WO2022135374A1 - 汽车燃料电池冷启动控制系统和方法 - Google Patents

汽车燃料电池冷启动控制系统和方法 Download PDF

Info

Publication number
WO2022135374A1
WO2022135374A1 PCT/CN2021/139977 CN2021139977W WO2022135374A1 WO 2022135374 A1 WO2022135374 A1 WO 2022135374A1 CN 2021139977 W CN2021139977 W CN 2021139977W WO 2022135374 A1 WO2022135374 A1 WO 2022135374A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
valve
cell stack
temperature
cooling liquid
Prior art date
Application number
PCT/CN2021/139977
Other languages
English (en)
French (fr)
Inventor
马秋玉
赵洪辉
韩令海
郭冬来
赵子亮
黄兴
秦晓津
芦岩
李鑫宇
曲禄成
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022135374A1 publication Critical patent/WO2022135374A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature

Definitions

  • the present application relates to the technical field of vehicle battery heat dissipation, for example, to a vehicle fuel cell cold start control system and method.
  • Fuel cell vehicles have developed rapidly, but under low temperature conditions, fuel cells are difficult to start, which seriously restricts the development of fuel cells.
  • the temperature of the coolant is only increased by heating the fuel cell assembly coolant through a PTC (Positive Temperature Coefficient, positive temperature coefficient) heating element, and the heating efficiency is low and the preheating time is long.
  • PTC Pressure Temperature Coefficient, positive temperature coefficient
  • an embodiment of the present application discloses an automotive fuel cell cold start control system, including an air compressor, an intercooler, a humidifier, a fuel cell stack, a water pump, a three-way control valve, a heater, a radiator, and a throttle valve , a first valve, a second valve, a third valve and a controller, where:
  • the air compressor-the intercooler-the humidifier-the fuel cell stack-the humidifier-the throttle valve constitutes an air heating circuit
  • the water pump-the three-way control valve-the heater-the intercooler-the second valve-the fuel cell stack-the water pump forms a cooling liquid heating circuit
  • the water pump-the three-way control valve-the radiator-the third valve-the fuel cell stack-the water pump forms a first cooling liquid heat dissipation circuit
  • the water pump-the three-way control valve-the radiator-the first valve-the water pump forms a second cooling liquid cooling circuit
  • the controller is configured to selectively open or close the first valve, the second valve, the third valve and the three-way control valve according to the temperature of the fuel cell stack.
  • an embodiment of the present application also discloses a method for controlling a cold start of an automobile fuel cell, which is applied to the above-mentioned cold start control system for an automobile fuel cell, and includes the following steps:
  • the flow of air in the air heating circuit and the circulating flow of the cooling liquid in the cooling liquid heating circuit are controlled to increase the temperature of the fuel cell stack.
  • FIG. 1 is a schematic diagram of a vehicle fuel cell cold start control system according to a specific embodiment of the present application.
  • 1-air filter 1-air filter; 2-air compressor; 3-intercooler; 4-humidifier; 5-fuel cell stack; 6-water pump; 7-three-way control valve; 8-heater; 9-radiator ; 10 - throttle valve; 11 - first valve; 12 - second valve; 13 - third valve; 14 - first temperature sensor; 15 - first pressure sensor; 16 - second temperature sensor; 17 - second pressure sensor; 18-third temperature sensor; 19-third pressure sensor; 20-fourth temperature sensor; 21-expansion tank; 22-controller; 23-silencer.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the automotive fuel cell cold start control system includes an air compressor 2 , an intercooler 3 , a humidifier 4 , a fuel cell stack 5 , and a water pump 6.
  • the fuel cell stack 5 has a hydrogen inlet, an air inlet, a cooling liquid inlet, a hydrogen outlet, an air outlet and a cooling liquid outlet.
  • the outlet of the air compressor 2 is connected to the first inlet of the intercooler 3, the first outlet of the intercooler 3 is connected to the first inlet of the humidifier 4, and the first outlet of the humidifier 4 is connected to the air inlet of the fuel cell stack 5 , the air outlet of the fuel cell stack 5 is connected to the second inlet of the humidifier 4 , the second outlet of the humidifier 4 is connected to the throttle valve 10 , and the air is discharged to the outside through the throttle valve 10 .
  • the air enters the air compressor 2 to be pressurized and heated up, and then enters the intercooler 3 to reduce the temperature of the supercharged high-temperature air, reduce the heat load of the engine, increase the intake air volume, and then increase the power of the engine.
  • the humidifier 4 increases the humidity to improve the proton exchange performance in the fuel cell stack 5, then enters the fuel cell stack 5, and is discharged to the humidifier 4 after the reaction, and then enters the throttle valve 10 from the humidifier 4, and the throttle valve 10 intermittently It opens and closes in a different way, so that the air is exhausted to the outside world.
  • the air compressor 2 - the intercooler 3 - the humidifier 4 - the fuel cell stack 5 - the humidifier 4 - the throttle valve 10 constitutes an air heating circuit.
  • the air compressor 2 controls its own rotation speed according to the temperature of the fuel cell stack 5 .
  • the controller 22 obtains the temperature of the fuel cell stack 5 , the controller 22 sends an instruction to the air compressor controller inside the air compressor 2 , and the air compressor controller controls the air compressor motor inside the air compressor 2 after receiving the instruction
  • the output power finally changes the speed of the air compressor 2 itself, and the air pressure in the air heating circuit is jointly adjusted by the speed of the air compressor 2 and the opening of the throttle valve 10 to realize decoupling control.
  • a first temperature sensor 14 and a first pressure sensor 15 are provided between the first outlet of the humidifier 4 and the air inlet of the fuel cell stack 5, the air outlet of the fuel cell stack 5 and the humidifier
  • a second temperature sensor 16 and a second pressure sensor 17 are provided between the second inlets of 4.
