WO2022134845A1 - 一种高保偏光学膜及投影银幕 - Google Patents

一种高保偏光学膜及投影银幕 Download PDF

Info

Publication number
WO2022134845A1
WO2022134845A1 PCT/CN2021/127064 CN2021127064W WO2022134845A1 WO 2022134845 A1 WO2022134845 A1 WO 2022134845A1 CN 2021127064 W CN2021127064 W CN 2021127064W WO 2022134845 A1 WO2022134845 A1 WO 2022134845A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
layer
maintaining optical
high polarization
film according
Prior art date
Application number
PCT/CN2021/127064
Other languages
English (en)
French (fr)
Inventor
陆嘉伟
薛九枝
马骏
樊杰
Original Assignee
江苏集萃智能液晶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃智能液晶科技有限公司 filed Critical 江苏集萃智能液晶科技有限公司
Publication of WO2022134845A1 publication Critical patent/WO2022134845A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors

Definitions

  • the invention relates to an optical film, in particular to a high polarization-maintaining optical film and a projection screen.
  • 3D movie is a technology that uses a stereoscopic visual display system to reproduce the screen to display the left and right eye plane projection images in three dimensions, so that the audience can produce a three-dimensional depth of the image.
  • the quality of the 3D effect depends to a large extent on the quality of the screen.
  • the parameters for evaluating the performance of the screen are mainly gain, viewing angle and polarization contrast.
  • the principle of 3D is that the polarized light emitted from the projector is reflected by the screen, and then enters the human eye through polarized glasses, so the screen needs to have very high polarization-maintaining performance. The stronger the feeling.
  • the problem of "ghosting" often occurs when the screen's polarization-maintaining performance is poor.
  • Gain is the ability of the screen to reflect light, which is the key to determining the brightness of the screen. It is an important parameter for improving the brightness of the image.
  • the gain is determined by the surface material of the screen.
  • the viewing angle is not the viewing angle. The angle to clearly observe everything on the screen from different directions. Viewing angle and gain are relative concepts. Gain and viewing angle are closely related and complement each other. When the gain is large, the viewing angle will naturally decrease. How to balance the relationship between the two has become the focus of the industry.
  • the screens used for 3D movies are distinguished from the materials: white plastic screen, gray plastic screen, glass bead screen, PVC screen, glass fiber screen, metal screen, anti-light screen.
  • metal screens are widely promoted in 3D cinemas. On the one hand, because of the higher reflection of metal and good gain effect, it can improve the overall brightness of the film, making it clearer and brighter.
  • the viewing angle is also larger than that of glass bead screens and smaller than that of white plastic. ; on the other hand because of the polarization-maintaining properties of metals.
  • Conventional metal screens mainly spray a layer of metal on the surface of the substrate, and the surface presents discontinuous powder particles.
  • the method of controlling the reflection angle by designing the surface microstructure of the substrate has begun to be applied to the screen market, and then a metal layer and a protective layer are plated to obtain a metal screen.
  • this kind of structure often requires high-precision design and production, and the production cost is very high; if there are deviations in the design or production process, it will eventually cause quality problems of the screen.
  • the main purpose of the present invention is to provide an optical film based on the surface microstructure, the optical film has excellent polarization-maintaining performance, and can be used to produce a screen with high polarization-maintaining and high-definition image quality.
  • the shadow is small, and there will be no "ghosting" problem.
  • Another object of the present invention is to provide an optical film based on a flexible plastic film material, which can be bent or folded to facilitate roll-to-roll production and transportation.
  • Another object of the present invention is to provide an optical film based on metal as a light-reflecting layer, which is low in cost, long in service life, and easy to produce on a large scale.
  • Another object of the present invention is to provide an exemplary fabrication process that can produce such metal-based optical films as retroreflective layers.
  • the present application provides a high polarization-maintaining optical film, characterized in that the high polarization-maintaining optical film comprises: a base layer, the base layer has a lower surface of the base layer and an upper surface of the base layer opposite to the lower surface of the base layer, The upper surface of the base layer is an uneven microstructured surface, and a reflective layer is provided on the base layer, the reflective layer has a lower surface of the reflective layer and an upper surface of the reflective layer opposite to the lower surface of the reflective layer, so The lower surface of the reflective layer is disposed on the upper surface of the base layer, and the reflective layer is substantially conformal to the upper surface of the base layer, so that the upper surface of the reflective layer forms a microstructure surface substantially consistent with the upper surface of the base layer; Wherein, the included angle ⁇ between the tangent line at any point on the upper surface of the reflective layer and the plane parallel to the lower surface of the base layer is controlled to vary randomly between 0 degrees and +/-30 degrees.
  • any region with a dimension greater than 1 mm along the direction parallel to the lower surface of the base layer, the structure of the upper surface of the reflective layer is composed of at least two wave crests and at least two wave troughs, and the wave crests and wave troughs has a random structure.
  • the probability of occurrence of the included angle ⁇ between the tangent line at any point on the upper surface of the reflective layer and the plane parallel to the lower surface of the base layer varies continuously with the angle of the included angle ⁇ .
  • the probability of occurrence of the included angle ⁇ at 0 degrees is the largest, and the probability of occurrence of the included angle ⁇ decreases continuously as the absolute value of the angle increases.
  • the ratio of the maximum value to the minimum value of the occurrence probability of the included angle ⁇ is less than 10:1.
  • the ratio of the maximum value to the minimum value of the occurrence probability of the included angle ⁇ is less than 2:1.
  • the cross section of the uneven microstructured surface is an arc structure or a wavy structure.
  • the characteristic length L between adjacent wave crests or adjacent wave troughs of the reflective layer is not greater than 0.5 mm.
  • the characteristic length L between adjacent wave crests or adjacent wave troughs of the reflective layer is not greater than 0.05 mm.
  • the height difference between the wave crest and the wave trough on the upper surface of the reflective layer is not greater than 100 ⁇ m.
  • the height difference between the wave crest and the wave trough on the upper surface of the reflective layer is not greater than 10 ⁇ m.
  • the light-reflecting layer is composed of multi-layer media, and the multi-layer media achieves high reflection of incident light through coherent superposition of the reflected light from the multi-layer interface.
  • the reflective layer is formed by alternately stacking two isotropic optically transparent materials with different refractive indices.
  • the reflective layer has a reflectivity of over 80% for light with wavelengths between 400 nm and 700 nm.
  • the reflective layer is a metal layer.
  • the thickness of the metal layer is 5 nm ⁇ 1 ⁇ m.
  • the thickness of the metal layer is 20 nm ⁇ 50 nm.
  • the metal layer is prepared from at least one of silver, aluminum, gold, metal oxide, metal halide, and metal nitride.
  • the metal layer is prepared by any one of magnetron sputtering and evaporation coating.
  • an adhesion promoting layer is provided between the uneven microstructured surface and the metal layer.
  • the adhesion promoting layer is prepared from silicon dioxide.
  • the thickness of the silicon dioxide is 10 nm ⁇ 100 nm.
  • the adhesion promoting layer is prepared by any one of magnetron sputtering and evaporation coating.
  • an anti-oxidation layer is provided on the surface of the metal layer.
  • the anti-oxidation layer is prepared from any one of silicon dioxide, titanium dioxide and ITO.
  • the anti-oxidation layer is prepared by any one of magnetron sputtering and evaporation coating.
  • the high polarization-maintaining optical film further includes a cover layer, the cover layer has a cover layer lower surface and a cover layer upper surface opposite to the cover layer lower surface, and the cover layer lower surface is provided on on the upper surface of the reflective layer.
  • the uneven microstructured surface is prepared by any one of fast knife imprinting, surface cutting, surface etching, and sandblasting.
  • the material of the base layer is a deformable flexible plastic film material.
  • the flexible plastic film material is any one of PET, PVC, and PC.
  • a projection screen is characterized in that, the projection screen includes: a frame, an optical film, and an elastic structure: the frame is made of metal or plastic material; It consists of a polarizing film and is spliced by glue; the elastic structure stretches the optical film reasonably and fixes it on the frame.
  • the elastic structure is a spring.
  • the optical film has holes formed by laser drilling.
  • the beneficial effect of the present invention is that the present invention provides a specially designed high polarization-maintaining optical film.
  • the upper surface of the base layer is designed as an uneven microstructured surface.
  • the upper surface is designed with a reflective layer that is substantially conformal to the upper surface of the base layer, so that the upper surface of the reflective layer forms a microstructure surface substantially consistent with the upper surface of the base layer.
  • This high polarization-maintaining optical film has excellent polarization direction retention, reflectivity, gain and viewing angle performance; it can produce a screen with high polarization-maintaining and high-definition image quality, and can solve the problem of high cost of existing products, which is beneficial to 3D Promotion of the film market.
  • FIG. 1 is a schematic structural diagram of an embodiment of a high polarization-maintaining optical film
  • Fig. 2 is a schematic diagram of reflected light from a flat surface (A) and a rough surface (B);
  • FIG. 3 is a schematic diagram of incident light and reflected light on an arc
  • FIG. 4 is a schematic diagram of the angle of reflected light rays at different depths of arcs on the microstructured surface
  • FIG. 5 is a schematic diagram of the reflected light intensity distribution (A) and the morphology probability distribution (B) of the microstructure;
  • FIG. 8 is a schematic cross-sectional structure diagram of an embodiment structure of a high polarization-maintaining optical film
  • FIG. 9 is a schematic diagram of the fabrication process of one embodiment of a base layer with a microstructured surface
  • 01 base layer; 02, microstructured surface; 03, reflective layer; 04, cover layer; 05, hole; 06, embossed structure; 07, soft film structure; 001, incident light; 002, flat surface; 003, reflected light; 004, rough surface; 005, arc; 006, arc tangent; 007, included angle; 011, first arc; 012, second arc; 013, lower surface of base layer; 014, upper base layer surface; 031, the lower surface of the reflective layer; 032, the upper surface of the reflective layer.
  • the present application provides a high polarization-maintaining optical film
  • the high polarization-maintaining optical film comprises: a base layer 01, the base layer 01 has a base layer lower surface 013 and a The lower surface 013 of the base layer is opposite to the upper surface 014 of the base layer, the lower surface 013 of the base layer can be a flat surface or an uneven surface with microstructures or other structures, and the upper surface 014 of the base layer is an uneven microstructure Surface 02, and a reflective layer 03 provided on the base layer 01, the reflective layer 03 has a lower surface 031 of the reflective layer and an upper surface 032 of the reflective layer opposite to the lower surface 031 of the reflective layer, the lower surface of the reflective layer 031 is arranged on the upper surface 014 of the base layer, and the reflective layer 03 is substantially conformal to the upper surface 014 of the base layer, so that the upper surface 032 of the reflective layer forms
  • the basic structure of the high polarization-maintaining optical film disclosed herein includes three layers of materials: a base layer 01, a reflective layer 03, and a cover layer 04, the upper surface 014 of the base layer is The uneven microstructured surface 02, the base layer 01 and the reflective layer 03 are all optical materials, and the cover layer 04 is used to protect the surface of the high polarization-maintaining optical film.
  • the theoretical basis for the design of the uneven microstructured surface 02 on the upper surface 014 of the base layer is as follows: As shown in FIG. 2 , when a beam of incident light 001 hits a flat surface, the reflected light 003 will be reflected along the specular surface. When a beam of incident light 001 hits a rough surface, its reflection direction is related to the microstructure of the surface. When this microstructure exists in the form of an arc 005 or an approximate arc 005, as shown in Figure 3, we take the incident light 001 incident on the arc 005 as the arc radial line to make the arc tangent 006, we can find that The reflection direction of the reflected light 003 is closely related to the tangent.
  • the angle ⁇ of the reflected light is related to the angle ⁇ .
  • the angle of reflection ⁇ refers to the angle between the reflected light and the interface normal.
  • a scattering unit contains the range of x from -1 to 1.
  • dy/dx In order to make the reflected light intensity of ⁇ around 0° have better concentration, we need the value of dy/dx to be relatively large around 0°, and the value of d 2 y/dx 2 to be relatively small around 0°.
  • the incident light 001 is not incident from a single direction, there will be a probability distribution of the reflection angle after the incident light hits the microstructured surface 02, and this probability distribution is related to the size of the arc 005 on the microstructured surface 02 .
  • the circles forming the arc 005 are of the same size, so the factor affecting the reflection angle is the depth of the arc 005.
  • the microstructure of the microstructured surface above the base layer shown here needs to obey a certain probability distribution. From a certain known reflected light intensity distribution, we can deduce the topography distribution of the microstructures on the microstructured surface, as shown in Figure 5,
  • the tilt angle is ⁇ j .
  • the aspect ratios of the arc 005 of the corresponding microstructured surface 02 are 20:3 and 10:1, respectively,
  • the aspect ratio is the ratio of the depth metric value to the width metric value, and the ⁇ angle is half of the ⁇ angle. Therefore, by this method, we can make the required microstructured surface 02 according to the performance parameters that are finally required.
  • the commonly used parameters for evaluating screen performance are: total reflectivity, viewing angle, brightness gain, and polarization contrast.
  • the total reflectivity can be reflected in the viewing angle and brightness gain.
  • the higher the brightness gain the narrower the viewing angle; otherwise, the larger the viewing angle.
  • the higher the polarization contrast the better the viewing effect.
  • a high polarization-maintaining optical film having an uneven microstructured surface 02 with a total reflectivity of over 95% and a vertical polarization contrast ratio greater than 1000:1 or up to 2000:1 can be prepared.
  • the polarization contrast ratio of the high polarization-maintaining optical film can reach 200:1, effectively eliminating the problem of ghosting in 3D movies; in addition, we can adjust the microstructured surface by adjusting the surface 02 , control the final viewing angle and gain, the gain can be adjusted between 1.3-3.5, and the viewing angle can also be controlled from ⁇ 20° to ⁇ 50°. many audiences.
  • any region with a dimension greater than 1 mm along the direction parallel to the lower surface 013 of the base layer, the structure of the upper surface 032 of the reflective layer is composed of at least two wave crests and at least two wave troughs, and The peaks and troughs have a random structure and are basically not repetitive.
  • the probability of occurrence of the included angle ⁇ between the tangent of any point on the upper surface 032 of the reflective layer and the plane parallel to the lower surface 013 of the base layer varies continuously with the angle of the included angle ⁇ .
  • the probability of occurrence of the included angle ⁇ at 0 degrees is the largest, and the probability of occurrence of the included angle ⁇ decreases continuously as the absolute value of the angle increases.
  • the ratio of the maximum value to the minimum value of the occurrence probability of the included angle ⁇ is less than 10:1. In a further preferred embodiment, the ratio of the maximum value to the minimum value of the occurrence probability of the included angle ⁇ is less than 2:1.
  • the profile of the uneven microstructured surface 02 is an arcuate or wavy structure.
  • the characteristic length L between adjacent wave crests or adjacent wave troughs of the reflective layer 03 is not greater than 0.5 mm. In a further preferred embodiment, the characteristic length L between adjacent wave crests or adjacent wave troughs of the light-reflecting layer 03 is not greater than 0.05 mm.
  • the height difference between the peaks and valleys of the upper surface 032 of the reflective layer is not greater than 100 ⁇ m. In a further preferred embodiment, the height difference between the peaks and valleys of the upper surface 032 of the reflective layer is not greater than 10 ⁇ m.
  • the light-reflecting layer 03 is composed of a multi-layer medium, and the multi-layer medium passes through the coherent superposition of the multi-layer interface reflected light 003 to achieve high reflection (over 80% reflectivity) for the incident light 001 .
  • the reflective layer 03 is formed by alternately stacking two isotropic optically transparent materials with different refractive indices.
  • the reflective layer 03 has a reflectivity of over 80% for light with wavelengths between 400 nm and 700 nm.
  • the reflective layer 03 is a metal layer.
  • the metal layer is prepared from at least one of silver, aluminum, gold, metal oxide, metal halide, and metal nitride, but the metal layer is not limited to the above three metals Or prepared from metal oxides, metal halides, and metal nitrides.
  • the thickness of the metal layer is 5 nm ⁇ 1 ⁇ m. In a further preferred embodiment, the thickness of the metal layer is 20 nm to 50 nm.
  • the process for preparing the metal layer includes, but is not limited to, magnetron sputtering, evaporation coating, and the like.
  • an adhesion promoting layer is also provided between the uneven microstructured surface 02 and the metal layer.
  • the adhesion promoting layer is prepared from silicon dioxide.
  • the thickness of the silicon dioxide is 10 nm ⁇ 100 nm.
  • the process for preparing the adhesion promoting layer includes, but is not limited to, magnetron sputtering and evaporation coating.
  • an anti-oxidation layer is provided on the surface of the metal layer.
  • the anti-oxidation layer is prepared from any one of silicon dioxide, titanium dioxide and ITO.
  • the process for preparing the anti-oxidation layer includes, but is not limited to, magnetron sputtering and evaporation coating.
  • the high polarization-maintaining optical film further includes a cover layer 04 having a lower surface of the cover layer 04 and an upper surface of the cover layer 04 opposite to the lower surface of the cover layer 04, the cover layer 04 having a lower surface of the cover layer 04
  • the lower surface of the layer 04 is disposed on the upper surface 032 of the light-reflecting layer.
  • the uneven microstructured surface 02 is prepared by any one of rapid knife imprinting, surface cutting, surface etching, and sandblasting.
  • the material of the base layer 01 is a deformable flexible plastic film material.
  • the flexible plastic film material is any one of PET, PVC, and PC.
  • a specific embodiment of the fabrication of the uneven microstructured surface 02 on the base layer 01 is to fabricate the microstructured surface according to the data obtained by the theoretical basis: First, the microstructured The microstructure data on the surface is transferred to the roller. The traditional way is to use a fast knife to press out the required structure, that is, the imprinted structure 06, and then transfer the imprinted structure 06 to the soft mold structure 07, and finally transfer by UV. Transfer the required microstructure to our base layer 01, and the base layer 01 material we choose here is mainly polyester film, such as PET. From Fig. 9, we can see that through this process, the microstructured surface 02 on the final base layer 01 and the extruded structure have good conformation. A single microstructured surface has dimensions in the micrometer scale, typically within 50um in diameter of the microstructures.
  • the reflective layer 03 on the surface of the base layer 01 can usually be performed by magnetron sputtering. Compared with evaporation coating, magnetron sputtering has better control over thickness and uniformity.
  • the reflective layer 03 is a metal layer
  • an adhesion promoting layer such as silicon dioxide
  • the thickness of silicon dioxide is 10nm Between ⁇ 100nm; the metal layer can usually be made of aluminum, silver, or one or more of other metals and metal oxides, halides, and nitrides.
  • the thickness of the coating is usually controlled at 20nm ⁇ 50nm; in order to prevent the oxidation of the metal layer, we will also coat an anti-oxidation layer on the outside of the metal layer, such as: silicon dioxide, titanium dioxide, ITO, etc. Based on the current advanced manufacturing equipment, the entire process can be produced using the roll-to-roll process.
  • the high polarization maintaining optical film In order to effectively protect the film surface of the high polarization maintaining optical film before use, after the high polarization maintaining optical film is prepared, we will set a cover layer 04 on the surface of the high polarization maintaining optical film, and then apply the laser to the high polarization maintaining optical film. The film is punched to form holes 05 and spliced. After the final suspension, the protective layer is removed to ensure the integrity of the high polarization-maintaining optical film surface and the effect of viewing movies.
  • the present application mainly describes the embodiments of the present invention with a core structure of two layers (base layer 01 and reflective layer 03), those skilled in the art should understand that within the scope of the present invention, any one of the high polarization-maintaining optical films is not excluded.
  • the side can also have other layers other than the cover layer 04, such as: bonding layer, adhesive layer, reinforcement layer, anti-reflection layer, absorption layer, anti-reflection layer, etc., and, those skilled in the art should understand that these layers can be It is understood to be part of the base layer 01 or the reflective 03 layer.
  • adhesion-promoting layer and an anti-oxidation layer between the two layers (the base layer 01 and the reflective layer 03) of the high polarization-maintaining optical film.
  • Other layers other than layers such as: bonding layer, adhesive layer, reinforcement layer, anti-reflection layer, absorption layer, anti-reflection layer, etc., and, those skilled in the art should understand that these layers can be understood as the base layer 01 or part of the reflective layer 03.
  • the present application also provides a projection screen, the projection screen includes: a frame, an optical film, and an elastic structure: the frame is composed of metal or plastic material; the optical film is composed of a plurality of the above-mentioned It is composed of a high polarization-maintaining optical film and is spliced by glue; the elastic structure stretches the optical film reasonably and fixes it on the frame.
  • the elastic structure is a spring.
  • the optical film has holes 05 formed by laser drilling.
  • the present invention provides a specially designed high polarization-maintaining optical film.
  • the upper surface of the base layer 01 is designed as an uneven microstructured surface 02.
  • the upper surface 014 is designed with a reflective layer 03 substantially conformal to the upper surface 014 of the base layer, so that the upper surface 032 of the reflective layer forms a microstructure surface substantially consistent with the upper surface 014 of the base layer.
  • This high polarization-maintaining optical film has excellent polarization direction retention, reflectivity, gain and viewing angle performance; it can produce a screen with high polarization-maintaining and high-definition image quality, and can solve the problem of high cost of existing products, which is beneficial to 3D Promotion of the film market.
  • the high polarization-maintaining optical film of the present application can be applied not only to the cinema film market, but also to home theaters, science and technology museums, and exhibition halls of other exhibition halls.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

一种高保偏光学膜,包括基层(01)以及设于基层(01)上的反光层(03);基层(01)具有基层下表面(013)和基层上表面(014),基层下表面(013)是平坦的表面,基层上表面(014)是不平坦的微结构化表面;反光层(03)具有反光层下表面(031)和反光层上表面(032),反光层下表面(031)设置在基层上表面(014)上,反光层(03)基本上保形于基层上表面(014),使反光层上表面(032)形成与基层上表面(014)基本一致的微结构表面;其中,反光层上表面(032)上任一点切线(006)与基层下表面(013)平行的平面之间的夹角θ控制在0度至+/-30度之间随机变化。这种高保偏光学膜具有优异的偏振方向保持、反射率、增益和视角性能。由这种高保偏光学膜制备的投影银幕,画质高清晰,成本低。

Description

一种高保偏光学膜及投影银幕
本申请要求了申请日为2020年12月22日,申请号为CN202011528077.8,发明名称为“一种高保偏光学膜及投影银幕”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种光学膜,尤其涉及一种高保偏光学膜及投影银幕。
背景技术
3D电影是使用一种立体镜视觉显示系统,再制画面将左右眼平面投影影像立体显现成像,令观众对影像产生立体深度的技术,让观众真实感更强,甚至能如临其境,更加激动人心。3D效果的好坏很大程度上取决于银幕的质量,通常评估银幕性能的参数主要是增益、视角和偏振对比度。3D的原理是将从投影仪发出的偏振光经过银幕的反射,再通过偏振眼镜进入人眼,所以需要银幕具有非常高的保偏性能,偏振对比度,指标越高,意味着重影越小,立体感越强。当银幕的保偏性能不佳时,往往会出现“鬼影”的问题。
银幕的增益和视角也是影响观影效果的两个重要指标。增益就是银幕对光的反射能力,是决定画面亮度的关键,是关于图像亮度提升的重要参数,增益由幕布表面材质决定;视角并非是可视角度,这里指最佳效果视角,是人们是可以从不同的方向清晰地观察屏幕上所有内容的角度。视角和增益是一个相对的概念,增益与视角息息相关,相辅相成,增益大时,视角自然会减小。如何平衡两者之间的关系成为了行业的重点。
目前用于3D电影的银幕从材质上区分的话有:白塑幕布、灰塑幕布、玻珠幕布、PVC幕布、玻纤幕布、金属幕布、抗光幕布。其中,金属银幕在3D影院受到广泛推广,一方面是因为金属的反射更高,增益效果好,可以提升电影的整体亮度,更清晰亮丽,可视角度也比玻珠幕大、比白塑小;另一方面是因为金属的保偏性能。常规的金属银幕主要是在基材表面喷涂一层金属,表面呈现无续的粉状颗粒。但这种工艺会对投影机的光源产生很大的衰减浪费,画面亮度低,并且表面颗粒感明显,影响画面的分辨率,无法实现真正的高清。同时,由于金属粉体暴露于空气中,极易氧化发暗,大大降低了使用寿命,带来较大的经济成本。
通过设计基材表面微结构来控制反射角度的方式已开始应用于银幕市场,再镀上金属层和保护层,得到金属银幕。但这种结构往往需要高精度的设计及制作,生产成本非常高;如果在设计或者制作过程中存在偏差,最终造成银幕的质量问题。
发明内容
以下通过例示并结合系统、工具和方法,对本发明的实施方案及其目的进行描述和说明。这些例示仅是示例性的和说明性的、而非限制性的。在不同实施方案中,上述一个或更多个市场需求已经通过本发明得到满足,而另一些实施方案则针对其他改进。
本发明的主要目的是提供一种基于表面微观结构的光学膜,该光学膜具有优异的保偏性能,能用于制作出高保偏,高清晰画质的银幕,该银幕立体感越强,重影小,不会出现“鬼影”的问题。
本发明的另一个目的是提供一种基于柔性塑料膜材料为基层的光学膜,该光学膜可以弯曲或折叠,便于卷对卷生产和运输。
本发明的另一个目的是提供一种基于金属作为反光层的光学膜,该膜成本低,寿命长,易规模化生产。
本发明的另一个目的是提供一种可以生产这种基于金属作为反光层的光学膜的示例性制造工艺。
为实现上述目的,本申请提供了一种高保偏光学膜,其特征在于,所述高保偏光学膜包括:基层,所述基层具有基层下表面和与所述基层下表面相对的基层上表面,所述基层上表面是不平坦的微结构化表面,以及设于所述基层上的反光层,所述反光层具有反光层下表面和与所述反光层下表面相对的反光层上表面,所述反光层下表面设置在所述基层上表面上,所述反光层基本上保形于所述基层上表面,使所述反光层上表面形成与所述基层上表面基本一致的微结构表面;其中,所述反光层上表面上任一点切线与所述基层下表面平行的平面之间的夹角θ控制在0度至+/-30度之间随机变化。
作为本申请的进一步改进,任选一个沿平行于所述基层下表面的方向尺寸大于1mm的区域,所述反光层上表面的结构都由至少两个波峰和至少两个波谷组成,而且波峰波谷具有随机结构。
作为本申请的进一步改进,所述反光层上表面上任一点切线与所述基层下表面平行的平面之间的夹角θ出现的几率随夹角θ的角度连续变化。
作为本申请的进一步改进,所述夹角θ在0度出现的几率最大,所 述夹角θ随着角度绝对值的增大出现的几率连续变小。
作为本申请的进一步改进,所述夹角θ出现几率的最大值与最小值之比小于10:1。
作为本申请的进一步改进,所述夹角θ出现几率的最大值与最小值之比小于2:1。
作为本申请的进一步改进,所述不平坦的微结构化表面的剖面是弧形结构或波状结构。
作为本申请的进一步改进,所述反光层的相邻波峰或相邻波谷之间的特征长度L不大于0.5mm。
作为本申请的进一步改进,所述反光层的相邻波峰或相邻波谷之间的特征长度L不大于0.05mm。
作为本申请的进一步改进,所述反光层上表面的波峰和波谷之间的高度差不大于100μm。
作为本申请的进一步改进,所述反光层上表面的波峰和波谷之间的高度差不大于10μm。
作为本申请的进一步改进,所述反光层由多层介质组成,所述多层介质经过多层界面反射光的相干叠加,实现对于入射光的高反射。
作为本申请的进一步改进,所述反光层由两种不同折射率的各向同性的光学透明材料交替叠加形成。
作为本申请的进一步改进,所述反光层对于波长400nm~700nm之间的光线具有超过80%的反射率。
作为本申请的进一步改进,所述反光层为金属层。
作为本申请的进一步改进,所述金属层的厚度为5nm~1μm。
作为本申请的进一步改进,所述金属层的厚度为20nm~50nm。
作为本申请的进一步改进,所述金属层由银、铝、金、金属氧化物、金属卤化物、金属氮化物中的至少一种制备而成。
作为本申请的进一步改进,所述金属层由磁控溅射、蒸发镀膜中的任意一种工艺制备而成。
作为本申请的进一步改进,在所述的不平坦的微结构化表面与所述金属层之间设有附着力促进层。
作为本申请的进一步改进,所述附着力促进层由二氧化硅制备而成。
作为本申请的进一步改进,所述二氧化硅的厚度为10nm~100nm。
作为本申请的进一步改进,所述附着力促进层由磁控溅射、蒸发镀膜中的任意一种工艺制备而成。
作为本申请的进一步改进,在所述金属层表面设有抗氧化层。
作为本申请的进一步改进,所述抗氧化层由二氧化硅、二氧化钛、ITO中的任意一种材料制备而成。
作为本申请的进一步改进,所述抗氧化层由磁控溅射、蒸发镀膜中的任意一种工艺制备而成。
作为本申请的进一步改进,所述高保偏光学膜还包括覆盖层,所述覆盖层具有覆盖层下表面和与所述覆盖层下表面相对的覆盖层上表面,所述覆盖层下表面设置在所述反光层上表面上。
作为本申请的进一步改进,所述不平坦的微结构化表面由快刀压印、表面切削、表面刻蚀、喷砂工艺中的任意一种制备而成。
作为本申请的进一步改进,所述基层的材料是可变形的柔性塑料膜材料。
作为本申请的进一步改进,所述柔性塑料膜材料是PET、PVC、PC中的任意一种。
为实现上述目的,一种投影银幕,其特征在于,所述投影银幕包括:边框、光学膜、弹性结构:所述边框由金属或者塑料材料组成;所述光学膜由多块上述所述的高保偏光学膜组成,并通过胶水拼接而成;所述弹性结构将所述光学膜合理地拉伸,并将其固定在所述边框上。
作为本申请的进一步改进,所述弹性结构为弹簧。
作为本申请的进一步改进,所述光学膜上具有通过激光打孔形成的孔洞。
本发明的有益效果在于,本发明提供了一种特殊设计的高保偏光学膜,在所述高保偏光学膜中,所述基层的上表面设计为不平坦的微结构化表面,在所述基层上表面设计一层与所述基层上表面基本上彼此保形的反光层,使所述反光层上表面形成与所述基层上表面基本一致的微结构表面。这种高保偏光学膜具有优异的偏振方向保持、反射率、增益和视角性能;能制作出一款高保偏,高清晰画质的银幕,同时可以解决现有产品成本高昂的问题,有利于3D电影市场的推广。
附图说明
图1为一种高保偏光学膜的一个实施例结构示意图;
图2为平整的表面(A)和粗糙的表面(B)反射光线示意图;
图3为圆弧上入射光与反射光的示意图;
图4为微结构化表面上圆弧不同深度下的反射光线角度示意图;
图5为反射光强分布(A)和微结构的形貌概率分布(B)示意图;
图6为σ=40°时反射光强分布(A)及高保偏光学膜表面微结构深宽比(B)示意图;
图7为σ=20°时反射光强分布(A)及高保偏光学膜表面微结构深宽比(B)示意图;
图8为一种高保偏光学膜的一个实施例结构的剖面结构示意图;
图9为带有微结构化表面的基层的一个实施例的制作过程示意图;
图中:01、基层;02、微结构化表面;03、反光层;04、覆盖层;05、孔洞;06、压印结构;07、软膜结构;001、入射光;002、平整表面;003、反射光;004、粗糙表面;005、圆弧;006、圆弧切线;007、夹角;011、第一圆弧;012、第二圆弧;013、基层下表面;014、基层上表面;031、反光层下表面;032、反光层上表面。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例,不用来限制本发明的范围。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为制备出一款高保偏,高清晰画质的银幕,本申请提供了一种高保偏光学膜,所述高保偏光学膜包括:基层01,所述基层01具有基层下 表面013和与所述基层下表面013相对的基层上表面014,所述基层下表面013可以是平坦的表面,也可以是具有微结构或其他结构的不平坦表面,所述基层上表面014是不平坦的微结构化表面02,以及设于所述基层01上的反光层03,所述反光层03具有反光层下表面031和与所述反光层下表面031相对的反光层上表面032,所述反光层下表面031设置在所述基层上表面014上,所述反光层03基本上保形于所述基层上表面014,使所述反光层上表面032形成与所述基层上表面014基本一致的微结构表面,其中,所述反光层上表面032上任一点切线与所述基层下表面013平行的平面之间的夹角θ控制在0度至+/-30度之间随机变化。
如图1中所示,根据本发明的一个实施方案,本文中所公开的高保偏光学膜的基本结构包括三层材料:基层01、反光层03和覆盖层04,所述基层上表面014是不平坦的微结构化表面02,所述基层01和所述反光层03均为光学材料,所述覆盖层04用于保护高保偏光学膜的表面。
本申请中,基层上表面014的不平坦的微结构化表面02设计的理论依据如下:如图2所示,一束入射光001打到平整的表面时,其反射光003会沿着镜面反射的方向出去;当一束入射光001打到粗糙的表面时,其反射方向与表面的微结构有关。当这个微结构以圆弧005或者近似圆弧005的形式存在时,如图3所示,我们以入射到圆弧005上的入射光001为圆弧径向线做圆弧切线006,可以发现反射光003的反射方向与切线有着紧密的联系,通过控制切线与水平位置之间的夹角007,我们可以调控反射光003线的方向,从而控制反射角度。所述反光层上表面 032与所述基层下表面013平行的水平面的夹角θ,即表面倾斜角θ(切线与x轴的夹角):
Figure PCTCN2021127064-appb-000001
当θ角在θ到θ+△θ这个范围内变化时,其角度的概率分布与长度△x成正比:
Figure PCTCN2021127064-appb-000002
反射光的角度α与夹角θ有关,反射角α是指反射光线与界面法线的夹角,最终我们可以得到反射光角度的分布函数:
Figure PCTCN2021127064-appb-000003
一个散射单元包含了x从-1到1这个范围。为了使α在0°附近的反射光强具有更好的聚集,我们需要dy/dx的值在0°附近相对大,而d 2y/dx 2的值在0°附近相对小。
考虑到入射光001并不是从单一方向入射,在入射光打到微结构化表面02上后的反射角度会存在一个概率分布,这一概率分布与微结构化表面02上圆弧005的大小有关。这里我们假设构成圆弧005的圆的大小一致,所以影响反射角度的因素为圆弧005的深度。如图4所示,当圆弧005较浅时,如第一圆弧011,反射光003的角度较小;当圆弧005深度增加时,如第二圆弧012,在较大斜率处的反射光003的角度会随之增加。因此,这里所展示的基层上面的微结构化表面的微结构需要遵 从一定的概率分布。通过某一已知的反射光强度分布我们可以推导出微结构化表面微结构的形貌分布,如图5所示,
反射光强度:G(α)=W(α)
表面θ角分布:P(θ)=W(2θ)=H(θ)
这里我们将圆弧005的表面宽度等分成N份,每份的宽度为1/N;同时,我们将θ角(0°~45°)等分成M份,每份的角度为45°/M。
分布的数量:K j=H(θ j)N
当表面宽度在区域
Figure PCTCN2021127064-appb-000004
Figure PCTCN2021127064-appb-000005
内变化时,倾斜角为θ j
由此可知,如图6和图7所示,当σ角分别等于40°和20°时,对应的微结构化表面02的圆弧005的深宽比分别为20:3和10:1,此处,所述深宽比为深度度量值和宽度度量值的比值,所述σ角是α角的二分之一。因此,通过这一方法我们可以根据最终需要得到的性能参数,制作出所需的微结构化表面02。
本申请中,评价银幕性能常用的参数有:总反射率、视角、亮度增益、偏振对比度。其中,总反射率可以反映到视角和亮度增益上,在相同的总反射率下,亮度增益越高,视角越窄;反之,视角越大。偏振对比度越高,观影效果越好。按照上述理论依据可以制备出总反射率达到95%以上、垂直方向偏振对比度大于1000:1或最高可大于2000:1的具有不平坦的微结构化表面02的高保偏光学膜。当银幕的可视角度控制在+/-60度方向上,高保偏光学膜的偏振对比度可以达到200:1,有效消除了3D电影鬼影的问题;另外,我们可以通过调整微结构化表面02,控制最终的视角及增益,增益可以在1.3-3.5之间进行调整,可视角度也可 控制在±20°至±50°,大的可视角度范围可以满足大的影厅,带来更多的观众。
在优选的实施方案中,任选一个沿平行于所述基层下表面013的方向尺寸大于1mm的区域,所述反光层上表面032的结构都由至少两个波峰和至少两个波谷组成,而且波峰波谷具有随机结构,基本不具有重复性。在优选的实施方案中,所述反光层上表面032上任一点切线与所述基层下表面013平行的平面之间的夹角θ出现的几率随夹角θ的角度连续变化。在优选的实施方案中,所述夹角θ在0度出现的几率最大,所述夹角θ随着角度绝对值的增大出现的几率连续变小。在进一步优选的实施方案中,所述夹角θ出现几率的最大值与最小值之比小于10:1。在更进一步优选的实施方案中,所述夹角θ出现几率的最大值与最小值之比小于2:1。
在优选的实施方案中,所述不平坦的微结构化表面02的剖面是弧形结构或波状结构。如图8所示,在优选的实施方案中,所述反光层03的相邻波峰或相邻波谷之间的特征长度L不大于0.5mm。在进一步优选实施方案中,所述反光层03的相邻波峰或相邻波谷之间的特征长度L不大于0.05mm。在优选的实施方案中,所述反光层上表面032的波峰和波谷之间的高度差不大于100μm。在进一步优选实施方案中,所述反光层上表面032的波峰和波谷之间的高度差不大于10μm。
在优选的实施方案中,所述反光层03由多层介质组成,所述多层介质经过多层界面反射光003的相干叠加,实现对于入射光001的高反射(超过80%的反射率)。在优选的实施方案中,所述反光层03由两种不 同折射率的各向同性的光学透明材料交替叠加形成。在更进一步优选的实施方案中,所述反光层03对于波长400nm~700nm之间的光线具有超过80%的反射率。
在优选的实施方案中,所述反光层03为金属层。在进一步优选实施方案中,所述金属层由银、铝、金、金属氧化物、金属卤化物、金属氮化物中的至少一种制备而成,但所述金属层不仅仅限于上述三种金属或金属氧化物、金属卤化物、金属氮化物制备而成。在优选的实施方案中,所述金属层的厚度为5nm~1μm。在进一步优选的实施方案中,所述金属层的厚度为20nm~50nm。在优选的实施方案中,制备所述金属层的工艺包括但不仅限于磁控溅射、蒸发镀膜等。
在优选的实施方案中,在所述的不平坦的微结构化表面02与所述金属层之间还设有附着力促进层。在进一步优选的实施方案中,所述附着力促进层由二氧化硅制备而成。在更进一步优选的实施方案中,所述二氧化硅的厚度为10nm~100nm。在优选的实施方案中,制备所述附着力促进层的工艺包括但不仅仅限于磁控溅射、蒸发镀膜。
在优选的实施方案中,在所述金属层表面设有抗氧化层。在进一步优选的实施方案中,所述抗氧化层由二氧化硅、二氧化钛、ITO中的任意一种材料制备而成。在优选的实施方案中,制备所述抗氧化层的工艺包括但不仅仅限于磁控溅射、蒸发镀膜。
在优选的实施方案中,所述高保偏光学膜还包括覆盖层04,所述覆盖层04具有覆盖层04下表面和与所述覆盖层04下表面相对的覆盖层04上表面,所述覆盖层04下表面设置在所述反光层上表面032上。
在优选的实施方案中,所述不平坦的微结构化表面02由快刀压印、表面切削、表面刻蚀、喷砂工艺中的任意一种制备而成。在进一步优选的实施方案中,所述基层01的材料是可变形的柔性塑料膜材料。在更进一步优选的实施方案中,所述柔性塑料膜材料是PET、PVC、PC中的任意一种。
如图9所示,所述基层01上所述不平坦的微结构化表面02的制作的一个具体实施方案,根据所述理论依据计算得到的数据制作微结构化表面:首先,将微结构化表面的微结构数据转移到辊轮上,传统的方式是利用快刀压制出所需的结构,即压印结构06,再将压印结构06转印到软模结构07上,最终通过UV转印将所需微结构转印到我们的基层01上,这里我们选择的基层01材料主要为聚酯薄膜,比如PET。从图9中我们可以看到,通过这种工艺,最终基层01上的微结构化表面02与压出来的结构具有很好的保形。单一微结构化表面在尺度上具有微米级的尺寸,通常微结构的直径在50um以内。
基层01表面的反光层03通常可以通过磁控溅射的方式进行,相比于蒸发镀膜,磁控溅射对厚度及均一性具有更好的控制。当所述反光层03为金属层时,为了增强金属层与微结构化表面之间的附着力,我们可以先溅射一层附着力促进层,如二氧化硅,二氧化硅的厚度在10nm~100nm之间;金属层通常可以采用铝、银,或者其他金属及金属的氧化物、卤化物、氮化物中的一种或几种,根据不同的金属材料我们选择不同的镀膜厚度,比如铝,镀层厚度通常控制在20nm~50nm;为了防止金属层的氧化,在金属层外面我们也会镀一层抗氧化层,比如:二氧化 硅、二氧化钛、ITO等。基于目前先进的制造设备,整套流程都可以利用卷对卷的工艺进行生产。
为了在使用之前对高保偏光学膜的膜面进行一个有效的保护,在高保偏光学膜制备结束后我们会在高保偏光学膜的表面设置一层覆盖层04,然后再应用激光对高保偏光学膜进行打孔形成孔洞05和拼接,待最终悬挂后再揭开保护层,确保高保偏光学膜面的完整性及观影的效果。
虽然本申请主要以两层(基层01和反光层03)核心结构来描述本发明的实施方案,本领域技术人员应当理解,在本发明的保护范围内,不排除在高保偏光学膜的任何一侧还可以有除覆盖层04以外的其他层,例如:结合层、粘结层、加强层、消反射层、吸收层、增透层等等,并且,本领域技术人员应当理解,这些层可以被理解为是基层01或反光03层的一部分。
另外,本领域技术人员应当理解,在本发明的保护范围内,不排除在高保偏光学膜的所述两层(基层01和反光层03)之间还可以有除附着力促进层和抗氧化层之外的其他层,例如:结合层、粘结层、加强层、消反射层、吸收层、增透层等等,并且,本领域技术人员应当理解,这些层可以被理解为是基层01或反光层03的一部分。
为实现上述目的,本申请还提供了一种投影银幕,所述投影银幕包括:边框、光学膜、弹性结构:所述边框由金属或者塑料材料组成;所述光学膜由多块上述所述的高保偏光学膜组成,并通过胶水拼接而成;所述弹性结构将光学膜合理地拉伸,并将其固定在边框上。作为本申请优选的实施方案,所述弹性结构为弹簧。作为本申请优选的实施方案, 所述光学膜上具有通过激光打孔形成的孔洞05。
综上所述,本发明提供了一种特殊设计的高保偏光学膜,在所述高保偏光学膜中,所述基层01的上表面设计为不平坦的微结构化表面02,在所述基层上表面014设计一层与所述基层上表面014基本上彼此保形的反光层03,使所述反光层上表面032形成与所述基层上表面014基本一致的微结构表面。这种高保偏光学膜具有优异的偏振方向保持、反射率、增益和视角性能;能制作出一款高保偏,高清晰画质的银幕,同时可以解决现有产品成本高昂的问题,有利于3D电影市场的推广。此外,本申请的高保偏光学膜不仅仅可应用于影院电影市场,还可应用于家庭影院、科技馆及其它展馆展厅等。
虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (33)

  1. 一种高保偏光学膜,其特征在于,所述高保偏光学膜包括:
    基层(01),所述基层(01)具有基层下表面(013)和与所述基层下表面(013)相对的基层上表面(014),所述基层上表面(014)是不平坦的微结构化表面(02),以及设于所述基层(01)上的反光层(03),所述反光层(03)具有反光层下表面(031)和与所述反光层下表面(031)相对的反光层上表面(032),所述反光层下表面(031)设置在所述基层上表面(014)上,所述反光层(03)基本上保形于所述基层上表面(014),使所述反光层上表面(032)形成与所述基层上表面(014)基本一致的微结构表面;
    其中,所述反光层上表面(032)上任一点切线与所述基层下表面(013)平行的平面之间的夹角θ控制在0度至+/-30度之间随机变化。
  2. 如权利要求1所述的高保偏光学膜,其特征在于,任选一个沿平行于所述基层下表面(013)的方向尺寸大于1mm的区域,所述反光层上表面(032)的结构都由至少两个波峰和至少两个波谷组成,而且波峰波谷具有随机结构。
  3. 如权利要求1所述的高保偏光学膜,其特征在于,所述反光层上表面(032)上任一点切线与所述基层下表面(013)平行的平面之间的夹角θ出现的几率随夹角θ的角度连续变化。
  4. 如权利要求2所述的高保偏光学膜,其特征在于,所述夹角θ在0度出现的几率最大,所述夹角θ随着角度绝对值的增大出现的几率连续变小。
  5. 如权利要求4所述的高保偏光学膜,其特征在于,所述夹角θ出现几率的最大值与最小值之比小于10:1。
  6. 如权利要求4所述的高保偏光学膜,其特征在于,所述夹角θ出现几率的最大值与最小值之比小于2:1。
  7. 如权利要求1至6任意一项所述的高保偏光学膜,其特征在于, 所述不平坦的微结构化表面(02)的剖面是弧形结构或波状结构。
  8. 如权利要求7所述的高保偏光学膜,其特征在于,所述反光层(03)的相邻波峰或相邻波谷之间的特征长度L不大于0.5mm。
  9. 如权利要求7所述的高保偏光学膜,其特征在于,所述反光层(03)的相邻波峰或相邻波谷之间的特征长度L不大于0.05mm。
  10. 如权利要求7所述的高保偏光学膜,其特征在于,所述反光层上表面(032)的波峰和波谷之间的高度差不大于100μm。
  11. 如权利要求7所述的高保偏光学膜,其特征在于,所述反光层上表面(032)的波峰和波谷之间的高度差不大于10μm。
  12. 如权利要求1所述的高保偏光学膜,其特征在于,所述反光层(03)由多层介质组成,所述多层介质经过多层界面反射光(003)的相干叠加,实现对于入射光(001)的高反射。
  13. 如权利要求1所述的高保偏光学膜,其特征在于,所述反光层(03)由两种不同折射率的各向同性的光学透明材料交替叠加形成。
  14. 如权利要求12或13所述的高保偏光学膜,其特征在于,所述反光层(03)对于波长400nm~700nm之间的光线具有超过80%的反射率。
  15. 如权利要求1或12或13所述的高保偏光学膜,其特征在于,所述反光层(03)为金属层。
  16. 如权利要求15所述的高保偏光学膜,其特征在于,所述金属层的厚度为5nm~1μm。
  17. 如权利要求15所述的高保偏光学膜,其特征在于,所述金属层的厚度为20nm~50nm。
  18. 如权利要求15所述的高保偏光学膜,其特征在于,所述金属层由银、铝、金、金属氧化物、金属卤化物、金属氮化物中的至少一种制备而成。
  19. 如权利要求15所述的高保偏光学膜,其特征在于,所述金属层 由磁控溅射、蒸发镀膜中的任意一种工艺制备而成。
  20. 如权利要求15所述的高保偏光学膜,其特征在于,在所述不平坦的微结构化表面(02)与所述金属层之间设有附着力促进层。
  21. 如权利要求20所述的高保偏光学膜,其特征在于,所述附着力促进层由二氧化硅制备而成。
  22. 如权利要求21所述的高保偏光学膜,其特征在于,所述二氧化硅的厚度为10nm~100nm。
  23. 如权利要求20所述的高保偏光学膜,其特征在于,所述附着力促进层由磁控溅射、蒸发镀膜中的任意一种工艺制备而成。
  24. 如权利要求15所述的高保偏光学膜,其特征在于,在所述金属层表面设有抗氧化层。
  25. 如权利要求24所述的高保偏光学膜,其特征在于,所述抗氧化层由二氧化硅、二氧化钛、ITO中的任意一种材料制备而成。
  26. 如权利要求24所述的高保偏光学膜,其特征在于,所述抗氧化层由磁控溅射、蒸发镀膜中的任意一种工艺制备而成。
  27. 如权利要求1或20或24所述的高保偏光学膜,其特征在于,所述高保偏光学膜还包括覆盖层(04),所述覆盖层(04)具有覆盖层下表面和与所述覆盖层下表面相对的覆盖层上表面,所述覆盖层下表面设置在所述反光层上表面(032)上。
  28. 如权利要求1所述的高保偏光学膜,其特征在于,所述不平坦的微结构化表面(02)由快刀压印、表面切削、表面刻蚀、喷砂工艺中的任意一种制备而成。
  29. 如权利要求1所述的高保偏光学膜,其特征在于,所述基层(01)的材料是可变形的柔性塑料膜材料。
  30. 如权利要求29所述的高保偏光学膜,其特征在于,所述柔性塑料膜材料是PET、PVC、PC中的任意一种。
  31. 一种投影银幕,其特征在于,所述投影银幕包括:
    边框、光学膜、弹性结构:
    所述边框由金属或者塑料材料组成;
    所述光学膜由多块权利要求1-30所述的高保偏光学膜组成,并通过胶水拼接而成;
    所述弹性结构将所述光学膜合理地拉伸,并将其固定在所述边框上。
  32. 如权利要求31所述的投影银幕,其特征在于,所述弹性结构为弹簧。
  33. 如权利要求31所述的投影银幕,其特征在于,所述光学膜上具有通过激光打孔形成的孔洞(05)。
PCT/CN2021/127064 2020-12-22 2021-10-28 一种高保偏光学膜及投影银幕 WO2022134845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011528077.8 2020-12-22
CN202011528077.8A CN112578626A (zh) 2020-12-22 2020-12-22 一种高保偏光学膜及投影银幕

