WO2022135565A1 - 随机接入方法及装置、终端、电子设备和计算机可读存储介质 - Google Patents

随机接入方法及装置、终端、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2022135565A1
WO2022135565A1 PCT/CN2021/141202 CN2021141202W WO2022135565A1 WO 2022135565 A1 WO2022135565 A1 WO 2022135565A1 CN 2021141202 W CN2021141202 W CN 2021141202W WO 2022135565 A1 WO2022135565 A1 WO 2022135565A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
random access
information
timing advance
distance
Prior art date
Application number
PCT/CN2021/141202
Other languages
English (en)
French (fr)
Inventor
林琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3206303A priority Critical patent/CA3206303A1/en
Priority to EP21909560.1A priority patent/EP4266809A1/en
Priority to US18/268,735 priority patent/US20240049293A1/en
Publication of WO2022135565A1 publication Critical patent/WO2022135565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a random access method and apparatus, a terminal, an electronic device, and a computer-readable storage medium.
  • Random Access Random Access
  • RAP Random Access Procedure
  • the terminal when the cell coverage requirement exceeds the maximum coverage radius supported by the protocol (or the communication system), if the terminal performs random access according to the normal random access procedure, it may fail to successfully access the base station. If the random access is assisted by the Global Positioning System (GPS) information, there is an error between the distance calculated by the GPS information and the actual propagation distance of the wireless signal, and the error is greater than the serving cell where the terminal is located. In the case of the maximum distance that can be covered, the terminal access failure may be caused; and, in the process of the terminal performing cell handover, the terminal access failure may also be caused.
  • GPS Global Positioning System
  • the embodiment of the present application provides a random access method, including: determining a time adjustment step size according to a physical random access channel (Physical Random Access Channel, PRACH) format and a wireless signal propagation speed configured by a serving cell where a current terminal is located; Determine the initial timing advance according to the positioning information obtained from the positioning system; determine the timing advance (Timing Advance, TA) according to the time adjustment step size, the number of trial rounds and the initial timing advance; At least one round of random access attempts is made until the current terminal successfully accesses the base station.
  • PRACH Physical Random Access Channel
  • TA Timing Advance
  • An embodiment of the present application provides a random access method, including: determining an adjustment duration according to acquired information of a serving base station and information of a target base station; determining a current terminal maintenance time according to the location information of the current terminal and the information of the serving base station Advance amount TA; determine the TA for initiating random access to the target base station according to the TA maintained by the current terminal and the adjustment duration; and send a random access request to the target base station according to the TA for initiating random access to the target base station.
  • An embodiment of the present application provides a random access device, including: a time adjustment step size determination module, configured to determine a time adjustment step according to a physical random access channel PRACH format and a wireless signal propagation speed configured in a serving cell where a current terminal is located. long; the initial timing advance determination module is configured to determine the initial timing advance according to the positioning information obtained from the positioning system; the timing advance determination module is configured to adjust the step size, the number of trial rounds and the initial timing advance according to time , determine the timing advance TA; and the random access module is configured to initiate at least one round of random access attempts to the base station according to the TA until the current terminal successfully accesses the base station.
  • a time adjustment step size determination module configured to determine a time adjustment step according to a physical random access channel PRACH format and a wireless signal propagation speed configured in a serving cell where a current terminal is located. long; the initial timing advance determination module is configured to determine the initial timing advance according to the positioning information obtained from the positioning system; the timing advance determination module is configured to adjust the step
  • An embodiment of the present application provides a random access device, including: an adjustment duration determination module, configured to determine the adjustment duration according to the acquired information of the serving base station and the information of the target base station; a first determination module configured to determine the adjustment duration according to the current terminal's information The location information and the information of the serving base station determine the time advance TA maintained by the current terminal; the second determining module is configured to determine the TA that initiates random access to the target base station according to the TA maintained by the current terminal and the adjustment duration; and the sending module, It is configured to send a random access request to the target base station according to the TA that initiates random access to the target base station.
  • An embodiment of the present application provides a terminal, including: any of the foregoing random access apparatuses.
  • Embodiments of the present application provide an electronic device, including: one or more processors; a memory on which one or more computer programs are stored, when the one or more computer programs are executed by the one or more processors During execution, the one or more processors are made to implement any random access method in the embodiments of the present application.
  • An embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any random access method in the embodiment of the present application is implemented.
  • FIG. 1 shows a schematic flowchart of a random access method in an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a method for calculating a timing advance in an embodiment of the present application.
  • FIG. 3 shows another schematic flowchart of the random access method in the embodiment of the present application.
  • FIG. 4 shows a block diagram of a composition of a random access apparatus in an embodiment of the present application.
  • FIG. 5 shows another composition block diagram of the random access apparatus in the embodiment of the present application.
  • FIG. 6 shows a block diagram of a composition of a 5G terminal in an embodiment of the present application.
  • FIG. 7 shows another composition block diagram of the 5G terminal in the embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a random access method when a 5G terminal performs initial random access in an embodiment of the present application.
  • FIG. 9 shows another composition block diagram of the 5G terminal in the embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of a random access method when a 5G terminal performs cell handover in an embodiment of the present application.
  • FIG. 11 shows a structural diagram of an exemplary hardware architecture of an electronic device capable of implementing the random access method and apparatus according to the embodiments of the present application.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • ZC Zadoff-Chu
  • PRACH Physical Random Access Channel
  • 5G 5th Generation Mobile Communication Technology
  • NR New Radio
  • the uplink synchronization process includes the uplink synchronization establishment process, the uplink synchronization maintenance process, and the uplink synchronization control process in the handover process;
  • the "uplink synchronization establishment process” is the initial random access process of the terminal;
  • Control process refers to the process in which the terminal initiates random access to the target base station during cell handover;
  • Table 1 shows 13 different PRACH preamble formats in 5G NR in the embodiments of the present application, and different PRACH preamble formats support different cell coverage radii, as shown in Table 1.
  • the maximum coverage of the PRACH format supported by the 5G NR system is 100 kilometers. However, for ultra-long coverage scenarios such as air routes, the coverage requirements are much greater than 100 kilometers, and can even reach 300 kilometers, which makes the 5G NR system unable to meet the coverage requirements, and the cell coverage requirements exceed the protocol (or, communication system)
  • the terminal may fail to successfully access the base station. If the random access is assisted by the Global Positioning System (GPS) information, there is an error between the distance calculated by the GPS information and the actual propagation distance of the wireless signal, and the error is greater than the serving cell where the terminal is located. In the case of the maximum distance that can be covered, the terminal access may fail; and in the process of the terminal performing cell handover, the terminal access may also fail.
  • GPS Global Positioning System
  • FIG. 1 shows a schematic flowchart of a random access method in an embodiment of the present application.
  • the random access method can be applied to a random access device, and can also be applied to a terminal.
  • the random access method in this embodiment of the present application may include the following steps S110 to S140.
  • Step S110 Determine the time adjustment step size according to the PRACH format of the physical random access channel and the wireless signal propagation speed configured in the serving cell where the current terminal is located.
  • each serving cell can be configured with different PRACH formats as required to adapt to different application environments.
  • the determining the time adjustment step size according to the physical random access channel PRACH format and the wireless signal propagation speed configured by the serving cell where the current terminal is located includes: determining the coverage radius of the serving cell according to the PRACH format; The coverage radius of the cell and the wireless signal propagation speed are determined to obtain the preset time adjustment step threshold; and the time adjustment step is determined according to the preset time adjustment step threshold, and the time adjustment step is greater than or equal to 0 and less than or equal to The preset time adjusts the step size threshold.
  • the coverage radius of the serving cell corresponding to the PRACH format can be obtained by querying Table 1 through the PRACH format configured by the serving cell.
  • the PRACH format configured in the serving cell is 1.
  • Table 1 it can be known that the length of the corresponding random access code is 839, the maximum supportable coverage radius of the serving cell is 100 kilometers, and the wireless signal propagation speed can be the speed of light ( That is, about 300,000 km/s), and then calculate the time adjustment step.
  • the coverage radius of the serving cell at this time may be set to a value greater than or equal to 0 and less than or equal to 100 kilometers according to the configuration information.
  • Step S120 Determine the initial timing advance according to the positioning information obtained from the positioning system.
  • the positioning system can be the Global Positioning System (GPS), or any one or more of the Beidou satellite navigation system, the Galileo satellite navigation system or the Russian global navigation satellite system.
  • GPS Global Positioning System
  • the obtained positioning information is different, but the positioning information can include the position of the current terminal and the position of the serving base station.
  • the determining the initial timing advance according to the positioning information obtained from the positioning system includes: obtaining the actual distance between the current terminal and the base station from the positioning system; and determining that the actual distance is greater than a preset distance threshold when the actual distance is determined.
  • the initial timing advance is determined to be obtained according to the real distance and the propagation speed of the wireless signal.
  • the access channel format can determine the maximum coverage radius of the serving cell. Through the maximum coverage radius, real distance and wireless signal propagation speed, the calculated initial timing advance can be more accurate.
  • the real distance between the current terminal and the base station corresponding to the serving cell is greater than a preset distance threshold (for example, a preset cell coverage radius), it indicates that the current terminal is at the edge of the coverage of the serving base station.
  • the zone or the current terminal is further away from the serving base station (eg, the current terminal is 300 kilometers away from the serving base station, and the cells in the serving base station are configured with a maximum coverage radius of 100 kilometers).
  • the quality of the communication signal of the serving base station received by the current terminal may be poor.
  • the initial timing advance can be calculated and obtained through the maximum coverage radius, real distance and wireless signal propagation speed, which can reduce the distance error on the success rate of the terminal randomly accessing the serving base station.
  • the distance error is the difference between the distance calculated from the positioning information and the distance actually propagated by the wireless signal.
  • Step S130 Determine the timing advance according to the time adjustment step size, the number of trial rounds and the initial timing advance.
  • Timing Advance is a parameter used to represent the timing deviation between the evolved base station (eNodeB) receiving the data sent by the terminal, and the physical meaning of the timing advance TA refers to the round-trip delay between the terminal and the eNodeB.
  • PRACH is an access channel when a terminal initially initiates random access, and is used to transmit random access requests and data packets.
  • the TA determined by the time adjustment step, the number of trial rounds and the initial timing advance can make the obtained timing advance TA more accurate, ensure that the random access request sent by the current terminal can be successfully received by the serving base station, and improve the current The success rate of the terminal accessing the serving base station.
  • the serving base station When the serving base station receives the random access request, the serving base station will determine whether there are idle resources at the current time point to process the random access request of the current terminal. If the serving base station has idle resources, it will respond to the current terminal to make The current terminal successfully accesses the serving base station.
  • Step S140 according to the timing advance, at least one round of random access attempts is initiated to the base station until the current terminal successfully accesses the base station.
  • the TA with higher accuracy obtained by the calculation in step 130 sends a random access request to the base station, so that the current terminal can still accurately and accurately even when the cell coverage requirement exceeds the maximum coverage radius (for example, 100 kilometers) supported by the protocol.
  • the TA sends a random access request to the base station based on the TA to increase the probability of successfully accessing the base station.
  • the accuracy of the time adjustment is ensured;
  • the obtained positioning information determines the initial time advance, and initializes the time advance; according to the time adjustment step size, the number of trial rounds and the initial time advance, the time advance TA is determined, so as to make the TA more accurate and ensure the
  • the time adjustment step size exceeds the maximum coverage radius supported by the protocol (or, the communication system)
  • it can still accurately send a random access request to the base station according to the TA, and successfully access the base station, avoiding the current terminal access failure.
  • the success rate of random access of the terminal is improved, and the user experience is improved.
  • FIG. 2 shows a schematic flowchart of a method for calculating a timing advance in an embodiment of the present application.
  • the determining the timing advance according to the time adjustment step size, the number of trial rounds and the initial timing advance in step S130 may be implemented by the following steps S131 to S134 .
  • Step S131 Determine the TA of the current round according to the time adjustment step size, the number of trial rounds in the current round, and the initial timing advance.
  • the number of trial rounds in this round can be 1, or an integer greater than 1, to ensure that the determined TA of this round can be more accurate, so that the sending time of the terminal sending random access requests to the serving base station according to the TA of this round is closer to the service
  • the processing time window of the base station ensures that the serving base station can process the random access request faster and improves the success rate of random access.
  • the determining the timing advance TA according to the time adjustment step, the number of trial rounds and the initial timing advance includes: in the case of a first round of random access attempts, setting the time adjustment step to 0 , and the initial timing advance is determined as the TA of the first round of random access attempts.
  • the initial timing advance is the timing advance calculated based on the real distance and the wireless signal propagation speed when it is determined that the real distance is greater than the preset distance threshold, and the initial timing advance is determined as the first random access attempt. and according to the initial timing advance, the random access request is sent to the serving base station in multiple cycles to ensure that the serving base station can successfully receive the random access request sent by the current terminal and improve the random access service of the current terminal. success rate of the base station.
  • Step S132 according to the TA of the current round, cyclically send a random access request to the base station.