  • the first temperature sensor 14 and the first pressure sensor 15 obtain the temperature and pressure of the air before entering the fuel cell stack 5, respectively
  • the second temperature sensor 16 and the second pressure sensor 17 obtain the air temperature and pressure after passing through the fuel cell stack 5, respectively
  • the temperature value and the pressure value determine the temperature range and pressure range inside the fuel cell stack 5 respectively, and provide a guarantee for the controller 22 to obtain the internal temperature and pressure of the fuel cell stack 5 to control the air heating circuit.
  • the air filter 1 is connected to the intake end of the air compressor 2 , so as to reduce impurities from entering the interior of the fuel cell stack 5 .
  • a muffler 23 is connected to the outlet end of the throttle valve 10 to reduce noise pollution.
  • the second outlet of the intercooler 3 is connected to the coolant inlet of the fuel cell stack 5
  • the coolant outlet of the fuel cell stack 5 is connected to the inlet of the water pump 6
  • the outlet of the water pump 6 is connected to the three-way control valve 7
  • the inlet of the three-way control valve 7 is connected to the inlet of the heater 8, the other outlet of the three-way control valve 7 is connected to the inlet of the radiator 9, and the outlet of the heater 8 and the outlet of the radiator 9 are connected to the
  • the second inlet of the intercooler 3 in addition, the second outlet of the intercooler 3 is also connected to the water pump 6, wherein a first valve 11 is provided between the second outlet of the intercooler 3 and the water pump 6, and the intercooler
  • a second valve 12 is provided between the second outlet of 3 and the coolant inlet of the fuel cell stack 5
  • a third valve 13 is provided between the second inlet of the intercooler 3 and the coolant inlet of the fuel cell stack 5 .
  • the system also includes an expansion tank 21 connected to the fuel cell stack 5 , the water pump 6 and the radiator 9 .
  • the expansion tank 21 is connected to the system highest point of the fuel cell stack 5 and the system highest point of the radiator 9 . Due to the thermal expansion and contraction of the cooling liquid in the system, when the cooling liquid heats up, the water volume in the system increases. When there is nowhere to accommodate this part of the expansion volume of the water, the hydraulic pressure in the system increases, which will affect the normal operation.
  • the expansion tank 21 accommodates the water expansion of the system, which can reduce the hydraulic fluctuation of the system due to the expansion of water, and improve the safety and reliability of the system operation. When the system leaks water or the system cools down for some reason, the expansion tank 21 The water level drops to replenish the system.
  • the expansion tank 21 can also stabilize the pressure of the system and remove the air released by the cooling liquid during the heating process.
  • the controller 22 is respectively connected to the first valve 11 , the second valve 12 , the third valve 13 and the three-way control valve 7 to control the opening and closing operations of the plurality of valves.
  • the controller 22 closes the first valve 11, the third valve 13 and the radiator 9.
  • the intercooler 3 and the fuel cell stack 5 are connected in series, the second valve 12 is opened, and the water pump 6 is turned on.
  • the coolant passes through the water pump 6
  • the pressure reaches the three-way control valve 7, and then is heated by the heater 8, and the heated coolant enters the intercooler 3, and then enters the fuel cell stack 5, that is, a heater 8 can heat the fuel cell stack 5.
  • the water pump 6 - the three-way control valve 7 - the heater 8 - the intercooler 3 - the second valve 12 - the fuel cell stack 5 - the water pump 6 forms a cooling liquid heating circuit.
  • the cooling liquid heating circuit is combined with the air heating circuit, and the air and the cooling liquid jointly heat the fuel cell stack 5 .
  • the system adjusts the opening and closing angle of the three-way control valve 7 according to the real-time detected coolant temperature of the fuel cell stack 5.
  • the three-way control valve 7 communicates with the opening of the outlet of the heater 8.
  • the closing degree can be adjusted to the maximum, and when the preset temperature (the temperature at which the fuel cell stack 5 works normally) is reached, the opening and closing degree can be gradually reduced or closed.
  • the controller 22 closes the second valve 12 and the heater 8, opens the first valve 11, the third valve 13 and the radiator 9, the coolant is pressurized by the water pump 6 to the three-way control valve 7, and then passes through the heat dissipation
  • the cooling device 9 is cooled, the cooled cooling liquid enters the fuel cell stack 5 through the third valve 13 for heat exchange, and the temperature of the cooling liquid after the heat exchange rises and passes through the water pump 6 again, and circulates in this way.
  • the cooling liquid cooled by the radiator 9 passes through the intercooler 3, and then passes through the water pump 6 again through the first valve 11, and circulates in this way.
  • water pump 6 - three-way control valve 7 - radiator 9 - third valve 13 - fuel cell stack 5 - water pump 6 forms the first cooling liquid cooling circuit
  • water pump 6 - three-way control valve 7 - radiator 9 - first valve 11-Water pump 6 forms the second cooling liquid cooling circuit.
  • a third temperature sensor 18 and a third pressure sensor 19 are provided between the second valve 12 and the coolant inlet of the fuel cell stack 5 ; a coolant outlet of the fuel cell stack 5 and the inlet of the water pump 6 are provided with Fourth temperature sensor 20 .
  • the third temperature sensor 18 obtains the temperature of the cooling liquid before entering the fuel cell stack 5
  • the fourth temperature sensor 20 obtains the temperature of the cooling liquid after passing through the fuel cell stack 5
  • the two temperature values jointly determine the temperature of the cooling liquid inside the fuel cell stack 5
