WO2022135110A1 - 一种混合增压多级加注加氢装置 - Google Patents
一种混合增压多级加注加氢装置 Download PDFInfo
- Publication number
- WO2022135110A1 WO2022135110A1 PCT/CN2021/135196 CN2021135196W WO2022135110A1 WO 2022135110 A1 WO2022135110 A1 WO 2022135110A1 CN 2021135196 W CN2021135196 W CN 2021135196W WO 2022135110 A1 WO2022135110 A1 WO 2022135110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- pipeline
- hydrogen
- skid
- low
- Prior art date
Links
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 122
- 239000001257 hydrogen Substances 0.000 claims abstract description 203
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 203
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 141
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 64
- 230000005540 biological transmission Effects 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 230000009466 transformation Effects 0.000 abstract description 4
- 239000000470 constituent Substances 0.000 abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 13
- 239000000446 fuel Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000011010 flushing procedure Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/06—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/002—Details of vessels or of the filling or discharging of vessels for vessels under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/02—Pipe-line systems for gases or vapours
- F17D1/065—Arrangements for producing propulsion of gases or vapours
- F17D1/07—Arrangements for producing propulsion of gases or vapours by compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D3/00—Arrangements for supervising or controlling working operations
- F17D3/01—Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0157—Compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/061—Fluid distribution for supply of supplying vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/068—Distribution pipeline networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/34—Hydrogen distribution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/45—Hydrogen technologies in production processes
Definitions
- the present application relates to a hydrogenation device, in particular to a hybrid pressurized multistage fueling and hydrogenation device.
- Hydrogen refueling devices are to fuel cell vehicles, just like gas stations are to traditional fuel vehicles, and charging stations are to pure electric vehicles. They are an indispensable cornerstone to support the development of the fuel cell vehicle industry.
- the low hydrogen refueling capacity leads to a shortage of supply, some fuel cell vehicles have no hydrogen to add, the low hydrogen refueling pressure leads to insufficient on-board hydrogen storage, and the cruising range of hydrogen fuel cell vehicles is not competitive enough, which limits the commercialization of hydrogen fuel cell vehicles.
- the hydrogenation pressure and hydrogenation capacity of the current 35MPa skid-mounted hydrogenation unit will not be able to meet the development needs of large-scale 70MPa fuel cell vehicles in the future.
- pressurization and expansion are carried out to realize 35MPa/70MPa mixed pressurized filling.
- the present application provides a hybrid pressurized multi-stage fueling and hydrogenation device that is pressurized and expanded on the basis of the hydrogenation performance of the original 35MPa skid-mounted hydrogenation device, thereby realizing 35MPa/70MPa mixed fueling.
- the hybrid pressurized multi-stage filling and hydrogenation device includes the following components: a high-pressure unloading skid, a high-pressure compressor skid, a multi-stage filling high-pressure accumulator, a 70MPa high-pressure Hydrogenation machine, low-pressure unloading skid, low-pressure compressor skid, low-pressure accumulator, 35MPa low-pressure hydrogenation machine, the first four-way valve with four connection ports a port, b port, c port and d port, with e port , the second four-way valve of the four connection ports of port f, port g and port h, and the chiller for cooling the high pressure compressor skid and the low pressure compressor skid; each component unit is connected through the pipeline system, so as to achieve 35MPa/ 70MPa mixed filling, low-pressure hydrogen multi-stage mixed boosting, high-pressure accumulator and low-pressure accumulator serve as backup hydrogen sources for each other.
- connection method of each component unit through the pipeline system can be as follows:
- the outlet of the high-pressure unloading skid can be communicated with the inlet of the high-pressure compressor skid through the first hydrogen transmission pipeline, and the outlet of the high-pressure compressor skid can be communicated with the inlet of the multi-stage filling high-pressure accumulator through the second hydrogen transmission pipeline.
- the outlet of the filling high-pressure accumulator is connected with the inlet of the 70MPa high-pressure hydrogenation machine through the third hydrogen transmission pipeline to form a separate 70MPa skid-mounted hydrogenation device;
- the outlet of the low-pressure unloading skid can be communicated with the port a of the first four-way valve through the fourth hydrogen transfer pipeline, and the c port of the first four-way valve can be communicated with the inlet of the low-pressure compressor skid through the fifth hydrogen transfer pipeline.
- the outlet of the skid can be communicated with the e port of the second four-way valve through the sixth hydrogen transport pipeline, and the g port of the second four-way valve can be communicated with the inlet of the low-pressure accumulator through the seventh hydrogen transport pipeline, and the low-pressure storage
- the outlet of the energy device can be connected with the inlet of the 35MPa low-pressure hydrogenation machine through the eighth hydrogen transmission pipeline to form a separate 35MPa skid-mounted hydrogenation device;
- a first branch pipeline may be provided on the first hydrogen transmission pipeline, the first branch pipeline may be communicated with the d port of the first four-way valve, and the first branch pipeline may be connected to the inlet of the high-pressure compressor skid.
- a first valve can be provided on the hydrogen transfer pipeline; one end of the second branch pipeline can be communicated with the outlet of the high-pressure compressor skid, and the other end of the second branch pipeline can be communicated with the h port of the second four-way valve;
- a third branch pipeline may be provided on the third hydrogen transport pipeline, the third branch pipeline may be communicated with the seventh hydrogen transport pipeline, and a second valve may be provided on the third branch pipeline; one end of the fourth branch pipeline It can be communicated with the f port of the second four-way valve, and the other end of the fourth branch pipeline can be communicated with the eighth hydrogen transport pipeline.
- the separate 70MPa skid-mounted hydrogenation unit and the separate 35MPa skid-mounted hydrogenation unit may work individually or as a whole.
- the multi-stage filling high-pressure accumulator can be connected to the pipeline between the low-pressure accumulators, so that the multi-stage filling high-pressure accumulator and the low-pressure accumulator are mutually backup hydrogen sources.
- a fifth branch pipeline may be provided on the second hydrogen transport pipeline, and the fifth branch pipeline may be connected to the 70MPa high-pressure hydrogenation machine.
- the inlet is communicated, and a third valve may be provided on the fifth branch pipeline.
- a sixth branch pipeline may also be provided, and one end of the sixth branch pipeline may be communicated with the b port of the first four-way valve, The other end of the sixth branch pipeline can be communicated with the inlet of the 35MPa low-pressure hydrogenation machine.
- the multi-stage filling high-pressure accumulator can be composed of a sequence control panel, a number of high-pressure hydrogen storage cylinders arranged in parallel, and a number of intermediate
- the secondary filling structure composed of pressure hydrogen storage cylinders, the ratio of the number of high pressure hydrogen storage cylinders to the number of medium pressure hydrogen storage cylinders can be 1:2.
- the sequence control panel may be composed of a medium-pressure sequence control valve group and a high-pressure sequence control valve group; the specific details of the multi-stage filling high-pressure accumulator
- the structure can be as follows: the outlet of the high-pressure compressor skid can be respectively connected with the inlet of the medium-pressure sequence control valve group and the inlet of the high-pressure sequence control valve group through the second hydrogen transfer pipeline, and the outlet of the medium-pressure sequence control valve group can be provided with a In the first connection pipeline, the inlet and outlet of the six medium-pressure hydrogen storage cylinders can be respectively communicated with the outlet of the first connection pipeline through the corresponding first branch connection pipeline; the outlet of the high-pressure sequence control valve group can be provided with a second connection pipeline, the inlet and outlet of the three high-pressure hydrogen storage cylinders can be respectively communicated with the outlet of the second connecting pipeline through the corresponding second branch connecting pipeline;
- the connecting pipeline is composed of the fourth connecting pipeline with the seventh valve
- One end of the third connecting pipeline can be connected to the outlet of the medium pressure sequence control valve group, and the other end of the third connecting pipeline can be connected to the 70MPa high pressure hydrogenation machine.
- the inlet of the fourth connection pipeline can be communicated with the outlet of the high-pressure sequential control valve group, and the other end of the fourth connection pipeline can be communicated with the inlet of the 70MPa high-pressure hydrogenation machine.