  • the number of random access attempts in each round is the same. Through different TAs in each round, at least one round of random access attempts is initiated to the base station to speed up the speed at which the current terminal accesses the base station, so that the current terminal can access the base station as soon as possible. Accuracy of random access.
  • K random access requests may be sent to the base station, so that the current terminal can access the base station as soon as possible, where K is an integer greater than or equal to 1.
  • Step S133 when it is determined that the current round of random access fails, update the number of attempted rounds.
  • the current terminal is in the state of random access failure, and after several attempts, it still fails to successfully access the serving base station, it means that the current terminal may be too far away from the serving base station and may miss the processing of the serving base station.
  • the number of trial rounds needs to be updated to enter the next round of random access attempts to ensure that the serving base station can successfully receive the random access request sent by the current terminal.
  • Step S134 Determine the TA of the next round according to the time adjustment step size, the updated number of trial rounds and the initial timing advance.
  • the time adjustment step size can be calculated from the preset coverage radius threshold of the serving cell and the transmission speed of the wireless signal. For example, looking up Table 1 shows that when the preset coverage radius threshold of the serving cell is 22 kilometers, the time adjustment step size can be obtained by calculating the 22 kilometers and the wireless signal propagation speed, so that the time adjustment step size can meet the service requirements.
  • the coverage of the cell ensures the accuracy of the subsequent adjustment of the sending time of the random access request.
  • the TA of each round is calculated by the following formula:
  • TA N TA 0 ⁇ (N-1)* ⁇ TA ,
  • TA 0 represents the initial timing advance
  • N represents the number of trial rounds
  • N is an integer greater than or equal to 1
  • ⁇ TA represents the time adjustment step
  • TA N represents the timing advance TA of the Nth round.
  • TA 1 TA 0
  • TA 1 TA 0 ⁇ TA
  • TA 3 TA 0 ⁇ 2* ⁇ TA
  • ⁇ TA time adjustment step
  • the accuracy of TA in each round is dynamically adjusted, so that the current terminal can expand the range of attempts, speed up the adjustment of the sending time for sending random access requests, and enable the current terminal to quickly access the In the serving base station, the efficiency of random access is improved.
  • At least one round of random access attempts is initiated to the serving base station through different TAs, to ensure that the serving base station can successfully receive the random access request sent by the current terminal, and to ensure that the current terminal is far away from the serving base station.
  • the serving base station can still be successfully accessed, avoiding the occurrence of terminal access failure in the edge area, improving the success rate of random access by the terminal, and improving the user experience.
  • FIG. 3 shows another schematic flowchart of the random access method in the embodiment of the present application.
  • the random access method can be applied to a random access device or terminal.
  • the random access method in this embodiment of the present application may include the following steps S310 to S340.
  • Step S310 Determine the adjustment duration according to the acquired information of the serving base station and the information of the target base station.
  • the determining the adjustment duration according to the acquired information of the serving base station and the information of the target base station in step 310 includes: extracting a first distance from the information of the serving base station, where the first distance is the current terminal measured in real time The distance from the serving base station; the second distance is extracted from the information of the target base station, and the second distance is the distance between the current terminal and the target base station measured in real time; and according to the first distance, the second distance and the wireless signal propagation speed , calculate the adjustment time.
  • both the first distance and the second distance are distances obtained by real-time measurement according to the positioning information in the Beidou satellite navigation system, which ensures the accuracy of the first distance and the second distance.
  • the determining the adjustment duration according to the acquired information of the serving base station and the information of the target base station in step 310 includes: extracting the frame header information of the current downlink signal from the information of the serving base station; extracting frame header information of the target downlink signal; and determining the adjustment duration according to the frame header information of the current downlink signal and the frame header information of the target downlink signal.
  • the frame header information includes the start time of the downlink subframe. According to the start time of the current downlink signal and the start time of the target downlink signal, the adjustment duration can be calculated to ensure that the adjustment duration is more accurate and that subsequent random access requests are guaranteed. the accuracy of the sending time.
  • the determining the adjustment duration according to the acquired information of the serving base station and the information of the target base station in step 310 includes: determining the serving base station and the target base station according to the pre-stored location information of the serving base station and the location information of the target base station. a third distance between the target base stations; and calculating and obtaining the adjustment duration according to the third distance and the wireless signal propagation speed.
  • the pre-stored longitude and latitude information of the serving base station and the longitude and latitude information of the target base station are respectively extracted, and the third distance between the serving base station and the target base station is calculated and obtained according to the longitude and latitude information, which not only ensures the accuracy of the third distance It can also speed up the calculation speed of the adjustment time length and the calculation speed of the subsequent calculation of the sending time of the random access request, so that the user can switch to the target base station faster and more accurately, and ensure the communication service quality of the current terminal.
  • Step S320 Determine the time advance of the current terminal maintenance according to the location information of the current terminal and the information of the serving base station.
  • the timing advance maintained by the current terminal is a timing advance determined according to the actual distance from the current terminal to the serving base station and the propagation speed of the wireless signal.
  • the current terminal after the current terminal successfully accesses the serving base station, and before the current terminal receives the handover request, the current terminal will move, which may exceed the coverage of the cell corresponding to the serving base station and enter the target base station corresponding to within the coverage area of the cell. At this time, the current terminal will receive a handover instruction, and the handover instruction is used to make the current terminal switch to the target base station, so that the target base station can provide a better communication service for the current terminal. Therefore, the timing advance maintained by the current terminal is the timing advance determined by the actual distance from the current terminal to the serving base station and the propagation speed of the wireless signal, which ensures that the current terminal can quickly initiate random access to the target base station during the cell handover process. , to speed up the switching speed of the current terminal, so that the current terminal can obtain better communication services and improve user service quality.
  • Step S330 according to the TA maintained by the current terminal and the adjustment duration, determine the TA that initiates random access to the target base station.
  • the adjustment duration can be obtained through different implementations in step 310, so that the adjustment duration is more accurate, thereby improving the accuracy of the TA for initiating random access to the target base station.
  • the difference between the TA maintained by the current terminal and the adjustment duration is calculated, and the TA that initiates random access to the target base station is determined according to the difference, so as to improve the accuracy of the TA when the terminal performs cell handover.
  • Step S340 according to the TA that initiates random access to the target base station, send a random access request to the target base station.
  • the actual sending time of sending the random access request to the target base station can be calculated and obtained, and the random access request is sent to the target base station at this sending time, so that the target base station can send the random access request to the target base station after receiving the current terminal.
  • the random access request is received, it is closer to the processing window period of the target base station to ensure that the target base station can quickly process the random access request of the current terminal, improve the success rate of random access, and then make the current terminal switch to the target as soon as possible. Base station to improve user experience.
  • the adjustment duration is determined according to the acquired information of the serving base station and the target base station, and the adjustment duration is obtained through different calculation methods to ensure the accuracy of the adjustment duration; Based on the information of the serving base station, determine the time advance of the current terminal maintenance, and combine the TA maintained by the current terminal and the adjustment duration to determine the TA that initiates random access to the target base station; according to the TA that initiates random access to the target base station, send random access.
  • the incoming request is sent to the target base station to ensure that the current terminal can be quickly switched to the target base station, the communication service quality of the current terminal is guaranteed, and the user experience is improved.
  • FIG. 4 shows a block diagram of a composition of a random access apparatus in an embodiment of the present application.
  • the random access apparatus may include a time adjustment step size determination module 401 , an initial timing advance determination module 402 , a timing advance determination module 403 and a random access module 404 .
  • the time adjustment step size determination module 401 is configured to determine the time adjustment step size according to the physical random access channel PRACH format and the wireless signal propagation speed configured in the serving cell where the current terminal is located; the initial timing advance determination module 402 is configured to The positioning information obtained in the system determines the initial timing advance; the timing advance determining module 403 is configured to adjust the step size, the number of trial rounds and the initial timing advance according to the time, and determine the timing advance TA; and the random access module 404 is configured According to the TA, at least one round of random access attempts is initiated to the base station until the current terminal successfully accesses the base station.
  • the timing advance determination module 403 may include a first determination sub-module, a transmission sub-module, an update sub-module and a second determination sub-module.
  • the first determination sub-module is configured to determine the TA of the current round according to the time adjustment step size, the number of trial rounds in the current round and the initial timing advance; the sending sub-module is configured to cyclically send a random access request to the base station according to the TA of the current round ;
  • the update sub-module is configured to update the number of trial rounds in the case of determining that this round of random access fails; and the second determination sub-module is configured to adjust the step size according to the time, the number of trial rounds after the update and the initial time advance, determine The next round of TA.
  • the first determination sub-module may include an initial determination module.
  • the initial determination module is configured to set the time adjustment step size to 0 when the first round of random access attempts is performed, and determine the initial timing advance as the TA of the first round of random access attempts.
  • the time adjustment step determination module 401 may include a coverage radius determination submodule, a step threshold determination submodule, and a time adjustment step determination submodule.
  • the coverage radius determination submodule is configured to determine the coverage radius of the serving cell according to the PRACH format; the step size threshold determination submodule is configured to determine and obtain the preset time adjustment step size threshold according to the coverage radius of the serving cell and the wireless signal propagation speed; and the time The adjustment step size determination sub-module is configured to adjust the step size threshold value according to the preset time, and determine the time adjustment step size, the time adjustment step size is greater than or equal to 0, and is less than or equal to the preset time adjustment step size threshold.
  • the initial timing advance determination module 402 may include an acquisition sub-module and an initial timing advance determination sub-module.
  • the acquisition sub-module is configured to acquire the real distance between the current terminal and the base station from the positioning system; and the initial timing advance determination sub-module is configured to determine that the real distance is greater than the preset distance threshold, based on the real distance and wireless signal propagation. speed, determine the initial timing advance.
  • the time adjustment step size is determined by the time adjustment step size determination module 401 according to the physical random access channel format and the wireless signal propagation speed configured by the serving cell where the current terminal is located, so as to ensure the accuracy of the time adjustment.
  • the TA sends a random access request to the base station and successfully accesses the base station, which avoids the occurrence of current terminal access failure, improves the success rate of terminal random access, and improves user experience.
  • FIG. 5 shows another composition block diagram of the random access apparatus in the embodiment of the present application.
  • the random access apparatus may include an adjustment duration determination module 501 , a first determination module 502 , a second determination module 503 and a sending module 504 .
  • the adjustment duration determining module 501 is configured to determine the adjustment duration according to the acquired information of the serving base station and the information of the target base station; the first determining module 502 is configured to determine the current terminal maintenance time according to the location information of the current terminal and the information of the serving base station Advance amount TA; the second determining module 503 is configured to determine the TA that initiates random access to the target base station according to the TA maintained by the current terminal to the serving base station and the adjustment duration; and the sending module 504 is configured to initiate random access to the target base station according to TA, send a random access request to the target base station.
  • the adjustment duration determination module 501 may include a first extraction sub-module, a second extraction sub-module and a first adjustment sub-module.
  • the first extraction sub-module is configured to extract the first distance from the information of the serving base station, and the first distance is the distance between the current terminal and the serving base station measured in real time; the second extraction sub-module is configured to extract the first distance from the information of the target base station. The second distance is the distance between the current terminal and the target base station measured in real time; and the first adjustment sub-module is configured to determine the adjustment duration according to the first distance, the second distance and the wireless signal propagation speed.
  • the adjustment duration determination module 501 may include a third extraction sub-module, a fourth extraction sub-module and a second adjustment sub-module.
  • the third extraction submodule is configured to extract the frame header information of the current downlink signal from the information of the serving base station; the fourth extraction submodule is configured to extract the frame header information of the target downlink signal from the information of the target base station; and the second adjustment submodule It is configured to determine the adjustment duration according to the frame header information of the current downlink signal and the frame header information of the target downlink signal.
  • the adjustment duration determination module 501 may include a distance determination sub-module and a third adjustment sub-module.
  • the distance determination sub-module is configured to determine the third distance between the serving base station and the target base station according to the pre-stored position information of the serving base station and the target base station; and the third adjustment sub-module is configured to be based on the third distance and the wireless signal Propagation speed, determine the adjustment time.
