WO2022134993A1 - 复合载流子传输层及其制备方法、太阳能电池和发光器件 - Google Patents

复合载流子传输层及其制备方法、太阳能电池和发光器件 Download PDF

Info

Publication number
WO2022134993A1
WO2022134993A1 PCT/CN2021/132487 CN2021132487W WO2022134993A1 WO 2022134993 A1 WO2022134993 A1 WO 2022134993A1 CN 2021132487 W CN2021132487 W CN 2021132487W WO 2022134993 A1 WO2022134993 A1 WO 2022134993A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier transport
transport layer
layer
metal
metal oxide
Prior art date
Application number
PCT/CN2021/132487
Other languages
English (en)
French (fr)
Inventor
解俊杰
徐琛
李子峰
吴兆
靳金玲
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2022134993A1 publication Critical patent/WO2022134993A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of solar photovoltaics, and in particular, to a composite carrier transport layer and a preparation method thereof, a solar cell and a light-emitting device.
  • the thin film prepared by the solution coating method has the advantages of simple process, low cost, simple operation and low equipment requirements, so it is widely used in the preparation of electronic devices, such as organic solar cells (Organic Photovoltage, OPV). ), Organic Light-Emitting Diode (OLED), Perovskite Solar Cells (PSC) and Perovskite LED (Perovskite Light Emitting Diode, PeLED).
  • organic solar cells Organic Photovoltage, OPV.
  • OLED Organic Light-Emitting Diode
  • PSC Perovskite Solar Cells
  • PeLED Perovskite LED
  • a precursor solution is usually prepared first, and then the precursor solution is coated on the transparent conductive substrate, and the solvent is volatilized through a heat treatment process to form a carrier transport layer.
  • another active layer or the like can be further prepared by solution coating on the carrier transport layer, thereby preparing a light-emitting device or a solar cell.
  • the active layer cannot form a good contact with the carrier transport layer, or the active layer passes through the carrier transport layer and is transparent to the transparent layer.
  • the conductive substrate is in direct contact, resulting in the generation and increase of leakage current, which affects the efficiency of the device.
  • the present disclosure provides a composite carrier transport layer and a preparation method thereof, a solar cell and a light-emitting device, aiming to improve the surface flatness of the composite carrier transport layer and the coverage of the transparent conductive substrate, thereby forming an active layer and a composite carrier Good contact of the carrier transport layer to avoid leakage and improve the power of the battery.
  • an embodiment of the present disclosure provides a method for preparing a composite carrier transport layer, the method may include:
  • a metal particle layer is prepared on the first carrier transport layer by using a metal material at a preset deposition rate, and the thickness of the metal particle layer is 0.1 nm to 10 nm;
  • the metal particle layer is oxidized to obtain a metal oxide layer.
  • the first carrier transport layer is an electron transport layer
  • the material of the first carrier transport layer is an n-type semiconductor material with a work function less than or equal to 6 eV;
  • the first carrier transport layer is a hole transport layer, and the material of the first carrier transport layer is a p-type semiconductor material with a work function less than or equal to 3eV, and an n-type semiconductor material with a work function greater than or equal to 5eV any of the.
  • the metal oxide layer and the first carrier transport layer have the same conductivity type, or the metal oxide layer is an insulating layer.
  • the standard electrode potential of the metal material is -2.400V ⁇ 0V.
  • the metal material includes at least one of Al, Zr, Ti, Mg, Sn, Zn, and Ni.
  • using a metal material on the first carrier transport layer to prepare a metal particle layer at a preset deposition rate includes:
  • the substrate is controlled to rotate at a rotational speed of 1 rpm to 20 rpm, and a metal material is used on the first carrier transport layer to be less than or equal to deposition rate to prepare metal particle layers.
  • the substrate or the first carrier transport layer is an inorganic material
  • the metal oxide layer obtained by oxidizing the metal particle layer includes:
  • the metal particle layer is heated to 300°C to 800°C in an oxidizing atmosphere, and kept for 10 minutes to 120 minutes to obtain a metal oxide layer.
  • the substrate or the first carrier transport layer is an organic material
  • the metal oxide layer obtained by oxidizing the metal particle layer includes:
  • the oxidizing environment of the electrochemical anodic oxidation includes any one of an acidic environment, an alkaline environment and a neutral environment;
  • the method further includes:
  • the metal oxide layer is annealed.
  • the present disclosure also provides a composite carrier transport layer, the composite carrier transport layer comprising:
  • the first carrier transport layer is located on the surface of the substrate, and the metal oxide layer is formed on the first carrier transport layer;
  • the first carrier transport layer has an n-type or p-type conductivity type
  • the first carrier transport layer is a discontinuous film
  • At least part of the metal oxide layer fills the discontinuous region of the first carrier transport layer.
  • the first carrier transport layer is an electron transport layer
  • the material of the first carrier transport layer is an n-type semiconductor material with a work function less than or equal to 6 eV.
  • the first carrier transport layer is a hole transport layer
  • the material of the first carrier transport layer is a p-type semiconductor material with a work function less than or equal to 3 eV, or a material with a work function greater than or equal to 5 eV. Any of n-type semiconductor materials.
  • the conductive type of the metal oxide layer is the same as that of the first carrier transport layer, or the metal oxide is an insulating layer.
  • the method for forming the metal oxide layer is:
  • a metal particle layer is prepared on the first carrier transport layer by using a metal material at a preset deposition rate, and the thickness of the metal particle layer is 0.1 nm to 10 nm;
  • the standard electrode potential of the metal material is -2.400V ⁇ 0V.
  • the metal material includes at least one of Al, Zr, Ti, Mg, Sn, Zn, and Ni.
  • the metal particle layer is oxidized to obtain a metal oxide layer.
  • the present disclosure also provides a solar cell including the composite carrier transport layer described in the second aspect.
  • the present disclosure further provides a light-emitting device, the light-emitting device comprising the composite carrier transport layer described in the second aspect.
  • the metal oxide layer is prepared by deposition-oxidation using a metal material.
  • the defects on the carrier transport layer are filled to obtain a more uniform and dense film.
  • FIG. 1 shows a schematic cross-sectional view of a transparent conductive substrate-carrier transport layer-active layer structure in the prior art
  • FIG. 2 shows a flow chart of steps of a method for preparing a composite carrier transport layer provided by an embodiment of the present disclosure
  • FIG. 3 shows a flow chart of steps of another method for preparing a composite carrier transport layer provided by an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of a metal particle layer provided by an embodiment of the present disclosure.
  • FIG. 5 shows a schematic structural diagram of a composite carrier transport layer provided by an embodiment of the present disclosure.
  • FIG. 1 shows a schematic cross-sectional view of a transparent conductive substrate-carrier transport layer-active layer structure in the prior art.
  • the structure includes a transparent conductive substrate 101, a carrier transport layer 102, an active layer Layer 103.
  • the carrier transport layer 102 is prepared by a solution coating method, various structural defects, such as concave defects 1021 and hole defects 1022, are easily formed during the process of solvent volatilization, film heat treatment and grain growth. , so that the carrier transport layer 102 is discontinuous and uneven.
  • the active layer is further coated on the carrier transport layer 102 by solution, as shown in FIG. 1 , due to the surface tension of the solution, it is difficult for the precursor solution of the active layer 103 to fully fill the voids in the recessed defects 1021, making the active layer 102 difficult to fully fill.
  • the layer 103 cannot be in good contact with the carrier transport layer 102, which affects the conversion efficiency of the light-emitting device or solar cell; or, the precursor solution of the active layer 103 fills the hole defect 1022, because the transparent conductive substrate 101 is not damaged in the hole defect 1022.
  • the carrier transport layer 102 is covered, causing the active layer 103 to be in direct contact with the transparent conductive substrate 101, generating and increasing leakage current, further affecting the efficiency of the light-emitting device or solar cell.
  • FIG. 2 shows a flowchart of steps of a method for preparing a composite carrier transport layer provided by an embodiment of the present disclosure. As shown in FIG. 2 , the method may include:
  • Step 201 coating a precursor solution on a substrate to obtain a coating of the precursor solution.
  • the composite carrier transport layer may be a composite electron transport layer or a composite carrier transport layer.
  • the composite carrier transport layer can be directly prepared on the transparent conductive substrate, and the substrate only includes the transparent conductive substrate at this time; the composite carrier transport layer can also be prepared on the active layer, thereby Avoid the problem of poor contact with the carrier transport layer and direct contact with the active layer for other film layers prepared by the solution method on the composite carrier transport layer.
  • the substrate includes a transparent conductive substrate, an active layer, and The carrier transport layer existing between the transparent conductive substrate and the active layer, the carrier transport layer may be an existing carrier transport layer or a composite carrier transport layer. No specific restrictions are imposed.
  • the transparent conductive substrate may be a rigid transparent substrate coated with a transparent conductive film or a flexible transparent substrate, optionally, the rigid transparent substrate may be a glass substrate, and the flexible transparent substrate may be a PET ( Polyethylene glycol Terephthalate, polyethylene terephthalate) substrate, PEN (Polyethylene naphthalate two formic acid glycol ester, polyethylene naphthalate) substrate, etc.
  • the transparent conductive film can be ITO (Indium Tin Oxide) , indium-doped tin oxide), FTO (Fluorine Tin Oxide,), AZO (Aluminum Zinc Oxide, aluminum-doped zinc oxide), etc., which are not specifically limited in the embodiments of the present disclosure.
  • the type of the precursor solution is also different, wherein, the coating of the precursor solution may be spin coating, dip coating, Scratch coating, spray coating, etc., so as to obtain the coating of the precursor solution on the substrate.
  • the coating can be located on any side of the transparent conductive substrate, and the substrate includes a light absorbing layer or a light emitting layer. In this case, the coating should be located on the side of the light absorbing layer or the light emitting layer away from the transparent conductive substrate, which is not specifically limited in this embodiment of the present disclosure.
  • Step 202 heat-treating the coating of the precursor solution to obtain a first carrier transport layer.
  • the coating of the precursor solution may be heat-treated, so that the coating of the precursor solution is desolvated to form a thin film, and a first carrier transport layer is obtained.
  • the operation of the coating and the heat treatment process of the coating may lead to the inevitable occurrence of hole defects, depression defects and the like on the microscopic topography of the first carrier transport layer.