- each medium-pressure hydrogen storage bottle may constitute a medium-pressure hydrogen storage bottle group
- each high-pressure hydrogen storage bottle may constitute a high-pressure hydrogen storage bottle group
- the high-pressure hydrogen storage bottle The hydrogen storage cylinder group can be arranged above the medium pressure hydrogen storage cylinder group.
- a first branch pipe with a fourth valve can be provided on the first connecting pipeline;
- the second branch pipe of the fifth valve can be provided on the first connecting pipeline;
- the beneficial effects of the present application include at least: 1 Boosting and capacity expansion without affecting the original 35MPa skid-mounted hydrogenation unit: increasing the hydrogenation pressure from 35MPa to 70MPa/35MPa mixed pressurization, and increasing the daily hydrogenation scale from no Over 500kg/d to 1000kg/d and above; and the pressurization and capacity expansion structure described in this scheme has the advantages of simple structure, convenient installation, small transformation workload and low cost; 2 a separate 70MPa skid-mounted hydrogenation unit, A separate 35MPa skid-mounted hydrogenation unit can work alone or as a whole: the pipeline connection between the high-pressure compressor skid and the low-pressure compressor skid can realize low-pressure hydrogen multi-stage mixed pressurization, effectively reducing the energy consumption of the compressor , improve the operating economy of the hydrogenation unit; the pipeline connection between the multi-stage filling high-pressure accumulator and the low-pressure accumulator can realize the multi-stage filling high-pressure accumulator and the low-pressure accumulator as backup hydrogen sources for each other, Therefore,
- FIG. 1 is a schematic structural diagram of a hybrid pressurized multi-stage fueling and hydrogenation device described in the present application.
- FIG. 2 is a partial enlarged structural schematic diagram of FIG. 1 .
- FIG. 3 is another partial enlarged structural schematic diagram of FIG. 1 .
- Figure 4 is a schematic diagram of the structure of the multi-stage filling high-pressure accumulator.
- FIG. 5 is a schematic three-dimensional structure diagram of a multi-stage filling high-pressure accumulator.
- Fig. 6 is the hydrogen flow chart of the primary pressurization of the mixed pressurized multi-stage injection hydrogenation device.
- Fig. 7 is a hydrogen flow chart of the secondary pressurization of the mixed pressurized multi-stage injection hydrogenation device.
- FIG. 8 is a flow chart of the hydrogen filling of the vehicle through the direct-flushing method of the hybrid pressurized multi-stage filling and hydrogenation device.
- FIG. 9 is a hydrogen flow diagram of a low-pressure accumulator in a mixed pressurized multi-stage filling and hydrogenation device as a backup hydrogen source for the multi-stage filling high-pressure accumulator.
- FIG. 10 is a hydrogen flow diagram of a hybrid pressurized multi-stage filling hydrogenation device where the multi-stage filling high-pressure accumulator is the backup hydrogen source of the low-pressure accumulator.
- a hybrid pressurized multi-stage fueling and hydrogenation device described in this embodiment may include the following components: high pressure unloading skid 1, high pressure compressor skid 2, multiple Stage filling high pressure accumulator 3, 70MPa high pressure hydrogenation machine 4, low pressure unloading skid 5, low pressure compressor skid 6, low pressure accumulator 7, 35MPa low pressure hydrogenation machine 8, with a port, b port, c port, The first four-way valve 9 with four connection ports of port d, the second four-way valve 10 with four connection ports of port e, port f, port g, and port h, as well as the high-pressure compressor skid 2 and the low-pressure compressor skid 6.
- the chiller 11 for cooling.
- the outlet of the high-pressure unloading skid 1 is communicated with the inlet of the high-pressure compressor skid 2 through the first hydrogen transmission pipeline 12, and the outlet of the high-pressure compressor skid 2 is connected with the multi-stage filling high-pressure accumulator 3 through the second hydrogen transmission pipeline 13.
- the inlet is connected, and the outlet of the multi-stage filling high-pressure accumulator 3 is connected with the inlet of the 70MPa high-pressure hydrogenation machine 4 through the third hydrogen transmission pipeline 14 to form a separate 70MPa skid-mounted hydrogenation device.
- the outlet of the low-pressure unloading skid 5 is communicated with the port a of the first four-way valve 9 through the fourth hydrogen transfer pipeline 15, and the c port of the first four-way valve 9 is connected to the low-pressure compressor skid 6 through the fifth hydrogen transfer pipeline 16.
- the inlet is connected, the outlet of the low-pressure compressor skid 6 is communicated with the e port of the second four-way valve 10 through the sixth hydrogen transfer pipeline 17, and the g port of the second four-way valve 10 is connected to the low-pressure accumulator through the seventh hydrogen transfer pipeline 18.
- the inlet of the energy accumulator 7 is connected, and the outlet of the low pressure accumulator 7 is communicated with the inlet of the 35MPa low pressure hydrogenation machine 8 through the eighth hydrogen transport pipeline 19 to form a separate 35MPa skid-mounted hydrogenation device.
- a first branch pipeline 20 is provided on the first hydrogen transfer pipeline 12 , the first branch pipeline 20 is communicated with the d port of the first four-way valve 9 , and the first branch pipeline 20 is connected with the high pressure compressor skid 2 .
- a first valve 26 is provided on the first hydrogen transfer pipeline 20 between the inlets.
- One end of the second branch pipe 21 is communicated with the outlet of the high pressure compressor skid 2 , and the other end of the second branch pipe 21 is communicated with the h port of the second four-way valve 10 .
- a third branch pipeline 22 is arranged on the third hydrogen transmission pipeline 14 , the third branch pipeline 22 communicates with the seventh hydrogen transmission pipeline 18 , and a second valve 27 is arranged on the third branch pipeline 14 .
- One end of the fourth branch pipeline 23 is communicated with the port f of the second four-way valve 10 , and the other end of the fourth branch pipeline 23 is communicated with the eighth hydrogen transfer pipeline 19 .
- a fifth branch pipeline 24 is arranged on the second hydrogen transmission pipeline 13 , the fifth branch pipeline 24 is communicated with the inlet of the 70MPa high pressure hydrogenation machine 4 , and a third valve 28 is arranged on the fifth branch pipeline 24 .
- One end of the sixth branch pipe 25 is communicated with the b port of the first four-way valve 9 , and the other end of the sixth branch pipe 25 is communicated with the inlet of the 35MPa low-pressure hydrogenation machine 8 .
- the separate 70MPa skid-mounted hydrogenation unit and the separate 35MPa skid-mounted hydrogenation unit can work individually or as a whole: the pipeline connection between the high-pressure compressor skid 2 and the low-pressure compressor skid 6 can realize low-pressure hydrogen It can effectively reduce the energy consumption of the compressor and improve the operating economy of the hydrogenation unit.
- the specific hydrogen process is as follows:
- the hydrogen in the 20MPa tube bundle trailer 100 docked with the inlet of the low pressure unloading skid 5 passes through the low pressure unloading skid 5, the fourth hydrogen transport pipeline 15, the first four-way valve 9, and the first branch pipeline 20 It enters the first hydrogen transmission pipeline 12, is collected with the hydrogen entering the first hydrogen transmission pipeline 12 through the high-pressure unloading skid 1, and is compressed to 87.5 ⁇ 2.5MPa by the high-pressure compressor skid 2 at one time, and then passes through the third hydrogen transmission pipeline.
- the circuit 14 is stored in the multi-stage filling high-pressure accumulator 3 for use.
- the four-way valve 9 enters the fifth hydrogen transfer pipeline 16; the hydrogen in the 20MPa tube bundle trailer 100 docked with the inlet of the high-pressure unloading skid 1 passes through the high-pressure unloading skid 1, the first hydrogen transfer pipeline 12, and the first branch pipeline 20 , the first four-way valve 9 enters the fifth hydrogen transport pipeline 16, and enters the low-pressure compressor skid 6 after being collected with the hydrogen entering the fifth hydrogen transport pipeline 16 through the low-pressure unloading skid 5, and passes through the low-pressure compressor skid 6.
