WO2022134477A1 - 一种波浪形燃料电池单电池及电堆 - Google Patents

一种波浪形燃料电池单电池及电堆 Download PDF

Info

Publication number
WO2022134477A1
WO2022134477A1 PCT/CN2021/097634 CN2021097634W WO2022134477A1 WO 2022134477 A1 WO2022134477 A1 WO 2022134477A1 CN 2021097634 W CN2021097634 W CN 2021097634W WO 2022134477 A1 WO2022134477 A1 WO 2022134477A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
plate
channel
wave
Prior art date
Application number
PCT/CN2021/097634
Other languages
English (en)
French (fr)
Inventor
邱殿凯
廖书信
彭林法
易培云
来新民
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2022134477A1 publication Critical patent/WO2022134477A1/zh
Priority to US17/937,875 priority Critical patent/US20230025359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • H01M8/1006Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fuel cells, and relates to a single fuel cell and an electric stack with wave-shaped structure characteristics.
  • a proton exchange membrane fuel cell is a device that generates electricity through the electrochemical reaction of hydrogen and oxygen. Start-up, no electrolyte loss, easy water discharge, high specific power and specific energy are outstanding advantages.
  • the traditional PEMFC is mainly composed of bipolar plates, membrane electrode assemblies (MEA) and other components.
  • the bipolar plates are divided into anode plates and cathode plates, which can realize the current conduction in the battery, distribute the reaction gas and cooling liquid, and discharge the reaction.
  • the product affects the uniform reaction and water and gas management of the fuel cell; the fuel cell is usually assembled by stacking a certain number of single cells to achieve higher voltage and power output.
  • PEMFC mainly adopts the traditional plate-and-frame structure, and its internal structure is characterized in that the membrane electrode assembly in the battery adopts a common plate-type structure, and the bipolar plate is arranged with reactant flow channels and cooling channels.
  • This structure has the advantages of convenient manufacturing, simple assembly, good water and gas management performance, and high flexibility in performance deployment.
  • the flat structure design limits the reaction utilization rate of the membrane electrode assembly per unit volume, resulting in a limited increase in the power density of the fuel cell.
  • a tubular fuel cell with integrated membrane electrode assembly and support tube disclosed in Chinese invention patent CN101465438A adopts the electrodeless plate design.
  • the reaction area can be increased, it is difficult to circulate the cooling liquid and restrict the power.
  • the density is increased, the processing is difficult, and the mass production cost is high.
  • Chinese invention patent CN109768298A discloses a fuel cell that combines the functions of a bipolar plate and a gas diffusion layer (GDL) to simplify the bipolar plate, but the GDL including internal flow channels is difficult to realize, and the water management and cooling performance of the battery are both poor. affected.
  • GDL gas diffusion layer
  • the Chinese invention patent CN101937997A adopts an arc-shaped fuel cell design, which can improve the mechanical properties of battery components and the installation performance of the battery, but the proportion of the inner membrane electrode per unit volume in the battery changes slightly, and the battery power density is limited.
  • the purpose of the present invention is to provide a wave-shaped fuel cell and stack that can not only improve the power density of the fuel cell, but also ensure the hydrothermal management of the cell, and is easy to manufacture and assemble, in order to overcome the above-mentioned defects of the prior art.
  • a wave-shaped fuel cell single cell comprising an anode plate, a cathode plate and a membrane electrode assembly
  • the anode plate is a wave-shaped structure, on which a number of Anode flow channel and anode ridge plate
  • the cathode plate adopts a wave-shaped structure that meshes with the anode plate, and several cathode flow channels and cathode ridge plates are arranged in parallel on it
  • the membrane electrode assembly is installed on the anode plate Between it and the cathode plate, the single cell presents a wavy structure along the width direction of the flow channel.
  • anode flow channels and anode ridge plates are alternately distributed in parallel on the anode plate, the anode flow channels are respectively connected with the anode air inlet channel and the anode air outlet channel, and the back of the anode ridge plate is the anode cooling flow channel, and the anode cooling flow channel is The channels are respectively connected with the cooling liquid inlet channel and the cooling liquid outlet channel.
  • the cathode flow channels and the cathode ridge plates are alternately distributed in parallel on the cathode plate, the cathode channels are respectively connected with the cathode air inlet channel and the cathode air outlet channel, and the back of the cathode ridge plate is the cathode cooling flow channel, and the cathode cooling flow channel They are respectively connected with the cooling liquid inlet channel and the cooling liquid outlet channel.
  • the side of the bottom of the anode flow channel away from the membrane electrode assembly is a flat closed structure, the top of the anode flow channel is in an open structure, and the left side plate of the anode flow channel, the right plate of the anode flow channel and the anode flow channel are in an open structure.
  • the angle at the bottom of the channel is not less than 90°; the height difference between the plates on both sides of the anode channel directly affects the inclination of the top of the anode channel.
  • the height difference between the plates on both sides of the adjacent anode flow channels, the width of the adjacent anode flow channels and the width of the adjacent anode ridge plates are constant or vary according to a set rule.
  • the side of the bottom of the cathode flow channel away from the membrane electrode assembly is a flat closed structure
  • the top of the cathode flow channel is in an open structure
  • the left side plate of the cathode flow channel, the right plate of the cathode flow channel and the cathode flow channel are in an open structure.
  • the included angle of the bottom surface of the channel is not less than 90°.
  • the height difference between the two sides of the cathode flow channel directly affects the inclination of the top of the cathode flow channel.