  • Step 203 using a metal material on the first carrier transport layer to prepare a metal particle layer at a predetermined deposition rate, and the thickness of the metal particle layer is 0.1 nm to 10 nm.
  • the metal material refers to a metal element in the form of particles whose oxides can exist stably in a standard state.
  • the standard electrode potential of the metal element is in the range of -2.400V to 0V, its corresponding Oxides can exist stably in the standard state.
  • the metal particle layer is deposited on the first carrier transport layer, since the granular metal material has more contact interfaces with the transparent conductive substrate, thermodynamically, the metal The deposition of materials on hole defects and depression defects can make the energy of the system lower. At this time, during the deposition process, the metal material can preferentially and fully fill the depression defects and hole defects of the first carrier transport layer, thereby filling the first carrier transport layer. Defects on the carrier transport layer.
  • a physical vapor deposition method may be used to prepare the metal particle layer, which may alternatively be thermal evaporation deposition, electron beam evaporation deposition, laser evaporation deposition, etc., because when the deposition speed is too fast, the metal material may be more It tends to be enriched at high places that are not recessed or non-porous, resulting in the recessed defects and hole defects of the first carrier layer cannot be effectively filled. Therefore, it is necessary to adjust the deposition rate of the metal material to the preset deposition rate.
  • the deposition rate is lower than the minimum deposition rate for the metal material to be enriched in high places, so that defects such as depressions and holes on the first carrier layer can be fully filled.
  • the substrate can also be controlled to be in a rotating state during the deposition process, so as to obtain a more uniform filling effect and improve the uniformity of the metal particle layer.
  • the thickness of the metal particle layer when the metal particle layer is subsequently oxidized, in order to avoid defects such as cracking of the metal particle layer, the thickness of the metal particle layer can be controlled during the deposition process, so that the metal particle layer can fill the defects of depressions and holes.
  • the thickness of the metal particle layer when using metal materials to deposit and prepare the metal particle layer, the thickness of the metal particle layer can be adjusted to 0.1nm ⁇ 10nm, such as 0.1nm, 0.5nm, 1nm, 5nm, 10nm, etc., so as to avoid metal particles. Excessive thickness of the particle layer leads to cracking and defects in the subsequent oxidation process, and the specific thickness of the metal particle layer is not limited in the embodiment of the present disclosure.
  • Step 204 oxidizing the metal particle layer to obtain a metal oxide layer.
  • the metal particle layer may be oxidized, so that the metal material in the metal particle layer is converted into its corresponding oxide, so as to obtain a metal oxide layer, and the metal oxide layer is on the first carrier oxide layer.
  • the defects of the first carrier transport layer and the metal oxide layer are filled, so that the surface of the composite carrier transport layer composed of the first carrier transport layer and the metal oxide layer is smooth and continuous, and the substrate coverage rate is high, which can effectively reduce the interface non-radiative recombination of carriers, Thereby, the performance of the light-emitting device or solar cell is improved.
  • the first carrier transport layer can also be doped with the metal material, so as to achieve the effect of adjusting the energy level structure of the carrier transport layer.
  • Technicians can select metal materials according to the required energy level structure.
  • the metal oxide layer is prepared by deposition-oxidation using a metal material.
  • the defects on the carrier transport layer are filled to obtain a more uniform and dense film, so that the composite carrier transport layer composed of the first carrier transport layer and the metal oxide layer is flat and continuous, and has a flatter surface structure and higher coverage of the transparent conductive substrate, therefore, the interface non-radiative recombination of carriers can be effectively reduced, and the conversion efficiency of light-emitting devices or solar cells can be improved.
  • FIG. 3 shows a flow chart of steps of another method for preparing a composite carrier transport layer provided by an embodiment of the present disclosure. As shown in FIG. 3 , the method may include:
  • Step 301 coating a precursor solution on a substrate to obtain a coating of the precursor solution.
  • step 301 may correspond to the relevant description of the foregoing step 201, which is not repeated here in order to avoid repetition.
  • the transparent conductive substrate when the substrate is a transparent conductive substrate, the transparent conductive substrate may be cleaned before applying the precursor solution to ensure the effect of subsequent coating.
  • Step 302 heat-treating the coating of the precursor solution to obtain a first carrier transport layer.
  • step 302 may correspond to the relevant description of the foregoing step 202, which is not repeated here in order to avoid repetition.
  • the temperature and time of the heat treatment can be controlled to make the solvent volatilize, and different temperatures and times can be selected according to different types of solvents, which are not specifically limited in the embodiments of the present disclosure.
  • the first carrier transport layer is an electron transport layer
  • the material of the first carrier transport layer is an n-type semiconductor material with a work function less than or equal to 6 eV.
  • the first carrier transport layer may be an electron transport layer, and when the first carrier transport layer is an electron transport layer, its material may be an n-type semiconductor material with a work function less than or equal to 6 eV, such as
  • the material of the first carrier transport layer may be zinc oxide, titanium oxide, tin oxide, PC 61 BM ([6,6]-Phenyl C 61 butyric acid methyl ester, 1-[3-(methoxycarbonyl)propyl) ]-1-phenyl-[6.6]C 61 ), PC 71 BM([6,6]-Phenyl C 71 butyric acid methyl ester, 1-[3-(methoxycarbonyl)propyl]-1-phenyl -[6.6]C 61 ), TPBi(1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene, 1,3,5-tris(1-phenyl-1H-benzimidazole) -2
  • the first carrier transport layer is a hole transport layer
  • the material of the first carrier transport layer is a p-type semiconductor material with a work function less than or equal to 3 eV, or a material with a work function greater than or equal to 5 eV. Any of n-type semiconductor materials.
  • the first carrier transport layer may also be a hole transport layer.
  • the material of the first carrier transport layer may be a work function smaller than or P-type semiconductor material equal to 3eV or n-type semiconductor material with work function greater than or equal to 5eV, such as the material of the first carrier transport layer can be cuprous thiocyanide, cuprous iodide, cuprous oxide, cupric oxide, Cuprous chromate, nickel oxide, Spiro-OMeTAD(2,2',7,7'-Tetrakis-9,9'-spirobifluorene, 2,2,7,7-tetra[N,N-bis(4-methyl) Oxyphenyl)amino]-9,9-spirobifluorene), PTAA (poly(triarylamine), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]) , PEDOT:PSS(Poly(3,4-ethylene
  • the metal oxide layer and the first carrier transport layer have the same conductivity type, or the metal oxide layer is an insulating layer.
  • the metal oxide layer may be a film layer of the same conductivity type as the first carrier transport layer, or may be an insulating layer, wherein the conductivity between the metal oxide layer and the first carrier transport layer
  • the material of the first carrier transport layer may be the same as that of the metal oxide layer, and the material of the first carrier transport layer may also be a material different from that of the metal oxide. There is no specific restriction on this.
  • the material of the first carrier transport layer may be an inorganic material or an organic material.
  • the first carrier transport layer The grain size can be 1nm to 2000nm, the size of hole defects, depression defects, etc. on the first carrier transport layer is between 10nm and 100nm, and the surface roughness is 1nm to 30nm; in the first carrier transport layer
  • the size of the hole defect, the depression defect, etc. on the first carrier transport layer is between 1 nm and 50 nm, and the surface roughness is between 1 nm and 20 nm.
  • the size and surface roughness of the defect structure are also different, but it can be seen that the first carrier transport layer of different materials has a different size range. Large defect structure, and the surface is relatively uneven.
  • Step 303 Control the substrate to rotate at a rotational speed of 1 rpm to 20 rpm, and use a metal material on the first carrier transport layer to be less than or equal to A metal particle layer is prepared at a deposition speed of 0.1 nm to 10 nm in thickness.
  • the substrate in the process of depositing the metal material, the substrate may be controlled to rotate at a rotation speed of 1 rpm to 20 rpm, so that the metal material is more uniformly deposited on the first carrier transport layer.
  • the preset deposition rate can be less than or equal to At a lower deposition rate, the metal material can sufficiently fill the defect structures on the first carrier transport layer.
  • the standard electrode potential of the metal material is -2.400V ⁇ 0V.
  • the metal material includes at least one of Al, Zr, Ti, Mg, Sn, Zn, Ni
  • the metal material can be selected as a metal material with a standard electrode potential between -2.400V and 0V, such as Al (aluminum), Zr (zirconium), Ti (titanium), Mg (magnesium), Sn ( tin), Zn (zinc), Ni (nickel), etc., which are not specifically limited in the embodiments of the present disclosure.
  • FIG. 4 shows a schematic structural diagram of a metal particle layer provided by an embodiment of the present disclosure. As shown in FIG. 4 , it includes a transparent conductive substrate 401, a first carrier transport layer 402, and a metal particle layer 403. The metal particle layer Different dots in 403 represent different particles of metal material, wherein the metal particle layer 403 fills discontinuous regions such as recess defects 4021 and hole defects 4022 on the first carrier transport layer 402 .
  • the substrate or the first carrier transport layer is an inorganic material, and after step 303, including:
  • Step 304 heating the metal particle layer to 300° C. ⁇ 800° C. in an oxidizing atmosphere for 10 minutes ⁇ 120 minutes to obtain a metal oxide layer.
  • the metal particle layer when the substrate or the first carrier transport layer is an inorganic material, the metal particle layer may be oxidized by means of heat treatment oxidation, including heating the metal particle layer to 300°C to 800°C in an oxidizing atmosphere, and kept for 10 to 120 minutes, thereby obtaining a metal oxide layer comprising oxides of metal materials, wherein the oxidizing atmosphere includes an oxidizing gas atmosphere, and the heating temperature for the metal particle layer can be 300° C., 350° C., 400° C. °C, 600 °C, 800 °C, etc., the temperature holding time may be 10 minutes, 15 minutes, 20 minutes, 50 minutes, 100 minutes, 120 minutes, etc., which are not specifically limited in the embodiments of the present disclosure.
  • the substrate or the first carrier transport layer is an inorganic material.
  • step 303 including:
  • Step 305 performing electrochemical anodic oxidation on the metal particle layer to obtain a metal oxide layer
  • the oxidation environment of the electrochemical anodic oxidation includes any one of an acidic environment, an alkaline environment and a neutral environment.
  • the substrate or the first carrier transport layer is an inorganic material, and the metal particle layer can be oxidized by means of electrochemical anodic oxidation.
  • An oxide film is formed under the action of an applied current, and alternatively, the oxidizing environment may be any one of an acidic environment, an alkaline environment, and a neutral environment.