Publications (1)

Publication Number Publication Date
WO2022134845A1 true WO2022134845A1 (zh) 2022-06-30

Family

ID=75138992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127064 WO2022134845A1 (zh) 2020-12-22 2021-10-28 一种高保偏光学膜及投影银幕

Country Status (2)

Country Link
CN (1) CN112578626A (zh)
WO (1) WO2022134845A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286280B (zh) * 2018-12-06 2022-06-03 深圳光峰科技股份有限公司 一种屏幕拼接结构及其形成方法
CN112578626A (zh) * 2020-12-22 2021-03-30 江苏集萃智能液晶科技有限公司 一种高保偏光学膜及投影银幕

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551127A1 (en) * 1992-01-10 1993-07-14 Kuraray Co., Ltd. Front projection screen
WO2007100661A2 (en) * 2006-02-22 2007-09-07 Bright View Technologies, Inc. Screens, microstructure templates, and methods of forming the same
TW200921255A (en) * 2007-11-06 2009-05-16 Ind Tech Res Inst Image screen
CN102016714A (zh) * 2008-01-28 2011-04-13 瑞尔D股份有限公司 保偏前投影屏幕
US20140247428A1 (en) * 2011-10-27 2014-09-04 3M Innovative Properties Company Polarization preserving 3d screen
CN111286280A (zh) * 2018-12-06 2020-06-16 深圳光峰科技股份有限公司 一种屏幕拼接结构及其形成方法
CN111610689A (zh) * 2020-06-24 2020-09-01 深圳光子晶体科技有限公司 一种具有保持投影光偏振状态的投影屏幕
CN112578625A (zh) * 2020-12-22 2021-03-30 江苏集萃智能液晶科技有限公司 一种金属银幕及其制备方法
CN112578626A (zh) * 2020-12-22 2021-03-30 江苏集萃智能液晶科技有限公司 一种高保偏光学膜及投影银幕

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551127A1 (en) * 1992-01-10 1993-07-14 Kuraray Co., Ltd. Front projection screen
WO2007100661A2 (en) * 2006-02-22 2007-09-07 Bright View Technologies, Inc. Screens, microstructure templates, and methods of forming the same
TW200921255A (en) * 2007-11-06 2009-05-16 Ind Tech Res Inst Image screen
CN102016714A (zh) * 2008-01-28 2011-04-13 瑞尔D股份有限公司 保偏前投影屏幕
US20140247428A1 (en) * 2011-10-27 2014-09-04 3M Innovative Properties Company Polarization preserving 3d screen
CN111286280A (zh) * 2018-12-06 2020-06-16 深圳光峰科技股份有限公司 一种屏幕拼接结构及其形成方法
CN111610689A (zh) * 2020-06-24 2020-09-01 深圳光子晶体科技有限公司 一种具有保持投影光偏振状态的投影屏幕
CN112578625A (zh) * 2020-12-22 2021-03-30 江苏集萃智能液晶科技有限公司 一种金属银幕及其制备方法
CN112578626A (zh) * 2020-12-22 2021-03-30 江苏集萃智能液晶科技有限公司 一种高保偏光学膜及投影银幕

Also Published As

Publication number Publication date
CN112578626A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US6822792B2 (en) Sheet for use for projection screen, light diffusion sheet and projection screen
WO2022134845A1 (zh) 一种高保偏光学膜及投影银幕
WO2017057564A1 (ja) 映像投影構造体および映像投影方法
US7019899B2 (en) Screen, optical film, and method of manufacturing an optical film
JP4238792B2 (ja) 光拡散シート及びその製造方法、並びにスクリーン
CN1653385A (zh) 反射型投影屏的改进
JP6529728B2 (ja) 映像表示システムおよび映像表示方法
US20050094266A1 (en) Microstructures integrated into a transparent substrate which scatter incident light to display an image
TWI385467B (zh) Optical projection screen
JP2004004148A (ja) プロジェクションスクリーン用シート、光拡散シート、及びプロジェクションスクリーン
JP6569673B2 (ja) 映像表示透明部材、映像表示システムおよび映像表示方法
JP4821484B2 (ja) 光拡散シート、透過型スクリーン及び背面投射型表示装置
EP2930561A1 (en) Screen for reflective projector
US11353639B2 (en) Anti-glare, privacy screen for windows or electronic device displays
JP6642043B2 (ja) 反射スクリーン、映像表示装置
KR20040068926A (ko) 프레넬렌즈시트 및 이를 구비한 투과형스크린
JP6953728B2 (ja) スクリーン、映像表示装置
TW201920995A (zh) 用於基於投影機的顯示系統的回射片
CN214427739U (zh) 高保偏光学膜及投影银幕
JP2002236201A (ja) レンズシートおよびこれを有する表示装置
JP5949356B2 (ja) 反射スクリーン、立体映像表示システム
JP2003248272A (ja) 透過型スクリーン
JPH09211729A (ja) 反射型スクリーン
JP2018132600A (ja) スクリーン及び映像表示システム
JP2018005025A (ja) 反射型スクリーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908846

Country of ref document: EP

Kind code of ref document: A1