WO2022134985A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2022134985A1
WO2022134985A1 PCT/CN2021/132201 CN2021132201W WO2022134985A1 WO 2022134985 A1 WO2022134985 A1 WO 2022134985A1 CN 2021132201 W CN2021132201 W CN 2021132201W WO 2022134985 A1 WO2022134985 A1 WO 2022134985A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter
bending
electrode terminal
battery cell
tab
Prior art date
Application number
PCT/CN2021/132201
Other languages
English (en)
French (fr)
Inventor
方堃
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21908984.4A priority Critical patent/EP4148897A4/en
Priority to KR1020227039367A priority patent/KR20220166343A/ko
Priority to JP2022568843A priority patent/JP2023525553A/ja
Publication of WO2022134985A1 publication Critical patent/WO2022134985A1/zh
Priority to US17/973,741 priority patent/US20230049457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery cell, a battery and an electrical device.
  • the requirements for the endurance performance of rechargeable and dischargeable batteries are getting higher and higher, and the key factor that determines the battery endurance performance is the energy density of the battery, and the improvement of energy density usually needs to increase
  • the volume of the electrode assembly of the battery the increase in the volume of the electrode assembly will lead to an increase in the overall volume of the rechargeable and dischargeable battery, and the installation space given to the battery by the electric vehicle is generally limited space, which is not conducive to the limited space. Assembly of the battery.
  • the present application provides a battery cell, a battery and an electrical device, aiming at improving the energy density of the battery.
  • the present application provides a battery cell, which includes an electrode assembly, including a first tab and a second tab, the first tab and the second tab are respectively located at both ends of the electrode assembly in a first direction
  • the first electrode terminal and the second electrode terminal, the first electrode terminal and the second electrode terminal are respectively located on both sides of the first direction of the electrode assembly;
  • the first adapter is used to connect the first electrode lug and the first electrode terminal ;
  • the battery cell according to the embodiment of the present application includes a first adapter piece and a second adapter piece, and the first adapter piece and the second adapter piece each include at least two non-bending parts and are connected to every adjacent two In the bending part between the non-bending parts, the first adaptor and the second adaptor are all stacked structures, occupying a small space, which can improve the space utilization rate of the battery cell; and compared with the second adaptor
  • the number of non-bending parts of the first adapter is reduced, the number of bending times of the first adapter is relatively reduced, the occupied space of the first adapter can be reduced, and the battery cell can be further improved.
  • the space utilization rate of the battery is improved, thereby improving the energy density of the battery cell, thereby improving the battery life performance.
  • the at least two non-bending parts of the first adapter include a first non-bending part and a second non-bending part, the first non-bending part is connected to the first electrode terminal, and the first non-bending part is connected to the first electrode terminal.
  • Two non-bending parts are connected to the first tab;
  • at least two non-bending parts of the second adapter include a third non-bending part, a fourth non-bending part and a fifth non-bending part, the third non-bending part
  • the bending portion is connected to the second electrode terminal, the fourth non-bending portion is connected to the second tab, and the fifth non-bending portion is arranged between the third non-bending portion and the fourth non-bending portion.
  • the laminated first adapter does not need to be welded as a whole to the first adapter, which greatly reduces the difficulty of welding the first adapter, the first electrode terminal and the first tab.
  • the resistivity of the second adapter is smaller than the resistivity of the first adapter.
  • the resistance difference between the first adapter and the second adapter is reduced, so that the heat generated by the first adapter and the second adapter are close to each other, and the consistency of the battery cells is improved.
  • the material of the first adapter is aluminum, and the material of the second adapter is copper.
  • the length of the second adapter is greater than the length of the first adapter.
  • the thermal design of the first adapter and the second adapter is more balanced.
  • the minimum thickness of the bent portion is smaller than the minimum thickness of the non-bent portion.
  • the first adapter and the second adapter are easier to bend, which reduces the difficulty of entering the case; and the laminated first adapter and the second adapter formed by bending have a smaller gap at the bend, which can improve the battery cells. body space utilization.
  • the bending portion includes a transition section, the transition section is connected with the non-bending section, and the thickness of the transition section gradually decreases in a direction away from the connected non-bending section.
  • the first electrode terminal penetrates and is connected to the non-bending portion of the first adapter.
  • the welding position of the first electrode terminal and the first adapter can be accurately positioned, thereby improving the welding yield.
  • the first electrode terminal includes a first terminal body, a first platform part and a first protruding part respectively connected to the first terminal body, and the first protruding part penetrates through and is connected to the first adapter
  • the non-bending part of the first platform part is in contact with the side of the non-bending part of the first adapter that is away from the first tab.
  • the first platform portion is used to limit the displacement of the first protruding portion in the first direction, so as to prevent the first electrode terminal from slipping out of the first adapter before welding.
  • the present application provides a battery including the battery cell according to the above embodiment.
  • the battery life performance is improved.
  • the present application provides an electrical device comprising the battery cell or battery according to the above embodiments.
  • a battery cell or battery is used to provide electrical energy. By increasing the energy density of the battery cell, the endurance performance of the electric device is improved.
  • 1a is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG. 1b is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a battery module disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery module disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is the top view structure schematic diagram of Fig. 4;
  • Fig. 6 is the sectional structure schematic diagram of Fig. 5 along A-A direction;
  • Fig. 7 is the exploded structure schematic diagram of the second end cap assembly
  • FIG. 9 is a schematic structural diagram of the second adapter in a non-bent state
  • FIG. 10 is a schematic cross-sectional structural diagram of the second adapter along the B-B direction
  • Fig. 11 is the partial enlarged structural schematic diagram of I of Fig. 10;
  • Figure 12 is a schematic exploded view of the first end cap assembly
  • FIG. 13 is a schematic structural diagram of the first adapter in a non-bent state
  • FIG. 15 is a process diagram of manufacturing a battery cell.
  • each reference numeral in the drawings 1, vehicle; 1a, motor; 1b, controller; 10, battery; 11, first part; 12, second part ; 20, battery module; 30, shell; 31, cylinder; 32, first cover; 33, second cover; 40, battery cell; 50, shell; 60, electrode assembly; 61, first tab; 62, second tab; 70, end cap; 801, first electrode terminal; 81, first terminal body; 82, first platform part; 83, first raised part; 802, second electrode terminal 84, the second terminal body; 85, the second platform part; 86, the second convex part; 90, the first adapter; 91, the first non-bending part; 92, the second non-bending part; 110, the third non-bending part; 111, the first through hole; 120, the fifth non-bending part; 121, the second through hole; 140, the fourth non-bending part; 130, Bending part; 131, transition section; 132, middle section.
