ステーション4に供給(販売)するための設定を行うことができる。実際上、需要家EMS制御装置34は、かかるスイッチ112が押圧操作された場合、その需要家30の燃料電池自動車に充填されている水素を吸い上げるようにして抽出すべきことを水素ステーション4に指示する。この結果、その需要家30の燃料電池自動車をキャリアとして水素を水素ステーション4にまで搬送して供給(販売)することが可能となる。
 一方、KPIインジケータ表示領域102には、対応する需要家30の熱電併給型エネルギー管理システム6の収益に関連するKPIが表示される。実際上、KPIインジケータ表示領域102には、電力PPA量欄113A、電力市場指標値欄113B、水素ステーション水素供給量欄113C及び地熱温度/熱電変換効率欄113Dが設けられている。
 そして電力PPA量欄113Aには、対応する需要家30が電力会社と締結した電力相対取引契約における現在の時間帯の売電電力及び売電電力量がそれぞれ表示され、電力市場指標値欄113Bには、かかる電力相対取引契約で規定された現在の時間帯での売電時の電力及び電力量の各単価がそれぞれ表示される。
 また水素ステーション水素供給量欄113Cには、水素ステーション4のオーナとの契約等により決定された、当該水素ステーション4に水素を供給(販売)する際の水素の単価が表示される。さらに地熱温度/熱電変換効率欄113Dには、現在の地熱温度と、現在の熱電併給設備31(図1)による熱電交換効率が表示される。
 熱電併給型システム経済収支シミュレータ領域103は、その需要家30の熱電併給型エネルギー管理システム6における当期の現在までの経済収支をシミュレーションするための領域である。この熱電併給型システム経済収支シミュレータ領域103には、契約電力PPA欄114A及び水素ステーション4への水素販売利益欄114Bと、熱電併給型システム損益計算シミュレータ115とが表示される。
 そして契約電力PPA欄114Aには、電力相対取引契約に基づく電力会社への売電による当期の売上の目標値と、当期の現在までの売上の実際値との大小関係を表す不等式が表示される。また水素ステーション4への水素販売利益欄114Bには、水電解/熱分解水素製造設備32(図1)により製造した水素を水素ステーション4に供給(販売)したことによる当期の現在までの利益額が表示される。
 熱電併給型システム損益計算シミュレータ115は、電力会社との電力相対取引契約に基づく売電により得られた利益と、余剰電力により製造した水素を水素ステーション4に供給(販売)したことにより得られた利益との合計を、熱電併給型エネルギー管理システム6の当期の現在までの利益として算出するシミュレータである。この熱電併給型システム損益計算シミュレータ115により算出された当期の現在までの熱電併給型エネルギー管理システム6の利益額が当期利益欄116に表示される。
 これにより需要家30は、かかる当期利益欄116に表示された当期の現在までの熱電併給型エネルギー管理システム6の利益額に基づいて、余剰電力で水素を製造して水素ステーション4に供給(販売)すべきか否かを判断することができる。そして需要家30は、かかる水素を販売すべきと判断した場合であって、需要家システム構成表示領域101にスイッチ112が有効表示されているときには、当該スイッチ112を押圧操作することによって余剰電力で水素を製造し、製造した水素を水素ステーション4に販売可能な状態とすることができる。
 図10は、電力会社への売電及び水素ステーション4への水素販売に関する熱電併給型エネルギー管理システム6の需要家EMS制御装置34の処理内容を示す。
 需要家EMS制御装置34は、上述の売電電力量計測センサにより計測された対応する需要家群から電力会社への売電電力量と、電力相対取引契約に基づいてこれら需要家群が目標とする電力会社への売電電力量(以下、これを目標売電電力量と呼ぶ)との差分を算出し(S40)、算出した差分が0よりも大きいか否か(つまり売電電力量が目標売電電力量に達しているか否か)を判定する(S41)。
 また需要家EMS制御装置34は、水素ステーション4における水素の充填量定格値と、水素ステーション4の水素充填量を計測する水素充填量計測センサの計測値との差分を算出し(S42)、算出した差分が0よりも大きいか否か(つまり水素ステーション4に空きがあるか否か)を判定する(S43)。
 そして需要家EMS制御装置34は、売電電力量が目標売電電力量に達しておらず、かつ、水素ステーション4に空きがない場合には(S44)、電力会社への売電を開始するようその需要家30の熱電併給型エネルギー管理システム6を制御する(S45)。
 これに対して、需要家EMS制御装置34は、売電電力量が目標売電電力量に達しており(S46)、かつ、水素ステーション4に空きがある場合には(S47)、上述のスイッチ112(図9)を有効表示させる(S48)。そして需要家EMS制御装置34は、この後、かかるスイッチ112が需要家30により押圧操作されると(S49,S50)、当該需要家30の燃料電池自動車をキャリアとして水素を供給(販売)できるよう水素ステーション4に購入要求を送信する(S51)。
(3)本実施の形態の効果
 以上のように本実施の形態の本全体統合制御型水素エネルギーシステム1では、再エネ発電システム2や火力・水力発電プラント3及び各需要家30の熱電併給型エネルギー管理システム6において、余剰電力を用いて水素を製造し、製造した水素を水素ステーション4に供給(販売)する。
 よって、本全体統合制御型水素エネルギーシステム1によれば、再エネ発電システム2や火力・水力発電プラント3及び各需要家30の熱電併給型エネルギー管理システム6と、水素エネルギーシステムとをタイムリーに協調させながら、再エネ発電事業者10や、火力・水力発電事業者20及び需要家30の経済収益を向上させることができる。
(4)他の実施の形態
 なお上述の実施の形態においては、各需要家30の熱電併給型エネルギー管理システム6により製造された水素を燃料電池自動車をキャリアとして水素ステーション4に供給(販売)するようにした場合について述べたが、本発明はこれに限らず、各需要家30及び水素ステーション4間をパイプライン等でそれぞれ接続し、これらパイプラインを経由して各需要家30が熱電併給型エネルギー管理システム6により製造された水素を水素ステーション4に供給(販売)できるようにしてもよい。
 同様に、上述の実施の形態においては、再エネ発電システム2及び火力・水力発電プラント3と水素ステーション4との間をパイプライン等で接続し、このパイプラインを介して再エネ発電システム2や火力・水力発電プラント3で製造された水素を水素ステーション4に供給(販売)するようにした場合について述べたが、本発明はこれに限らず、再エネ発電システム2や火力・水力発電プラント3で製造された水素を自動車等の移動体により搬送して水素ステーション4に供給(販売)するようにしてもよい。
 さらに上述の実施の形態においては、再エネ発電システム2や、火力・水力発電プラント3及び各需要家30の熱電併給型エネルギー管理システム6により製造された水素を水素ステーション4に供給するようにした場合について述べたが、本発明はこれに限らず、かかる水素を水素エネルギーで稼働する機器を有する施設に供給(販売)するようにしてもよい。
 さらに上述の実施の形態においては、需要家30の熱電併給型エネルギー管理システム6が水素を水素ステーション4に供給(販売)することだけしか行わないようにした場合について述べたが、本発明はこれに限らず、再エネ発電システム2や火力・水力発電プラント3と同様に、余剰電力をEVステーション5に供給(販売)するようにしてもよい。
 本発明は、地産地消型で水素エネルギーを利活用する全体統合制御型水素エネルギーシステムに適用して好適なものである。
 1……全体統合制御型水素エネルギーシステム、2……再エネ発電システム、3……火力・水力発電プラント、4……水素ステーション、5……EVステーション、6……熱電併給型エネルギー管理システム、7……全体統合制御装置、9……電力系統、10……再エネ発電事業者、11……再エネ発電設備、12……蓄電池、13,22……水電解水素製造装置、14……再エネ制御装置、20……火力・水力発電事業者、21……火力・水力発電設備、23……プラント制御装置、30……需要家、31……熱電併給設備、32……水電解/熱分解水素製造設備、33……圧縮水素ボンベ、35……全体統合管理事業者、40……再エネ発電システム運転支援画面、60……発電プラント運転支援画面、80……全体統合制御型水素エネルギーシステム運転支援画面、100……需要家システム運転支援画面。

Claims (11)

  1.  水素エネルギーを利活用する全体統合制御型水素エネルギーシステムにおいて、
     再生可能エネルギーを発電する再生可能エネルギー発電システム、及び、火力、水力又は原子力により発電し、発電した電力を需要家に供給する発電プラントの少なくとも一方と、
     燃料電池自動車に対して燃料である水素を補給するための施設である水素ステーションと
     を備え、
     前記再生可能エネルギー発電システム及び又は前記発電プラントは、
     余剰電力を用いて水素を製造し、製造した前記水素を前記水素ステーションに供給し、又は、余剰となった水素を前記水素ステーションに供給する
     ことを特徴とする全体統合制御型水素エネルギーシステム。
  2.  前記再生可能エネルギー発電システムは、
     再生可能エネルギーの発電設備と、
     系統連系用の蓄電池と、
     水電解により水素を製造する水電解水素製造設備と
     を備え、
     前記蓄電池に蓄えられた電力量が当該蓄電池の充電定格値を超えており、かつ、前記水素ステーションにおける水素の蓄積量に空きがある場合に、前記水電解水素製造設備を稼働させて水素を製造し、製造した前記水素を前記水素ステーションに供給する
     ことを特徴とする請求項1に記載の全体統合制御型水素エネルギーシステム。
  3.  前記水素ステーションで前記燃料電池自動車に前記水素を補給した利用者にクレジットが付与され、
     前記クレジットは、ブロックチェーン技術を利用してすべての取引情報が管理される
     ことを特徴とする請求項1に記載の全体統合制御型水素エネルギーシステム。
  4.  前記発電プラントは、
     二酸化炭素貯留設備が敷設された石炭ガス化複合発電型の微粉炭火力発電設備に燃料電池を追設した石炭ガス化燃料電池複合発電型の火力発電設備であり、二酸化炭素転嫁率を向上させるための水蒸気を、タービン抽気弁から火力発電所の負荷運用に応じて抽出する形態のものであって、追設した前記燃料電池において余剰する水素を前記水素ステーションに供給する
     ことを特徴とする請求項1に記載の全体統合制御型水素エネルギーシステム。
  5.  前記需要家側に設けられた熱電併給型エネルギー管理システムをさらに備え、
     前記熱電併給型エネルギー管理システムは、
     太陽光及び地熱を利用して得られた電力及び熱を出力する熱電併給設備と、
     前記熱電併給設備から出力される前記電力及び又は前記熱を利用して水電解又は熱分解により水素を製造する水電解/熱分解水素製造設備と、
     前記水電解/熱分解水素製造設備により製造された前記水素を蓄える圧縮水素ボンベと
     を有し、
     前記圧縮水素ボンベに蓄えられた前記水素を前記燃料電池自動車に補給する
     ことを特徴とする請求項1に記載の全体統合制御型水素エネルギーシステム。
  6.  前記水電解/熱分解水素製造設備が製造した前記水素に、前記水素ステーションで前記燃料電池自動車に補給された前記水素に付与される前記クレジットと同じクレジットが付与される
     ことを特徴とする請求項5に記載の全体統合制御型水素エネルギーシステム。
  7.  水素エネルギーを利活用する全体統合制御型水素エネルギーシステムの運用方法であって、
     前記全体統合制御型水素エネルギーシステムは、
     再生可能エネルギーを発電する再生可能エネルギー発電システム、及び、火力、水力又は原子力により発電し、発電した電力を需要家に供給する発電プラントの少なくとも一方と、
     燃料電池自動車に対して燃料である水素を補給するための施設である水素ステーションと
     を有し、
     前記再生可能エネルギー発電システム及び又は前記発電プラントが、余剰電力を用いて水素を製造する第1のステップと、
     前記再生可能エネルギー発電システム及び又は前記発電プラントが、製造した前記水素を前記水素ステーションに供給する第2のステップと
     を備えることを特徴とする運用方法。
  8.  前記再生可能エネルギー発電システムは、
     再生可能エネルギーの発電設備と、
     系統連系用の蓄電池と、
     水電解により水素を製造する水電解水素製造設備と
     を備え、
     前記第2のステップにおいて、前記再生可能エネルギー発電システムは、
     前記蓄電池に蓄えられた電力量が当該蓄電池の充電定格値を超えており、かつ、前記水素ステーションにおける水素の蓄積量に空きがある場合に、前記水電解水素製造設備を稼働させて水素を製造し、製造した前記水素を前記水素ステーションに供給する
     ことを特徴とする請求項7に記載の運用方法。
  9.  前記水素ステーションで前記燃料電池自動車に前記水素を補給した利用者にクレジットを付与する第3のステップを備え、
     前記クレジットは、ブロックチェーン技術を利用してすべての取引情報が管理される
     ことを特徴とする請求項7に記載の運用方法。
  10.  前記全体統合制御型水素エネルギーシステムは、
     前記需要家側に設けられた熱電併給型エネルギー管理システムをさらに有し、
     前記熱電併給型エネルギー管理システムは、
     太陽光及び地熱を利用して得られた電力及び熱を出力する熱電併給設備と、
     前記熱電併給設備から出力される前記電力及び又は前記熱を利用して水電解又は熱分解により水素を製造する水電解/熱分解水素製造設備と、
     前記水電解/熱分解水素製造設備により製造された前記水素を蓄える圧縮水素ボンベと
     を有し、
     前記第1又は第2のステップにおいて、
     前記全体統合制御型水素エネルギーシステムが、前記圧縮水素ボンベに蓄えられた前記水素を前記燃料電池自動車に補給するステップを備える
     ことを特徴とする請求項7に記載の運用方法。
  11.  前記水電解/熱分解水素製造設備が製造した前記水素の利用者に、前記水素ステーションで前記燃料電池自動車に前記水素を補給した前記利用者に付与される前記クレジットと同じクレジットを付与するステップを備える
     ことを特徴とする請求項10に記載の運用方法。
PCT/JP2022/015690 2021-04-28 2022-03-29 全体統合制御型水素エネルギーシステム及びその運用方法 WO2022230567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022266287A AU2022266287A1 (en) 2021-04-28 2022-03-29 Totally integrated and controlled hydrogen energy system and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076549A JP7509715B2 (ja) 2021-04-28 全体統合制御型水素エネルギーシステム及びその運用方法
JP2021-076549 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230567A1 true WO2022230567A1 (ja) 2022-11-03

Family

ID=83847400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015690 WO2022230567A1 (ja) 2021-04-28 2022-03-29 全体統合制御型水素エネルギーシステム及びその運用方法

Country Status (2)

Country Link
AU (1) AU2022266287A1 (ja)
WO (1) WO2022230567A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248814A (ja) * 2005-03-09 2006-09-21 Hitachi Ltd 水素供給装置および水素供給方法
JP2016140161A (ja) * 2015-01-26 2016-08-04 株式会社東芝 電力供給システムおよびその制御方法
JP2019168121A (ja) * 2018-03-22 2019-10-03 三菱日立パワーシステムズ株式会社 炉壁状態評価装置、炉壁状態評価方法、および炉壁状態評価プログラム
JP2020054085A (ja) * 2018-09-26 2020-04-02 清水建設株式会社 電源システムおよび電源システムの制御方法
JP2021047579A (ja) * 2019-09-18 2021-03-25 本田技研工業株式会社 情報処理システム及びプログラム
JP2021056954A (ja) * 2019-10-02 2021-04-08 トヨタ自動車株式会社 自動車の貸し出しシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248814A (ja) * 2005-03-09 2006-09-21 Hitachi Ltd 水素供給装置および水素供給方法
JP2016140161A (ja) * 2015-01-26 2016-08-04 株式会社東芝 電力供給システムおよびその制御方法
JP2019168121A (ja) * 2018-03-22 2019-10-03 三菱日立パワーシステムズ株式会社 炉壁状態評価装置、炉壁状態評価方法、および炉壁状態評価プログラム
JP2020054085A (ja) * 2018-09-26 2020-04-02 清水建設株式会社 電源システムおよび電源システムの制御方法
JP2021047579A (ja) * 2019-09-18 2021-03-25 本田技研工業株式会社 情報処理システム及びプログラム
JP2021056954A (ja) * 2019-10-02 2021-04-08 トヨタ自動車株式会社 自動車の貸し出しシステム

Also Published As

Publication number Publication date
JP2022170429A (ja) 2022-11-10
AU2022266287A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
Cai et al. Integration of hydrogen storage system and wind generation in power systems under demand response program: A novel p-robust stochastic programming
Li et al. Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments
Chen et al. An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load
Carr et al. Optimal operation of a hydrogen refuelling station combined with wind power in the electricity market
Apostolou Optimisation of a hydrogen production–storage–re-powering system participating in electricity and transportation markets. A case study for Denmark
Li et al. Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy
Fang et al. Multiple time-scale energy management strategy for a hydrogen-based multi-energy microgrid
CN111293682B (zh) 一种基于协同模型预测控制的多微网能量管理方法
Boqtob et al. Microgrid energy management system: a state-of-the-art review.
Lasemi et al. Multi-objective hydrothermal generation scheduling and fuel dispatch management considering liquid fuel dispatch network modeling
Fang et al. Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems
Zhang et al. Multi-time-scale economic scheduling method for electro-hydrogen integrated energy system based on day-ahead long-time-scale and intra-day MPC hierarchical rolling optimization
Azaroual et al. Toward an intelligent community microgrid energy management system based on optimal control schemes
Jodeiri-Seyedian et al. Eco-environmental Impacts of x-to-x energy conversion on interconnected multi-energy microgrids: A multi-objective optimization
Teske et al. Evaluation of the sustainability of decentralised energy systems for domestic applications
Xu et al. Bi-level configuration and operation collaborative optimization of shared hydrogen energy storage system for a wind farm cluster
WO2022230567A1 (ja) 全体統合制御型水素エネルギーシステム及びその運用方法
Pfeifer et al. Consequences of different strategic decisions of market coupled zones on the development of energy systems based on coal and hydropower
Sun et al. Seasonal operation planning of hydrogen-enabled multi-energy microgrids through multistage stochastic programming
CN115986812A (zh) 一种考虑储能和需求响应的微电网经济规划方法及装置
Azaroual et al. Model predictive control-based energy management strategy for grid-connected residential photovoltaic–wind–battery system
Van Phu et al. An IGDT approach for the multi-objective framework of integrated energy hub with renewable energy sources, hybrid energy storage systems, and biomass-to-hydrogen technology
Chen et al. Towards Renewable-Dominated Energy Systems: Role of Green Hydrogen
Dadkhah Flexible operation of power-to-hydrogen and electrical loads to provide grid support
Mathiesen et al. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022266287

Country of ref document: AU

Ref document number: 2022266287

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022266287

Country of ref document: AU

Date of ref document: 20220329

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795483

Country of ref document: EP

Kind code of ref document: A1