WO2022134628A1 - 一种微生物诱导沉积方解石粘结力的调控方法 - Google Patents

一种微生物诱导沉积方解石粘结力的调控方法 Download PDF

Info

Publication number
WO2022134628A1
WO2022134628A1 PCT/CN2021/113379 CN2021113379W WO2022134628A1 WO 2022134628 A1 WO2022134628 A1 WO 2022134628A1 CN 2021113379 W CN2021113379 W CN 2021113379W WO 2022134628 A1 WO2022134628 A1 WO 2022134628A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacillus
calcite
photosynthetic bacteria
medium solution
calcium
Prior art date
Application number
PCT/CN2021/113379
Other languages
English (en)
French (fr)
Inventor
钱春香
张旋
陈燕强
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2022134628A1 publication Critical patent/WO2022134628A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Definitions

  • the invention relates to the field of regulating and controlling the properties of substrates, in particular to a method for regulating the adhesion force of calcite induced to deposit by microorganisms.
  • Biomineralization refers to the process of generating inorganic minerals by organisms through the regulation of biological macromolecules.
  • the biggest difference from general mineralization lies in the participation of organism cells, metabolites or organic substrates.
  • microorganisms have the ability to induce the deposition of carbonates, phosphates, sulfates and other minerals. Therefore, microorganisms play an important role in the process of biomineralization.
  • the most important difference between the process of biomineralization and ordinary mineralization is that biominerals with special hierarchical structures and assembly methods are generated through the interface interaction between organic macromolecules and inorganic ions.
  • the present invention provides a low cost, remarkable effect, environment-friendly, no secondary pollution, and good ecological compatibility.
  • the technical scheme of the present invention is: a method for regulating the cohesive force of calcite induced by microorganisms in deposition, and the specific steps include the following steps:
  • Step (1.1) respectively inoculate the spores of Bacillus colloids, photosynthetic bacteria, Bacillus alkalophiles and Bacillus pasteuri respectively into the corresponding medium solution for cultivation, so as to obtain Bacillus glialis, photosynthetic bacteria, Bacillus colloides, and Bacillus pasteurica respectively.
  • Bacillus alcalibacterium and Bacillus Pasteurella bacteria liquid adjust the pH of each bacterial strain; finally obtain the concentrated bacteria liquid of Bacillus colloid, photosynthetic bacteria, Bacillus alcaliphila and Bacillus pasteuri respectively;
  • Step (1.2) adding calcium source into the concentrated bacterial liquid of Bacillus colloids, photosynthetic bacteria, alkalophilic bacillus and bacillus pasteurii obtained respectively and leave standstill until the concentrated bacterial liquid produces precipitation;
  • step (1.3) after the precipitate is produced, the precipitate is washed, filtered, and dried, and then dried to a constant weight and then subjected to adhesion analysis, that is, to control the adhesion of calcite.
  • step (1.1) In step (1.1),
  • the prepared bacterial solutions of the Bacillus colloids, photosynthetic bacteria, Bacillus alkalophiles and Bacillus pasteuri are all at a concentration of 10 6 to 10 7 cells/mL;
  • the bacterial concentration of the concentrated bacterial solution of the Bacillus colloid, the photosynthetic bacteria, the Bacillus alkalophila and the Bacillus pasteuri is all 10 8 -10 10 cells/mL.
  • the medium solution of Bacillus glialis contains 8-12 g of sucrose, 2-3 g of Na 2 HPO 4 ⁇ 12H 2 O, 0.4-0.6 g of MgSO 4 , and 0.4-0.6 g of CaCO per liter of medium solution. 3 0.5 ⁇ 1.5g, KCl 0.1 ⁇ 0.2g, (NH 4 ) 2 SO 4 0.4 ⁇ 0.6g;
  • the culture medium solution of the photosynthetic bacteria contains 1.0-1.5 g of NH 4 Cl, 3.0-4.0 g of CH 3 COONa, 0.1-0.2 g of MgCl 2 , 0.1-0.2 g of CaCl 2 , 0.1-0.2 g of CaCl 2 , and 0.2 g of KH 2 PO 4 per liter of the culture medium solution. 0.5 ⁇ 0.6g, K 2 HPO 4 0.4 ⁇ 0.5g, yeast paste 0.1 ⁇ 0.2g;
  • the medium solution of the alkalophilic bacillus contains 4-7 g of peptone and 2-5 g of beef extract per liter of the medium solution;
  • the medium solution of Bacillus pasteurii contains 10-15g of glucose, 0.1-0.2g of yeast extract, 0.5-0.6g of KH 2 PO 4 , 0.4-0.5g of K 2 HPO 4 , 0.4-0.5g of K 2 HPO 4 and MgSO per liter of medium solution. 4 0.1-0.2g, CaCO 3 2.0-2.5g, NaCl 0.1-0.2g, MnSO 4 0.1-0.2g.
  • step (1.1) the Bacillus colloids, photosynthetic bacteria, Bacillus alkalophila and Bacillus pasteuri are inoculated in a medium solution, the pH value of the medium solution is controlled to be 7-8, and the temperature is Shake culture at 30-35°C for 24h.
  • step (1.1) the pH value of the obtained bacterial solution containing Bacillus colloids, photosynthetic bacteria, Bacillus alkalophiles and Bacillus pasteuri is 7-13.
  • the calcium source is one or more of calcium chloride, calcium nitrate or calcium acetate; the calcium ion concentration in the calcium source is 0.01-0.05 mol/L.
  • step (1.2) the standing is placed in a constant temperature and humidity environment, the temperature is 30-35° C., and the standing time is 120-150 hours.
  • step (1.3) the calcite is biological calcium carbonate with an adhesive force of 30-70 nN.
  • the present invention adopts the method of inducing deposition of mineralized products by microorganisms, and pioneeringly captures carbon dioxide in the air through photosynthetic bacteria and Bacillus colloids, converts it into spit ions, and uses this as a carbon source, and The added calcium source reacts to produce calcite, a mineralized product with gelling properties.
  • Bacillus pasteuri enzymatically decomposes urea as a carbon source to deposit and mineralize the product calcite with gelling properties.
  • the microbial method adopted in the present invention has stable mineral properties, low cost, remarkable effect, environmental friendliness, no secondary pollution, and good ecological compatibility; carbon dioxide can be effectively captured and utilized in the process to slow down the greenhouse effect.
  • Fig. 1 is the structural flow chart of the present invention
  • Fig. 5 Adhesion of precipitates obtained under the condition of different anion species in the present invention.
  • Step (1.1) respectively inoculate the spores of Bacillus colloids, photosynthetic bacteria, Bacillus alkalophiles and Bacillus pasteuri respectively into the corresponding medium solution for cultivation, so as to obtain Bacillus glialis, photosynthetic bacteria, Bacillus colloides, and Bacillus pasteurica respectively.
  • Bacillus alcalibacterium and Bacillus Pasteurella bacteria liquid adjust the pH of each bacterial strain; finally obtain the concentrated bacteria liquid of Bacillus colloid, photosynthetic bacteria, Bacillus alcaliphila and Bacillus pasteuri respectively;
  • Step (1.2) adding calcium source into the concentrated bacterial liquid of Bacillus colloids, photosynthetic bacteria, alkalophilic bacillus and bacillus pasteurii obtained respectively and leave standstill until the concentrated bacterial liquid produces precipitation;
  • Step (1.3) after producing the precipitation, washing, filtering and drying the precipitation, drying to a constant weight, and then carrying out the adhesion analysis, that is, to achieve the purpose of regulating the calcite cohesive force;
  • the calcite adhesion force is characterized by the force value between the probe and the calcite surface measured by atomic force microscopy; the size of the calcite adhesion force is related to the surface structure and microscopic composition of the calcite, such as calcite induced by microorganisms because it contains organic matter Therefore, its adhesive force is greater than that of chemically generated calcium carbonate; therefore, the biological calcite adhesion force can be adjusted by regulating the microbial species and the deposition environment of biological calcium carbonate; 69nN;
  • the pH value of the solution can control the calcite adhesion in the range of 38-64nN; the calcium ion concentration can control the calcite adhesion in the range of 42-58nN; the anion species can control the calcite adhesion in the range of 59-76nN;
  • the cohesive force of calcite is 35-40nN; when it is B and C, the cohesive force of calcite is 50-55nN; when it is D, the cohesive force of calcite is 65 nN -70nN;
  • the cohesive force of calcite is 45-50nN; when it is 8 or 12, the cohesive force of calcite is 55-60nN; when it is 10, the cohesive force of calcite is 60-65nN; At 13:00, the cohesive force of calcite is 35-40nN;
  • the binding force of calcite is 40-45nN; when it is 0.02mol/L, the binding force of calcite is 45-50nN; when it is 0.03mol/L, the binding force of calcite is When the force is 50-55nN; when it is 0.04mol/L, the cohesive force of calcite is 55-60nN; when it is 0.05mol/L, the cohesive force of calcite is 50-55nN;
  • the cohesive force of calcite is 58-62N; when it is nitrate ion, the cohesive force of calcite is 63-67nN; when it is acetate ion, the cohesive force of calcite is 73- 77nN.
  • the prepared bacterial solutions of the Bacillus colloids, photosynthetic bacteria, Bacillus alkalophiles and Bacillus pasteuri are all at a concentration of 10 6 to 10 7 cells/mL;
  • the bacterial concentration of the concentrated bacterial solution of the Bacillus colloid, the photosynthetic bacteria, the Bacillus alkalophila and the Bacillus pasteuri is all 10 8 -10 10 cells/mL.
  • the medium solution of Bacillus colloids contains 8-12 g of sucrose, 2-3 g of Na 2 HPO 4 ⁇ 12H 2 O, and 0.4-0.6 g of MgSO 4 per liter of medium solution.
  • CaCO 3 0.5-1.5 g, KCl 0.1-0.2 g, (NH 4 ) 2 SO 4 0.4-0.6 g;
  • the culture medium solution of the photosynthetic bacteria contains 1.0-1.5 g of NH 4 Cl, 3.0-4.0 g of CH 3 COONa, 0.1-0.2 g of MgCl 2 , 0.1-0.2 g of CaCl 2 , 0.1-0.2 g of CaCl 2 , and 0.2 g of KH 2 PO 4 per liter of the culture medium solution. 0.5 ⁇ 0.6g, K 2 HPO 4 0.4 ⁇ 0.5g, yeast paste 0.1 ⁇ 0.2g;
  • the medium solution of the alkalophilic bacillus contains 4-7 g of peptone and 2-5 g of beef extract per liter of the medium solution;
  • the medium solution of Bacillus pasteurii contains 10-15g of glucose, 0.1-0.2g of yeast extract, 0.5-0.6g of KH 2 PO 4 , 0.4-0.5g of K 2 HPO 4 , 0.4-0.5g of K 2 HPO 4 and MgSO per liter of medium solution. 4 0.1-0.2g, CaCO 3 2.0-2.5g, NaCl 0.1-0.2g, MnSO 4 0.1-0.2g.
  • step (1.1) the Bacillus colloids, photosynthetic bacteria, Bacillus alkalophila and Bacillus pasteuri are inoculated in a medium solution, the pH value of the medium solution is controlled to be 7-8, and the temperature is Shake culture at 30-35°C for 24h.
  • step (1.1) the pH value of the obtained bacterial solution containing Bacillus colloids, photosynthetic bacteria, Bacillus alkalophiles and Bacillus pasteuri is 7-13.
  • the calcium source is one or more of calcium chloride, calcium nitrate or calcium acetate; the calcium ion concentration in the calcium source is 0.01-0.05 mol/L.
  • step (1.2) the standing is placed in an environment of constant temperature and humidity, the temperature is 30-35° C., and the standing time is 120-150 hours.
  • the calcite is biological calcium carbonate with an adhesive force of 30-70 nN.
  • each liter of medium contains NH 4 Cl 1.0g, CH 3 COONa 3.0g, MgCl 2 0.1g, CaCl 2 0.1g, KH 2 PO 4 0.5g , K 2 HPO 4 0.4g, yeast extract 0.1g, and control the pH to 7, shake and culture at 30°C for 24h to obtain a bacterial solution containing photosynthetic bacteria, and the bacterial concentration contained in the bacterial solution is 10 6 /mL;
  • each liter of medium contains 8g of sucrose, 2g of Na 2 HPO 4 ⁇ 12H 2 O 2g, 0.4g of MgSO 4 , 0.5g of CaCO 3 , 0.1g of KCl , (NH 4 ) 2 SO 4 0.4g, and control the pH to 7, shake and culture at 30°C for 24h to obtain a bacterial liquid containing Bacillus colloids, and the bacterial concentration contained in the bacterial liquid is 10 6 /mL;
  • each liter of medium contains 10 g of glucose, 0.1 g of yeast extract, 0.5 g of KH 2 PO 4 , 0.4 g of K 2 HPO 4 , and 0.1 of MgSO 4 g, CaCO 3 2.0g, NaCl 0.1g, MnSO 4 0.1g, and control the pH to 7, shake and culture at 30 ° C for 24 hours, to obtain a bacterial liquid containing Bacillus pasteuri, the bacterial concentration contained in the bacterial liquid is 10 6 /mL;
  • the alkalophilic bacillus is inoculated into the sterilized medium solution, each liter of medium contains 4 g of peptone and 2 g of beef extract, and the pH is controlled to be 7, and shake cultured at 35 ° C for 24 hours to obtain alkalophilic spores containing alkalophilic spores.
  • the bacterial liquid of bacillus, the bacterial concentration contained in the bacterial liquid is 10 6 /mL;
  • the precipitate is fully washed, filtered, and dried, and the grain size analysis is carried out after drying to a constant weight;
  • each liter of medium contains sucrose 12g, Na 2 HPO 4 ⁇ 12H 2 O 3g, MgSO 4 0.6g, CaCO 3 1.5g, KCl 0.2g , (NH 4 ) 2 SO 4 0.6g, and control the pH to 8, shake and culture at 35°C for 24h to obtain a bacterial solution containing Bacillus colloids, and the bacterial concentration contained in the bacterial solution is 10 7 cells/mL;
  • the bio-calcium carbonate induced by microorganisms has different adhesion properties under different pH conditions.
  • the pH is 10
  • the adhesion of bio-calcium carbonate is the largest.
  • the adhesion force is gradually reduced; the biological calcium carbonate regulation of different adhesion force can be achieved by adjusting the pH.
  • each liter of medium contains 13 g of glucose, 0.15 g of yeast extract, 0.55 g of KH 2 PO 4 , 0.45 g of K 2 HPO 4 , and 0.15 of MgSO 4 g, CaCO 3 2.2g, NaCl 0.15g, MnSO 4 0.15g, and control the pH to 7.5, shake and culture at 32°C for 24h to obtain a bacterial liquid containing Bacillus pasteuri, the bacterial concentration in the bacterial liquid is 10 6 /mL;
  • the adhesion force of microbial-induced calcium carbonate can be achieved by adjusting the concentration of calcium ions in the solution. As the concentration of calcium ions in the solution increases, the adhesion force of biological calcium carbonate first increases and then decreases; Solution calcium ions can adjust the adhesion force of biological calcium carbonate.
  • each liter of medium contains NH 4 Cl 1.0, CH 3 COONa 3.0, MgCl 2 0.1g, CaCl 2 0.1g, KH 2 PO 4 0.5g, K 2 HPO 4 0.4g, yeast extract 0.1g, and control pH to 7, shake and culture at 35°C for 24h to obtain a bacterial solution containing photosynthetic bacteria, and the bacterial concentration in the bacterial solution is 10 6 -10 7 cells/mL ;
  • the adhesion force of biological calcium carbonate can be adjusted by regulating the type of calcium source anions, among which the acetate ion type calcium source induces the largest adhesion force of biological calcium carbonate, followed by nitrate ion type calcium source, and chloride ion type calcium source.
  • the calcium source is minimal; therefore, the type of anion can be tuned to achieve modulation of adhesion.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种微生物诱导沉积方解石粘结力的调控方法。属于调控基材性能的领域;步骤:将胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的芽孢培养,得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液;调节菌液的pH;得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液;将钙源加入得到的胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液中静置,直至其产生沉淀;产生沉淀后,对沉淀物进行洗涤、过滤、烘干,烘干至恒重后进行粘附力分析,即达到调控方解石粘结力。本发明形成的矿物性质稳定效果显著、不会产生二次污染,生态相容性好;且过程中可有效捕获利用二氧化碳,减缓温室效应。

Description

一种微生物诱导沉积方解石粘结力的调控方法 技术领域
本发明涉及调控基材性能的领域,具体涉及一种微生物诱导沉积方解石粘结力的调控方法。
背景技术
生物矿化是指由生物体通过生物大分子的调控生成无机矿物的过程,与一般矿化最大区别在于有生物体细胞、代谢产物或有机基质的参与。微生物作为地球上数量最多、分布最广泛的生命形式,具有可诱导碳酸盐、磷酸盐、硫酸盐等矿物沉积的能力,因此微生物在生物矿化过程中扮演着重要的角色。生物矿化的过程与普通矿化最重要的不同在于通过有机大分子和无机物离子的界面作用,生成具有特殊的多级结构和组装方式的生物矿物。生物矿化过程与普通化学结晶过程的区别在于,普通化学结晶过程只经历晶体的成核、长大、晶面的外延生长,但生物矿化过程不仅要经历以上过程,而且在有机质的调控作用下,生物矿化的过程中有着其特殊的物理化学规律。在迄今发现的生物矿物中钙矿化体占据了近三分之二,其中碳酸钙作为分布最为广泛生物矿物,因其晶体容易表征且结构可在生物矿化过程中加以控制,常被作为典型的研究对象。在建筑材料中的微生物矿化,迄今研究较多的是沙土材料和水泥基材料。在沙土材料中,微生物矿化主要用于深层胶结和浅层胶结两类;在水泥基材料中,主要用于表面缺陷修复与裂缝的被动修复和自修复。
发明内容
针对上述问题,本发明提供了一种成本低、效果显著、环境友好,不会产生二次污染,生态相容性好的微生物诱导沉积方解石粘结力的调控方法。
本发明的技术方案是:一种微生物诱导沉积方解石粘结力的调控方法,具体步骤包括如下:
步骤(1.1)、分别将胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的芽孢分别接种至对应的培养基溶液中进行培养,从而分别得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液;调节各菌种菌液的pH;最终分别得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液;
步骤(1.2)、将钙源分别加入得到的胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液中静置,直至浓缩菌液产生沉淀;
步骤(1.3)、产生沉淀后,对沉淀物进行洗涤、过滤、烘干,烘干至恒重后进行粘附力分析,即达到调控方解石粘结力。
在步骤(1.1)中,
所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌制备菌液浓度均为10 6~10 7个/mL;
所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液的菌体浓度均为10 8-10 10个/mL。
在步骤(1.1)中,所述胶质芽孢杆菌的培养基溶液为每升培养基溶液中含有蔗糖8~12g、Na 2HPO 4·12H 2O 2~3g、MgSO 4 0.4~0.6g、CaCO 3 0.5~1.5g、KCl 0.1~0.2g、(NH 4) 2SO 4 0.4~0.6g;
所述光合细菌的培养基溶液为每升培养基溶液中含有NH 4Cl 1.0~1.5g、CH 3COONa 3.0~4.0g、MgCl 2 0.1~0.2g、CaCl 2 0.1~0.2g、KH 2PO 4 0.5~0.6g、K 2HPO 40.4~0.5g、酵母膏0.1~0.2g;
所述嗜碱芽孢杆菌的培养基溶液为每升培养基溶液中含有蛋白胨4~7g、牛肉浸膏2~5g;
所述巴氏芽孢杆菌的培养基溶液为每升培养基溶液中含有葡萄糖10~15g、酵母提取物0.1~0.2g、KH 2PO 4 0.5~0.6g、K 2HPO 4 0.4~0.5g、MgSO 4 0.1~0.2g、CaCO 3 2.0~2.5g、NaCl 0.1~0.2g、MnSO 4 0.1~0.2g。
在步骤(1.1)中,在所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌接种于培养基溶液中,所述培养基溶液的pH值控制为7-8,温度于30-35℃下振荡培养24h。
在步骤(1.1)中,所述得到含有胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液的pH值为7-13。
在步骤(1.2)中,所述钙源为氯化钙、硝酸钙或醋酸钙中的一种或几种;所述钙源中钙离子浓度为0.01~0.05mol/L。
在步骤(1.2)中,所述静置是为置于恒温恒湿的环境,其温度为30~35℃,静置时间120~150小时。
在步骤(1.3)中,所述的方解石为粘附力大小为30~70nN的生物碳酸钙。
本发明的有益效果是:本发明采用微生物诱导沉积矿化产物的方法,开创性的通过光合细菌、胶质芽孢杆菌捕获空气中的二氧化碳、转化为吐酸根离子,并以此作为碳源,与外加钙源反应生成具有胶凝特性的矿化产物方解石。巴氏芽孢杆菌通过酶化作用分解尿素作为碳源沉积矿化具有胶凝特性的产物方解石。本发明采用的微生物方法,形成的矿物性质稳定,方法成本低、效果显著、环境友好,不会产生二次污染,生态相容性好;过程中可有效捕获利用二氧化碳,减缓温室效应。
附图说明
图1是本发明的结构流程图;
图2本发明中不同微生物菌种条件下得到的沉淀物的粘附力;
图3本发明中不同溶液pH值条件下得到的沉淀物的粘附力;
图4本发明中不同浓度钙离子条件下得到的沉淀物的粘附力;
图5本发明中不同阴离子种类条件下得到的沉淀物的粘附力。
具体实施方式
为了更清楚地说明本发明的技术方案,下面结合附图对本发明的技术方案做进一步的详细说明:
如图1所述;一种微生物诱导沉积方解石粘结力的调控方法,具体步骤包括如下:
步骤(1.1)、分别将胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的芽孢分别接种至对应的培养基溶液中进行培养,从而分别得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液;调节各菌种菌液的pH;最终分别得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液;
步骤(1.2)、将钙源分别加入得到的胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液中静置,直至浓缩菌液产生沉淀;
步骤(1.3)、产生沉淀后,对沉淀物进行洗涤、过滤、烘干,烘干至恒重后进行粘附力分析,即达到调控方解石粘结力的目的;
具体的,所述方解石粘附力通过原子力显微镜测量的探针与方解石表面的作用力值表征;方解石粘附力的大小与方解石的表面结构和微观组成有关,如微生物诱导生成的方解石因为包含有机质故其粘附力大于化学法生成的碳酸钙;因此,可以通过调控微生物种类和生物碳酸钙的沉积环境可以调节生成的生物方解石粘附力;微生物种类对于方解石粘结力的调控范围为37-69nN;溶液pH值对于方解石粘结力的调控范围为38-64nN;钙离子浓度对于方解石粘结力的调控范围为42-58nN;阴离子种类对方解石粘附力的调控范围为59-76nN;
其中,一、当微生物种类为A时,方解石的粘结力为35-40nN;为B和C时,则方解石的粘结力为50-55nN;为D时,则方解石的粘结力为65-70nN;
二、溶液pH值为7时,方解石的粘结力为45-50nN;为8或12时,方解石的粘结力为55-60nN;为10时,方解石的粘结力为60-65nN;为13时,方 解石的粘结力为35-40nN;
三、钙离子浓度为0.01mol/L时,方解石的粘结力为40-45nN;为0.02mol/L时,方解石的粘结力为45-50nN;为0.03mol/L时,方解石的粘结力为50-55nN;为0.04mol/L时,方解石的粘结力为55-60nN;为0.05mol/L时,方解石的粘结力为50-55nN;
四、钙源阴离子为氯离子时,方解石的粘结力为58-62N;为硝酸根离子时,方解石的粘结力为63-67nN;为醋酸根离子时,方解石的粘结力为73-77nN。
进一步的,在步骤(1.1)中,
所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌制备菌液浓度均为10 6~10 7个/mL;
所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液的菌体浓度均为10 8-10 10个/mL。
进一步的,在步骤(1.1)中,所述胶质芽孢杆菌的培养基溶液为每升培养基溶液中含有蔗糖8~12g、Na 2HPO 4·12H 2O 2~3g、MgSO 4 0.4~0.6g、CaCO 30.5~1.5g、KCl 0.1~0.2g、(NH 4) 2SO 4 0.4~0.6g;
所述光合细菌的培养基溶液为每升培养基溶液中含有NH 4Cl 1.0~1.5g、CH 3COONa 3.0~4.0g、MgCl 2 0.1~0.2g、CaCl 2 0.1~0.2g、KH 2PO 4 0.5~0.6g、K 2HPO 40.4~0.5g、酵母膏0.1~0.2g;
所述嗜碱芽孢杆菌的培养基溶液为每升培养基溶液中含有蛋白胨4~7g、牛肉浸膏2~5g;
所述巴氏芽孢杆菌的培养基溶液为每升培养基溶液中含有葡萄糖10~15g、酵母提取物0.1~0.2g、KH 2PO 4 0.5~0.6g、K 2HPO 4 0.4~0.5g、MgSO 4 0.1~0.2g、CaCO 3 2.0~2.5g、NaCl 0.1~0.2g、MnSO 4 0.1~0.2g。
在步骤(1.1)中,在所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌接种于培养基溶液中,所述培养基溶液的pH值控制为7-8,温度于30-35℃下振荡培养24h。
在步骤(1.1)中,所述得到含有胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液的pH值为7-13。
进一步的,在步骤(1.2)中,所述钙源为氯化钙、硝酸钙或醋酸钙中的一种或几种;所述钙源中钙离子浓度为0.01~0.05mol/L。
进一步的,在步骤(1.2)中,所述静置是为置于恒温恒湿的环境,其温度为30~35℃,静置时间120~150小时。
进一步的,在步骤(1.3)中,所述的方解石为粘附力大小为30~70nN的生物碳酸钙。
具体实施例
实施例1:
(1)、将光合细菌接种于灭菌后的培养基溶液,每升培养基含有NH 4Cl 1.0g、CH 3COONa 3.0g、MgCl 2 0.1g、CaCl 2 0.1g、KH 2PO 4 0.5g、K 2HPO 4 0.4g、酵母膏0.1g,并控制pH为7,于30℃下振荡培养24h,得到含有光合细菌的菌液,菌液中所含菌体浓度为10 6个/mL;
(2)、将胶质芽孢杆菌接种于灭菌后的培养基溶液,每升培养基含有蔗糖8g、Na 2HPO 4·12H 2O 2g、MgSO 4 0.4g、CaCO 3 0.5g、KCl 0.1g、(NH 4) 2SO 4 0.4g,并控制pH为7,于30℃下振荡培养24h,得到含有胶质芽孢杆菌的菌液,菌液中所含菌体浓度为10 6个/mL;
(3)、将巴氏芽孢杆菌接种于灭菌后的培养基溶液,每升培养基含有葡萄糖10g、酵母提取物0.1g、KH 2PO 4 0.5g、K 2HPO 4 0.4g、MgSO 4 0.1g、CaCO 3 2.0g、NaCl 0.1g、MnSO 4 0.1g,并控制pH为7,于30℃下振荡培养24h,得到含有巴氏芽孢杆菌的菌液,菌液中所含菌体浓度为10 6个/mL;
(4)、嗜碱芽孢杆菌接种于灭菌后的培养基溶液,每升培养基含有蛋白胨4g、牛肉浸膏2g,并控制pH为7,于35℃下振荡培养24h,得到含有嗜碱芽孢杆菌的菌液,菌液中所含菌体浓度为10 6个/mL;
(5)调节溶液pH至7;
(6)、将0.01mol/L硝酸钙分别加入上述三类微生物菌液中,置于恒温恒湿的环境,温度为30℃,静置时间120小时;
产生沉淀后,对沉淀物进行充分洗涤、过滤、烘干,烘干至恒重后进行晶粒尺寸分析;
具体如图1所示,不同微生物种类诱导矿化生成的碳酸钙粘附力不同,粘附力由大到小依次为巴氏芽孢杆菌>嗜碱芽孢杆菌>光合细菌>胶质芽孢杆菌。可通过调节微生物种类制备不同粘附力大小的生物碳酸钙。
实施例2:
(1)、将胶质芽孢杆菌接种于灭菌后的培养基溶液,每升培养基含有蔗糖12g、Na 2HPO 4·12H 2O 3g、MgSO 4 0.6g、CaCO 3 1.5g、KCl 0.2g、(NH 4) 2SO 4 0.6g,并控制pH为8,于35℃下振荡培养24h,得到含有胶质芽孢杆菌的菌液,菌液中所含菌体浓度为10 7个/mL;
(2)、分别抽取上述菌液5份,调节溶液pH至7、8、10、12、13。
(3)、将0.05mol/L氯化钙分别加入上述三类微生物菌液中,置于恒温恒湿的环境,温度为30-35℃,静置时间120-150小时;产生沉淀后,对沉淀物进行充分洗涤、过滤、烘干,烘干至恒重后进行晶粒尺寸分析;
如图3所示,不同pH条件下微生物诱导生成的生物碳酸钙具有不同的粘附力性能,pH为10时生物碳酸钙粘附力最大,随着pH的增大或减小生物碳酸钙的粘附力逐渐减小;可通过调节pH实现不同粘附力的生物碳酸钙调控。
实施例3:
(1)、将巴氏芽孢杆菌接种于灭菌后的培养基溶液,每升培养基含有葡萄糖13g、酵母提取物0.15g、KH 2PO 4 0.55g、K 2HPO 4 0.45g、MgSO 4 0.15g、CaCO 3 2.2g、NaCl 0.15g、MnSO 4 0.15g,并控制pH为7.5,于32℃下振荡培养24h,得到含有巴氏芽孢杆菌的菌液,菌液中所含菌体浓度为10 6个/mL;
(2)、抽取上述菌液5份,调节溶液pH至10;
(3)、分别将0.01、0.02、0.03、0.04、0.05mol/L醋酸钙分别加入上述微生物菌液中,置于恒温恒湿的环境,温度为32℃,静置时间130小时;产生沉淀后,对沉淀物进行充分洗涤、过滤、烘干,烘干至恒重后进行晶粒尺寸分析;
如图4所示,微生物诱导产生碳酸钙的粘附力大小可通过调控溶液钙离子浓度实现,随着溶液中钙离子浓度的增加的生物碳酸钙的粘附力先增加后减小;因此调控溶液钙离子可生物碳酸钙粘附力大小进行调节。
实施例4:
(1)、将光合细菌接种于灭菌后的培养基溶液,每升培养基含有NH 4Cl 1.0、CH 3COONa 3.0、MgCl 2 0.1g、CaCl 2 0.1g、KH 2PO 4 0.5g、K 2HPO 4 0.4g、酵母膏0.1g,并控制pH为7,于35℃下振荡培养24h,得到含有光合细菌的菌液,菌液中所含菌体浓度为10 6~10 7个/mL;
(2)、抽取上述菌液3份,调节溶液pH至8;
(3)、分别将0.05mol/L醋酸钙、氯化钙和硝酸钙加入上述溶液,置于恒温恒湿的环境,温度为35℃,静置时间120小时;产生沉淀后,对沉淀物进行充分洗涤、过滤,烘干至恒重后进行晶粒尺寸分析,获得光合细菌沉积矿化产物特征;
如图5所示,可通过调控钙源阴离子种类调节生物碳酸钙粘附力大小,其中醋酸根离子型钙源诱导生物碳酸钙粘附力最大,硝酸根离子型钙源次之,氯离子型钙源最小;因此,可以调整阴离子的种类实现粘附力的调控。
最后,应当理解的是,本发明中所述实施例仅用以说明本发明实施例的原则;其他的变形也可能属于本发明的范围;因此,作为示例而非限制,本发明实施例 的替代配置可视为与本发明的教导一致;相应地,本发明的实施例不限于本发明明确介绍和描述的实施例。

Claims (8)

  1. 一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,具体步骤包括如下:
    步骤(1.1)、分别将胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的芽孢分别接种至对应的培养基溶液中进行培养,从而分别得到含有胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液;调节各菌种菌液的pH值;最终分别得到胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液;
    步骤(1.2)、将钙源分别加入得到的胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液中静置,直至浓缩菌液产生沉淀;
    步骤(1.3)、产生沉淀后,对沉淀物进行洗涤、过滤、烘干,烘干至恒重后进行粘附力分析,即达到调控方解石粘结力。
  2. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,在步骤(1.1)中,
    所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌制备菌液浓度均为10 6~10 7个/mL;
    所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的浓缩菌液的菌体浓度均为10 8-10 10个/mL。
  3. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,
    在步骤(1.1)中,所述胶质芽孢杆菌的培养基溶液为每升培养基溶液中含有蔗糖8~12g、Na 2HPO 4·12H 2O 2~3g、MgSO 40.4~0.6g、CaCO 30.5~1.5g、KCl 0.1~0.2g、(NH 4) 2SO 40.4~0.6g;
    所述光合细菌的培养基溶液为每升培养基溶液中含有NH 4Cl 1.0~1.5g、CH 3COONa 3.0~4.0g、MgCl 20.1~0.2g、CaCl 20.1~0.2g、KH 2PO 40.5~0.6g、K 2HPO 40.4~0.5g、酵母膏0.1~0.2g;
    所述嗜碱芽孢杆菌的培养基溶液为每升培养基溶液中含有蛋白胨4~7g、牛肉浸膏2~5g;
    所述巴氏芽孢杆菌的培养基溶液为每升培养基溶液中含有葡萄糖10~15g、酵母提取物0.1~0.2g、KH 2PO 40.5~0.6g、K 2HPO 40.4~0.5g、MgSO 40.1~0.2g、CaCO 32.0~2.5g、NaCl 0.1~0.2g、MnSO 40.1~0.2g。
  4. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,
    在步骤(1.1)中,在所述胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏 芽孢杆菌接种于培养基溶液中,所述培养基溶液的pH值控制为7-8,温度于30-35℃下振荡培养24h。
  5. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,
    在步骤(1.1)中,所述得到含有胶质芽孢杆菌、光合细菌、嗜碱芽孢杆菌及巴氏芽孢杆菌的菌液的pH值为7-13。
  6. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,
    在步骤(1.2)中,所述钙源为氯化钙、硝酸钙或醋酸钙中的一种或几种;所述钙源中钙离子浓度为0.01~0.05mol/L。
  7. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,在步骤(1.2)中,所述静置是为置于恒温恒湿的环境,其温度为30~35℃,静置时间120~150小时。
  8. 根据权利要求1所述的一种微生物诱导沉积方解石粘结力的调控方法,其特征在于,
    在步骤(1.3)中,所述的方解石为粘附力大小为30~70nN的生物碳酸钙。
PCT/CN2021/113379 2020-12-23 2021-08-19 一种微生物诱导沉积方解石粘结力的调控方法 WO2022134628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011540146.7A CN112626160A (zh) 2020-12-23 2020-12-23 一种微生物诱导沉积方解石粘结力的调控方法
CN202011540146.7 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134628A1 true WO2022134628A1 (zh) 2022-06-30

Family

ID=75321881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113379 WO2022134628A1 (zh) 2020-12-23 2021-08-19 一种微生物诱导沉积方解石粘结力的调控方法

Country Status (2)

Country Link
CN (1) CN112626160A (zh)
WO (1) WO2022134628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622554A (zh) * 2023-04-20 2023-08-22 福州大学 一种简便快速浓缩产脲酶菌的方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626160A (zh) * 2020-12-23 2021-04-09 东南大学 一种微生物诱导沉积方解石粘结力的调控方法
CN114349388B (zh) * 2022-01-19 2022-11-29 郑州大学 一种遇水唤醒型自愈合微生物胶囊及其制成的防水材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951816A (zh) * 2019-11-29 2020-04-03 东南大学 一种微生物诱导沉积方解石晶粒尺寸的调控方法
CN112626160A (zh) * 2020-12-23 2021-04-09 东南大学 一种微生物诱导沉积方解石粘结力的调控方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357444C (zh) * 2005-10-10 2007-12-26 东南大学 利用微生物沉积制备碳酸钙的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951816A (zh) * 2019-11-29 2020-04-03 东南大学 一种微生物诱导沉积方解石晶粒尺寸的调控方法
CN112626160A (zh) * 2020-12-23 2021-04-09 东南大学 一种微生物诱导沉积方解石粘结力的调控方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622554A (zh) * 2023-04-20 2023-08-22 福州大学 一种简便快速浓缩产脲酶菌的方法及其应用

Also Published As

Publication number Publication date
CN112626160A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022134628A1 (zh) 一种微生物诱导沉积方解石粘结力的调控方法
CN100357444C (zh) 利用微生物沉积制备碳酸钙的方法
Sun et al. Improvement of bio-cementation at low temperature based on Bacillus megaterium
WO2020119828A1 (zh) 一株克劳氏芽孢杆菌及使用其生产四氢嘧啶的方法
Kedia et al. Production of poly-γ-glutamic acid by Bacillus subtilis and Bacillus licheniformis with different growth media
CN106747176A (zh) 一种具有固碳能力的新型胶凝材料及其制备与使用方法
CN111925957A (zh) 一种矿化微生物增量制备方法
Chen et al. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation
CN107267422B (zh) 睾丸酮丛毛单胞菌hhala-001及采用该菌株生产l-丙氨酸的方法
CN101376900B (zh) 一种恒化高密度培养趋磁细菌高产磁小体的方法
US3776816A (en) Process for producing steroid dehydrogenase
CN110951816A (zh) 一种微生物诱导沉积方解石晶粒尺寸的调控方法
CN109652461B (zh) 一种提高微生物诱导碳酸钙产率的方法
JPS58155085A (ja) ヒポミクロビウム属微生物及び該微生物を利用する水溶液中のメチル基含有化合物の分解方法
EP0082814A1 (de) Mikroorganismen des Genus Pseudomonas und Verfahren zum Abbau von Methylgruppen-haltigen Verbindungen in wässrigen Lösungen
KR102028285B1 (ko) 미생물 체외고분자물질을 이용한 이산화탄소 고정 방법, 및 상기 미생물 체외고분자물질을 이용한 미세 균열 보수 방법
JPH0636748B2 (ja) 微生物による炭素源の発酵によって多糖類を製造する方法
CN111808889A (zh) 一种利用胞外蛋白体外高效合成荧光可调ZnCdS量子点的方法
CN102559551A (zh) 一株施氏假单胞菌及其培养方法与应用
CN108300740B (zh) 一种制备l-苹果酸的方法
CN104513847A (zh) 利用甲烷氧化混合菌生物合成聚β-羟基丁酸酯的方法
CN116140165B (zh) 一种可快速合成的生物矿化涂层及其制备方法与应用
Stuetz et al. Microalgal-facilitated bacterial oxidation of manganese
KR102071861B1 (ko) 세포외 다당류가 증가된 균주 및 이의 배양 방법
US8445042B2 (en) Xanthan gum production from sugarcane fluids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908633

Country of ref document: EP

Kind code of ref document: A1