WO2015042955A1 - 一种同步方法及装置 - Google Patents

一种同步方法及装置 Download PDF

Info

Publication number
WO2015042955A1
WO2015042955A1 PCT/CN2013/084722 CN2013084722W WO2015042955A1 WO 2015042955 A1 WO2015042955 A1 WO 2015042955A1 CN 2013084722 W CN2013084722 W CN 2013084722W WO 2015042955 A1 WO2015042955 A1 WO 2015042955A1
Authority
WO
WIPO (PCT)
Prior art keywords
time point
data
side device
network side
start time
Prior art date
Application number
PCT/CN2013/084722
Other languages
English (en)
French (fr)
Inventor
余志钦
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/084722 priority Critical patent/WO2015042955A1/zh
Priority to EP13894339.4A priority patent/EP3046279A4/en
Priority to CN201380002315.3A priority patent/CN104685806A/zh
Publication of WO2015042955A1 publication Critical patent/WO2015042955A1/zh
Priority to US15/085,041 priority patent/US20160212723A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present invention relates to the field of communications, and in particular, to a synchronization method and apparatus.
  • D2D terminal-to-terminal
  • UE User Equipment
  • the synchronization technology between the existing UE and the network side device cannot support synchronization with the network side device from the UE without network coverage.
  • An embodiment of the present invention provides a synchronization method and apparatus, which can support synchronization of a user terminal (D2D Slave UE, DS-UE) in a terminal to a network side device without network coverage.
  • D2D Slave UE, DS-UE user terminal
  • the embodiment of the present invention uses the following technical solutions:
  • an embodiment of the present invention provides a synchronization method, including:
  • the terminal acquires a first timing offset from the user terminal DS-UE in the terminal, where the first timing deviation is a start time point of the DS-UE receiving data and a data is sent by the terminal to the primary user terminal DM-UE in the terminal.
  • the difference between the start time points, or the difference between the start time point at which the DS-UE transmits data and the start time point at which the DM-UE receives data the DM-UE sends
  • the starting time point of the data is the starting time point of the data after the DM-UE synchronizes with the network side device, and the DM-UE receives the data.
  • a start time point is a start time point at which the DM-UE receives data after synchronizing with the network side device;
  • the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset or adjusts a start time point of the DS-UE sending data, to the DM-UE and the Network side device synchronization.
  • the acquiring, by the terminal, the first timing offset from the user terminal DS-UE in the terminal includes:
  • the DS-UE When the terminal communicates with the terminal D 2 D by using the terminal between the DS-UE and the DM-UE, the DS-UE receives a first synchronization signal from the DM-UE, where the first a synchronization signal is used to synchronize a start time point at which the DS-UE receives data and a start time point at which the DM-UE transmits data;
  • the DS-UE acquires the first timing offset according to the first synchronization signal.
  • the method before the acquiring, by the terminal, the first timing offset from the user terminal DS-UE in the terminal, the method further includes:
  • the DS-UE When the communication between the DS-UE and the DM-UE is performed by means of D 2 D, the DS-UE sends a second synchronization signal to the DM-UE, so that the DM-UE is configured according to the DM-UE.
  • the second synchronization signal acquires the first timing offset, and sends the first timing offset to the DS-UE, where the second synchronization signal is used to synchronize a start time of sending data by the DS-UE Point and the starting time point at which the DM-UE receives data.
  • the method for the DS-UE to acquire the first timing offset according to the first synchronization signal includes:
  • the DS-UE calculates the first synchronization signal to obtain a first synchronization peak value
  • the DS-UE determines the first timing offset according to a time point at which the first synchronization peak is located.
  • the receiving, by the DS-UE, the first synchronization signal from the DM-UE includes: The DS-UE receives the first synchronization signal from the DM-UE on a preset uplink time-frequency resource.
  • the obtaining, by the terminal, the first timing offset from the user terminal DS-UE in the terminal includes:
  • the DS-UE receives the first timing offset from the DM-UE on a preset uplink time-frequency resource.
  • the method further includes:
  • the DS-UE receives a first indication message from the DM-UE, where the first indication message is sent by the network side device to the DM-UE, and the first indication message is used to indicate that the change is idle.
  • the first indication message includes a message type and a period value of the idle DRX cycle;
  • the DS-UE changes the idle DRX period according to the first indication message; the DS-UE sends a first response message corresponding to the first indication message to the DM-UE, so that the DM
  • the UE sends the first response message to the network side device, so that the network side device learns that the idle DRX cycle change is successful according to the first response message.
  • the method further includes:
  • the DS-UE communicates with the DM-UE according to the changed idle DRX cycle.
  • an embodiment of the present invention further provides a synchronization method, including: when a D2D communication is performed between a DS-UE and a DM-UE, the DM-UE sends a first synchronization signal to the a DS-UE, the first synchronization signal is used by the DS-UE to acquire a first timing offset according to the first synchronization signal, where the first timing deviation is a start time point of the DS-UE receiving data a difference between a start time point at which the DM-UE transmits data, and a start time point at which the DM-UE transmits data is the DM-UE and The starting time point at which the network side device synchronizes to send data;
  • the DM-UE is synchronized with the DS-UE, where the specific synchronization is that the DS-UE adjusts a start time point of the DS-UE to receive data according to the first timing offset, and the DM-UE Synchronized with the network side device.
  • the sending, by the DM-UE, the first synchronization signal to the DS-UE includes:
  • the DM-UE sends the first synchronization signal to the DS-UE on a preset uplink time-frequency resource.
  • the method also includes:
  • the first indication message of the DM-UE is used to indicate that the idle DRX cycle is changed, and the first indication message includes a message type and a period value of the idle DRX cycle;
  • the DM-UE sends the first response message to the network side device, so that the network side device learns that the idle DRX cycle is changed successfully according to the first response message.
  • an embodiment of the present invention further provides a synchronization method, including: when a D2D communication is performed between a DS-UE and a DM-UE, the DM-UE receives the DS-UE from the DS-UE. Synchronization signal
  • the method for the DM-UE to acquire the first timing offset according to the receiving the synchronization signal from the DS-UE includes: the DM-UE accessing the receiving Synchronizing signals from the DS-UE are calculated to obtain a second synchronization peak;
  • the DM-UE determines the first timing offset according to a time point at which the second synchronization peak is located.
  • the sending, by the DM-UE, the first timing offset to the DS-UE includes:
  • the DM-UE sends the first timing offset to the DS-UE on a preset uplink time-frequency resource.
  • the method further includes:
  • the first indication message of the DM-UE is used to indicate that the idle DRX cycle is changed, and the first indication message includes a message type and a period value of the idle DRX cycle;
  • the DM-UE sends the first response message to the network side device, so that the network side device learns that the idle DRX cycle is changed successfully according to the first response message.
  • an embodiment of the present invention provides a UE, including: An acquiring unit, configured to acquire a first timing offset, where the first timing offset is
  • a difference between a start time point at which the UE receives data and a start time point at which the DM-UE transmits data, or a start time point at which the UE transmits data and a start time point at which the DM-UE receives data a starting time point at which the DM-UE transmits data is a starting time point at which the DM-UE transmits data after synchronization with the network side device, and a start time point at which the DM-UE receives data a start time point for receiving data after the DM-UE synchronizes with the network side device;
  • a processing unit configured to adjust, according to the first timing offset acquired by the acquiring unit, a starting time point of receiving data by the UE or adjusting a starting time point of sending data by the UE, to perform with the DM-UE and
  • the network side device is synchronized.
  • the UE further includes a receiving unit,
  • the receiving unit is configured to receive a first synchronization signal from the DM-UE when the UE and the DM-UE communicate by using a D2D manner, where the first synchronization signal is used for synchronization. a start time point at which the UE receives data and a start time point at which the DM-UE transmits data;
  • the acquiring unit is configured to acquire the first timing offset according to the first synchronization signal received by the receiving unit, where the first synchronization signal is used to synchronize a start time point and a location of the UE to receive data.
  • the UE further includes a sending unit
  • the sending unit is configured to: when the acquiring unit acquires the first timing offset, when the UE and the DM-UE communicate by using a D2D manner, send a synchronization signal to the DM- a UE, so that the DM-UE acquires the first timing offset according to the second synchronization signal, and sends the first timing offset to the UE, where the second synchronization signal is used to synchronize the UE
  • the starting time point of transmitting data and the starting time point at which the DM-UE receives data is used to: when the acquiring unit acquires the first timing offset, when the UE and the DM-UE communicate by using a D2D manner, send a synchronization signal to the DM- a UE, so that the DM-UE acquires the first timing offset according to the second synchronization signal, and sends the first timing offset to the UE, where the second synchronization signal is used to synchronize the UE
  • the acquiring unit is configured to perform calculation on the first synchronization signal received by the receiving unit to obtain a first synchronization peak, and determine the first timing deviation according to a time point at which the first synchronization peak is located.
  • the receiving unit is specifically configured to receive the first synchronization signal from the DM-UE on a preset uplink time-frequency resource.
  • the acquiring unit is specifically configured to receive the first timing offset from the DM-UE on a preset uplink time-frequency resource.
  • the UE further includes a sending unit and a receiving unit, where
  • the receiving unit is configured to: after the UE is synchronized with the network side device and the DM-UE, receive a first indication message from the DM-UE, where the first indication message is the network side And sending, by the device to the DM-UE, the first indication message is used to indicate that the idle DRX cycle is changed, where the first indication message includes a message type and a period value of the idle DRX cycle;
  • the processing unit is further configured to change the i d l e DRX cycle according to the first indication message received by the receiving unit;
  • the sending unit is configured to send a first response message corresponding to the first indication message received by the receiving unit to the DM-UE, so that the DM-UE sends the first response message to And the network side device, so that the network side device learns that the idle DRX cycle is successfully changed according to the first response message.
  • the processing unit is further configured to communicate with the DM-UE according to the changed i d 1 e DRX cycle.
  • an embodiment of the present invention further provides a UE, including: a sending unit, configured to send a first synchronization signal to the DS-UE when the D2D is used for communication between the DS-UE and the UE, where the first synchronization signal is used by the DS-UE according to the The first synchronization signal acquires a first timing deviation, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a start time point of the UE sending data, where The starting time point at which the UE sends data is a starting time point at which the UE sends data after being synchronized with the network side device;
  • a holding unit configured to maintain synchronization with the DS-UE, where the specific synchronization is that the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset, to cooperate with the UE and the The network side device is synchronized.
  • the sending unit is specifically configured to send the first synchronization signal to the DS-UE on a preset uplink time-frequency resource.
  • the UE further includes a receiving unit
  • the sending unit is further configured to: after the UE synchronizes with the network side device and the DS-UE, send a first indication message to the DS-UE, so that the DS-UE is according to the An indication message is changed to an idle DRX period, where the first indication message is sent by the network side device to the UE, and the first indication message is used to indicate that the idle DRX cycle is changed, where the first indication message includes The message type and the period value of the idle DRX cycle;
  • the receiving unit is configured to receive, by the DS-UE, a first response message corresponding to the first indication message sent by the sending unit;
  • the sending unit is further configured to send the first response message received by the receiving unit to the network side device, so that the network side device learns that the idle DRX cycle is successfully changed according to the first response message. .
  • an embodiment of the present invention further provides a UE, including:
  • a receiving unit configured to receive a synchronization signal from the DS-UE when the DS-UE communicates with the UE by using a D2D manner;
  • An obtaining unit configured to receive, according to the receiving unit, the receiving The synchronization signal of the DS-UE acquires a first timing offset, where the first timing deviation is a difference between a start time point of the DS-UE transmission data and a start time point of the UE receiving data, The starting time point at which the UE receives data is the start time of receiving data after the UE synchronizes with the network side device, *,;
  • a sending unit configured to send the first timing offset acquired by the acquiring unit to the DS-UE, where the first timing offset is used by the DS-UE to adjust the DS according to the first timing offset The starting time point at which the UE sends data to synchronize with the UE and the network side device.
  • the acquiring unit is specifically configured to calculate, by the receiving unit, the synchronization signal received from the DS-UE, to obtain a second synchronization peak, and determine according to a time point at which the second synchronization peak is located The first timing deviation.
  • the sending unit is configured to send the first timing offset acquired by the acquiring unit to the DS-UE on a preset uplink time-frequency resource.
  • the sending unit is further configured to: after the UE synchronizes with the network side device and the DS-UE, send a first indication message to the DS-UE, so that the DS-UE is according to the An indication message is changed to an idle DRX period, where the first indication message is sent by the network side device to the UE, and the first indication message is used to indicate that the idle DRX cycle is changed, where the first indication message includes The message type and the period value of the idle DRX cycle;
  • the receiving unit is further configured to receive, by the DS-UE, a first response message corresponding to the first indication message sent by the sending unit;
  • the sending unit is further configured to send the first response message received by the receiving unit to the network side device, so that the network side device cancels according to the first response
  • the embodiment of the present invention further provides a UE, including:
  • a processor configured to acquire a first timing offset, and adjust a starting time point of the UE to receive data according to the first timing offset or adjust a starting time point of sending data by the UE, to cooperate with the DM-UE and the network
  • the side device is synchronized, and the first timing deviation is a difference between a start time point of the UE receiving data and a start time point of sending data by the DM-UE, or a start of sending data by the UE.
  • a difference between a time point and a start time point at which the DM-UE receives data, where a start time point of the DM-UE transmitting data is that the DM-UE synchronizes with the network side device to send data.
  • the starting time point, the starting time point of the DM-UE receiving data is the starting time point of receiving data after the DM-UE synchronizes with the network side device.
  • the UE further includes receiving a crying port
  • the receiver is configured to receive a first synchronization signal from the DM-UE when the UE and the DM-UE communicate by using a D2D manner, where the first synchronization signal is used for synchronization Determining a starting time point at which the UE receives data and a starting time point at which the DM-UE transmits data;
  • the processor is specifically configured to acquire the first timing offset according to the first synchronization signal received by the receiver.
  • the UE further includes a transmitter
  • the transmitter configured to send a second synchronization signal to the UE when the UE and the DM-UE communicate by using a D2D manner before the processor acquires the first timing offset a DM-UE, so that the DM-UE acquires the first timing offset according to the second synchronization signal, and sends the first timing offset to the UE, where the second synchronization signal is used to synchronize The start time point at which the UE transmits data and the start time point at which the DM-UE receives data.
  • the processor is configured to calculate, by using the first synchronization signal received by the receiver, a first synchronization peak, and determine the first timing offset according to a time point at which the first synchronization peak is located. .
  • the receiver is specifically configured to receive, on the preset uplink time-frequency resource, the
  • the first synchronization signal of the DM-UE is the first synchronization signal of the DM-UE.
  • the UE further includes a receiver
  • the receiver is configured to receive the first timing offset from the DM-UE on a preset uplink time-frequency resource.
  • the UE further includes a transmitter and a receiver, where
  • the receiver configured to receive a first indication message from the DM-UE after the UE is synchronized with the network side device and the DM-UE, where the first indication message is the network side And sending, by the device to the DM-UE, the first indication message is used to indicate that the idle DRX cycle is changed, where the first indication message includes a message type and a period value of the idle DRX cycle;
  • the processor is further configured to change the i d l e DRX cycle according to the first indication message received by the receiver;
  • the transmitter is configured to send a first response message corresponding to the first indication message received by the receiver to the DM-UE, so that the DM-UE sends the first response message to And the network side device, so that the network side device learns that the idle DRX cycle is successfully changed according to the first response message.
  • the processor is further configured to communicate with the DM-UE according to the changed i d l e DRX cycle.
  • an embodiment of the present invention further provides a UE, including: a transmitter, configured to send a first synchronization signal to the DS-UE when the D2D is used for communication between the DS-UE and the UE, where the first synchronization signal is used by the DS-UE according to the The first synchronization signal acquires a first timing deviation, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a start time point of the UE sending data, where The starting time point at which the UE sends data is a start time point at which the UE sends data after synchronizing with the network side device;
  • a processor configured to maintain synchronization with the DS-UE, where the specific synchronization is that the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset, to cooperate with the UE and the The network side device is synchronized.
  • the transmitter is specifically configured to send the first synchronization signal to the DS-UE on a preset uplink time-frequency resource.
  • the UE further includes a receiver
  • the transmitter is further configured to: after the UE synchronizes with the network side device and the DS-UE, send a first indication message to the DS-UE, so that the DS-UE is according to the An indication message is changed to an idle DRX cycle, where the first indication message is sent by the network side device to the UE, and the first indication message is used to indicate that the idle DRX cycle is changed, where the first indication message includes The message type and the period value of the idle DRX cycle;
  • the receiver is configured to receive, by the DS-UE, a first response message corresponding to the first indication message sent by the sender;
  • the transmitter is further configured to send the first response message received by the receiver to the network side device, so that the network side device learns the id 1 e DRX according to the first response cancellation.
  • the cycle change was successful.
  • the ninth aspect, the embodiment of the present invention further provides a UE, including:
  • a receiver configured to receive a synchronization signal from the DS-UE when the DS-UE communicates with the UE by using a D2D manner;
  • a processor configured to receive, according to the receiver, the DS-UE from the receiver
  • the synchronization signal acquires a first timing deviation, where the first timing deviation is a difference between a start time point of the DS-UE transmitting data and a start time point of the UE receiving data, and the UE receives data.
  • the starting time point is the starting time point of receiving data after the UE synchronizes with the network side device;
  • a transmitter configured to send the first timing offset acquired by the processor to the DS-UE, where the first timing offset is used by the DS-UE to adjust the DS according to the first timing offset The starting time point at which the UE sends data to synchronize with the UE and the network side device.
  • the processor is specifically configured to calculate, by the receiver, the synchronization signal received from the DS-UE, to obtain a second synchronization peak, and determine according to a time point at which the second synchronization peak is located The first timing deviation.
  • the transmitter is specifically configured to send the first timing offset acquired by the processor to the DS-UE on a preset uplink time-frequency resource.
  • the transmitter is further configured to: after the UE synchronizes with the network side device and the DS-UE, send a first indication message to the DS-UE, so that the DS-UE is according to the first Instructing the message to change the idle DRX period, where the first indication message is sent by the network side device to the UE, the first indication message is used to indicate that the idle DRX cycle is changed, and the first indication message includes a message. Type and period value of the idle DRX cycle;
  • the receiver is further configured to receive, by the DS-UE, a first response message corresponding to the first indication message sent by the sender;
  • the transmitter is further configured to send the first response message received by the receiver to the network side device, so that the network side device obtains according to the first response Know that the id 1 e DRX cycle change was successful.
  • An embodiment of the present invention provides a synchronization method and apparatus, where a first timing offset is obtained by a DS-UE, where the first timing offset is a start time point of the DS-UE receiving data and a start time point of the DM-UE transmitting data.
  • the difference between the start time point of the data sent by the DS-UE and the start time point of the data received by the DM-UE, and the start time point of the DM-UE sending data is the DM-UE and the network.
  • the start time point of the data sent by the side device after synchronization, and the start time point of the data received by the DM-UE is the start time point of the data received by the DM-UE after being synchronized with the network side device, and the DS-UE according to the first timing deviation Adjusting a starting time point at which the DS-UE receives data, or a starting time point at which the DS-UE sends data, to synchronize with the DM-UE and the network side device.
  • the DS-UE can synchronize with the network side device by synchronizing with the DM-UE, thereby enabling the DS-UE to complete without network coverage. Synchronization with network side devices.
  • FIG. 1 is a flowchart of a synchronization method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a synchronization method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a synchronization method according to an embodiment of the present invention.
  • FIG. 4 is an interaction diagram of a synchronization method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a time difference between a start time point of a DS-UE receiving data and a power-on time point of a DS-UE according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an advance or a delay of a boot time point of a UE according to an embodiment of the present invention
  • FIG. 7 is an interaction diagram of a synchronization method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a time difference between a boot time point of a DM-UE and a start time point of a DM-UE receiving data according to an embodiment of the present invention
  • FIG. 9 is an interaction diagram of a synchronization method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a UE according to an embodiment of the present disclosure
  • 19 is a block diagram of a communication system provided by an embodiment of the present invention.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • Time Division Multiple Access TDMA
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier frequency division multiple address
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the terminal user-to-terminal primary user terminal (D2D Master UE, DM-UE) and the DS-UE are two user terminals that communicate in the D2D mode, where the DM-UE is the UE within the coverage of the network side device, DS - The UE is a UE outside the coverage of the network side device.
  • the network side device separates the DM-UE and the DS-UE from the DL-UE and the ID-ID (Dis con ti nu s Receptive DRX).
  • the DM-UE and the DS-UE After being transferred to the normal operation phase, the DM-UE and the DS-UE are in the idle DRX state for most of the time, that is, the DM-UE and the DS-UE wake up once at a certain interval according to the configured idle DRX cycle.
  • the idle DRX period configured by the network side device for the DM-UE and the DS-UE is 10 minutes as an example to illustrate the awake period of the DM-UE and the DS-UE.
  • the second clock crystal oscillator Since the DM-UE and the DS-UE respectively have two sets of clock crystals, one set is the first clock crystal oscillator and the other set is the second clock crystal oscillator, because the second clock crystal oscillator has high stability and high power consumption ( The higher the stability of the clock crystal, the higher the accuracy of the clock crystal. Therefore, in order to save power, the second clock crystal can be turned off during the DM-UE and DS-UE sleep time, that is, only the first clock crystal working.
  • the stability of the first clock crystal of the DM-UE and the first clock crystal of the DS-UE is low, that is, the first clock crystal of the DM-UE and the first clock crystal of the DS-UE are less accurate, thereby
  • the wake-up period of the DM-UE and the wake-up period of the DS-UE are changed compared with the wake-up period of the network-side device configuration, such as the awake period of the DM-UE is 10.4 minutes, and the wake-up period of the DS-UE is 9.8 minutes.
  • the start time point of the DM-UE sending data and the start time point of the DS-UE sending data lead or lag behind the start time point of the network side device receiving data.
  • the start time point of the data received by the DM-UE and the start time point of the DS-UE receiving data lead or lag behind the start time of the data sent by the network side device, ⁇ .
  • the embodiment of the present invention provides a synchronization method, which is related to the DS-UE side. As shown in FIG. 1, the method may include:
  • the DS-UE acquires a first timing offset, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a start time point of the DM-UE sending data, or sending a data for the DS-UE.
  • the difference between the start time point and the start time point of the DM-UE receiving data, and the start time point of the DM-UE sending data is the same as the network side device of the DM-UE
  • the starting time point of sending data after the step, the starting time point of the DM-UE receiving data is the starting time point of receiving data after the DM-UE synchronizes with the network side device.
  • the DM-UE and the DS-UE are both user terminals, where the DM-UE is a UE within the coverage of the network-side device, and the DS-UE is a UE outside the coverage of the network-side device.
  • the ID of the DM-UE (IDentity, serial number 'J number) and the ID of the DS-UE are respectively set in the chips of the DM-UE and the DS-UE, and the ID of the DM-UE and the DS- The IDs of the UEs are associated such that the DM-UE can only synchronize or communicate with its associated DS-UE; correspondingly, the DS-UE can only synchronize or communicate with its associated DM-UE.
  • the network side device provided by the embodiment of the present invention may include a device such as a base station.
  • the DM-UE and the DS-UE may include terminals such as smart meters.
  • the device is set to the west; after the idle DRX cycle is awakened, the DM-UE sends the data.
  • the start time point and the start time point of the DS-UE sending data may lead or lag behind the start time point of the network side device receiving data, or the start time point of the DM-UE receiving data and the DS-UE receiving data.
  • the start time point will lead or lag behind the start time point of the data sent by the network side device.
  • the DM-UE and the DS-UE need to be synchronized with the network side device first.