  • An embodiment of the present application further provides a method for controlling a cold start of an automobile fuel cell, including the following steps: acquiring the temperature of the cooling liquid in the fuel cell stack 5; judging whether the temperature of the cooling liquid is less than a first preset threshold temperature; When the temperature of the cooling liquid is lower than the first preset threshold temperature, the flow of air in the air heating circuit and the circulating flow of the cooling liquid in the cooling liquid heating circuit are controlled to increase the temperature of the fuel cell stack 5 .
  • the temperature of the cooling liquid in the fuel cell stack 5 is obtained through the temperatures measured by the third temperature sensor 18 and the fourth temperature sensor 20; when the temperature is compared with the first preset threshold temperature, if the temperature of the cooling liquid at this time is If the temperature is lower than the first preset threshold temperature, the air enters the air compressor 2 to be pressurized and heated up, and then enters the intercooler 3 to reduce the temperature of the high-temperature air after supercharging, reduce the thermal load of the engine, increase the intake air volume, and then Increase the power of the engine, and then increase the humidity through the humidifier 4 to improve the proton exchange performance in the fuel cell stack 5, then enter the fuel cell stack 5, and be discharged to the humidifier 4 after the reaction, and then enter from the humidifier 4.
  • Throttle valve 10 the throttle valve 10 is opened and closed intermittently, so that the air is exhausted to the outside.
  • the air compressor 2 - the intercooler 3 - the humidifier 4 - the fuel cell stack 5 - the humidifier 4 - the throttle valve 10 constitutes an air heating circuit.
  • the controller 22 closes the first valve 11, the third valve 13 and the radiator 9.
  • the intercooler 3 and the fuel cell stack 5 are connected in series, the second valve 12 is opened, and the water pump 6 is turned on.
  • the coolant is pressurized by the water pump 6. After reaching the three-way control valve 7, it is heated by the heater 8, and the heated coolant enters the intercooler 3, and then enters the fuel cell stack 5.
  • the water pump 6-three-way control valve 7-heater 8-intercooler The device 3 - the second valve 12 - the fuel cell stack 5 - the water pump 6 forms a cooling liquid heating circuit.
  • the second preset threshold temperature is greater than the first preset threshold temperature
  • the system needs to be dissipated, and the control
  • the cooling liquid circulates in the first cooling liquid radiating circuit and the second cooling liquid radiating circuit to reduce the temperature of the fuel cell stack 5 .
  • the controller 22 closes the second valve 12 and the heater 8, opens the first valve 11, the third valve 13 and the radiator 9, the coolant is pressurized by the water pump 6 to the three-way control valve 7, and then passes through the radiator 9
  • the cooled cooling liquid enters the fuel cell stack 5 through the third valve 13 for heat exchange, and the temperature of the cooling liquid after the heat exchange rises and passes through the water pump 6 again, and circulates in this way.
  • the cooling liquid cooled by the radiator 9 passes through the intercooler 3, and then passes through the water pump 6 again through the first valve 11, and circulates in this way.
  • water pump 6 - three-way control valve 7 - radiator 9 - third valve 13 - fuel cell stack 5 - water pump 6 forms the first cooling liquid cooling circuit
  • water pump 6 - three-way control valve 7 - radiator 9 - first valve 11-Water pump 6 forms the second cooling liquid cooling circuit.
  • the embodiments of the present application disclose a cold start control system and method for an automobile fuel cell, so as to solve the problems of low heating efficiency and long warm-up time when heating is performed only by PTC.
  • the embodiment of the present application further discloses an automotive fuel cell cold start control system, wherein the fuel cell stack is provided with an air inlet, an air outlet, a cooling liquid inlet and a cooling liquid outlet;
  • a first temperature sensor 14 is provided between the first outlet of the humidifier 4 and the air inlet of the fuel cell stack 5;
  • a second temperature sensor 16 is provided between the air outlet of the fuel cell stack 5 and the second inlet of the humidifier 4 .
  • the first temperature sensor 14 obtains the air temperature before entering the fuel cell stack 5, and the second temperature sensor 16 obtains the air temperature after passing through the fuel cell stack 5.
  • the two temperature values jointly determine the air temperature range inside the fuel cell stack 5, which is
  • the controller 22 obtains the internal temperature of the fuel cell stack 5 and controls the air heating circuit to provide guarantee.
  • a muffler 23 is provided at the other end of the throttle valve 10 to reduce the noise when the air is discharged outside the vehicle.
  • the air heated by the air compressor can be passed into the fuel cell stack to heat the air supply subsystem of the fuel cell stack, and the second valve, Close the first valve and the third valve so that the intercooler and the fuel cell stack are connected in series, and use the pressurized and heated air in the intercooler to quickly heat the coolant to ensure that the fuel cell can be started quickly under low temperature conditions; under high temperature conditions , close the first valve, open the first valve and the third valve, so that the intercooler and the fuel cell are connected in parallel, and the radiator simultaneously cools the coolant flowing through the intercooler and the fuel cell stack, realizing a radiator to the intercooler Simultaneously dissipates heat with the fuel cell stack.
  • the fuel cell engine is started, and the air heated by the air compressor can be fed into the fuel cell stack to heat the air supply subsystem of the fuel cell stack, and can also be turned on.
  • the second valve, the first valve and the third valve are closed, so that the intercooler and the fuel cell stack are connected in series, and the pressurized and heated air in the intercooler is used to quickly heat the cooling liquid to ensure that the fuel cell can be quickly started under low temperature conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