  • Step 306 annealing the metal oxide layer.
  • the metal oxide layer in order to improve the density of the metal oxide layer and eliminate defects, after electrochemical anodization, the metal oxide layer may be annealed, optionally, the metal oxide layer may be heated to The annealing temperature is maintained for a certain period of time before cooling, thereby reducing residual stress, eliminating defects and improving the density of the metal oxide layer.
  • the step 306 includes:
  • Step S11 Determine the annealing temperature of the metal oxide layer according to the withstand temperature of the substrate and the first carrier transport layer.
  • the withstand temperature of the substrate, the first carrier transport layer, etc. may be determined first, wherein the withstand temperature means that the film layer is not damaged
  • the annealing temperature in the annealing treatment can be determined according to the tolerance temperature.
  • the annealing temperature should be less than or equal to the tolerance temperature to avoid damage to other films due to excessive annealing temperature.
  • the annealing temperature can be less than or equal to 150°C .
  • Step S12 at the annealing temperature, the metal oxide layer is treated for 10 minutes to 120 minutes to perform annealing treatment.
  • the metal oxide layer may be annealed at the annealing temperature, wherein the treatment may be 10 minutes to 120 minutes, such as 10 minutes, 15 minutes, 20 minutes, 50 minutes, 100 minutes, 120 minutes, etc.
  • the grain size of the metal material of the metal oxide layer is 1 nm ⁇ 50 nm, and the roughness of the metal oxide layer is 0.1 nm ⁇ 10 nm.
  • the grain size of the metal material is smaller than the size of the hole defects, depression defects, etc., such as the grain size of the metal material. It can be 1 nm to 50 nm. It can be seen that the roughness of the metal oxide layer formed on the first carrier transport layer is 0.1 nm to 10 nm, which effectively reduces the roughness of the first carrier transport layer and improves the surface. Flatness and coverage of transparent conductive substrates.
  • FIG. 5 shows a schematic structural diagram of a composite carrier transport layer provided by an embodiment of the present disclosure.
  • thermal oxidation treatment is performed on the metal particle layer 403 to obtain a metal oxide.
  • layer 404 at this time, the first carrier transport layer 402 and the metal oxide layer 404 constitute a composite carrier transport layer 405 on the transparent conductive substrate 401 .
  • the structure of the composite carrier transport layer can be identified and distinguished by the grain size of the two layers; when the materials of the first carrier transport layer and the metal oxide layer are different, there will be obvious interface distinction between the two layers.
  • the layer structure can be distinguished by the grain size, and different layer structures can be detected and distinguished by the element type.
  • the metal oxide layer is prepared by deposition-oxidation using a metal material.
  • the defects on the carrier transport layer are filled to obtain a more uniform and dense film.
  • Embodiments of the present disclosure also provide a composite carrier transport layer, where the composite carrier transport layer includes:
  • a first carrier transport layer and a metal oxide layer, the metal oxide layer is formed on the first carrier transport layer.
  • the first carrier transport layer has an n-type or p-type conductivity type.
  • the first carrier transport layer is a discontinuous film.
  • At least part of the metal oxide layer fills the discontinuous region of the first carrier transport layer.
  • the composite carrier transport layer includes a first carrier transport layer located on the surface of the substrate, and a metal oxide layer formed on the first carrier transport layer, and the first carrier transport layer is located on the surface of the substrate.
  • the preparation process is limited by the preparation process, and it is easy to form different defects, so that the first carrier transport layer is a discontinuous film, and there are uneven and discontinuous defects, wherein the region corresponding to the defect is the first carrier.
  • the discontinuous region of the transport layer; the metal oxide layer is formed on the first carrier transport layer, therefore, during the formation process, it can be at least partially filled in the discontinuous region of the first carrier transport layer, so that the first
  • the composite carrier transport layer composed of the carrier transport layer and the metal oxide layer is flat and continuous, and forms sufficient and good contact with other active layers, thereby improving the conversion efficiency of the solar cell.
  • the substrate can be referred to the related description of the substrate in the aforementioned step 202 in FIG. 2 , which is not repeated here in order to avoid repetition.
  • the conductivity type of the first carrier transport layer may be N-type or P-type, that is, the first carrier transport layer may be an electron transport layer or a hole transport layer.
  • the relevant description of the aforementioned step 302 in FIG. 3 is not repeated here.
  • the conductive type of the metal oxide layer is the same as that of the first carrier transport layer, or the metal oxide is an insulating layer.
  • step 302 in FIG. 3 for the metal oxide layer, reference may be made to the relevant description of step 302 in FIG. 3 , which is not repeated here in order to avoid repetition.
  • the standard electrode potential of the metal material is -2.400V ⁇ 0V.
  • the metal material includes at least one of Al, Zr, Ti, Mg, Sn, Zn, and Ni.
  • step 303 in FIG. 3 for the metal material, reference may be made to the relevant description of step 303 in FIG. 3 , and to avoid repetition, details are not repeated here.
  • the method for forming the metal oxide layer is:
  • a metal particle layer is prepared on the first carrier transport layer by using a metal material at a preset deposition rate, and the thickness of the metal particle layer is 0.1 nm to 10 nm;
  • the metal particle layer is oxidized to obtain a metal oxide layer.
  • the composite carrier transport layer is located on the surface of the substrate, and includes a first carrier transport layer and a metal oxide layer.
  • the metal oxide layer is prepared by deposition-oxidation of metal material. Since the metal material is easy to deposit, the defects on the first carrier transport layer can be filled to obtain a more uniform and dense film.
  • the composite carrier transport layer composed of the carrier transport layer has a flatter surface structure and higher coverage of the transparent conductive substrate, so it can effectively reduce the number of carriers.
  • the interface non-radiative recombination can improve the conversion efficiency of light-emitting devices or solar cells.
  • Embodiments of the present disclosure also provide a solar cell including the aforementioned composite carrier transport layer.
  • Embodiments of the present disclosure also provide a light-emitting device including the foregoing composite carrier transport layer.
  • the transparent conductive substrate is a rigid transparent substrate, and the material of the first carrier transport layer and the metal oxide layer is the same.
  • FTO conductive glass is used as the transparent conductive substrate
  • TiO 2 is used as the first carrier transport layer
  • Ti is used as the metal particle layer.
  • the preparation method conforming to the carrier transport layer includes:
  • the FTO conductive glass was ultrasonically cleaned in cleaning agent, deionized water, acetone and isopropanol for 15min respectively;
  • the spin-coated coating of the isopropyl alcohol solution of tetraisopropyl titanate was dried at 100 °C for 10 minutes, and then heat-treated at 500 °C for 30 minutes to obtain a "transparent conductive lining of FTO/TiO 2 (spin coating)".
  • Bottom/first carrier transport layer structure, the thickness of the TiO 2 (spin coating) layer is 50nm-60nm;
  • a layer of Ti metal particles was evaporated on the "FTO/TiO 2 (spin coating)" structure with a thickness of 2 nm, and the evaporation rate was "FTO/TiO 2 (spin coating)/Ti metal particle layer” structure is obtained;
  • the "FTO/TiO 2 (spin coating)/Ti metal particle layer” structure was heat-treated at 500 °C for 1 hour in an air atmosphere, and the “FTO/TiO 2 (spin coating)/TiO 2 (deposition-oxidation)" structure was obtained.
  • the transparent conductive substrate is a rigid transparent substrate, and the materials of the first carrier transport layer and the metal oxide layer are different;
  • the transparent conductive substrate adopts FTO conductive glass
  • the first carrier transport layer adopts ZnO
  • the metal particle layer adopts Ti
  • the FTO conductive glass was ultrasonically cleaned in cleaning agent, deionized water, acetone and isopropanol for 15min respectively;
  • the "transparent conductive substrate/first carrier transport layer” structure of "FTO/ZnO (spin coating)” was obtained , the thickness of the ZnO (spin coating) layer is 30 nm to 50 nm;
  • the transparent conductive substrate is a flexible transparent substrate, and the material of the first carrier transport layer is the same as that of the metal oxide layer;
  • the transparent conductive substrate adopts a PEN-ITO conductive film substrate
  • the first carrier transport layer adopts SnO 2
  • the metal particle layer adopts Sn
  • the PEN-ITO conductive substrate was ultrasonically cleaned in cleaning agent, deionized water, acetone, and isopropanol for 15 min respectively;
  • the spin-coated nano-SnO 2 aqueous solution was heat-treated at 150 °C for 30 min, the "transparent conductive substrate/first carrier transport layer” structure of "PEN-ITO/SnO 2 (spin coating)" was obtained, SnO 2
  • the thickness of the (spin coating) layer is 40nm to 80nm;
  • a layer of Sn metal particles was evaporated on the "PEN-ITO/SnO 2 (spin coating)" structure with a thickness of 5nm and the evaporation rate was A "PEN-ITO/SnO 2 (spin coating)/Sn metal particle layer” structure was obtained.
  • the "PEN-ITO/SnO 2 (spin coating)/Sn metal particle layer” structure was used as the anode, and the Pt electrode was used as the cathode. Anodization was carried out in 0.5M sulfuric acid electrolyte. The reaction voltage was 10V ⁇ 20V, and the reaction time was 1min ⁇ 10min, obtain the composite carrier transport layer of "transparent conductive substrate/first carrier transport layer/metal oxide layer” structure of "PEN-ITO/SnO 2 (spin coating)/Sn (deposition-oxidation)" .
  • the transparent conductive substrate is a flexible transparent substrate, and the first carrier transport layer is different from the metal oxide layer.
  • the transparent conductive substrate adopts a PEN-ITO conductive film substrate
  • the first carrier transport layer adopts PEDOT:PSS
  • the metal particle layer adopts Ni
  • the PEN-ITO conductive substrate was ultrasonically cleaned in cleaning agent, deionized water, acetone, and isopropanol for 15 min respectively;
  • PEDOT:PSS solution (Heraeus AI4083) was spin-coated on the cleaned PEN-ITO conductive substrate, spin-coating speed was 3000rpm, time was 20s, and the spin-coated substrate was heat-treated at 140°C for 15min to obtain "PEN-ITO".
  • the "PEN-ITO/PEDOT:PSS (spin coating)/Ni metal particle layer” structure was used as the anode, and the Pt electrode was used as the cathode.
  • Anodization was carried out in 1M sulfuric acid electrolyte.
  • the reaction voltage was 1V-10V, and the reaction time was 1min. ⁇ 30min, after the anodization was completed, the transparent conductive substrate was heat-treated at 160 °C for 2 hours to increase the density of the film, and a "transparent" "PEN-ITO/PEDOT:PSS (spin coating)/NiO (deposition-oxidation)" was obtained.
  • the composite carrier transport layer of the conductive substrate/first carrier transport layer/metal oxide layer” structure was used as the anode, and the Pt electrode was used as the cathode.
  • Anodization was carried out in 1M sulfuric acid electrolyte.
  • the reaction voltage was 1V-10V, and the reaction time was 1min. ⁇ 30min, after