  • the existing battery cells usually increase the energy density of the battery by increasing the volume of the electrode assembly of the battery, and the increase in the volume of the electrode assembly will lead to an increase in the volume of other components associated with the electrode assembly, such as accommodating the electrode assembly. Therefore, the overall occupied space of the battery cells will increase, which is not conducive to the assembly of multiple groups of battery cells in a limited space, and will lead to a substantial increase in the input cost, which is not conducive to practical applications.
  • the applicant starts from the space utilization rate inside the battery cell and improves the space utilization rate, thereby increasing the battery energy density.
  • the form is designed, and it is found that the adapter after bending and stacking takes up less space, and the overcurrent capacity of the adapter after stacking is large, which can greatly improve the space utilization rate of the battery and improve the energy density.
  • Positive and negative adapters Generally, the structure with the same number of stacks is used. The applicant found that even if the number of stacks of one-end adapters is reduced, the production requirements can still be met; therefore, the use of the same number of stacks of positive and negative adapters results in a waste of internal space of the battery cell, reducing the space utilization.
  • the applicant improves the structure of the battery cell, and the embodiments of the present application are further described below.
  • FIGS. 1 a to 15 For a better understanding of the present application, the embodiments of the present application are described below with reference to FIGS. 1 a to 15 .
  • the embodiment of the present application provides an electrical device using the battery 10 as a power source.
  • the electrical device can be, but not limited to, a vehicle, a ship, or an aircraft.
  • a vehicle 1 an embodiment of the present application provides a vehicle 1 .
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle. New energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the vehicle 1 may include a motor 1 a , a controller 1 b and a battery 10 .
  • the controller 1b is used to control the battery 10 to supply power to the motor 1a.
  • the motor 1a is connected to the wheels through a transmission mechanism, thereby driving the vehicle 1 to travel.
  • the battery 10 can be used as a driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 may be provided at the bottom or at the front or rear of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 .
  • the battery 10 may be used as the operating power source of the vehicle 1 for the electrical system of the vehicle 1 .
  • the battery 10 may be used for the operating power requirements of the vehicle 1 for starting, navigating, and operating.
  • the battery 10 includes a case.
  • the type of cabinet is not limited.
  • the case can be a frame-shaped case, a disc-shaped case, a box-shaped case, or the like.
  • the box body includes a first part 11 and a second part 12 that is covered with the first part 11 .
  • the second part 12 and the first part 11 are covered to form a receiving part.
  • FIG. 2 schematically shows a battery module 20 according to an embodiment, and the battery module 20 is disposed in a box.
  • the battery module 20 includes a plurality of battery cells 40 .
  • the battery 10 may include a plurality of battery cells 40, wherein the plurality of battery cells 40 may be connected in series or in parallel or in a mixed connection, and the mixed connection refers to series and parallel connection the mix of. That is to say, a plurality of battery cells 40 may be directly disposed in the accommodating portion of the case to form the battery 10 .
  • the battery module 20 includes a casing 30 and battery cells 40 disposed in the casing 30 .
  • the housing 30 includes a cylinder 31 , a first cover 32 and a second cover 33 .
  • the first cover body 32 and the second cover body 33 are respectively disposed on both ends of the cylinder body 31 .
  • the first cover body 32 and the second cover body 33 are respectively detachably connected to the cylinder body 31 .
  • the first cover body 32 and the second cover body 33 can be respectively snap-connected to the cylinder body 31 or connected with screws.
  • the cylindrical body 31 , the first cover body 32 and the second cover body 33 are assembled to form an accommodation space.
  • the battery cells 40 are arranged in the accommodating space of the casing 30 .
  • the structure of the casing 30 is not limited to the above-mentioned embodiments, for example, the casing 30 is formed by snapping together two open cover-shaped parts, as long as the assembly of a plurality of battery cells 40 can be realized.
  • the battery cell 40 of the embodiment of the present application includes a case 50 and an electrode assembly 60 disposed in the case 50 .
  • the casing 50 in the embodiment of the present application has a cylindrical structure or other structures.
  • the case 50 has an inner space that accommodates the electrode assembly 60 and the electrolyte, and an opening communicating with the inner space.
  • the housing 50 may be fabricated from materials such as aluminum, aluminum alloys, or plastic.
  • the electrode assembly 60 of the embodiment of the present application may be formed by stacking or winding the first pole piece, the second pole piece and the separator, wherein the separator is an insulator between the first pole piece and the second pole piece.
  • the first pole piece is exemplified as a positive electrode piece
  • the second pole piece is a negative electrode piece for description.
  • Both the positive electrode sheet and the negative electrode sheet include a coated area and an uncoated area.
  • the positive electrode sheet active material is coated on the coated area of the positive electrode sheet
  • the negative electrode sheet active material is coated on the coated area of the negative electrode sheet.
  • the active substance is coated on the current collector formed by the metal sheet, and on the uncoated area, the active substance is not coated.
  • the electrode assembly 60 includes a main body portion, a first tab 61 and a second tab 62 .
  • the main body portion has two opposite end portions.
  • the first tab 61 and the second tab 62 are located at opposite ends of the electrode assembly 60 in the first direction, respectively. It can be understood that the first direction may be the length direction of the electrode assembly 60 .
  • the first tab 61 is the positive tab and the second tab 62 is the negative tab as an example for description.
  • the uncoated regions of the positive sheet are stacked to form the positive tabs, and the uncoated regions of the negative tabs are stacked to form the negative tabs.
  • the positive tab and the negative tab respectively extend from one end of the main body.
  • the battery cell 40 of the embodiment of the present application further includes an end cap assembly, and the end cap assembly includes an end cap 70 , an electrode terminal and an adapter.
  • the end cap 70 is in sealing connection with the housing 50 .
  • the electrode terminals are arranged on the end cap 70 .
  • the electrode terminal is electrically connected to the electrode assembly 60 through an adapter.
  • the adaptor plays a role in draining the electrode terminal and the electrode assembly 60 , and can ensure the normal current conduction between the electrode terminal and the electrode assembly 60 .
  • the number of end caps 70 , the number of electrode terminals, and the number of adapters are all two.
  • One end cap assembly is correspondingly disposed on each side of the two sides of the electrode assembly 60 in the first direction (ie, opposite sides in the length direction of the electrode assembly 60 ).
  • the adaptor in the battery cell shown in FIG. 6 is the structure in a bent state
  • the adaptor in the second end cover assembly shown in FIG. 7 It is the structure in the non-bending state
  • the adapter in the first end cap assembly shown in FIG. 12 is the structure in the non-bending state; exemplarily, on both sides of the electrode assembly 60 in the first direction
  • a first end cap assembly and a second end cap assembly are provided.
  • the first end cap assembly includes an end cap 70 , a first electrode terminal 801 and a first adapter 90 , and the first electrode terminal 801 and the first tab 61 can be connected through the first adapter 90 .
  • the second end cap assembly may include an end cap 70 , a second electrode terminal 802 and a second adapter 100 , and the second electrode terminal 802 and the second tab 62 may be connected through the second adapter 100 .
