WO2018120984A1 - 一种进行同步的方法和终端 - Google Patents
一种进行同步的方法和终端 Download PDFInfo
- Publication number
- WO2018120984A1 WO2018120984A1 PCT/CN2017/105730 CN2017105730W WO2018120984A1 WO 2018120984 A1 WO2018120984 A1 WO 2018120984A1 CN 2017105730 W CN2017105730 W CN 2017105730W WO 2018120984 A1 WO2018120984 A1 WO 2018120984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gnss
- pulse signal
- synchronization
- terminal
- received
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0055—Synchronisation arrangements determining timing error of reception due to propagation delay
Definitions
- the present application relates to the field of wireless communication technologies, and in particular, to a method and a terminal for performing synchronization.
- V2X Vechile-to-Everything
- V2X refers to the exchange of information between the car and the outside world including:
- V2V Communication between the On Broad Unit (OBU) on the car.
- OBU On Broad Unit
- V2I Vechile-to-Infrastructure
- RSU Road Side Unit
- V2P Vechile-to-Pedestrian
- the communication between the 3rd Generation Partnership Project (3GPP) V2X communication devices requires synchronization between all devices.
- the current 3GPP standard provides a synchronization scheme by locating all devices with GNSS (Global Navigation Satellite System (GNSS) synchronizes to synchronize between all devices.
- GNSS Global Navigation Satellite System
- the scheme proposed by the 3GPP standard for V2X equipment to achieve synchronization by receiving GNSS signals is simple and easy, and can solve the synchronization problem between devices on most outdoor roads, but since the GNSS signal receiver receives the signals transmitted by the satellite, the satellite signals are compared. Weak, unable to penetrate buildings or thicker obstacles. This requires that the environment in which the GNSS signal receiving device is used must be open-air, which results in the inability to communicate in an indoor demonstration or in an underground parking lot, a scene in a tunnel, etc. that requires V2X to be synchronized to the GNSS signal.
- the present application provides a method and a terminal for performing synchronization to solve the problem in the prior art if the V2X device does not If the GNSS signal can be synchronized, communication cannot be performed.
- a method for performing synchronization provided by an embodiment of the present application, the method includes:
- the terminal determines a difference between the GNSS second pulse signal and the LTE synchronization signal according to the received GNSS second pulse signal, the LTE synchronization signal, and the TA value;
- the terminal adjusts the synchronization timer according to the determined difference value and the received TA value
- the synchronization timer is adjusted and calibrated according to the determined difference value and the latest received TA value
- the terminal After determining that the GNSS second pulse signal cannot be received, the terminal performs inter-device synchronization according to the second pulse signal output by the synchronization timer.
- the terminal determines, according to the received GNSS second pulse signal and the LTE synchronization signal, that the GNSS second pulse signal starts the second period timer after the terminal receives the LTE synchronization signal;
- the terminal reads the count value of the second period timer after receiving the GNSS second pulse signal
- the terminal determines the difference between the GNSS second pulse signal and the LTE synchronization signal according to the received timing advance TA value and the read count value.
- the terminal determines, according to the received GNSS second pulse signal and the LTE synchronization signal, a difference between the GNSS second pulse signal and the LTE synchronization signal, including:
- the terminal period determines a difference between the GNSS second pulse signal and the LTE synchronization signal
- the terminal adjusts the synchronization timer according to the determined difference value and the received TA value, including:
- the terminal After determining the difference once, the terminal adjusts the synchronization timer according to the determined difference value and the received TA value.
- the terminal before the determining, by the terminal, the difference between the GNSS second pulse signal and the LTE synchronization signal according to the received GNSS second pulse signal and the LTE synchronization signal, the terminal further includes:
- the terminal starts the synchronization timer according to the received LTE synchronization signal.
- the terminal determines that the GNSS second pulse signal cannot be received, including:
- the terminal After the terminal fails to receive the GNSS second pulse signal and reaches the set threshold, it determines that the GNSS second pulse signal cannot be received.
- a terminal for performing synchronization provided by the embodiment of the present application includes:
- a GNSS module for outputting a received GNSS second pulse signal
- a Uu processing module configured to receive an LTE synchronization signal and a TA value, determine a difference between the GNSS second pulse signal and the LTE synchronization signal according to the GNSS second pulse signal, the LTE synchronization signal, and the TA value output by the GNSS module, and determine the difference according to the determined
- the difference and the received TA value adjust the synchronization timer
- a synchronization timer for periodically outputting a second pulse signal
- a PC5 processing module configured to: after determining that the GNSS module cannot receive the GNSS second pulse signal, control the switch module to close a path between the GNSS module for outputting a GNSS second pulse signal, and enable the synchronization timer Pathway
- the switch module is configured to perform an opening and closing operation under the control of the PC5 processing module.
- the Uu processing module is specifically configured to:
- the difference between the GNSS second pulse signal and the LTE synchronization signal is determined according to the received TA value sent by the network side and the read count value.
- the Uu processing module is specifically configured to:
- the period determines the difference between the GNSS second pulse signal and the LTE synchronization signal according to the GNSS second pulse signal and the LTE synchronization signal output by the GNSS module, and adjusts the synchronization timer according to the determined difference value and the received TA value.
- the Uu processing module is further configured to:
- the synchronization timer is started according to the received LTE synchronization signal.
- the PC5 processing module is specifically configured to:
- the terminal determines the difference between the LTE synchronization and the GNSS second pulse signal according to the received GNSS second pulse signal, the LTE synchronization signal, and the TA value, and performs the synchronization timer according to the determined difference value and the received TA value. Adjustment; after the GNSS second pulse signal cannot be received, the inter-device synchronization is performed according to the second pulse signal output by the synchronization timer.