- the primary pressurization After the primary pressurization reaches 42.5 ⁇ 2.5MPa, it enters the high-pressure compressor skid 2 through the second four-way valve 10 , and is pressurized to 87.5 ⁇ 2.5MPa through the high-pressure compressor skid 2 for a second time, and then is stored through the second hydrogen transmission pipeline 13 Standby in the multi-stage filling high-pressure accumulator 3.
- the pressure difference between the tube bundle trailer and the on-board hydrogen storage cylinder can be used to refill the vehicle by direct flushing, thereby maximizing the utilization of hydrogen in the tube bundle trailer to improve the operating economy of hydrogen refueling stations.
- the direct flushing method is specifically shown in FIG. 8 , the three connecting ports of the a port, the port d port and the port b port of the first four-way valve 9 are connected.
- the hydrogen engine 8 is filled externally.
- the pipeline connection between the high-pressure accumulator and the low-pressure accumulator can realize the high-pressure accumulator and the low-pressure accumulator as backup hydrogen sources for each other, so that the hydrogen direction can be adjusted according to the actual situation, and the utilization efficiency and flexibility of hydrogen can be effectively improved , to improve the hydrogenation flexibility and reliability of the entire mixed pressurized multistage fueling and hydrogenation unit.
- the specific hydrogen process can be as follows:
- the hydrogen in the low-pressure accumulator 7 can be compressed twice by the high-pressure compressor skid 2 and then transported to the The multi-stage filling high-pressure accumulator 3 is buffered or sent to the 70MPa high-pressure hydrogenation machine 4 for external filling. Specifically, as shown in FIG.
- valve 10 and the second branch pipeline 21 enter the high-pressure compressor skid 2, and are compressed to 87.5 ⁇ 2.5MPa once through the high-pressure compressor skid 2, and then stored in the multi-stage high-pressure accumulator through the second hydrogen transfer pipeline 13 3 for use. Or open the third valve 28, and the hydrogen compressed to 87.5 ⁇ 2.5MPa by the high-pressure compressor skid 2 is directly transported to the 70MPa high-pressure hydrogenation machine 4 through the fifth branch pipeline 24 for external filling.
- the hybrid pressurized multi-stage filling and hydrogenation device of the above structure can also use the pressure difference between the multi-stage filling high-pressure accumulator 3 and the low-pressure accumulator 7 to supplement hydrogen for the low-pressure accumulator 7, and the multi-stage filling
- the high-pressure accumulator 3 is used as a substitute hydrogen source for the low-pressure accumulator 7, thereby improving the hydrogenation flexibility and reliability of the entire hybrid pressurized multistage filling and hydrogenation device.
- the second valve 27 is opened, and the hydrogen in the multi-stage filling high-pressure accumulator 3 is stored in the third hydrogen transmission pipeline 14 , the third branch pipeline 22 and the seventh hydrogen transmission pipeline 18 . in the low pressure accumulator 7.
- the hydrogen in the low-pressure accumulator 7 is transported to the 35MPa low-pressure hydrogenation machine 8 through the eighth hydrogen transport pipeline 19 for external filling.
- the multi-stage filling high-pressure accumulator 3 is a two-stage filling structure composed of a sequence control panel, a number of high-pressure hydrogen storage cylinders 44 arranged in parallel, and a number of medium-pressure hydrogen storage cylinders 42 arranged in parallel.
- the ratio of the number of 44 to the number of medium-pressure hydrogen storage bottles 42 is 1:2.
- each medium-pressure hydrogen storage bottle 42 constitutes a medium-pressure hydrogen storage bottle group
- each high-pressure hydrogen storage bottle 44 constitutes a high-pressure hydrogen storage bottle group
- the high-pressure hydrogen storage bottle group is arranged in the medium-pressure hydrogen storage bottle Above the bottle group.
- the sequence control panel can be composed of a medium pressure sequence control valve group 41 and a high pressure sequence control valve group 43; the specific structure of the multi-stage filling high pressure accumulator 3 is: the outlet of the high pressure compressor skid 2 passes through the first
- the second hydrogen transfer pipeline 13 is respectively communicated with the inlet of the medium pressure sequential control valve group 41 and the inlet of the high pressure sequential control valve group 43.
- the outlet of the medium pressure sequential control valve group 41 is provided with a first connecting pipeline 34.
- the inlet and outlet of the pressurized hydrogen storage bottle 42 are respectively communicated with the outlet of the first connection pipe 34 through the corresponding first branch connection pipes 35 .
- a second connection pipeline 36 is provided at the outlet of the high-pressure sequential control valve group 43 , and the inlets and outlets of the three high-pressure hydrogen storage cylinders 44 are respectively communicated with the outlet of the second connection pipeline 36 through the corresponding second branch connection pipelines 37 .
- the third hydrogen transfer pipeline 14 is composed of a third connecting pipeline 38 with a sixth valve 31 and a fourth connecting pipeline 39 with a seventh valve 32.
- One end of the third connecting pipeline 38 is in sequence with the medium pressure.
- the outlet of the control valve group 41 is communicated with, and the other end of the third connecting pipeline 38 is communicated with the inlet of the 70MPa high-pressure hydrogenation machine 4 .
- One end of the fourth connecting pipeline 39 is communicated with the outlet of the high pressure sequential control valve group 43 , and the other end of the fourth connecting pipeline 39 is communicated with the inlet of the 70MPa high pressure hydrogenation machine 39 .
- a first branch pipe with a fourth valve 29 may be provided on the first connecting pipe 34 ; a second branch pipe with a fifth valve 30 may be provided on the second connecting pipe 36 .
- the rated working pressure of each high-pressure hydrogen storage bottle 44 and each medium-pressure hydrogen storage bottle 42 is 90MPa, and the initial hydrogen filling pressure is 87.5 ⁇ 2.5MPa.
- the multi-stage filling high-pressure accumulator 3 contains a total of 9 hydrogen storage cylinders, which are divided into two groups of medium pressure and high pressure according to the control logic of the sequence control panel and are connected in parallel. Three high-pressure hydrogen storage cylinders are connected in parallel to form a high-pressure hydrogen storage group.
- the initial pressure of all 9 hydrogen storage cylinders is 87.5 ⁇ 2.5MPa, and the filling method can be as follows:
- Multi-stage filling of high-pressure accumulator 3 for air supply use high-pressure compressor skid 2 to pressurize the low-pressure hydrogen output from the tube bundle trailer or low-pressure accumulator 7 and then store it in the multi-stage filling high-pressure accumulator 3.
- high-pressure compressor skid 2 to pressurize the low-pressure hydrogen output from the tube bundle trailer or low-pressure accumulator 7 and then store it in the multi-stage filling high-pressure accumulator 3.
- the first-stage gas filling of the medium-pressure hydrogen storage cylinder group After the multi-stage filling of the high-pressure accumulator 3 is completed, when the 70MPa high-pressure hydrogen filling is performed for the first time, the medium-pressure sequence control valve is activated through the hydrogen refueling station control system. Group 41 takes gas from the medium-pressure hydrogen storage cylinder group to hydrogenate the hydrogen fuel cell vehicle to 70MPa. After the first filling, the hydrogen pressure of the medium-pressure hydrogen storage cylinder group will be lower than the hydrogen pressure in the high-pressure hydrogen storage cylinder group.
- the medium pressure sequence control valve group 41 is still activated through the hydrogen refueling station control system to take gas from the medium pressure hydrogen storage cylinder group and fill it until the pressure difference between the medium pressure hydrogen storage cylinder group and 70MPa is ⁇ 2MPa, and it cannot pass the first stage.
- the gas extraction and filling can meet the hydrogenation requirement of 70MPa.
- Multi-stage gas intake and filling of the medium-pressure hydrogen storage cylinder group and the high-pressure hydrogen storage cylinder group when the pressure difference between the medium-pressure hydrogen storage cylinder group and 70MPa is less than or equal to 2MPa, the medium-pressure sequence is first started through the hydrogen refueling station control system when filling again.