  • the adjustment duration determination module 501 determines the adjustment duration according to the acquired information of the serving base station and the information of the target base station, so as to ensure the accuracy of the adjustment duration; the first determination module 502 is used according to the current terminal location information and The information of the serving base station, determine the time advance of the current terminal maintenance, and use the second determining module 503 to determine the TA that initiates random access to the target base station according to the TA maintained by the current terminal and the adjustment duration; The TA that initiates random access sends a random access request to the target base station to ensure that the current terminal can quickly switch to the target base station, ensure the quality of communication service of the current terminal, and improve user experience.
  • any random access method in this application may also be applied to a terminal, where the terminal includes a random access apparatus as shown in FIG. 4 or FIG. 5 .
  • the terminal in this application includes but is not limited to the random access device described in the above embodiment and shown in the figure.
  • the detailed description of the known method is omitted here, and the specific working process of the modules and devices described above can be referred to the corresponding process in the foregoing method embodiments, which will not be repeated here.
  • the terminal determines the timing advance TA through different random access devices to make the TA more accurate; to ensure that in the case where the cell coverage requirement exceeds the maximum coverage radius supported by the protocol (or, the communication system), the current terminal can still accurately base on the TA.
  • the TA sends a random access request to the base station and successfully accesses the base station, which avoids the occurrence of current terminal access failure, improves the success rate of terminal random access, and improves user experience.
  • FIG. 6 shows another composition block diagram of the 5G terminal in the embodiment of the present application.
  • the 5G terminal may include a first adjustment module 601 and a first transmission module 602 .
  • the first adjustment module 601 is configured according to the physical random access channel (Physical Random Access Channel, PRACH) format configured according to the serving cell where the 5G terminal is located, the base station information in the Global Positioning System (Global Positioning System, GPS) information and the 5G terminal. information, and calculate the timing advance for sending the random access request to the 5G base station.
  • PRACH Physical Random Access Channel
  • the first transmitting module 602 is configured to send random access requests to the 5G base station multiple times according to the timing advance.
  • the PRACH format configured in the serving cell where the 5G terminal is located, the base station information in the GPS information, and the 5G terminal information are used to calculate and obtain the timing advance for sending the random access request to the 5G base station, so that the timing advance is obtained. It can be more accurate; according to the time advance, multiple random accesses are initiated to the 5G base station, which can ensure that the 5G terminal at the network edge can successfully access the 5G network, improve the success rate of random access of the terminal, and improve the user experience. .
  • FIG. 7 shows another composition block diagram of the 5G terminal in the embodiment of the present application.
  • the 5G terminal may include a first adjustment module 601 , a second adjustment module 603 and a second transmission module 604 .
  • the first adjustment module 601 is configured to calculate and obtain the timing advance for sending the random access request to the 5G base station according to the PRACH format configured in the serving cell where the 5G terminal is located, the base station information in the GPS information and the 5G terminal information.
  • the second adjustment module 603 is configured to initiate random access to the base station according to the timing advance; count the number of attempts to send the random access request; when it is determined that the number of attempts is greater than the preset number of transmissions, and the 5G terminal is in a state of random access failure In this case, determine the TA of this round according to the time adjustment step size, the number of attempted rounds in this round and the initial time advance; according to the TA of this round, send a random access request to the base station cyclically; after determining that this round of random access fails In the case of , update the number of trial rounds; and determine the TA of the next round according to the time adjustment step, the updated number of trial rounds and the initial time advance.
  • the second transmitting module 604 is configured to cyclically send a random access request to the base station according to the next round of TA, until the current terminal successfully accesses the base station.
  • TA N TA 0 ⁇ (N-1)* ⁇ TA
  • TA 0 represents the initial timing advance
  • N represents the number of trial rounds
  • N is an integer greater than or equal to 1
  • ⁇ TA represents the time adjustment step size
  • TA N represents the time advance TA of the Nth round.
  • a random access request is sent to the serving base station according to the TA in each round, and the time adjustment step ⁇ TA may correspond to the PRACH format configured according to the serving cell where the 5G terminal is located.
  • the maximum coverage radius and the wireless signal propagation speed are calculated, so that the terminal at the edge of the cell can quickly adjust the time to send the random access request with the maximum coverage radius as the step, so as to receive faster access. into the serving base station to improve user experience.
  • FIG. 8 shows a schematic flowchart of a random access method when a 5G terminal performs initial random access in an embodiment of the present application.
  • the random access method can be applied to the process of initial random access of a 5G terminal to a serving base station in an ultra-long-distance coverage scenario such as an airline.
  • the initial random access process of the 5G terminal can be implemented through the following steps S801 to S804.
  • Step S801 according to the PRACH format configured in the serving cell where the 5G terminal is located, the 5G base station information in the GPS information and the 5G terminal information, calculate and obtain the timing advance for sending the random access request to the 5G base station.
  • the timing advance can be calculated and obtained in the following manner: first, through the 5G base station information and the 5G terminal information, the real distance between the 5G terminal and the 5G base station is calculated and obtained, and after it is determined that the real distance exceeds the configuration of the serving cell In the case of the coverage radius corresponding to the PRACH format, the time adjustment step Tp0 is calculated and obtained according to the real distance and the wireless signal propagation speed.
  • Tp1 can be a different time adjustment amount set according to the cell coverage radius and wireless signal propagation speed corresponding to different PRACH formats; it can also be combined with the cell coverage radius and wireless signal propagation speed corresponding to different PRACH formats, Set the uniform time adjustment amount.
  • Step S802 according to the timing advance, count the number of attempts to send the random access request.
  • Step S803 when it is determined that the number of attempts is greater than the preset number of transmissions, and the 5G terminal is in a random access failure state, enter the N rounds of random access attempt flow.
  • preambleTransMax for example, preambleTransMax is equal to 5 or 10, etc.
  • the 5G terminal attempts to send a random access request within the range of the timing advance Tpm, and the number of attempts to send a random access request is greater than preambleTransMax, and the 5G terminal is still in
  • N rounds of random access attempt procedures need to be performed, and the maximum number of trial rounds is N max .
  • the TA of the current round is determined according to the time adjustment step size, the number of attempted rounds in the current round, and the initial timing advance; according to the TA of the current round, a random access request is cyclically sent to the base station; In the case of access failure, the number of attempted rounds is updated; and the TA for the next round is determined according to the time adjustment step size, the updated number of attempted rounds and the initial timing advance.
  • the time adjustment step is set as ⁇ TA , which may be the time adjustment amount obtained by calculation according to the maximum coverage radius R supported by the PRACH format and the wireless signal propagation speed v configured by the current serving cell.
  • Step S804 according to the TA of each round, calculate and obtain the attempted sending time, and cyclically send a random access request to the serving base station during the trying sending time, until the 5G terminal successfully accesses the serving base station.
  • the problem that the PRACH format supported in the 5G NR system can only cover a preset length at most is solved, the coverage of the cell corresponding to the 5G base station is expanded, and through N rounds of attempts, the 5G terminal can be improved.
  • the success rate of random access avoids the failure of 5G terminals in ultra-long-distance coverage scenarios to access 5G base stations, and improves user experience.
  • FIG. 9 shows another composition block diagram of the 5G terminal in the embodiment of the present application.
  • the 5G terminal may include a first adjustment module 601 , a third adjustment module 605 and a third transmission module 606 .
  • the first adjustment module 601 is configured to calculate and obtain the timing advance for sending the random access request to the 5G base station according to the PRACH format configured in the serving cell where the 5G terminal is located, the base station information in the GPS information and the 5G terminal information.
  • the third adjustment module 605 is configured to calculate and obtain the first sending time of the random access request according to the timing advance, send the random access request to the serving base station according to the first sending time, and successfully access the serving base station; in the 5G terminal In the case of receiving the handover instruction, calculate the first distance from the 5G terminal to the serving cell and the second distance from the 5G terminal to the target cell respectively, and calculate and obtain the adjustment according to the first distance, the second distance and the wireless signal propagation speed. duration; and determining the second transmission time according to the first transmission time and the adjusted duration.
  • the third transmitting module 606 is configured to send a random access request to the target base station corresponding to the target cell at the second sending time until the 5G terminal is successfully handed over to the target base station.
  • FIG. 10 shows a schematic flowchart of a random access method when a 5G terminal performs cell handover in an embodiment of the present application.
  • the random access method can be applied to a scenario where the 5G terminal needs to switch to the target base station after successfully accessing the serving base station, but after receiving the handover instruction sent by the serving base station.
  • the random access process of the terminal during cell handover can be implemented through the following steps S1001 to S1005.
  • Step S1001 in the case that it is determined that the 5G terminal successfully accesses the serving base station and obtains the handover instruction, obtain the information of the serving base station and the information of the target base station.
  • Step S1002 Determine the adjustment duration according to the information of the serving base station and the information of the target base station.
  • the adjustment duration can be calculated and obtained by: extracting the first distance from the information of the serving base station, where the first distance is the distance between the 5G terminal and the serving base station measured in real time; from the information of the target base station The second distance is extracted from the second distance, and the second distance is the distance between the 5G terminal and the target base station measured in real time; and the adjustment duration is calculated and obtained according to the first distance, the second distance and the wireless signal propagation speed.
  • both the first distance and the second distance are distances obtained by real-time measurement according to the positioning information in the GPS information, which ensures the accuracy of the first distance and the second distance.
  • the adjustment duration can be calculated and obtained by: extracting the frame header information of the current downlink signal from the information of the serving base station; extracting the frame header information of the target downlink signal from the information of the target base station; and according to the current The frame header information of the downlink signal and the frame header information of the target downlink signal determine the adjustment duration.
  • the adjustment duration is obtained by calculating the data frame as a unit, which improves the accuracy of the adjustment duration and ensures the accuracy of the sending time of the subsequent random access request.
  • the adjustment duration may be calculated and obtained by: determining a third distance between the serving base station and the target base station according to the pre-stored location information of the serving base station and the target base station; Distance and wireless signal propagation speed, calculate the adjustment time.
  • the third distance is a distance determined according to the pre-stored location information of the serving base station and the location information of the target base station. For example, when the serving base station is established, the latitude and longitude information corresponding to the serving base station can be recorded in the communication system. Similarly, When the target base station is established, the latitude and longitude information corresponding to the target base station can be recorded in the communication system. When calculating the adjustment duration, the latitude and longitude information of the above two base stations can be directly extracted from the communication system, and the latitude and longitude information of the two base stations can be obtained. The location information is then calculated to obtain the third distance, so as to improve the calculation efficiency of the adjustment time period, so that the user can obtain better communication services.
  • Step S1003 according to the location information of the current terminal and the information of the serving base station, determine the time advance TA maintained by the current terminal.
  • the timing advance maintained by the current terminal is a timing advance determined according to the actual distance from the current terminal to the serving base station and the propagation speed of the wireless signal.
  • Step S1004 according to the TA maintained by the current terminal and the adjustment duration, determine the TA that initiates random access to the target base station.
  • the adjustment duration can be obtained through different implementations in step S1002, so that the adjustment duration is more accurate, thereby improving the accuracy of the TA for initiating random access to the target base station.
  • Step S1005 according to the TA that initiates random access to the target base station, send a random access request to the target base station.
  • the adjustment duration is calculated and obtained through different calculation methods, and then the second transmission time is determined according to the first transmission time and the adjustment duration. time, and send a random access request to the target base station at the second sending time to ensure that the 5G terminal can quickly switch to the target base station, ensure the communication service quality of the 5G terminal, and improve the user experience.
  • FIG. 11 shows a structural diagram of an exemplary hardware architecture of an electronic device capable of implementing the random access method and apparatus according to the embodiments of the present application.
  • the electronic device 1100 includes an input device 1101 , an input interface 1102 , a central processing unit 1103 , a memory 1104 , an output interface 1105 , an output device 1106 and a bus 1107 .
  • the input interface 1102, the central processing unit 1103, the memory 1104, and the output interface 1105 are connected to each other through the bus 1107, and the input device 1101 and the output device 1106 are respectively connected to the bus 1107 through the input interface 1102 and the output interface 1105, and then to other components of the computing device 1100. Component connection.
  • the input device 1101 receives input information from the outside, and transmits the input information to the central processing unit 1103 through the input interface 1102; the central processing unit 1103 processes the input information based on the computer-executable instructions stored in the memory 1104 to generate output information, temporarily or permanently store the output information in the memory 1104, and then transmit the output information to the output device 1106 through the output interface 1105; the output device 1106 outputs the output information to the outside of the computing device 1100 for the user to use.
  • the electronic device 1100 is configured to execute the random access method described in the above embodiments.
  • the electronic device shown in FIG. 11 may be implemented as a random access system, and the random access system may include: a memory configured to store a computer program; and a processor configured to run the memory stored in the memory The computer program to execute the random access method described in the above embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the random access method described in the foregoing embodiments is implemented.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of a mobile device executing computer program instructions, eg, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种随机接入方法及装置、一种终端、一种电子设备和一种计算机可读存储介质,所述随机接入方法包括:依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度,确定时间调整步长;依据从定位系统中获取到的定位信息,确定初始时间提前量;依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量(TA);以及依据TA,向基站发起至少一轮随机接入尝试,直至当前终端成功接入基站。