本申请实施例公开了一种汽车燃料电池冷启动控制系统和方法,其中系统包括空压机、中冷器、增湿器、燃料电池堆、水泵、三通控制阀、加热器、散热器、节气门、第一阀门、第二阀门、第三阀门和控制器,空压机-所述中冷器-增湿器-燃料电池堆-增湿器-节气门构成空气加热路;水泵-三通控制阀-加热器-中冷器-第二阀门-燃料电池堆-水泵形成冷却液加热回路;水泵-三通控制阀-散热器-第三阀门-所述燃料电池堆-水泵形成第一冷却液散热回路;水泵-三通控制阀-散热器-第一阀门-水泵形成第二冷却液散热回路。

Description

汽车燃料电池冷启动控制系统和方法
本申请要求在2020年12月25日提交中国专利局、申请号为202011564103.2的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆电池散热技术领域,例如涉及一种汽车燃料电池冷启动控制系统和方法。
背景技术
燃料电池汽车发展迅速,但是低温条件下,燃料电池启动困难,严重制约燃料电池的发展。相关技术仅仅通过PTC(Positive Temperature Coefficient,正温度系数)加热件加热燃料电池总成冷却液来提高冷却液温度,加热效率低下且预热时间较长。
发明内容
一方面,本申请实施例公开一种汽车燃料电池冷启动控制系统,包括空压机、中冷器、增湿器、燃料电池堆、水泵、三通控制阀、加热器、散热器、节气门、第一阀门、第二阀门、第三阀门和控制器,其中:
所述空压机-所述中冷器-所述增湿器-所述燃料电池堆-所述增湿器-所述节气门构成空气加热路;
所述水泵-所述三通控制阀-所述加热器-所述中冷器-所述第二阀门-所述燃料电池堆-所述水泵形成冷却液加热回路;
所述水泵-所述三通控制阀-所述散热器-所述第三阀门-所述燃料电池堆-所述水泵形成第一冷却液散热回路;
所述水泵-所述三通控制阀-所述散热器-所述第一阀门-所述水泵形成第二冷却液散热回路;
所述控制器设置为根据所述燃料电池堆的温度可选择地打开或关闭所述第一阀门、所述第二阀门、所述第三阀门和所述三通控制阀。
另一方面,本申请实施例还公开一种汽车燃料电池冷启动控制方法,应用于上述汽车燃料电池冷启动控制系统,包括以下步骤:
获取燃料电池堆内的冷却液的温度;
判断所述冷却液的温度是否小于第一预设阈值温度;
响应于所述冷却液的温度小于第一预设阈值温度,控制空气在所述空气加热路流动以及所述冷却液在所述冷却液加热回路循环流动,以提高所述燃料电池堆的温度。
附图说明
图1是本申请具体实施例的汽车燃料电池冷启动控制系统的示意图。
图1中:
1-空气过滤器;2-空压机;3-中冷器;4-增湿器;5-燃料电池堆;6-水泵;7-三通控制阀;8-加热器;9-散热器;10-节气门;11-第一阀门;12-第二阀门;13-第三阀门;14-第一温度传感器;15-第一压力传感器;16-第二温度传感器;17-第二压力传感器;18-第三温度传感器;19-第三压力传感器;20-第四温度传感器;21-膨胀水箱;22-控制器;23-消音器。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗 示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本申请实施例提供一种汽车燃料电池冷启动控制系统,如图1所示,汽车燃料电池冷启动控制系统包括空压机2、中冷器3、增湿器4、燃料电池堆5、水泵6、三通控制阀7、加热器8、散热器9、节气门10、第一阀门11、第二阀门12、第三阀门13和控制器22。
其中,燃料电池堆5具有氢气入口、空气入口、冷却液入口、氢气出口、空气出口和冷却液出口。
空压机2的出口连接中冷器3的第一入口,中冷器3的第一出口连接增湿器4的第一入口,增湿器4的第一出口连接燃料电池堆5的空气入口,燃料电池堆5的空气出口连接至增湿器4的第二入口,增湿器4的第二出口连接节气门10,并通过节气门10将空气排出外界。
即空气进入空压机2被加压和升温,再进入中冷器3中降低增压后的高温空气温度,并降低发动机的热负荷,提高进气量,进而增加发动机的功率,之后经过增湿器4提高湿度,以提高燃料电池堆5内的质子交换性能,之后进入燃料电池堆5,经过反应重新排出至增湿器4,再从增湿器4进入节气门10,节气门10间歇式的开启和关闭,使空气排到外界。此时,空压机2-中冷器3-增湿器4-燃料电池堆5-增湿器4-节气门10构成空气加热路。
例如,在本申请实施例中,空压机2根据燃料电池堆5温度控制自身的转速。例如,控制器22获得燃料电池堆5的温度,控制器22向空压机2内部的空压机控制器发出指令,空压机控制器接收指令后控制空压机2内部的空压机电机的输出功率最终改变空压机2自身转速,空气加热路中的气压通过空压机2转速与节气门10开度联合调解,实现解耦控制。
在一实施例中,在增湿器4的第一出口和燃料电池堆5的空气入口之间设有第一温度传感器14和第一压力传感器15,燃料电池堆5的空气出口和增湿器4的第二入口之间设有第二温度传感器16和第二压力传感器17。
第一温度传感器14和第一压力传感器15分别获取进入燃料电池堆5前的空气温度和压力,第二温度传感器16和第二压力传感器17分别获取经过燃料电池堆5后的空气温度和压力,温度值以及压力值分别确定了燃料电池堆5内部的温度范围和压力范围,为控制器22获取燃料电池堆5的内部温度和压力控制空气加热路提供保障。
并且,在本申请实施例中,空压机2的进气端连有空气过滤器1,进而减少杂质进入燃料电池堆5内部。
在一实施例中,节气门10的出气端连有消音器23,以降低噪音污染。
继续参见图1,中冷器3的第二出口连接至燃料电池堆5的冷却液入口,燃料电池堆5的冷却液出口连接至水泵6的入口,水泵6的出口连接至三通控制阀7的入口,三通控制阀7的一个出口连接至加热器8的入口,三通控制阀7的另一个出口连接至散热器9的入口,加热器8的出口和散热器9的出口共同连通至中冷器3的第二入口,另外,中冷器3的第二出口还连接至水泵6,其中,中冷器3的第二出口和水泵6之间设有第一阀门11,中冷器3的第二出口和燃料电池堆5的冷却液入口之间设有第二阀门12,中冷器3的第二入口和燃料电池堆5的冷却液入口之间设有第三阀门13。
例如,该系统还包括膨胀水箱21,膨胀水箱21连接至燃料电池堆5、水泵6和散热器9。其中,膨胀水箱21连接至燃料电池堆5的系统最高点以及散热器9的系统最高点。由于系统中冷却液的热胀冷缩作用,当冷却液升温时,系统中的水容积增加,当无处容纳水的这部分膨胀量时,系统内的液压增高,将影响正常运行。由膨胀水箱21容纳系统的水膨胀量,可减小系统因水的膨胀而造成的液压波动,提高了系统运行的安全、可靠性,当系统由于某种原因漏水或系统降温时,膨胀水箱21的水位下降,为系统补水。膨胀水箱21还可以起到稳定系统的压力和排除冷却液在加热过程中所释放出来的空气。
在一实施例中,控制器22分别连接第一阀门11、第二阀门12、第三阀门13及三通控制阀7,以控制多个阀门的开合操作。
需要升温时,控制器22关闭第一阀门11、第三阀门13和散热器9,此时中冷器3和燃料电池堆5串联,打开第二阀门12,开启水泵6,冷却液经过水泵6加压到达三通控制阀7,之后经过加热器8加热,加热后的冷却液进入中冷器3,之后进入燃料电池堆5,即一个加热器8能够燃料电池堆5进行加热。此时,水泵6-三通控制阀7-加热器8-中冷器3-第二阀门12-燃料电池堆5-水泵6形成冷却液加热回路。
因此,在需要升温时,冷却液加热回路结合空气加热路,空气和冷却液共同对燃料电池堆5进行加热。
在一实施例中,系统中根据实时检测的燃料电池堆5的冷却液温度,调整三通控制阀7的开合角度,在升温开始时,三通控制阀7连通加热器8的出口的开合度可调至最大,当到达预设温度(燃料电池堆5正常工作的温度)时, 可逐渐将开合度减小或关闭。
需要散热时,控制器22关闭第二阀门12和加热器8,打开第一阀门11、第三阀门13和散热器9,冷却液经过水泵6加压到三通控制阀7,之后再经过散热器9进行降温,降温后的冷却液经过第三阀门13进入燃料电池堆5进行换热,换热后的冷却液温度升高再次经过水泵6,如此循环。同时,经过散热器9进行降温后的冷却液经过中冷器3,之后经过第一阀门11再次经过水泵6,如此循环。因此水泵6-三通控制阀7-散热器9-第三阀门13-燃料电池堆5-水泵6形成第一冷却液散热回路,水泵6-三通控制阀7-散热器9-第一阀门11-水泵6形成第二冷却液散热回路。
例如,第二阀门12和燃料电池堆5的所述冷却液入口之间设有第三温度传感器18和第三压力传感器19;燃料电池堆5的冷却液出口和水泵6的入口之间设有第四温度传感器20。第三温度传感器18获取进入燃料电池堆5前的冷却液温度,第四温度传感器20获取经过燃料电池堆5后的冷却液温度,两个温度值共同确定了燃料电池堆5内部的冷却液温度范围,为控制器22获取燃料电池堆5内部冷却液温度控制冷却液加热回路、第一冷却液散热回路和第二冷却液散热回路提供保障。
本申请实施例还提供一种汽车燃料电池冷启动控制方法,包括以下步骤:获取燃料电池堆5内的冷却液的温度;判断冷却液的温度是否小于第一预设阈值温度;响应于所述冷却液的温度小于第一预设阈值温度,控制空气在空气加热路流动以及冷却液在冷却液加热回路循环流动,以提高所述燃料电池堆5的温度。
例如,通过第三温度传感器18和第四温度传感器20所测温度进而获取燃料电池堆5内的冷却液的温度;将该温度与第一预设阈值温度相比,若此时冷却液的温度小于第一预设阈值温度,使空气进入空压机2被加压和升温,再进入中冷器3中降低增压后的高温空气温度,并降低发动机的热负荷,提高进气量,进而增加发动机的功率,之后经过增湿器4提高湿度,以提高燃料电池堆5内的质子交换性能,之后进入燃料电池堆5,经过反应重新排出至增湿器4,再从增湿器4进入节气门10,节气门10间歇式的开启和关闭,使空气排到外界。此时,空压机2-中冷器3-增湿器4-燃料电池堆5-增湿器4-节气门10构成空气加热路。同时,控制器22关闭第一阀门11、第三阀门13和散热器9,此时中冷器3和燃料电池堆5串联,打开第二阀门12,开启水泵6,冷却液经过水泵6加压到达三通控制阀7,之后经过加热器8加热,加热后的冷却液进入中冷器3, 之后进入燃料电池堆5,此时,水泵6-三通控制阀7-加热器8-中冷器3-第二阀门12-燃料电池堆5-水泵6形成冷却液加热回路。
随着系统的温度提升,判断燃料电池堆5中的冷却液的温度大于第二预设阈值温度时(第二预设阈值温度大于第一预设阈值温度),需要对系统进行散热,则控制冷却液在所述第一冷却液散热回路和第二冷却液散热回路中循环流动,以降低燃料电池堆5的温度。
例如,控制器22关闭第二阀门12和加热器8,打开第一阀门11、第三阀门13和散热器9,冷却液经过水泵6加压到三通控制阀7,之后再经过散热器9进行降温,降温后的冷却液经过第三阀门13进入燃料电池堆5进行换热,换热后的冷却液温度升高再次经过水泵6,如此循环。同时,经过散热器9进行降温后的冷却液经过中冷器3,之后经过第一阀门11再次经过水泵6,如此循环。因此水泵6-三通控制阀7-散热器9-第三阀门13-燃料电池堆5-水泵6形成第一冷却液散热回路,水泵6-三通控制阀7-散热器9-第一阀门11-水泵6形成第二冷却液散热回路。
本申请实施例公开一种汽车燃料电池冷启动控制系统和方法,以解决仅通过PTC加热时加热效率低下、预热时间较长的问题。
本申请实施例还公开一种汽车燃料电池冷启动控制系统,其中,所述燃料电池堆设有空气入口、空气出口、冷却液入口和冷却液出口;
所述增湿器4的第一出口和所述燃料电池堆5的所述空气入口之间设有第一温度传感器14;
所述燃料电池堆5的所述空气出口和所述增湿器4的第二入口之间设有第二温度传感器16。
第一温度传感器14获取进入燃料电池堆5前的空气温度,第二温度传感器16获取经过燃料电池堆5后的空气温度,两个温度值共同确定了燃料电池堆5内部的空气温度范围,为控制器22获取燃料电池堆5内部温度控制空气加热路提供保障。
在一实施例中,在节气门10的另一端设置消音器23,减小空气排出车外时的噪音。
对于汽车燃料电池冷启动控制系统,低温条件下,启动燃料电池发动机,既可以通过空压机加热的空气通入燃料电池堆,加热燃料电池堆的空气供应子系统,还可以打开第二阀门、关闭第一阀门和第三阀门,使得中冷器和燃料电池堆串联,利用中冷器中被加压升温的空气快速加热冷却液,保证燃料电池在 低温条件下能够快速启动;在高温条件下,关闭第一阀门、打开第一阀门和第三阀门,使得中冷器和燃料电池并联,散热器同时对流经中冷器和燃料电池堆的冷却液进行降温,实现一个散热器对中冷器和燃料电池堆同时散热。
对于汽车燃料电池冷启动控制方法,低温条件下,系统开机时,启动燃料电池发动机,既可以通过空压机加热的空气通入燃料电池堆,加热燃料电池堆的空气供应子系统,还可以打开第二阀门、关闭第一阀门和第三阀门,使得中冷器和燃料电池堆串联,利用中冷器中被加压升温的空气快速加热冷却液,保证燃料电池在低温条件下能够快速启动。
本申请的上述实施例仅仅是为了清楚说明本申请所作的举例,而并非是对本申请的实施方式的限定。对于所属领域的普通技术人员来说,能够进行多种明显的变化、重新调整和替代而不会脱离本申请的保护范围。这里无需也无法对所有的实施方式予以穷举。在本申请的发明构思之内所作的任何修改、等同替换和改进等,均应包含在本申请权利要求的保护范围之内。

Claims (9)

  1. 一种汽车燃料电池冷启动控制系统,包括空压机(2)、中冷器(3)、增湿器(4)、燃料电池堆(5)、水泵(6)、三通控制阀(7)、加热器(8)、散热器(9)、节气门(10)、第一阀门(11)、第二阀门(12)、第三阀门(13)和控制器(22),其中:
    所述空压机(2)、所述中冷器(3)、所述增湿器(4)、所述燃料电池堆(5)、所述增湿器(4)及所述节气门(10)构成空气加热路;
    所述水泵(6)、所述三通控制阀(7)、所述加热器(8)、所述中冷器(3)、所述第二阀门(12)、所述燃料电池堆(5)及所述水泵(6)形成冷却液加热回路;
    所述水泵(6)、所述三通控制阀(7)、所述散热器(9)、所述第三阀门(13)、所述燃料电池堆(5)及所述水泵(6)形成第一冷却液散热回路;
    所述水泵(6)、所述三通控制阀(7)、所述散热器(9)、所述第一阀门(11)及所述水泵(6)形成第二冷却液散热回路;
    所述控制器(22)设置为根据所述燃料电池堆(5)的温度可选择地打开或关闭所述第一阀门(11)、所述第二阀门(12)、所述第三阀门(13)和所述三通控制阀(7)。
  2. 根据权利要求1所述的汽车燃料电池冷启动控制系统,其中,所述空压机(2)根据所述燃料电池堆(5)的温度控制自身的转速。
  3. 根据权利要求2所述的汽车燃料电池冷启动控制系统,其中,所述燃料电池堆(5)设有空气入口、空气出口、冷却液入口和冷却液出口;
    所述增湿器(4)的第一出口和所述燃料电池堆(5)的所述空气入口之间设有第一温度传感器(14);
    所述燃料电池堆(5)的所述空气出口和所述增湿器(4)的第二入口之间设有第二温度传感器(16)。
  4. 根据权利要求3所述的汽车燃料电池冷启动控制系统,其中,所述第二阀门(12)和所述燃料电池堆(5)的所述冷却液入口之间设有第三温度传感器(18);
    所述燃料电池堆(5)的冷却液出口和所述水泵(6)的入口之间设有第四温度传感器(20)。
  5. 根据权利要求1-4任一项所述的汽车燃料电池冷启动控制系统,其中,所述空压机(2)的进气端连有空气过滤器(1)。
  6. 根据权利要求1-4任一项所述的汽车燃料电池冷启动控制系统,其中,所述节气门(10)的一端连有消音器(23)。
  7. 根据权利要求1-4任一项所述的汽车燃料电池冷启动控制系统,还包括膨胀水箱(21),所述膨胀水箱(21)连接至所述燃料电池堆(5)、所述水泵(6)和所述散热器(9)。
  8. 一种汽车燃料电池冷启动控制方法,应用于权利要求1-7任一项所述的汽车燃料电池冷启动控制系统,包括以下步骤:
    获取燃料电池堆(5)内的冷却液的温度;
    判断所述冷却液的温度是否小于第一预设阈值温度;
    响应于所述冷却液的温度小于第一预设阈值温度,控制空气在所述空气加热路流动以及所述冷却液在所述冷却液加热回路循环流动,以提高所述燃料电池堆(5)的温度。
  9. 根据权利要求8所述的汽车燃料电池冷启动控制方法,还包括以下步骤:
    判断所述冷却液的温度是否大于第二预设阈值温度,所述第二预设阈值温度大于所述第一预设阈值温度;
    响应于所述冷却液的温度大于第二预设阈值温度,控制所述冷却液在所述第一冷却液散热回路和所述第二冷却液散热回路中循环流动,以降低所述燃料电池堆(5)的温度。
PCT/CN2021/139977 2020-12-25 2021-12-21 汽车燃料电池冷启动控制系统和方法 WO2022135374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011564103.2 2020-12-25
CN202011564103.2A CN112687910B (zh) 2020-12-25 2020-12-25 汽车燃料电池冷启动控制系统和方法

Publications (1)

Publication Number Publication Date
WO2022135374A1 true WO2022135374A1 (zh) 2022-06-30

Family

ID=75453268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139977 WO2022135374A1 (zh) 2020-12-25 2021-12-21 汽车燃料电池冷启动控制系统和方法

Country Status (2)

Country Link
CN (1) CN112687910B (zh)
WO (1) WO2022135374A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411296A (zh) * 2022-09-29 2022-11-29 桂林理工大学 燃料电池加热加湿系统及其控制方法
CN115986163A (zh) * 2023-01-06 2023-04-18 合肥华清高科表面技术股份有限公司 冷却液功能分离型燃料电池冷却系统
CN116259888A (zh) * 2023-05-12 2023-06-13 河南师范大学 一种新能源汽车电池组温度控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687910B (zh) * 2020-12-25 2022-04-08 中国第一汽车股份有限公司 汽车燃料电池冷启动控制系统和方法
CN112993322B (zh) * 2021-04-30 2021-10-08 潍柴动力股份有限公司 提高燃料电池散热能力的方法、装置及燃料电池冷却系统
CN113300059B (zh) * 2021-05-13 2022-09-23 潍柴动力股份有限公司 一种冷却液加注结构及方法与一种燃料电池发动机系统
CN113270614B (zh) * 2021-05-18 2022-03-01 山东交通学院 一种车用质子交换膜燃料电池空气供应系统及工作方法
CN113346103B (zh) * 2021-05-28 2022-08-16 黄冈格罗夫氢能汽车有限公司 一种大功率电站用燃料电池散热系统及控制方法
CN113346112B (zh) * 2021-05-28 2022-08-19 黄冈格罗夫氢能汽车有限公司 一种大功率并联燃料电池散热系统及控制方法
CN113690471B (zh) * 2021-07-07 2023-01-17 珠海格力电器股份有限公司 船用燃料电池冷却系统及其控制方法
CN113707907B (zh) * 2021-08-25 2023-02-21 中国第一汽车股份有限公司 一种集成式燃料电池系统和燃料电池汽车
CN113696715A (zh) * 2021-08-31 2021-11-26 东风汽车集团股份有限公司 一种燃料电池汽车冷却系统及温度控制方法
CN114023995A (zh) * 2021-10-28 2022-02-08 三一汽车制造有限公司 燃料电池系统及其控制方法和控制装置、车辆
CN114132141B (zh) * 2021-11-04 2023-03-17 东风汽车集团股份有限公司 一种汽车发动机舱的降温系统、使用方法及汽车
CN114614049B (zh) * 2022-03-10 2023-11-14 上海重塑能源科技有限公司 一种燃料电池的快速冷启动系统及方法
CN114883611B (zh) * 2022-06-14 2024-06-14 中国第一汽车股份有限公司 一种燃料电池低温启动控制系统及方法
CN115249828B (zh) * 2022-09-21 2022-12-27 苏州中车氢能动力技术有限公司 燃料电池进气进水温度控制系统、控制方法及新能源汽车
CN116014175A (zh) * 2022-12-27 2023-04-25 中国航天空气动力技术研究院 一种燃料电池散热系统用的膨胀水箱结构及散热系统
CN117039048B (zh) * 2023-07-13 2024-06-07 深圳市氢蓝时代动力科技有限公司 燃料电池热管理系统、发电设备及电池管理系统排气方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036469A (ja) * 2017-08-16 2019-03-07 トヨタ自動車株式会社 燃料電池システム
CN110931824A (zh) * 2019-11-29 2020-03-27 中国第一汽车股份有限公司 一种燃料电池冷却液流量分配系统及其控制方法
CN210866371U (zh) * 2019-06-03 2020-06-26 潍柴动力股份有限公司 一种燃料电池加热系统
CN211743312U (zh) * 2020-08-27 2020-10-23 深圳氢时代新能源科技有限公司 一种燃料电池冷启动废热再利用循环系统
CN111890956A (zh) * 2020-07-01 2020-11-06 双良节能系统股份有限公司 一种燃料电池车的温差发电及低温相变冷却蓄热系统
CN112687910A (zh) * 2020-12-25 2021-04-20 中国第一汽车股份有限公司 汽车燃料电池冷启动控制系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4282584B2 (ja) * 2004-10-29 2009-06-24 エスペック株式会社 燃料電池評価試験装置
CN209896183U (zh) * 2019-06-03 2020-01-03 潍柴动力股份有限公司 一种燃料电池加热系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036469A (ja) * 2017-08-16 2019-03-07 トヨタ自動車株式会社 燃料電池システム
CN210866371U (zh) * 2019-06-03 2020-06-26 潍柴动力股份有限公司 一种燃料电池加热系统
CN110931824A (zh) * 2019-11-29 2020-03-27 中国第一汽车股份有限公司 一种燃料电池冷却液流量分配系统及其控制方法
CN111890956A (zh) * 2020-07-01 2020-11-06 双良节能系统股份有限公司 一种燃料电池车的温差发电及低温相变冷却蓄热系统
CN211743312U (zh) * 2020-08-27 2020-10-23 深圳氢时代新能源科技有限公司 一种燃料电池冷启动废热再利用循环系统
CN112687910A (zh) * 2020-12-25 2021-04-20 中国第一汽车股份有限公司 汽车燃料电池冷启动控制系统和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411296A (zh) * 2022-09-29 2022-11-29 桂林理工大学 燃料电池加热加湿系统及其控制方法
CN115986163A (zh) * 2023-01-06 2023-04-18 合肥华清高科表面技术股份有限公司 冷却液功能分离型燃料电池冷却系统
CN115986163B (zh) * 2023-01-06 2024-04-02 合肥华清高科表面技术股份有限公司 冷却液功能分离型燃料电池冷却系统
CN116259888A (zh) * 2023-05-12 2023-06-13 河南师范大学 一种新能源汽车电池组温度控制方法

Also Published As

Publication number Publication date
CN112687910B (zh) 2022-04-08
CN112687910A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2022135374A1 (zh) 汽车燃料电池冷启动控制系统和方法
US11545677B2 (en) Fuel cell vehicle thermal management system with cold start function and control method thereof
CN110380084B (zh) 一种汽车氢燃料电池的温控系统及其控制方法
US20090229543A1 (en) Cooling device for engine
WO2011046058A1 (ja) サーモスタット及び車両の冷却装置
JP2018127915A (ja) エンジン冷却システム
WO2021238705A1 (zh) 冷却液预热和余热回收装置及车辆
CN111799485A (zh) 一种氢燃料电池低温启动系统及其加热方法
JP2016164404A (ja) 車両用内燃機関の冷却装置及び制御方法
CN114883611A (zh) 一种燃料电池低温启动控制系统及方法
JP2001342838A (ja) 過給機付きディーゼルエンジン
JP6007128B2 (ja) 排気再循環装置の冷却装置
JP2018119423A (ja) エンジン冷却システム
JP2011080403A (ja) エンジンの暖機促進システム
US10436102B2 (en) Cooling system for vehicles and control method thereof
US11616242B2 (en) Method for controlling fuel cell
CN112310435A (zh) 一种燃料电池热管理系统
JP4060697B2 (ja) Egrガスの冷却装置
US11345256B2 (en) Battery temperature control system
JP2005127137A (ja) エンジンのegrシステム
JPH0347422A (ja) 内燃機関の冷却方法
CN217214794U (zh) 一种燃料电池系统及氢能汽车
CN111102056A (zh) 一种温度调节装置、工作方法及混合动力系统
CN115247592B (zh) 发动机热管理系统、控制方法及车辆
JP4484332B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909370

Country of ref document: EP

Kind code of ref document: A1