  • the heights of the corresponding two sides of the anode flow channel can be complementary, and a group of corresponding cathode and anode flow channels can form a closed rectangle.
  • the height difference between the plates on both sides of the adjacent cathode flow channels, the width of the adjacent cathode flow channels and the width of the adjacent cathode ridge plates are respectively the height difference between the two sides of the adjacent anode flow channels, the width and phase of the adjacent anode flow channels.
  • the widths of the adjacent anode ridge plates are correspondingly equal.
  • the membrane electrode assembly is installed between the anode plate and the cathode plate, the upper surface of the membrane electrode assembly is engaged with the lower surface of the anode plate, the lower surface is engaged with the upper surface of the cathode plate, and the membrane electrode assembly is engaged.
  • the structure is determined by the shape and structure of the junction of the anode and cathode plates.
  • a stack containing a wave-shaped single cell of a fuel cell the stack is formed by stacking a plurality of single fuel cells in sequence along the height direction of the cell, and the anode plates and cathode plates of adjacent single cells in the stack are oppositely assembled,
  • the anode cooling channel and the cathode cooling channel together form a closed-section stack cooling channel, and the stack presents a wavy structure along the width direction of the channel.
  • all the single cells in the stack share the anode air inlet channel, the anode air outlet channel, the cathode air inlet channel, the cathode air outlet channel, the cooling liquid inlet channel, and the cooling liquid outlet channel, so as to realize the integration of all single cells in the stack.
  • the pool conducts centralized water and gas distribution.
  • the anode plate and cathode plate with wavy structure are obtained from metal alloy thin plates such as stainless steel or titanium alloy through blanking, punching, punching, trimming and other processes.
  • the height difference between the two side plates of adjacent flow channels, the width of adjacent anode flow channels and the width of adjacent anode ridge plates are kept constant.
  • the uniform structural design is conducive to improving the stress distribution inside the battery, and can reduce the difficulty of processing parts, improve the yield, and reduce production costs.
  • the anode plate and the cathode plate are connected by a laser welding process to form a bipolar plate, and then the components are stacked.
  • the present invention has the following characteristics:
  • the contact surface of the anode, the cathode plate and the membrane electrode is generally flat, and the membrane electrode is a plane structure.
  • the present invention has changed this existing design, and the contact between the anode and the cathode plate and the membrane electrode is The surface is changed to a non-planar structure, and the membrane electrode is sandwiched in it, so that the cross section of the membrane electrode is wavy, and the wavy bipolar plate and membrane electrode assembly structure design can increase the reaction area and improve the effective area utilization of the fuel cell. Therefore, the power density of the fuel cell is improved. In the case of ignoring the change in the quality of the fuel cell stack caused by the wave-shaped membrane electrode assembly, the power density can theoretically be increased by ⁇ P kW/kg.
  • the increase of the reaction area of the wave-shaped membrane electrode assembly compared with the flat-shaped membrane electrode assembly
  • The output power provided by the membrane electrode assembly per unit area
  • mass of fuel cell stack.
  • the present invention retains the design of gas flow channels and cooling channels in traditional plate-and-frame fuel cells, and has better water and gas distribution and temperature control capabilities.
  • Example 1 is a schematic diagram of the internal structure of a single cell in Example 1;
  • Example 2 is a schematic diagram of the overall structure of a single cell in Example 1;
  • FIG. 3 is a schematic diagram of the internal structure of the stack in Example 1.
  • FIG. 3 is a schematic diagram of the internal structure of the stack in Example 1.
  • Example 4 is a schematic diagram of the internal structure of a single cell in Example 2.
  • Example 5 is a schematic diagram of the overall structure of a single cell in Example 2.
  • FIG. 6 is a schematic diagram of the internal structure of the stack in Example 2.
  • FIG. 6 is a schematic diagram of the internal structure of the stack in Example 2.
  • a single cell of a wave-shaped fuel cell includes an anode plate 1, a cathode plate 2 and a membrane electrode assembly 3.
  • the anode plate 1 is designed in a wave-shaped structure, with parallel tops on it.
  • a number of anode flow channels 101 and anode ridge plates 102 are alternately arranged, and the cathode plate 2 is designed with a wavy structure that meshes with the anode plate 1.
  • a number of cathode flow channels 201 and cathode separators 202 are alternately arranged in parallel on it, and the anode flow The channel 101 and the cathode flow channel 201 are parallel to each other.
  • the membrane electrode assembly 3 is installed between the anode plate 1 and the cathode plate 2, and the entire single cell presents a wavy structure along the width direction of the flow channel.
  • anode plate 1 and cathode plate 2 are both processed and manufactured by metal sheet stamping and forming process, and are obtained from metal alloy sheets with a thickness of 0.1 mm through blanking, punching, punching, trimming and other processes.
  • the reaction area of the membrane electrode assembly 3 is a proton exchange membrane coated with a catalyst, a cathode gas diffusion layer, and an anode gas diffusion layer.
  • the frame is made of flexible PEN material with a thickness of 0.2mm. get.
  • anode flow channels 101 with a constant width of 1 mm and anode ridge plates 102 with a constant width of 1 mm are arranged alternately in parallel; the height of the left plate 1011 of the anode flow channel and the height of the right plate 1012 of the anode flow channel are 0.25 mm and Alternately between 0.75mm; the angle between the left plate 1011 of the anode flow channel, the right plate 1012 of the anode flow channel and the bottom of the anode flow channel 101 are all 90°; the height difference between the two sides of the adjacent anode flow channel 101 remains constant.
  • cathode flow channels 201 with a constant width of 1 mm and cathode ridge plates 202 with a constant width of 1 mm are arranged alternately in parallel; the height of the left plate 2011 of the cathode flow channel and the height of the right plate 2012 of the cathode flow channel are respectively 0.75 mm and Alternately between 0.25mm; the angle between the left plate 2011 of the cathode flow channel, the right plate 2012 of the cathode flow channel and the bottom of the cathode flow channel 201 are all 90°; the height difference between the two sides of the adjacent cathode flow channel 201 remains constant.
  • the membrane electrode assembly 3 is installed between the anode plate 1 and the cathode plate 2, the lower surface of the anode plate 1 with a wavy structure is engaged with the upper surface of the membrane electrode assembly 3, and the upper surface of the cathode plate 2 with a wavy structure is engaged. engaging with the lower surface of the membrane electrode assembly 3;
  • a stack containing the above-mentioned wave-shaped fuel cells is formed by stacking a certain number of fuel cells in the height direction of the cells.
  • the cathode plate 2 of the upper single cell is connected to the
  • the anode plates 1 of the lower single cells are connected by laser welding.
  • the anode cooling channel 103 and the cathode cooling channel 203 on the anode plate 1 and the cathode plate 2 together form the stack cooling channel 4 with a closed rectangular section.
  • the stack also includes an anode gas inlet channel 5 , an anode gas outlet channel 6 , a cathode gas inlet channel 7 , a cathode gas outlet channel 8 , a cooling liquid inlet channel 9 , and a cooling liquid outlet channel 10 .
  • Each single cell in the stack shares the above channel.
  • the stack with the structure of this embodiment can ignore the change in the mass of the fuel cell stack caused by the wave-shaped membrane electrode assembly. , its power density can theoretically be increased by 0.236kW/kg.
  • a wave-shaped fuel cell single cell includes an anode plate 1, a cathode plate 2 and a membrane electrode assembly 3.
  • the anode plate 1 is designed in a wave-shaped structure, with parallel tops on it.
  • a number of anode flow channels 101 and anode ridge plates 102 are alternately arranged, and the cathode plate 2 is designed with a wavy structure that meshes with the anode plate 1.
  • Several cathode flow channels 201 and cathode ridge plates 202 are alternately arranged in parallel on it, and the anode flow The channel 101 and the cathode flow channel 201 are parallel to each other.
  • the membrane electrode assembly 3 is installed between the anode plate 1 and the cathode plate 2, and the entire single cell presents a wavy structure along the width direction of the flow channel.
  • anode plate 1 and cathode plate 2 are both processed and manufactured by metal sheet stamping and forming process, and are obtained from metal alloy sheets with a thickness of 0.1 mm through blanking, punching, punching, trimming and other processes.
  • the reaction area of the membrane electrode assembly 3 is the proton exchange membrane coated with catalyst, the cathode gas diffusion layer, and the anode gas diffusion layer, and the frame is made of flexible PET material with a thickness of 0.2mm after blanking, hot pressing, punching, Processes such as trimming are obtained.
  • the anode flow channel 101 with a constant width of 1 mm and the anode ridge plate 102 with a constant width of 1 mm are arranged alternately in parallel on the anode plate 1; 0.75mm; the angle between the left plate 1011 of the anode flow channel, the right plate 1012 of the anode flow channel and the bottom of the anode flow channel 101 are all 90°; the height difference between the two sides of the adjacent anode flow channel 101 remains constant.
  • cathode flow channels 201 with a constant width of 1 mm and cathode ridge plates 202 with a constant width of 1 mm are arranged alternately in parallel; the height of the left plate 2011 of the cathode flow channel and the height of the right plate 2012 of the cathode flow channel are 0.75 mm and 0.25mm; the angle between the left plate 2011 of the cathode flow channel, the right plate 2012 of the cathode flow channel and the bottom of the cathode flow channel 201 are all 90°; the height difference between the plates on the two sides of the adjacent cathode flow channel 201 remains constant.
  • the membrane electrode assembly 3 is installed between the anode plate 1 and the cathode plate 2, the lower surface of the anode plate 1 with a wavy structure is engaged with the upper surface of the membrane electrode assembly 3, and the upper surface of the cathode plate 2 with a wavy structure is engaged. engaging with the lower surface of the membrane electrode assembly 3;
  • a stack containing the above-mentioned wave-shaped fuel cells is formed by stacking a certain number of fuel cells in the height direction of the cells, and the cathode plate of the upper single cell is located in the stack. 2 is connected to the anode plate 1 of the lower single cell by laser welding.
  • the anode cooling channel 103 and the cathode cooling channel 203 on the anode plate 1 and the cathode plate 2 together form the stack cooling channel 4 with a closed diamond cross section.
  • the stack also includes an anode gas inlet channel 5 , an anode gas outlet channel 6 , a cathode gas inlet channel 7 , a cathode gas outlet channel 8 , a cooling liquid inlet channel 9 , and a cooling liquid outlet channel 10 .
  • Each single cell in the stack shares the above channel.
  • the side of the anode flow channel 101 and the cathode flow channel 201 contacting the membrane electrode assembly 3 is changed from the original plane to an inclined plane, and the anode ridge plate 102 and the cathode ridge plate 202 are changed at the same time.
  • the plane is also changed to an inclined plane, which increases the reaction area of the membrane electrode assembly, thereby improving the power density of the fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种波浪形燃料电池单电池及电堆,单电池包括阳极极板(1)、阴极极板(2)以及膜电极组件(3),所述的阳极极板(1)为波浪形结构,其上并列布置若干阳极流道(101)和阳极脊板(102),所述的阴极极板(2)采用与阳极极板(1)相互啮合的波浪形结构,其上并列布置若干阴极流道(201)和阴极脊板(202),所述的膜电极组件(3)安装在阳极极板(1)和阴极极板(2)之间,单电池沿流道宽度方向呈现波浪形结构;多个单电池依次堆叠组成燃料电池电堆。与现有技术相比,通过波浪形的结构设计显著地提高燃料电池单位体积内的反应面积,进而提高燃料电池的功率密度,而且对现有加工制造技术改变较小,生产可行性高。