  • the DS-UE and the network side device are synchronized, when the D2D is used for communication between the DS-UE and the DM-UE, the DS-UE needs to be based on the timing deviation between the DS-UE and the network side device to the DS-UE.
  • the start time point of the transmitted data or the start time point of the DS-UE receiving data is adjusted.
  • the DS-UE is a network-side device that is not covered by the network-side device. Therefore, the embodiment of the present invention provides a synchronization method, that is, the DS-UE synchronizes with the DM-UE synchronized with the network-side device to complete the network-side device. Synchronization between.
  • the DS-UE obtains a first timing offset, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a start time point of the DM-UE sending data, or is sent by the DS-UE.
  • the difference between the start time point of the data and the start time point of the DM-UE receiving data, and the start time point of the DM-UE sending data is the DM-UE and the network side device.
  • the starting time point of sending data after synchronization, the starting time point of receiving data by the DM-UE is the starting time point of receiving data after the DM-UE synchronizes with the network side device.
  • the DM-UE is in the coverage of the network side device, the DM-UE and the network side device can use the existing synchronization technology to perform synchronization, which may include:
  • the DM-UE searches for a synchronization signal sent by the network side device for synchronizing the start time point of the data transmitted by the network side device and the start time point of the data received by the DM-UE, and is sent according to the synchronization network side device.
  • the synchronization signal between the start time point of the data and the start time point of the DM-UE receiving data acquires the timing deviation between the network side device and the DM-UE, and adjusts the DM according to the timing offset between the network side device and the DM-UE.
  • the UE receives the start time of the data to synchronize with the network side device.
  • the DM-UE may acquire a peak of the synchronization signal according to a synchronization signal sent by the network side device for synchronizing the start time point of the network side device to send data and the start time point of the DM-UE receiving data, and according to the The peak of the synchronization signal is obtained by the timing offset between the network side device and the DM-UE, so that the DM-UE adjusts the start time point of the DM-UE receiving data according to the timing offset between the network side device and the DM-UE, and the network The side device completes the downlink synchronization.
  • the uplink synchronization process between the DM-UE and the network-side device is similar to the downlink synchronization process between the DM-UE and the network-side device, and the subsequent embodiments will be described in detail.
  • the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset or adjusts a start time point of the D S-UE sending data to synchronize with the DM-UE and the network side device.
  • the DS-UE may adjust the start time point of the DS-UE receiving data according to the first timing offset or adjust the starting time point of the DS-UE sending data to cooperate with the DM-UE and
  • the network side device synchronizes. Since the DM-UE has completed synchronization with the network side device before the DS-UE acquires the first timing offset, the DS-UE adjusts the start time point of the DS-UE receiving data according to the first timing offset or adjusts the DS-UE. Send After the start time of the data, the DS-UE and the DM-UE complete the synchronization, that is, the DS-UE synchronizes with the network side device.
  • the DS-UE may be according to the first The timing offset adjusts the start time point of the DS-UE receiving data, that is, the downlink synchronization is completed between the DS-UE and the DM-UE; correspondingly, if the first timing offset acquired by the DS-UE is the start of the DS-UE transmission data
  • the difference between the time point and the start time point of the DM-UE receiving data, and the DS-UE may adjust the start time point of the DS-UE sending data according to the first timing offset, that is, the DS-UE and the DM-UE.
  • Uplink synchronization is completed between.
  • the specific DS-UE completes the downlink synchronization or completes the uplink synchronization process.
  • the delay for transmitting data between the DM-UE and the DS-UE can be ignored. That is, when the downlink synchronization is completed between the DS-UE and the DM-UE, the uplink synchronization may be considered between the DS-UE and the DM-UE; correspondingly, when the uplink synchronization is completed between the DS-UE and the DM-UE It can be considered that downlink synchronization is also completed between the DS-UE and the DM-UE.
  • the embodiment of the present invention further provides a synchronization method, which is related to the DM-UE side. As shown in FIG. 2, the method may include:
  • the DM-UE sends the first synchronization signal to the DS-UE, where the first synchronization signal is used by the DS-UE to acquire the first synchronization signal.
  • the first timing deviation is the difference between the start time point of the DS-UE receiving data and the start time point of the DM-UE transmitting data, and the starting time point of the DM-UE transmitting data is DM-UE The starting time point at which data is sent after synchronization with the network side device.
  • the DM-UE Due to the difference of the clock crystals inside the DM-UE and the DS-UE, when the DM-UE and the DS-UE wake up according to the idle DRX cycle configured by the network side device, the DM-UE sends data.
  • the start time point of the start time point and the DS-UE transmission data will lead or lag behind the start time point of the network side device receiving data, or the start time point of the DM-UE receiving data and the start of the DS-UE receiving data.
  • the time point will lead or lag behind the starting time point at which the network side device sends data. If the DM-UE and the DS-UE need to communicate with the network side device, the DM-UE and the DS-UE first need to synchronize with the network side device.
  • the DM-UE After the DM-UE synchronizes with the network side device, when the D2D communication is performed between the DS-UE and the DM-UE, the DM-UE sends the first synchronization signal to the DS-UE, and the first synchronization signal is used for the DS.
  • the UE acquires a first timing offset according to the first synchronization signal, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a start time point of the DM-UE sending data, where, the DM -
  • the starting time point at which the UE sends data is the starting time point at which the DM-UE transmits data after synchronizing with the network side device.
  • S202 The DM-UE and the DS-UE are synchronized, and the specific synchronization is that the DS-UE adjusts a start time point of the DS-UE receiving data according to the first certain time offset to synchronize with the DM-UE and the network side device.
  • the DS-UE may acquire a first timing offset according to the first synchronization signal, and adjust a starting time point of the DS-UE receiving data according to the first timing offset, thereby Synchronized with the DM-UE and the network side device.
  • the first synchronization signal may be generated by the DM-UE according to the last bit of the ID of the DM-UE or other specific one-bit, and the invention is not limited.
  • the ID of the DM-UE is 8 bits in total, which is A0A1A2A3A4A5A6A7.
  • the A7 bit can be selected to generate the first synchronization signal, or the A5 bit can be selected to generate the first synchronization signal.
  • the DM-UE has been synchronized with the network side device before the DS-UE and the DM-UE complete the synchronization. Therefore, when the DS-UE and the DM-UE are synchronized, the DS-UE is also The network side device has completed synchronization.
  • the embodiment of the present invention further provides a synchronization method, which is related to the DM-UE side. As shown in FIG. 3, the method may include: S301.
  • the DM-UE receives the synchronization signal from the DS-UE.
  • the starting point of time at which the side device sends data If the DM-UE and the DS-UE need to communicate with the network side device, the DM-UE and the DS-UE need to be synchronized with the network side device first.
  • the DM-UE After the DM-UE synchronizes with the network side device, when the D2D is used for communication between the DS-UE and the DM-UE, the DM-UE receives the synchronization signal from the DS-UE, and the DS-UE is not yet connected to the network.
  • the side devices are synchronized.
  • the DM-UE receiving the synchronization signal from the DS-UE may be generated by the DS-UE according to the last bit of the ID of the DS-UE or other specific one-bit, and the present invention is not limited.
  • the ID of the DS-UE is 8 bits in total, which is B0B1B2B3B4B5B6B7.
  • the B7 bit can be selected to generate the DM-UE to receive the synchronization signal from the DS-UE, or the B5 bit can be selected to generate the DM-UE to receive the DS-UE. Synchronization signal.
  • the DM-UE acquires a first timing offset according to the synchronization signal received by the DM-UE from the DS-UE, where the first timing offset is a start time point of the DS-UE sending data and a starting time point of the DM-UE receiving data.
  • the difference between the start time points of the DM-UE receiving data is the starting time point of the data received by the DM-UE after being synchronized with the network side device.
  • the DM-UE may acquire the first timing offset according to the synchronization signal received by the DM-UE from the DS-UE, where the first timing deviation is the start time of the DS-UE sending data.
  • the DM-UE sends a first timing offset to the DS-UE, where the first timing offset is used by the DS-UE to adjust a start time point of the DS-UE sending data according to the first timing offset, to cooperate with the DM-UE and the network.
  • Side device synchronization After the DM-UE acquires the first timing offset, the DM-UE may send the first timing offset to the DS-UE, where the first timing offset may be used by the DS-UE to adjust the DS-UE sending data according to the first timing offset. Start time point to complete synchronization with the DM-UE and network side devices.
  • the DM-UE has been synchronized with the network side device before the DS-UE and the DM-UE complete the synchronization. Therefore, after the DS-UE and the DM-UE are synchronized, the DS-UE is also associated with the DS-UE. The network side device has completed synchronization.
  • An embodiment of the present invention provides a synchronization method, where a first timing offset is obtained by using a DS-UE, where the first timing offset is between a start time point of the DS-UE receiving data and a start time point of the DM-UE transmitting data.
  • the difference, or the difference between the start time point of the DS-UE sending data and the start time point of the DM-UE receiving data, and the start time point of the DM-UE sending data is the DM-UE and the network side device
  • the starting time point of the data after the synchronization is sent, the starting time point of the DM-UE receiving data is the starting time point of the data received after the DM-UE synchronizes with the network side device, and the DS-UE adjusts the DS according to the first timing offset.
  • the DS-UE can synchronize with the network side device by synchronizing with the DM-UE, thereby enabling the DS-UE to complete without network coverage. Synchronization with network side devices.
  • the embodiment of the present invention further provides a synchronization method. As shown in FIG. 4, the method may include:
  • the network side device sends a synchronization signal for synchronizing the start time point of the network side device to send data and the start time point of the DM-UE receiving data to the DM-UE.
  • the DM-UE and the DS-UE are both user terminals, where the DM-UE is a UE within the coverage of the network-side device, and the DS-UE is a UE outside the coverage of the network-side device.
  • the DM-UE may be separately set in the chips of the DM-UE and the DS-UE. ID and DS-UE ID, and associate the ID of the DM-UE with the ID of the DS-UE, so that the DM-UE can only synchronize or communicate with the DS-UE associated with it; correspondingly, DS-UE It can also only synchronize or communicate with the DM-UE associated with it.
  • the network side device provided by the embodiment of the present invention may include a device such as a base station.
  • the DM-UE and the DS-UE may include terminals such as smart meters.
  • the DM-UE In the normal communication process, after the DM-UE wakes up according to the idle DRX cycle configured by the network side device, if the DM-UE needs to communicate with the network side device, the DM-UE first needs to search for the network side device to send, and Synchronizing the synchronization time signal of the start time point of the data sent by the network side device and the start time point of the data received by the DM-UE, and synchronizing with the network side device according to the synchronization signal.
  • the DM-UE when the network side device communicates with the DM-UE, the DM-UE first starts according to the network side device, and is used to synchronize the start time point of the network side device to send data and the DM-UE to receive data.
  • the synchronization signal at the start time point obtains the difference between the start time point of the DM-UE receiving data and the start time point of the network side device sending data, that is, the timing deviation between the DM-UE and the network side device, thereby -
  • the UE adjusts the start time point of the DM-UE receiving data according to the timing offset to synchronize with the start time point of the network side device transmitting data.
  • the DM-UE has already calculated when adjusting the start time point of the DM-UE receiving data.
  • the idle DRX period may be configured by the network side device for the UE, or may be set by the UE at the factory, where the UE may include the DM-UE and the DS-UE.
  • the DM-UE acquires a timing offset between the network side device and the DM-UE according to a synchronization signal used to synchronize the start time point of the data sent by the network side device and the start time point of the DM-UE receiving data, and according to The timing offset between the network side device and the DM-UE adjusts the start time point of the DM-UE receiving data to complete downlink synchronization with the network side device.
  • the DM-UE After receiving the synchronization signal from the network side device for synchronizing the start time point of the network side device to send data and the start time point of the DM-UE receiving data, the DM-UE may acquire the synchronization according to the synchronization signal.
  • the peak value of the signal, and based on the peak of the sync signal The value is obtained by the timing offset between the network side device and the DM-UE, so that the DM-UE adjusts the start time point of the DM-UE receiving data according to the timing offset between the network side device and the DM-UE, to perform with the network side device.
  • Downstream synchronization is obtained by the timing offset between the network side device and the DM-UE, so that the DM-UE adjusts the start time point of the DM-UE receiving data according to the timing offset between the network side device and the DM-UE, to perform with the network side device.
  • the uplink synchronization process of the DM-UE and the network-side device is similar to the downlink synchronization process of the DM-UE and the network-side device, and specifically includes:
  • the DM-UE sends an access signal to the network side device.
  • the network side device calculates, according to the access signal, a start time point of the network side device receiving data and a network side device internal clock crystal oscillator.
  • the difference between the timings is sent to the DM-UE, so that the DM-UE can adjust the start time point of the DM-UE sending data and the start time of the network side device receiving data according to the difference.
  • the point synchronization is performed to complete the uplink synchronization between the DM-UE and the network side device.
  • the network side device calculates the start time point of the DM-UE sending data and the network side device receiving the data according to the access signal sent by the DM-UE.
  • the difference between the start time points is 5 milliseconds.
  • the DM-UE can send the data to the DM-UE when sending data to the network side device.
  • the starting time point is adjusted to 5 milliseconds in advance, that is, the DM-UE sends data to the network side device 5 milliseconds in advance.
  • the existing synchronization technology can be used for synchronization between the DM-UE and the network side device, and details are not described herein.
  • the DS-UE receives the first synchronization signal from the DM-UE, and acquires a first timing offset according to the first synchronization signal, where A synchronization signal is a synchronization signal received by the DS-UE for the first time after the power is turned on, and the first synchronization signal is used to synchronize the start time point of the DS-UE to receive data and the start time point of the DM-UE to transmit data.
  • a synchronization signal is a synchronization signal received by the DS-UE for the first time after the power is turned on
  • the first synchronization signal is used to synchronize the start time point of the DS-UE to receive data and the start time point of the DM-UE to transmit data.
  • the first synchronization signal may be generated by the DM-UE according to the last bit of the ID of the DM-UE or other specific one-bit, and the invention is not limited.
  • the ID of the DM-UE is 8 t , and the other is A0A1A2A3A4A5A6A7.
  • the A7 bit can be selected to generate the first synchronization signal, or the A5 bit can be selected to generate the first synchronization signal.
  • the method for acquiring, by the DS-UE, the first timing offset according to the first synchronization signal may include:
  • the DS-UE calculates the first synchronization signal to obtain a first synchronization peak.
  • the DS-UE determines the first timing offset according to the time point at which the first synchronization peak is located.
  • FIG. 5 a calculation diagram of the time difference del tal between the start time point of the DS-UE receiving data and the power-on time point of the DS-UE is shown. It can be seen that the time difference between the start time point of the DS-UE receiving data and the power-on time point of the DS-UE may be the start time point of the DM-UE transmitting data and the start time of the DS-UE receiving data. The time difference between points.
  • the starting time point at which the DS-UE receives the data may be expressed as the time point at which the first synchronization peak obtained by calculating the first synchronization signal after the DS-UE receives the first synchronization signal.
  • each frame contains 10 subframes, it can be a subframe number 0 and a number 1 respectively.
  • Sub-frame, sub-frame 9 sub-frame 9, then each sub-frame is 1 millisecond.
  • the clock crystal error of the DS-UE may cause the DS-UE to start or delay the time of the network-side device. Therefore, in order to save power, the DS- is better and more accurate.
  • the synchronization between the UE and the DM-UE and the network side device, the DM-UE may send the first synchronization signal to the DS-UE at least twice.
  • the DS-UE may be caused by the clock crystal error of the DS-UE.
  • the power-on time point is advanced or delayed from the time point of the network side device, and the first synchronization signal is sent by the DM-UE to the DS-UE. Therefore, the DM-UE may send the first synchronization signal to the DS-UE at least twice. This is because if the DM-UE transmits the first synchronization signal only once, and the time when the DM-UE sends the first synchronization signal is before the power-on time point of the DS-UE, the DS-UE does not receive the first synchronization signal. .
  • the clock crystal error causes the start time point of the DS-UE to advance before the time point of the network side device and the time point of the D S - U E start time point lags behind the network side device.
  • the start timing point of the DS-UE is a power-on time point of the DS-UE set by the network side device according to the time point of the network side device; the power-on time point of the DM-UE is set by the network side device according to the time point of the network side device.
  • the power-on time point of the fixed DM-UE 1 is the actual power-on time point of the DS-UE; 2 is the time synchronization point of the DS-UE and the DM-UE; 3 is the time point at which the DS-UE receives the paging.
  • the DS-UE may receive the first synchronization signal sent by the DM-UE in the 0th subframe after the power is turned on; if the clock crystal error occurs The DS-UE may receive the first synchronization signal sent by the DM-UE in the subframe 5 after the power-on, causing the DS-UE to start to lag behind the network side device.
  • the DM-UE may send the first synchronization signal to the DS-UE in the 0th subframe and the 5th subframe respectively, or may send the first synchronization signal to the DS-UE in the subframe 1 and the subframe 6
  • the first synchronization signal may also be sent to the DS-UE in other subframes that meet the design requirements, and the invention is not limited.
  • the DM-UE sends the first synchronization signal to the DS-UE in the 0th subframe and the 5th subframe respectively, and the first synchronization signal received the first time after the DS-UE is powered on is the 0th subframe.
  • the DS-UE sums the deltal and delta2 obtained above to determine a first timing offset delta. It should be noted that, since the DM-UE separately transmits the first synchronization signal in the subframe No. 5 of the 0th subframe of each frame, if the DS-UE receives the first synchronization sent by the DM-UE in the subframe No. 0, a signal, the first synchronization signal includes subframe information of the subframe 0; correspondingly, if the D S-UE receives the first synchronization signal sent by the DM-UE in the subframe 5, the first synchronization signal includes Subframe information of subframe number 5.
  • the foregoing D S-UE may receive the first synchronization signal from the DM-UE on the preset uplink time-frequency resource, that is, the DM-UE and the DS-UE on the uplink time-frequency resource of the DM-UE.
  • a dedicated time domain resource and a frequency domain resource are allocated for transmitting and receiving the first synchronization signal.
  • the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset to synchronize with the DM-UE and the network side device.
  • the DS-UE may adjust the start time point of the DS-UE receiving data according to the first timing offset to be the same as the starting time point of the DM-UE sending data, to be associated with the DM-UE.
  • Complete downlink synchronization Since the downlink synchronization has been completed between the DM-UE and the network side device, that is, the start time point of the DM-UE receiving data is synchronized with the start time point of the network side device transmitting data, therefore, when D S-UE and DM- When the downlink synchronization is completed between the UEs, the downlink synchronization is completed between the D S-UE and the network side device.
  • the delay for transmitting data between the DM-UE and the D S-UE can be ignored. That is, when the downlink synchronization is completed between the DS-UE and the DM-UE, the uplink synchronization may be considered between the DS-UE and the DM-UE.
  • the first timing offset obtained by the D S-UE is 5 milliseconds, that is, the difference between the start time point of the DS-UE receiving the data received by the DS-UE and the starting time point of the data transmitted by the DM-UE.
  • the value is 5 milliseconds, and the D S-UE can adjust the start time point of the DS-UE receiving data to 5 ms in advance according to the difference, so that synchronization is completed between the DS-UE and the DM-UE.
  • the DS-UE may adjust the start time point of the DS-UE reception data according to the first timing offset acquired as described above to complete synchronization with the DM-UE and the network side device.
  • the embodiment of the present invention further provides a synchronization method. As shown in FIG. 7, the synchronization method provided by this embodiment is different from the synchronization method provided by the foregoing embodiment in S403 and S404.
  • S403 and S404 respectively:
  • the DS-UE sends the second synchronization signal to the DM-UE, so that the DM-UE acquires the first timing offset according to the second synchronization signal, and
  • the DS-UE receives a first timing offset from the DM-UE, and the second synchronization signal is used to synchronize the start time point at which the DS-UE transmits data and the start time point at which the DM-UE receives data.
  • the second synchronization signal may be generated by the DS-UE according to the last bit of the ID of the DS-UE or another specific one bit, which is not limited by the present invention.
  • the ID of the DS-UE is 8 bits in total, which is B0B1B2B3B4B5B6B7.
  • the B7 bit can be selected to generate the second synchronization signal, or the B5 bit can be selected to generate the second synchronization signal.
  • the DS-UE Since the clock crystal error of the DS-UE may cause the DS-UE to start or delay the time of the network-side device, in order to save power, the DS-UE and the DM- are better and accurately completed.
  • the synchronization between the UE and the network side device, the DS-UE may send the second synchronization signal to the DM-UE at least once.
  • the DS-UE may send the second synchronization signal to the DM-UE at least once, because the DM-UE is sent by the DS-UE after the power-on, regardless of whether the DS-UE is advanced or delayed. Can be received.
  • the DM-UE may be the second The step signal is calculated to obtain a second synchronization peak, and the first timing offset is determined according to the time point at which the second synchronization peak is located, and the first timing deviation is sent to the D S-UE, that is, the DS-UE obtains the first Timing deviation.
  • the method for calculating the second synchronization peak is the same as the method for calculating the first synchronization peak in the foregoing embodiment S 4 03, and details are not described herein again.
  • the foregoing D S-UE may receive the first timing offset from the DM-UE on the preset uplink time-frequency resource, that is, the DM-UE and the DS- on the uplink time-frequency resource of the DM-UE.
  • the UE allocates dedicated time domain resources and frequency domain resources for transmitting and receiving the first timing offset.
  • the first timing deviation is a time difference between a power-on time point of the DM-UE and a start time point of the DM-UE receiving data
  • the time difference value may be a start time point of the DS-UE sending data. The time difference from the start time point at which the DM-UE receives data.
  • the start time point of the DM-UE receiving data may be expressed as the DM-UE receiving the second synchronization signal.
  • a time point at which the second synchronization peak obtained by calculating the second synchronization signal is located if the locally stored synchronization sequence is set at a position from a position in the middle of the frame of each frame of data, the DM-UE receives the second synchronization
  • the DM-UE may calculate the starting time point of the DM-UE receiving data according to the time point at which the second synchronization peak is located, for example
  • the synchronization sequence is set at the position of the subframe 5 of each frame of data, and the time point at which the second synchronization peak obtained by the DM-UE is located is the position where the subframe 5 starts, that is, the DM
  • the D S-UE can learn that the DM-UE has completed synchronization on the network side device.
  • the DS-UE adjusts a start time point of the DS-UE sending data according to the first timing offset to synchronize with the DM-UE and the network side device.
  • the DS-UE After the DS-UE obtains the first timing offset, the DS-UE can adjust according to the first timing offset.
  • the start time point at which the DS-UE transmits data is the same as the start time point at which the DM-UE receives data, to complete uplink synchronization with the DM-UE. Since the uplink synchronization has been completed between the DM-UE and the network side device, that is, the start time point of the DM-UE transmitting data is synchronized with the start time point of the network side device receiving data, therefore, when the DS-UE and the DM-UE When the uplink synchronization is completed, the DS-UE also performs uplink synchronization with the network side device.
  • the delay for transmitting data between the DM-UE and the DS-UE can be ignored. That is, when the uplink synchronization is completed between the DS-UE and the DM-UE, downlink synchronization can be considered between the DS-UE and the DM-UE.
  • the first timing offset obtained by the DS-UE is 5 milliseconds, that is, the difference between the start time point at which the DS-UE learns the data transmitted by the DS-UE and the start time point at which the DM-UE receives data.
  • the DS-UE can adjust the start time point of the DS-UE transmission data to 5 ms in advance according to the difference, so that synchronization is completed between the DS-UE and the DM-UE.
  • the start time point of the DS-UE sending data and the start of the DM-UE receiving data after synchronization with the network side device in each awake period There is an unfixed deviation between the time points. Therefore, the DS-UE can adjust the start time point of the DS-UE transmission data according to the first timing offset obtained above to be used between the DM-UE and the network side device. Complete the sync.