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开提供了一种复合载流子传输层及其制备方法、太阳能电池和发光器件,涉及太阳能光伏技术领域。其中,在通过溶液涂敷法在基底上制备了第一载流子传输层后,采用金属材料通过沉积-氧化制备金属氧化物层,由于金属材料易于沉积,可以对第一载流子传输层上的缺陷进行填补,从而得到更均匀、致密的薄膜,金属氧化物层与第一载流子传输层构成的复合载流子传输层在实现载流子传输的功能时,由于具有更平整的表面结构和对透明导电衬底更高的覆盖率,因此,能够有效减少载流子的界面非辐射复合,提升发光器件或太阳能电池的转换效率。

Description

复合载流子传输层及其制备方法、太阳能电池和发光器件
相关申请的交叉引用
本申请要求在2020年12月24日提交中国专利局、申请号为202011556792.2、名称为“复合载流子传输层及其制备方法、太阳能电池和发光器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能光伏技术领域,特别是涉及一种复合载流子传输层及其制备方法、太阳能电池和发光器件。
背景技术
与沉积方法相比,溶液涂敷法制备薄膜具有工艺简单、成本低廉、操作简便、对设备的要求低等优点,从而被广泛应用于电子器件的制备中,如有机太阳能电池(Organic Photovoltage,OPV)、有机发光二极管(Organic Light-Emitting Diode,OLED)、钙钛矿电池(Perovskite Solar Cells,PSC)和钙钛矿LED(Perovskite Light Emitting Diode,PeLED)的制备。
在具体的制备过程中,通常是先配制前驱体溶液,再将前驱体溶液涂敷在透明导电衬底上,并通过热处理工艺使溶剂挥发,以形成载流子传输层。此时,可以在载流子传输层上进一步通过溶液涂敷制备其他的活性层等,从而制备发光器件或太阳能电池。
但是,由于制备工艺中载流子传输层上可能存在较多的、不同种类的缺陷,从而导致活性层不能与载流子传输层形成良好的接触,或活性层穿过载流子传输层与透明导电衬底直接接触,导致漏电流的产生和增大,影响器件的效率。
概述
本公开提供一种复合载流子传输层及其制备方法、太阳能电池和发光器 件,旨在提升复合载流子传输层的表面平整性以及透明导电衬底覆盖率,从而形成活性层与复合载流子传输层的良好接触,避免漏电,提高电池的功率。
第一方面,本公开实施例提供了一种复合载流子传输层的制备方法,该方法可以包括:
在基底上涂敷前驱体溶液,获得前驱体溶液的涂层;
对所述前驱体溶液的涂层进行热处理,获得第一载流子传输层;
在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,所述金属颗粒层的厚度为0.1nm~10nm;
对所述金属颗粒层进行氧化获得金属氧化物层。
可选地,所述第一载流子传输层为电子传输层,所述第一载流子传输层的材料为功函数小于或等于6eV的n型半导体材料;
或,
所述第一载流子传输层为空穴传输层,所述第一载流子传输层的材料为功函数小于或等于3eV的p型半导体材料、功函数大于或等于5eV的n型半导体材料中的任一种。
可选地,所述金属氧化物层与所述第一载流子传输层的导电类型相同,或,所述金属氧化物层为绝缘层。
可选地,所述金属材料的标准电极电势为-2.400V~0V。
可选地,所述金属材料包括Al、Zr、Ti、Mg、Sn、Zn、Ni中的至少一种。
可选地,所述在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,包括:
控制所述基底以1rpm~20rpm的旋转速度进行旋转,并在第一载流子传输层上采用金属材料以小于或等于
Figure PCTCN2021132487-appb-000001
的沉积速度制备金属颗粒层。
可选地,所述基底或所述第一载流子传输层为无机材料,所述对所述金属颗粒层进行氧化得到金属氧化物层,包括:
在氧化气氛中将所述金属颗粒层加热至300℃~800℃,保持10分钟~120分钟,得到金属氧化物层。
可选地,所述基底或所述第一载流子传输层为有机材料,所述对所述金属颗粒层进行氧化得到金属氧化物层,包括:
对所述金属颗粒层进行电化学阳极氧化,所述电化学阳极氧化的氧化环境包括酸性环境、碱性环境和中性环境中的任一种;
所述对所述金属颗粒层进行电化学阳极氧化之后,还包括:
对所述金属氧化物层进行退火。
第二方面,本公开还提供了一种复合载流子传输层,所述复合载流子传输层包括:
第一载流子传输层、金属氧化物层,所述第一载流子传输层位于基底表面,所述金属氧化物层形成于所述第一载流子传输层上;
所述第一载流子传输层具有n型或p型导电类型;
所述第一载流子传输层为非连续薄膜;
至少部分所述金属氧化物层填充于所述第一载流子传输层的非连续区域。
可选地,所述第一载流子传输层为电子传输层,所述第一载流子传输层的材料为功函数小于或等于6eV的n型半导体材料。
或,
可选地,所述第一载流子传输层为空穴传输层,所述第一载流子传输层的材料为功函数小于或等于3eV的p型半导体材料、功函数大于或等于5eV的n型半导体材料中的任一种。
可选地,所述金属氧化物层与所述第一载流子传输层的导电类型相同,或,所述金属氧化物为绝缘层。
可选地,所述金属氧化物层的形成方法为:
在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,所述金属颗粒层的厚度为0.1nm~10nm;
可选地,所述金属材料的标准电极电势为-2.400V~0V。
可选地,所述金属材料包括Al、Zr、Ti、Mg、Sn、Zn、Ni中的至少一种。
对所述金属颗粒层进行氧化得到金属氧化物层。
第三方面,本公开还提供了一种太阳能电池,该太阳能电池包括第二方面所述的复合载流子传输层。
第四方面,本公开还提供了一种发光器件,该发光器件包括第二方面所述的复合载流子传输层。
本公开实施例中,在通过溶液涂敷法在基底上制备了第一载流子传输层后,采用金属材料通过沉积-氧化制备金属氧化物层,由于金属材料易于沉积,可以对第一载流子传输层上的缺陷进行填补,从而得到更均匀、致密的薄膜,金属氧化物层与第一载流子传输层构成的复合载流子传输层在实现载流子传输的功能时,由于具有更平整的表面结构和对透明导电衬底更高的覆盖率,因此,能够有效减少载流子的界面非辐射复合,提升发光器件或太阳能电池的转换效率。
附图简述
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了现有技术中透明导电衬底-载流子传输层-活性层结构的剖面示意图;
图2示出了本公开实施例提供的一种复合载流子传输层的制备方法的步骤流程图;
图3示出了本公开实施例提供的另一种复合载流子传输层的制备方法的步骤流程图;
图4示出了本公开实施例提供的一种金属颗粒层的结构示意图;并且
图5示出了本公开实施例提供的一种复合载流子传输层的结构示意图。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1示出了现有技术中透明导电衬底-载流子传输层-活性层结构的剖面示意图,如图1所示,该结构包括透明导电衬底101、载流子传输层102、活 性层103。
现有技术中,由于载流子传输层102通过溶液涂敷法制备,在溶剂挥发、薄膜热处理和晶粒生长的过程中,易形成多种结构缺陷,如凹陷缺陷1021、孔洞缺陷1022等缺陷,使得载流子传输层102不连续、不平整。再进一步通过溶液涂敷在载流子传输层102上制备活性层时,如图1所示,由于溶液表面张力的作用,活性层103的前驱体溶液难以充分填充凹陷缺陷1021出现空隙,使得活性层103与载流子传输层102不能良好的接触,影响发光器件或太阳能电池的转换效率;或者,活性层103的前驱体溶液填充孔洞缺陷1022,由于在孔洞缺陷1022透明导电衬底101未被载流子传输层102覆盖,导致活性层103与透明导电衬底101直接接触,产生并增大漏电电流,进一步影响发光器件或太阳能电池的效率。
图2示出了本公开实施例提供的一种复合载流子传输层的制备方法的步骤流程图,如图2所示,该方法可以包括:
步骤201、在基底上涂敷前驱体溶液,获得前驱体溶液的涂层。
本公开实施例中,由于太阳能电池通常包括两个载流子传输层,用于收集、迁移不同种类的载流子,因此,复合载流子传输层可以是复合电子传输层,也可以是复合空穴传输层,此时,既可以在透明导电衬底上直接制备复合载流子传输层,此时基底仅包括透明导电衬底;也可以在活性层上制备复合载流子传输层,从而避免进一步在复合载流子传输层上通过溶液法制备的其他膜层存在与载流子传输层接触不良、直接与活性层接触的问题,此时,基底包括透明导电衬底、活性层,以及在透明导电衬底与活性层间存在的载流子传输层,该载流子传输层可以是现有的载流子传输层,也可以是复合载流子传输层,本公开实施例对此不作具体限制。
本公开实施例中,透明导电衬底可以是镀有透明导电薄膜的刚性透明衬底或柔性透明衬底,可选地,刚性透明衬底可以是玻璃衬底,柔性透明衬底可以是PET(Polyethylene glycol Terephthalate,聚对苯二甲酸乙二醇酯)衬底、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)衬底等,透明导电薄膜可以是ITO(Indium Tin Oxide,铟掺杂氧化锡)、FTO(Fluorine Tin Oxide,)、AZO(Aluminum Zinc Oxide,铝掺杂氧化锌)等, 本公开实施例对此不作具体限制。
本公开实施例中,根据第一载流子传输层的种类不同,前驱体溶液的种类也不相同,其中,涂敷前驱体溶液可以是在基底上对前驱体溶液进行旋涂、浸涂、刮涂、喷涂等,从而获得基底上的前驱体溶液的涂层,在基底为透明导电衬底的情况下,涂层可以位于透明导电衬底的任意侧面,在基底包括光吸收层或发光层的情况下,涂层应位于光吸收层或发光层远离透明导电衬底的侧面,本公开实施例对此不作具体限制。
步骤202、对所述前驱体溶液的涂层进行热处理,获得第一载流子传输层。
本公开实施例中,可以对前驱体溶液的涂层进行热处理,以使得前驱体溶液的涂层脱除溶剂以形成薄膜,获得第一载流子传输层,其中,在前驱体溶液配制、涂敷以及涂层的热处理过程的操作可能导致第一载流子传输层在微观形貌上,不可避免的出现孔洞缺陷、凹陷缺陷等。
步骤203、在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,所述金属颗粒层的厚度为0.1nm~10nm。
本公开实施例中,金属材料指呈颗粒状的、标准状态下其氧化物可以稳定存在的金属单质,当所述的金属单质的标准电极电势在-2.400V~0V范围内时,其对应的氧化物在标准状态下可以稳定存在,在第一载流子传输层上沉积金属颗粒层时,由于颗粒状的金属材料与透明导电衬底具有更多的接触界面,因此,在热力学上,金属材料沉积在孔洞缺陷、凹陷缺陷上可以使得体系的能量更低,此时,在沉积过程中,金属材料能够优先充分填充第一载流子传输层的凹陷缺陷以及孔洞缺陷,从而填平第一载流子传输层上的缺陷。
本公开实施例中,可以采用物理气相沉积的方法制备金属颗粒层,可选地,可以是热蒸发沉积、电子束蒸发沉积、激光蒸发沉积等,由于在沉积速度过快时,金属材料可能更倾向于在非凹陷或非孔洞的高处富集,导致第一载流子层的凹陷缺陷、孔洞缺陷无法得到有效的填充,因此,需要调节金属材料的沉积速度为预设沉积速度,预设沉积速度小于金属材料向高处富集的最小沉积速度,从而能够保证对第一载流子层上凹陷、孔洞等缺陷的充分填充。可选地,还可以控制基底在沉积过程中处于旋转状态下,以得到更均匀地填充效果,提升金属颗粒层的均匀性。
本公开实施例中,对金属颗粒层进行后续氧化时,为避免金属颗粒层出现开裂等缺陷,可以在沉积过程中对金属颗粒层的厚度进行控制,使得金属颗粒层可达到填充凹陷、孔洞缺陷的效果即可,如在采用金属材料进行沉积制备金属颗粒层时,可以调整金属颗粒层的厚度为0.1nm~10nm,如可以是0.1nm、0.5nm、1nm、5nm、10nm等,从而避免金属颗粒层过厚导致后续氧化过程中发生开裂,产生缺陷,本公开实施例对金属颗粒层的具体厚度不作限制。
步骤204、对所述金属颗粒层进行氧化得到金属氧化物层。
本公开实施例中,可以对金属颗粒层进行氧化,使得金属颗粒层中的金属材料转化为其对应的氧化物,以得到金属氧化物层,金属氧化物层对第一载流子氧化层上的缺陷进行了填充,使得第一载流子传输层与金属氧化物层构成的复合载流子传输层表面平整、连续、衬底覆盖率高,能有效减少载流子的界面非辐射复合,从而提高发光器件或太阳能电池的性能。
本公开实施例中,通过调节金属材料的类型、氧化工艺等,还可以采用金属材料对第一载流子传输层进行掺杂,从而达到调节载流子传输层能级结构的效果,本领域技术人员可以根据需求的能级结构进行金属材料的选择。
本公开实施例中,在通过溶液涂敷法在基底上制备了第一载流子传输层后,采用金属材料通过沉积-氧化制备金属氧化物层,由于金属材料易于沉积,可以对第一载流子传输层上的缺陷进行填补,从而得到更均匀、致密的薄膜,使得第一载流子传输层与金属氧化物层构成的复合载流子传输层平整、连续,具有更平整的表面结构和对透明导电衬底更高的覆盖率,因此,能够有效减少载流子的界面非辐射复合,提升发光器件或太阳能电池的转换效率。
图3示出了本公开实施例提供的另一种复合载流子传输层的制备方法的步骤流程图,如图3所示,该方法可以包括:
步骤301、在基底上涂敷前驱体溶液,获得前驱体溶液的涂层。
本公开实施例中,步骤301可对应参照前述步骤201的相关描述,为避免重复,在此不做赘述。
本公开实施例中,在基底为透明导电衬底的情况下,可以在涂敷前驱体溶液前对透明导电衬底进行清洗,以保证后续涂敷的效果。
步骤302、对所述前驱体溶液的涂层进行热处理,获得第一载流子传输层。
本公开实施例中,步骤302可以对应参照前述步骤202的相关描述,为避免重复,在此不做赘述。其中,对前驱体溶液的涂层进行热处理的过程中,控制热处理的温度和时间使得溶剂挥发即可,根据溶剂种类的不同可以选择不同的温度和时间,本公开实施例对此不作具体限制。
可选地,所述第一载流子传输层为电子传输层,所述第一载流子传输层的材料为功函数小于或等于6eV的n型半导体材料。
本公开实施例中,第一载流子传输层可以是电子传输层,当第一载流子传输层为电子传输层时,其材料可以是功函数小于或等于6eV的n型半导体材料,如第一载流子传输层的材料可以是氧化锌、氧化钛、氧化锡、PC 61BM([6,6]-Phenyl C 61butyric acid methyl ester,1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C 61)、PC 71BM([6,6]-Phenyl C 71butyric acid methyl ester,1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C 61)、TPBi(1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene,1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯)、石墨烯等。
可选地,所述第一载流子传输层为空穴传输层,所述第一载流子传输层的材料为功函数小于或等于3eV的p型半导体材料、功函数大于或等于5eV的n型半导体材料中的任一种。
本公开实施例中,第一载流子传输也可以为空穴传输层,当第一载流子传输层为空穴传输层时,第一载流子传输层的材料可以为功函数小于或等于3eV的p型半导体材料或功函数大于或等于5eV的n型半导体材料,如第一载流子传输层的材料可以是硫氰化亚铜、碘化亚铜、氧化亚铜、氧化铜、铬酸亚铜、氧化镍、Spiro-OMeTAD(2,2',7,7'-Tetrakis-9,9'-spirobifluorene,2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴)、PTAA(poly(triaryl amine),聚[双(4-苯基)(2,4,6-三甲基苯基)胺])、PEDOT:PSS(Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate),聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸))、TFB(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine,9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、F8(9,9-di-n-octylfluorenyl-2,7-diyl,9,9-二辛基 芴)、TPD(N,N’-diphenyl-N,N’-bis(3-methyllphenyl)-(1,1’-biphenyl)-4,4’-diamine,N,N'-二苯基-N,N'-二(3-甲苯基)-1,1'-联苯-4,4'二胺)等。
可选地,所述金属氧化物层与所述第一载流子传输层的导电类型相同,或,所述金属氧化物层为绝缘层。
本公开实施例中,金属氧化物层可以与第一载流子传输层的导电类型相同的膜层,也可以是绝缘层,其中,在金属氧化物层与第一载流子传输层的导电类型相同时,可选地,第一载流子传输层的材料可以和金属氧化物层相同,第一载流子传输层的材料也可以是与金属氧化物不同的材料,本公开实施例对此不做具体限制。
本公开实施例中,第一载流子传输层的材料可以是无机材料,也可以是有机材料,在第一载流子传输层的材料为无机材料的情况下,第一载流子传输层的晶粒尺寸可以为1nm~2000nm,第一载流子传输层上的孔洞缺陷、凹陷缺陷等的尺寸在10nm~100nm之间,表面粗糙度为1nm~30nm;在第一载流子传输层的材料为有机材料的情况下,第一载流子传输层上的孔洞缺陷、凹陷缺陷等的尺寸在1nm~50nm之间,表面粗糙度为1nm~20nm。由上述内容可以看出,第一载流子传输层的材料不同时,缺陷结构的大小、表面粗糙度也有所不同,但可以看出不同材料的第一载流子传输层均存在尺寸范围较大的缺陷结构,且表面较为不平整。
步骤303、控制所述基底以1rpm~20rpm的旋转速度进行旋转,并在第一载流子传输层上采用金属材料以小于或等于
Figure PCTCN2021132487-appb-000002
的沉积速度制备金属颗粒层,所述金属颗粒层的厚度为0.1nm~10nm。
本公开实施例中,在对金属材料进行沉积的过程中,可以控制基底以1rpm~20rpm的旋转速度进行旋转,以使金属材料更加均匀的沉积在第一载流子传输层上,此时,预设沉积速度可以是小于或等于
Figure PCTCN2021132487-appb-000003
在较小的沉积速度下,金属材料可以充分填充第一载流子传输层上的缺陷结构。
可选地,所述金属材料的标准电极电势为-2.400V~0V。
可选地,所述金属材料包括Al、Zr、Ti、Mg、Sn、Zn、Ni中的至少一种
本公开实施例中,金属材料可以选择标准电极电势在-2.400V~0V之间的 金属材料,如可以是Al(铝)、Zr(锆)、Ti(钛)、Mg(镁)、Sn(锡)、Zn(锌)、Ni(镍)等,本公开实施例对此不作具体限制。
图4示出了本公开实施例提供的一种金属颗粒层的结构示意图,如图4所示,包括透明导电衬底401、第一载流子传输层402以及金属颗粒层403,金属颗粒层403中不同的圆点表示金属材料的不同颗粒,其中,金属颗粒层403填充了第一载流子传输层402上的凹陷缺陷4021以及孔洞缺陷4022等不连续区域。
可选地,所述基底或所述第一载流子传输层为无机材料,所述步骤303之后,包括:
步骤304、在氧化气氛中将所述金属颗粒层加热至300℃~800℃,保持10分钟~120分钟,得到金属氧化物层。
本公开实施例中,基底或第一载流子传输层为无机材料时,可以通过热处理氧化的方式对金属颗粒层进行氧化,包括在氧化气氛下将金属颗粒层加热到300℃~800℃,并保持10分钟~120分钟,从而获得包括金属材料的氧化物的金属氧化物层,其中,氧化气氛包括具有氧化性的气体气氛,对金属颗粒层的加热温度可以是300℃、350℃、400℃、600℃、800℃等,温度的保持时间可以是10分钟、15分钟、20分钟、50分钟、100分钟、120分钟等,本公开实施例对此不作具体限制。
可选地,所述基底或所述第一载流子传输层为无机材料。
所述步骤303之后,包括:
步骤305、对所述金属颗粒层进行电化学阳极氧化,得到金属氧化物层,所述电化学阳极氧化的氧化环境包括酸性环境、碱性环境和中性环境中的任一种。
本公开实施例中,基底或第一载流子传输层为无机材料,可以通过电化学阳极氧化的方式对金属颗粒层进行氧化,其中,电化学阳极氧化通常是指在相应的氧化环境下,在外加电流的作用中形成氧化膜,可选地,氧化环境可以是酸性环境、碱性环境和中性环境中的任一种。
步骤306、对所述金属氧化物层进行退火。
本公开实施例中,为了提升金属氧化物层的致密度,消除缺陷,在电化 学阳极氧化后,还可以对金属氧化物层进行退火处理,可选地,可以是将金属氧化物层加热至退火温度,并保持一定时间再冷却,从而降低残余应力,消除缺陷、提升金属氧化物层的致密度。
可选地,所述步骤306,包括:
步骤S11、根据所述基底和所述第一载流子传输层的耐受温度,确定所述金属氧化物层的退火温度。