- the terminal of the embodiment of the present application can perform the inter-device synchronization according to the synchronization signal output by the synchronization timer after receiving the GNSS second pulse signal, the device can still synchronize between devices when the synchronization cannot be performed by the GNSS second pulse signal, thereby avoiding It is impossible to synchronize with the GNSS second pulse signal, and communication cannot be performed, which further improves the reliability of the V2X device.
- FIG. 1 is a schematic flowchart of a method for performing synchronization according to an embodiment of the present application
- FIG. 2 is a schematic flowchart of a method for adjusting a synchronization timer according to an embodiment of the present application
- FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of signals of a terminal according to an embodiment of the present application.
- the method for synchronizing in the embodiment of the present application includes:
- Step 100 The terminal determines, according to the received GNSS second pulse signal, a Long Term Evolution (LTE) synchronization signal, and a Timing Advance (TA) value, a difference between the GNSS second pulse signal and the LTE synchronization signal.
- LTE Long Term Evolution
- TA Timing Advance
- Step 101 The terminal adjusts a synchronization timer according to the determined difference value and the received TA value.
- Step 102 After receiving the GNSS second pulse signal, the terminal performs inter-device synchronization according to the synchronization signal output by the synchronization timer.
- the terminal determines the difference between the LTE synchronization and the GNSS second pulse signal according to the received GNSS second pulse signal, the LTE synchronization signal, and the TA value, and performs the synchronization timer according to the determined difference value and the received TA value. Adjustment; after the GNSS second pulse signal cannot be received, the inter-device synchronization is performed according to the second pulse signal output by the synchronization timer.
- the terminal of the embodiment of the present application can perform the inter-device synchronization according to the synchronization signal output by the synchronization timer after receiving the GNSS second pulse signal, the device can still synchronize between devices when the synchronization cannot be performed by the GNSS second pulse signal, thereby avoiding It is impossible to synchronize with the GNSS second pulse signal, and communication cannot be performed, which further improves the reliability of the V2X device.
- the terminal in the embodiment of the present application may be a V2X device, or may be another device that needs to perform synchronization between devices and can receive a GNSS second pulse signal and an LTE synchronization signal.
- the LTE synchronization signal may be an LTE primary synchronization signal or an LTE secondary synchronization signal.
- the embodiment of the present application continuously adjusts the synchronization timer to ensure that the second pulse signal output by the synchronization timer is synchronized with the GNSS second pulse signal, so that after the terminal cannot receive the GNSS second pulse signal, the synchronization can be performed according to the synchronization.
- the second pulse signal output by the timer performs device-to-device synchronization.
- the synchronization timer is adjusted according to a difference between the GNSS second pulse signal and the LTE synchronization signal.
- the terminal starts a second period timer after receiving the LTE synchronization signal
- the terminal reads the count value of the second period timer after receiving the GNSS second pulse signal
- the terminal determines the difference between the GNSS second pulse signal and the LTE synchronization signal according to the received TA value of the LTE synchronization signal sent by the network side and the read count value.
- the embodiment of the present application sets a second period timer for periodically starting the synchronization detection function.
- the terminal needs to determine that it can receive the TA value.
- the terminal can determine whether the uplink is synchronized with the network side. If yes, it can be determined that the TA value can be received; otherwise, it is determined that the TA value cannot be received.
- the terminal may determine whether the current state is a cell camping state, and if so, may determine that the TA value can be received; otherwise, determine that the TA value cannot be received.
- the terminal may perform a cell search, and start a second period timer after the cell search succeeds;
- the terminal reads a System Information Block (SIB) message according to the radio frame header obtained by the second period timer, and obtains available physical random access channel (PRACH) resource information, and uses the acquired information.
- SIB System Information Block
- PRACH physical random access channel
- the terminal After the terminal initiates the random access, or the uplink is synchronized with the network side, after the current state of the latter is the cell resident state, the terminal can receive the Timing Advance Command command sent by the base station to the terminal, and the content carried by the command is 11 bits. TA value.
- Calculating the difference between the GNSS synchronization and the LTE network synchronization signal needs to be performed in an environment where both signals are available. Since the terminal continuously receives the GNSS second pulse signal, the terminal reads the count value of the second period timer after receiving the GNSS second pulse signal, and determines the GNSS second pulse signal according to the received TA value and the read count value. The difference from the LTE sync signal.
- the terminal determines the difference between the GNSS second pulse signal and the LTE synchronization signal according to the count value and the TA value, and can be determined by the following formula:
- ⁇ T 1-t0-TA/2;
- ⁇ T is the difference between the GNSS second pulse signal and the LTE synchronization signal
- t0 is the count value
- the terminal may re-determine the TA value and the count value after each receiving the GNSS second pulse signal, and re-determine the difference of the LTE synchronization signal;
- the terminal After determining the difference once, the terminal adjusts the synchronization timer according to the determined difference value and the received TA value (the actual TA/2 is used here).
- a cycle can also be set.
- the terminal period determines the difference between the GNSS second pulse signal and the synchronization timer.
- the terminal may start the synchronization timer according to the received LTE synchronization signal, and adjust the synchronization timer according to the foregoing manner after starting the synchronization timer.
- the terminal starts the synchronization timer after the second timing interrupt arrives according to the LTE synchronization signal, obtains the TA value, and compensates the TA/2+ ⁇ T into the synchronization timer according to the calculated ⁇ T, so that the synchronization timer can generate GNSS seconds. Synchronization signal with pulse signal alignment. By repeating this process, the output of the synchronization timer can be constantly corrected by acquiring the TA value in synchronization with the base station.
- the terminal Since the environment in which the terminal is located is not fixed, it is possible that the terminal cannot receive the GNSS second pulse signal for a short period of time, and the device can be synchronized without using the second pulse signal output by the synchronization timer.