  • the present invention further provides an embodiment. As shown in FIG. 9, the embodiment may include:
  • the network side device sends a first indication message to the DM-UE, where the first indication message is used to indicate that the idle DRX cycle is changed.
  • the network-side device After the DM-UE is synchronized with the network-side device, if the network-side device needs to change the idle DRX cycle, the network-side device sends the first indication information to the DM_UE, where the first indication message can be used to indicate that the idle DRX cycle is changed.
  • the first indication message may include a message type and a week of an idle DRX cycle.
  • Period value For example, the message type may be "dele DRX cycle change of dual UE", and the period value of the idle DRX cycle may be any value that satisfies the design requirement, such as 10 seconds, 60 seconds, 600 seconds, and the like.
  • the present invention is only used as an example for the first indication message to change the idle DRX cycle.
  • the first indication message may include, but is not limited to, a message indicating that the idle DRX cycle is changed, that is, the first indication message. Any data or message that meets the requirements that can be delivered by the network side is not limited by the present invention.
  • the DM-UE changes the idle DRX cycle of the DM-UE according to the first indication message.
  • the DM-UE may change the idle DRX cycle of the DM-UE according to the first indication message.
  • the DM-UE communicates with the network side device and the DS-UE according to the changed i d 1 e DRX cycle of the DM-UE.
  • the DM-UE changes the idle DRX period of the DM-UE according to the first indication message sent by the network side device
  • the DM-UE ⁇ changes the idle DRX period of the DM-UE and the network side device. Communicate with the DS-UE.
  • the DM-UE sends a first indication message to the DS-UE.
  • the DM-UE After the DS-UE and the DM-UE complete the synchronization, if the DM-UE receives the first indication message sent by the network side device, the DM-UE sends the first indication message to the DS-UE, so that the DS-UE can also be used.
  • the idle DRX cycle of the DS-UE is changed according to the first indication message.
  • the present invention does not limit the execution order of S502-S503 and S504, that is, the present invention may first execute S502-S503, and then execute S504; or may perform S504 first, then S502-S503; or S502- S503 and S504.
  • the DS-UE changes the idle DRX cycle of the DS-UE according to the first indication message.
  • the DS-UE may change the idle DRX period of the DS-UE according to the first indication message.
  • the DS-UE receives the first indication message, the first indication message instructs the DS-UE to change the idle DRX period to 60 seconds, and the DS-UE changes the idle DRX period configured by the original network side according to the indication message. It is 60 seconds.
  • S506 DS-UE only according to the modified DS-UE id 1 e DRX cycle and network side setting
  • the device communicates with the DM-UE.
  • the DS-UE After the DS-UE changes the idle DRX period of the DS-UE, during the subsequent communication, the DS-UE can communicate with the network side device and the DM-UE according to the changed idle DRX period of the DS-UE.
  • the DS-UE sends a first response message corresponding to the first indication message to the DM-UE.
  • the DS-UE may send a first response message corresponding to the first indication message to the DM-UE, so that the DM-UE can learn that the DS-UE changes the DS-UE.
  • the idle DRX cycle was successful.
  • the DM-UE sends a first response message to the network side device.
  • the DM-UE After the DM-UE receives the first response message on the DS-UE, if the DM-UE changes the idle DRX period of the DM-UE, the DM-UE sends the first response message to the network side device to The network side device can learn, according to the first response message, that the DM-UE and the DS-UE change the idle DRX cycle successfully.
  • the first response message sent by the DM-UE to the network side device may include a state in which the DM-UE changes the idle DRX cycle of the DM-UE.
  • the first response message is used to indicate that the DM-UE and the DS-UE change the idle DRX cycle according to the first indication message, and may also be used to indicate that the DM-UE and the DS-UE receive the first indication message succeeding, and the DM- The UE and the DS-UE change the idle DRX cycle according to the first indication message, which is not limited by the present invention.
  • S509 The network side device learns that the idle DRX cycle is changed successfully according to the first response message.
  • the network side device After the network side device receives the first response message sent by the DM-UE, the network side device can learn that the idle DRX cycle of the DM-UE and the idle DRX cycle of the DS-UE are successfully changed according to the first response message.
  • An embodiment of the present invention provides a synchronization method, where a first timing offset is obtained by using a DS-UE, where the first timing offset is between a start time point of the DS-UE receiving data and a start time point of the DM-UE transmitting data.
  • the start time point is the start time point of the data transmission after the DM-UE synchronizes with the network side device
  • the start time point of the DM-UE receiving data is the start time point of the data received after the DM-UE synchronizes with the network side device
  • the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset, or a start time point of the DS-UE sending data, to synchronize with the DM-UE and the network side device.
  • the DS-UE can synchronize with the network side device by synchronizing with the DM-UE, thereby enabling the DS-UE to complete without network coverage. Synchronization with network side devices.
  • an embodiment of the present invention provides a UE 1.
  • the UE 1 may include: an acquiring unit 10, configured to acquire a first timing offset, where the first timing offset is a start of receiving data by the UE1.
  • the difference between the time point and the start time point at which the DM-UE transmits data, or the difference between the start time point at which the UE 1 transmits data and the start time point at which the DM-UE receives data The start time point of the data sent by the DM-UE is the start time point of the data that is sent after the DM-UE synchronizes with the network side device, and the start time point of the data received by the DM-UE is the DM- The starting time point at which the UE receives data after synchronizing with the network side device.
  • the processing unit 11 is configured to adjust, according to the first timing offset acquired by the acquiring unit 10, a starting time point at which the UE 1 receives data or adjust a starting time point at which the UE 1 sends data, to The DM-UE is synchronized with the network side device.
  • the UE 1 further includes a receiving unit 12, where the receiving unit 12 is configured to perform communication by using D2D between the UE1 and the DM-UE.
  • the receiving unit 12 is configured to perform communication by using D2D between the UE1 and the DM-UE.
  • Receiving a first synchronization signal from the DM-UE the first synchronization signal is used to synchronize a start time point at which the UE 1 receives data and a start time point at which the DM-UE transmits data
  • the The acquiring unit 10 is configured to acquire the first timing offset according to the first synchronization signal received by the receiving unit 12, where the first synchronization signal is used to synchronize a start time point of the UE 1 to receive data. The starting time point at which the DM-UE transmits data.
  • the UE 1 further includes a sending unit 13, where the sending unit 13 is configured to: when the acquiring unit 10 acquires the first timing offset, when the UE 1 and the Sending a synchronization signal to the DM-UE when the DM-UE communicates by using the D2D mode, so that the DM-UE acquires the first timing offset according to the second synchronization signal, and the The first timing offset is sent to the UE 1, and the second synchronization signal is used to synchronize a starting time point at which the UE 1 transmits data and a starting time point at which the DM-UE receives data.
  • the acquiring unit 10 is configured to perform calculation on the first synchronization signal received by the receiving unit 12 to obtain a first synchronization peak, and determine according to a time point at which the first synchronization peak is located. The first timing deviation.
  • the receiving unit 12 is specifically configured to receive the first synchronization signal from the DM-UE on a preset uplink time-frequency resource.
  • the acquiring unit 10 is specifically configured to receive the first timing offset from the DM-UE on a preset uplink time-frequency resource.
  • the UE 1 further includes a sending unit 13 and a receiving unit 12,
  • the receiving unit 12 is configured to receive, after the UE1 is synchronized with the network side device and the DM-UE, a first indication message from the DM-UE, where the first indication message is And sending, by the network side device, to the DM-UE, the first indication message is used to indicate that the idle DRX cycle is changed, the first indication message includes a message type and a period value of the idle DRX cycle, and the processing unit is 11.
  • the method further includes: changing the idle DRX period according to the first indication message received by the receiving unit 12, and the sending unit 13, configured to send the first indication message received by the receiving unit 12 Corresponding a first response message to the DM-UE, so that the DM-UE sends the first response message to the network side device, so that the network side device learns according to the first response message
  • the idle DRX cycle was changed successfully.
  • the processing unit 11 is further configured to communicate with the DM-UE according to the changed idle DRX cycle.
  • An embodiment of the present invention provides a UE, by acquiring a first timing offset,
  • the first timing deviation is a difference between a start time point at which the UE receives data and a start time point at which the DM-UE transmits data, or a start time point at which the UE transmits data and a DM-UE receiving data.
  • the difference between the starting time points, the starting time point of the DM-UE sending data is the starting time point of the data transmission after the DM-UE synchronizes with the network side device, and the starting time point of the DM-UE receiving data is DM.
  • the UE adjusts a start time point of the UE receiving data according to the first timing offset or adjusts a start time point of the UE to send data, to -
  • the UE is synchronized with the network side device.
  • an embodiment of the present invention further provides a UE 2, where the UE 2 may include:
  • the sending unit 20 is configured to send a first synchronization signal to the DS-UE when the D2D is used for communication between the DS-UE and the UE 2, where the first synchronization signal is used for the DS-
  • the UE acquires a first timing offset according to the first synchronization signal, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a start time point of the UE 2 sending data.
  • the starting time point at which the UE 2 sends data is a starting time point at which the UE 2 transmits data after being synchronized with the network side device.
  • the maintaining unit 21 is configured to keep synchronization with the DS-UE, where the specific synchronization is that the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset, to be compared with the UE 2 Synchronized with the network side device.
  • the sending unit 20 is specifically configured to send the first synchronization signal to the DS_UE on a preset uplink time-frequency resource.
  • the UE 2 further includes a receiving unit 22, where the sending unit 20 is further configured to send after the UE 2 synchronizes with the network side device and the DS-UE. Transmitting, by the DS-UE, the first indication message to the DS-UE, to enable the DS-UE to change an idle DRX period according to the first indication message, where the first indication message is The first indication message is sent to the UE 2, and the first indication message is used to indicate that the idle DRX cycle is changed, where the first indication message includes a message type and a period value of the idle DRX cycle, and the The receiving unit 22 is configured to receive a first response message corresponding to the first indication message sent by the sending unit 20 from the DS-UE, and the sending unit 20 is further configured to send the receiving unit The first response message is received by the network side device, so that the network side device learns that the idle DRX cycle change is successful according to the first response message.
  • An embodiment of the present invention provides a UE, where the UE can send a first synchronization signal to a DS-UE when the D-channel is used for communication between the DS-UE and the UE, and the first synchronization signal is used for DS-
  • the UE acquires a first timing offset according to the first synchronization signal, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a starting time point of the UE sending data, where the UE sends data.
  • the start time point is a start time point of the data that is sent after the UE synchronizes with the network side device, and the UE keeps synchronization with the DS-UE, and the specific synchronization is that the DS-UE adjusts the data received by the DS-UE according to the first timing offset.
  • the starting time point is synchronized with the UE and the network side device.
  • the embodiment of the present invention further provides a UE 2, where the UE 2 may include:
  • the receiving unit 22 is configured to receive a synchronization signal from the DS-UE when the D2D is used for communication between the DS-UE and the UE 2.
  • the obtaining unit 23 is configured to acquire a first timing offset according to the receiving the synchronization signal from the DS-UE received by the receiving unit 22, where the first timing deviation is a start time of sending data by the DS-UE A difference between a point and a start time point at which the UE 2 receives data, and a start time point at which the UE 2 receives data is a start time point at which the UE 2 receives data after being synchronized with the network side device.
  • the sending unit 20 is configured to send the first timing offset acquired by the acquiring unit 23 to the DS-UE, where the first timing offset is used by the DS-UE to adjust according to the first timing offset The start time point at which the DS-UE transmits data to synchronize with the UE 2 and the network side device.
  • the acquiring unit 23 is configured to calculate, by the receiving unit 22, the synchronization signal received from the DS-UE, to obtain a second synchronization peak, and according to the second synchronization. The point in time at which the peak is located determines the first timing offset.
  • the sending unit 20 is configured to send the first timing offset acquired by the acquiring unit 23 to the DS-UE on a preset uplink time-frequency resource.
  • the sending unit 20 is further configured to: after the UE 2 synchronizes with the network side device and the DS-UE, send a first indication message to the DS-UE, to enable the DS - the UE changes the idle DRX period according to the first indication message, where the first indication message is sent by the network side device to the UE 2, and the first indication message is used to indicate that the idle DRX cycle is changed.
  • the first indication message includes a message type and a period value of the idle DRX cycle
  • the receiving unit 22 is further configured to receive the first indication sent by the sending unit 20 from the DS-UE.
  • the first response message corresponding to the message, and the sending unit 20 is further configured to send the first response message received by the receiving unit 22 to the network side device, so that the network side device is configured according to the A response message is learned that the idle DRX cycle change is successful.
  • An embodiment of the present invention provides a UE that receives a synchronization signal from a DS-UE when the DS-UE communicates with the UE by using a D2D manner, and the UE receives the DS-based signal from the UE.
  • the synchronization signal of the UE acquires a first timing offset, where the first timing deviation is a difference between a start time point of the DS-UE transmission data and a start time point of the UE receiving data, and a start time point of the UE receiving the data a start time point of receiving data after the UE synchronizes with the network side device, and the UE sends the first timing offset to the DS-UE, where the first timing offset is used by the DS-UE to adjust the DS according to the first timing offset
  • the starting time point at which the UE sends data to synchronize with the UE and the network side device.
  • the DS-UE can be synchronized with the UE. To synchronize with the network side device, thereby
  • the synchronization with the network side device is completed.
  • an embodiment of the present invention provides a UE, including a transmitter 14, a receiver 15, a processor 16, and a memory 17, wherein
  • the transmitter 14 can be used to transmit communication signals to other user terminals. In particular, if the UE needs to communicate with other user terminals, the transmitter 14 can transmit communication data to other user terminals.
  • the receiver 15 can be used to receive communication signals from other user terminals. In particular, if the UE needs to communicate with other user terminals, the receiver 15 can receive communication data from other user terminals.
  • the processor 16 is a control and processing center of the UE, controls the UE to transmit and receive signals, and implements other functions of the UE by running a software program stored in the memory 17, and calling and processing the data stored in the memory 17.
  • the memory 17 can be used to store software programs and data such that the processor 16 can implement the UE's transceiving signals and other functions by running software programs stored in the memory 17.
  • the processor 16 may be configured to obtain a first timing offset, and adjust a starting time point of the UE to receive data according to the first timing offset or adjust a starting time point of sending data by the UE, to
  • the DM-UE is synchronized with the network side device, where the first timing deviation is a difference between a start time point at which the UE receives data and a start time point at which the DM-UE transmits data, or is the UE a difference between a start time point of the data transmission and a start time point of the data received by the DM-UE, where the start time of the DM-UE transmitting data is the DM-UE and the network side device a start time point of the data after the synchronization, the start time point of the data received by the DM-UE is a start time point of the data received by the DM-UE after being synchronized with the network side device;
  • the memory 17 is applicable to Storing the first timing offset and a software program for controlling the UE to perform the above steps, so that the
  • the receiver 15 is configured to receive a first synchronization signal from the DM-UE when the UE and the DM-UE communicate by using a D2D manner, where the first a synchronization signal is used to synchronize a start time point at which the UE receives data and a start time point at which the DM-UE transmits data, and the processor 16 is specifically configured to receive according to the receiver 15 A synchronization signal acquires the first timing offset.
  • the transmitter 14 is configured to: when the processor 16 obtains the first timing offset, when the UE and the DM-UE communicate by using a D2D manner, Transmitting a synchronization signal to the DM-UE, so that the DM-UE acquires the first timing offset according to the second synchronization signal, and sends the first timing offset to the UE, where the second The synchronization signal is used to synchronize a start time point at which the UE transmits data and a start time point at which the DM-UE receives data.
  • the processor 16 is configured to perform calculation on the first synchronization signal received by the receiver 15 to obtain a first synchronization peak, and determine according to a time point at which the first synchronization peak is located. The first timing deviation.
  • the receiver 15 is specifically configured to receive the first synchronization signal from the DM-UE on a preset uplink time-frequency resource.
  • the receiver 15 is configured to receive the first timing offset from the DM-UE on a preset uplink time-frequency resource.
  • the receiver 15 is configured to receive, after the UE is synchronized with the network side device and the DM-UE, a first indication message, the first indication message, from the DM-UE.
  • the first indication message is sent to the DM-UE, and the first indication message is used to indicate that the idle DRX period is changed, where the first indication message includes a message type and a period value of the idle DRX period, and
  • the processor 16 is further configured to change the idle DRX cycle according to the first indication message received by the receiver 15, and the transmitter 14 is configured to send the first received by the receiver 15 a first response message corresponding to the indication message to the DM-UE, so that the DM-UE sends the first response message to the network side device, so that the network side device according to the first The response message learns that the idle DRX cycle change is successful.
  • the processor 16 is further configured to communicate with the DM-UE according to the changed idle DRX cycle.
  • An embodiment of the present invention provides a UE, where the UE obtains a first timing offset, where the first timing offset is a difference between a start time point of the UE receiving data and a start time point of the DM-UE transmitting data. Or the difference between the start time point of the data sent by the UE and the start time point of the DM-UE receiving data, and the start time point of the DM-UE sending data is sent by the DM-UE after being synchronized with the network side device.
  • the start time point of the data, the start time point of the DM-UE receiving data is the start time point of the data received by the DM-UE after being synchronized with the network side device, and the UE adjusts the data received by the UE according to the first timing offset.
  • the starting time point or adjusting the starting time point at which the UE transmits data to synchronize with the DM-UE and the network side device After the DM-UE synchronizes with the network side device, the UE can synchronize with the network side device by synchronizing with the DM-UE, thereby enabling the UE to complete the network without network coverage. Synchronization of side devices.
  • an embodiment of the present invention provides a UE, including a transmitter 24, a receiver 25, a processor 26, and a memory 27, where
  • the transmitter 24 can be configured to send an uplink signal to the network side device. Specifically, if the UE needs to communicate with the network side device, the transmitter 24 can send the uplink communication data to the network side device.
  • the receiver 25 can be configured to receive downlink signals from the network side device. Specifically, if the UE needs to communicate with the network side device, the receiver 25 can receive downlink communication data from the network side device.
  • the processor 26 is the control and processing center of the UE, and controls the UE to transmit and receive signals and other functions of the UE by running a software program stored in the memory 27 and calling and processing the data stored in the memory 27.
  • the memory 27 can be used to store software programs and data such that the processor 26 can implement the transceiver signals and other functions of the UE by running software programs stored in the memory 27.
  • the transmitter 24 is configured to send a first synchronization signal to the DS-UE when the D2D is used for communication between the DS-UE and the UE, where the first synchronization signal is used by the Determining, by the DS-UE, a first timing offset according to the first synchronization signal, where the first timing deviation is between a start time point of the DS-UE receiving data and a start time point of sending data by the UE a difference, a start time point of the data sent by the UE is a start time point of the data that is sent by the UE after being synchronized with the network side device, where the processor 26 is configured to maintain synchronization with the DS-UE.
  • the specific synchronization is that the DS-UE adjusts a start time point of the DS-UE receiving data according to the first timing offset to synchronize with the UE and the network side device; the memory 27 may be used to store the first a software code of a synchronization signal and a software program for controlling the UE to perform the above steps, so that the processor 26 can execute the software program to call the software code to complete the above steps.
  • the transmitter 24 is configured to send the first synchronization signal to the DS-UE on a preset uplink time-frequency resource.
  • the transmitter 24 is further configured to: after the UE synchronizes with the network side device and the DS-UE, send a first indication message to the DS-UE, so that the DS- The UE changes the idle DRX period according to the first indication message, where the first indication message is sent by the network side device to the UE, and the first indication message is used to indicate that the idle DRX cycle is changed,
  • the first indication message includes a message type and a period value of the idle DRX cycle
  • the receiver 25 is configured to receive, by the DS-UE, the first indication message that is sent by the sender 24
  • the first response message, and the transmitter 24, is further configured to send the first response message received by the receiver 25 to the network side device, so that the network side device is configured according to the first response message. It is known that the idle DRX cycle change is successful.
  • An embodiment of the present invention provides a UE, where the UE can send a first synchronization signal to a DS-UE when the D-channel is used for communication between the DS-UE and the UE, and the first synchronization signal is used for DS-
  • the UE acquires a first timing offset according to the first synchronization signal, where the first timing deviation is a difference between a start time point of the DS-UE receiving data and a starting time point of the UE sending data, where the UE sends data.
  • the starting time point is the UE and the network side
  • the start time point of the data after the synchronization is synchronized, and the UE keeps synchronization with the D S-UE, where the specific synchronization is that the DS-UE adjusts the start time point of the DS-UE receiving data according to the first timing offset to cooperate with the UE.
  • Synchronize with the network side device After the UE synchronizes with the network side device, the DS-UE can synchronize with the network side device to synchronize with the network side device, thereby enabling the DS-UE to complete the network without network coverage. Synchronization of side devices.
  • an embodiment of the present invention provides a UE, including a transmitter 24, a receiver 25, a processor 26, and a memory 27.
  • the receiver 25 is configured to receive a synchronization signal from the DS-UE when the D S-UE communicates with the UE by using a D 2 D manner;
  • the processor 26 is Obtaining a first timing offset according to the receiving the synchronization signal received by the receiver 25 from the DS-UE, where the first timing offset is a start time point of the D S-UE transmitting data and the UE The difference between the start time points of the received data, the start time point of the UE receiving the data is the start time point of the data received by the UE after being synchronized with the network side device;
  • the transmitter 24 can be used to send the location Determining, by the processor 26, the first timing deviation to the DS-UE, where the first timing offset is used by the DS-UE to adjust data sent by the D S-UE according to the first timing offset a start time point to synchronize with the UE and the network side device;
  • the memory 27 is operative to store a software code of the second synchronization signal, the first timing offset, and control
  • the processor 26 is configured to calculate, by the receiver 25, the synchronization signal received from the D S-UE, to obtain a second synchronization peak, and according to the second The first timing offset is determined at a point in time at which the synchronization peak is located.
  • the transmitter 24 is configured to send, by using the preset uplink time-frequency resource, the first timing offset acquired by the processor 26 to the D S-UE.
  • the transmitter 24 is further used by the UE and the network side device.
  • the first indication message is sent to the DS-UE, so that the DS-UE changes the idle DRX period according to the first indication message, where the first indication message is the network side.
  • the first indication message is used to indicate that the idle DRX cycle is changed, the first indication message includes a message type and a period value of the idle DRX cycle, and the receiver 25, Also for receiving a first response message from the DS-UE corresponding to the first indication message sent by the sender 24, and the transmitter 24 is further configured to send the receiver 25 to receive The first response message is sent to the network side device, so that the network side device learns that the idle DRX cycle change is successful according to the first response message.
  • An embodiment of the present invention provides a UE that receives a synchronization signal from a DS-UE when the DS-UE communicates with the UE by using a D2D manner, and the UE receives the DS-based signal from the UE.
  • the synchronization signal of the UE acquires a first timing offset, where the first timing deviation is a difference between a start time point of the DS-UE transmission data and a start time point of the UE receiving data, and a start time point of the UE receiving the data a start time point of receiving data after the UE synchronizes with the network side device, and the UE sends the first timing offset to the DS-UE, where the first timing offset is used by the DS-UE to adjust the DS according to the first timing offset
  • the DS-UE can synchronize with the network side device to synchronize with the network side device, thereby enabling the DS-UE to complete the network without network coverage. Synchronization of side devices.
  • an embodiment of the present invention provides a communication system, including a network side device, a UE as a DM-UE, and a UE as a DS-UE.
  • An embodiment of the present invention provides a communication system, where a first timing offset is obtained by using a DS-UE, where the first timing offset is between a start time point of the DS-UE receiving data and a start time point of the DM-UE transmitting data.