Description

随机接入方法及装置、终端、电子设备和计算机可读存储介质
相关申请的交叉引用
本申请要求于2020年12月24日提交的中国专利申请NO.202011545037.4的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及无线通信技术领域,具体涉及随机接入方法及装置、终端、电子设备和计算机可读存储介质。
背景技术
在无线通信系统中,例如,在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络中或长期演进(Long Term Evolution,LTE)网络中,随机接入(Random Access,RA)技术是一种重要的接收机接入控制技术,终端的接收机通过随机接入过程(Random Access Procedure,RAP)完成对上行定时的同步和校正、终端的功率调整、以及终端的资源请求等操作。
但是,在小区覆盖要求超出协议(或,通信系统)支持的最大覆盖半径的情况下,终端若按照正常的随机接入流程进行随机接入,可能无法成功接入基站。若借助全球定位系统(Global Positioning System,GPS)信息来辅助随机接入,则由于通过GPS信息计算的距离和无线信号实际传播的距离之间存在误差,在该误差大于该终端所处的服务小区能够覆盖的最大距离的情况下,可能会导致终端接入失败;并且,在终端进行小区切换的过程中,也可能会导致终端接入失败。
公开内容
本申请实施例提供一种随机接入方法,包括:依据当前终端所处的服务小区配置的物理随机接入信道(Physical Random Access Channel,PRACH)格式和无线信号传播速度,确定时间调整步长;依据从定位系统中获取到的定位信息,确定初始时间提前量;依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量(Timing Advance,TA);以及依据TA,向基站发起至少一轮随机接入尝试,直至当前终端成功接入基站。
本申请实施例提供一种随机接入方法,包括:依据获取到的服务基站的信息和目标基站的信息,确定调整时长;依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量TA;依据当前终端维护的TA和调整时长,确定向目标基站发起随机接入的TA;以及依据向所述目标基站发起随机接入的TA,发送随机接入请求至目标基站。
本申请实施例提供一种随机接入装置,包括:时间调整步长确定模块,配置为依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度,确定时间调整步长;初始时间提前量确定模块,配置为依据从定位系统中获取到的定位信息,确定初始时间提前量;时间提前量确定模块,配置为依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量TA;以及随机接入模块,配置为依据TA,向基站发起至少一轮随机接入尝试,直至当前终端成功接入基站。
本申请实施例提供一种随机接入装置,包括:调整时长确定模块,配置为依据获取到的服务基站的信息和目标基站的信息,确定调整时长;第一确定模块,配置为依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量TA;第二确定模块,配置为依据当前终端维护的TA和调整时长,确定向目标基站发起随机接入的TA;以及发送模块,配置为依据向目标基站发起随机接入的TA,发送随机接入请求至目标基站。
本申请实施例提供一种终端,包括:上述任意一种随机接入装置。
本申请实施例提供一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个计算机程序,当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现本申请实施例中的任意一种随机接入方法。
本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种随机接入方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1示出本申请实施例中的随机接入方法的一种流程示意图。
图2示出本申请实施例中的时间提前量的计算方法的流程示意图。
图3示出本申请实施例中的随机接入方法的另一种流程示意图。
图4示出本申请实施例中的随机接入装置的一种组成方框图。
图5示出本申请实施例中的随机接入装置的另一种组成方框图。
图6示出本申请实施例中的5G终端的一种组成方框图。
图7示出本申请实施例中的5G终端的另一种组成方框图。
图8示出本申请实施例中的5G终端在进行初始随机接入时的随机接入方法的流程示意图。
图9示出本申请实施例中的5G终端的另一种组成方框图。
图10示出本申请实施例中的5G终端在进行小区切换时的随机接入方法的流程示意图。
图11示出能够实现根据本申请实施例的随机接入方法和装置的电子设备的示例性硬件架构的结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突 的情况下,本申请中的各实施例及实施例中的各特征可以相互任意组合。
通信系统中常用的同步算法包括恒包络零自相关(Constant Amplitude Zero Auto Correlation,CAZAC)序列,由于CAZAC序列中的Zadoff-Chu(ZC)序列具有良好的自相关性和互相关性,第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新空口(New Radio,NR)中的物理随机接入信道(Physical Random Access Channel,PRACH)使用ZC序列作为上行同步序列,应用于上行同步过程。不同终端使用相同的ZC根序列的不同循环移位生成PRACH前导序列,或,使用不同的ZC根序列生成PRACH前导序列。需要说明的是,上行同步过程包括上行同步建立过程、上行同步保持过程以及切换过程中的上行同步控制过程;“上行同步建立过程”即终端的初始随机接入过程;“切换过程中的上行同步控制过程”即终端在进行小区切换的过程中向目标基站发起随机接入的过程;“上行同步保持过程”是终端在成功接入基站后,终端与基站之间保持同步状态的过程。
表1示出本申请实施例中的5G NR中的13种不同的PRACH前导格式,不同的PRACH前导格式支持的小区覆盖半径不同,如表1所示。
表1不同PRACH格式支持的小区覆盖半径
Figure PCTCN2021141202-appb-000001
Figure PCTCN2021141202-appb-000002
上表中,κ=64,μ∈[0,1,2,3,4]。
如表1所示,5G NR系统支持的PRACH格式的最大覆盖范围为100千米。但是,对于航线等超远覆盖场景,覆盖要求远远大于100千米,甚至可以达到300千米,导致5G NR系统无法满足该覆盖要求,并且,在小区覆盖要求超出协议(或,通信系统)支持的最大覆盖半径的情况下,终端若按照正常的随机接入流程进行随机接入,可能无法成功接入基站。若借助全球定位系统(Global Positioning System,GPS)信息来辅助随机接入,则由于通过GPS信息计算的距离和无线信号实际传播的距离之间存在误差,在该误差大于该终端所处的服务小区能够覆盖的最大距离的情况下,可能会导致终端接入失败;并且在终端进行小区切换的过程中,也可能会导致终端接入失败。
图1示出本申请实施例中的随机接入方法的一种流程示意图。该随机接入方法可应用于随机接入装置,也可以应用于终端。如图1所示,本申请实施例中的随机接入方法可以包括以下步骤S110至S140。
步骤S110,依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度,确定时间调整步长。
需要说明的是,不同的PRACH格式对应的服务小区的覆盖范围不同,每个服务小区可以根据需要配置不同的PRACH格式,以适应不同的应用环境。
在一些实施方式中,所述依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度确定时间调整步长包括:依据PRACH格式,确定服务小区的覆盖半径;依据服务小区的覆盖半径和无线信号传播速度,确定获得预设时间调整步长阈值;以及依据预设时间调整步长阈值,确定时间调整步长,时间调整步长大于或等于0,且,小于或等于预设时间调整步长阈值。
例如,可通过服务小区配置的PRACH格式查询表1,获得PRACH格式对应的服务小区的覆盖半径。例如,服务小区配置的PRACH格式是1,通过查询表1,可知对应的随机接入码的长度为839,服务小区的最大可支持的覆盖半径是100千米,无线信号传播速度可以是光速(即约300000千米/秒),进而计算获得时间调整步长。需要说明的是,此时的服务小区的覆盖半径可根据配置信息,设置为大于或等于0,且,小于或等于100千米的值。
步骤S120,依据从定位系统中获取到的定位信息,确定初始时间提前量。
定位系统可以是全球定位系统(Global Positioning System,GPS),也可以是北斗卫星导航系统、伽利略卫星导航系统或俄罗斯全球导航卫星系统中的任意一种或多种不同的定位系统,不同的定位系统,获得的定位信息不同,但该定位信息可以包括当前终端所处的位置与服务基站所处的位置,通过以上位置信息,计算当前终端与服务基站之间的相对位置信息,进而计算获得初始时间提前量,以保证初始时间提前量的准确性。
需要说明的是,以上对于定位系统仅是举例说明,其他未说明的定位系统也在本申请的保护范围之内,可根据具体情况具体设定,在此不再赘述。
在一些实施方式中,所述依据从定位系统中获取到的定位信息确定初始时间提前量包括:从定位系统中获取当前终端与基站之间的真实距离;以及在确定真实距离大于预设距离阈值的情况下,依据真实距离和无线信号传播速度,确定获得初始时间提前量。
通过借助定位系统获得的定位信息,能够更精确地获知当前终端所处的位置,以及当前终端与服务小区对应的基站之间的真实距离;然后,根据当前终端所处的服务小区配置的物理随机接入信道格式,可确定该服务小区的最大覆盖半径,通过最大覆盖半径、真实距离和无线信号传播速度,可使计算获得的初始时间提前量更准确。
需要说明的是,在确定当前终端与服务小区对应的基站之间的真实距离大于预设距离阈值(例如,预设的小区覆盖半径)的情况下,表征当前终端处于服务基站的覆盖范围的边缘地带或当前终端处于距离服务基站更远的地方(例如,当前终端在距离服务基站300千米的地方,而该服务基站中的小区配置的最大覆盖半径为100千米)。当前终端接收到的服务基站的通信信号质量有可能较差,通过最大覆盖半径、真实距离和无线信号传播速度,计算获得初始时间提前量,可降低距离误差对终端随机接入服务基站的成功率的影响,距离误差是通过定位信息计算的距离和无线信号实际传播的距离之间的差值,有助于对当前终端进行高精度的调整,为后续发送随机接入请求做好准备。
步骤S130,依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量。
时间提前量(Timing Advance,TA),用于表示演进型基站(eNodeB)接收到终端发送的数据的定时偏差的参量,时间提前量TA的物理意义是指终端与eNodeB之间的来回时延。PRACH是终端初始发起随机接入时的接入信道,用于传输随机接入请求和数据报文。
通过时间调整步长、尝试轮数和初始时间提前量确定的TA,可使获得的时间提前量TA更准确,保证当前终端所发送的随机接入请求能够被服务基站成功地接收到,提升当前终端接入服务基站的成功率。在服务基站接收到随机接入请求时,服务基站会判断当前时间点 是否有空闲资源用于处理当前终端的随机接入请求,若服务基站有空闲资源,则会对当前终端做出响应,使当前终端成功接入到服务基站中。
步骤S140,依据时间提前量,向基站发起至少一轮随机接入尝试,直至当前终端成功接入基站。
通过步骤130计算获得的精确度更高的TA,向基站发送随机接入请求,能够使当前终端在小区覆盖要求超出协议支持的最大覆盖半径(例如,100千米)的情况下,仍能够准确的依据该TA向基站发送随机接入请求,提升成功接入基站的概率。
在本实施例中,通过依据当前终端所处的服务小区配置的物理随机接入信道格式和无线信号传播速度,确定时间调整步长,保证了对时间的调整的精确性;依据从定位系统中获取到的定位信息,确定初始时间提前量,对时间提前量进行了初始化;依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量TA,从而可使TA更准确,确保在小区覆盖要求超出协议(或,通信系统)支持的最大覆盖半径的情况下,仍能够准确的依据该TA向基站发送随机接入请求,并成功接入该基站,避免了当前终端接入失败的情况发生,提高了终端随机接入的成功率,提升了用户体验度。
图2示出本申请实施例中的时间提前量的计算方法的流程示意图。如图2所示,在一些实施方式中,步骤S130中的所述依据时间调整步长、尝试轮数和初始时间提前量确定时间提前量,可采用如下步骤S131至S134实现。
步骤S131,依据时间调整步长、本轮的尝试轮数和初始时间提前量,确定本轮的TA。
本轮的尝试轮数可以是1,也可以是大于1的整数,保证确定的本轮的TA能够更准确,使终端依据本轮的TA向服务基站发送随机接入请求的发送时间更靠近服务基站的处理时间窗口,保证服务基站能够更快地处理该随机接入请求,提升随机接入的成功率。