  • the first adapter 90 and the second adapter 100 may each include at least two non-bending parts and a bending part 130 connected between each adjacent two non-bending parts , the number of the non-bending parts of the second adapter 100 is greater than the number of the non-bending parts of the first adapter 90 .
  • the first adapter 90 and the second adapter 100 after being put into the shell are both stacked structures, and the stacked structure occupies less space, which can improve the space utilization rate of the battery cells 40 and further improve the energy density of the battery cells 40 .
  • the number of the non-bending parts of the first adapter 90 is reduced, the number of bending times of the first adapter 90 is relatively reduced, and the first adapter 90 is reduced.
  • the space occupied by the adapter 90 can further improve the space utilization rate of the battery cell, thereby improving the energy density of the battery cell 40, thereby improving the battery life performance.
  • At least two non-bending parts of the second adapter 100 include a third non-bending part 110 , a fourth non-bending part 140 and a fifth non-bending part 120 , the third non-bending part 110 is connected to the second electrode terminal 802 , the fourth non-bending part 140 is connected to the second tab 62 , and the fifth non-bending part 120 is arranged on the third non-bending part 110 and the fourth between the non-bending parts 140 .
  • the second adapter 100 and the second tab 62 and the second electrode terminal 802 are usually connected by welding, such as laser welding and ultrasonic welding.
  • the second electrode terminal 802 may also penetrate and connect to the non-bending portion of the second adapter 100 .
  • the second electrode terminal 802 includes a second terminal body 84 and a second protruding portion 86 .
  • the non-bending parts of the second adapter 100 are all provided with third through holes, and the second protrusions 86 are disposed in the third through holes to realize the connection between the second protrusions 86 and the second adapter 100 . .
  • the total height occupied by the second electrode terminal 802 and the second adapter 100 can be reduced, and the energy density of the battery cell 40 can be further improved.
  • the second protrusion 86 and the second adapter 100 may be welded by butt seam welding.
  • the second electrode terminal 802 can also be directly welded with the non-bending part of the second adapter 100 , and the second electrode terminal 802 and the second adapter 100 do not need to be welded integrally, which can reduce the difficulty of welding.
  • the specific welding method of the second electrode terminal 802 and the second adapter 100 is not limited herein.
  • the second electrode terminal 802 may also be provided with a second platform portion 85 , and the second platform portion 85 abuts on the side of the non-bending portion of the second adapter 100 that is away from the second tab 62 .
  • the two platform portions 85 abut on the third non-bending portion 110 .
  • a through hole may be formed on the non-bending portion connected to the second tab 62 .
  • a second through hole 121 may be opened on the fourth non-bending portion of the second adapter 100 .
  • the at least two non-bending parts of the first adapter 90 may include a first non-bending part 91 and a second non-bending part 92 .
  • the bent portion 91 is connected to the first electrode terminal 801
  • the second non-bent portion 92 is connected to the first tab 61 .
  • the first adapter 90 and the first tab 61 and the first electrode terminal 801 are usually connected by welding, such as laser welding, ultrasonic welding, etc.
  • first adapter 90 and the first tab 61 Only need to weld the second non-bending portion 92 and the first tab 61; when welding the first adapter 90 and the first electrode terminal 801, only need to weld the first non-bending portion 91 and the first electrode terminal 801; The laminated first adapter 90 does not need to weld the first adapter 90 as a whole, which greatly reduces the difficulty of welding the first adapter 90 , the first electrode terminal 801 and the first tab 61 .
  • the first electrode terminal 801 may penetrate through and connect to the non-bending part of the first adapter 90; as an example, the first electrode terminal 801 includes a first terminal body 81 and a first protruding part 83, The first non-bending portion 91 of an adapter 90 is provided with a first through hole 111 , and the first protruding portion 83 is disposed in the first through hole 111 to realize the connection between the first protruding portion 83 and the first adapter. 90 connections. Through the cooperation of the first protruding portion 83 and the first through hole 111, the total height occupied by the first electrode terminal 801 and the first adapter 90 can be reduced, and the energy density of the battery cell 40 can be further improved.
  • the welding position is accurately positioned, and the welding process is simple and easy to assemble.
  • the first protrusion 83 and the first adapter 90 may be welded by butt seam welding.
  • the first electrode terminal 801 can also be directly welded with the non-bending part of the first adapter 90 , and the first electrode terminal 801 and the first adapter 90 do not need to be welded integrally, which can reduce the difficulty of welding.
  • the specific welding method of the first electrode terminal 801 and the first adapter 90 is not limited herein.
  • the first electrode terminal 801 may also be provided with a first platform portion 82 , and the first platform portion 82 abuts against the side of the first non-bending portion 91 of the first adapter 90 that faces away from the first tab 61 . Then, the first platform portion 82 abuts on the first non-bending portion 91, which can limit the position of the first raised portion 83, limit the displacement of the first raised portion 83 in the first direction, and prevent the Before welding, the first electrode terminal 801 slips out of the first adapter 90 .
  • a through hole may be formed on the non-bending portion connected to the first tab 61 .
  • a second through hole 121 may be opened on the second non-bending portion 92 of the first adapter 90 .
  • the minimum thickness of the bent portion 130 of the adapter may be smaller than the minimum thickness of the non-bent portion. If the bending part 130 and the non-bending part have the same thickness, when the adapter is bent, the bending part 130 will protrude toward the direction of the connected non-bending part, and the height of the bending part 130 after bending The height of the connected non-bending part is higher than that of the connected non-bending part, resulting in a higher height of the stacked adapter and a larger space occupied.
  • the minimum thickness of the bending portion 130 in this embodiment is smaller, so when the adapter is bent, the bending pressure is smaller and the bending is easier; and the bending portion 130 is bent into an arc shape, which can reduce the It is possible that the bent portion 130 protrudes toward the connected non-bent portion, and the laminated adapter formed by bending has a smaller gap at the bent portion, thereby reducing the space occupied by the bent portion 130 and improving the battery performance.
  • the space utilization rate of the cell is improved, thereby improving the energy density of the battery cell.
  • the space occupied by the stacked adapter can be reduced, the space utilization rate of the battery cell can be improved, and the energy density of the battery cell can be improved.
  • the minimum thickness of the bent portion 130 of the first adapter 90 may be smaller than the thickness of the non-bent portion. It may be that the minimum thickness of the bent portion 130 of the first adapter 90 is smaller than the minimum thickness of any one of the first non-bent portion 91 and the second non-bent portion 92 , or the bending portion of the first adapter 90 The minimum thickness of 130 is smaller than the minimum thickness of one of the first non-bending part 91 and the second non-bending part 92 .
  • the minimum thickness of the bent portion 130 of the second adapter 100 may be smaller than the minimum thickness of the non-bent portion.