- the control valve group 41 takes gas from the medium-pressure hydrogen storage cylinder group and fills it until the pressure difference between the medium-pressure hydrogen storage cylinder group and the vehicle-mounted hydrogen storage cylinder is less than or equal to 2MPa, close the medium-pressure sequence control valve group 41, and start the high-pressure sequence control valve group
- the high-pressure hydrogen storage cylinder group is filled with gas until the pressure of the vehicle-mounted hydrogen storage cylinder reaches 70MPa.
- the pressure difference between the medium-pressure hydrogen storage cylinder group and the high-pressure hydrogen storage cylinder group and 70MPa is ⁇ 2MPa, the multi-stage filling of the high-pressure accumulator 3 is performed again.
- This scheme realizes multi-stage gas intake and filling by setting up medium-pressure hydrogen storage cylinder groups and high-pressure hydrogen storage cylinder groups, thereby maximizing the utilization rate of hydrogen in the medium-pressure hydrogen storage cylinder group, effectively reducing the cost of hydrogen use, and improving the economy of hydrogen refueling stations. sex.
- the beneficial effects of the present application include at least: 1 Boosting and capacity expansion without affecting the original 35MPa skid-mounted hydrogenation unit: increasing the hydrogenation pressure from 35MPa to 70MPa/35MPa mixed pressurization, and increasing the daily hydrogenation scale from no Over 500kg/d to 1000kg/d and above; and the pressurization and capacity expansion structure described in this scheme has the advantages of simple structure, convenient installation, small transformation workload and low cost; 2 a separate 70MPa skid-mounted hydrogenation unit, A separate 35MPa skid-mounted hydrogenation unit can work alone or as a whole: the pipeline connection between the high-pressure compressor skid 2 and the low-pressure compressor skid 6 can realize low-pressure hydrogen multi-stage mixed pressurization, effectively reducing the compressor's energy consumption and improve the operating economy of the hydrogenation unit; the pipeline connection between the multi-stage filling high-pressure accumulator 3 and the low-pressure accumulator 7 can realize the multi-stage filling of the high-pressure accumulator 3 and the low-pressure accumulator 7 They serve as
- the application provides a hybrid pressurized multi-stage filling and hydrogenation device, which includes the following components: a high-pressure unloading skid, a high-pressure compressor skid, a multi-stage filling high-pressure accumulator, a 70MPa high-pressure hydrogenation machine, a low-pressure unloading skid, Low pressure compressor skid, low pressure accumulator, 35MPa low pressure hydrogenation machine, first four-way valve with four connection ports a, b, c, and d, with e, f, g, h The second four-way valve with four connection ports, and the chiller for cooling the high-pressure compressor skid and the low-pressure compressor skid; each component unit is connected through the pipeline system, so as to achieve 35MPa/70MPa mixed filling, low-pressure hydrogen
- the stage-mixed booster, high-pressure accumulator and low-pressure accumulator serve as backup hydrogen sources for each other.
- pressurization and expansion increase the hydrogenation pressure from 35MPa to 70MPa/35MPa mixed pressurization, and increase the daily hydrogenation scale from no more than 500kg/d to 1000kg/d and above; and the pressurization and capacity expansion structure described in this scheme has the advantages of simple structure, convenient installation, small transformation workload, and low cost.
- a hybrid pressurized multi-stage charging hydrotreater of the present application is reproducible and can be used in a variety of industrial applications.
- a hybrid pressurized multi-stage fueling and hydrogenation device of the present application can be used in application fields that require hydrogenation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
本申请公开了一种混合增压多级加注加氢装置,包括以下组成单元:高压卸车撬、高压压缩机撬、多级加注高压蓄能器、70MPa高压加氢机、低压卸车撬、低压压缩机撬、低压蓄能器、35MPa低压加氢机,带a口、b口、c口、d口四个连接口的第一四通阀、带e口、f口、g口、h口四个连接口的第二四通阀、以及为高压压缩机撬和低压压缩机撬进行降温的冷水机组;各组成单元通过管路系统连接,从而实现35MPa/70MPa混合加注、低压氢气多级混合增压、高压蓄能器与低压蓄能器互为备用氢源目的。在不影响原35MPa撬装式加氢装置的基础上进行增压扩容:将加氢压力由35MPa提升至70MPa/35MPa混合增压,将日加氢规模由不超过500kg/d提升至1000kg/d及以上;且本方案所述的增压扩容结构具有结构简单,安装方便,改造工作量小、成本低等优点。
Description
相关申请的交叉引用
本申请要求于2020年12月25日提交中国国家知识产权局的申请号为202011558930.0、名称为“一种混合增压多级加注加氢装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及加氢装置,尤其涉及一种混合增压多级加注加氢装置。
随着全球温室效应问题的日益突出以及各国对氢能源开发利用的鼓励,越来越多的氢燃料电池汽车投入市场。加氢装置之于燃料电池汽车,犹如加油站之于传统燃油汽车、充电站之于纯电动汽车,是支撑燃料电池汽车产业发展必不可少的基石。
目前我国氢能与燃料电池市场尚处于市场导入阶段,受制于我国加氢装置建站政策及土地供应情况等限制,35MPa撬装式加氢装置以其工厂模块化集成、占地小、建站快的优势迅速占领市场。据统计截止2020年1月,我国已建成加氢装置61座,其中95%以上的加氢装置的加氢压力为35MPa,65%以上的加氢装置的日加氢容量为不超过500kg/d。加氢容量偏小导致供不应求,部分燃料电池车无氢可加,加氢压力偏低导致车载储氢量不足,氢燃料电池车续航里程竞争力不足,限制了氢燃料电池汽车的商业化推广。随着70MPa塑料内胆车载储氢气瓶研制技术的发展,目前的35MPa撬装式加氢装置的加氢压力和加氢容量将无法满足未来大规模70MPa燃料电池汽车的发展需求,因而亟需在不影响原35MPa撬装式加氢装置加氢性能的基础上进行增压扩容,实现35MPa/70MPa混合增压加注。
发明内容
本申请提供了一种在原35MPa撬装式加氢装置加氢性能的基础上进行增压扩容、从而实现35MPa/70MPa混合加注的混合增压多级加注加氢装置。
在本申请的一些实施方式中,所述的一种混合增压多级加注加氢装置,包括以下组成单元:高压卸车撬、高压压缩机撬、多级加注高压蓄能器、70MPa高压加氢机、低压卸车撬、低压压缩机撬、低压蓄能器、35MPa低压加氢机,带a口、b口、c口、d口四个连接口的第一四通阀、带e口、f口、g口、h口四个连接口的第二四通阀、以及为高压压缩机撬和低压压缩机撬进行降温的冷水机组;各组成单元通过管路系统连接,从而实现35MPa/70MPa混合加注、低压氢气多级混合增压、高压蓄能器与低压蓄能器互为备用氢源目的。
各组成单元通过管路系统连接的具体连接方式可以如下:
高压卸车撬的出口可以通过第一输氢管路与高压压缩机撬的进口连通,高压压缩机撬的出口通过第二输氢管路与多级加注高压蓄能器的进口连通,多级加注高压蓄能器的出口通过第三输氢管路与70MPa高压加氢机的进口连通,构成一个单独的70MPa撬装式加氢装置;
低压卸车撬的出口可以通过第四输氢管路与第一四通阀的a口连通,第一四通阀的c口通过第五输氢管路与低压压缩机撬的进口连通,低压压缩机撬的出口可以通过第六输氢管路与第二四通阀的e口连通,第二四通阀的g口可以通过第七输氢管路与低压蓄能器的进口连通,低压蓄能器的出口可以通过第八输氢管路与35MPa低压加氢机的进口连通,构成一个单独的35MPa撬装式加氢装置;
在第一输氢管路上可以设置有第一分支管路,第一分支管路可以与第一四通阀的d口连通,在第一分支管路与高压压缩机撬的进口之间的第一输氢管路上可以设置有第一阀门;第二分支管路的一端可以与高压压缩机撬的出口连通,第二分支管路的另一端可以与第二四通阀的h口连通;在第三输氢管路上可以设置有第三分支管路,第三分支管路可以与第七输氢管路连通,在第三分支管路上可以设置有第二阀门;第四分支管路的一端可以与第二四通阀的f口连通,第四分支管路的另一端可以与第八输氢管路连通。
可选地,所述单独的70MPa撬装式加氢装置和所述单独的35MPa撬装式加氢装置可以单独工作或者整体工作。
可选地,多级加注高压蓄能器可以与低压蓄能器之间的管路连接,使得多级加注高压蓄能器与低压蓄能器互为备用氢源。
可选地,前述的一种混合增压多级加注加氢装置,其中,在第二输氢管路上可以设置有第五分支管路,第五分支管路可以与70MPa高压加氢机的进口连通,在第五分支管路上可以设置有第三阀门。
可选地,前述的一种混合增压多级加注加氢装置,其中,还可以设置有第六分支管路,第六分支管路的一端可以与第一四通阀的b口连通,第六分支管路的另一端可以与35MPa低压加氢机的进口连通。
可选地,前述的一种混合增压多级加注加氢装置,其中,多级加注高压蓄能器可以为由顺序控制盘、若干并联设置的高压储氢瓶和若干并联设置的中压储氢瓶构成的二级加注结构,高压储氢瓶数量与中压储氢瓶数量比可以为1:2。
可选地,前述的一种混合增压多级加注加氢装置,其中,顺序控制盘可以由中压顺序控制阀组和高压顺序控制阀组构成;多级加注高压蓄能器的具体结构可以为:高压压缩机撬的出口可以通过第二输氢管路分别与中压顺序控制阀组的进口、高压顺序控制阀组的进口连通,在中压顺序控制阀组的出口可以设置有第一连接管路,六个中压储氢瓶的进出口 可以分别通过对应第一分支连接管路与第一连接管路的出口连通;在高压顺序控制阀组的出口可以设置有第二连接管路,三个高压储氢瓶的进出口可以分别通过对应第二分支连接管路与第二连接管路的出口连通;所述的第三输氢管路可以由带第六阀门的第三连接管路和带第七阀门的第四连接管路构成,第三连接管路的一端可以与中压顺序控制阀组的出口连通,第三连接管路的另一端可以与70MPa高压加氢机的进口连通,第四连接管路的一端可以与高压顺序控制阀组的出口连通,第四连接管路的另一端可以与70MPa高压加氢机的进口连通。
可选地,前述的一种混合增压多级加注加氢装置,其中,各中压储氢瓶可以构成中压储氢瓶组,各高压储氢瓶可以构成高压储氢瓶组,高压储氢瓶组可以布置于中压储氢瓶组上方。
可选地,前述的一种混合增压多级加注加氢装置,其中,在第一连接管路上可以设置有带第四阀门的第一分支管道;在第二连接管路上可以设置有带第五阀门的第二分支管道。
本申请的有益效果至少包括:①在不影响原35MPa撬装式加氢装置的基础上进行增压扩容:将加氢压力由35MPa提升至70MPa/35MPa混合增压,将日加氢规模由不超过500kg/d提升至1000kg/d及以上;且本方案所述的增压扩容结构具有结构简单,安装方便,改造工作量小、成本低等优点;②单独的70MPa撬装式加氢装置、单独的35MPa撬装式加氢装置可以单独工作,也可以整体工作:高压压缩机撬与低压压缩机撬之间的管路连接能实现低压氢气多级混合增压,有效降低压缩机的能耗,提高加氢装置的运营经济性;多级加注高压蓄能器与低压蓄能器之间的管路连接能实现多级加注高压蓄能器与低压蓄能器互为备用氢源,从而可根据实际情况调整氢气去向,有效提高氢气的利用效率和灵活性,提高整个混合增压多级加注加氢装置的加氢柔性和可靠性;③多级加注高压蓄能器采用直冲与二级加注,提高了整个混合增压多级加注加氢装置的取气率,有效降低氢气使用成本,提高加氢站经营利润。
图1是本申请所述的一种混合增压多级加注加氢装置的结构原理图。
图2是图1的局部放大结构原理图。
图3是图1的另一部分局部放大结构原理图。
图4是多级加注高压蓄能器的结构原理图。
图5是多级加注高压蓄能器的立体结构示意图。
图6是混合增压多级加注加氢装置一次增压的氢气流程图。
图7是混合增压多级加注加氢装置二次增压的氢气流程图。
图8是混合增压多级加注加氢装置通过直冲方式为车辆加注的氢气流程图。
图9是混合增压多级加注加氢装置中低压蓄能器为多级加注高压蓄能器的备用氢源的的氢气流程图。
图10是混合增压多级加注加氢装置中多级加注高压蓄能器为低压蓄能器的备用氢源的的氢气流程图。
下面结合附图及优选实施例对本申请所述的技术方案作进一步详细的说明。
下面描述根据本申请的一些实施方式。如图1、图2和图3所示,本实施例中所述的一种混合增压多级加注加氢装置,可以包括以下组成单元:高压卸车撬1、高压压缩机撬2、多级加注高压蓄能器3、70MPa高压加氢机4、低压卸车撬5、低压压缩机撬6、低压蓄能器7、35MPa低压加氢机8,带a口、b口、c口、d口四个连接口的第一四通阀9、带e口、f口、g口、h口四个连接口的第二四通阀10、以及为高压压缩机撬2和低压压缩机撬6进行降温的冷水机组11。
高压卸车撬1的出口通过第一输氢管路12与高压压缩机撬2的进口连通,高压压缩机撬2的出口通过第二输氢管路13与多级加注高压蓄能器3的进口连通,多级加注高压蓄能器3的出口通过第三输氢管路14与70MPa高压加氢机4的进口连通,构成一个单独的70MPa撬装式加氢装置。
低压卸车撬5的出口通过第四输氢管路15与第一四通阀9的a口连通,第一四通阀9的c口通过第五输氢管路16与低压压缩机撬6的进口连通,低压压缩机撬6的出口通过第六输氢管路17与第二四通阀10的e口连通,第二四通阀10的g口通过第七输氢管路18与低压蓄能器7的进口连通,低压蓄能器7的出口通过第八输氢管路19与35MPa低压加氢机8的进口连通,构成一个单独的35MPa撬装式加氢装置。
在第一输氢管路12上设置有第一分支管路20,第一分支管路20与第一四通阀9的d口连通,在第一分支管路20与高压压缩机撬2的进口之间的第一输氢管路20上设置有第一阀门26。
第二分支管路21的一端与高压压缩机撬2的出口连通,第二分支管路21的另一端与第二四通阀10的h口连通。
在第三输氢管路14上设置有第三分支管路22,第三分支管路22与第七输氢管路18连通,在第三分支管路14上设置有第二阀门27。
第四分支管路23的一端与第二四通阀10的f口连通,第四分支管路23的另一端与第八输氢管路19连通。
在第二输氢管路13上设置有第五分支管路24,第五分支管路24与70MPa高压加氢机4的进口连通,在第五分支管路24上设置有第三阀门28。
第六分支管路25的一端与第一四通阀9的b口连通,第六分支管路25的另一端与35MPa低压加氢机8的进口连通。
单独的70MPa撬装式加氢装置、单独的35MPa撬装式加氢装置可以单独工作,也可以整体工作:高压压缩机撬2与低压压缩机撬6之间的管路连接能实现低压氢气多级混合增压,有效降低压缩机的能耗,提高加氢装置的运营经济性。具体氢气流程如下:
以20MPa管束拖车100来氢气为气源时,当管束拖车内氢气压力>高压压缩机撬2的进气压力时,如图6所示,使第一四通阀9的a口与d口连通、第一四通阀9的b口和c口均不连通,打开第一阀门26,此时,与高压卸车撬1的进口对接的20MPa管束拖车100中的氢气经高压卸车撬1进入第一输氢管路12中;与低压卸车撬5的进口对接的20MPa管束拖车100中的氢气经低压卸车撬5、第四输氢管路15、第一四通阀9、第一分支管路20进入第一输氢管路12中,与通过高压卸车撬1进入第一输氢管路12中的氢气汇集后通过高压压缩机撬2一次压缩至87.5±2.5MPa,然后通过第三输氢管路14储存于多级加注高压蓄能器3中待用。
当低压压缩机撬6的进气压力<管束拖车内氢气压力≤高压压缩机撬2的进气压力时,如图7所示,使第一四通阀9的a口、d口和c口三个连接口连通,第二四通阀10的e口和h口连通,此时,与低压卸车撬5的进口对接的20MPa管束拖车100中的氢气经第四输氢管路15、第一四通阀9进入第五输氢管路16中;与高压卸车撬1的进口对接的20MPa管束拖车100中的氢气经高压卸车撬1、第一输氢管路12、第一分支管路20、第一四通阀9进入第五输氢管路16中,与通过低压卸车撬5进入第五输氢管路16中的氢气汇集后进入低压压缩机撬6中,通过低压压缩机撬6一次增压至42.5±2.5MPa后通过第二四通阀10进入高压压缩机撬2中,通过高压压缩机撬2二次增压至87.5±2.5MPa,然后通过第二输氢管路13储存于多级加注高压蓄能器3中待用。
当管束拖车内氢气压力≤低压压缩机撬6的进气压力时,可利用管束拖车与车载储氢气瓶内的压差,通过直冲方式为车辆加注,从而最大限度提升管束拖车内氢气利用率,提升加氢站运营经济性。直冲方式具体如图8所示,使第一四通阀9的a口、d口和b口三个连接口连通,此时,低压卸车撬5的进口对接的20MPa管束拖车100中的氢气经第四输氢管路15、第一四通阀9进入第六分支管路25中;与高压卸车撬1的进口对接的20MPa管束拖车100中的氢气经高压卸车撬1、第一输氢管路12、第一分支管路20、第一四通阀9进入第六分支管路25中,与通过低压卸车撬5进入第六分支管路25中的氢气汇集后直接输往35MPa低压加氢机8对外加注。
高压蓄能器与低压蓄能器之间的管路连接能实现高压蓄能器与低压蓄能器互为备用氢源,从而可根据实际情况调整氢气去向,有效提高氢气的利用效率和灵活性,提高整个混 合增压多级加注加氢装置的加氢柔性和可靠性。具体氢气流程可以如下:
当多级加注高压蓄能器3储氢量不满足对外加注,且无管束拖车作为氢源时,可以将低压蓄能器7内的氢气经高压压缩机撬2二次压缩后输往多级加注高压蓄能器3中缓存或输往70MPa高压加氢机4对外加注。具体如图9所示,使第二四通阀10的f口和h口连通,低压蓄能器7内的氢气经第八输氢管路19、第四分支管路23、第二四通阀10、第二分支管路21进入高压压缩机撬2中,通过高压压缩机撬2一次压缩至87.5±2.5MPa,然后通过第二输氢管路13储存于多级加注高压蓄能器3中待用。或者打开第三阀门28,通过高压压缩机撬2一次压缩至87.5±2.5MPa的氢气直接通过第五分支管路24输往70MPa高压加氢机4对外加注。
上述结构的混合增压多级加注加氢装置还可利用多级加注高压蓄能器3与低压蓄能器7之间的压差为低压蓄能器7补充氢气,将多级加注高压蓄能器3作为低压蓄能器7的替补氢源,从而提高整个混合增压多级加注加氢装置加氢柔性和可靠性。具体如图10所示,打开第二阀门27,多级加注高压蓄能器3中的氢气经第三输氢管路14、第三分支管路22、第七输氢管路18储存于低压蓄能器7中。低压蓄能器7中的氢气经第八输氢管路19输往35MPa低压加氢机8对外加注。
下面描述根据本申请的另一些实施方式。本实施例是在根据本申请的前述实施方式的基础上对多级加注高压蓄能器3的结构具体展开描述。所述的多级加注高压蓄能器3为由顺序控制盘、若干并联设置的高压储氢瓶44和若干并联设置的中压储氢瓶42构成的二级加注结构,高压储氢瓶44的数量与中压储氢瓶42的数量比为1:2。
如图5所示,本实施例中,各中压储氢瓶42构成中压储氢瓶组,各高压储氢瓶44构成高压储氢瓶组,高压储氢瓶组布置于中压储氢瓶组上方。
如图4所示,顺序控制盘可以由中压顺序控制阀组41和高压顺序控制阀组43构成;多级加注高压蓄能器3的具体结构为:高压压缩机撬2的出口通过第二输氢管路13分别与中压顺序控制阀组41的进口、高压顺序控制阀组43的进口连通,在中压顺序控制阀组41的出口设置有第一连接管路34,六个中压储氢瓶42的进出口分别通过对应第一分支连接管路35与第一连接管路34的出口连通。在高压顺序控制阀组43的出口设置有第二连接管路36,三个高压储氢瓶44的进出口分别通过对应第二分支连接管路37与第二连接管路36的出口连通。所述的第三输氢管路14由带第六阀门31的第三连接管路38和带第七阀门32的第四连接管路39构成,第三连接管路38的一端与中压顺序控制阀组41的出口连通,第三连接管路38的另一端与70MPa高压加氢机4的进口连通。第四连接管路39的一端与高压顺序控制阀组43的出口连通,第四连接管路39的另一端与70MPa高压加氢机39的进口连通。
在第一连接管路34上可以设置有带第四阀门29的第一分支管道;在第二连接管路36上设置有带第五阀门30的第二分支管道。
各高压储氢瓶44、各中压储氢瓶42的额定工作压力为90MPa,初始充装氢气压力为87.5±2.5MPa。为提升储氢瓶氢气取气率,采用二级加注工艺。多级加注高压蓄能器3共包含9个储氢瓶,根据顺序控制盘的控制逻辑分成中压和高压两组并联连接,其中6个中压储氢瓶并联构成中压储氢组,3个高压储氢瓶并联构成高压储氢组。所有9个储氢瓶初始压力均为87.5±2.5MPa,加注方法可以为:
①多级加注高压蓄能器3补气:利用高压压缩机撬2将管束拖车或低压蓄能器7输出的低压氢气增压后缓存至多级加注高压蓄能器3中,当多级加注高压蓄能器3的各中压储氢瓶和各高压储氢瓶的压力均达到87.5±2.5MPa时停止补气。
②中压储氢瓶组一级取气加注:多级加注高压蓄能器3完成补气后,当首次进行70MPa高压氢气加注时,通过加氢站控制系统启动中压顺序控制阀组41从中压储氢瓶组取气给氢燃料电池车加氢至70MPa。完成首次加注后的中压储氢瓶组氢气压力将小于高压储氢瓶组内氢气压力。后续进行加注时仍先通过加氢站控制系统启动中压顺序控制阀组41从中压储氢瓶组取气加注,直至中压储氢瓶组与70MPa压差≤2MPa,无法通过一级取气加注实现70MPa加氢需求。
③中压储氢瓶组与高压储氢瓶组多级取气加注:当中压储氢瓶组与70MPa压差≤2MPa时,再次进行加注时先通过加氢站控制系统启动中压顺序控制阀组41从中压储氢瓶组取气加注,直至中压储氢瓶组与车载储氢气瓶的压差≤2MPa时关闭中压顺序控制阀组41,启动高压顺序控制阀组43从高压储氢瓶组取气加注,直至车载储氢气瓶压力达到70MPa。当中压储氢瓶组和高压储氢瓶组均与70MPa压差均≤2MPa时,再次进行多级加注高压蓄能器3补气。
本方案通过设置中压储氢瓶组和高压储氢瓶组实现多级取气加注,从而最大限度提升中压储氢瓶组内氢气利用率,有效降低氢气使用成本,提高加氢站经济性。
以上所述仅是本申请的较佳实施例,并非是对本申请作任何其他形式的限制,而依据本申请的技术实质所作的任何修改或等同变化,仍属于本申请要求保护的范围。
本申请的有益效果至少包括:①在不影响原35MPa撬装式加氢装置的基础上进行增压扩容:将加氢压力由35MPa提升至70MPa/35MPa混合增压,将日加氢规模由不超过500kg/d提升至1000kg/d及以上;且本方案所述的增压扩容结构具有结构简单,安装方便,改造工作量小、成本低等优点;②单独的70MPa撬装式加氢装置、单独的35MPa撬装式加氢装置可以单独工作,也可以整体工作:高压压缩机撬2与低压压缩机撬6之间的管路连接能实现低压氢气多级混合增压,有效降低压缩机的能耗,提高加氢装置的运营经济性;多级 加注高压蓄能器3与低压蓄能器7之间的管路连接能实现多级加注高压蓄能器3与低压蓄能器7互为备用氢源,从而可根据实际情况调整氢气去向,有效提高氢气的利用效率和灵活性,提高整个混合增压多级加注加氢装置的加氢柔性和可靠性;③多级加注高压蓄能器3采用直冲与二级加注,提高了整个混合增压多级加注加氢装置的取气率,有效降低氢气使用成本,提高加氢站经营利润。
本申请提供了一种混合增压多级加注加氢装置,包括以下组成单元:高压卸车撬、高压压缩机撬、多级加注高压蓄能器、70MPa高压加氢机、低压卸车撬、低压压缩机撬、低压蓄能器、35MPa低压加氢机,带a口、b口、c口、d口四个连接口的第一四通阀、带e口、f口、g口、h口四个连接口的第二四通阀、以及为高压压缩机撬和低压压缩机撬进行降温的冷水机组;各组成单元通过管路系统连接,从而实现35MPa/70MPa混合加注、低压氢气多级混合增压、高压蓄能器与低压蓄能器互为备用氢源目的。在不影响原35MPa撬装式加氢装置的基础上进行增压扩容:将加氢压力由35MPa提升至70MPa/35MPa混合增压,将日加氢规模由不超过500kg/d提升至1000kg/d及以上;且本方案所述的增压扩容结构具有结构简单,安装方便,改造工作量小、成本低等优点。
此外,可以理解的是,本申请的一种混合增压多级加注加氢装置是可以重现的,并且可以用在多种工业应用中。例如,本申请的一种混合增压多级加注加氢装置可以用于需要进行加氢的应用领域。
Claims (9)
- 一种混合增压多级加注加氢装置,其特征在于:包括以下组成单元:高压卸车撬、高压压缩机撬、多级加注高压蓄能器、70MPa高压加氢机、低压卸车撬、低压压缩机撬、低压蓄能器、35MPa低压加氢机,带a口、b口、c口、d口四个连接口的第一四通阀、带e口、f口、g口、h口四个连接口的第二四通阀、以及为高压压缩机撬和低压压缩机撬进行降温的冷水机组;高压卸车撬的出口通过第一输氢管路与高压压缩机撬的进口连通,高压压缩机撬的出口通过第二输氢管路与多级加注高压蓄能器的进口连通,多级加注高压蓄能器的出口通过第三输氢管路与70MPa高压加氢机的进口连通,构成一个单独的70MPa撬装式加氢装置;低压卸车撬的出口通过第四输氢管路与第一四通阀的a口连通,第一四通阀的c口通过第五输氢管路与低压压缩机撬的进口连通,低压压缩机撬的出口通过第六输氢管路与第二四通阀的e口连通,第二四通阀的g口通过第七输氢管路与低压蓄能器的进口连通,低压蓄能器的出口通过第八输氢管路与35MPa低压加氢机的进口连通,构成一个单独的35MPa撬装式加氢装置;在第一输氢管路上设置有第一分支管路,第一分支管路与第一四通阀的d口连通,在第一分支管路与高压压缩机撬的进口之间的第一输氢管路上设置有第一阀门;第二分支管路的一端与高压压缩机撬的出口连通,第二分支管路的另一端与第二四通阀的h口连通;在第三输氢管路上设置有第三分支管路,第三分支管路与第七输氢管路连通,在第三分支管路上设置有第二阀门;第四分支管路的一端与第二四通阀的f口连通,第四分支管路的另一端与第八输氢管路连通。
- 根据权利要求1所述的混合增压多级加注加氢装置,其特征在于:所述单独的70MPa撬装式加氢装置和所述单独的35MPa撬装式加氢装置单独工作或者整体工作。
- 根据权利要求1或2所述的混合增压多级加注加氢装置,其特征在于:多级加注高压蓄能器与低压蓄能器之间的管路连接,使得多级加注高压蓄能器与低压蓄能器互为备用氢源。
- 根据权利要求1至3中任一项所述的混合增压多级加注加氢装置,其特征在于:在第二输氢管路上设置有第五分支管路,第五分支管路与70MPa高压加氢机的进口连通,在第五分支管路上设置有第三阀门。
- 根据权利要求1至4中任一项所述的混合增压多级加注加氢装置,其特征在于:还设置有第六分支管路,第六分支管路的一端与第一四通阀的b口连通,第六分支管路的另一端与35MPa低压加氢机的进口连通。
- 根据权利要求1至5中任一项所述的一种混合增压多级加注加氢装置,其特征在于:多级加注高压蓄能器为由顺序控制盘、若干并联设置的高压储氢瓶和若干并联设置的中压储氢瓶构成的二级加注结构,高压储氢瓶数量与中压储氢瓶数量比为1:2。
- 根据权利要求6所述的一种混合增压多级加注加氢装置,其特征在于:所述顺序控制盘由中压顺序控制阀组和高压顺序控制阀组构成;多级加注高压蓄能器的具体结构为:高压压缩机撬的出口通过第二输氢管路分别与中压顺序控制阀组的进口、高压顺序控制阀组的进口连通,在中压顺序控制阀组的出口设置有第一连接管路,六个中压储氢瓶的进出口分别通过对应第一分支连接管路与第一连接管路的出口连通;在高压顺序控制阀组的出口设置有第二连接管路,三个高压储氢瓶的进出口分别通过对应第二分支连接管路与第二连接管路的出口连通;所述的第三输氢管路由带第六阀门的第三连接管路和带第七阀门的第四连接管路构成,第三连接管路的一端与中压顺序控制阀组的出口连通,第三连接管路的另一端与70MPa高压加氢机的进口连通,第四连接管路的一端与高压顺序控制阀组的出口连通,第四连接管路的另一端与70MPa高压加氢机的进口连通。
- 根据权利要求6或7所述的一种混合增压多级加注加氢装置,其特征在于:各中压储氢瓶构成中压储氢瓶组,各高压储氢瓶构成高压储氢瓶组,高压储氢瓶组布置于中压储氢瓶组上方。
- 根据权利要求7或8所述的一种混合增压多级加注加氢装置,其特征在于:在第一连接管路上设置有带第四阀门的第一分支管道;在第二连接管路上设置有带第五阀门的第二分支管道。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011558930.0A CN112483888A (zh) | 2020-12-25 | 2020-12-25 | 一种混合增压多级加注加氢装置 |
CN202011558930.0 | 2020-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022135110A1 true WO2022135110A1 (zh) | 2022-06-30 |
Family
ID=74915565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/135196 WO2022135110A1 (zh) | 2020-12-25 | 2021-12-02 | 一种混合增压多级加注加氢装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112483888A (zh) |
WO (1) | WO2022135110A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115657630A (zh) * | 2022-12-09 | 2023-01-31 | 长春吉电氢能有限公司 | 一种撬装与固定装联合模块化制氢控制系统和方法 |
CN117537275A (zh) * | 2024-01-08 | 2024-02-09 | 胜利油田大源节能设备有限公司 | 双腔混输增压计量一体撬 |
CN117646869A (zh) * | 2023-12-13 | 2024-03-05 | 烟台东德实业有限公司 | 一种集成式低耗液氢站加氢系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112483888A (zh) * | 2020-12-25 | 2021-03-12 | 江苏国富氢能技术装备股份有限公司 | 一种混合增压多级加注加氢装置 |
CN113418141A (zh) * | 2021-06-17 | 2021-09-21 | 深圳市燃气集团股份有限公司 | 一种现场制氢与外购氢互补的加氢站系统 |
CN113339245B (zh) * | 2021-06-22 | 2023-01-03 | 西安交通大学 | 一种隔膜压缩机单双级切换控制系统及方法 |
CN113586948B (zh) * | 2021-07-20 | 2023-03-24 | 上海氢枫能源技术有限公司 | 一种加氢站高效加氢的优化控制方法 |
CN113375047B (zh) * | 2021-08-11 | 2021-11-30 | 河南氢枫能源技术有限公司 | 一种双压缩系统运行的氢站及其运行方法 |
CN114198635B (zh) * | 2021-12-09 | 2023-02-28 | 上海氢枫能源技术有限公司 | 一种智能加氢系统及方法 |
CN114484266A (zh) * | 2022-01-27 | 2022-05-13 | 氢华能源技术(武汉)有限公司 | 移动式加氢站 |
CN115264380B (zh) * | 2022-05-26 | 2024-01-26 | 合肥通用机械研究院有限公司 | 一种带有隐式高压预冷/蓄冷单元的液氢站及运行方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202082618U (zh) * | 2011-03-21 | 2011-12-21 | 巩宁峰 | 一种70MPa移动式氢气加注设备 |