本公开实施例中,为了避免在退火处理中,温度升高损坏其他膜层,可以先确定基底、第一载流子传输层等的耐受温度,其中,耐受温度指膜层不发生损伤的最高温度,可以根据耐受温度确定退火处理中的退火温度,退火温度应小于或等于耐受温度,以避免退火温度过高损坏其他膜层,可选地,退火温度可以小于或等于150℃。
步骤S12、在所述退火温度下,对所述金属氧化物层处理10分钟~120分钟,以进行退火处理。
本公开实施例中,在根据耐受温度确定退火温度后,可以在该退火温度下对金属氧化物层进行退火处理,其中,可以处理10分钟~120分钟,如可以是10分钟、15分钟、20分钟、50分钟、100分钟、120分钟等。
可选地,所述金属氧化物层的金属材料的晶粒尺寸为1nm~50nm,所述金属氧化物层的粗糙度为0.1nm~10nm。
本公开实施例中,为了保证金属材料沉积在第一载流子传输层的孔洞缺陷和凹陷缺陷中,金属材料的晶粒尺寸小于孔洞缺陷、凹陷缺陷等的尺寸,如金属材料的晶粒尺寸可以是1nm~50nm,可以看出在第一载流子传输层上形成的金属氧化物层的粗糙度为0.1nm~10nm,有效降低了第一载流子传输层的粗糙度,提升了表面平整性与对透明导电衬底的覆盖率。
图5示出了本公开实施例提供的一种复合载流子传输层的结构示意图,如图5所示,在图4的基础上,对金属颗粒层403进行热氧化处理,获得金属氧化物层404,此时,第一载流子传输层402与金属氧化物层404构成位于透明导电衬底401上的复合载流子传输层405。
本公开实施例中,第一载流子传输层、金属氧化物层的材料相同时,两层之间的界面处会发生相互的渗透和扩散,或者两层之间没有清晰的分界线, 此时,可以通过两层的晶粒尺寸鉴定和区分复合载流子传输层的结构;第一载流子传输层、金属氧化物层的材料不同时,两层之间会有明显的界面区分,此时,既可以通过晶粒尺寸区分层结构,也可以通过元素种类检测和区分不同的层结构。
本公开实施例中,在通过溶液涂敷法在基底上制备了第一载流子传输层后,采用金属材料通过沉积-氧化制备金属氧化物层,由于金属材料易于沉积,可以对第一载流子传输层上的缺陷进行填补,从而得到更均匀、致密的薄膜,金属氧化物层与第一载流子传输层构成的复合载流子传输层在实现载流子传输的功能时,由于具有更平整的表面结构和对透明导电衬底更高的覆盖率,因此,能够有效减少载流子的界面非辐射复合,提升发光器件或太阳能电池的转换效率。
本公开实施例还提供了一种复合载流子传输层,该复合载流子传输层包括:
第一载流子传输层、金属氧化物层,所述金属氧化物层形成于所述第一载流子传输层上。
所述第一载流子传输层具有n型或p型导电类型。
所述第一载流子传输层为非连续薄膜。
至少部分所述金属氧化物层填充于所述第一载流子传输层的非连续区域。
本公开实施例中,复合载流子传输层包括位于基底表面的第一载流子传输层,以及形成于第一载流子传输层上的金属氧化物层,第一载流子传输层在制备过程中受限于制备工艺,易形成不同的缺陷,从而使得第一载流子传输层为非连续薄膜,存在不平整、不连续的缺陷,其中,缺陷对应的区域为第一载流子传输层的非连续区域;金属氧化物层形成于第一载流子传输层上,因此,在形成过程中,可以至少部分的填充于第一载流子传输层的非连续区域,使得第一载流子传输层与金属氧化物层构成的复合载流子传输层平整、连续,与其他活性层形成充分、良好的接触,提高太阳能电池的转换效率。另外,基底可对应参照前述图2中步骤202对基底的相关描述,为避免重复,在此不再赘述。
本公开实施例中,第一载流子传输层的导电类型可以是N型也可以是P 型,即第一载流子传输层可以是电子传输层,也可以是空穴传输层,可以参照前述图3中步骤302的相关描述,为避免重复,在此不再赘述。
可选地,所述金属氧化物层与所述第一载流子传输层的导电类型相同,或,所述金属氧化物为绝缘层。
本公开实施例中,关于金属氧化物层可对应参照图3中步骤302的相关描述,为避免重复,在此不再赘述。
可选地,所述金属材料的标准电极电势为-2.400V~0V。
可选地,所述金属材料包括Al、Zr、Ti、Mg、Sn、Zn、Ni中的至少一种。
本公开实施例中,关于金属材料可对应参照图3中步骤303的相关描述,为避免重复,在此不再赘述。
可选地,所述金属氧化物层的形成方法为:
在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,所述金属颗粒层的厚度为0.1nm~10nm;
对所述金属颗粒层进行氧化得到金属氧化物层。
本公开实施例中,金属氧化物的形成方法可对应参照前述步骤203至步骤204的相关描述,为避免重复,在此不做赘述。
本公开实施例中,复合载流子传输层位于基底表面,包括第一载流子传输层和金属氧化物层,在通过溶液涂敷法在基底上制备了第一载流子传输层后,采用金属材料通过沉积-氧化制备金属氧化物层,由于金属材料易于沉积,可以对第一载流子传输层上的缺陷进行填补,从而得到更均匀、致密的薄膜,金属氧化物层与第一载流子传输层构成的复合载流子传输层在实现载流子传输的功能时,由于具有更平整的表面结构和对透明导电衬底更高的覆盖率,因此,能够有效减少载流子的界面非辐射复合,提升发光器件或太阳能电池的转换效率。
本公开实施例还提供了一种太阳能电池,该太阳能电池包括前述复合载流子传输层。
本公开实施例还提供了一种发光器件,该发光器件包括前述复合载流子传输层。
实施例1
透明导电衬底为刚性透明衬底,第一载流子传输层和金属氧化物层材料相同。
在本公开实施例中,透明导电衬底采用FTO导电玻璃,第一载流子传输层采用TiO 2,金属颗粒层采用Ti,符合载流子传输层的制备方法包括:
将FTO导电玻璃分别在清洗剂、去离子水、丙酮、异丙醇中超声清洗15min;
在清洗后的FTO导电玻璃上旋涂钛酸四异丙酯的异丙醇溶液,浓度0.3M,旋涂速度3000rpm,时间20s,获得FTO导电玻璃上钛酸四异丙酯的异丙醇溶液的涂层;
将旋涂后的钛酸四异丙酯的异丙醇溶液的涂层在100℃烘干10min,500℃热处理30分钟后,得到了“FTO/TiO 2(旋涂)”的“透明导电衬底/第一载流子传输层”结构,TiO 2(旋涂)层的厚度50nm~60nm;
在“FTO/TiO 2(旋涂)”结构上蒸镀一层Ti金属颗粒层,厚度为2nm,蒸镀速度为
Figure PCTCN2021132487-appb-000004
得到“FTO/TiO 2(旋涂)/Ti金属颗粒层”结构;
将“FTO/TiO 2(旋涂)/Ti金属颗粒层”结构在空气气氛下,500℃热处理1小时后,得到“FTO/TiO 2(旋涂)/TiO 2(沉积-氧化)”的“透明导电衬底/第一载流子传输层/金属氧化物层”结构的复合载流子传输层。
实施例2
透明导电衬底为刚性透明衬底,第一载流子传输层和金属氧化物层材料不同;
在本公开实施例中,透明导电衬底采用FTO导电玻璃,第一载流子传输层采用ZnO,金属颗粒层采用Ti;
将FTO导电玻璃分别在清洗剂、去离子水、丙酮、异丙醇中超声清洗15min;
在清洗后的FTO导电玻璃上旋涂氧化锌纳米颗粒的乙醇溶液,浓度为0.35M,旋涂速度4000rpm,时间30秒,获得FTO导电玻璃上氧化锌纳米颗粒的乙醇溶液的涂层;
将旋涂后的氧化锌纳米颗粒的乙醇溶液的涂层在150℃烘干15min后,得到了“FTO/ZnO(旋涂)”的“透明导电衬底/第一载流子传输层”结构,ZnO(旋涂)层的厚度为30nm~50nm;
在“FTO/ZnO(旋涂)”结构上蒸镀一层Ti金属颗粒层,厚度为3nm,蒸 镀速度为
Figure PCTCN2021132487-appb-000005
得到“FTO/ZnO(旋涂)/Ti金属颗粒层”结构;
将“FTO/ZnO(旋涂)/Ti金属颗粒层”结构在空气气氛下、450℃热处理1小时后,最终得到“FTO/ZnO(旋涂)/TiO 2(沉积-氧化)”的“透明导电衬底/第一载流子传输层/金属氧化物层”结构的复合载流子传输层;
实施例3
透明导电衬底为柔性透明衬底,第一载流子传输层和金属氧化物层材料相同;
在本公开实施例中,透明导电衬底采用PEN-ITO导电薄膜衬底,第一载流子传输层采用SnO 2,金属颗粒层采用Sn;
将PEN-ITO导电衬底分别在清洗剂、去离子水、丙酮、异丙醇中超声清洗15min;
在清洗后的PEN-ITO导电衬底上旋涂3wt%的纳米SnO 2的水溶液,旋涂速度4000rpm,旋涂时间20s,获得PEN-ITO导电衬底上的纳米SnO 2的水溶液地涂层;
将旋涂后纳米SnO 2的水溶液地涂层在150℃热处理30min后,得到“PEN-ITO/SnO 2(旋涂)”的“透明导电衬底/第一载流子传输层”结构,SnO 2(旋涂)层的厚度为40nm~80nm;
在“PEN-ITO/SnO 2(旋涂)”结构上蒸镀一层Sn金属颗粒层,厚度为5nm,蒸镀速度为
Figure PCTCN2021132487-appb-000006
得到“PEN-ITO/SnO 2(旋涂)/Sn金属颗粒层”结构。
将“PEN-ITO/SnO 2(旋涂)/Sn金属颗粒层”结构作为阳极,Pt电极作为阴极,在0.5M硫酸电解液中进行阳极氧化,反应电压为10V~20V,反应时间为1min~10min,得到“PEN-ITO/SnO 2(旋涂)/Sn(沉积-氧化)”的“透明导电衬底/第一载流子传输层/金属氧化物层”结构的复合载流子传输层。
实施例4
透明导电衬底为柔性透明衬底,第一载流子传输层和金属氧化物层不同。
在本公开实施例中,透明导电衬底采用PEN-ITO导电薄膜衬底,第一载流子传输层采用PEDOT:PSS,金属颗粒层采用Ni;
将PEN-ITO导电衬底分别在清洗剂、去离子水、丙酮、异丙醇中超声清洗15min;
在清洗后的PEN-ITO导电衬底上旋涂PEDOT:PSS溶液(贺利氏AI4083),旋涂速度3000rpm,时间20s,将旋涂后的衬底在140℃热处理15min后,得到“PEN-ITO/PEDOT:PSS(旋涂)”的“透明导电衬底/第一载流子传输层”结构,其中,PEDOT:PSS(旋涂)层的厚度为40nm~100nm;
在“PEN-ITO/PEDOT:PSS(旋涂)”结构上蒸镀一层Ni金属颗粒层,厚度为4nm,蒸镀速度为
Figure PCTCN2021132487-appb-000007
得到“PEN-ITO/PEDOT:PSS(旋涂)/Ni金属颗粒层”结构;
将“PEN-ITO/PEDOT:PSS(旋涂)/Ni金属颗粒层”结构作为阳极,Pt电极作为阴极,在1M的硫酸电解液中进行阳极氧化,反应电压为1V~10V,反应时间为1min~30min,结束阳极氧化后再将透明导电衬底在160℃热处理2小时,以增加薄膜致密度,得到“PEN-ITO/PEDOT:PSS(旋涂)/NiO(沉积-氧化)”的“透明导电衬底/第一载流子传输层/金属氧化物层”结构的复合载流子传输层。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本申请实施例所必须的。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (16)

  1. 一种复合载流子传输层的制备方法,其特征在于,所述方法包括:
    在基底上涂敷前驱体溶液,获得前驱体溶液的涂层;
    对所述前驱体溶液的涂层进行热处理,获得第一载流子传输层;
    在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层;
    对所述金属颗粒层进行氧化得到金属氧化物层。
  2. 根据权利要求1所述的制备方法,其特征在于,所述第一载流子传输层为电子传输层,所述第一载流子传输层的材料为功函数小于或等于6eV的n型半导体材料;
    或,
    所述第一载流子传输层为空穴传输层,所述第一载流子传输层的材料为功函数小于或等于3eV的p型半导体材料、功函数大于或等于5eV的n型半导体材料中的任一种。
  3. 根据权利要求1所述的制备方法,其特征在于,所述金属颗粒层的厚度为0.1nm~10nm。
  4. 根据权利要求2所述的制备方法,其特征在于,所述金属氧化物层与所述第一载流子传输层的导电类型相同;或,所述金属颗粒层的厚度为0.1nm~10nm,所述金属氧化物层为绝缘层。
  5. 根据权利要求1所述的制备方法,其特征在于,所述金属材料的标准电极电势为-2.400V~0V。
  6. 根据权利要求4所述的制备方法,其特征在于,所述金属材料包括Al、Zr、Ti、Mg、Sn、Zn、Ni中的至少一种。
  7. 根据权利要求1~6任一项所述的制备方法,其特征在于,所述在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,包括:
    控制所述基底以1rpm~20rpm的旋转速度进行旋转,并在第一载流子传输层上采用金属材料以小于或等于
    Figure PCTCN2021132487-appb-100001
    的沉积速度制备金属颗粒层。
  8. 根据权利要求1~6任一项所述的制备方法,其特征在于,所述基底或 所述第一载流子传输层为无机材料,所述对所述金属颗粒层进行氧化得到金属氧化物层,包括:
    在氧化气氛中将所述金属颗粒层加热至300℃~800℃,保持10分钟~120分钟,得到金属氧化物层。
  9. 根据权利要求1~6任一项所述的制备方法,其特征在于,所述基底或所述第一载流子传输层为有机材料,所述对所述金属颗粒层进行氧化得到金属氧化物层,包括:
    对所述金属颗粒层进行电化学阳极氧化,得到金属氧化物层,所述电化学阳极氧化的氧化环境包括酸性环境、碱性环境和中性环境中的任一种;
    所述对所述金属颗粒层进行电化学阳极氧化之后,还包括:
    对所述金属氧化物层进行退火。
  10. 一种复合载流子传输层,其特征在于,所述复合载流子传输层包括:
    第一载流子传输层、金属氧化物层,所述第一载流子传输层位于基底表面,所述金属氧化物层形成于所述第一载流子传输层上;
    所述第一载流子传输层具有n型或p型导电类型;
    所述第一载流子传输层为非连续薄膜;
    至少部分所述金属氧化物层填充于所述第一载流子传输层的非连续区域。
  11. 根据权利要求10所述的复合载流子传输层,其特征在于,所述金属氧化物层与所述第一载流子传输层的导电类型相同,或,所述金属氧化物为绝缘层。
  12. 根据权利要10所述的复合载流子传输层,其特征在于,所述金属氧化物层的形成方法为:
    在所述第一载流子传输层上采用金属材料以预设沉积速度制备金属颗粒层,所述金属颗粒层的厚度为0.1nm~10nm;
    对所述金属颗粒层进行氧化得到金属氧化物层。
  13. 根据权利要求12所述的复合载流子传输层,其特征在于,所述金属材料的标准电极电势为-2.400V~0V。
  14. 根据权利要求12所述的复合载流子传输层,其特征在于,所述金属材料包括Al、Zr、Ti、Mg、Sn、Zn、Ni中的至少一种。
  15. 一种太阳能电池,其特征在于,所述太阳能电池包括权利要求10~14任一项所述的复合载流子传输层。
  16. 一种发光器件,其特征在于,所述发光器件包括权利要求10~14任一项所述的复合载流子传输层。
PCT/CN2021/132487 2020-12-24 2021-11-23 复合载流子传输层及其制备方法、太阳能电池和发光器件 WO2022134993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556792.2 2020-12-24
CN202011556792.2A CN112786793B (zh) 2020-12-24 2020-12-24 复合载流子传输层及其制备方法、太阳能电池和发光器件