  • the minimum thickness of the bending portion 130 of the second adapter 100 may be smaller than the minimum thickness of any one of the third non-bending portion 110 , the fourth non-bending portion 140 and the fifth non-bending portion 120 .
  • the bending portion 130 may include a transition section 131 and an intermediate section 132, two ends of the intermediate section 132 are respectively connected to a transition section 131, the transition section 131 is connected to the non-bending section, and the thickness of the transition section 131 is far from The direction of the connected non-bending part gradually decreases; the bending part 130 and the connected non-bending part are connected in a smooth transition. The stress at the connection between the bending portion 130 and the connected non-bending portion is reduced, and the possibility of fracture of the first adapter 90 and the second adapter 100 is reduced.
  • the bending part 130 and the non-bending part can be used as an integral structure; of course, the bending part 130 and the non-bending part can also be used as a separate structure, which is connected by welding, which is not carried out here. Specific restrictions.
  • FIG. 15a shows a schematic diagram of laser welding the second adapter 100 and the second tab 62
  • FIG. 15b shows a schematic diagram of the second adapter 100 after secondary bending
  • FIG. 15c shows A schematic diagram of laser welding of the first adapter 90 and the first tab 61
  • FIG. 15d shows a schematic diagram of the first adapter 90 and the second adapter 100 after they are bent into the shell.
  • the process of inserting the first adapter 90 and the second adapter 100 into the shell may include the following steps:
  • the second adapter 100 and the electrode assembly 60 in this embodiment do not need to be turned over during the battery assembly process, and the assembly is easy to implement; the first adapter 90 and the electrode assembly 60 only need to be bent once during the battery assembly process, which can be accurately Positioned with the electrode assembly 60 for easy entry into the case.
  • the resistivity of the second adapter 100 is smaller than the resistivity of the first adapter 90 to reduce the resistance difference between the two adapters, so that the first adapter 90 and the first adapter The heat generated by the two adapters 100 is close to each other, which improves the consistency of the battery cells 40 .
  • the first adapter 90 is a positive adapter and the second adapter 100 is a negative adapter as an example for description.
  • the material of the first adapter 90 is aluminum, and the material of the second adapter 100 is copper.
  • the resistivity of the positive adapter is greater than that of the negative adapter.
  • the positive adapter and the negative adapter of the same specification will generate more heat than the positive adapter.
  • the positive and negative adapters will generate more heat.
  • the pole adapter will have problems such as uneven temperature distribution and high local temperature rise.
  • the length of the second adapter 100 is greater than the length of the first adapter 90 .
  • the length of the negative adapter can be set to be greater than the length of the positive adapter. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池单体、电池以及用电装置。电池单体包括电极组件,包括第一极耳和第二极耳,第一极耳和第二极耳分别位于电极组件的第一方向的两端;第一电极端子和第二电极端子,第一电极端子、第二电极端子分别位于电极组件的第一方向的两侧;第一转接件,用于连接第一极耳与第一电极端子;以及第二转接件,用于连接第二极耳与第二电极端子;其中,第一转接件、第二转接件均包括至少两个非弯折部以及连接相邻两个非弯折部的弯折部,第二转接件的非弯折部的数量大于第一转接件的非弯折部的数量。本申请提供的电池单体旨在解决为提高电池的能量密度而导致电池的整体体积增大的问题。

Description

电池单体、电池以及用电装置
相关申请的交叉引用