US20150060294A1 (en) * | 2013-08-28 | 2015-03-05 | Nuvera Fuel Cells, Inc. | Integrated electrochemical compressor and cascade storage method and system |
US20170146194A1 (en) * | 2015-09-21 | 2017-05-25 | Air Products And Chemicals, Inc. | Method of Operating a Hydrogen Dispensing Unit |
CN109140226A (zh) * | 2018-10-17 | 2019-01-04 | 东方电气集团东方锅炉股份有限公司 | 一种适用于35或70MPa加注压力的加氢方法和系统 |
CN109185699A (zh) * | 2018-10-17 | 2019-01-11 | 东方电气集团东方锅炉股份有限公司 | 同时适用于70MPa和35MPa加注压力的加氢方法和系统 |
CN111120855A (zh) * | 2019-12-28 | 2020-05-08 | 中国船舶重工集团公司第七一八研究所 | 一种双枪35-70MPa氢燃料电池车的氢气加注系统 |
CN111457246A (zh) * | 2020-04-01 | 2020-07-28 | 江苏国富氢能技术装备有限公司 | 一种储氢型加氢站 |
CN112483888A (zh) * | 2020-12-25 | 2021-03-12 | 江苏国富氢能技术装备股份有限公司 | 一种混合增压多级加注加氢装置 |
CN214249134U (zh) * | 2020-12-25 | 2021-09-21 | 江苏国富氢能技术装备股份有限公司 | 混合增压多级加注加氢装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203176717U (zh) * | 2013-02-25 | 2013-09-04 | 沈少锋 | 二氧化碳增压深埋装置 |
JP6999372B2 (ja) * | 2017-11-09 | 2022-01-18 | Eneos株式会社 | 水素充填制御方法及び水素ステーションに配置された水素充填システム |
-
2020
- 2020-12-25 CN CN202011558930.0A patent/CN112483888A/zh active Pending
-
2021
- 2021-12-02 WO PCT/CN2021/135196 patent/WO2022135110A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202082618U (zh) * | 2011-03-21 | 2011-12-21 | 巩宁峰 | 一种70MPa移动式氢气加注设备 |
US20150060294A1 (en) * | 2013-08-28 | 2015-03-05 | Nuvera Fuel Cells, Inc. | Integrated electrochemical compressor and cascade storage method and system |
US20170146194A1 (en) * | 2015-09-21 | 2017-05-25 | Air Products And Chemicals, Inc. | Method of Operating a Hydrogen Dispensing Unit |
CN109140226A (zh) * | 2018-10-17 | 2019-01-04 | 东方电气集团东方锅炉股份有限公司 | 一种适用于35或70MPa加注压力的加氢方法和系统 |
CN109185699A (zh) * | 2018-10-17 | 2019-01-11 | 东方电气集团东方锅炉股份有限公司 | 同时适用于70MPa和35MPa加注压力的加氢方法和系统 |
CN111120855A (zh) * | 2019-12-28 | 2020-05-08 | 中国船舶重工集团公司第七一八研究所 | 一种双枪35-70MPa氢燃料电池车的氢气加注系统 |
CN111457246A (zh) * | 2020-04-01 | 2020-07-28 | 江苏国富氢能技术装备有限公司 | 一种储氢型加氢站 |
CN112483888A (zh) * | 2020-12-25 | 2021-03-12 | 江苏国富氢能技术装备股份有限公司 | 一种混合增压多级加注加氢装置 |
CN214249134U (zh) * | 2020-12-25 | 2021-09-21 | 江苏国富氢能技术装备股份有限公司 | 混合增压多级加注加氢装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115657630A (zh) * | 2022-12-09 | 2023-01-31 | 长春吉电氢能有限公司 | 一种撬装与固定装联合模块化制氢控制系统和方法 |
CN117646869A (zh) * | 2023-12-13 | 2024-03-05 | 烟台东德实业有限公司 | 一种集成式低耗液氢站加氢系统 |
CN117646869B (zh) * | 2023-12-13 | 2024-06-07 | 烟台东德实业有限公司 | 一种集成式低耗液氢站加氢系统 |
CN117537275A (zh) * | 2024-01-08 | 2024-02-09 | 胜利油田大源节能设备有限公司 | 双腔混输增压计量一体撬 |
CN117537275B (zh) * | 2024-01-08 | 2024-03-15 | 胜利油田大源节能设备有限公司 | 双腔混输增压计量一体撬 |
Also Published As
Publication number | Publication date |
---|---|
CN112483888A (zh) | 2021-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022135110A1 (zh) | 一种混合增压多级加注加氢装置 | |
WO2022135109A1 (zh) | 一种采用液氢预冷的液氢储氢型加氢装置 | |
CN109185698B (zh) | 一种高效加氢方法和系统 | |
CN101418907B (zh) | 外供氢型加氢站的高压供氢系统 | |
CN214249133U (zh) | 采用液氢预冷的液氢储氢型加氢装置 | |
US20100193070A1 (en) | Method for Filling a Tank with Pressurized Gas | |
CN202158352U (zh) | L-cng双气源供气装置 | |
CN103836331A (zh) | 一种车载储气瓶组拖车式加气站 | |
CN214249134U (zh) | 混合增压多级加注加氢装置 | |
CN217736920U (zh) | 液氢汽化加氢系统 | |
CN106090599A (zh) | 氢能供应链 | |
CN110594579B (zh) | 一种多功能的加氢站氢燃料加注系统 | |
CN115388324A (zh) | 一种气、液氢联供加氢站 | |
CN114087540B (zh) | 一种高效移动式气液双模氢燃料加注装置 | |
CN108332046A (zh) | 气驱泵撬装加氢设备中的加氢系统及其加氢方法 | |
CN105020574A (zh) | 一种l-cng加气站 | |
CN102650373B (zh) | 无能耗l-cng撬装装置及其控制方法 | |
CN212298527U (zh) | 一种加氢站的蒸发气回收系统 | |
CN212537494U (zh) | 应用于储氢型加氢站的卸料调压系统 | |
CN204164652U (zh) | 一种lcng加气站辅助供气装置和包含其的加气站 | |
CN212107879U (zh) | 一种站用储氢罐加氢管路及多站用储氢罐加氢管路 | |
CN205979167U (zh) | 一种多储罐的lng气化站 | |
CN220851735U (zh) | 一种制氢加氢一体化站 | |
CN220851720U (zh) | 一种无高压储氢容器的气氢加注系统 | |
CN109703382A (zh) | 氢电动力改装纯电动车 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21909107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21909107 Country of ref document: EP Kind code of ref document: A1 |