在一些实施方式中,所述依据时间调整步长、尝试轮数和初始时间提前量确定时间提前量TA包括:在进行第一轮随机接入尝试的 情况下,将时间调整步长设置为0,将初始时间提前量确定为第一轮随机接入尝试的TA。
初始时间提前量是在确定真实距离大于预设距离阈值的情况下,依据真实距离和无线信号传播速度,计算获得的时间提前量,通过将该初始时间提前量确定为第一次随机接入尝试的时间提前量TA,并依据该初始时间提前量,多次循环发送随机接入请求至服务基站,保证服务基站能够成功地接收到当前终端发送的随机接入请求,提升当前终端随机接入服务基站的成功率。
步骤S132,依据本轮的TA,向基站循环发送随机接入请求。
每轮随机接入的尝试次数相同,通过每轮不同的TA,向基站发起至少一轮的随机接入尝试,加快当前终端接入基站的速度,使当前终端能够尽快地接入到基站,提升随机接入的准确度。
例如,在每轮尝试的过程中,可发送K次随机接入请求给基站,以使当前终端能够尽快地接入到基站中,K为大于或等于1的整数。
步骤S133,在确定本轮随机接入失败的情况下,更新尝试轮数。
需要说明的是,若当前终端处于随机接入失败状态,且通过多次尝试,依然无法成功接入到服务基站中,则表示当前终端可能距离服务基站太远,有可能错过了服务基站的处理窗口期,需要更新尝试轮数,进入下一轮的随机接入尝试,保证服务基站能够成功接收到当前终端发送的随机接入请求。
步骤S134,依据时间调整步长、更新后的尝试轮数和初始时间提前量,确定下一轮的TA。
时间调整步长可通过服务小区的预设覆盖半径阈值和无线信号传输速度计算获得。例如,查询表1可知,在服务小区的预设覆盖半径阈值是22千米时,则通过22千米和无线信号传播速度,计算获得时间调整步长,从而可使时间调整步长能够符合服务小区的覆盖范围,保证了后续对随机接入请求发送时间的调整的准确度。
在一些实施方式中,每轮的TA通过如下公式计算获得:
TA N=TA 0±(N-1)*Δ TA
TA 0表示初始时间提前量,N表示尝试轮数,N为大于或等于1 的整数,Δ TA表示时间调整步长,TA N表示第N轮的时间提前量TA。
当N等于1时,第1轮的TA表示为:TA 1=TA 0;当N等于2时,第2轮的TA表示为:TA 1=TA 0±Δ TA;当N等于3时,第3轮的TA表示为:TA 3=TA 0±2*Δ TA;……;第N轮的TA表示为:TA N=TA 0±(N-1)*Δ TA。通过以Δ TA作为时间调整步长,动态调整每一轮的TA的精度,使当前终端能够扩大尝试范围,加快对发送随机接入请求的发送时间的调整,使当前终端能够快速地接入到服务基站中,提升随机接入的效率。
通过多轮随机接入尝试,并且在每轮尝试发送随机接入请求完成后,都更新尝试轮数,依据时间调整步长、更新后的尝试轮数和初始时间提前量,计算下一轮的TA,保证下一轮的TA能够更准确,提升当前终端成功接入服务基站的概率。
在本实施例中,通过不同的TA向服务基站发起至少一轮的随机接入尝试,保证服务基站能够成功接收到当前终端发送的随机接入请求,确保在当前终端距离服务基站较远的情况下,仍然能够成功接入该服务基站,避免了边缘区域内的终端接入失败的情况发生,提高了终端随机接入的成功率,提升了用户体验度。
图3示出本申请实施例中的随机接入方法的另一种流程示意图。该随机接入方法可应用于随机接入装置或终端。如图3所示,本申请实施例中的随机接入方法可以包括以下步骤S310至S340。
步骤S310,依据获取到的服务基站的信息和目标基站的信息,确定调整时长。
在一些实施方式中,步骤310中的所述依据获取到的服务基站的信息和目标基站的信息确定调整时长包括:从服务基站的信息中提取第一距离,第一距离是实时测量的当前终端与服务基站之间的距离;从目标基站的信息中提取第二距离,第二距离是实时测量的当前终端与目标基站之间的距离;以及依据第一距离、第二距离和无线信号传播速度,计算获得调整时长。
例如,第一距离和第二距离都是根据北斗卫星导航系统中的定位信息实时测量获得的距离,保证了第一距离和第二距离的精准度。 通过以下公式计算获得调整时长:调整时长=(第二距离-第一距离)/无线信号传播速度,可保证调整时长的精确度,使当前终端能够更快、更准确地切换至目标基站,使用户快速地获得目标基站所提供的通信服务,提升了用户体验度。
在一些实施方式中,步骤310中的所述依据获取到的服务基站的信息和目标基站的信息确定调整时长包括:从服务基站的信息中提取当前下行信号的帧头信息;从目标基站的信息中提取目标下行信号的帧头信息;以及依据当前下行信号的帧头信息和目标下行信号的帧头信息,确定调整时长。
需要说明的是,帧头信息包括下行子帧的开始时间,根据当前下行信号的开始时间和目标下行信号的开始时间,可计算获得调整时长,以保证调整时长更精确,保证后续随机接入请求的发送时间的准确性。
在一些实施方式中,步骤310中的所述依据获取到的服务基站的信息和目标基站的信息确定调整时长包括:依据预先存储的服务基站的位置信息和目标基站的位置信息,确定服务基站和目标基站之间的第三距离;以及依据第三距离和无线信号传播速度,计算获得调整时长。
例如,从通信系统中,分别提取预先存储的服务基站的经纬度信息和目标基站的经纬度信息,根据经纬度信息来计算获得服务基站和目标基站之间的第三距离,不仅保证了第三距离的准确性,还能够加快对调整时长的计算速度,加快后续计算随机接入请求的发送时间的计算速度,使用户能够更快、更准确地切换至目标基站中,保证当前终端的通信服务质量。
步骤S320,依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量。
当前终端维护的时间提前量是依据当前终端到服务基站的真实距离和无线信号传播速度,确定的时间提前量。
需要说明的是,在当前终端成功接入服务基站之后,且,在当前终端接收到切换请求之前,当前终端会移动,有可能会超出服务基 站对应的小区的覆盖范围,而进入到目标基站对应的小区的覆盖范围之内。此时,当前终端会接收到切换指令,该切换指令用于使当前终端切换到目标基站,以使目标基站能够为当前终端提供更优的通信服务。因此,当前终端维护的时间提前量是通过当前终端到服务基站的真实距离和无线信号传播速度确定的时间提前量,保证当前终端在进行小区切换的过程中,可快速向目标基站发起随机接入,加快当前终端的切换速度,使当前终端能够获得更优的通信服务,提升用户服务质量。
步骤S330,依据当前终端维护的TA和调整时长,确定向目标基站发起随机接入的TA。
调整时长可以通过步骤310中的不同实施方式获得,以使该调整时长更准确,进而提升向目标基站发起随机接入的TA的准确度。
例如,计算当前终端维护的TA和调整时长之间的差值,依据该差值确定向目标基站发起随机接入的TA,提升终端在进行小区切换时的TA的准确度。
步骤S340,依据向目标基站发起随机接入的TA,发送随机接入请求至目标基站。
通过向目标基站发起随机接入的TA,可计算获得实际向目标基站发送随机接入请求的发送时间,在该发送时间向目标基站发送随机接入请求,能够使目标基站在接收到当前终端发送的随机接入请求时,更靠近目标基站的处理窗口期,保证目标基站能够快速地对当前终端的随机接入请求进行处理,提高随机接入的成功率,进而使当前终端尽快地切换至目标基站,提升用户体验度。
在本实施例中,通过依据获取到的服务基站的信息和目标基站的信息,确定调整时长,通过不同的计算方式,计算获得调整时长,保证调整时长的精确性;依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量,并结合当前终端维护的TA和调整时长,确定向目标基站发起随机接入的TA;依据向目标基站发起随机接入的TA,发送随机接入请求至目标基站,保证当前终端能够快速的切换至目标基站,保证当前终端的通信服务质量,提升用户体验 度。
下面结合附图,详细介绍本申请实施例中的随机接入装置。图4示出本申请实施例中的随机接入装置的一种组成方框图。如图4所示,该随机接入装置可以包括时间调整步长确定模块401、初始时间提前量确定模块402、时间提前量确定模块403和随机接入模块404。
时间调整步长确定模块401配置为依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度,确定时间调整步长;初始时间提前量确定模块402配置为依据从定位系统中获取到的定位信息,确定初始时间提前量;时间提前量确定模块403配置为依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量TA;以及随机接入模块404配置为依据TA,向基站发起至少一轮随机接入尝试,直至当前终端成功接入基站。
在一些实施方式中,所述时间提前量确定模块403可包括第一确定子模块、发送子模块、更新子模块和第二确定子模块。
第一确定子模块配置为依据时间调整步长、本轮的尝试轮数和初始时间提前量,确定本轮的TA;发送子模块配置为依据本轮的TA,向基站循环发送随机接入请求;更新子模块配置为在确定本轮随机接入失败的情况下,更新尝试轮数;以及第二确定子模块配置为依据时间调整步长、更新后的尝试轮数和初始时间提前量,确定下一轮的TA。
在一些实施方式中,所述第一确定子模块可包括初始确定模块。
初始确定模块配置为在进行第一轮随机接入尝试的情况下,将时间调整步长设置为0,将初始时间提前量确定为第一轮随机接入尝试的TA。
在一些实施方式中,所述时间调整步长确定模块401可包括覆盖半径确定子模块、步长阈值确定子模块和时间调整步长确定子模块。
覆盖半径确定子模块配置为依据PRACH格式,确定服务小区的覆盖半径;步长阈值确定子模块配置为依据服务小区的覆盖半径和无线信号传播速度,确定获得预设时间调整步长阈值;以及时间调整步长确定子模块配置为依据预设时间调整步长阈值,确定时间调整步长, 时间调整步长大于或等于0,且,小于或等于预设时间调整步长阈值。
在一些实施方式中,所述初始时间提前量确定模块402可包括获取子模块和初始时间提前量确定子模块。
获取子模块配置为从定位系统中获取当前终端与基站之间的真实距离;以及初始时间提前量确定子模块配置为在确定真实距离大于预设距离阈值的情况下,依据真实距离和无线信号传播速度,确定获得初始时间提前量。
在本实施例中,通过时间调整步长确定模块401依据当前终端所处的服务小区配置的物理随机接入信道格式和无线信号传播速度,确定时间调整步长,保证了对时间的调整的精确性;使用初始时间提前量确定模块402依据从定位系统中获取到的定位信息,确定初始时间提前量,对时间提前量进行初始化;使用时间提前量确定模块403依据时间调整步长、尝试轮数和初始时间提前量,确定时间提前量TA,使TA更准确,确保在小区覆盖要求超出协议(或,通信系统)支持的最大覆盖半径的情况下,能够使用随机接入模块404准确的依据该TA向基站发送随机接入请求,并成功接入该基站,避免了当前终端接入失败的情况发生,提高了终端随机接入的成功率,提升了用户体验度。
图5示出本申请实施例中的随机接入装置的另一种组成方框图。如图5所示,该随机接入装置可包括调整时长确定模块501、第一确定模块502、第二确定模块503和发送模块504。
调整时长确定模块501配置为依据获取到的服务基站的信息和目标基站的信息,确定调整时长;第一确定模块502配置为依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量TA;第二确定模块503配置为依据当前终端维护的到服务基站的TA和调整时长,确定向目标基站发起随机接入的TA;以及发送模块504配置为依据向目标基站发起随机接入的TA,发送随机接入请求至目标基站。
在一些实施方式中,所述调整时长确定模块501可包括第一提取子模块、第二提取子模块和第一调整子模块。
第一提取子模块配置为从服务基站的信息中提取第一距离,第一距离是实时测量的当前终端与服务基站之间的距离;第二提取子模块配置为从目标基站的信息中提取第二距离,第二距离是实时测量的当前终端与目标基站之间的距离;以及第一调整子模块配置为依据第一距离、第二距离和无线信号传播速度,确定调整时长。
在一些实施方式中,所述调整时长确定模块501可包括第三提取子模块、第四提取子模块和第二调整子模块。
第三提取子模块配置为从服务基站的信息中提取当前下行信号的帧头信息;第四提取子模块配置为从目标基站的信息中提取目标下行信号的帧头信息;以及第二调整子模块配置为依据当前下行信号的帧头信息和目标下行信号的帧头信息,确定调整时长。
在一些实施方式中,所述调整时长确定模块501可包括距离确定子模块和第三调整子模块。
距离确定子模块配置为依据预先存储的服务基站的位置信息和目标基站的位置信息,确定服务基站和目标基站之间的第三距离;以及第三调整子模块配置为依据第三距离和无线信号传播速度,确定调整时长。
在本实施例中,通过调整时长确定模块501依据获取到的服务基站的信息和目标基站的信息,确定调整时长,保证调整时长的精确性;使用第一确定模块502依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量,并使用第二确定模块503依据当前终端维护的TA和调整时长,确定向目标基站发起随机接入的TA;使用发送模块504依据向目标基站发起随机接入的TA,发送随机接入请求至目标基站,保证当前终端能够快速地切换至目标基站,保证当前终端的通信服务质量,提升用户体验度。
在一些实施方式中,本申请中的任意一种随机接入方法还可以应用于终端,该终端包括如图4或图5所示的随机接入装置。
需要说明的是,本申请中的终端包括但不局限于上文实施例中所描述并在图中示出的随机接入装置。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的模块、装置的具体工 作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
终端通过不同的随机接入装置,确定时间提前量TA,使TA更准确;确保在小区覆盖要求超出协议(或,通信系统)支持的最大覆盖半径的情况下,当前终端仍能够准确的依据该TA向基站发送随机接入请求,并成功接入该基站,避免了当前终端接入失败的情况发生,提高了终端随机接入的成功率,提升了用户体验度。
图6示出本申请实施例中的5G终端的另一种组成方框图。如图6所示,5G终端可包括第一调整模块601和第一发射模块602。
第一调整模块601配置为根据5G终端所处的服务小区配置的物理随机接入信道(Physical Random Access Channel,PRACH)格式、全球定位系统(Global Positioning System,GPS)信息中的基站信息和5G终端信息,计算获得发送随机接入请求给5G基站的时间提前量。
第一发射模块602配置为依据时间提前量,多次发送随机接入请求给5G基站。
在本实施例中,通过5G终端所处的服务小区配置的PRACH格式、GPS信息中的基站信息和5G终端信息,计算获得发送随机接入请求给5G基站的时间提前量,使该时间提前量能够更准确;依据该时间提前量,向5G基站发起多次随机接入,可保证处于网络边缘的5G终端能够成功接入到5G网络中,提高终端随机接入的成功率,提升用户体验度。
图7示出本申请实施例中的5G终端的另一种组成方框图。如图7所示,5G终端可包括第一调整模块601、第二调整模块603和第二发射模块604。
第一调整模块601配置为根据5G终端所处的服务小区配置的PRACH格式、GPS信息中的基站信息和5G终端信息,计算获得发送随机接入请求给5G基站的时间提前量。
第二调整模块603配置为依据时间提前量,向基站发起随机接入;统计发送随机接入请求的尝试次数;在确定尝试次数大于预设发送次数,且,5G终端处于随机接入失败状态的情况下,依据时间调 整步长、本轮的尝试轮数和初始时间提前量,确定本轮的TA;依据本轮的TA,向基站循环发送随机接入请求;在确定本轮随机接入失败的情况下,更新尝试轮数;以及依据时间调整步长、更新后的尝试轮数和初始时间提前量,确定下一轮的TA。
第二发射模块604配置为依据下一轮的TA,向基站循环发送随机接入请求,直至当前终端成功接入基站。
例如,采用以下公式计算获得第N轮的TA:TA N=TA 0±(N-1)*Δ TA,TA 0表示初始时间提前量,N表示尝试轮数,N为大于或等于1的整数,Δ TA表示时间调整步长,TA N表示第N轮的时间提前量TA。
需要说明的是,在第N轮的尝试过程中,依据每轮中的TA发送随机接入请求给服务基站,时间调整步长Δ TA可以是根据5G终端所处的服务小区配置的PRACH格式对应的最大覆盖半径和无线信号传播速度,计算获得的时间调整量,以使处于小区边缘的终端能够以最大覆盖半径为步长,快速地调整随机接入请求的尝试发送时间,以更快地接入到服务基站中,提升用户的体验度。
图8示出本申请实施例中的5G终端在进行初始随机接入时的随机接入方法的流程示意图。该随机接入方法可以应用于航线等超远距离覆盖场景下的5G终端的初始随机接入到服务基站的过程。如图8所示,可通过如下步骤S801至S804实现5G终端的初始随机接入过程。
步骤S801,根据5G终端所处的服务小区配置的PRACH格式、GPS信息中的5G基站信息和5G终端信息,计算获得发送随机接入请求给5G基站的时间提前量。
在一些实施方式中,所述时间提前量可采用如下方式计算获得:先通过5G基站信息和5G终端信息,计算获得5G终端与5G基站之间的真实距离,在确定真实距离超过服务小区配置的PRACH格式对应的覆盖半径的情况下,根据真实距离和无线信号传播速度,计算获得时间调整步长Tp0,根据服务小区配置的PRACH格式支持的最大覆盖半径R和无线信号传播速度v,计算获得初始时间提前量Tcell(例如,Tcell为R/v),则通过公式Tpm=2*(Tp0-Tp1)计算获得5G终端发 送随机接入请求的时间提前量Tpm,并通过该时间提前量Tpm,向5G基站循环发送随机接入请求。
0≤Tp1≤Tcell。需要说明的是,Tp1可以是根据不同的PRACH格式对应的小区覆盖半径和无线信号传播速度,设置的不同的时间调整量;也可以是结合不同PRACH格式对应的小区覆盖半径和无线信号传播速度,设置的统一的时间调整量。
步骤S802,依据时间提前量,统计发送随机接入请求的尝试次数。
步骤S803,在确定尝试次数大于预设发送次数,且,5G终端处于随机接入失败状态的情况下,进入N轮随机接入尝试流程。
例如,设定预设发送次数为preambleTransMax(例如,preambleTransMax等于5或10等),5G终端在时间提前量Tpm的范围内,发送随机接入请求的尝试次数大于preambleTransMax,且,该5G终端依然处于随机接入失败状态的情况下,需要进行N轮随机接入尝试流程,最大尝试轮数为N max
在一些实施方式中,依据时间调整步长、本轮的尝试轮数和初始时间提前量,确定本轮的TA;依据本轮的TA,向基站循环发送随机接入请求;在确定本轮随机接入失败的情况下,更新尝试轮数;以及依据时间调整步长、更新后的尝试轮数和初始时间提前量,确定下一轮的TA。
设定时间调整步长为Δ TA,该Δ TA可以是根据当前的服务小区配置的PRACH格式支持的最大覆盖半径R和无线信号传播速度v,计算获得的时间调整量。在每轮随机接入尝试的过程中,可发送K次随机接入请求给5G基站,K为大于或等于1的整数,每轮的TA可采用如下公式计算获得:TA N=TA 0±(N-1)*Δ TA,TA 0表示初始时间提前量,N表示尝试轮数,N为大于或等于1的整数,Δ TA表示时间调整步长,TA N表示第N轮的TA。
当N等于1时,第1轮的TA表示为:TA 1=TA 0;当N等于2时,第2轮的TA表示为:TA 1=TA 0±Δ TA;当N等于3时,第3轮的TA表示为:TA 3=TA 0±2*Δ TA;……;第N轮的TA表示为: TA N=TA 0±(N-1)*Δ TA,从而可保证每一轮的TA更准确,提升当前终端成功接入服务基站的概率。
步骤S804,依据每轮的TA,计算获得尝试发送时间,在尝试发送时间向服务基站循环发送随机接入请求,直至5G终端成功接入服务基站。
在本申请实施例中,解决了5G NR系统中所支持的PRACH格式最大只能覆盖预设长度的问题,扩大了5G基站对应的小区的覆盖范围,通过N轮的尝试,可提升5G终端的随机接入的成功率,避免处于超远距离覆盖场景下的5G终端接入5G基站失败的情况发生,提升用户体验度。
图9示出本申请实施例中的5G终端的另一种组成方框图。如图9所示,5G终端可包括第一调整模块601、第三调整模块605和第三发射模块606。
第一调整模块601配置为根据5G终端所处的服务小区配置的PRACH格式、GPS信息中的基站信息和5G终端信息,计算获得发送随机接入请求给5G基站的时间提前量。
第三调整模块605配置为依据时间提前量,计算获得随机接入请求的第一发送时间,依据该第一发送时间发送随机接入请求给服务基站,并成功接入该服务基站;在5G终端接收到切换指令的情况下,分别计算5G终端到服务小区的第一距离,以及该5G终端到目标小区的第二距离,并依据第一距离、第二距离和无线信号传播速度,计算获得调整时长;以及依据第一发送时间和调整时长,确定第二发送时间。
第三发射模块606配置为在第二发送时间,向目标小区对应的目标基站发送随机接入请求,直至5G终端成功切换至目标基站。
图10示出本申请实施例中的5G终端在进行小区切换时的随机接入方法的流程示意图。该随机接入方法可以应用于5G终端成功接入服务基站之后,但接收到服务基站发送的切换指令后,需要切换至目标基站的场景中。如图10所示,可通过如下步骤S1001至S1005实现终端在进行小区切换时的随机接入过程。
步骤S1001,在确定5G终端成功接入服务基站且获取到切换指令的情况下,获取服务基站的信息和目标基站的信息。
步骤S1002,依据服务基站的信息和目标基站的信息,确定调整时长。
在一些实施方式中,所述调整时长可通过如下方式计算获得:从服务基站的信息中提取第一距离,第一距离是实时测量的5G终端与服务基站之间的距离;从目标基站的信息中提取第二距离,第二距离是实时测量的5G终端与目标基站之间的距离;以及依据第一距离、第二距离和无线信号传播速度,计算获得调整时长。
例如,第一距离和第二距离都是根据GPS信息中的定位信息实时测量获得的距离,保证了第一距离和第二距离的精准度。采用如下公式计算获得调整时长:调整时长=(第二距离-第一距离)/无线信号传播速度,可保证调整时长的精确度,使当前终端能够更快、更准确地切换至目标基站,使用户快速地获得目标基站所提供的通信服务,提升用户体验度。
在一些实施方式中,所述调整时长可通过如下方式计算获得:从服务基站的信息中提取当前下行信号的帧头信息;从目标基站的信息中提取目标下行信号的帧头信息;以及依据当前下行信号的帧头信息和目标下行信号的帧头信息,确定调整时长。
例如,提取当前下行信号的帧头信息中的第一帧头时间,提取目标下行信号的帧头信息中的第二帧头时间,则调整时长=第一帧头时间-第二帧头时间。通过以数据帧为单位,计算获得调整时长,提升了调整时长的精度,保证了后续随机接入请求的发送时间的准确性。
在一些实施方式中,所述调整时长可通过如下方式计算获得:依据预先存储的服务基站的位置信息和目标基站的位置信息,确定服务基站和目标基站之间的第三距离;以及依据第三距离和无线信号传播速度,计算获得调整时长。
需要说明的是,第三距离是根据预先存储的服务基站的位置信息和目标基站的位置信息确定的距离,例如,在建立服务基站时,可 记录服务基站对应的经纬度信息至通信系统中,同样的,在建立目标基站时,可记录目标基站对应的经纬度信息至通信系统中,在计算调整时长时,可直接从通信系统中提取以上两个基站的经纬度信息,即可获知这两个基站的位置信息,进而计算获得第三距离,以提升对调整时长的计算效率,使用户能够得到更好的通信服务。
需要说明的是,以上对于调整时长的计算方法仅是举例说明,可根据实际情况进行具体设定,其他未说明的调整时长的计算方法也在本申请的保护范围之内,在此不再赘述。
步骤S1003,依据当前终端的位置信息和服务基站的信息,确定当前终端维护的时间提前量TA。
当前终端维护的时间提前量是依据当前终端到服务基站的真实距离和无线信号传播速度,确定的时间提前量。
步骤S1004,依据当前终端维护的TA和调整时长,确定向目标基站发起随机接入的TA。
调整时长可以通过步骤S1002中的不同实施方式获得,使该调整时长更准确,进而提升向目标基站发起随机接入的TA的准确度。
步骤S1005,依据向目标基站发起随机接入的TA,向目标基站发送随机接入请求。
在本申请实施例中,在确定5G终端成功接入服务基站且获取到切换指令的情况下,通过不同的计算方式,计算获得调整时长,进而依据第一发送时间和调整时长,确定第二发送时间,并在第二发送时间向目标基站发送随机接入请求,以保证5G终端能够快速地切换至目标基站,保证5G终端的通信服务质量,提升用户体验度。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的模块、装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图11示出能够实现根据本申请实施例的随机接入方法和装置的电子设备的示例性硬件架构的结构图。
如图11所示,电子设备1100包括输入设备1101、输入接口1102、 中央处理器1103、存储器1104、输出接口1105、输出设备1106和总线1107。输入接口1102、中央处理器1103、存储器1104、以及输出接口1105通过总线1107相互连接,输入设备1101和输出设备1106分别通过输入接口1102和输出接口1105与总线1107连接,进而与计算设备1100的其他组件连接。
具体地,输入设备1101接收来自外部的输入信息,并通过输入接口1102将输入信息传送到中央处理器1103;中央处理器1103基于存储器1104中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器1104中,然后通过输出接口1105将输出信息传送到输出设备1106;输出设备1106将输出信息输出到计算设备1100的外部,供用户使用。电子设备1100用以执行上述实施例描述的随机接入方法。
在一些实施方式中,图11所示的电子设备可以被实现为一种随机接入系统,该随机接入系统可以包括:存储器,配置为存储计算机程序;以及处理器,配置为运行存储器中存储的计算机程序,以执行上述实施例描述的随机接入方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例描述的随机接入方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中、或者通过硬件、或者通过软件和硬件的组合实现。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者是以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (14)