本申请要求享有于2020年12月21日提交的名称为“电池单体、电池以及用电装置”的中国专利申请202011518512.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池以及用电装置。
背景技术
随着可充放电的电池具有体积小、自放电小、无记忆效应、安全性高和绿色环保等优点,是具有发展前景的高效二次电池和化学储能电源;在电动汽车、储能和通信等领域得到了广泛应用。
随着电动汽车等对续航里程要求的提高,对可充放电的电池的续航性能要求越来越高,而决定电池续航性能的关键性因素为电池的能量密度,能量密度的提升通常需要增大电池的电极组件体积,电极组件体积的增大会导致可充放电的电池整体体积增大,而电动汽车给与电池的安装空间一般都为有限空间,如此将不利于在有限的空间内进行多组电池的组装。
发明内容
本申请提供一种电池单体、电池以及用电装置,旨在提高电池的能 量密度。
一方面,本申请提出了一种电池单体,其包括,电极组件,包括第一极耳和第二极耳,第一极耳和第二极耳分别位于电极组件的第一方向的两端;第一电极端子和第二电极端子,第一电极端子、第二电极端子分别位于电极组件的第一方向的两侧;第一转接件,用于连接第一极耳与第一电极端子;以及第二转接件,用于连接第二极耳与第二电极端子;其中,第一转接件、第二转接件均包括至少两个非弯折部以及连接相邻两个非弯折部的弯折部,第二转接件的非弯折部的数量大于第一转接件的非弯折部的数量。根据本申请实施例的电池单体包括第一转接件和第二转接件,第一转接件和第二转接件均包括至少两个非弯折部以及连接于每相邻两个非弯折部之间的弯折部,第一转接件和第二转接件均为层叠式结构,占用空间小,可提高电池单体的空间利用率;且相比于第二转接件的非弯折部数量,将第一转接件的非弯折部的数量降低,相对减少第一转接件的弯折次数,降低第一转接件的占用空间,可进一步提高电池单体的空间利用率,从而提高电池单体的能量密度,进而提升电池的续航性能。
根据本申请的一个实施例,第一转接件的至少两个非弯折部包括第一非弯折部和第二非弯折部,第一非弯折部与第一电极端子连接,第二非弯折部与第一极耳连接;第二转接件的至少两个非弯折部包括第三非弯折部、第四非弯折部以及第五非弯折部,第三非弯折部与第二电极端子连接,第四非弯折部与第二极耳连接,第五非弯折部设置于第三非弯折部与第四非弯折部之间。层叠式的第一转接件,不需对第一转接件的整体焊接,极大的降低了第一转接件和第一电极端子以及第一极耳的焊接难度。
根据本申请的一个实施例,第二转接件的电阻率小于第一转接件的电阻率。减小第一转接件和第二转接件之间的电阻差值,使得第一转接件和第二转接件产生的热量接近,提高电池单体的一致性。
根据本申请的一个实施例,第一转接件的材质为铝,第二转接件的材质为铜。
根据本申请的一个实施例,第二转接件的长度大于第一转接件的长度。使得第一转接件和第二转接件的热设计更为均衡。
根据本申请的一个实施例,弯折部的最小厚度小于非弯折部的最小厚度。第一转接件和第二转接件更易弯折,降低入壳难度;且弯折形成的层叠式第一转接件和第二转接件在弯折处间隙更小,可提高电池单体的空间利用率。
根据本申请的一个实施例,弯折部包括过渡段,过渡段与非弯折部连接,过渡段的厚度在远离所连接的非弯折部的方向上逐渐减小。可以减小弯折部和所连接的非弯折部于连接处的应力,降低第一转接件和第二转接件发生断裂的可能性。
根据本申请的一个实施例,第一电极端子贯穿并连接第一转接件的非弯折部。可以对第一电极端子和第一转接件的焊接位置进行准确定位,提高焊接良率。
根据本申请的一个实施例,第一电极端子包括第一端子本体和分别与第一端子本体连接的第一平台部和第一凸起部,第一凸起部贯穿并连接第一转接件的非弯折部,第一平台部与第一转接件的非弯折部背离第一极耳的一侧抵接。第一平台部用于限制第一凸起部在第一方向的位移,防止在未焊接前第一电极端子滑脱出第一转接件。
另一个方面,本申请提供一种电池,其包括如上述实施例的电池单体。通过提高电池单体的能量密度,以此提高电池的续航性能。
再一个方面,本申请提供一种用电装置,其包括如上述实施例的电池单体或电池。电池单体或电池用于提供电能。通过提高电池单体的能量密度,以此提高用电装置的续航性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1a是本申请一实施例公开的一种车辆的结构示意图;
图1b是本申请一实施例公开的一种电池的结构示意图;
图2是本申请一实施例公开的一种电池模组的结构示意图;
图3是本申请一实施例公开的一种电池模组的分解结构示意图;
图4是本申请一实施例公开的一种电池单体的分解结构示意图;
图5是图4的俯视结构示意图;
图6是图5沿A-A方向的剖视结构示意图;
图7是第二端盖组件的分解结构示意图;
图8是第二端盖组件的剖视图;
图9是第二转接件的非弯折状态结构示意图;
图10是第二转接件沿B-B方向的剖视结构示意图;
图11是图10的I局部放大结构示意图;
图12是第一端盖组件的分解结构示意图;
图13是第一转接件的非弯折状态结构示意图;
图14是第一转接件沿C-C方向的剖视结构示意图;
图15是电池单体的制作工序图。
在附图中,附图未必按照实际的比例绘制,其中,图中各附图标记:1、车辆;1a、马达;1b、控制器;10、电池;11、第一部分;12、第二部分;20、电池模组;30、外壳;31、筒体;32、第一盖体;33、第 二盖体;40、电池单体;50、壳体;60、电极组件;61、第一极耳;62、第二极耳;70、端盖;801、第一电极端子;81、第一端子本体;82、第一平台部;83、第一凸起部;802、第二电极端子;84、第二端子本体;85、第二平台部;86、第二凸起部;90、第一转接件;91、第一非弯折部;92、第二非弯折部;100、第二转接件;110、第三非弯折部;111、第一通孔;120、第五非弯折部;121、第二通孔;140、第四非弯折部;130、弯折部;131、过渡段;132、中间段。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体 情况理解上述术语在本申请中的具体含义。
申请人在注意到现有电池单体提升电池能量密度的方式通常是增大电池的电极组件体积,而电极组件体积的增大会导致与电极组件相关联的其他组件体积增大,例如容纳电极组件的壳体,如此将导致电池单体的整体占有空间增大,不利于在有限空间内进行多组电池单体的组装,且会导致投入成本大幅度增加,不利于实际应用。为避免电池单体的整体体积的增大导致的不利问题,申请人从电池单体内部的空间利用率出发,提升空间利用率,以此来增加电池能量密度,申请人对转接件的结构形式进行了设计,发现折弯层叠后的转接件占用空间少,且层叠后的转接件过流能力大,可以大幅地提升电池的空间利用率,提升能量密度,正负极转接件一般采用相同层叠数量的结构,申请人发现即使减少一端转接件的层叠数量,也可满足生产要求;因此采用相同层叠数量的正负极转接件造成了电池单体内部空间的浪费,降低了空间利用率。
基于申请人发现的上述问题,申请人对电池单体的结构进行改进,下面对本申请实施例进行进一步描述。
为了更好地理解本申请,下面结合图1a至图15对本申请实施例进行描述。
本申请实施例提供一种使用电池10作为电源的用电装置。该用电装置可以但不仅限于为车辆、船舶或飞行器等。参见图1a所示,本申请的一个实施例提供一种车辆1。车辆1可以为燃油汽车、燃气汽车或新能源汽车。新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。在本申请一实施例中,车辆1可以包括马达1a、控制器1b以及电池10。控制器1b用来控制电池10为马达1a供电。马达1a通过传动机构与车轮连接,从而驱动车辆1行进。电池10可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。在一个示例中,在车辆1 的底部或车头或车尾可以设置电池10。电池10可以用于为车辆1供电。在一个示例中,电池10可以作为车辆1的操作电源,用于车辆1的电路系统。示例性地,电池10可以用于车辆1的启动、导航和运行时的工作用电需求。
参见图1b所示,电池10包括箱体。箱体的类型不受限制。箱体可为框状箱体、盘状箱体或盒状箱体等。示例性地,箱体包括第一部分11和与第一部分11盖合的第二部分12。第二部分12和第一部分11盖合后形成容纳部。
图2示意性显示了一实施例的电池模组20,该电池模组20设置于箱体内。电池模组20包括多个电池单体40。