Description

一种波浪形燃料电池单电池及电堆 技术领域
本发明属于燃料电池技术领域,涉及一种具有波浪形结构特点的燃料电池单电池及电堆。
背景技术
随着化石燃料日渐枯竭,氢能作为一种清洁高效的能源形式越来越受到关注。质子交换膜燃料电池(PEMFC)是一种通过氢气和氧气进行电化学反应而产生电能的装置,除了具有能量转换效率快、环境友好等燃料电池的一般特点之外,还具备可在室温下快速启动、无电解液流失、水易排出、比功率和比能量高等突出优点。传统PEMFC主要由双极板、膜电极组件(MEA)等零部件组成,其中双极板分为阳极极板和阴极极板,可以实现电池中的电流传导,分配反应气体及冷却液,排出反应产物,影响燃料电池的均匀反应和水、气管理;燃料电池通常由一定数量的单电池进行层叠式组装而成,以实现更高的电压和功率输出。
随着相关研究的不断深入,质子交换膜燃料电池的体积功率密度和质量功率密度得到了长足的进步,但距离大规模应用还有很大的提升空间。提高PEMFC功率密度方法主要有两类:其一,是燃料电池零部件材料特性的改进;其二,是燃料电池内部结构改进。目前,PEMFC主要采用的传统板框式结构,其内部结构特点在于电池中的膜电极组件采用普通的平板式结构,双极板上布置有反应物流道和冷却通道。这种结构具有加工制造方便、装配简单,水、气管理性能良好,性能调配灵活性高等优点。但是,平板式的结构设计限制了单位体积内膜电极组件的反应利用率,导致燃料电池功率密度提升受限。
经过现有技术的文献调研发现,中国发明专利CN101465438A公开的一种膜电极组件和支撑管一体化的列管式燃料电池采用无极板设计,虽然可以提升反应面积,但难以流通冷却液,制约功率密度提升,且加工难度大,批量化生产成本高。中国发明专利CN109768298A公开的一种燃料电池结合双极板和气体扩散层(GDL)的功能,实现双极板简化,但包含内部流道的GDL实现难度大,而 且电池的水管理以及冷却性能都受到影响。中国发明专利CN101937997A采用弧形的燃料电池设计,可以提高电池零部件的机械性能和电池的安装性能,但是该电池中单位体积内膜电极的占比变化微小,电池功率密度提升有限。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种既能提高燃料电池功率密度,又能保证电池的水热管理、便于制造装配的波浪形燃料电池单池及电堆。
本发明的目的可以通过以下技术方案来实现:一种波浪形燃料电池单电池,包括阳极极板、阴极极板以及膜电极组件,所述的阳极极板为波浪形结构,其上并列布置若干阳极流道和阳极脊板,所述的阴极极板采用与阳极极板相互啮合的波浪形结构,其上并列布置若干阴极流道和阴极脊板,所述的膜电极组件安装在阳极极板和阴极极板之间,单电池沿流道宽度方向呈现波浪形结构。
进一步地,所述的阳极极板上阳极流道和阳极脊板平行交替分布,阳极流道分别与阳极进气通道和阳极出气通道相连,阳极脊板的背面是阳极冷却流道,阳极冷却流道分别与冷却进液通道和冷却出液通道相连。
进一步地,所述的阴极极板上阴极流道和阴极脊板平行交替分布,阴极通道分别与阴极进气通道和阴极出气通道相连,阴极脊板的背面是阴极冷却流道,阴极冷却流道分别与冷却进液通道和冷却出液通道相连。
进一步地,所述的阳极流道底部远离膜电极组件侧为平面封闭结构,阳极流道顶部接触膜电极组件侧为开放式结构,阳极流道左侧板、阳极流道右侧板与阳极流道底部的夹角均不小于90°;阳极流道两侧板高度差值直接影响阳极流道顶部的倾斜程度,两侧板高度差值越大,阳极流道顶部越倾斜。
进一步地,相邻阳极流道两侧板高度差值、相邻阳极流道宽度和相邻阳极脊板宽度恒定或按照设定规则变化。
进一步地,所述的阴极流道底部远离膜电极组件侧为平面封闭结构,阴极流道顶部接触膜电极组件侧为开放式结构,阴极流道左侧板、阴极流道右侧板与阴极流道底面的夹角均不小于90°,阴极流道两侧板高度差值直接影阴极流道顶部的倾斜程度,两侧板高度差值越大,阴极流道顶部越倾斜;阴极流道与 阳极流道对应两侧板高度可以互补,一组对应的阴阳极流道截面可以构成一个封闭的矩形。
进一步地,相邻阴极流道两侧板高度差值、相邻阴极流道宽度和相邻阴极脊板宽度分别与相邻阳极流道两侧板高度差值、相邻阳极流道宽度和相邻阳极脊板宽度对应相等。
进一步地,所述的膜电极组件安装在阳极极板于阴极极板之间,所述的膜电极组件上表面与阳极极板下表面啮合,下表面与阴极极板上表面啮合,膜电极组件的结构由阳极极板和阴极极板啮合处的形状结构决定。
一种含有波浪形燃料电池单电池的电堆,该电堆由多个燃料电池单电池沿电池高度方向依次堆叠而成,电堆中相邻单电池的阳极极板与阴极极板相对装配,阳极冷却流道与阴极冷却流道共同构成封闭截面的电堆冷却通道,电堆沿流道宽度方向呈现波浪形结构。
进一步地,所述的电堆中的所有单电池共用阳极进气通道、阳极出气通道、阴极进气通道、阴极出气通道、冷却进液通道、冷却出液通道,实现对电堆中的所有单池进行集中的水、气分配。
作为优选的技术方案,具有波浪形结构的阳极极板和阴极极板均采用不锈钢或钛合金等金属合金薄板经落料、冲压、冲孔、切边等工序获得。
作为优选的技术方案,在阳、阴极极板和膜电极组件成形工艺合理范围内尽量选择较大的流道两侧板高度差值,流道两侧板高度差值越大,单位体积内反应面积越高,电池的功率密度越大。
作为优选的技术方案,相邻流道两侧板高度差值、相邻阳极流道宽度和相邻阳极脊板宽度保持恒定。均匀的结构设计有利于改善电池内部的应力分布,并且可以降低零部件加工难度,提高成品率,降低生产成本。
作为优选的技术方案,在电堆装配之前,先将阳极极板和阴极极板通过激光焊接工艺连接形成双极板,再进行零部件的堆叠。
与现有技术相比,本发明具有以下特点:
1)现有双极板中阳、阴极极板与膜电极的接触面一般为平面,膜电极为平面结构,本发明改变了这种现有设计,将阳、阴极极板与膜电极的接触面改为非平面结构,膜电极夹设其中,使膜电极的截面呈波浪状,采用波浪形的双极 板和膜电极组件结构设计,可以增加反应面积,提高燃料电池的有效面积利用率,从而提升燃料电池的功率密度,在忽略波浪形膜电极组件导致燃料电池电堆质量改变的情况下,功率密度理论上可提高ΔP kW/kg。
Figure PCTCN2021097634-appb-000001
式中:μ——波浪形膜电极组件相较于平板形膜电极组件反应面积的增加量;
ε——单位面积的膜电极组件所提供的输出功率;
λ——燃料电池电堆质量。
2)本发明保留了传统板框式燃料电池中的气体流道、冷却通道的设计,具有较好的水、气分配和温度控制能力。
3)本发明主要零部件的加工方式以及装配工艺变化微小,可以在现有制造技术上进行调整,其他部分基本不变,仅将阳极流道和阴极流道的开放面改为斜面,几乎不会增加生产成本。
附图说明
图1为实施例1中的单电池内部结构示意图;
图2为实施例1中的单电池整体结构示意图;
图3为实施例1中的电堆内部结构示意图。
图4为实施例2中的单电池内部结构示意图;
图5为实施例2中的单电池整体结构示意图;
图6为实施例2中的电堆内部结构示意图。
在图中,1-阳极极板,101-阳极流道,1011-阳极流道左侧板,1012-阳极流道右侧板,102-阳极脊板,103-阳极冷却流道,2-阴极极板,201-阴极流道,2011-阴极流道左侧板,2012-阴极流道右侧板,202-阴极脊板,203-阴极冷却流道,3-膜电极组件,4-电堆冷却通道,5-阳极进气通道,6-阳极出气通道,7-阴极进气通道,阴极出气通道,冷却进液通道-9,冷却出液通道-10。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
如图1和图2所示,一种波浪形燃料电池单电池,该单电池包括阳极极板1、阴极极板2以及膜电极组件3,阳极极板1采用波浪形结构设计,其上平行交替布置若干阳极流道101和阳极脊板102,阴极极板2采用与阳极极板1相互啮合的波浪形结构设计,其上平行交替布置若干阴极流道201和阴极隔板202,并且阳极流道101和阴极流道201相互平行。所述的膜电极组件3安装在阳极极板1和阴极极板2之间,整个单池沿流道宽度方向呈现波浪形结构。
其中,阳极极板1和阴极极板2均采用金属板材冲压成形工艺进行加工制造,由厚度为0.1mm的金属合金薄板经落料、冲压、冲孔、切边等工序获得。膜电极组件3反应区域为涂有催化剂的质子交换膜和、阴极气体扩散层、阳极气体扩散层,边框由厚度为0.2mm的柔性PEN材料经落料、热压、冲孔、切边等工序获得。
阳极极板1上平行交替布置宽度恒为1mm的阳极流道101和宽度恒为1mm的阳极脊板102;阳极流道左侧板1011高度和阳极流道右侧板1012高度分别在0.25mm和0.75mm之间交替变化;阳极流道左侧板1011、阳极流道右侧板1012与阳极流道101底部的夹角均为90°;相邻阳极流道101两侧板高度差保持恒定。
阴极极板2上平行交替布置宽度恒为1mm的阴极流道201和宽度恒为1mm的阴极脊板202;阴极流道左侧板2011高度和阴极流道右侧板2012高度分别在0.75mm和0.25mm之间交替变化;阴极流道左侧板2011、阴极流道右侧板2012与阴极流道201底部的夹角均为90°;相邻阴极流道201两侧板高度差保持恒定。
膜电极组件3安装在阳极极板1和阴极极板2之间,具有波浪形结构的阳极极板1下表面与膜电极组件3上表面相啮合,具有波浪形结构的阴极极板2上表面与膜电极组件3的下表面相啮合;
如图3所示,含有上述波浪形燃料电池单电池的电堆,该电堆由一定数量的燃料电池单电池在电池高度方向堆叠而成,电堆中位于上层单电池的阴极极板2与位于下层单电池的阳极极板1通过激光焊接连接。阳极极板1和阴极极 板2上的阳极冷却流道103和阴极冷却流道203共同组成具有封闭矩形截面的电堆冷却流道4。
电堆还包含阳极进气通道5,阳极出气通道6,阴极进气通道7,阴极出气通道8,冷却进液通道9,冷却出液通道10。电堆中的每个单电池都共用上述通道。
本实施例中单电池与普通单电池相比,仅将其阳极流道101和阴极流道201接触膜电极组件3的一侧由原来的平面改成斜面,增加了膜电极组件的反应区,从而提升了燃料电池的功率密度,以输出功率100kW,质量50kg的燃料电池堆为例,采用本实施例的结构的电堆,在忽略波浪形膜电极组件导致燃料电池电堆质量改变的情况下,其功率密度理论上可提升0.236kW/kg。
实施例2
如图4和图5所示,一种波浪形燃料电池单电池,该单电池包括阳极极板1、阴极极板2以及膜电极组件3,阳极极板1采用波浪形结构设计,其上平行交替布置若干阳极流道101和阳极脊板102,阴极极板2采用与阳极极板1相互啮合的波浪形结构设计,其上平行交替布置若干阴极流道201和阴极脊板202,并且阳极流道101和阴极流道201相互平行。所述的膜电极组件3安装在阳极极板1和阴极极板2之间,整个单池沿流道宽度方向呈现波浪形结构。
其中,阳极极板1和阴极极板2均采用金属板材冲压成形工艺进行加工制造,由厚度为0.1mm的金属合金薄板经落料、冲压、冲孔、切边等工序获得。膜电极组件3反应区域为涂有催化剂的质子交换膜和、阴极气体扩散层、阳极气体扩散层热压贴合,边框由厚度为0.2mm的柔性PET材料经落料、热压、冲孔、切边等工序获得。
阳极极板1上平行交替布置宽度恒为1mm的阳极流道101和宽度恒为1mm的阳极脊板102;阳极流道左侧板1011高度和阳极流道右侧板高度1012分别为0.25mm和0.75mm;阳极流道左侧板1011、阳极流道右侧板1012与阳极流道101底部的夹角均为90°;相邻阳极流道101两侧板高度差保持恒定。
阴极极板2上平行交替布置宽度恒为1mm的阴极流道201和宽度恒为1mm的阴极脊板202;阴极流道左侧板2011高度和阴极流道右侧板2012高度分别为0.75mm和0.25mm;阴极流道左侧板2011、阴极流道右侧板2012与阴极流 道201底部的夹角均为90°;相邻阴极流道201两侧板高度差保持恒定。
膜电极组件3安装在阳极极板1和阴极极板2之间,具有波浪形结构的阳极极板1下表面与膜电极组件3上表面相啮合,具有波浪形结构的阴极极板2上表面与膜电极组件3的下表面相啮合;
如图6所示,一种含有上述波浪形燃料电池单电池的电堆,该电堆由一定数量的燃料电池单电池在电池高度方向堆叠而成,电堆中位于上层单电池的阴极极板2与位于下层单电池的阳极极板1通过激光焊接连接。阳极极板1和阴极极板2上的阳极冷却流道103和阴极冷却流道203共同组成具有封闭菱形截面的电堆冷却流道4。
电堆还包含阳极进气通道5,阳极出气通道6,阴极进气通道7,阴极出气通道8,冷却进液通道9,冷却出液通道10。电堆中的每个单电池都共用上述通道。
本实施例中单电池与普通单电池相比,将阳极流道101和阴极流道201接触膜电极组件3的一侧由原来的平面改成斜面,同时将阳极脊板102和阴极脊板202也由平面改成了斜面,增加了膜电极组件的反应区,从而提升了燃料电池的功率密度,以输出功率100kW,质量50kg的燃料电池堆为例,采用本实施例的结构的电堆,在忽略波浪形膜电极组件导致燃料电池电堆质量改变的情况下,其功率密度理论上可提升0.236kW/kg。
上述实施例中的相关参数仅是为了更好的向科技工作者更好的描述本工作的具体内容,通过上述参数的调整可以容易获得具有不同性能表现的波浪形结构。因此,本发明的保护范围包括但不限于上述实施例。

Claims (10)

  1. 一种波浪形燃料电池单电池,包括阳极极板(1)、阴极极板(2)以及膜电极组件(3),其特征在于,所述的阳极极板(1)为波浪形结构,其上并列布置若干阳极流道(101)和阳极脊板(102),所述的阴极极板(2)采用与阳极极板(1)相互啮合的波浪形结构,其上并列布置若干阴极流道(201)和阴极脊板(202),所述的膜电极组件(3)安装在阳极极板(1)和阴极极板(2)之间,单电池沿流道宽度方向呈现波浪形结构。
  2. 根据权利要求1所述的一种波浪形燃料电池单电池,其特征在于,所述的阳极极板(1)上阳极流道(101)和阳极脊板(102)平行交替分布,阳极流道(101)分别与阳极进气通道(5)和阳极出气通道(6)相连,阳极脊板(102)的背面是阳极冷却流道(103),阳极冷却流道(103)分别与冷却进液通道(9)和冷却出液通道(10)相连。
  3. 根据权利要求1所述的一种波浪形燃料电池单电池,其特征在于,所述的阴极极板(2)上阴极流道(201)和阴极脊板(202)平行交替分布,阴极通道(201)分别与阴极进气通道(7)和阴极出气通道(8)相连,阴极脊板(202)的背面是阴极冷却流道(203),阴极冷却流道(203)分别与冷却进液通道(9)和冷却出液通道(10)相连。
  4. 根据权利要求2所述的一种波浪形燃料电池单电池,其特征在于,所述的阳极流道(101)底部远离膜电极组件(3)侧为平面封闭结构,阳极流道(101)顶部接触膜电极组件(3)侧为开放式结构,阳极流道左侧板(1011)、阳极流道右侧板(1012)与阳极流道(101)底部的夹角均不小于90°。
  5. 根据权利要求2所述的一种波浪形燃料电池单电池,其特征在于,相邻阳极流道(101)两侧板高度差值、相邻阳极流道(101)宽度和相邻阳极脊板(102)宽度恒定或按照设定规则变化。
  6. 根据权利要求3所述的一种波浪形燃料电池单电池,其特征在于,所述的阴极流道(201)底部远离膜电极组件(3)侧为平面封闭结构,阴极流道(201)顶部接触膜电极组件(3)侧为开放式结构,阴极流道左侧板(2011)、阴极流 道右侧板(2012)与阴极流道(201)底面的夹角均不小于90°,阴极流道(201)与阳极流道(101)对应的两侧板高度互补。
  7. 根据权利要求3所述的一种波浪形燃料电池单电池,其特征在于,相邻阴极流道(201)两侧板高度差值、相邻阴极流道(201)宽度和相邻阴极脊板(202)宽度分别与相邻阳极流道(101)两侧板高度差值、相邻阳极流道(101)宽度和相邻阳极脊板(102)宽度对应相等。
  8. 根据权利要求1所述的一种波浪形燃料电池单电池,其特征在于,所述的膜电极组件(3)上表面与阳极极板(1)下表面啮合,下表面与阴极极板(2)上表面啮合,膜电极组件(3)的结构由阳极极板(1)和阴极极板(2)共同决定。
  9. 一种含有如权利要求1~8任一所述的波浪形燃料电池单电池的电堆,其特征在于,该电堆由多个燃料电池单电池沿电池高度方向依次堆叠而成,电堆中相邻单电池的阳极极板(1)与阴极极板(2)相对装配,阳极冷却流道(103)与阴极冷却流道(203)共同构成封闭截面的电堆冷却通道(4),电堆沿流道宽度方向呈现波浪形结构。
  10. 根据权利要求9所述的波浪形燃料电池电堆,其特征在于,所述的电堆中的所有单电池共用阳极进气通道(5)、阳极出气通道(6)、阴极进气通道(7)、阴极出气通道(8)、冷却进液通道(9)、冷却出液通道(10)。
PCT/CN2021/097634 2020-12-22 2021-06-01 一种波浪形燃料电池单电池及电堆 WO2022134477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/937,875 US20230025359A1 (en) 2020-12-22 2022-10-04 Single corrugated fuel cell and cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011531075.4A CN112615020B (zh) 2020-12-22 2020-12-22 一种波浪形燃料电池单电池及电堆
CN202011531075.4 2020-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/937,875 Continuation US20230025359A1 (en) 2020-12-22 2022-10-04 Single corrugated fuel cell and cell stack

Publications (1)

Publication Number Publication Date
WO2022134477A1 true WO2022134477A1 (zh) 2022-06-30

Family

ID=75245417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097634 WO2022134477A1 (zh) 2020-12-22 2021-06-01 一种波浪形燃料电池单电池及电堆

Country Status (3)

Country Link
US (1) US20230025359A1 (zh)
CN (1) CN112615020B (zh)
WO (1) WO2022134477A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615020B (zh) * 2020-12-22 2022-06-21 上海交通大学 一种波浪形燃料电池单电池及电堆
CN113140767B (zh) * 2021-04-07 2022-05-20 上海交通大学 一种一体式可逆燃料电池水气分离结构及可逆燃料电池
CN115513474B (zh) * 2022-10-20 2023-05-12 华南理工大学 一种燃料电池电堆阴阳极碳纸厚度设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079494A (zh) * 2007-07-05 2007-11-28 上海交通大学 质子交换膜燃料电池电堆的制造方法
CN101101989A (zh) * 2006-07-03 2008-01-09 南亚电路板股份有限公司 具有波浪型流道板的燃料电池模组
JP2018133240A (ja) * 2017-02-16 2018-08-23 三菱自動車工業株式会社 燃料電池スタック
CN109390609A (zh) * 2017-08-11 2019-02-26 智能能源有限公司 具有成角度的偏移流动通道的燃料电池单元
DE102019203321A1 (de) * 2019-03-12 2020-09-17 Volkswagen Ag Brennstoffzellenplatte, Brennstoffzellenaufbau und Brennstoffzellensystem
CN112615020A (zh) * 2020-12-22 2021-04-06 上海交通大学 一种波浪形燃料电池单电池及电堆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308227A (ja) * 1997-05-07 1998-11-17 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
US6663994B1 (en) * 2000-10-23 2003-12-16 General Motors Corporation Fuel cell with convoluted MEA
US20020182472A1 (en) * 2000-09-27 2002-12-05 Molter Trent M. Apparatus and method for maintaining compression of the active area in an electrochemical cell
JP5651541B2 (ja) * 2011-06-08 2015-01-14 本田技研工業株式会社 燃料電池用セパレータと燃料電池
DE102016200055A1 (de) * 2016-01-06 2017-07-06 Volkswagen Ag Flussfeldplatte und Bipolarplatte sowie Brennstoffzelle
CN109921057A (zh) * 2019-04-04 2019-06-21 浙江大学 一种波纹交错排布的燃料电池双极板结构
CN211829028U (zh) * 2020-03-31 2020-10-30 上海氢晨新能源科技有限公司 一种金属双极板和空冷质子交换膜燃料电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101989A (zh) * 2006-07-03 2008-01-09 南亚电路板股份有限公司 具有波浪型流道板的燃料电池模组
CN101079494A (zh) * 2007-07-05 2007-11-28 上海交通大学 质子交换膜燃料电池电堆的制造方法
JP2018133240A (ja) * 2017-02-16 2018-08-23 三菱自動車工業株式会社 燃料電池スタック
CN109390609A (zh) * 2017-08-11 2019-02-26 智能能源有限公司 具有成角度的偏移流动通道的燃料电池单元
DE102019203321A1 (de) * 2019-03-12 2020-09-17 Volkswagen Ag Brennstoffzellenplatte, Brennstoffzellenaufbau und Brennstoffzellensystem
CN112615020A (zh) * 2020-12-22 2021-04-06 上海交通大学 一种波浪形燃料电池单电池及电堆

Also Published As

Publication number Publication date
US20230025359A1 (en) 2023-01-26
CN112615020B (zh) 2022-06-21
CN112615020A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022134477A1 (zh) 一种波浪形燃料电池单电池及电堆
US9905880B2 (en) Fuel cell stack
TW466792B (en) Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
CN109904484B (zh) 一种燃料电池双极板结构及燃料电池
CN101937998B (zh) 冲压成型的质子交换膜燃料电池金属双极板
EP1107339A2 (en) Flow channels in current collecting plates of fuel cells
JPH0831322B2 (ja) 内部改質型燃料電池およびそれを用いた発電プラント
US20050064270A1 (en) Fuel cell bipolar separator plate
US11626609B2 (en) Contacting method and arrangement for fuel cell or electrolyzer cell stack
CN112909283A (zh) 一种质子交换膜燃料电池双极板
US8053125B2 (en) Fuel cell having buffer and seal for coolant
US20120308913A1 (en) Controlling fuel cell
CN111613808A (zh) 一种基于蜘蛛网衍化的仿生学质子交换膜燃料电池结构
CN115513486B (zh) 一种单极板、双极板、电堆及燃料电池
WO2024045496A1 (zh) 一种增强流体扰动的燃料电池双极板
CN111952621A (zh) 燃料电池电堆及燃料电池汽车
CN112993303B (zh) 一种波纹状流场结构
US20040151971A1 (en) PEM fuel cell with flow-field having a branched midsection
CN112993308A (zh) 一种梯度蛇形流场结构
CN104937760A (zh) 燃料电池系统
CN112993304B (zh) 一种梯度波纹状流场结构
CN216084950U (zh) 一种蛇形流场结构的质子交换膜燃料电池装置
US20240128480A1 (en) Separator for fuel cell
TWI476986B (zh) 燃料電池堆及其分隔板
JP3541376B2 (ja) 燃料電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908488

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.01.2024)