  1. 一种随机接入方法,包括:
    依据当前终端所处的服务小区配置的物理随机接入信道(PRACH)格式和无线信号传播速度,确定时间调整步长;
    依据从定位系统中获取到的定位信息,确定初始时间提前量;
    依据所述时间调整步长、尝试轮数和所述初始时间提前量,确定时间提前量(TA);以及
    依据所述TA,向基站发起至少一轮随机接入尝试,直至所述当前终端成功接入所述基站。
  2. 根据权利要求1所述的方法,其中,所述依据所述时间调整步长、尝试轮数和所述初始时间提前量确定时间提前量TA包括:
    依据所述时间调整步长、本轮的尝试轮数和所述初始时间提前量,确定本轮的TA;
    依据所述本轮的TA,向所述基站循环发送随机接入请求;
    在确定本轮随机接入失败的情况下,更新所述尝试轮数;以及
    依据所述时间调整步长、更新后的尝试轮数和所述初始时间提前量,确定下一轮的TA。
  3. 根据权利要求2所述的方法,其中,所述依据所述时间调整步长、本轮的尝试轮数和所述初始时间提前量确定本轮的TA包括:
    在进行第一轮随机接入尝试的情况下,将所述时间调整步长设置为0,将所述初始时间提前量确定为所述第一轮随机接入尝试的TA。
  4. 根据权利要求1所述的方法,其中,所述依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度确定时间调整步长包括:
    依据所述PRACH格式,确定所述服务小区的覆盖半径;
    依据所述服务小区的覆盖半径和所述无线信号传播速度,确定 获得预设时间调整步长阈值;以及
    依据所述预设时间调整步长阈值,确定所述时间调整步长,其中,所述时间调整步长大于或等于0,且,小于或等于所述预设时间调整步长阈值。
  5. 根据权利要求1所述的方法,其中,所述依据从定位系统中获取到的定位信息确定初始时间提前量包括:
    从所述定位系统中获取所述当前终端与所述基站之间的真实距离;以及
    在确定所述真实距离大于预设距离阈值的情况下,依据所述真实距离和所述无线信号传播速度,确定获得所述初始时间提前量。
  6. 一种随机接入方法,包括:
    依据获取到的服务基站的信息和目标基站的信息,确定调整时长;
    依据当前终端的位置信息和所述服务基站的信息,确定所述当前终端维护的时间提前量TA;
    依据所述当前终端维护的TA和所述调整时长,确定向所述目标基站发起随机接入的TA;以及
    依据所述向所述目标基站发起随机接入的TA,发送随机接入请求至所述目标基站。
  7. 根据权利要求6所述的方法,其中,所述依据获取到的服务基站的信息和目标基站的信息确定调整时长包括:
    从所述服务基站的信息中提取第一距离,其中,所述第一距离是实时测量的所述当前终端与所述服务基站之间的距离;
    从所述目标基站的信息中提取第二距离,其中,所述第二距离是实时测量的所述当前终端与所述目标基站之间的距离;以及
    依据所述第一距离、所述第二距离和无线信号传播速度,确定所述调整时长。
  8. 根据权利要求6所述的方法,其中,所述依据获取到的服务基站的信息和目标基站的信息确定调整时长包括:
    从所述服务基站的信息中提取当前下行信号的帧头信息;
    从所述目标基站的信息中提取目标下行信号的帧头信息;以及
    依据所述当前下行信号的帧头信息和所述目标下行信号的帧头信息,确定所述调整时长。
  9. 根据权利要求6所述的方法,其中,所述依据获取到的服务基站的信息和目标基站的信息确定调整时长包括:
    依据预先存储的所述服务基站的位置信息和所述目标基站的位置信息,确定所述服务基站和所述目标基站之间的第三距离;以及
    依据所述第三距离和无线信号传播速度,确定所述调整时长。
  10. 一种随机接入装置,包括:
    时间调整步长确定模块,配置为依据当前终端所处的服务小区配置的物理随机接入信道PRACH格式和无线信号传播速度,确定时间调整步长;
    初始时间提前量确定模块,配置为依据从定位系统中获取到的定位信息,确定初始时间提前量;
    时间提前量确定模块,配置为依据所述时间调整步长、尝试轮数和所述初始时间提前量,确定时间提前量TA;以及
    随机接入模块,配置为依据所述TA,向基站发起至少一轮随机接入尝试,直至所述当前终端成功接入所述基站。
  11. 一种随机接入装置,包括:
    调整时长确定模块,配置为依据获取到的服务基站的信息和目标基站的信息,确定调整时长;
    第一确定模块,配置为依据当前终端的位置信息和所述服务基站的信息,确定所述当前终端维护的时间提前量TA;
    第二确定模块,配置为依据所述当前终端维护的到所述服务基站的TA和所述调整时长,确定向所述目标基站发起随机接入的TA;以及
    发送模块,配置为依据所述向所述目标基站发起随机接入的TA,发送随机接入请求至所述目标基站。
  12. 一种终端,包括:
    如权利要求10或11所述的随机接入装置。
  13. 一种电子设备,包括:
    一个或多个处理器;以及
    存储器,其上存储有一个或多个计算机程序,当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至5中任一项所述的随机接入方法,或,如权利要求6至9中任一项所述的随机接入方法。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的随机接入方法,或,如权利要求6至9中任一项所述的随机接入方法。
PCT/CN2021/141202 2020-12-24 2021-12-24 随机接入方法及装置、终端、电子设备和计算机可读存储介质 WO2022135565A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3206303A CA3206303A1 (en) 2020-12-24 2021-12-24 Random access method and apparatus, and terminal, electronic device and computer-readable storage medium
EP21909560.1A EP4266809A1 (en) 2020-12-24 2021-12-24 Random access method and apparatus, and terminal, electronic device and computer-readable storage medium
US18/268,735 US20240049293A1 (en) 2020-12-24 2021-12-24 Random access method and apparatus, and terminal, electronic device and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011545037.4A CN114679794A (zh) 2020-12-24 2020-12-24 随机接入方法、装置、终端、电子设备和可读存储介质
CN202011545037.4 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022135565A1 true WO2022135565A1 (zh) 2022-06-30

Family

ID=82070830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141202 WO2022135565A1 (zh) 2020-12-24 2021-12-24 随机接入方法及装置、终端、电子设备和计算机可读存储介质

Country Status (5)

Country Link
US (1) US20240049293A1 (zh)
EP (1) EP4266809A1 (zh)
CN (1) CN114679794A (zh)
CA (1) CA3206303A1 (zh)
WO (1) WO2022135565A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115066011B (zh) * 2022-08-18 2022-11-22 广州世炬网络科技有限公司 小区管理终端的方法及系统
CN116723585B (zh) * 2023-08-10 2023-11-21 上海移芯通信科技股份有限公司 一种随机接入方法、系统、设备以及存储介质
CN117412397A (zh) * 2023-11-17 2024-01-16 空陆互联(北京)科技有限公司 随机接入方法、收发设备、介质和程序产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106034354A (zh) * 2015-03-17 2016-10-19 苏州简约纳电子有限公司 一种用户设备上行同步时间调整的方法和装置
CN107079367A (zh) * 2014-10-30 2017-08-18 华为技术有限公司 小区间切换的方法、装置及系统
CN107734629A (zh) * 2016-08-10 2018-02-23 中兴通讯股份有限公司 定时提前量的获取、计算、处理方法、装置及系统
CN108366421A (zh) * 2018-02-09 2018-08-03 京信通信系统(中国)有限公司 无线通信系统中的设备接入方法及终端装置、接入点装置
CN108882248A (zh) * 2017-05-16 2018-11-23 西安电子科技大学 基于扇区标识的lte超长距离用户随机接入方法
CN109495961A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
WO2020164362A1 (zh) * 2019-02-14 2020-08-20 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079367A (zh) * 2014-10-30 2017-08-18 华为技术有限公司 小区间切换的方法、装置及系统
CN106034354A (zh) * 2015-03-17 2016-10-19 苏州简约纳电子有限公司 一种用户设备上行同步时间调整的方法和装置
CN107734629A (zh) * 2016-08-10 2018-02-23 中兴通讯股份有限公司 定时提前量的获取、计算、处理方法、装置及系统
CN108882248A (zh) * 2017-05-16 2018-11-23 西安电子科技大学 基于扇区标识的lte超长距离用户随机接入方法
CN109495961A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
CN108366421A (zh) * 2018-02-09 2018-08-03 京信通信系统(中国)有限公司 无线通信系统中的设备接入方法及终端装置、接入点装置
WO2020164362A1 (zh) * 2019-02-14 2020-08-20 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Random Access in NTN", 3GPP DRAFT; R2-2010169, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942855 *

Also Published As

Publication number Publication date
CN114679794A (zh) 2022-06-28
EP4266809A1 (en) 2023-10-25
CA3206303A1 (en) 2022-06-30
US20240049293A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2022135565A1 (zh) 随机接入方法及装置、终端、电子设备和计算机可读存储介质
US20190191400A1 (en) Timing Alignment in an LTE System
US10064110B2 (en) Method and apparatus for handover in wireless communication system
TWI424772B (zh) 用於蜂巢式通信之時序提前增強
EP3592054B1 (en) Method for a mobile station, and mobile station
US8411664B2 (en) Random access preamble collision detection
US20070254656A1 (en) Apparatus, method and computer program product providing uplink synchronization through use of dedicated uplink resource assignment
US20080084849A1 (en) Autonomous timing advance adjustment during handover
WO2018120984A1 (zh) 一种进行同步的方法和终端
US20070149206A1 (en) Method and system for adjusting uplink transmission timing for long term evolution handover
JP2018538717A (ja) Mecプラットフォームハンドオーバー方法、装置、及びシステム
WO2010103990A1 (ja) 移動通信方法、無線基地局及び移動局
JP5357209B2 (ja) 移動通信方法
US20210105822A1 (en) On Multiple PRACH Preambles and Random Access Responses
WO2017080247A1 (zh) 同步方法及装置
US11272471B2 (en) Methods, apparatus and electronic devices for absolute time synchronization
US20220104281A1 (en) Random access method and apparatus
WO2013185674A1 (zh) 随机接入方法及接收机
WO2019001326A1 (zh) 一种随机接入的方法、基站及终端
WO2021094605A1 (en) Positioning of a wireless communication device
EP3918851A1 (en) Time of arrival based timing advance change detection
US11523438B2 (en) Determining device locations based on random access channel signaling
CN110049577B (zh) 一种无线资源控制rrc重建立的方法及装置
WO2022152297A1 (en) Method and apparatus for timing advance
WO2023051891A1 (en) Uplink synchronization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268735

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3206303

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021909560

Country of ref document: EP

Effective date: 20230718

NENP Non-entry into the national phase

Ref country code: DE