在一些实施例中,为了满足不同的使用电力需求,电池10可以包括多个电池单体40,其中,多个电池单体40之间可以串联或并联或混联,混联是指串联和并联的混合。也就是说,多个电池单体40可以直接设置于箱体的容纳部内以组成电池10。
参见图2和图3所示,电池模组20包括外壳30以及设置于外壳30内的电池单体40。在一个示例中,外壳30包括筒体31、第一盖体32和第二盖体33。第一盖体32和第二盖体33分别设置于筒体31的两端。第一盖体32和第二盖体33分别与筒体31可拆卸连接。例如,可以第一盖体32和第二盖体33分别与筒体31卡接或者使用螺钉连接。筒体31、第一盖体32和第二盖体33组装后形成容纳空间。电池单体40设置于外壳30的容纳空间内。
应当理解的是,外壳30的结构不限于上述的实施例,例如,外壳30由两个开口的罩状部分扣合形成,只要能够实现组装多个电池单体40即可。
参见图4所示,本申请实施例的电池单体40包括壳体50以及设置 于壳体50内的电极组件60。本申请实施例的壳体50为圆筒结构或其他结构。壳体50具有容纳电极组件60和电解液的内部空间以及与内部空间相连通的开口。壳体50可以由例如铝、铝合金或塑料等材料制造。本申请实施例的电极组件60可通过将第一极片、第二极片以及隔膜一同堆叠或卷绕形成,其中,隔膜是介于第一极片和第二极片之间的绝缘体。在本实施例中,示例性地以第一极片为正极片,第二极片为负极片进行说明。正极片和负极片均包括涂覆区和未涂覆区。正极片活性物质被涂覆在正极片的涂覆区上,而负极片活性物质被涂覆在负极片的涂覆区上。在涂覆区上,活性物质被涂覆在由金属薄板形成的集流体上,在未涂覆区上没有涂覆活性物质。
参见图5和图6所示,电极组件60包括主体部、第一极耳61和第二极耳62。主体部具有相对设置的两个端部。第一极耳61和第二极耳62分别位于电极组件60的第一方向的两端。可以理解的是,第一方向可以是电极组件60的长度方向。在本申请实施例中,示例性地以第一极耳61为正极耳,第二极耳62为负极耳为例进行说明。正极片的未涂覆区层叠形成正极耳,而负极片的未涂覆区层叠形成负极耳。正极耳和负极耳分别从主体部的一个端部上延伸。
参见图4和图6所示,本申请实施例的电池单体40还包括端盖组件,端盖组件包括端盖70、电极端子和转接件。端盖70与壳体50密封连接。电极端子设置于端盖70上。电极端子通过转接件与电极组件60电连接。转接件对电极端子和电极组件60起到引流作用,可以保证电极端子和电极组件60正常的电流导通。端盖70的数量、电极端子的数量以及转接件的数量均为两个。电极组件60的第一方向的两侧(即电极组件60长度方向相对的两侧)中的每一侧对应设置一个端盖组件。
请参见图6和图7以及图12,其中,图6示出的电池单体中的转接 件为于弯折状态下的结构;图7示出的第二端盖组件中的转接件为于非弯折状态下的结构;图12示出的第一端盖组件中的转接件为非弯折状态下的结构;示例性地,在电极组件60的第一方向的两侧分别设置第一端盖组件和第二端盖组件。第一端盖组件包括端盖70、第一电极端子801和第一转接件90,第一电极端子801和第一极耳61可以通过第一转接件90连接。第二端盖组件可以包括端盖70、第二电极端子802和第二转接件100,第二电极端子802和第二极耳62可以通过第二转接件100连接。
请参见图6~图12,第一转接件90、第二转接件100均可以包括至少两个非弯折部以及连接于每相邻两个非弯折部之间的弯折部130,第二转接件100的非弯折部的数量大于第一转接件90的非弯折部的数量。入壳后的第一转接件90和第二转接件100均为层叠式结构,层叠式结构占用空间小,可提高电池单体40的空间利用率,进一步提高电池单体40的能量密度;且相比于第二转接件100的非弯折部数量,将第一转接件90的非弯折部的数量降低,相对减少第一转接件90的弯折次数,降低第一转接件90的占用空间,可进一步提高电池单体的空间利用率,从而提高电池单体40的能量密度,进而提升电池的续航性能。
请参见图6~图11,示例性地,第二转接件100的至少两个非弯折部包括第三非弯折部110、第四非弯折部140以及第五非弯折部120,第三非弯折部110与第二电极端子802连接,第四非弯折部140与第二极耳62连接,第五非弯折部120设置于第三非弯折部110与第四非弯折部140之间。第二转接件100和第二极耳62以及第二电极端子802通常采用焊接的方式进行连接,例如激光焊接、超声焊接,对第二转接件100和第二极耳62焊接时,只需焊接第四非弯折部140与第二极耳62;对第二转接件100和第二电极端子802焊接时,只需焊接第三非弯折部110与第二电极端子802;层叠式的第二转接件100,不需对第二转接件100的整体焊 接,极大的降低了第二转接件100和第二电极端子802以及第二极耳62的焊接难度。
在一些实施例中,第二电极端子802也可以贯穿并连接第二转接件100的非弯折部,作为示例,第二电极端子802包括第二端子本体84和第二凸起部86,第二转接件100的非弯折部均设有第三通孔,第二凸起部86设于第三通孔内,以实现第二凸起部86与第二转接件100的连接。通过第二凸起部86和第三通孔的配合,可以减小第二电极端子802和第二转接件100所占高度的总和,进一步提高电池单体40的能量密度,同时可以对焊接位置进行准确定位,焊接过程简单,易于装配。示例性地,第二凸起部86和第二转接件100可以采用对缝焊接的方式进行焊接。当然,第二电极端子802也可以与第二转接件100的非弯折部的一侧直接焊接,不需第二电极端子802与第二转接件100整体焊接,可降低焊接难度。在此并不对第二电极端子802和第二转接件100的具体焊接方式进行限定。
在一些实施例中,第二电极端子802也可设置第二平台部85,第二平台部85与第二转接件100的非弯折部背离第二极耳62的一侧抵接,第二平台部85抵接于第三非弯折部110上。
在一些实施例中,为增加电解液的浸润,可以于与第二极耳62连接的非弯折部上开设通孔。作为示例,第二转接件100的第四非弯折部上可以开设第二通孔121。
请参见图6和图12~图14,示例性地,第一转接件90的至少两个非弯折部可以包括第一非弯折部91和第二非弯折部92,第一非弯折部91与第一电极端子801连接,第二非弯折部92与第一极耳61连接。第一转接件90和第一极耳61以及第一电极端子801通常采用焊接的方式进行连接,例如激光焊接、超声焊接等,对第一转接件90和第一极耳61焊接 时,只需焊接第二非弯折部92与第一极耳61;对第一转接件90和第一电极端子801焊接时,只需焊接第一非弯折部91与第一电极端子801;层叠式的第一转接件90,不需对第一转接件90的整体焊接,极大的降低了第一转接件90和第一电极端子801以及第一极耳61的焊接难度。
在一些实施例中,第一电极端子801可以贯穿并连接第一转接件90的非弯折部;作为示例,第一电极端子801包括第一端子本体81和第一凸起部83,第一转接件90的第一非弯折部91设有第一通孔111,第一凸起部83设于第一通孔111内,以实现第一凸起部83与第一转接件90的连接。通过第一凸起部83和第一通孔111的配合,可以减小第一电极端子801和第一转接件90所占高度的总和,进一步提高电池单体40的能量密度,同时可以对焊接位置进行准确定位,焊接过程简单,易于装配。示例性地,第一凸起部83和第一转接件90可以采用对缝焊接的方式进行焊接。当然第一电极端子801也可以与第一转接件90的非弯折部的一侧直接焊接,不需第一电极端子801与第一转接件90整体焊接,可降低焊接难度。在此并不对第一电极端子801与第一转接件90的具体焊接方式进行限定。
在一些实施例中,第一电极端子801还可以设置第一平台部82,第一平台部82与第一转接件90的第一非弯折部91背离第一极耳61的一侧抵接,第一平台部82抵接于第一非弯折部91上,可以对第一凸起部83起到限位作用,限制第一凸起部83在第一方向的位移,防止在未焊接前第一电极端子801滑脱出第一转接件90。
在一些实施例中,为增加电解液的浸润,可以于与第一极耳61连接的非弯折部上开设通孔。作为示例,第一转接件90的第二非弯折部92上可以开设第二通孔121。
在一些实施例中,请参见图7~图12,转接件的弯折部130的最小 厚度可以小于非弯折部的最小厚度。如果弯折部130和非弯折部采用同等厚度,对转接件折弯时,弯折部130会朝向所连接的非弯折部的方向凸出,折弯后的弯折部130的高度高出所连接的非弯折部的高度,导致层叠后的转接件的高度较高,占用空间大。而本实施例的弯折部130的最小厚度更小,在对转接件进行折弯时,折弯压力更小,折弯更容易;且将弯折部130折弯为弧形,可以降低弯折部130朝向所连接的非弯折部的方向凸出的可能性,弯折形成的层叠式转接件在弯折处间隙更小,以此减少弯折部130的占用空间,提高电池单体的空间利用率,进而提升电池单体的能量密度。可以减少层叠后的转接件占用的空间,提高电池单体的空间利用率,进而提升电池单体的能量密度。