- a threshold can be set. If the length of time when the GNSS second pulse signal cannot be received reaches the set threshold, it is determined that the second pulse signal output by the synchronization timer needs to be synchronized between devices.
- the terminal After the terminal fails to receive the GNSS second pulse signal and reaches a set threshold, the terminal performs synchronization between devices according to the synchronization signal output by the synchronization timer.
- the specific length of the threshold can be set according to needs, simulations, scenes, and the like.
- the method for adjusting a synchronization timer in this embodiment of the present application includes:
- Step 200 The terminal determines whether the uplink is synchronized with the network side. If yes, step 207 is performed; otherwise, step 201 is performed.
- Step 201 The terminal determines whether the current state is a cell resident state. If yes, step 207 is performed; otherwise, step 202 is performed.
- Step 202 The terminal performs a cell search.
- Step 203 The terminal determines whether the cell search is successful. If yes, step 204 is performed; otherwise, returns to step 202.
- Step 204 After the cell search succeeds, the terminal determines a frame header of the radio frame according to the received LTE synchronization signal, and starts a second period timer in a frame header of the radio frame.
- Step 205 The terminal acquires an SIB message according to the 10 ms timing (that is, the frame header of the radio frame) acquired by the second period timer, and obtains available PRACH resource information therefrom.
- Step 206 The terminal initiates random access by using the acquired PRACH resource information.
- Step 207 The terminal receives the TA information fed back by the base station in the Timing Advance Command (TA command).
- TA command Timing Advance Command
- Step 208 The terminal determines whether a GNSS second pulse signal is received. If yes, step 209 is performed; otherwise, returns to step 208.
- Step 209 The terminal reads the count value of the second period timer.
- Step 210 The terminal determines a difference according to the received TA value sent by the network side and the read count value.
- Step 211 The terminal adjusts the synchronization timer according to the determined difference value and the TA value, and returns to step 200.
- the inter-device synchronization is performed according to the second pulse signal output by the synchronization timer.
- a terminal is provided in the embodiment of the present application.
- the method for solving the problem is similar to the method for synchronizing the embodiment of the present application. Therefore, the implementation of the terminal can refer to the implementation of the method, and the repetition is not Let me repeat.
- the terminal in this embodiment of the present application includes:
- a GNSS module 300 configured to output the received GNSS second pulse signal
- the Uu processing module 301 is configured to receive a difference value and a TA value of the LTE synchronization signal, and determine a difference between the GNSS second pulse signal and the LTE synchronization signal according to the GNSS second pulse signal, the LTE synchronization signal, and the TA value output by the GNSS module, And adjusting the synchronization timer according to the determined difference value and the received TA value;
- a synchronization timer 302 for periodically outputting a second pulse signal
- the PC5 processing module 303 is configured to: after determining that the GNSS module cannot receive the GNSS second pulse signal, control the switch module to close a path between the GNSS module for outputting a GNSS second pulse signal, and enable the synchronization timer Path between
- the switch module 304 is configured to perform an opening and closing operation under the control of the PC5 processing module.
- the Uu processing module 301 is specifically configured to:
- the difference between the GNSS second pulse signal and the LTE synchronization signal is determined according to the received TA value sent by the network side and the read count value.
- the Uu processing module 301 is specifically configured to:
- the period determines the difference between the GNSS second pulse signal and the LTE synchronization signal according to the GNSS second pulse signal and the LTE synchronization signal output by the GNSS module, and adjusts the synchronization timer according to the determined difference value and the received TA value.
- the Uu processing module 301 is further configured to:
- the synchronization timer is started according to the received LTE synchronization signal.
- the PC5 processing module 303 is specifically configured to:
- FIG. 4 is a schematic diagram of signals of a terminal in the embodiment of the present application.
- the output GNSS_PP1S_VALID signal is high level (the GNSS_PP1S_VALID signal indicates that the high and low levels respectively indicate two states, indicating that the GNSS second pulse is valid and invalid);
- the PC5 module pulls the SWITCH_CTL signal low, and switches the second selection switch to GNSS_PP1S (ie, GNSS second pulse signal) to output to the PC5 module as a system synchronization signal;
- the Uu module After detecting the GNSS_PP1S_VALID signal and the GNSS_PP1S signal, the Uu module detects the LTE signal;
- the Uu module determines the difference ⁇ T of the synchronization signal according to the detected LTE signal and the received GNSS_PP1S signal;
- the Uu module synchronizes the timer and compensates the synchronization timer with ⁇ T+TA/2;
- the synchronization timer periodically outputs an LTE_PP1S signal (ie, a second pulse signal).
- the Uu module continuously determines the difference ⁇ T of the sync signal and continuously compensates the sync timer with ⁇ T+TA/2.
- the PC5 module detects that there is no signal in the GNSS, and when the no signal time exceeds a certain threshold, the SWITCH_CTL signal is pulled high, and the switch to the LTE_PP1S is output to the PC5 module as the system synchronization signal;
- the PC5 module pulls the SWITCH_CTL signal low, and switches the second selection switch to the GNSS_PP1S output to the PC5 module as the system synchronization signal.
- the terminal in the embodiment of the present application determines the difference between the LTE synchronization and the GNSS second pulse signal according to the received GNSS second pulse signal, the LTE synchronization signal, and the TA value, and according to the determined difference and the received value.
- the TA value adjusts the synchronization timer; after the GNSS second pulse signal cannot be received, the inter-device synchronization is performed according to the second pulse signal output by the synchronization timer.
- the terminal of the embodiment of the present application can perform the inter-device synchronization according to the synchronization signal output by the synchronization timer after receiving the GNSS second pulse signal, the device can still synchronize between devices when the synchronization cannot be performed by the GNSS second pulse signal, thereby avoiding It is impossible to synchronize with the GNSS second pulse signal, and communication cannot be performed, which further improves the reliability of the V2X device.
- the application can also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the application can take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
- a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or device, or in conjunction with an instruction execution system, Used by the device or device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例涉及无线通信技术领域,特别涉及一种进行同步的方法和终端,用以解决现有技术中存在的如果V2X设备不能通过GNSS信号进行同步则无法进行通信的问题。本申请实施例终端根据接收到的GNSS秒脉冲信号和LTE同步信号、TA值,确定LTE同步和GNSS秒脉冲信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;在无法接收到GNSS秒脉冲信号后,根据同步定时器输出的秒脉冲信号进行设备间同步。由于本申请实施例终端在无法接收到GNSS秒脉冲信号后可以根据同步定时器输出的同步信号进行设备间同步,避免了由于不能通过GNSS秒脉冲信号进行同步,而无法进行通信的情况发生,提高了V2X设备的可靠性。
Description
本申请要求在2016年12月26日提交中国专利局、申请号为201611220824.5、申请名称为“一种进行同步的方法和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信技术领域,特别涉及一种进行同步的方法和终端。
车与万物(Vechile-to-Everything,V2X)车联网技术是一种新兴的物联网通信技术,作为物联网的具体应用,在智能交通领域发挥着越来越重要的作用。
V2X是指车对外界的信息交换包括:
车到车(Vechile-to-Vechile,V2V):车上的车载单元(On Broad Unit,OBU)之间的通信。
车到网络(Vechile-to-Infrastructure,V2I):车和路侧设备(Road Side Unit,RSU)之间的通信。
车到行人(Vechile-to-Pedestrian,V2P):车和行人之间的通信。
第三代移动通信标准化组织(3rd Generation Partnership Project,3GPP)V2X通信设备间实现通信需要所有的设备间保持同步,目前3GPP标准给出的同步方案是通过将所有的设备与全球导航卫星系统(Global Navigation Satellite System,GNSS)同步从而实现所有设备间的同步。
3GPP标准给出的V2X设备通过接收GNSS信号实现同步的方案简单易行,可以解决大部分室外道路上设备间的同步问题,但是由于GNSS信号接收机接收的是卫星发送的信号,由于卫星信号较弱,无法穿透建筑物或者较厚的障碍物。这就要求GNSS信号接收设备的使用环境必须是露天的,这就导致在室内演示或者地下停车场、隧道内的场景等需要使用V2X的环境下,由于系统无法同步到GNSS信号而无法通信。
综上所述,目前如果V2X设备不能通过GNSS信号进行同步,则无法进行通信。
发明内容
本申请提供一种进行同步的方法和终端,用以解决现有技术中存在的如果V2X设备不
能通过GNSS信号进行同步,则无法进行通信的问题。
本申请实施例提供的一种进行同步的方法,该方法包括:
终端根据接收到的GNSS秒脉冲信号、LTE同步信号和TA值,确定GNSS秒脉冲信号和LTE同步信号的差值;
所述终端根据确定的差值和收到的TA值对同步定时器进行调整;
在无GNSS信号的情况下,根据确定的差值、最新接收的TA值对同步定时器进行调整校准;
所述终端在确定无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的秒脉冲信号进行设备间同步。
可选的,所述终端根据接收到的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信所述终端在收到的LTE同步信号后启动秒周期定时器;
所述终端在收到所述GNSS秒脉冲信号后读取秒周期定时器的计数值;
所述终端根据收到的网络侧发送的时间提前量TA值和读取到的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
可选的,所述终端根据接收到的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信号和LTE同步信号的差值,包括:
所述终端周期确定GNSS秒脉冲信号和LTE同步信号的差值;
所述终端根据确定的差值和收到的TA值对同步定时器进行调整,包括:
所述终端在确定一次所述差值后,根据确定的差值和收到的TA值对同步定时器进行调整。
可选的,所述终端根据接收到的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信号和LTE同步信号的差值之前,还包括:
所述终端根据接收到的LTE同步信号启动所述同步定时器。
可选的,所述终端确定无法接收到GNSS秒脉冲信号,包括:
所述终端在无法接收到GNSS秒脉冲信号的时长达到设定阈值后,确定无法接收到GNSS秒脉冲信号。
本申请实施例提供的一种进行同步的终端,该终端包括:
GNSS模块,用于输出收到的GNSS秒脉冲信号;
Uu处理模块,用于接收LTE同步信号和TA值,根据所述GNSS模块输出的GNSS秒脉冲信号、LTE同步信号和TA值,确定GNSS秒脉冲信号和LTE同步信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;
同步定时器,用于周期输出秒脉冲信号;
PC5处理模块,用于在确定所述GNSS模块无法接收到GNSS秒脉冲信号后,控制开关模块关闭与所述GNSS模块之间用于输出GNSS秒脉冲信号的通路,开启与所述同步定时器之间的通路;
所述开关模块,用于在所述PC5处理模块的控制下进行开启和关闭操作。
可选的,所述Uu处理模块具体用于:
在收到的LTE同步信号后启动秒周期定时器;
在收到所述GNSS模块输出的GNSS秒脉冲信号后读取秒周期定时器的计数值;
根据收到的网络侧发送的TA值和读取到的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
可选的,所述Uu处理模块具体用于:
周期根据所述GNSS模块输出的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信号和LTE同步信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整。
可选的,所述Uu处理模块还用于:
根据接收到的LTE同步信号启动所述同步定时器。
可选的,所述PC5处理模块具体用于:
在无法接收到GNSS秒脉冲信号的时长达到设定阈值后,确定无法接收到GNSS秒脉冲信号。