Publications (1)

Publication Number Publication Date
WO2022134993A1 true WO2022134993A1 (zh) 2022-06-30

Family

ID=75752290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132487 WO2022134993A1 (zh) 2020-12-24 2021-11-23 复合载流子传输层及其制备方法、太阳能电池和发光器件

Country Status (2)

Country Link
CN (1) CN112786793B (zh)
WO (1) WO2022134993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116669440A (zh) * 2023-07-31 2023-08-29 宁德时代新能源科技股份有限公司 太阳能电池及其制备方法、光伏组件和光伏装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786793B (zh) * 2020-12-24 2023-10-10 隆基绿能科技股份有限公司 复合载流子传输层及其制备方法、太阳能电池和发光器件
CN115000316B (zh) * 2022-06-22 2024-01-09 苏州大学 一种双电子传输层的量子点发光二极管及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867916A (zh) * 2012-09-21 2013-01-09 清华大学 一种聚合物太阳能电池及其制备方法
CN107275486A (zh) * 2017-05-24 2017-10-20 西安交通大学 双层双尺度复合结构氧化物‑二氧化钛薄膜及其制备工艺和用途
CN112786793A (zh) * 2020-12-24 2021-05-11 隆基绿能科技股份有限公司 复合载流子传输层及其制备方法、太阳能电池和发光器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176667A (ja) * 1999-12-21 2001-06-29 Toyota Motor Corp 有機el素子
KR101794082B1 (ko) * 2016-06-03 2017-11-06 고려대학교 산학협력단 아민기를 갖는 덴드리머로 리간드 치환된 양자점 발광층을 포함하는 양자점 발광소자 및 이의 제조방법
CN106299133A (zh) * 2016-10-08 2017-01-04 吉林大学 一种基于金属氧化物‑金属纳米结构杂化电子传输层的聚合物太阳能电池及其制备方法
US11233211B2 (en) * 2018-03-14 2022-01-25 Samsung Electronics Co., Ltd. Electroluminescent device, manufacturing method thereof, and display device comprising the same
CN109768168B (zh) * 2019-02-28 2022-12-30 深圳市先进清洁电力技术研究有限公司 一种制备双电子传输层钙钛矿太阳能电池方法
CN112103392A (zh) * 2019-06-18 2020-12-18 北京宏泰创新科技有限公司 一种复合空穴传输层及包含其的钙钛矿太阳能电池
CN111785835A (zh) * 2020-07-24 2020-10-16 西安电子科技大学 一种复合电子传输层钙钛矿太阳能电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867916A (zh) * 2012-09-21 2013-01-09 清华大学 一种聚合物太阳能电池及其制备方法
CN107275486A (zh) * 2017-05-24 2017-10-20 西安交通大学 双层双尺度复合结构氧化物‑二氧化钛薄膜及其制备工艺和用途
CN112786793A (zh) * 2020-12-24 2021-05-11 隆基绿能科技股份有限公司 复合载流子传输层及其制备方法、太阳能电池和发光器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116669440A (zh) * 2023-07-31 2023-08-29 宁德时代新能源科技股份有限公司 太阳能电池及其制备方法、光伏组件和光伏装置
CN116669440B (zh) * 2023-07-31 2024-05-10 宁德时代新能源科技股份有限公司 太阳能电池及其制备方法、光伏组件和光伏装置

Also Published As

Publication number Publication date
CN112786793B (zh) 2023-10-10
CN112786793A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2022134993A1 (zh) 复合载流子传输层及其制备方法、太阳能电池和发光器件
Jiang et al. Planar‐structure perovskite solar cells with efficiency beyond 21%
Liu et al. Hydrothermally treated SnO2 as the electron transport layer in high‐efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%
EP2560212B1 (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
US10236460B2 (en) Photovoltaic cell enhancement through UVO treatment
TWI532198B (zh) 太陽能電池及其製造方法
WO2007029750A1 (ja) 有機薄膜光電変換素子及びその製造方法
WO2018001372A1 (zh) 氧化镍薄膜及其制备方法、功能材料、薄膜结构的制作方法及电致发光器件
CN105140411B (zh) 不含ito的qled及其制备方法
CN105161635A (zh) 一种具有自组装电子传输层的qled器件及其制备方法
Song et al. Low‐Temperature Electron Beam Deposition of Zn‐SnOx for Stable and Flexible Perovskite Solar Cells
Zhang et al. Efficient inverted planar formamidinium lead iodide perovskite solar cells via a post improved perovskite layer
CN108336244A (zh) 一种基于界面修饰的钙钛矿发光二极管及其制备方法
Maity et al. Improvement of quantum and power conversion efficiency through electron transport layer modification of ZnO/perovskite/PEDOT: PSS based organic heterojunction solar cell
US20170229250A1 (en) Perovskite solar cell
Li et al. Blade‐Coated Carbon Electrode Perovskite Solar Cells to Exceed 20% Efficiency Through Protective Buffer Layers
CN109950412A (zh) 一种基于紫外共混蒸镀工艺钙钛矿发光二极管及制备方法
WO2014020989A1 (ja) 有機薄膜太陽電池の製造方法
KR101575976B1 (ko) 유기태양전지 및 유기태양전지의 제조 방법
WO2020077710A1 (zh) 一种聚合物-金属螯合物阴极界面材料及其应用
JP2007027171A (ja) 光電変換素子
Yi et al. Enhanced interface of polyurethane acrylate via perfluoropolyether for efficient transfer printing and stable operation of PEDOT: PSS in perovskite photovoltaic cells
US8623684B2 (en) Optoelectronic device having a sandwich structure and method for forming the same
CN104025330A (zh) 高聚物太阳能电池及其制备方法
KR101316237B1 (ko) 용액 공정 기반의 정공 전도층 제조방법 및 이를 이용한 유기태양전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908992

Country of ref document: EP

Kind code of ref document: A1