作为示例,第一转接件90的弯折部130的最小厚度可以小于非弯折部的厚度。可以是,第一转接件90的弯折部130的最小厚度小于第一非弯折部91和第二非弯折部92任意一个的最小厚度,或第一转接件90的弯折部130的最小厚度小于第一非弯折部91和第二非弯折部92其中一个的最小厚度。
作为示例,第二转接件100的弯折部130的最小厚度可以小于非弯折部的最小厚度。第二转接件100的弯折部130的最小厚度可以小于第三非弯折部110、第四非弯折部140以及第五非弯折部120任意一者的最小厚度。
在一些实施例中,弯折部130可以包括过渡段131和中间段132,中间段132的两端分别连接一个过渡段131,过渡段131与非弯折部连接,过渡段131的厚度在远离所连接的非弯折部的方向上逐渐减小;弯折部130和所连接的非弯折部圆滑过渡连接。减小弯折部130和所连接的非弯折部于连接处的应力,降低第一转接件90和第二转接件100发生断裂的可能性。可以理解的是,可以将弯折部130和非弯折部作为一体结构; 当然也可将弯折部130和非弯折部作为分体结构,连接如焊接而成,在此并不对其进行具体限定。
请参见图15,图15a示出了第二转接件100与第二极耳62激光焊接的示意图,图15b示出了二次折弯后的第二转接件100的示意图,图15c示出了第一转接件90与第一极耳61激光焊接的示意图,图15d示出了第一转接件90和第二转接件100折弯入壳后的示意图。在本申请实施例中,第一转接件90和第二转接件100入壳工序,可以包括以下步骤:
S100,将第二转接件100与电极组件60的第二极耳62激光焊接;
S200,将第二转接件100进行一级折弯;
S300,将第二转接件100进行二级折弯;
S400,将第二转接件100与电极组件60伸入壳中,使延伸形成第一极耳61的主体部的端部高出壳体50的壳口;
S500,将第一转接件90与电极组件60的第一极耳61激光焊接;
S600,将第一转接件90进行一级折弯;
S700,第一转接件90和第二转接件100折弯入壳。
本实施例的第二转接件100与电极组件60在电池装配过程中无需翻转,装配易于实现;第一转接件90与电极组件60在电池装配过程中只需进行一次折弯,可准确与电极组件60进行定位,方便入壳。
在一些实施例中,第二转接件100的电阻率小于第一转接件90的电阻率,以减小两个转接件之间的电阻差值,使得第一转接件90和第二转接件100产生的热量接近,提高电池单体40的一致性。示例性地,以第一转接件90为正极转接件,第二转接件100为负极转接件为例进行说明。例如,第一转接件90的材质为铝,第二转接件100的材质为铜。正极转接件的电阻率大于负极转接件的电阻率,相同规格的正极转接件和负极转接件,相比于正极转接件,负极转接件会产生更多的热量,正负极转 接件会存在温度分布不均匀,局部温升过高等问题。
在一些实施例中,为使得正极转接件和负极转接件的热设计更为均衡,第二转接件100的长度大于第一转接件90的长度。示例性地,以第一转接件90为正极转接件,第二转接件100为负极转接件为例进行说明,可以将负极转接件的长度设置为大于正极转接件的长度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电池单体,包括:
    电极组件(60),包括第一极耳(61)和第二极耳(62),所述第一极耳(61)和所述第二极耳(62)分别位于所述电极组件(60)的第一方向的两端;
    第一电极端子(801)和第二电极端子(802),所述第一电极端子(801)、所述第二电极端子(802)分别位于所述电极组件(60)的所述第一方向的两侧;
    第一转接件(90),用于连接所述第一极耳(61)与所述第一电极端子(801);以及
    第二转接件(100),用于连接所述第二极耳(62)与所述第二电极端子(802),
    其中,所述第一转接件(90)、所述第二转接件(100)均包括至少两个非弯折部以及连接相邻两个所述非弯折部的弯折部(130),所述第二转接件(100)的所述非弯折部的数量大于所述第一转接件(90)的所述非弯折部的数量。
  2. 根据权利要求1所述的电池单体,其中,
    所述第一转接件(90)的所述至少两个非弯折部包括第一非弯折部(91)和第二非弯折部(92),所述第一非弯折部(91)与所述第一电极端子(801)连接,所述第二非弯折部(92)与所述第一极耳(61)连接;
    所述第二转接件(100)的所述至少两个非弯折部包括第三非弯折部(110)、第四非弯折部(140)以及第五非弯折部(120),所述第三非 弯折部(110)与所述第二电极端子(802)连接,所述第四非弯折部(140)与所述第二极耳(62)连接,所述第五非弯折部(120)设置于所述第三非弯折部(110)与所述第四非弯折部(140)之间。
  3. 根据权利要求2所述的电池单体,其中,
    所述第一非弯折部(91)和所述第一电极端子(801)焊接,所述第二非弯折部(92)和所述第一极耳(61)焊接;
    所述第三非弯折部(110)与所述第二电极端子(802)焊接,所述第四非弯折部(140)和所述第二极耳(62)焊接。
  4. 根据权利要求2或3所述的电池单体,其中,
    所述第二非弯折部(92)上开设第二通孔(121);
    所述第四非弯折部(140)上开设第二通孔(121)。
  5. 根据权利要求1至4任一项所述的电池单体,其中,所述第一电极端子(801)贯穿并连接所述第一转接件(90)的非弯折部。
  6. 根据权利要求5所述的电池单体,其中,所述第一电极端子(801)包括第一端子本体(81)、第一平台部(82)和第一凸起部(83),所述第一端子本体(81)分别与所述第一平台部(82)和所述第一凸起部(83)连接,所述第一凸起部(83)贯穿并连接所述第一转接件(90)的非弯折部,所述第一平台部(82)与所述第一转接件(90)的非弯折部背离所述第一极耳(61)的一侧抵接。
  7. 根据权利要求1至6任一项所述的电池单体,其中,所述第二电极端子(802)贯穿并连接所述第二转接件(100)的非弯折部。
  8. 根据权利要求7所述的电池单体,其中,
    所述第二转接件(100)的非弯折部设有第三通孔;
    所述第二电极端子(802)包括第二端子本体(84)和第二凸起部(86),所述第二端子本体(84)与所述第二凸起部(86)连接,所述第二凸起部(86)设于所述第三通孔内,第二凸起部(86)和第二转接件(100)通过对缝焊接的方式连接。
  9. 根据权利要求1至8任一项所述的电池单体,其中,所述第二转接件(100)的电阻率小于所述第一转接件(90)的电阻率。
  10. 根据权利要求9所述的电池单体,其中,所述第一转接件(90)的材质为铝,所述第二转接件(100)的材质为铜。
  11. 根据权利要求1至10任一项所述的电池单体,其中,所述第二转接件(100)的长度大于所述第一转接件(90)的长度。
  12. 根据权利要求1至11任一项所述的电池单体,其中,所述弯折部(130)的最小厚度小于所述非弯折部的最小厚度。
  13. 根据权利要求1至12任一项所述的电池单体,其中,所述弯折部(130)包括过渡段(131),所述过渡段(131)与所述非弯折部连接,所述过渡段(131)的厚度在远离所连接的所述非弯折部的方向上逐渐减小。
  14. 一种电池,包括如权利要求1至13任一项所述的电池单体。
  15. 一种用电装置,包括如权利要求1至13任一项所述的电池单体或如权利要求14所述的电池,所述电池单体或所述电池用于提供电能。
PCT/CN2021/132201 2020-12-21 2021-11-22 电池单体、电池以及用电装置 WO2022134985A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21908984.4A EP4148897A4 (en) 2020-12-21 2021-11-22 BATTERY CELL, BATTERY AND ELECTRICAL DEVICE
KR1020227039367A KR20220166343A (ko) 2020-12-21 2021-11-22 전지셀, 전지 및 전기 장치
JP2022568843A JP2023525553A (ja) 2020-12-21 2021-11-22 電池セル、電池及び電力消費装置