  • the difference, or the difference between the start time point of the DS-UE sending data and the start time point of the DM-UE receiving data, and the start time point of the DM-UE sending data is the DM-UE and the network side device
  • the start time point of the DM-UE receiving data is the start time point of the data received by the DM-UE after being synchronized with the network side device, and the DS-UE adjusts the start time point of the DS-UE receiving data according to the first timing offset or Adjust the start time point of the DS-UE to send data to synchronize with the DM-UE and the network side device.
  • the DS-UE can synchronize with the network side device by synchronizing with the DM-UE, thereby enabling the DS-UE to complete without network coverage. Synchronization with network side devices.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as the units may or may not be physical units, and may be located in one place or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be in the form of hardware Implementation can also be implemented in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明施例提供一种同步方法及装置,涉及通信领域,能够支持DS-UE在无网络覆盖的情况下完成与网络侧设备的同步。该方法包括:DS-UE获取第一定时偏差,第一定时偏差为DS-UE接收数据的起始时间点与DM-UE发送数据的起始时间点的差值或为DS-UE发送数据的起始时间点与DM-UE接收数据的起始时间点的差值,DM-UE发送数据的起始时间点为DM-UE与网络侧设备同步后发送数据的起始时间点,DM-UE接收数据的起始时间点为DM-UE与网络侧设备同步后接收数据的起始时间点;DS-UE根据第一定时偏差调整DS-UE接收数据的起始时间点或DS-UE发送数据的起始时间点,以与DM-UE和网络侧设备同步。

Description

一种同步方法及装置 技术领域
本发明涉及通信领域, 尤其涉及一种同步方法及装置。
背景技术
为了扩大网络覆盖的范围, 一种方式是釆用增加站点的方式来 扩大室内的网络覆盖的范围, 但是这种方式需要运营商投资巨大; 另一种方式是釆用终端对终端 ( Device to Device, D2D ) 的方式进 行通信, 即一个为主用户终端 ( User Equipment , UE ), 另一个为从 UE, 从而能够在提供网络覆盖增强的同时, 降低运营商建网的成本。
在室内或者在室内较隐蔽的地方, 当网络的信号强度处于一个 完全无法通信的状态时, 造成一些室内应用无法正常通信, 例如智 能电表的应用, 需要位于地下室的电表通过网络定期上报数据给电 力公司, 因此, 需要扩大网络覆盖的范围。
但是, 现有的 UE 与网络侧设备之间的同步技术无法支持从 UE 在无网络覆盖的情况下完成与网络侧设备的同步。
发明内容
本发明的实施例提供一种同步方法及装置, 能够支持终端对终 端中的从用户终端 ( D2D Slave UE, DS-UE ) 在无网络覆盖的情况下 完成与网络侧设备的同步。
为达到上述目 的, 本发明的实施例釆用如下技术方案:
第一方面, 本发明的实施例提供一种同步方法, 包括:
终端对终端中的从用户终端 DS-UE获取第一定时偏差, 所述第 一定时偏差为所述 DS-UE接收数据的起始时间点与终端对终端中的 主用户终端 DM-UE 发送数据的起始时间点之间的差值, 或为所述 DS-UE 发送数据的起始时间点与所述 DM-UE 接收数据的起始时间点 之间的差值, 所述 DM-UE发送数据的起始时间点为所述 DM-UE 与网 络侧设备同步后发送数据的起始时间点, 所述 DM-UE接收数据的起 始时间点为所述 DM-UE 与所述网络侧设备同步后接收数据的起始时 间点;
所述 DS -UE根据所述第一定时偏差调整所述 DS-UE接收数据的 起始时间点或调整所述 DS -UE 发送数据的起始时间点, 以与所述 DM-UE和所述网络侧设备同步。
在第一方面的第一种可能的实现方式中, 所述终端对终端中的 从用户终端 DS -UE获取第一定时偏差包括:
在所述 DS -UE和所述 DM-UE之间釆用终端对终端 D 2 D的方式进 行通信时, 所述 DS -UE接收来自所述 DM-UE 的第一同步信号, 所述 第一同步信号用于同步所述 DS -UE 接收数据的起始时间点和所述 DM-UE发送数据的起始时间点;
所述 DS-UE根据所述第一同步信号获取所述第一定时偏差。 在第一方面的第二种可能的实现方式中, 所述终端对终端中的 从用户终端 DS -UE获取第一定时偏差之前, 所述方法还包括:
在所述 DS -UE和所述 DM-UE之间釆用 D 2 D的方式进行通信时, 所述 DS - UE发送第二同步信号至所述 DM-UE , 以使所述 DM- UE根据 所述第二同步信号获取所述第一定时偏差, 并将所述第一定时偏差 发送至所述 DS -UE , 所述第二同步信号用于同步所述 DS-UE 发送数 据的起始时间点和所述 DM-UE接收数据的起始时间点。
结合第一方面的第一种可能的实现方式, 在第三种可能的实现 方式中, 所述 DS-UE 根据所述第一同步信号获取所述第一定时偏差 的方法包括:
所述 DS- UE对所述第一同步信号进行计算, 以获得第一同步峰 值;
所述 DS-UE根据所述第一同步峰值所在的时间点确定所述第一 定时偏差。
结合第一方面的第一种可能的实现方式或第三种可能的实现方 式, 在第四种可能的实现方式中, 所述 DS-UE 接收来自所述 DM-UE 的第一同步信号包括: 所述 DS-UE在预设的上行时频资源上接收来自所述 DM-UE 的所 述第一同步信号。
结合第一方面的第二种可能的实现方式, 在第五种可能的实现 方式中, 所述终端对终端中的从用户终端 DS-UE 获取第一定时偏差 包括:
所述 DS-UE在预设的上行时频资源上接收来自所述 DM-UE 的所 述第一定时偏差。
在第一方面的第六种可能的实现方式中, 所述 DS-UE与所述网 络侧设备和所述 DM-UE 同步之后, 所述方法还包括:
所述 DS-UE接收来自所述 DM-UE 的第一指示消息, 所述第一指 示消息为所述网络侧设备发送至所述 DM-UE 的, 所述第一指示消息 用于指示更改空闲非连续接收 idle DRX周期, 所述第一指示消息包 括消息类型和所述 idle DRX周期的周期值;
所述 DS-UE根据所述第一指示消息更改所述 idle DRX周期; 所述 DS-UE发送与所述第一指示消息对应的第一应答消息至所 述 DM-UE, 以使所述 DM-UE 将所述第一应答消息发送至所述网络侧 设备, 进而使得所述网络侧设备根据所述第一应答消息获知所述 idle DRX周期更改成功。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现 方式中, 所述 DS-UE根据所述第一指示消息更改所述 idle DRX周期 之后, 所述方法还包括:
所述 DS-UE根据更改后的所述 idle DRX周期与所述 DM-UE进行 通信。
第二方面, 本发明的实施例还提供一种同步方法, 包括: 在 DS-UE和 DM-UE之间釆用 D2D的方式进行通信时,所述 DM-UE 发送第一同步信号至所述 DS-UE, 所述第一同步信号用于所述 DS-UE 根据所述第一同步信号获取第一定时偏差, 所述第一定时偏差为所 述 DS-UE接收数据的起始时间点与所述 DM-UE发送数据的起始时间 点之间的差值, 所述 DM-UE发送数据的起始时间点为所述 DM-UE 与 网络侧设备同步后发送数据的起始时间点;
所述 DM-UE与所述 DS-UE保持同步 , 具体同步为所述 DS-UE根 据所述第一定时偏差调整所述 DS-UE接收数据的起始时间点, 以与 所述 DM-UE和所述网络侧设备同步。
在第二方面的第一种可能的实现方式中, 所述 DM-UE发送第一 同步信号至 DS-UE 包括:
所述 DM-UE在预设的上行时频资源上发送所述第一同步信号至 所述 DS - UE。
结合前述的第二方面或第二方面的第一种可能的实现方式, 在 第二种可能的实现方式中, 所述 DM-UE 与所述网络侧设备和所述 DS-UE 同步之后, 所述方法还包括:
所述 DM- UE 发送第一指示消息至所述 DS-UE, 以使所述 DS- UE 根据所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所 述网络侧设备发送至所述 DM-UE 的, 所述第一指示消息用于指示更 改所述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX周期的周期值;
所述 DM- UE接收来自所述 DS-UE 的与所述第一指示消息对应的 第一应答消息;
所述 DM-UE发送所述第一应答消息至所述网络侧设备, 以使所 述网络侧设备根据所述第一应答消息获知所述 idle DRX周期更改成 功。
第三方面, 本发明的实施例还提供一种同步方法, 包括: 在 DS-UE和 DM-UE之间釆用 D2D的方式进行通信时,所述 DM-UE 接收来自所述 DS-UE的同步信号;
所述 DM-UE根据所述接收来自所述 DS-UE 的同步信号获取第一 定时偏差, 所述第一定时偏差为所述 DS-UE 发送数据的起始时间点 与所述 DM-UE接收数据的起始时间点之间的差值, 所述 DM-UE接收 数据的起始时间点为所述 DM-UE 与网络侧设备同步后接收数据的起 始时间点; 所述 DM-UE 发送所述第一定时偏差至所述 DS-UE, 所述第一定 时偏差用于所述 DS-UE根据所述第一定时偏差调整所述 DS-UE发送 数据的起始时间点, 以与所述 DM-UE和所述网络侧设备同步。
在第三方面的第一种可能的实现方式中, 所述 DM-UE根据所述 接收来自所述 DS-UE的同步信号获取第一定时偏差的方法包括: 所述 DM-UE对所述接收来自所述 DS-UE的同步信号进行计算, 以获得第二同步峰值;
所述 DM-UE根据所述第二同步峰值所在的时间点确定所述第一 定时偏差。
结合前述的第三方面或第三方面的第一种可能的实现方式, 在 第二种可能的实现方式中, 所述 DM-UE 发送所述第一定时偏差至所 述 DS-UE 包括:
所述 DM-UE在预设的上行时频资源上发送所述第一定时偏差至 所述 DS - UE。
结合前述的第三方面或第三方面的第一种可能的实现方式至第 二种可能的实现方式中的任一种实现方式, 在第三种可能的实现方 式中, 所述 DM-UE 与所述网络侧设备和所述 DS-UE 同步之后, 所述 方法还包括:
所述 DM- UE 发送第一指示消息至所述 DS-UE, 以使所述 DS- UE 根据所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所 述网络侧设备发送至所述 DM-UE 的, 所述第一指示消息用于指示更 改所述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX周期的周期值;
所述 DM- UE接收来自所述 DS-UE 的与所述第一指示消息对应的 第一应答消息;
所述 DM-UE发送所述第一应答消息至所述网络侧设备, 以使所 述网络侧设备根据所述第一应答消息获知所述 idle DRX周期更改成 功。
第四方面, 本发明的实施例提供一种 UE, 包括: 获取单元, 用于获取第一定时偏差, 所述第一定时偏差为所述
UE接收数据的起始时间点与 DM-UE发送数据的起始时间点之间的差 值, 或为所述 UE发送数据的起始时间点与所述 DM-UE接收数据的起 始时间点之间的差值, 所述 DM-UE 发送数据的起始时间点为所述 DM-UE 与网络侧设备同步后发送数据的起始时间点, 所述 DM-UE 接 收数据的起始时间点为所述 DM-UE 与所述网络侧设备同步后接收数 据的起始时间点;
处理单元, 用于根据所述获取单元获取的所述第一定时偏差调 整所述 UE接收数据的起始时间点或调整所述 UE发送数据的起始时 间点, 以与所述 DM-UE和所述网络侧设备同步。
在第四方面的第一种可能的实现方式中,所述 UE还包括接收单 元,
所述接收单元,用于在所述 UE和所述 DM-UE之间釆用 D2D的方 式进行通信时, 接收来自所述 DM-UE 的第一同步信号, 所述第一同 步信号用于同步所述 UE接收数据的起始时间点和所述 DM-UE发送数 据的起始时间点;
所述获取单元, 具体用于根据所述接收单元接收的所述第一同 步信号获取所述第一定时偏差, 所述第一同步信号用于同步所述 UE 接收数据的起始时间点和所述 DM-UE发送数据的起始时间点。
在第四方面的第二种可能的实现方式中,所述 UE还包括发送单 元,
所述发送单元, 用于在所述获取单元获取所述第一定时偏差之 前, 当所述 UE和所述 DM-UE之间釆用 D2D的方式进行通信时, 发送 同步信号至所述 DM-UE, 以使所述 DM-UE 根据所述第二同步信号获 取所述第一定时偏差, 并将所述第一定时偏差发送至所述 UE, 所述 第二同步信号用于同步所述 UE发送数据的起始时间点和所述 DM-UE 接收数据的起始时间点。
结合第四方面的第一种可能的实现方式, 在第三种可能的实现 方式中, 所述获取单元, 具体用于对所述接收单元接收的所述第一同步 信号进行计算, 以获得第一同步峰值, 并根据所述第一同步峰值所 在的时间点确定所述第一定时偏差。
结合第四方面的第一种可能的实现方式或第三种可能的实现方 式, 在第四种可能的实现方式中,
所述接收单元, 具体用于在预设的上行时频资源上接收来自所 述 DM-UE的所述第一同步信号。
结合第四方面的第二种可能的实现方式, 在第五种可能的实现 方式中,
所述获取单元, 具体用于在预设的上行时频资源上接收来自所 述 DM-UE的所述第一定时偏差。
在第四方面的第六种可能的实现方式中,所述 UE还包括发送单 元和接收单元,
所述接收单元, 用于在所述 UE与所述网络侧设备和所述 DM-UE 同步之后, 接收来自所述 DM-UE 的第一指示消息, 所述第一指示消 息为所述网络侧设备发送至所述 DM-UE 的, 所述第一指示消息用于 指示更改 i d l e DRX 周期, 所述第一指示消息包括消息类型和所述 i d l e DRX周期的周期值;
所述处理单元, 还用于根据所述接收单元接收的所述第一指示 消息更改所述 i d l e DRX周期;
所述发送单元, 用于发送与所述接收单元接收的所述第一指示 消息对应的第一应答消息至所述 DM-UE , 以使所述 DM-UE 将所述第 一应答消息发送至所述网络侧设备, 进而使得所述网络侧设备根据 所述第一应答消息获知所述 i d l e DRX周期更改成功。
结合第四方面的第六种可能的实现方式, 在第七种可能的实现 方式中,
所述处理单元, 还用于根据更改后的所述 i d 1 e DRX周期与所述 DM-UE进行通信。
第五方面, 本发明的实施例还提供一种 UE , 包括: 发送单元,用于在 DS-UE和所述 UE之间釆用 D2D的方式进行通 信时, 发送第一同步信号至所述 DS-UE, 所述第一同步信号用于所 述 DS-UE 根据所述第一同步信号获取第一定时偏差, 所述第一定时 偏差为所述 DS-UE接收数据的起始时间点与所述 UE发送数据的起始 时间点之间的差值, 所述 UE发送数据的起始时间点为所述 UE与所 述网络侧设备同步后发送数据的起始时间点;
保持单元,用于与所述 DS-UE保持同步,具体同步为所述 DS-UE 根据所述第一定时偏差调整所述 DS-UE 接收数据的起始时间点, 以 与所述 UE和所述网络侧设备同步。
在第五方面的第一种可能的实现方式中,
所述发送单元, 具体用于在预设的上行时频资源上发送所述第 一同步信号至所述 DS-UE。
结合前述的第五方面或第五方面的第一种可能的实现方式, 在 第二种可能的实现方式中, 所述 UE还包括接收单元,
所述发送单元, 还用于在所述 UE 与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE 根据所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所 述网络侧设备发送至所述 UE的, 所述第一指示消息用于指示更改所 述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述接收单元, 用于接收来自所述 DS-UE 的与所述发送单元发 送的所述第一指示消息对应的第一应答消息;
所述发送单元, 还用于发送所述接收单元接收的所述第一应答 消息至所述网络侧设备, 以使所述网络侧设备根据所述第一应答消 息获知所述 idle DRX周期更改成功。
第六方面, 本发明的实施例还提供一种 UE, 包括:
接收单元,用于在 DS-UE和所述 UE之间采用 D2D的方式进行通 信时, 接收来自所述 DS-UE的同步信号;
获取单元, 用于根据所述接收单元接收的所述接收来自所述 DS-UE 的同步信号获取第一定时偏差, 所述第一定时偏差为所述 DS-UE发送数据的起始时间点与所述 UE接收数据的起始时间点之间 的差值, 所述 UE接收数据的起始时间点为所述 UE 与网络侧设备同 步后接收数据的起始时间 , *、;
发送单元, 用于发送所述获取单元获取的所述第一定时偏差至 所述 DS-UE, 所述第一定时偏差用于所述 DS-UE 根据所述第一定时 偏差调整所述 DS-UE发送数据的起始时间点, 以与所述 UE和所述网 络侧设备同步。
在第六方面的第一种可能的实现方式中,
所述获取单元, 具体用于对所述接收单元接收的所述接收来自 所述 DS-UE 的同步信号进行计算, 以获得第二同步峰值, 并根据所 述第二同步峰值所在的时间点确定所述第一定时偏差。
结合前述的第六方面或第六方面的第一种可能的实现方式, 在 第二种可能的实现方式中,
所述发送单元, 具体用于在预设的上行时频资源上发送所述获 取单元获取的所述第一定时偏差至所述 DS-UE。
结合前述的第六方面或第六方面的第一种可能的实现方式至第 二种可能的实现方式中的任一种实现方式, 在第三种可能的实现方 式中,
所述发送单元, 还用于在所述 UE 与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE 根据所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所 述网络侧设备发送至所述 UE的, 所述第一指示消息用于指示更改所 述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述接收单元, 还用于接收来自所述 DS-UE 的与所述发送单元 发送的所述第一指示消息对应的第一应答消息;
所述发送单元, 还用于发送所述接收单元接收的所述第一应答 消息至所述网络侧设备, 以使所述网络侧设备根据所述第一应答消 息获知所述 idle DRX周期更改成功。
第七方面, 本发明的实施例还提供一种 UE, 包括:
处理器, 用于获取第一定时偏差, 并根据所述第一定时偏差调 整所述 UE接收数据的起始时间点或调整所述 UE发送数据的起始时 间点, 以与 DM-UE和网络侧设备同步, 所述第一定时偏差为所述 UE 接收数据的起始时间点与所述 DM-UE 发送数据的起始时间点之间的 差值, 或为所述 UE发送数据的起始时间点与所述 DM-UE接收数据的 起始时间点之间的差值, 所述 DM-UE 发送数据的起始时间点为所述 DM-UE与所述网络侧设备同步后发送数据的起始时间点, 所述 DM-UE 接收数据的起始时间点为所述 DM-UE 与所述网络侧设备同步后接收 数据的起始时间点。
在第七方面的第一种可能的实现方式中, 所述 UE 还包括接收 哭口 ,
所述接收器,用于在所述 UE和所述 DM-UE之间采用 D2D的方式 进行通信时, 接收来自所述 DM-UE 的第一同步信号, 所述第一同步 信号用于同步所述 UE接收数据的起始时间点和所述 DM-UE发送数据 的起始时间点;
所述处理器, 具体用于根据所述接收器接收的所述第一同步信 号获取所述第一定时偏差。
在第七方面的第二种可能的实现方式中, 所述 UE 还包括发送 器,
所述发送器, 用于在所述处理器获取所述第一定时偏差之前, 当所述 UE和所述 DM-UE之间釆用 D2D的方式进行通信时, 发送第二 同步信号至所述 DM-UE, 以使所述 DM-UE 根据所述第二同步信号获 取所述第一定时偏差, 并将所述第一定时偏差发送至所述 UE, 所述 第二同步信号用于同步所述 UE发送数据的起始时间点和所述 DM-UE 接收数据的起始时间点。
结合第七方面的第一种可能的实现方式, 在第三种可能的实现 方式中, 所述处理器, 具体用于对所述接收器接收的所述第一同步信号 进行计算, 以获得第一同步峰值, 并根据所述第一同步峰值所在的 时间点确定所述第一定时偏差。
结合第七方面的第一种可能的实现方式或第三种可能的实现方 式, 在第四种可能的实现方式中,
所述接收器, 具体用于在预设的上行时频资源上接收来自所述
DM-UE的所述第一同步信号。
结合第七方面的第二种可能的实现方式, 在第五种可能的实现 方式中, 所述 UE还包括接收器,
所述接收器, 用于在预设的上行时频资源上接收来自 所述 DM-UE的所述第一定时偏差。
在第七方面的第六种可能的实现方式中,所述 UE还包括发送器 和接收器,
所述接收器, 用于在所述 UE 与所述网络侧设备和所述 DM-UE 同步之后, 接收来自所述 DM-UE 的第一指示消息, 所述第一指示消 息为所述网络侧设备发送至所述 DM-UE 的, 所述第一指示消息用于 指示更改 i d l e DRX 周期, 所述第一指示消息包括消息类型和所述 i d l e DRX周期的周期值;
所述处理器, 还用于根据所述接收器接收的所述第一指示消息 更改所述 i d l e DRX周期;
所述发送器, 用于发送与所述接收器接收的所述第一指示消息 对应的第一应答消息至所述 DM-UE , 以使所述 DM-UE 将所述第一应 答消息发送至所述网络侧设备, 进而使得所述网络侧设备根据所述 第一应答消息获知所述 i d l e DRX周期更改成功。
结合第七方面的第六种可能的实现方式, 在第七种可能的实现 方式中,
所述处理器, 还用于 4艮据更改后的所述 i d l e DRX 周期与所述 DM-UE进行通信。
第八方面, 本发明的实施例还提供一种 UE , 包括: 发送器,用于在 DS-UE和所述 UE之间釆用 D2D的方式进行通信 时, 发送第一同步信号至所述 DS-UE, 所述第一同步信号用于所述 DS-UE 根据所述第一同步信号获取第一定时偏差, 所述第一定时偏 差为所述 DS-UE接收数据的起始时间点与所述 UE发送数据的起始时 间点之间的差值, 所述 UE发送数据的起始时间点为所述 UE 与所述 网络侧设备同步后发送数据的起始时间点;
处理器, 用于与所述 DS-UE 保持同步, 具体同步为所述 DS-UE 根据所述第一定时偏差调整所述 DS-UE 接收数据的起始时间点, 以 与所述 UE和所述网络侧设备同步。
在第八方面的第一种可能的实现方式中,
所述发送器, 具体用于在预设的上行时频资源上发送所述第一 同步信号至所述 DS-UE。
结合前述的第八方面或第八方面的第一种可能的实现方式, 在 第二种可能的实现方式中, 所述 UE还包括接收器,
所述发送器, 还用于在所述 UE与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE 根据 所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所述网 络侧设备发送至所述 UE 的, 所述第一指示消息用于指示更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述接收器, 用于接收来自所述 DS-UE 的与所述发送器发送的 所述第一指示消息对应的第一应答消息;
所述发送器, 还用于发送所述接收器接收的所述第一应答消息 至所述网络侧设备, 以使所述网络侧设备根据所述第一应答消 , 获 知所述 i d 1 e DRX周期更改成功。
第九方面, 本发明的实施例还提供一种 UE, 包括:
接收器,用于在 DS-UE和所述 UE之间采用 D2D的方式进行通信 时, 接收来自所述 DS-UE的同步信号;
处理器, 用于根据所述接收器接收的所述接收来自所述 DS-UE 的同步信号获取第一定时偏差, 所述第一定时偏差为所述 DS-UE 发 送数据的起始时间点与所述 UE接收数据的起始时间点之间的差值, 所述 UE接收数据的起始时间点为所述 UE与网络侧设备同步后接收 数据的起始时间点;
发送器, 用于发送所述处理器获取的所述第一定时偏差至所述 DS-UE, 所述第一定时偏差用于所述 DS-UE根据所述第一定时偏差调 整所述 DS-UE发送数据的起始时间点, 以与所述 UE和所述网络侧设 备同步。
在第九方面的第一种可能的实现方式中,
所述处理器, 具体用于对所述接收器接收的所述接收来自所述 DS-UE 的同步信号进行计算, 以获得第二同步峰值, 并根据所述第 二同步峰值所在的时间点确定所述第一定时偏差。
结合前述的第九方面或第九方面的第一种可能的实现方式, 在 第二种可能的实现方式中,
所述发送器, 具体用于在预设的上行时频资源上发送所述处理 器获取的所述第一定时偏差至所述 DS-UE。
结合前述的第九方面或第九方面的第一种可能的实现方式至第 二种可能的实现方式中的任一种实现方式, 在第三种可能的实现方 式中,
所述发送器, 还用在所述 UE 与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE 根据 所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所述网 络侧设备发送至所述 UE 的, 所述第一指示消息用于指示更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述接收器, 还用于接收来自所述 DS-UE 的与所述发送器发送 的所述第一指示消息对应的第一应答消息;
所述发送器, 还用于发送所述接收器接收的所述第一应答消息 至所述网络侧设备, 以使所述网络侧设备根据所述第一应答消 , 获 知所述 i d 1 e DRX周期更改成功。
本发明实施例提供一种同步方法及装置, 通过 DS-UE获取第一 定时偏差,该第一定时偏差为 DS-UE接收数据的起始时间点与 DM-UE 发送数据的起始时间点之间的差值, 或为 DS-UE 发送数据的起始时 间点与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 发送数据 的起始时间点为 DM-UE 与网络侧设备同步后发送数据的起始时间 点, DM-UE 接收数据的起始时间点为 DM-UE 与网络侧设备同步后接 收数据的起始时间点, 并且 DS-UE 根据该第一定时偏差调整 DS-UE 接收数据的起始时间点, 或所述 DS-UE 发送数据的起始时间点, 以 与 DM-UE和网络侧设备同步。 通过该方案, 在 DM-UE与网络侧设备 同步后, 由于 DS-UE可通过与 DM-UE进行同步而达到与网络侧设备 的同步, 从而能够支持 DS-UE 在无网络覆盖的情况下完成与网络侧 设备的同步。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例。
图 1 为本发明实施例提供的一种同步方法的流程图;
图 2为本发明实施例提供的一种同步方法的流程图;
图 3为本发明实施例提供的一种同步方法的流程图;
图 4为本发明实施例提供的一种同步方法的交互图;
图 5 为本发明实施例提供的 DS-UE 接收数据的起始时间点与 DS-UE的开机时间点之间的时间差值的示意图;
图 6为本发明实施例提供的 UE的开机时间点提前或滞后的示意 图;
图 7本发明实施例提供的一种同步方法的交互图;
图 8本发明实施例提供的 DM-UE的开机时间点与 DM-UE接收数 据的起始时间点之间的时间差值的示意图;
图 9本发明实施例提供的一种同步方法的交互图; 图 10为本发明实施例提供的 UE的结构示意图
图 11 为本发明实施例提供的 UE的结构示意图
图 12为本发明实施例提供的 UE的结构示意图
图 13为本发明实施例提供的 UE的结构示意图
图 14为本发明实施例提供的 UE的结构示意图
图 15为本发明实施例提供的 UE的结构示意图
图 16为本发明实施例提供的 UE的结构示意图
图 17为本发明实施例提供的 UE的结构示意图
图 18为本发明实施例提供的 UE的结构示意图
19为本发明实施例提供的通信系统的框图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。
本文中描述的各种技术可用于各种无线通信系统, 例如当前
2G, 3G通信系统和下一代通信系统, 例如全球移动通信系统 ( GSM, Global System for Mobile communications ), 码分多址 ( CDMA,
Code Division Multiple Access ) 系统, 时分多址 ( TDMA , Time Divis ion Mult iple Access ) 系统, 宽带码分多址(; WCDMA, Wideband Code Division Multiple Access Wireless ) 系统, 频分多址 ( FDMA, Frequency Division Multiple Addressing ) 系统, 正交频分多址 ( OFDMA , Orthogonal Frequency-Division Multiple Access ) 系 统,单载波频分多址( SC-FDMA, Single Carrier Frequency Divis ion Multiple Addressing ) 系统, 通用分组无线业务 ( GPRS, General Packet Radio Service )系统, 长期演进( LTE, Long Term Evolution ) 系统, 以及其他此类通信系统。
终端对终端中的主用户终端 ( D2D Master UE, DM-UE ) 和 DS-UE 为釆用 D2D 方式进行通信的两个用户终端, 其中, DM-UE 为网络侧 设备覆盖范围内的 UE, DS-UE为该网络侧设备覆盖范围外的 UE。 在 正常通信过程中, 为了节省功耗, 网络侧设备为 DM-UE和 DS-UE分 另 'J西己置 idle (空闲 ) DRX ( D i s con t i nuou s Recept ion, 连续接 4t ), 以使得 DM-UE和 DS-UE在转入正常运行阶段后, 大部分时间都处于 idle DRX状态, 即 DM— UE 和 DS— UE根据配置的 idle DRX周期, 在 一定的间隔时间才苏醒一次。
下面以网络侧设备为 DM-UE 和 DS-UE 配置的 idle DRX 周期为 10分钟为例说明 DM-UE和 DS-UE的苏醒周期。
由于 DM-UE和 DS-UE分别有两套时钟晶振, 一套为第一时钟晶 振, 另一套为第二时钟晶振, 由于第二时钟晶振具有较高的稳定性 及较高的功耗(时钟晶振的稳定性越高,时钟晶振的准确度就越高 ), 因此, 为了节省功耗, 一般可在 DM-UE和 DS-UE 睡眠时间内关闭第 二时钟晶振, 即只有第一时钟晶振在工作。 这样, 由于 DM-UE 的第 一时钟晶振和 DS-UE 的第一时钟晶振的稳定性较低, 即 DM-UE 的第 一时钟晶振和 DS-UE 的第一时钟晶振准确度较低, 从而导致 DM-UE 的苏醒周期和 DS-UE 的苏醒周期与网络侧设备配置的苏醒周期相比 发生了变化, 如 DM-UE的苏醒周期为 10.4分钟, 而 DS-UE的苏醒周 期为 9.8分钟, 即导致 DM-UE和 DS-UE根据苏醒周期苏醒后, DM-UE 发送数据的起始时间点和 DS-UE 发送数据的起始时间点超前或者滞 后于网络侧设备接收数据的起始时间点, 或者 DM-UE接收数据的起 始时间点和 DS-UE 接收数据的起始时间点超前或者滞后于网络侧设 备发送数据的起始时间 , ^。
本发明实施例提供一种同步方法, 涉及 DS-UE侧, 如图 1 所示, 该方法可以包括:
S101、 DS-UE 获取第一定时偏差, 第一定时偏差为 DS-UE 接收 数据的起始时间点与 DM-UE 发送数据的起始时间点之间的差值, 或 为 DS-UE发送数据的起始时间点与 DM-UE接收数据的起始时间点之 间的差值, DM-UE 发送数据的起始时间点为 DM-UE 与网络侧设备同 步后发送数据的起始时间点, DM-UE接收数据的起始时间点为 DM-UE 与网络侧设备同步后接收数据的起始时间点。
本发明实施例中, DM- UE和 DS- UE均为用户终端, 其中, DM- UE 为网络侧设备覆盖范围内的 UE, DS-UE 为该网络侧设备覆盖范围外 的 UE。
可选的, 可通过在 DM-UE和 DS-UE的芯片中分别设置 DM-UE的 ID ( IDentity, 序歹' J号) 和 DS-UE的 ID, 并将 DM-UE的 ID和 DS-UE 的 ID关联起来, 从而使得 DM-UE只能和与其相关联的 DS-UE进行同 步或通信; 相应的, DS-UE 也只能和与其相关联的 DM-UE 进行同步 或通信。
本发明实施例提供的网络侧设备可以包括基站等设备。 DM-UE 和 DS-UE可以包括智能电表等终端。
示例性的, 由于 DM-UE 和 DS-UE 内部的时钟晶振的差异, 当 DM—UE和 DS—UE才艮据网络 ]设备西己置^; idle DRX周期苏醒后, DM-UE 发送数据的起始时间点和 DS-UE 发送数据的起始时间点会超前或者 滞后于网络侧设备接收数据的起始时间点, 或者 DM-UE 接收数据的 起始时间点和 DS-UE接收数据的起始时间点会超前或者滞后于网络 侧设备发送数据的起始时间点。 若 DM-UE和 DS-UE 需与网络侧设备 通信, 则 DM-UE 和 DS-UE 首先需与网络侧设备进行同步。 DM-UE 和 网络侧设备同步之后, 在 DS-UE和 DM-UE之间釆用 D2D 的方式进行 通信时, DS-UE 需要根据 DS-UE 与网络侧设备之间的定时偏差对 DS-UE 发送数据的起始时间点或 DS-UE 接收数据的起始时间点进行 调整。 由于 DS-UE为网络侧设备覆盖外的 UE, 因此, 本发明实施例 提供一种同步方法,即为 DS-UE通过与和网络侧设备同步后的 DM-UE 进行同步而完成与网络侧设备之间的同步。
具体的, DS-UE 获取第一定时偏差, 第一定时偏差为 DS-UE接 收数据的起始时间点与 DM-UE 发送数据的起始时间点之间的差值, 或为 DS-UE发送数据的起始时间点与 DM-UE接收数据的起始时间点 之间的差值, DM-UE 发送数据的起始时间点为 DM-UE 与网络侧设备 同步后发送数据的起始时间点, DM-UE 接收数据的起始时间点为 DM-UE与网络侧设备同步后接收数据的起始时间点。
需要说明的是, 由于 DM-UE在网络侧设备的覆盖范围内, 因此, DM-UE 与网络侧设备可釆用现有的同步技术进行同步, 具体可以包 括:
( 1 ) DM-UE 根据配置的 idle DRX 周期苏醒后, 需与网络侧设 备进行同步。
( 2 ) DM-UE搜索网络侧设备发送的用于同步网络侧设备发送数 据的起始时间点和 DM-UE接收数据的起始时间点的同步信号, 并根 据该用于同步网络侧设备发送数据的起始时间点和 DM-UE接收数据 的起始时间点的同步信号获取网络侧设备和 DM-UE 之间的定时偏 差, 以及根据网络侧设备和 DM-UE之间的定时偏差调整 DM-UE接收 数据的起始时间点, 以与网络侧设备进行同步。
具体的, DM-UE 可根据网络侧设备发送的用于同步网络侧设备 发送数据的起始时间点和 DM-UE 接收数据的起始时间点的同步信号 获取该同步信号的峰值, 并根据该同步信号的峰值得到网络侧设备 和 DM-UE之间的定时偏差, 从而 DM-UE根据网络侧设备和 DM-UE之 间的定时偏差调整 DM-UE接收数据的起始时间点, 以与网络侧设备 完成下行同步。
对于 DM- UE与网络侧设备的上行同步过程, 与 DM-UE与网络侧 设备的下行同步过程类似, 后续实施例会进行详细地说明。
S102、 DS-UE 根据第一定时偏差调整 DS-UE接收数据的起始时 间点或调整 D S -UE发送数据的起始时间点, 以与 DM-UE和网络侧设 备同步。
DS-UE获取第一定时偏差后, DS-UE可根据该第一定时偏差调整 DS-UE接收数据的起始时间点或调整 DS-UE发送数据的起始时间点 , 以与 DM-UE和网络侧设备进行同步。 由于在 DS-UE获取第一定时偏 差之前, DM-UE 已经与网络侧设备完成同步, 因此, 在 DS-UE 根据 第一定时偏差调整 DS-UE接收数据的起始时间点或调整 DS-UE发送 数据的起始时间点之后, DS-UE 与 DM-UE 完成同步, 也即 DS-UE 与 网络侧设备完成同步。
具体的, 若 DS-UE获取的第一定时偏差为 DM-UE发送数据的起 始时间点与 DS-UE 接收数据的起始时间点之间的差值, DS-UE 则可 根据该第一定时偏差调整 DS-UE 接收数据的起始时间点, 即 DS-UE 与 DM-UE之间完成下行同步; 相应的, 若 DS-UE获取的第一定时偏 差为 DS-UE发送数据的起始时间点与 DM-UE接收数据的起始时间点 之间的差值, DS-UE 则可根据该第一定时偏差调整 DS-UE 发送数据 的起始时间点, 即 DS-UE与 DM-UE之间完成上行同步。 具体的 DS- UE 完成下行同步或完成上行同步的过程后续实施例将进行详细地说 明。
需要说明的是, 由于 DM-UE和 DS-UE—般距离较近, 因此, 对 于 DM-UE 与 DS-UE 之间传输数据的时延可以忽略。 即当 DS-UE 与 DM- UE 之间完成下行同步时, 可以认为 DS- UE 与 DM- UE 之间也完成 了上行同步; 相应的, 当 DS-UE 与 DM-UE之间完成上行同步时, 可 以认为 DS-UE与 DM-UE之间也完成了下行同步。
至此, 完成了 DS- UE、 DM-UE及网络侧设备之间的同步。
本发明实施例还提供一种同步方法, 涉及 DM-UE侧, 如图 2所 示, 该方法可以包括:
S201、在 DS-UE和 DM-UE之间釆用 D2D的方式进行通信时, DM-UE 发送第一同步信号至 DS-UE, 第一同步信号用于 DS-UE 根据第一同 步信号获取第一定时偏差, 第一定时偏差为 DS-UE 接收数据的起始 时间点与 DM-UE 发送数据的起始时间点之间的差值, DM-UE 发送数 据的起始时间点为 DM-UE 与网络侧设备同步后发送数据的起始时间 点。
由于 DM-UE和 DS-UE 内部的时钟晶振的差异,当 DM-UE和 DS-UE 根据网络侧设备配置的 idle DRX周期苏醒后, DM-UE发送数据的起 始时间点和 DS-UE 发送数据的起始时间点会超前或者滞后于网络侧 设备接收数据的起始时间点, 或者 DM-UE 接收数据的起始时间点和 DS-UE 接收数据的起始时间点会超前或者滞后于网络侧设备发送数 据的起始时间点。 若 DM-UE和 DS-UE需与网络侧设备通信, 则 DM-UE 和 DS-UE 首先需与网络侧设备进行同步。 DM-UE 与网络侧设备同步 后, 在 DS- UE和 DM- UE之间釆用 D2D 的方式进行通信时, DM- UE发 送第一同步信号至 DS-UE, 该第一同步信号可用于 DS-UE 根据该第 一同步信号获取第一定时偏差, 该第一定时偏差为 DS-UE接收数据 的起始时间点与 DM-UE 发送数据的起始时间点之间的差值, 其中, DM-UE 发送数据的起始时间点为 DM-UE 与网络侧设备同步后发送数 据的起始时间点。
S202 , DM-UE 与 DS-UE保持同步, 具体同步为 DS-UE根据该第 一定时偏差调整 DS-UE接收数据的起始时间点, 以与 DM-UE和网络 侧设备同步。
DM-UE发送第一同步信号至 DS- UE后, DS- UE可根据该第一同步 信号获取第一定时偏差, 并根据该第一定时偏差调整 DS-UE 接收数 据的起始时间点, 从而与 DM-UE和网络侧设备同步。
可选的,第一同步信号可以为 DM-UE根据 DM-UE的 ID的最后一 位比特或者其他特定的一位比特生成的, 本发明不做限制。 例如: DM-UE 的 ID 总共为 8 比特, 分别为 A0A1A2A3A4A5A6A7, 可以选取 A7 比特来生成第一同步信号, 也可以选取 A5 比特来生成第一同步 信号。
本发明实施例中, 由于 DS-UE 与 DM-UE 完成同步之前, DM-UE 已经与网络侧设备完成了同步, 因此, 当 DS-UE与 DM-UE 完成了同 步后, DS-UE也与网络侧设备完成了同步。
本发明实施例还提供一种同步方法, 涉及 DM-UE侧, 如图 3所 示, 该方法可以包括: S301、在 DS-UE和 DM-UE之间釆用 D2D的方式进行通信时, DM-UE 接收来自 DS-UE的同步信号。
由于 DM-UE和 DS-UE 内部的时钟晶振的差异,当 DM-UE和 DS-UE 根据网络侧设备配置的 idle DRX周期苏醒后, DM-UE发送数据的起 始时间点和 DS-UE 发送数据的起始时间点会超前或者滞后于网络侧 设备接收数据的起始时间点, 或者 DM-UE接收数据的起始时间点和 DS-UE 接收数据的起始时间点会超前或者滞后于网络侧设备发送数 据的起始时间点。 若 DM-UE和 DS-UE需与网络侧设备通信, 则 DM-UE 和 DS-UE 首先需与网络侧设备进行同步。 DM-UE 与网络侧设备同步 后, 在 DS-UE和 DM-UE之间釆用 D2D 的方式进行通信时, DM-UE接 收来自 DS-UE的同步信号, 这时 DS-UE还未与网络侧设备同步上。
可选的, DM- UE接收来自 DS-UE 的同步信号可以为 DS- UE根据 DS-UE的 ID的最后一位比特或者其他特定的一位比特生成的, 本发 明 不做限制 。 例如: DS-UE 的 ID 总共为 8 比特, 分别 为 B0B1B2B3B4B5B6B7, 可以选取 B7 比特来生成 DM-UE接收来自 DS-UE 的同步信号, 也可以选取 B5 比特来生成 DM-UE接收来自 DS-UE的同 步信号。
S 302、 DM-UE根据 DM-UE接收来自 DS-UE 的同步信号获取第一 定时偏差, 第一定时偏差为 DS-UE 发送数据的起始时间点与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 接收数据的起始时间点 为 DM-UE与网络侧设备同步后接收数据的起始时间点。
DM-UE 接收到 DS-UE 发送的同步信号后, DM-UE 可根据 DM-UE 接收来自 DS-UE 的同步信号获取第一定时偏差, 第一定时偏差为 DS-UE 发送数据的起始时间点与 DM-UE 接收数据的起始时间点之间 的差值, 其中, DM-UE 接收数据的起始时间点为 DM-UE 与网络侧设 备同步后接收数据的起始时间点。
S 303、 DM-UE 发送第一定时偏差至 DS-UE, 第一定时偏差用于 DS-UE 根据该第一定时偏差调整 DS-UE 发送数据的起始时间点, 以 与 DM- UE和网络侧设备同步。 DM-UE获取第一定时偏差后, DM-UE可将该第一定时偏差发送至 DS-UE , 该第一定时偏差可用于 DS-UE 根据该第一定时偏差调整 DS-UE 发送数据的起始时间点, 从而以与 DM-UE 和网络侧设备之间 完成同步。
本发明实施例中, 由于 DS-UE 与 DM-UE 完成同步之前, DM- UE 已经与网络侧设备完成了同步, 因此, 当 DS-UE与 DM-UE完成了同 步后, DS-UE也与网络侧设备完成了同步。
本发明实施例提供一种同步方法, 通过 DS-UE获取第一定时偏 差, 该第一定时偏差为 DS-UE接收数据的起始时间点与 DM-UE发送 数据的起始时间点之间的差值, 或为 DS-UE 发送数据的起始时间点 与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 发送数据的起 始时间点为 DM-UE 与网络侧设备同步后发送数据的起始时间点, DM-UE 接收数据的起始时间点为 DM-UE 与网络侧设备同步后接收数 据的起始时间点, 并且 DS-UE根据该第一定时偏差调整 DS-UE接收 数据的起始时间点, 或 DS-UE 发送数据的起始时间点, 以与 DM-UE 和网络侧设备同步。 通过该方案, 在 DM-UE 与网络侧设备同步后, 由于 DS-UE可通过与 DM-UE进行同步而达到与网络侧设备的同步, 从而能够支持 DS-UE 在无网络覆盖的情况下完成与网络侧设备的同 步。
本发明实施例还提供一种同步方法, 如图 4 所示, 该方法可以 包括:
S401、 网络侧设备发送用于同步网络侧设备发送数据的起始时 间点和 DM-UE接收数据的起始时间点的同步信号至 DM-UE。
本发明实施例中, DM- UE和 DS- UE均为用户终端, 其中, DM- UE 为网络侧设备覆盖范围内的 UE, DS-UE 为该网络侧设备覆盖范围外 的 UE。
可选的, 可通过在 DM-UE和 DS-UE的芯片中分别设置 DM-UE的 ID和 DS-UE的 ID, 并将 DM-UE的 ID和 DS-UE的 ID关联起来, 从而 使得 DM-UE只能和与其相关联的 DS-UE进行同步或通信; 相应的, DS-UE也只能和与其相关联的 DM-UE进行同步或通信。
本发明实施例提供的网络侧设备可以包括基站等设备。 DM-UE 和 DS-UE可以包括智能电表等终端。
在正常通信过程中, DM-UE按照网络侧设备为其配置的 idle DRX 周期苏醒后, 若 DM-UE 需与网络侧设备进行通信, 则 DM-UE 首先需 搜索网络侧设备发送的, 用于同步网络侧设备发送数据的起始时间 点和 DM-UE接收数据的起始时间点的同步信号, 并根据该同步信号 与网络侧设备进行同步。
需要说明的是, 在网络侧设备与 DM-UE 进行通信时, DM-UE 开 始后首先根据网络侧设备发送的, 用于同步网络侧设备发送数据的 起始时间点和 DM-UE接收数据的起始时间点的同步信号,获取 DM-UE 接收数据的起始时间点和网络侧设备发送数据的起始时间点之间的 差值, 即 DM-UE与网络侧设备的定时偏差, 从而 DM-UE根据该定时 偏差调整 DM-UE接收数据的起始时间点与网络侧设备发送数据的起 始时间点同步。
进一步地, 对于网络侧设备与 DM-UE 之间传输数据的时延, DM-UE在调整 DM-UE接收数据的起始时间点时已经计算在内。
可选的, idle DRX 周期可以为网络侧设备为 UE 配置的, 也可 以为 UE在出厂时厂商设定的,其中,该 UE可以包括 DM-UE和 DS-UE。
S402、 DM-UE 根据用于同步网络侧设备发送数据的起始时间点 和 DM-UE 接收数据的起始时间点的同步信号, 获取网络侧设备和 DM-UE 之间的定时偏差, 并根据网络侧设备和 DM-UE 之间的定时偏 差调整 DM-UE 接收数据的起始时间点, 以与网络侧设备完成下行同 步。
DM-UE 接收到来自 网络侧设备的用于同步网络侧设备发送数据 的起始时间点和 DM-UE接收数据的起始时间点的同步信号后, DM-UE 可根据该同步信号获取该同步信号的峰值, 并根据该同步信号的峰 值得到网络侧设备和 DM-UE之间的定时偏差, 从而 DM-UE根据网络 侧设备和 DM-UE之间的定时偏差调整 DM-UE接收数据的起始时间点, 以与网络侧设备进行下行同步。
对于 DM- UE与网络侧设备的上行同步过程, 与 DM-UE与网络侧 设备的下行同步过程类似, 具体可以包括:
DM-UE 发送接入信号至网络侧设备, 网络侧设备接收到该接入 信号后, 网络侧设备根据该接入信号计算出网络侧设备接收数据的 起始时间点与网络侧设备内部时钟晶振的定时之间的差值, 并将该 差值发送至 DM-UE, 以使得 DM-UE 可根据该差值调整 DM-UE 发送数 据的起始时间点与网络侧设备接收数据的起始时间点同步, 从而完 成 DM-UE 与网络侧设备之间的上行同步, 如网络侧设备根据 DM-UE 发送的接入信号计算出 DM-UE 发送数据的起始时间点与网络侧设备 接收数据的起始时间点之间的差值为 5 毫秒, 网络侧设备将该 5 毫 秒的时间差值发送至 DM-UE 后, DM-UE 可在向网络侧设备发送数据 时将 DM-UE发送数据的起始时间点调整为提前 5 毫秒, 即 DM-UE提 前 5 毫秒向网络侧设备发送数据。
需要说明的是, 由于 DM-UE在网络侧设备的覆盖范围内, 因此, DM-UE 与网络侧设备之间可釆用现有的同步技术进行同步, 此处不 再赘述。
S403、 DS-UE和 DM-UE之间釆用 D2D的方式进行通信时, DS-UE 接收来自 DM-UE 的第一同步信号, 并根据该第一同步信号获取第一 定时偏差, 其中, 第一同步信号为 DS-UE 开机后第一次接收到的同 步信号, 第一同步信号用于同步 DS-UE 接收数据的起始时间点和 DM-UE发送数据的起始时间点。
可选的,第一同步信号可以为 DM-UE根据 DM-UE的 ID的最后一 位比特或者其他特定的一位比特生成的, 本发明不做限制。 例如: DM-UE 的 ID 共为 8 t匕特, 分另 为 A0A1A2A3A4A5A6A7, 可以选取 A7 比特来生成第一同步信号, 也可以选取 A5 比特来生成第一同步 信号。 具体的, 上述 DS-UE根据第一同步信号获取第一定时偏差的方 法可以包括:
a、 DS-UE对第一同步信号进行计算, 以获得第一同步峰值。 示例性的, 计算具体如下: 假设 DS-UE接收到的第一同步信号 为 (A0 + j*B0), (Al + j*Bl) , (A2 + j*B2) , (A3 + j*B3) , 使用保存在本 地的同步序列 (C0_j*D0) , (Cl-j*Dl) , (C2-j*D2) , 对第一同步信 号进行计算, 具体为: 对第一同步信号进行计算后的序列分别为: X0= (A0 + j*B0) * (C0-j*D0) + (Al + j*Bl) * (Cl-j*Dl) + (A2 + j*B2) * (
C2-j*D2);
Xl= (Al + j*Bl) * (C0-j*D0) + (A2 + j*B2) * (Cl-j*Dl) + (A3 + j*B3) * ( C2-j*D2);
取 XO序列和 XI序列中幅度最大的值作为第一同步峰值。
b、 DS-UE根据第一同步峰值所在的时间点确定第一定时偏差。 如图 5所示, 为 DS-UE接收数据的起始时间点与 DS-UE的开机 时间点之间的时间差值 del tal 的计算示意图。 可以看出, DS-UE接 收数据的起始时间点与 DS-UE 的开机时间点之间的时间差值可以为 DM-UE 发送数据的起始时间点与 DS-UE 接收数据的起始时间点之间 的时间差值。 DS-UE 接收数据的起始时间点可以表示为 DS-UE 接收 到第一同步信号后, 对第一同步信号进行计算获得的第一同步峰值 所在的时间点。
本领域普通技术人员可以理解, 在通信过程中, 数据的传输是 以帧为单位的, 以 10 毫秒的帧为例, 若每一帧包含 10个子帧, 分 别可以为 0号子帧、 1 号子帧、 2号子帧 9号子帧, 则每个 子帧为 1 毫秒。
可选的, 由于 DS-UE 的时钟晶振误差可能会导致 DS-UE的开机 时间点提前或滞后于网络侧设备的时间点, 因此, 为了节省功耗, 且更好地、 准确地完成 DS-UE和 DM-UE及网络侧设备之间的同步, DM-UE可发送至少两次第一同步信号至 DS-UE。
需要说明的是, 由于 DS-UE 的时钟晶振误差可能会导致 DS-UE 的开机时间点提前或滞后于网络侧设备的时间点, 且第一同步信号 为 DM- UE 发送至 DS- UE 的, 因此, DM-UE 可发送至少两次第一同步 信号至 DS-UE,这是由于若 DM-UE只发送一次第一同步信号,且 DM- UE 发送该第一同步信号的时间点在 DS-UE的开机时间点之前,则 DS-UE 接收不到该第一同步信号。
示例性的, 如图 6所示, 分别为时钟晶振误差导致 DS-UE 的开 机时间点提前于网络侧设备的时间点和 D S - U E 的开机时间点滞后于 网络侧设备的时间点的示意图。 其中, DS-UE 的开机定时点为网络 侧设备根据网络侧设备的时间点设定的 DS-UE的开机时间点; DM-UE 的开机定时点为网络侧设备根据网络侧设备的时间点设定的 DM-UE 的开机时间点; 1为 DS-UE的实际开机时间点; 2为 DS-UE和 DM-UE 的时间同步点; 3 为 DS-UE 接收寻呼的时间点。 若时钟晶振误差导 致 DS-UE 的开机时间点提前于网络侧设备的时间点, 则 DS-UE可在 开机后接收到 DM-UE在 0号子帧发送的第一同步信号; 若时钟晶振 误差导致 DS-UE的开机时间点滞后于网络侧设备的时间点,则 DS-UE 可在开机后接收到 DM-UE在 5号子帧发送的第一同步信号。
可选的, DM-UE 可分别在 0 号子帧和 5 号子帧发送第一同步信 号至 DS-UE,也可在 1号子帧和 6号子帧发送第一同步信号至 DS-UE, 还可以在其他满足设计要求的子帧发送第一同步信号至 DS-UE, 本 发明不做限制。
举例来说, 假设 DM-UE分别在 0号子帧和 5号子帧发送第一同 步信号至 DS-UE, 若 DS-UE开机后第一次接收到的第一同步信号为 0 号子帧的第一同步信号, 则 DS-UE 的开机时间点与 DS-UE获得的第 一同步峰值所在的时间点之间的偏差 delta2 = 0毫秒; 若 DS-UE开机 后第一次接收到的第一同步信号为 5 号子帧的第一同步信号, 则 DS-UE 的开机时间点与 DS-UE 获得的第一同步峰值所在的时间点之 间的偏差 delta2 = 5 毫秒。
进一步地, DS-UE将上述所得的 deltal 和 delta2 求和, 以确 定第一定时偏差 delta。 需要说明的是, 由于 DM-UE分别在每一帧的 0号子帧 5号子帧 发送第一同步信号, 因此, 若 DS -UE在 0号子帧接收到 DM-UE发送 的第一同步信号, 则该第一同步信号包含 0 号子帧的子帧信息; 相 应的, 若 D S-UE在 5 号子帧接收到 DM-UE发送的第一同步信号, 则 该第一同步信号包含 5号子帧的子帧信息。
可选的, 上述 D S-UE 可以在预设的上行时频资源上接收来自 DM-UE 的第一同步信号, 即可在 DM-UE 的上行时频资源上为 DM-UE 和 DS-UE 分配专用的时域资源和频域资源, 以用来发送及接收第一 同步信号。
S 4 04、 DS-UE 根据第一定时偏差调整 DS-UE接收数据的起始时 间点, 以与 DM-UE和网络侧设备同步。
DS-UE获取到第一定时偏差后, DS-UE可根据第一定时偏差调整 DS-UE接收数据的起始时间点与 DM-UE发送数据的起始时间点相同, 以与 DM- UE之间完成下行同步。 由于 DM- UE和网络侧设备之间已经 完成了下行同步, 即 DM-UE接收数据的起始时间点和网络侧设备发 送数据的起始时间点同步, 因此, 当 D S-UE与 DM-UE之间完成下行 同步时, D S-UE也和网络侧设备之间完成了下行同步。
需要说明的是, 由于 DM-UE和 DS -UE—般距离较近, 因此, 对 于 DM-UE 与 D S-UE 之间传输数据的时延可以忽略。 即当 DS-UE 与 DM- UE 之间完成下行同步时, 可以认为 DS- UE 与 DM- UE 之间也完成 了上行同步。
举例来说, 假设 D S-UE 获取到的第一定时偏差为 5 毫秒, 即 DS-UE 获知 DS -UE接收数据的起始时间点与 DM-UE发送数据的起始 时间点之间的差值为 5 毫秒, 则 D S-UE可根据该差值将 DS-UE接收 数据的起始时间点调整为提前 5 毫秒, 从而使得 DS-UE与 DM-UE之 间完成同步。
可选的, 由于第一时钟晶振导致的误差, 使得 D S-UE在每个苏 醒周期时, DS -UE 接收数据的起始时间点和与网络侧设备同步后的 DM-UE 发送数据的起始时间点之间都有一个不固定的偏差, 因此, DS-UE 可通过根据上述获取的第一定时偏差调整 DS-UE 接收数据的 起始时间点, 以与 DM-UE和网络侧设备之间完成同步。
本发明实施例还提供一种同步方法, 如图 7 所示, 该实施例提 供的同步方法与上述实施例提供的同步方法的区别在于 S403 和 S404。
具体的, 该实施例提供的同步方法中, S403 和 S404 分别可以 为:
S403、 DS-UE和 DM-UE之间釆用 D2D的方式进行通信时, DS-UE 发送第二同步信号至 DM-UE, 以使 DM-UE 根据第二同步信号获取第 一定时偏差, 且 DS-UE接收来自 DM-UE 的第一定时偏差, 第二同步 信号用于同步 DS-UE发送数据的起始时间点和 DM-UE接收数据的起 始时间点。
可选的,第二同步信号可以为 DS-UE根据 DS-UE的 ID的最后一 位比特或者其他特定的一位比特生成的, 本发明不做限制。 例如: DS-UE 的 ID 总共为 8 比特, 分别为 B0B1B2B3B4B5B6B7, 可以选取 B7 比特来生成第二同步信号, 也可以选取 B5 比特来生成第二同步 信号。
由于 DS-UE的时钟晶振误差可能会导致 DS-UE 的开机时间点提 前或滞后于网络侧设备的时间点, 因此, 为了节省功耗, 且更好地、 准确地完成 DS- UE 和 DM- UE 及网络侧设备之间的同步, DS- UE 可发 送至少一次笫二同步信号至 DM-UE。
需要说明的是, 由于 DS-UE 的时钟晶振误差可能会导致 DS-UE 的开机时间点提前或滞后于网络侧设备的时间点, 且第二同步信号 为 DS-UE 发送至 DM-UE 的, 因此, DS-UE 可发送至少一次第二同步 信号至 DM-UE, 这是由于无论 DS-UE 的开机时间点提前还是滞后, DS-UE在开机后发送的第二同步信号, DM-UE均可以接收到。
DM-UE接收到 DS-UE发送的第二同步信号后, DM-UE可对第二同 步信号进行计算, 以获得第二同步峰值, 并根据第二同步峰值所在 的时间点确定第一定时偏差, 并将该第一定时偏差发送至 D S-UE , 即 DS-UE 获取到第一定时偏差。 具体的, 计算第二同步峰值的方法 与上述实施例 S 4 03 中计算第一同步峰值的方法相同, 此处不再赘 述。
可选的, 上述中 D S-UE 可以在预设的上行时频资源上接收来自 DM-UE 的第一定时偏差, 即可在 DM-UE 的上行时频资源上为 DM-UE 和 DS-UE 分配专用的时域资源和频域资源, 以用来发送及接收第一 定时偏差。
如图 8所示, 为第一定时偏差 d e 1 t a的计算示意图。 可以看出, 第一定时偏差为 DM-UE 的开机时间点与 DM-UE接收数据的起始时间 点之间的时间差值, 该时间差值可以为 DS-UE 发送数据的起始时间 点与 DM-UE接收数据的起始时间点之间的时间差值。
可以理解的是, 若本地保存的同步序列设置在从每帧数据的帧 头位置开始的位置, 则 DM-UE 接收数据的起始时间点可以表示为 DM-UE 接收到第二同步信号后, 对第二同步信号进行计算获得的第 二同步峰值所在的时间点; 若本地保存的同步序列设置在从每帧数 据的帧中间位置某个位置开始的位置, 则 DM-UE接收到第二同步信 号, 并对第二同步信号进行计算获得第二同步峰值所在的时间点之 后, DM-UE 可根据该第二同步峰值所在的时间点计算得出 DM-UE 接 收数据的起始时间点, 例如, 同步序列设置在每帧数据的 5 号子帧 开始的位置, 则 DM-UE获得的第二同步峰值所在的时间点为 5 号子 帧开始的位置, 即 DM-UE 可通过用该 5 号子帧开始的位置减去前 4 个子帧的数据长度得到 DM-UE接收数据的起始时间点。
特别的, D S-UE 接收到 DM-UE 发送的第一定时偏差后, 即可获 知此时 DM-UE 已于网络侧设备完成同步。
S 4 04、 DS-UE 根据第一定时偏差调整 DS-UE 发送数据的起始时 间点, 以与 DM-UE和网络侧设备同步。
DS-UE获取到第一定时偏差后, DS-UE可根据第一定时偏差调整 DS-UE发送数据的起始时间点与 DM-UE接收数据的起始时间点相同, 以与 DM- UE之间完成上行同步。 由于 DM- UE和网络侧设备之间已经 完成了上行同步, 即 DM-UE 发送数据的起始时间点和网络侧设备接 收数据的起始时间点同步, 因此, 当 DS-UE与 DM-UE之间完成上行 同步时, DS-UE也和网络侧设备之间完成了上行同步。
需要说明的是, 由于 DM-UE和 DS-UE —般距离较近, 因此, 对 于 DM-UE 与 DS-UE 之间传输数据的时延可以忽略。 即当 DS-UE 与 DM-UE 之间完成上行同步时, 可以认为 DS- UE 与 DM-UE 之间也完成 了下行同步。
举例来说, 假设 DS-UE 获取到的第一定时偏差为 5 毫秒, 即 DS-UE 获知 DS-UE 发送数据的起始时间点与 DM-UE接收数据的起始 时间点之间的差值为 5 毫秒, 则 DS-UE可根据该差值将 DS-UE发送 数据的起始时间点调整为提前 5 毫秒, 从而使得 DS-UE与 DM-UE之 间完成同步。
可选的, 由于第一时钟晶振导致的误差, 使得 DS-UE在每个苏 醒周期时, DS-UE 发送数据的起始时间点和与网络侧设备同步后的 DM-UE 接收数据的起始时间点之间都有一个不固定的偏差, 因此, DS-UE 可通过根据上述获取的第一定时偏差调整 DS-UE 发送数据的 起始时间点, 以与 DM-UE和网络侧设备之间完成同步。
进一步地, 在 DS-UE与 DM-UE和网络侧设备同步后, 本发明还 提供一个实施例, 如图 9所示, 该实施例可以包括:
S501、 网络侧设备发送第一指示消息至 DM-UE, 第一指示消息 用于指示更改 idle DRX周期。
DM-UE与网络侧设备同步后, 若网络侧设备需更改 idle DRX周 期, 网络侧设备则发送第一指示信息至 DM_UE, 其中, 第一指示消 息可用于指示更改 idle DRX周期。
可选的, 第一指示消息可以包括消息类型和 idle DRX周期的周 期值。 例如, 消息类型可以为 "双 UE的 idle DRX周期更改", idle DRX周期的周期值可以为 10秒、 60秒、 600秒等任意满足设计要求 的数值。
需要说明的是, 本发明仅以第一指示消息用于指示更改 idle DRX 周期为例进行示例性的说明, 第一指示消息可以包括但不限于 指示更改 idle DRX周期的消息, 即第一指示消息可以为网络侧下发 的任意满足要求的数据或消息, 本发明不做限制。
S502、 DM- UE根据第一指示消息更改 DM- UE的 idle DRX周期。
DM-UE接收到第一指示消息后, DM-UE可根据第一指示消息更改 DM-UE的 idle DRX周期。
S503、 DM- UE才艮据更改后的 DM- UE的 i d 1 e DRX周期与网络侧设 备和 DS-UE进行通信。
DM-UE根据网络侧设备发送的第一指示消息更改 DM-UE的 idle DRX周期后, 在后续通信过程中, DM-UE ^=艮据更改后的 DM-UE的 idle DRX周期与网络侧设备和 DS-UE进行通信。
S504、 DM-UE发送第一指示消息至 DS- UE。
DS-UE 和 DM-UE 完成同步后, 若 DM-UE接收到网络侧设备发送 的第一指示消息, DM-UE 则将该第一指示消息发送至 DS-UE, 以使 DS-UE也可根据该第一指示消息更改 DS-UE的 idle DRX周期。
需要说明的是, 本发明不限制 S502-S503和 S504的执行顺序, 即本发明可以先执行 S502-S503, 后执行 S504; 也可以先执行 S504, 后执行 S502-S503; 还可以同时执行 S502-S503和 S504。
S505、 DS- UE根据第一指示消息更改 DS- UE的 idle DRX周期。
DS-UE接收到 DM-UE发送的第一指示消息后, DS-UE可根据第一 指示消息更改 DS-UE的 idle DRX周期。
例如, DS-UE接收到第一指示消息, 该第一指示消息指示 DS-UE 将 idle DRX 周期更改为 60 秒, DS-UE 则根据该指示消息将原来网 络侧为其配置的 idle DRX周期更改为 60秒。
S506、 DS- UE才艮据更改后的 DS- UE的 i d 1 e DRX周期与网络侧设 备和 DM-UE进行通信。
DS-UE更改 DS-UE的 idle DRX周期后,在后续通信过程中 , DS-UE 可根据更改后的 DS-UE的 idle DRX周期与网络侧设备和 DM-UE进行 通信。
S507、 DS-UE 发送对应于第一指示消息的第一应答消息至 DM - UE。
DS-UE将 DS-UE的 idle DRX周期更改完成后, DS-UE可发送对 应于第一指示消息的第一应答消息至 DM-UE, 以使 DM-UE 可获知 DS-UE更改 DS-UE的 idle DRX周期成功。
S508、 DM-UE发送第一应答消息至网络侧设备。
DM-UE接收到 DS-UE上才艮的第一应答消息后,若 DM-UE将 DM-UE 的 idle DRX周期更改完成, DM-UE则将该第一应答消息发送至网络 侧设备,以使网络侧设备可根据该第一应答消息获知 DM-UE和 DS-UE 更改 idle DRX周期成功。
特别的, DM-UE 发送至网络侧设备的第一应答消息中可包含 DM- UE更改 DM- UE的 idle DRX周期成功的状态。
可选的, 第一应答消息可用于指示 DM-UE和 DS-UE根据第一指 示消息更改 idle DRX周期成功; 也可用于指示 DM-UE和 DS-UE接收 第一指示消息成功,以及 DM-UE和 DS-UE根据第一指示消息更改 idle DRX周期成功, 本发明不做限制。
S509、 网络侧设备根据第一应答消息获知 idle DRX周期更改成 功。
网络侧设备接收到 DM-UE发送的第一应答消息后, 网络侧设备 可根据第一应答消息获知 DM-UE 的 idle DRX周期和 DS-UE 的 idle DRX周期更改成功。
本发明实施例提供一种同步方法, 通过 DS-UE获取第一定时偏 差, 该第一定时偏差为 DS-UE接收数据的起始时间点与 DM-UE发送 数据的起始时间点之间的差值, 或为 DS-UE 发送数据的起始时间点 与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 发送数据的起 始时间点为 DM-UE 与网络侧设备同步后发送数据的起始时间点, DM-UE 接收数据的起始时间点为 DM-UE 与网络侧设备同步后接收数 据的起始时间点, 并且 DS-UE根据该第一定时偏差调整 DS-UE接收 数据的起始时间点, 或 DS-UE 发送数据的起始时间点, 以与 DM-UE 和网络侧设备同步。 通过该方案, 在 DM-UE 与网络侧设备同步后, 由于 DS-UE可通过与 DM-UE进行同步而达到与网络侧设备的同步, 从而能够支持 DS-UE 在无网络覆盖的情况下完成与网络侧设备的同 步。
如图 10所示, 本发明实施例提供一种 UE 1 , 该 UE 1可以包括: 获取单元 10, 用于获取第一定时偏差, 所述第一定时偏差为所 述 UE 1接收数据的起始时间点与 DM-UE发送数据的起始时间点之间 的差值, 或为所述 UE 1发送数据的起始时间点与所述 DM-UE接收数 据的起始时间点之间的差值, 所述 DM-UE 发送数据的起始时间点为 所述 DM-UE与网络侧设备同步后发送数据的起始时间点,所述 DM-UE 接收数据的起始时间点为所述 DM-UE 与所述网络侧设备同步后接收 数据的起始时间点。
处理单元 11 , 用于根据所述获取单元 10 获取的所述第一定时 偏差调整所述 UE 1接收数据的起始时间点或调整所述 UE 1 发送数 据的起始时间点, 以与所述 DM-UE和所述网络侧设备同步。
可选的, 如图 11 所示, 所述 UE 1还包括接收单元 12, 所述接收单元 12, 用于在所述 UE 1和所述 DM-UE之间釆用 D2D 的方式进行通信时, 接收来自所述 DM-UE 的第一同步信号, 所述第 一同步信号用于同步所述 UE 1接收数据的起始时间点和所述 DM-UE 发送数据的起始时间点, 以及所述获取单元 10, 具体用于根据所述 接收单元 12接收的所述第一同步信号获取所述第一定时偏差, 所述 第一同步信号用于同步所述 UE 1 接收数据的起始时间点和所述 DM-UE发送数据的起始时间点。 可选的, 如图 12所示, 所述 UE 1还包括发送单元 13, 所述发送单元 13, 用于在所述获取单元 10 获取所述第一定时 偏差之前, 当所述 UE 1和所述 DM-UE之间采用 D2D的方式进行通信 时, 发送同步信号至所述 DM-UE, 以使所述 DM- UE 根据所述第二同 步信号获取所述第一定时偏差, 并将所述第一定时偏差发送至所述 UE 1, 所述第二同步信号用于同步所述 UE 1发送数据的起始时间点 和所述 DM-UE接收数据的起始时间点。
可选的, 所述获取单元 10, 具体用于对所述接收单元 12 接收 的所述第一同步信号进行计算, 以获得第一同步峰值, 并根据所述 第一同步峰值所在的时间点确定所述第一定时偏差。
可选的, 所述接收单元 12, 具体用于在预设的上行时频资源上 接收来自所述 DM-UE的所述第一同步信号。
可选的, 所述获取单元 10, 具体用于在预设的上行时频资源上 接收来自所述 DM-UE的所述第一定时偏差。
可选的, 如图 13所示, 所述 UE 1还包括发送单元 13和接收单 元 12,
所述接收单元 12, 用于在所述 UE 1 与所述网络侧设备和所述 DM-UE 同步之后, 接收来自所述 DM-UE 的第一指示消息, 所述第一 指示消息为所述网络侧设备发送至所述 DM-UE 的, 所述第一指示消 息用于指示更改 idle DRX周期, 所述第一指示消息包括消息类型和 所述 idle DRX 周期的周期值, 且所述处理单元 11, 还用于根据所 述接收单元 12接收的所述第一指示消息更改所述 idle DRX周期, 以及所述发送单元 13, 用于发送与所述接收单元 12 接收的所述第 一指示消息对应的第一应答消息至所述 DM-UE, 以使所述 DM-UE 将 所述第一应答消息发送至所述网络侧设备, 进而使得所述网络侧设 备根据所述第一应答消息获知所述 idle DRX周期更改成功。
可选的, 所述处理单元 11, 还用于才艮据更改后的所述 idle DRX 周期与所述 DM-UE进行通信。
本发明的实施例提供一种 UE, 该 UE 通过获取第一定时偏差, 该第一定时偏差为该 UE接收数据的起始时间点与 DM-UE发送数据的 起始时间点之间的差值, 或为该 UE发送数据的起始时间点与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 发送数据的起始时间点 为 DM-UE 与网络侧设备同步后发送数据的起始时间点, DM-UE 接收 数据的起始时间点为 DM-UE 与网络侧设备同步后接收数据的起始时 间点, 以及该 UE根据该第一定时偏差调整该 UE接收数据的起始时 间点或调整该 UE发送数据的起始时间点, 以与 DM-UE和网络侧设备 同步。 通过该方案, 在 DM-UE与网络侧设备同步后, 由于该 UE可通 过与 DM-UE 进行同步而达到与网络侧设备的同步, 从而能够支持该 UE在无网络覆盖的情况下完成与网络侧设备的同步。
如图 14所示, 本发明实施例还提供一种 UE 2, 该 UE 2可以包 括:
发送单元 20, 用于在 DS-UE和所述 UE 2之间釆用 D2D的方式 进行通信时, 发送第一同步信号至所述 DS-UE, 所述第一同步信号 用于所述 DS-UE 根据所述第一同步信号获取第一定时偏差, 所述第 一定时偏差为所述 DS-UE接收数据的起始时间点与所述 UE 2发送数 据的起始时间点之间的差值, 所述 UE 2发送数据的起始时间点为所 述 UE 2与所述网络侧设备同步后发送数据的起始时间点。
保持单元 21 , 用于与所述 DS-UE 保持同步, 具体同步为所述 DS-UE 根据所述第一定时偏差调整所述 DS-UE 接收数据的起始时间 点, 以与所述 UE 2和所述网络侧设备同步。
可选的, 所述发送单元 20, 具体用于在预设的上行时频资源上 发送所述第一同步信号至所述 DS_UE。
可选的, 如图 15所示, 所述 UE 2还包括接收单元 22, 所述发送单元 20, 还用于在所述 UE 2 与所述网络侧设备和所 述 DS- UE同步之后,发送第一指示消息至所述 DS-UE,以使所述 DS- UE 根据所述第一指示消息更改 idle DRX周期, 所述第一指示消息为所 述网络侧设备发送至所述 UE 2 的, 所述第一指示消息用于指示更改 所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值, 且所述接收单元 22, 用于接收来自所述 DS-UE 的与所述发送单元 20 发送的所述第一指示消息对应的第一应答消 息, 以及所述发送单元 20, 还用于发送所述接收单元 22 接收的所 述第一应答消息至所述网络侧设备, 以使所述网络侧设备根据所述 第一应答消息获知所述 idle DRX周期更改成功。
本发明的实施例提供一种 UE, 该 UE可在 DS-UE和该 UE之间釆 用 D2D 的方式进行通信时, 发送第一同步信号至 DS-UE, 该第一同 步信号用于 DS-UE 根据该第一同步信号获取第一定时偏差, 该第一 定时偏差为 DS - UE接收数据的起始时间点与该 UE发送数据的起始时 间点之间的差值, 该 UE发送数据的起始时间点为该 UE 与网络侧设 备同步后发送数据的起始时间点, 以及该 UE与 DS-UE保持同步, 具 体同步为 DS-UE根据该第一定时偏差调整 DS-UE接收数据的起始时 间点, 以与该 UE和网络侧设备同步。 通过该方案, 在该 UE 与网络 侧设备同步后, 由于 DS-UE可通过与该 UE进行同步而达到与网络侧 设备的同步, 从而能够支持 DS-UE 在无网络覆盖的情况下完成与网 络侧设备的同步。
如图 16所示, 本发明实施例还提供一种 UE 2, 该 UE 2可以包 括:
接收单元 22, 用于在 DS-UE和所述 UE 2之间釆用 D2D的方式 进行通信时, 接收来自所述 DS-UE的同步信号。
获取单元 23, 用于根据所述接收单元 22 接收的所述接收来自 所述 DS-UE 的同步信号获取第一定时偏差, 所述第一定时偏差为所 述 DS-UE发送数据的起始时间点与所述 UE 2接收数据的起始时间点 之间的差值, 所述 UE 2接收数据的起始时间点为所述 UE 2 与网络 侧设备同步后接收数据的起始时间点。 发送单元 20, 用于发送所述获取单元 23 获取的所述第一定时 偏差至所述 DS-UE, 所述第一定时偏差用于所述 DS-UE 根据所述第 一定时偏差调整所述 DS-UE发送数据的起始时间点, 以与所述 UE 2 和所述网络侧设备同步。
可选的, 所述获取单元 23, 具体用于对所述接收单元 22 接收 的所述接收来自所述 DS-UE 的同步信号进行计算, 以获得第二同步 峰值, 并根据所述第二同步峰值所在的时间点确定所述第一定时偏 差。
可选的, 所述发送单元 20, 具体用于在预设的上行时频资源上 发送所述获取单元 23获取的所述第一定时偏差至所述 DS-UE。
可选的, 所述发送单元 20, 还用于在所述 UE 2 与所述网络侧 设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以 使所述 DS-UE根据所述第一指示消息更改 idle DRX周期, 所述第一 指示消息为所述网络侧设备发送至所述 UE 2的, 所述第一指示消息 用于指示更改所述 idle DRX周期, 所述第一指示消息包括消息类型 和所述 idle DRX 周期的周期值, 且所述接收单元 22, 还用于接收 来自所述 DS-UE的与所述发送单元 20发送的所述第一指示消息对应 的第一应答消息, 以及所述发送单元 20, 还用于发送所述接收单元 22接收的所述第一应答消息至所述网络侧设备, 以使所述网络侧设 备根据所述第一应答消息获知所述 idle DRX周期更改成功。
本发明的实施例提供一种 UE, 该 UE在 DS-UE和该 UE之间釆用 D2D的方式进行通信时, 接收来自 DS-UE的同步信号, 且该 UE根据 该 UE接收的来自 DS-UE的同步信号获取第一定时偏差, 第一定时偏 差为 DS-UE发送数据的起始时间点与该 UE接收数据的起始时间点之 间的差值, 该 UE接收数据的起始时间点为该 UE 与网络侧设备同步 后接收数据的起始时间点,以及该 UE发送该第一定时偏差至 DS-UE, 该第一定时偏差用于 DS-UE根据该第一定时偏差调整 DS-UE发送数 据的起始时间点, 以与该 UE和网络侧设备同步。 通过该方案, 在该 UE 与网络侧设备同步后, 由于 DS-UE 可通过与该 UE 进行同步而达 到与网络侧设备的同步, 从而
下完成与网络侧设备的同步。
如图 17所示, 本发明实施例提供一种 UE, 包括发送器 14、 接 收器 15、 处理器 16及存储器 17, 其中,
发送器 14 可用于向其他用户终端发送通信信号, 特别的, 若 UE 需与其他用户终端进行通信, 发送器 14 则可发送通信数据至其 他用户终端。
接收器 15可用于接收来自其他用户终端的通信信号, 特别的, 若 UE 需与其他用户终端进行通信, 接收器 15 则可接收来自其他用 户终端的通信数据。
处理器 16为 UE 的控制以及处理中心, 通过运行存储在存储器 17 中的软件程序, 并调用及处理存储在存储器 17 中的数据, 从而 控制 UE进行收发信号, 以及实现 UE的其他功能。
存储器 17可用于存储软件程序及数据, 以使得处理器 16可通 过运行存储在存储器 17 中的软件程序, 从而实现 UE 的收发信号以 及其他功能。
具体的, 所述处理器 16可用于获取第一定时偏差, 并根据所述 第一定时偏差调整所述 UE接收数据的起始时间点或调整所述 UE发 送数据的起始时间点, 以与 DM-UE 和网络侧设备同步, 所述第一定 时偏差为所述 UE接收数据的起始时间点与所述 DM-UE发送数据的起 始时间点之间的差值, 或为所述 UE 发送数据的起始时间点与所述 DM-UE 接收数据的起始时间点之间的差值, 所述 DM-UE 发送数据的 起始时间点为所述 DM-UE 与所述网络侧设备同步后发送数据的起始 时间点, 所述 DM-UE接收数据的起始时间点为所述 DM-UE与所述网 络侧设备同步后接收数据的起始时间点; 所述存储器 17可用于存储 所述第一定时偏差及控制所述 UE执行上述步骤的软件程序, 以使得 所述处理器 16可通过执行所述软件程序, 调用所述第一定时偏差完 成上述步骤。
可选的, 所述接收器 15, 用于在所述 UE 和所述 DM-UE之间釆 用 D2D 的方式进行通信时, 接收来自所述 DM-UE 的第一同步信号, 所述第一同步信号用于同步所述 UE 接收数据的起始时间点和所述 DM-UE 发送数据的起始时间点, 以及所述处理器 16, 具体用于根据 所述接收器 15接收的所述第一同步信号获取所述第一定时偏差。
可选的, 所述发送器 14, 用于在所述处理器 16 获取所述第一 定时偏差之前, 当所述 UE和所述 DM-UE之间釆用 D2D的方式进行通 信时, 发送第二同步信号至所述 DM-UE, 以使所述 DM-UE 根据所述 第二同步信号获取所述第一定时偏差, 并将所述第一定时偏差发送 至所述 UE, 所述第二同步信号用于同步所述 UE 发送数据的起始时 间点和所述 DM-UE接收数据的起始时间点。
可选的, 所述处理器 16, 具体用于对所述接收器 15 接收的所 述第一同步信号进行计算, 以获得第一同步峰值, 并根据所述第一 同步峰值所在的时间点确定所述第一定时偏差。
可选的, 所述接收器 15, 具体用于在预设的上行时频资源上接 收来自所述 DM-UE的所述第一同步信号。
可选的, 所述接收器 15, 用于在预设的上行时频资源上接收来 自所述 DM-UE的所述第一定时偏差。
可选的, 所述接收器 15, 用于在所述 UE 与所述网络侧设备和 所述 DM-UE 同步之后, 接收来自所述 DM-UE 的第一指示消息, 所述 第一指示消息为所述网络侧设备发送至所述 DM-UE 的, 所述第一指 示消息用于指示更改 idle DRX周期, 所述第一指示消息包括消息类 型和所述 idle DRX 周期的周期值, 且所述处理器 16, 还用于根据 所述接收器 15接收的所述第一指示消息更改所述 idle DRX周期, 以及所述发送器 14, 用于发送与所述接收器 15 接收的所述第一指 示消息对应的第一应答消息至所述 DM-UE, 以使所述 DM-UE 将所述 第一应答消息发送至所述网络侧设备, 进而使得所述网络侧设备根 据所述第一应答消息获知所述 idle DRX周期更改成功。 可选的, 所述处理器 16, 还用于根据更改后的所述 idle DRX 周期与所述 DM-UE进行通信。
本发明的实施例提供一种 UE, 该 UE 通过获取第一定时偏差, 该第一定时偏差为该 UE接收数据的起始时间点与 DM-UE发送数据的 起始时间点之间的差值, 或为该 UE发送数据的起始时间点与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 发送数据的起始时间点 为 DM-UE 与网络侧设备同步后发送数据的起始时间点, DM-UE 接收 数据的起始时间点为 DM-UE 与网络侧设备同步后接收数据的起始时 间点, 以及该 UE根据该第一定时偏差调整该 UE接收数据的起始时 间点或调整该 UE发送数据的起始时间点, 以与 DM-UE和网络侧设备 同步。 通过该方案, 在 DM-UE与网络侧设备同步后, 由于该 UE可通 过与 DM-UE 进行同步而达到与网络侧设备的同步, 从而能够支持该 UE在无网络覆盖的情况下完成与网络侧设备的同步。
如图 18所示, 本发明实施例提供一种 UE, 包括发送器 24、 接 收器 25、 处理器 26及存储器 27, 其中,
发送器 24 可用于向网络侧设备发送上行信号, 特别的, 若 UE 需与网络侧设备进行通信, 发送器 24则可发送上行通信数据至网络 侧设备。
接收器 25可用于接收来自 网络侧设备的下行信号, 特别的, 若 UE 需与网络侧设备进行通信, 接收器 25 则可接收来自 网络侧设备 的下行通信数据。
处理器 26为 UE 的控制以及处理中心, 通过运行存储在存储器 27 中的软件程序, 并调用及处理存储在存储器 27 中的数据, 从而 控制 UE进行收发信号, 以及实现 UE的其他功能。
存储器 27可用于存储软件程序及数据, 以使得处理器 26可通 过运行存储在存储器 27 中的软件程序, 从而实现 UE 的收发信号以 及其他功能。 具体的,所述发送器 24可用于在 DS-UE和所述 UE之间釆用 D2D 的方式进行通信时, 发送第一同步信号至所述 DS-UE, 所述第一同 步信号用于所述 DS-UE 根据所述第一同步信号获取第一定时偏差, 所述第一定时偏差为所述 DS-UE接收数据的起始时间点与所述 UE发 送数据的起始时间点之间的差值, 所述 UE发送数据的起始时间点为 所述 UE与所述网络侧设备同步后发送数据的起始时间点; 所述处理 器 26, 用于与所述 DS-UE保持同步, 具体同步为所述 DS-UE根据所 述第一定时偏差调整所述 DS-UE 接收数据的起始时间点, 以与所述 UE 和所述网络侧设备同步; 所述存储器 27 可用于存储第一同步信 号的软件代码及控制所述 U E执行上述步骤的软件程序, 以使得所述 处理器 26可通过执行所述软件程序, 调用所述软件代码完成上述步 骤。
可选的, 所述发送器 24, 具体用于在预设的上行时频资源上发 送所述第一同步信号至所述 DS-UE。
可选的, 所述发送器 24, 还用于在所述 UE 与所述网络侧设备 和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所 述 DS-UE根据所述第一指示消息更改 idle DRX周期, 所述第一指示 消息为所述网络侧设备发送至所述 UE的, 所述第一指示消息用于指 示更改所述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX周期的周期值,且所述接收器 25,用于接收来自所述 DS-UE 的与所述发送器 24发送的所述第一指示消息对应的第一应答消息, 以及所述发送器 24, 还用于发送所述接收器 25 接收的所述第一应 答消息至所述网络侧设备, 以使所述网络侧设备根据所述第一应答 消息获知所述 idle DRX周期更改成功。
本发明的实施例提供一种 UE, 该 UE可在 DS-UE和该 UE之间釆 用 D2D 的方式进行通信时, 发送第一同步信号至 DS-UE, 该第一同 步信号用于 DS-UE 根据该第一同步信号获取第一定时偏差, 该第一 定时偏差为 D S - U E接收数据的起始时间点与该 U E发送数据的起始时 间点之间的差值, 该 UE发送数据的起始时间点为该 UE 与网络侧设 备同步后发送数据的起始时间点, 以及该 UE与 D S-UE保持同步, 具 体同步为 DS-UE根据该第一定时偏差调整 DS-UE接收数据的起始时 间点, 以与该 UE和网络侧设备同步。 通过该方案, 在该 UE 与网络 侧设备同步后, 由于 DS-UE可通过与该 UE进行同步而达到与网络侧 设备的同步, 从而能够支持 DS-UE 在无网络覆盖的情况下完成与网 络侧设备的同步。
如图 1 8所示, 本发明实施例提供一种 UE , 包括发送器 24、 接 收器 25、 处理器 2 6及存储器 2 7。
具体的,所述接收器 25可用于在 D S-UE和所述 UE之间釆用 D 2 D 的方式进行通信时, 接收来自所述 DS-UE 的同步信号; 所述处理器 26 可用于根据所述接收器 25 接收的所述接收来自所述 DS-UE 的同 步信号获取第一定时偏差, 所述第一定时偏差为所述 D S-UE 发送数 据的起始时间点与所述 UE接收数据的起始时间点之间的差值, 所述 UE 接收数据的起始时间点为所述 UE 与网络侧设备同步后接收数据 的起始时间点; 所述发送器 24 可用于发送所述处理器 2 6获取的所 述第一定时偏差至所述 DS-UE , 所述第一定时偏差用于所述 DS -UE 根据所述第一定时偏差调整所述 D S-UE 发送数据的起始时间点, 以 与所述 UE和所述网络侧设备同步; 所述存储器 27 可用于存储所述 第二同步信号的软件代码、 所述第一定时偏差及控制所述 UE执行上 述步骤的软件程序, 以使得所述处理器 26 可通过执行所述软件程 序, 调用所述软件代码完成上述步骤。
可选的, 所述处理器 26 , 具体用于对所述接收器 25 接收的所 述接收来自所述 D S-UE的同步信号进行计算, 以获得第二同步峰值, 并根据所述第二同步峰值所在的时间点确定所述第一定时偏差。
可选的, 所述发送器 24, 具体用于在预设的上行时频资源上发 送所述处理器 26获取的所述第一定时偏差至所述 D S-UE。
可选的, 所述发送器 24 , 还用在所述 UE 与所述网络侧设备和 所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根据所述第一指示消息更改 idle DRX周期, 所述第一指示消 息为所述网络侧设备发送至所述 UE的, 所述第一指示消息用于指示 更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值, 且所述接收器 25, 还用于接收来自所述 DS-UE的与所述发送器 24发送的所述第一指示消息对应的第一应答 消息, 以及所述发送器 24, 还用于发送所述接收器 25 接收的所述 第一应答消息至所述网络侧设备, 以使所述网络侧设备根据所述第 一应答消息获知所述 idle DRX周期更改成功。
本发明的实施例提供一种 UE, 该 UE在 DS-UE和该 UE之间釆用 D2D的方式进行通信时, 接收来自 DS-UE的同步信号, 且该 UE根据 该 UE接收的来自 DS-UE的同步信号获取第一定时偏差, 第一定时偏 差为 DS-UE发送数据的起始时间点与该 UE接收数据的起始时间点之 间的差值, 该 UE接收数据的起始时间点为该 UE 与网络侧设备同步 后接收数据的起始时间点,以及该 UE发送该第一定时偏差至 DS-UE, 该第一定时偏差用于 DS-UE根据该第一定时偏差调整 DS-UE发送数 据的起始时间点, 以与该 UE和网络侧设备同步。 通过该方案, 在该 UE 与网络侧设备同步后, 由于 DS-UE 可通过与该 UE 进行同步而达 到与网络侧设备的同步, 从而能够支持 DS-UE 在无网络覆盖的情况 下完成与网络侧设备的同步。
如图 19所示, 本发明实施例提供一种通信系统, 包括网络侧设 备、 作为 DM-UE的 UE和作为 DS-UE的 UE。
本发明实施例提供一种通信系统, 通过 DS-UE获取第一定时偏 差, 该第一定时偏差为 DS-UE接收数据的起始时间点与 DM-UE发送 数据的起始时间点之间的差值, 或为 DS-UE 发送数据的起始时间点 与 DM-UE 接收数据的起始时间点之间的差值, DM-UE 发送数据的起 始时间点为 DM-UE 与网络侧设备同步后发送数据的起始时间点, DM-UE 接收数据的起始时间点为 DM-UE 与网络侧设备同步后接收数 据的起始时间点, 以及 D S - UE根据该第一定时偏差调整 D S - UE接收 数据的起始时间点或调整 D S -UE发送数据的起始时间点,以与 DM- U E 和网络侧设备同步。 通过该方案, 在 DM-UE 与网络侧设备同步后, 由于 D S -U E可通过与 DM-UE进行同步而达到与网络侧设备的同步, 从而能够支持 D S -U E 在无网络覆盖的情况下完成与网络侧设备的同 步。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 仅以上述各功能模块的划分进行举例说明, 实际应用中, 可以根据 需要而将上述功能分配由不同的功能模块完成, 即将装置的内部结 构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体工作过程, 可以参考前述方法 实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一 种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽 略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦 合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可 以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实 际的需要选择其中的部分或者全部单元来实现本实施例方案的目 的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以釆用硬件的形式 实现, 也可以釆用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的 产品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基 于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡 献的部分或者该技术方案的全部或部分可以以软件产品的形式体现 出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设 备等) 或处理器 ( processor ) 执行本发明各个实施例所述方法的全 部或部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存 储器( ROM, Read-Only Memory ),随机存取存储器( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种同步方法, 其特征在于, 包括:
终端对终端中的从用户终端 DS-UE获取第一定时偏差,所述第一 定时偏差为所述 DS-UE 接收数据的起始时间点与终端对终端中的主 用户终端 DM-UE发送数据的起始时间点之间的差值, 或为所述 DS-UE 发送数据的起始时间点与所述 DM-UE 接收数据的起始时间点之间的 差值, 所述 DM-UE发送数据的起始时间点为所述 DM-UE与网络侧设备 同步后发送数据的起始时间点, 所述 D M - U E接收数据的起始时间 , *、为 所述 DM-UE与所述网络侧设备同步后接收数据的起始时间点;
所述 DS-UE根据所述第一定时偏差调整所述 DS-UE接收数据的起 始时间点或调整所述 DS-UE发送数据的起始时间点, 以与所述 DM-UE 和所述网络侧设备同步。
2、 根据权利要求 1 所述的同步方法, 其特征在于, 所述终端对 终端中的从用户终端 DS-UE获取第一定时偏差包括:
在所述 DS- UE和所述 DM- UE之间釆用终端对终端 D2D的方式进行 通信时, 所述 DS-UE接收来自所述 DM-UE的第一同步信号, 所述第一 同步信号用于同步所述 DS-UE接收数据的起始时间点和所述 DM-UE发 送数据的起始时间点;
所述 DS-UE根据所述第一同步信号获取所述第一定时偏差。
3、 根据权利要求 1 所述的同步方法, 其特征在于, 所述终端对 终端中的从用户终端 DS-UE 获取第一定时偏差之前, 所述方法还包 括:
在所述 DS-UE和所述 DM-UE之间釆用 D2D的方式进行通信时,所 述 DS- UE发送第二同步信号至所述 DM-UE, 以使所述 DM- UE根据所述 第二同步信号获取所述第一定时偏差, 并将所述第一定时偏差发送至 所述 DS-UE, 所述第二同步信号用于同步所述 DS-UE发送数据的起始 时间点和所述 DM-UE接收数据的起始时间点。
4、 根据权利要求 1 所述的同步方法, 其特征在于, 所述 DS-UE 根据所述第一同步信号获取所述第一定时偏差的方法包括: 所述 DS-UE 对所述第一同步信号进行计算, 以获得第一同步峰 值;
所述 DS-UE 根据所述第一同步峰值所在的时间点确定所述第一 定时偏差。
5、根据权利要求 1或 4所述的同步方法,其特征在于,所述 DS-UE 接收来自所述 DM-UE的第一同步信号包括:
所述 DS-UE在预设的上行时频资源上接收来自所述 DM-UE的所述 第一同步信号。
6、 根据权利要求 3所述的同步方法, 其特征在于, 所述终端对 终端中的从用户终端 DS-UE获取第一定时偏差包括:
所述 DS-UE在预设的上行时频资源上接收来自所述 DM-UE的所述 第一定时偏差。
7、 根据权利要求 1 所述的同步方法, 其特征在于, 所述 DS-UE 与所述网络侧设备和所述 DM-UE 同步之后, 所述方法还包括:
所述 DS-UE接收来自所述 DM-UE的第一指示消息,所述第一指示 消息为所述网络侧设备发送至所述 DM-UE的, 所述第一指示消息用于 指示更改空闲非连续接收 idle DRX 周期, 所述第一指示消息包括消 息类型和所述 idle DRX周期的周期值;
所述 DS-UE根据所述第一指示消息更改所述 idle DRX周期; 所述 DS-UE 发送与所述第一指示消息对应的第一应答消息至所 述 DM-UE, 以使所述 DM-UE将所述第一应答消息发送至所述网络侧设 备, 进而使得所述网络侧设备根据所述第一应答消息获知所述 idle DRX周期更改成功。
8、 根据权利要求 7 所述的同步方法, 其特征在于, 所述 DS-UE 根据所述第一指示消息更改所述 idle DRX 周期之后, 所述方法还包 括:
所述 DS-UE根据更改后的所述 idle DRX周期与所述 DM-UE进行 通信。
9、 一种同步方法, 其特征在于, 包括: 在 DS-UE和 DM-UE之间采用 D2D的方式进行通信时, 所述 DM-UE 发送第一同步信号至所述 DS-UE, 所述第一同步信号用于所述 DS-UE 根据所述第一同步信号获取第一定时偏差, 所述第一定时偏差为所述 DS-UE接收数据的起始时间点与所述 DM-UE发送数据的起始时间点之 间的差值, 所述 DM-UE发送数据的起始时间点为所述 DM-UE与网络侧 设备同步后发送数据的起始时间点;
所述 DM-UE与所述 DS-UE保持同步 ,具体同步为所述 DS-UE根据 所述第一定时偏差调整所述 DS-UE接收数据的起始时间点, 以与所述 DM-UE和所述网络侧设备同步。
10、 根据权利要求 9所述的同步方法, 其特征在于, 所述 DM-UE 发送第一同步信号至 DS-UE包括:
所述 DM-UE 在预设的上行时频资源上发送所述第一同步信号至 所述 DS - UE。
11、 根据权利要求 9或 10所述的同步方法, 其特征在于, 所述 DM-UE与所述网络侧设备和所述 DS-UE同步之后, 所述方法还包括: 所述 DM-UE发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根 据所述第一指示消息更改 idle DRX 周期, 所述第一指示消息为所述 网络侧设备发送至所述 DM-UE的, 所述第一指示消息用于指示更改所 述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述 DM-UE接收来自所述 DS-UE的与所述第一指示消息对应的第 一应答消息;
所述 DM-UE发送所述第一应答消息至所述网络侧设备,以使所述 网络侧设备根据所述第一应答消息获知所述 idle DRX周期更改成功。
12、 一种同步方法, 其特征在于, 包括:
在 DS-UE和 DM-UE之间采用 D2D的方式进行通信时, 所述 DM-UE 接收来自所述 DS-UE的同步信号;
所述 DM-UE根据所述接收来自所述 DS-UE的同步信号获取第一定 时偏差, 所述第一定时偏差为所述 DS-UE发送数据的起始时间点与所 述 DM-UE接收数据的起始时间点之间的差值, 所述 DM-UE接收数据的 起始时间点为所述 DM-UE 与网络侧设备同步后接收数据的起始时间 点;
所述 DM-UE发送所述第一定时偏差至所述 DS-UE , 所述第一定时 偏差用于所述 DS-UE根据所述第一定时偏差调整所述 DS-UE发送数据 的起始时间点, 以与所述 DM-UE和所述网络侧设备同步。
13、 根据权利要求 12所述的同步方法, 其特征在于, 所述 DM-UE 根据所述接收来自所述 DS-UE 的同步信号获取第一定时偏差的方法 包括:
所述 DM-UE对所述接收来自所述 DS-UE的同步信号进行计算,以 获得第二同步峰值;
所述 DM-UE 根据所述第二同步峰值所在的时间点确定所述第一 定时偏差。
14、 根据权利要求 12或 13所述的同步方法, 其特征在于, 所述 DM-UE发送所述第一定时偏差至所述 DS-UE包括:
所述 DM-UE 在预设的上行时频资源上发送所述第一定时偏差至 所述 DS - UE。
15、 根据权利要求 12-14任一项所述的同步方法, 其特征在于, 所述 DM-UE与所述网络侧设备和所述 DS-UE同步之后, 所述方法还包 括:
所述 DM-UE发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根 据所述第一指示消息更改 idle DRX 周期, 所述第一指示消息为所述 网络侧设备发送至所述 DM-UE的, 所述第一指示消息用于指示更改所 述 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述 DM-UE接收来自所述 DS-UE的与所述第一指示消息对应的第 一应答消息;
所述 DM-UE发送所述第一应答消息至所述网络侧设备,以使所述 网络侧设备根据所述第一应答消息获知所述 idle DRX周期更改成功。 1 6、 一种 UE , 其特征在于, 包括:
获取单元, 用于获取第一定时偏差, 所述第一定时偏差为所述 UE 接收数据的起始时间点与 DM-UE 发送数据的起始时间点之间的差 值, 或为所述 UE发送数据的起始时间点与所述 DM-UE接收数据的起 始时间点之间的差值, 所述 DM-UE 发送数据的起始时间点为所述 DM-UE与网络侧设备同步后发送数据的起始时间点, 所述 DM-UE接收 数据的起始时间点为所述 DM-UE 与所述网络侧设备同步后接收数据 的起始时间点;
处理单元,用于根据所述获取单元获取的所述第一定时偏差调整 所述 UE 接收数据的起始时间点或调整所述 UE 发送数据的起始时间 点, 以与所述 DM-UE和所述网络侧设备同步。
1 7、 根据权利要求 1 6 所述的 UE , 其特征在于, 所述 UE还包括 接收单元,
所述接收单元, 用于在所述 UE和所述 DM-UE之间采用 D 2 D的方 式进行通信时, 接收来自所述 DM-UE的第一同步信号, 所述第一同步 信号用于同步所述 UE接收数据的起始时间点和所述 DM-UE发送数据 的起始时间点;
所述获取单元,具体用于根据所述接收单元接收的所述第一同步 信号获取所述第一定时偏差, 所述第一同步信号用于同步所述 UE接 收数据的起始时间点和所述 DM-UE发送数据的起始时间点。
1 8、 根据权利要求 1 6 所述的 UE , 其特征在于, 所述 UE还包括 发送单元,
所述发送单元, 用于在所述获取单元获取所述第一定时偏差之 前, 当所述 UE和所述 DM-UE之间釆用 D 2 D的方式进行通信时, 发送 同步信号至所述 DM-UE , 以使所述 DM-UE根据所述第二同步信号获取 所述第一定时偏差, 并将所述第一定时偏差发送至所述 UE , 所述第 二同步信号用于同步所述 UE发送数据的起始时间点和所述 DM-UE接 收数据的起始时间点。
1 9、 根据权利要求 1 7所述的 UE , 其特征在于, 所述获取单元,具体用于对所述接收单元接收的所述第一同步信 号进行计算, 以获得第一同步峰值, 并根据所述第一同步峰值所在的 时间点确定所述第一定时偏差。
20、 根据权利要求 17或 19所述的 UE, 其特征在于,
所述接收单元,具体用于在预设的上行时频资源上接收来自所述 DM-UE的所述第一同步信号。
21、 根据权利要求 18所述的 UE, 其特征在于,
所述获取单元,具体用于在预设的上行时频资源上接收来自所述 DM-UE的所述第一定时偏差。
11、 根据权利要求 16 所述的 UE, 其特征在于, 所述 UE还包括 发送单元和接收单元,
所述接收单元, 用于在所述 UE 与所述网络侧设备和所述 DM-UE 同步之后, 接收来自所述 DM-UE的第一指示消息, 所述第一指示消息 为所述网络侧设备发送至所述 DM-UE的, 所述第一指示消息用于指示 更改 idle DRX周期,所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述处理单元,还用于根据所述接收单元接收的所述第一指示消 息更改所述 idle DRX周期;
所述发送单元,用于发送与所述接收单元接收的所述第一指示消 息对应的第一应答消息至所述 DM-UE, 以使所述 DM-UE将所述第一应 答消息发送至所述网络侧设备, 进而使得所述网络侧设备根据所述第 一应答消息获知所述 idle DRX周期更改成功。
23、 根据权利要求 22所述的 UE, 其特征在于,
所述处理单元, 还用于根据更改后的所述 idle DRX周期与所述 DM-UE进行通信。
24、 一种 UE, 其特征在于, 包括:
发送单元, 用于在 DS-UE和所述 UE之间采用 D2D的方式进行通 信时, 发送第一同步信号至所述 DS-UE, 所述第一同步信号用于所述 DS-UE根据所述第一同步信号获取第一定时偏差, 所述第一定时偏差 为所述 DS-UE接收数据的起始时间点与所述 UE发送数据的起始时间 点之间的差值, 所述 UE发送数据的起始时间点为所述 UE与所述网络 侧设备同步后发送数据的起始时间点;
保持单元, 用于与所述 DS-UE保持同步, 具体同步为所述 DS-UE 根据所述第一定时偏差调整所述 DS-UE接收数据的起始时间点, 以与 所述 UE和所述网络侧设备同步。
25、 根据权利要求 24所述的 UE, 其特征在于,
所述发送单元,具体用于在预设的上行时频资源上发送所述第一 同步信号至所述 DS-UE。
26、 根据权利要求 24或 25所述的 UE, 其特征在于, 所述 UE还 包括接收单元,
所述发送单元,还用于在所述 UE与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根据所 述第一指示消息更改 idle DRX 周期, 所述第一指示消息为所述网络 侧设备发送至所述 UE的, 所述第一指示消息用于指示更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的 周期值;
所述接收单元,用于接收来自所述 DS-UE的与所述发送单元发送 的所述第一指示消息对应的第一应答消息;
所述发送单元,还用于发送所述接收单元接收的所述第一应答消 息至所述网络侧设备, 以使所述网络侧设备根据所述第一应答消息获 知所述 idle DRX周期更改成功。
27、 一种 UE, 其特征在于, 包括:
接收单元, 用于在 DS-UE和所述 UE之间釆用 D2D的方式进行通 信时, 接收来自所述 DS-UE的同步信号;
获取单元, 用于根据所述接收单元接收的所述接收来自所述 DS-UE 的同步信号获取第一定时偏差, 所述第一定时偏差为所述 DS-UE 发送数据的起始时间点与所述 UE 接收数据的起始时间点之间 的差值, 所述 UE接收数据的起始时间点为所述 UE与网络侧设备同步 后接收数据的起始时间 , ^;
发送单元,用于发送所述获取单元获取的所述第一定时偏差至所 述 DS-UE, 所述第一定时偏差用于所述 DS-UE根据所述第一定时偏差 调整所述 DS-UE发送数据的起始时间点, 以与所述 UE和所述网络侧 设备同步。
28、 根据权利要求 27所述的 UE, 其特征在于,
所述获取单元,具体用于对所述接收单元接收的所述接收来自所 述 DS-UE的同步信号进行计算, 以获得第二同步峰值, 并根据所述第 二同步峰值所在的时间点确定所述第一定时偏差。
29、 根据权利要求 27或 28所述的 UE, 其特征在于,
所述发送单元,具体用于在预设的上行时频资源上发送所述获取 单元获取的所述第一定时偏差至所述 DS-UE。
30、 根据权利要求 27-29任一项所述的 UE, 其特征在于
所述发送单元,还用于在所述 UE与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根据所 述第一指示消息更改 idle DRX 周期, 所述笫一指示消息为所述网络 侧设备发送至所述 UE的, 所述第一指示消息用于指示更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的 周期值;
所述接收单元,还用于接收来自所述 DS-UE的与所述发送单元发 送的所述第一指示消息对应的第一应答消息;
所述发送单元,还用于发送所述接收单元接收的所述第一应答消 息至所述网络侧设备, 以使所述网络侧设备根据所述第一应答消息获 知所述 idle DRX周期更改成功。
31、 一种 UE, 其特征在于, 包括:
处理器, 用于获取第一定时偏差, 并根据所述第一定时偏差调整 所述 UE 接收数据的起始时间点或调整所述 UE 发送数据的起始时间 点, 以与 DM-UE和网络侧设备同步, 所述第一定时偏差为所述 UE接 收数据的起始时间点与所述 DM-UE 发送数据的起始时间点之间的差 值, 或为所述 UE发送数据的起始时间点与所述 DM-UE接收数据的起 始时间点之间的差值, 所述 DM-UE 发送数据的起始时间点为所述 DM-UE 与所述网络侧设备同步后发送数据的起始时间点, 所述 DM-UE 接收数据的起始时间点为所述 DM-UE 与所述网络侧设备同步后接收 数据的起始时间点。
32、 根据权利要求 31 所述的 UE, 其特征在于, 所述 UE还包括 接收器,
所述接收器, 用于在所述 UE和所述 DM-UE之间釆用 D2D的方式 进行通信时, 接收来自所述 DM-UE的第一同步信号, 所述第一同步信 号用于同步所述 UE接收数据的起始时间点和所述 DM-UE发送数据的 起始时间点;
所述处理器,具体用于根据所述接收器接收的所述第一同步信号 获取所述第一定时偏差。
33、 根据权利要求 31 所述的 UE, 其特征在于, 所述 UE还包括 发送器,
所述发送器, 用于在所述处理器获取所述第一定时偏差之前, 当 所述 UE和所述 DM-UE之间釆用 D2D的方式进行通信时, 发送第二同 步信号至所述 DM-UE , 以使所述 DM-UE根据所述第二同步信号获取所 述第一定时偏差, 并将所述第一定时偏差发送至所述 UE, 所述第二 同步信号用于同步所述 UE发送数据的起始时间点和所述 DM-UE接收 数据的起始时间点。
34、 根据权利要求 32所述的 UE, 其特征在于,
所述处理器,具体用于对所述接收器接收的所述第一同步信号进 行计算, 以获得第一同步峰值, 并根据所述笫一同步峰值所在的时间 点确定所述第一定时偏差。
35、 根据权利要求 32或 34所述的 UE, 其特征在于,
所述接收器, 具体用于在预设的上行时频资源上接收来自所述 DM-UE的所述第一同步信号。
36、 根据权利要求 33 所述的 UE, 其特征在于, 所述 UE还包括 接收器,
所述接收器, 用于在预设的上行时频资源上接收来自所述 DM-UE 的所述第一定时偏差。
37、 根据权利要求 31 所述的 UE, 其特征在于, 所述 UE还包括 发送器和接收器,
所述接收器, 用于在所述 UE与所述网络侧设备和所述 DM-UE 同 步之后, 接收来自所述 DM-UE的第一指示消息, 所述第一指示消息为 所述网络侧设备发送至所述 DM-UE的, 所述第一指示消息用于指示更 改 idle DRX周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期值;
所述处理器,还用于根据所述接收器接收的所述第一指示消息更 改所述 idle DRX周期;
所述发送器,用于发送与所述接收器接收的所述第一指示消息对 应的第一应答消息至所述 DM-UE, 以使所述 DM-UE将所述第一应答消 息发送至所述网络侧设备, 进而使得所述网络侧设备根据所述第一应 答消息获知所述 idle DRX周期更改成功。
38、 根据权利要求 37所述的 UE, 其特征在于,
所述处理器, 还用于根据更改后的所述 idle DRX 周期与所述 DM-UE进行通信。
39、 一种 UE, 其特征在于, 包括:
发送器, 用于在 DS-UE和所述 UE之间采用 D2D的方式进行通信 时, 发送第一同步信号至所述 DS-UE, 所述第一同步信号用于所述 DS-UE根据所述第一同步信号获取第一定时偏差, 所述第一定时偏差 为所述 DS-UE接收数据的起始时间点与所述 UE发送数据的起始时间 点之间的差值, 所述 UE发送数据的起始时间点为所述 UE与所述网络 侧设备同步后发送数据的起始时间 , *、;
处理器, 用于与所述 DS-UE 保持同步, 具体同步为所述 DS-UE 根据所述第一定时偏差调整所述 DS-UE接收数据的起始时间点, 以与 所述 UE和所述网络侧设备同步。 40、 根据权利要求 39所述的 UE, 其特征在于,
所述发送器,具体用于在预设的上行时频资源上发送所述第一同 步信号至所述 DS-UE。
41、 根据权利要求 39或 40所述的 UE, 其特征在于, 所述 UE还 包括接收器,
所述发送器, 还用于在所述 UE 与所述网络侧设备和所述 DS-UE 同步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根据所 述第一指示消息更改 idle DRX 周期, 所述第一指示消息为所述网络 侧设备发送至所述 UE的, 所述第一指示消息用于指示更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的 周期值;
所述接收器,用于接收来自所述 DS-UE的与所述发送器发送的所 述第一指示消息对应的第一应答消息;
所述发送器,还用于发送所述接收器接收的所述第一应答消息至 所述网络侧设备, 以使所述网络侧设备根据所述第一应答消息获知所 述 idle DRX周期更改成功。
42、 一种 UE, 其特征在于, 包括:
接收器, 用于在 DS-UE和所述 UE之间采用 D2D的方式进行通信 时, 接收来自所述 DS-UE的同步信号;
处理器, 用于根据所述接收器接收的所述接收来自所述 DS-UE 的同步信号获取第一定时偏差, 所述第一定时偏差为所述 DS-UE发送 数据的起始时间点与所述 UE接收数据的起始时间点之间的差值, 所 述 UE接收数据的起始时间点为所述 UE与网络侧设备同步后接收数据 的起始时间点;
发送器, 用于发送所述处理器获取的所述第一定时偏差至所述 DS-UE, 所述第一定时偏差用于所述 DS-UE根据所述第一定时偏差调 整所述 DS-UE发送数据的起始时间点, 以与所述 UE和所述网络侧设 备同步。
43、 根据权利要求 42所述的 UE, 其特征在于, 所述处理器, 具体用于对所述接收器接收的所述接收来自所述
DS-UE的同步信号进行计算, 以获得第二同步峰值, 并根据所述第二 同步峰值所在的时间点确定所述第一定时偏差。
44、 根据权利要求 42或 43所述的 UE, 其特征在于,
所述发送器,具体用于在预设的上行时频资源上发送所述处理器 获取的所述第一定时偏差至所述 DS-UE。
45、 根据权利要求 42-44任一项所述的 UE, 其特征在于, 所述发送器, 还用在所述 UE与所述网络侧设备和所述 DS-UE 同 步之后, 发送第一指示消息至所述 DS-UE, 以使所述 DS-UE根据所述 第一指示消息更改 idle DRX 周期, 所述第一指示消息为所述网络侧 设备发送至所述 UE的,所述第一指示消息用于指示更改所述 idle DRX 周期, 所述第一指示消息包括消息类型和所述 idle DRX 周期的周期 值;
所述接收器,还用于接收来自所述 DS-UE的与所述发送器发送的 所述第一指示消息对应的第一应答消息;
所述发送器,还用于发送所述接收器接收的所述第一应答消息至 所述网络侧设备, 以使所述网络侧设备根据所述第一应答消息获知所 述 idle DRX周期更改成功。
PCT/CN2013/084722 2013-09-30 2013-09-30 一种同步方法及装置 WO2015042955A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/084722 WO2015042955A1 (zh) 2013-09-30 2013-09-30 一种同步方法及装置
EP13894339.4A EP3046279A4 (en) 2013-09-30 2013-09-30 METHOD AND APPARATUS FOR SYNCHRONIZATION
CN201380002315.3A CN104685806A (zh) 2013-09-30 2013-09-30 一种同步方法及装置
US15/085,041 US20160212723A1 (en) 2013-09-30 2016-03-30 Synchronization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084722 WO2015042955A1 (zh) 2013-09-30 2013-09-30 一种同步方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/085,041 Continuation US20160212723A1 (en) 2013-09-30 2016-03-30 Synchronization method and apparatus

Publications (1)

Publication Number Publication Date
WO2015042955A1 true WO2015042955A1 (zh) 2015-04-02

Family

ID=52741881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084722 WO2015042955A1 (zh) 2013-09-30 2013-09-30 一种同步方法及装置

Country Status (4)

Country Link
US (1) US20160212723A1 (zh)
EP (1) EP3046279A4 (zh)
CN (1) CN104685806A (zh)
WO (1) WO2015042955A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102245408B1 (ko) * 2014-05-10 2021-04-29 삼성전자주식회사 디바이스 대 디바이스 통신 시스템에서 동기화 방법 및 장치
US20160029334A1 (en) * 2014-07-25 2016-01-28 Electronics And Telecommunications Research Institute Method and apparatus for synchronizing networks among heterogeneous wireless operators
WO2016043565A1 (ko) * 2014-09-19 2016-03-24 엘지전자 주식회사 하향링크 동기를 획득하는 방법 및 mtc 기기
US10833840B2 (en) * 2018-05-07 2020-11-10 ZaiNar, Inc. Methods for nanosecond-scale time synchronization over a network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515831A (zh) * 2008-02-22 2009-08-26 杭州华三通信技术有限公司 一种时间同步传递方法、系统及装置
CN101765199A (zh) * 2008-12-24 2010-06-30 中国移动通信集团公司 一种通信网络系统及系统内时间同步方法和otn设备
CN102468898A (zh) * 2010-11-19 2012-05-23 中兴通讯股份有限公司 在时分复用网络中实现时间同步的方法、设备和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169998B2 (en) * 2006-12-21 2012-05-01 Broadcom Corporation Method and system for an AD HOC wireless network with master control of network parameters
KR20100117951A (ko) * 2009-04-27 2010-11-04 삼성전자주식회사 이동 애드 혹 네트워크에서 통신 방법 및 장치
JP5816696B2 (ja) * 2010-11-04 2015-11-18 インターデイジタル パテント ホールディングス インコーポレイテッド ピアトゥピア通信を確立するための方法および装置
US9210643B2 (en) * 2011-03-03 2015-12-08 Agency For Science, Technology And Research Communication terminal and method for performing communication
CN102932881A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 一种非连续接收方法及系统
WO2013125925A1 (ko) * 2012-02-24 2013-08-29 엘지전자 주식회사 동기를 트랙킹하는 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515831A (zh) * 2008-02-22 2009-08-26 杭州华三通信技术有限公司 一种时间同步传递方法、系统及装置
CN101765199A (zh) * 2008-12-24 2010-06-30 中国移动通信集团公司 一种通信网络系统及系统内时间同步方法和otn设备
CN102468898A (zh) * 2010-11-19 2012-05-23 中兴通讯股份有限公司 在时分复用网络中实现时间同步的方法、设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046279A4 *

Also Published As

Publication number Publication date
CN104685806A (zh) 2015-06-03
EP3046279A4 (en) 2016-09-07
EP3046279A1 (en) 2016-07-20
US20160212723A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
EP3858057B1 (en) Transitioning between different scheduling delay assumptions
WO2022011650A1 (zh) 同步系统中的测距方法、装置、设备及可读存储介质
JP6374023B2 (ja) Gps拡張近隣認識ネットワーク(nan)クラスタ発見のための方法および装置
US10165535B2 (en) Methods and wireless devices for enabling synchronization in D2D communications
TW202025808A (zh) 在時效性網路與蜂巢式通信網路之間的協同合作
TW202203690A (zh) 實現使用者設備與非地面網路之間的通信的方法及系統
CN111095838B (zh) 消息3的早期数据重传
KR20150095907A (ko) 디바이스­투­디바이스 통신 방법, 장치 및 시스템
WO2016037571A1 (zh) 一种时钟同步方法及装置
CN105075302A (zh) 用于邻域知悉网络内的同步的系统和方法
CN103108389A (zh) 设备到设备的通信方法和系统、用户设备
WO2017076195A1 (zh) 时钟同步方法、同步信息传输方法及装置
JP2022529115A (ja) 無線通信システムにおける制御チャネル監視
US9094905B2 (en) Method, apparatus and computer program product for triggering the determination of a timing advance for one component carrier based upon another component carrier
WO2017166313A1 (zh) 一种基于非授权频谱的寻呼方法以及相关设备
US9736882B2 (en) Systems and methods for adapting a DRX configuration for a RAN based on a preferred DRX configuration of an associated capillary network
JP2017513292A (ja) 時間同期チャネルホッピングネットワークにおいて低電力端末との同期を維持するためのシステム及び方法
CN105325037A (zh) 同步方法、同步装置和基站
WO2015042955A1 (zh) 一种同步方法及装置
WO2020119214A1 (zh) 同步方法及装置、网元、计算机存储介质
CN113596963A (zh) 通信方法及装置
CN108736999A (zh) 一种时间同步方法及装置
CN110710310A (zh) 超级系统帧号确定方法、通信方法及装置
WO2016012866A1 (en) Methods and apparatus for enabling spontaneous location determination in a scheduled wireless communication environment
CN103220775A (zh) 一种实现数据同步的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013894339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013894339

Country of ref document: EP