本申请实施例终端根据接收到的GNSS秒脉冲信号和LTE同步信号、TA值,确定LTE同步和GNSS秒脉冲信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;在无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的秒脉冲信号进行设备间同步。由于本申请实施例的终端在无法接收到GNSS秒脉冲信号后可以根据同步定时器输出的同步信号进行设备间同步,在不能通过GNSS秒脉冲信号进行同步时仍然可以进行设备间同步,避免了由于不能通过GNSS秒脉冲信号进行同步,而无法进行通信的情况发生,进一步提高了V2X设备的可靠性。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例进行同步的方法流程示意图;
图2为本申请实施例对同步定时器进行调整的方法流程示意图;
图3为本申请实施例终端的结构示意图;
图4为本申请实施例终端的信号示意图。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
如图1所示,本申请实施例进行同步的方法包括:
步骤100、终端根据接收到的GNSS秒脉冲信号、长期演进(Long Term Evolution,LTE)同步信号和时间提前量(Timing Advance,TA)值,确定GNSS秒脉冲信号和LTE同步信号的差值;
步骤101、所述终端根据确定的差值和收到的TA值对同步定时器进行调整;
步骤102、所述终端在无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的同步信号进行设备间同步。
本申请实施例终端根据接收到的GNSS秒脉冲信号和LTE同步信号、TA值,确定LTE同步和GNSS秒脉冲信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;在无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的秒脉冲信号进行设备间同步。由于本申请实施例的终端在无法接收到GNSS秒脉冲信号后可以根据同步定时器输出的同步信号进行设备间同步,在不能通过GNSS秒脉冲信号进行同步时仍然可以进行设备间同步,避免了由于不能通过GNSS秒脉冲信号进行同步,而无法进行通信的情况发生,进一步提高了V2X设备的可靠性。
其中,本申请实施例的终端可以是V2X设备,也可以是其他需要进行设备间同步且能够接收到GNSS秒脉冲信号和LTE同步信号的设备。
LTE同步信号可以是LTE主同步信号,也可以是LTE辅同步信号。
在实施中,本申请实施例会持续对同步定时器进行调整,保证同步定时器输出的秒脉冲信号与GNSS秒脉冲信号同步,这样在终端无法接收到GNSS秒脉冲信号后,就可以根据所述同步定时器输出的秒脉冲信号进行设备间同步。
下面详细介绍下对同步定时器进行调整的过程。
可选的,本申请实施例是根据GNSS秒脉冲信号和LTE同步信号的差值对同步定时器进行调整。
具体的,所述终端在收到的LTE同步信号后启动秒周期定时器;
所述终端在收到所述GNSS秒脉冲信号后读取秒周期定时器的计数值;
所述终端根据收到的网络侧发送的LTE同步信号的TA值和读取到的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
由于每个无线帧都去做检测会浪费很多资源,所以本申请实施例设置秒周期定时器,用于周期性的启动同步检测功能。
如果本申请实施例的秒周期定时器可以循环计数,则不需要对秒周期定时器进行清0操作;
在实施中,终端需要确定自己能够接收到TA值。
比如终端可以判断上行是否与网络侧同步,如果是,可以确定能够接收到TA值;否则,确定不能够接收到TA值。
终端可以判断当前状态是否是小区驻留状态,如果是,可以确定能够接收到TA值;否则,确定不能够接收到TA值。
如果终端上行不与网络侧同步,并且当前状态也不是小区驻留状态,终端可以进行小区搜索,并在小区搜索成功后开启秒周期定时器;
终端根据秒周期定时器获得的无线帧帧头读取系统信息块(System Information Block,SIB)消息,从中获取可用的物理随机接入信道(Physical Random Access Channel,PRACH)资源信息,并利用获取的PRACH资源信息发起随机接入。
终端在发起随机接入后,或者上行与网络侧同步后,后者当前状态是小区驻留状态后,都可以接收到基站发送给终端的Timing Advance Command命令,该命令承载的内容就是11比特的TA值。
计算GNSS同步和LTE网络同步信号的差值需要在这两种信号都具备的环境进行。由于终端会持续收到GNSS秒脉冲信号,终端在收到所述GNSS秒脉冲信号后读取秒周期定时器的计数值,根据收到的TA值和读取的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
终端根据计数值和TA值确定GNSS秒脉冲信号和LTE同步信号的差值时可以通过下列公式确定:
ΔT=1-t0-TA/2;
其中,ΔT是GNSS秒脉冲信号和LTE同步信号的差值,t0是计数值。
可选的,终端可以在每次接收到GNSS秒脉冲信号后,都重新确定TA值和计数值,并重新确定LTE同步信号的差值;
所述终端在确定一次所述差值后,根据确定的差值和收到的TA值(这里实际用到TA/2)对同步定时器进行调整。
这样可以保证同步定时器输出的秒脉冲信号与GNSS秒脉冲信号同步。
除了上述方式,也可以设定一个周期。相应的,终端周期确定GNSS秒脉冲信号和同步定时器的差值。
可选的,终端可以根据接收到的LTE同步信号启动所述同步定时器,在启动同步定时器后按照上述方式对同步定时器进行调整。
终端根据LTE同步信号在秒定时中断到达后启动同步定时器,获得TA值,根据计算得到的ΔT一起,将TA/2+ΔT补偿到同步定时器中,这样同步定时器就可以产生和GNSS秒脉冲信号对齐的同步信号。重复这一过程,可以通过和基站的同步获取TA值而不断的校正同步定时器的输出。
由于终端所处的环境不是固定的,所以有可能终端无法接收到GNSS秒脉冲信号的时间很短,这时可以不用根据所述同步定时器输出的秒脉冲信号进行设备间同步。
基于此可以设定一个阈值,如果无法接收到GNSS秒脉冲信号的时长达到设定阈值,则确定需要根据所述同步定时器输出的秒脉冲信号进行设备间同步。
具体的,终端在无法接收到GNSS秒脉冲信号的时长达到设定阈值后,根据所述同步定时器输出的同步信号进行设备间同步。
阈值的具体长度可以根据需要、仿真、场景等进行设置。
如图2所示,本申请实施例对同步定时器进行调整的方法包括:
步骤200、终端判断上行是否与网络侧同步,如果是,则执行步骤207;否则,执行步骤201。
步骤201、终端判断当前状态是否是小区驻留状态,如果是,则执行步骤207;否则,执行步骤202。
步骤202、终端进行小区搜索。
步骤203、终端判断小区搜索是否成功,如果是,则执行步骤204;否则返回步骤202。
步骤204、终端在小区搜索成功后根据收到的LTE同步信号确定无线帧的帧头,并在无线帧的帧头开启秒周期定时器。
步骤205、终端根据由秒周期定时器获取的10ms定时(即无线帧的帧头)来获取SIB消息,从中获取可用的PRACH资源信息。
步骤206、终端利用获取的PRACH资源信息发起随机接入。
步骤207、终端接收基站在Timing Advance Command(TA命令)中反馈的TA信息。
步骤208、终端判断是否接收到GNSS秒脉冲信号,如果是,则执行步骤209;否则,返回步骤208。
步骤209、终端读取秒周期定时器的计数值。
步骤210、所述终端根据收到的网络侧发送的TA值和读取到的计数值,确定差值;
步骤211、所述终端根据确定的差值及TA值对同步定时器进行调整,返回步骤200。
在执行上述步骤过程中,如果所述终端确定无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的秒脉冲信号进行设备间同步。
基于同一发明构思,本申请实施例中还提供了一种终端,由于该终端解决问题的原理与本申请实施例进行同步的方法相似,因此该终端的实施可以参见方法的实施,重复之处不再赘述。
如图3所示,本申请实施例终端包括:
GNSS模块300,用于输出收到的GNSS秒脉冲信号;
Uu处理模块301,用于接收LTE同步信号的差值和TA值,根据所述GNSS模块输出的GNSS秒脉冲信号、LTE同步信号和TA值,确定GNSS秒脉冲信号和LTE同步信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;
同步定时器302,用于周期输出秒脉冲信号;
PC5处理模块303,用于在确定所述GNSS模块无法接收到GNSS秒脉冲信号后,控制开关模块关闭与所述GNSS模块之间用于输出GNSS秒脉冲信号的通路,开启与所述同步定时器之间的通路;
所述开关模块304,用于在所述PC5处理模块的控制下进行开启和关闭操作。
可选的,所述Uu处理模块301具体用于:
在收到的LTE同步信号后启动秒周期定时器;
在收到所述GNSS模块输出的GNSS秒脉冲信号后读取秒周期定时器的计数值;
根据收到的网络侧发送的TA值和读取到的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
可选的,所述Uu处理模块301具体用于:
周期根据所述GNSS模块输出的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信号和LTE同步信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整。
可选的,所述Uu处理模块301还用于:
根据接收到的LTE同步信号启动所述同步定时器。
可选的,所述PC5处理模块303具体用于:
在无法接收到GNSS秒脉冲信号的时长达到设定阈值后,确定无法接收到GNSS秒脉冲信号。
如图4所示,本申请实施例终端的信号示意图。
PC5模块检测到GNSS模块锁定(即和同步卫星同步成功)后,输出GNSS_PP1S_VALID信号高电平(GNSS_PP1S_VALID信号高低电平分别表示两种状态,表示GNSS秒脉冲有效和无效的指示);
PC5模块将SWITCH_CTL信号拉低,切换二选一开关为GNSS_PP1S(即GNSS秒脉冲信号)输出给PC5模块作为系统同步信号;
Uu模块检测到GNSS_PP1S_VALID信号和GNSS_PP1S信号后,检测LTE信号;
Uu模块根据检测到的LTE信号和收到的GNSS_PP1S信号,确定同步信号的差值ΔT;
Uu模块同步定时器,并用ΔT+TA/2补偿同步定时器;
同步定时器周期性的输出LTE_PP1S信号(即秒脉冲信号)。
Uu模块会持续确定同步信号的差值ΔT,并不断用ΔT+TA/2补偿同步定时器。
PC5模块在检测到GNSS无信号,且当无信号时间超过一定的门限值后,将SWITCH_CTL信号拉高,切换二选一开关为LTE_PP1S输出给PC5模块作为系统同步信号;
PC5模块检测到GNSS有信号且处于锁定状态后,将SWITCH_CTL信号拉低,切换二选一开关为GNSS_PP1S输出给PC5模块作为系统同步信号。
从上述内容可以看出:本申请实施例终端根据接收到的GNSS秒脉冲信号和LTE同步信号、TA值,确定LTE同步和GNSS秒脉冲信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;在无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的秒脉冲信号进行设备间同步。由于本申请实施例的终端在无法接收到GNSS秒脉冲信号后可以根据同步定时器输出的同步信号进行设备间同步,在不能通过GNSS秒脉冲信号进行同步时仍然可以进行设备间同步,避免了由于不能通过GNSS秒脉冲信号进行同步,而无法进行通信的情况发生,进一步提高了V2X设备的可靠性。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处
理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (10)
- 一种进行同步的方法,其特征在于,该方法包括:终端根据接收到的全球导航卫星系统GNSS秒脉冲信号、长期演进LTE同步信号和时间提前量TA值,确定GNSS秒脉冲信号和LTE同步信号的差值;所述终端根据确定的差值和收到的TA值对同步定时器进行调整;所述终端在确定无法接收到GNSS秒脉冲信号后,根据所述同步定时器输出的秒脉冲信号进行设备间同步。
- 如权利要求1所述的方法,其特征在于,所述终端根据接收到的GNSS秒脉冲信号、LTE同步信号和TA值,确定GNSS秒脉冲信号和LTE同步信号的差值,包括:所述终端在收到的LTE同步信号后启动秒周期定时器;所述终端在收到所述GNSS秒脉冲信号后读取所述秒周期定时器的计数值;所述终端根据收到的网络侧发送的TA值和读取到的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
- 如权利要求1所述的方法,其特征在于,所述终端根据接收到的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信号和LTE同步信号的差值,包括:所述终端周期确定GNSS秒脉冲信号和LTE同步信号的差值;所述终端根据确定的差值和收到的TA值对同步定时器进行调整,包括:所述终端在确定一次所述差值后,根据确定的差值和收到的TA值对同步定时器进行调整。
- 如权利要求1所述的方法,其特征在于,所述终端根据接收到的GNSS秒脉冲信号和LTE同步信号,确定GNSS秒脉冲信号和LTE同步信号的差值之前,还包括:所述终端根据接收到的LTE同步信号启动所述同步定时器。
- 如权利要求1~4任一所述的方法,其特征在于,所述终端确定无法接收到GNSS秒脉冲信号,包括:所述终端在无法接收到GNSS秒脉冲信号的时长达到设定阈值后,确定无法接收到GNSS秒脉冲信号。
- 一种进行同步的终端,其特征在于,该终端包括:GNSS模块,用于输出收到的GNSS秒脉冲信号;Uu处理模块,用于接收LTE同步信号和TA值,根据所述GNSS模块输出的GNSS秒脉冲信号、LTE同步信号和TA值,确定GNSS秒脉冲信号和LTE同步信号的差值,并根据确定的差值和收到的TA值对同步定时器进行调整;同步定时器,用于周期输出秒脉冲信号;PC5处理模块,用于在确定所述GNSS模块无法接收到GNSS秒脉冲信号后,控制开关模块关闭与所述GNSS模块之间用于输出GNSS秒脉冲信号的通路,开启与所述同步定时器之间的通路;所述开关模块,用于在所述PC5处理模块的控制下进行开启和关闭操作。
- 如权利要求6所述的终端,其特征在于,所述Uu处理模块具体用于:在收到的LTE同步信号后启动秒周期定时器;在收到所述GNSS秒脉冲信号后读取所述秒周期定时器的计数值;根据收到的网络侧发送的TA值和读取到的计数值,确定GNSS秒脉冲信号和LTE同步信号的差值。
- 如权利要求6所述的终端,其特征在于,所述Uu处理模块具体用于:周期根据收到的TA值和读取到的计数值,确定GNSS秒脉冲信号和同步定时器的差值,并根据确定的差值和收到的TA值对同步定时器进行调整。
- 如权利要求6所述的终端,其特征在于,所述Uu处理模块还用于:根据接收到的LTE同步信号启动所述同步定时器。
- 如权利要求6~9任一所述的终端,其特征在于,所述PC5处理模块具体用于:在无法接收到GNSS秒脉冲信号的时长达到设定阈值后,确定无法接收到GNSS秒脉冲信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611220824.5A CN108243390B (zh) | 2016-12-26 | 2016-12-26 | 一种进行同步的方法和终端 |
CN201611220824.5 | 2016-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018120984A1 true WO2018120984A1 (zh) | 2018-07-05 |
Family
ID=62701905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/105730 WO2018120984A1 (zh) | 2016-12-26 | 2017-10-11 | 一种进行同步的方法和终端 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108243390B (zh) |
TW (1) | TWI650030B (zh) |
WO (1) | WO2018120984A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112492679A (zh) * | 2020-10-23 | 2021-03-12 | 许继集团有限公司 | 一种利用5g通信终端产生b码对时输出的方法及系统 |
CN114583837A (zh) * | 2022-04-20 | 2022-06-03 | 国网北京市电力公司 | 配电网分布式高频同步采样数据传输方法、装置及介质 |
WO2023169290A1 (zh) * | 2022-03-09 | 2023-09-14 | 华为技术有限公司 | 一种定时提前量的确定方法和装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109314845B (zh) * | 2018-09-20 | 2020-03-06 | 北京小米移动软件有限公司 | 车联网同步方法、装置以及计算机可读存储介质 |
CN112135270B (zh) | 2019-06-25 | 2021-09-24 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN110537374B (zh) * | 2019-06-28 | 2022-09-30 | 北京小米移动软件有限公司 | 数据发送方法、数据接收方法、装置及设备 |
CN111208539B (zh) * | 2019-12-18 | 2023-06-23 | 中国航空工业集团公司成都飞机设计研究所 | 一种高精度的gnss模拟器时间同步方法 |
WO2022016324A1 (zh) * | 2020-07-20 | 2022-01-27 | 华为技术有限公司 | 一种信号同步方法、通信装置和通信系统 |
CN112433536A (zh) * | 2020-10-27 | 2021-03-02 | 一飞(海南)科技有限公司 | Pps秒脉冲时钟校准方法、处理器、存储介质及无人机 |
US20240340074A1 (en) * | 2021-08-04 | 2024-10-10 | Lenovo (Beijing) Limited | Methods and apparatuses for determining synchronization validity timer |
CN115776348A (zh) * | 2021-09-07 | 2023-03-10 | 宸芯科技有限公司 | 一种定时同步系统及一种定时同步切换方法 |
CN115835121A (zh) * | 2021-09-17 | 2023-03-21 | 中兴通讯股份有限公司 | 一种空口授时方法、终端及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140254480A1 (en) * | 2013-03-11 | 2014-09-11 | Kapsch Trafficcom Ab | Method for communication within a co-operative system |
CN104796927A (zh) * | 2014-01-20 | 2015-07-22 | 北京三星通信技术研究有限公司 | 一种发现信号的接收检测方法和设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6744740B2 (en) * | 2001-12-21 | 2004-06-01 | Motorola, Inc. | Network protocol for wireless devices utilizing location information |
CA2804179C (en) * | 2010-07-06 | 2020-01-14 | Galileo Satellite Navigation Ltd. | Indoor satellite navigation system |
WO2013185318A1 (en) * | 2012-06-14 | 2013-12-19 | Nokia Siemens Networks Oy | Fast recovering for network listening schemes in synchronization over air for small cells |
CN103188066A (zh) * | 2013-02-28 | 2013-07-03 | 中兴通讯股份有限公司 | 基准时钟信号处理方法及装置 |
CN104349451B (zh) * | 2013-08-09 | 2019-03-22 | 电信科学技术研究院 | 一种进行同步的方法和设备 |
WO2016067080A1 (en) * | 2014-10-31 | 2016-05-06 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and systems for synchronizing a communication node in a communication network |
CN104597747B (zh) * | 2015-01-15 | 2017-03-15 | 大连海事大学 | 基于驯服铷钟的同步测试系统及其提高同步精度的方法 |
WO2016194518A1 (ja) * | 2015-05-29 | 2016-12-08 | 株式会社日立国際電気 | 同期信号変換装置 |
CN105188128B (zh) * | 2015-08-21 | 2018-10-16 | 北京北方烽火科技有限公司 | 一种无线授时和空口同步方法、基站、通讯设备及系统 |
-
2016
- 2016-12-26 CN CN201611220824.5A patent/CN108243390B/zh active Active
-
2017
- 2017-10-11 WO PCT/CN2017/105730 patent/WO2018120984A1/zh active Application Filing
- 2017-11-30 TW TW106141758A patent/TWI650030B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140254480A1 (en) * | 2013-03-11 | 2014-09-11 | Kapsch Trafficcom Ab | Method for communication within a co-operative system |
CN104796927A (zh) * | 2014-01-20 | 2015-07-22 | 北京三星通信技术研究有限公司 | 一种发现信号的接收检测方法和设备 |
Non-Patent Citations (3)
Title |
---|
CATT: "On Synchronization Issues in PC5-based V2V", 3GPP TSG RAN WG1 MEETING #82 BIS RL-155224, 9 October 2015 (2015-10-09), XP051039601 * |
NEC: "Synchronisation in V2X", 3GPP TSG RAN WG1 MEETING #84BIS RL-162432, 15 April 2016 (2016-04-15), XP051079578 * |
NOKIA NETWORKS: "Discussion on V2V Synchronization Source Priority", 3GPP TSG-RAN WG1 MEETING #83 RL-157159, 22 November 2015 (2015-11-22), XP051040028 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112492679A (zh) * | 2020-10-23 | 2021-03-12 | 许继集团有限公司 | 一种利用5g通信终端产生b码对时输出的方法及系统 |
WO2023169290A1 (zh) * | 2022-03-09 | 2023-09-14 | 华为技术有限公司 | 一种定时提前量的确定方法和装置 |
CN114583837A (zh) * | 2022-04-20 | 2022-06-03 | 国网北京市电力公司 | 配电网分布式高频同步采样数据传输方法、装置及介质 |
CN114583837B (zh) * | 2022-04-20 | 2023-11-14 | 国网北京市电力公司 | 配电网分布式高频同步采样数据传输方法、装置及介质 |
Also Published As
Publication number | Publication date |
---|---|
TWI650030B (zh) | 2019-02-01 |
TW201824916A (zh) | 2018-07-01 |
CN108243390B (zh) | 2019-08-16 |
CN108243390A (zh) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018120984A1 (zh) | 一种进行同步的方法和终端 | |
CN108605301B (zh) | 用于蜂窝网络中的节点的同步方法 | |
CN111989592B (zh) | 同步系统中的测距方法、装置、设备及可读存储介质 | |
WO2016037571A1 (zh) | 一种时钟同步方法及装置 | |
JP2022520627A (ja) | タイミングアドバンスを決定するための方法および装置 | |
EP3047687B1 (en) | Methods and apparatus for wireless device synchronization | |
US10091746B2 (en) | Synchronization source device for synchronization coverage extension and method and system using the same | |
WO2017080247A1 (zh) | 同步方法及装置 | |
JPWO2020202399A5 (ja) | 端末、基地局、通信システム、及び通信方法 | |
CA3206303A1 (en) | Random access method and apparatus, and terminal, electronic device and computer-readable storage medium | |
JP7420235B2 (ja) | V2xにおけるリソース選択用の方法、及び装置 | |
CN109803442A (zh) | 一种同步信号的发送方法、网络设备及终端设备 | |
EP3198955B1 (en) | Method and network node for facilitating synchronization in network | |
AU2014403118B2 (en) | Methods implemented in access nodes for maintaining synchronization in radio access network and associated access nodes | |
US20160227494A1 (en) | Method and apparatus to determine a transmission time of a wireless data frame | |
CN110537374B (zh) | 数据发送方法、数据接收方法、装置及设备 | |
CN113225803A (zh) | 一种矿用5g基站无线时钟同步方法和装置 | |
WO2015042955A1 (zh) | 一种同步方法及装置 | |
CN114760681B (zh) | 一种同步状态的处理方法、设备及存储介质 | |
WO2023051891A1 (en) | Uplink synchronization | |
KR102034292B1 (ko) | 단말간 직접 통신 네트워크의 동기신호 송신 방법 및 단말 | |
CN106171018B (zh) | 基站及信号接收方法 | |
WO2018059011A1 (zh) | 一种同步源调整的方法及用户设备、计算机存储介质 | |
WO2021248975A1 (zh) | 信息传输方法、装置、设备和存储介质 | |
US9344984B2 (en) | Apparatus and method for data message communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887127 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17887127 Country of ref document: EP Kind code of ref document: A1 |