US17/973,741 US20230049457A1 (en) 2020-12-21 2022-10-26 Battery cell, battery, and electric apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011518512.9 2020-12-21
CN202011518512.9A CN114649556A (zh) 2020-12-21 2020-12-21 电池单体、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/973,741 Continuation US20230049457A1 (en) 2020-12-21 2022-10-26 Battery cell, battery, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2022134985A1 true WO2022134985A1 (zh) 2022-06-30

Family

ID=81990541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132201 WO2022134985A1 (zh) 2020-12-21 2021-11-22 电池单体、电池以及用电装置

Country Status (6)

Country Link
US (1) US20230049457A1 (zh)
EP (1) EP4148897A4 (zh)
JP (1) JP2023525553A (zh)
KR (1) KR20220166343A (zh)
CN (1) CN114649556A (zh)
WO (1) WO2022134985A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024026861A1 (zh) * 2022-08-05 2024-02-08 宁德时代新能源科技股份有限公司 转接构件、电池单体、电池及用电装置
CN115548346B (zh) * 2022-09-23 2024-02-20 厦门海辰储能科技股份有限公司 集流组件及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206332097U (zh) * 2016-11-23 2017-07-14 东莞新能源科技有限公司 一种二次电池电芯
CN208298952U (zh) * 2018-06-26 2018-12-28 宁德新能源科技有限公司 电池及电子设备
CN209658320U (zh) * 2019-05-24 2019-11-19 宁德时代新能源科技股份有限公司 电池单元及电池模组
CN209786120U (zh) * 2019-05-31 2019-12-13 宁德时代新能源科技股份有限公司 二次电池和电池模组
CN111106300A (zh) * 2019-01-30 2020-05-05 宁德时代新能源科技股份有限公司 电池单元电池模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675700B1 (ko) * 1999-08-10 2007-02-01 산요덴키가부시키가이샤 비수 전해액 이차 전지 및 그 제조 방법
KR20060097603A (ko) * 2005-03-09 2006-09-14 산요덴키가부시키가이샤 전지 및 그 제조 방법
JP2012160282A (ja) * 2011-01-31 2012-08-23 Hitachi Vehicle Energy Ltd 円筒形二次電池
CN108428921A (zh) * 2018-02-01 2018-08-21 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206332097U (zh) * 2016-11-23 2017-07-14 东莞新能源科技有限公司 一种二次电池电芯
CN208298952U (zh) * 2018-06-26 2018-12-28 宁德新能源科技有限公司 电池及电子设备
CN111106300A (zh) * 2019-01-30 2020-05-05 宁德时代新能源科技股份有限公司 电池单元电池模组
CN209658320U (zh) * 2019-05-24 2019-11-19 宁德时代新能源科技股份有限公司 电池单元及电池模组
CN209786120U (zh) * 2019-05-31 2019-12-13 宁德时代新能源科技股份有限公司 二次电池和电池模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148897A4 *

Also Published As

Publication number Publication date
KR20220166343A (ko) 2022-12-16
EP4148897A4 (en) 2024-03-13
JP2023525553A (ja) 2023-06-16
CN114649556A (zh) 2022-06-21
EP4148897A1 (en) 2023-03-15
US20230049457A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2022134985A1 (zh) 电池单体、电池以及用电装置
EP3836297B1 (en) Secondary battery, battery module, battery pack, device and manufacturing method
WO2022156478A1 (zh) 电池单体、电池以及用电装置
CN117203830A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2021218082A1 (zh) 二次电池、电池模块以及使用二次电池作为电源的装置
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2024104140A1 (zh) 极片、电池单体、电极组件、电池及用电设备
JP2024507885A (ja) 電池セル、電池、電力消費機器及び電池セルの製造方法と機器
JP2023517820A (ja) 電池セル、電池、電力消費機器、電池セルの製造機器及び方法
CN219017777U (zh) 电池单体、电池、用电设备以及制备电池单体的装置
CN115064757B (zh) 电池单体、电池及用电装置
WO2023115744A1 (zh) 一种便于成组的锂离子电池
WO2023115743A1 (zh) 一种方壳锂离子电池
WO2023133749A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022047791A1 (zh) 电池单体、电池以及用电装置
WO2022170483A1 (zh) 电池、用电装置和制备电池的方法
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2024092638A1 (zh) 电极组件及其制造方法、电池单体、电池及用电装置
US20230035703A1 (en) Battery, powered device, and method of manufacturing battery
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
CN217009494U (zh) 电芯和电池包
CN218070125U (zh) 连接片、顶盖组件、电池、电池模组及用电设备
CN219144439U (zh) 电池模组及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227039367

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022568843

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021908984

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE