WO2024045496A1 - 一种增强流体扰动的燃料电池双极板 - Google Patents

一种增强流体扰动的燃料电池双极板 Download PDF

Info

Publication number
WO2024045496A1
WO2024045496A1 PCT/CN2023/075389 CN2023075389W WO2024045496A1 WO 2024045496 A1 WO2024045496 A1 WO 2024045496A1 CN 2023075389 W CN2023075389 W CN 2023075389W WO 2024045496 A1 WO2024045496 A1 WO 2024045496A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
spine
fuel cell
cathode
anode
Prior art date
Application number
PCT/CN2023/075389
Other languages
English (en)
French (fr)
Inventor
廖书信
邱殿凯
易培云
彭林法
来新民
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2024045496A1 publication Critical patent/WO2024045496A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of fuel cells and relates to a fuel cell bipolar plate that enhances fluid disturbance.
  • the proton exchange membrane fuel cell is a power device that can directly convert hydrogen energy into electrical energy. It has the characteristics of rapid start-up in low-temperature environment, low heat radiation, With outstanding advantages such as low noise, low emissions and high power density, it has broad application prospects in transportation, fixed power stations, aerospace and other fields.
  • PEMFC is mainly composed of bipolar plate (BPP), membrane electrode assembly (MEA), sealing components and other components.
  • BPP bipolar plate
  • MEA membrane electrode assembly
  • sealing components As a key component of the fuel cell, BPP not only plays the role of structural support and current conduction, but the distributed flow field can also promote the even distribution of reactants and coolant, and timely discharge of reaction products. It is an important place for water and gas management in fuel cells. , Therefore, the structural design of BPP is very critical.
  • the flow field with high disturbance characteristics can promote the material transport, drainage and heat exchange of the fuel cell, and can significantly improve the reaction uniformity and battery output performance. It is an important direction in the structural design of BPP.
  • Chinese invention patent CN109643809A discloses an engaging ultra-thin metal bipolar plate and its three-dimensional flow field.
  • This invention uses a trapezoidal cross-section combined with a flow channel structure design with a wavy bottom surface to enhance the fuel cell.
  • the design still retains the traditional ridge and groove structure.
  • the gas diffusion layer (GDL) under the ridge is compressed, so the improvement in water and gas transmission performance of the entire flow field is limited.
  • Korean invention patent KR102034457B1 discloses a gas flow separator for fuel cells.
  • This invention effectively separates gas and liquid flow areas by distributing multiple three-dimensional through-hole elements to avoid clogging of reactant mass transfer paths, and at the same time uses through-hole elements to change the gas flow.
  • the path forms a turbulent flow state that is conducive to device drainage, but the invention does not have sealing properties and cannot be used alone as a plate of a fuel cell stack, and the production cost is high.
  • Chinese invention patent CN113823809A discloses a flow field structure of a fuel cell bipolar plate. This invention has a structure on the surface of each plate.
  • the "Ten" shaped boss array is designed on the surface, and the forced convection of the flow field is enhanced through the network gas flow path formed between the bosses, and the mass transfer effect and heat exchange efficiency inside the fuel cell are enhanced.
  • the surface of the electrode plate in this invention is A simple plane, and the cross-section of the gas flow path remains consistent, making it difficult to generate forced convection perpendicular to the direction of the reaction plane.
  • the disclosed fuel cell plate structure with high disturbance characteristics can enhance fluid disturbance to a certain extent, it still has many problems, including: no sealing, high production cost and limited improvement of fluid disturbance. etc., which also further limits the practical application effect of the existing technology.
  • the purpose of the present invention is to provide a fuel cell bipolar plate that enhances fluid turbulence in order to overcome the above-mentioned shortcomings of the prior art.
  • the invention has good sealing performance, can not only enhance fluid turbulence, improve fuel cell water vapor management performance, but also facilitate Manufacturing assembly.
  • a fuel cell bipolar plate with enhanced fluid disturbance including an anode plate and a cathode plate.
  • the anode plate and cathode plate include several plate units, and the plate units include a left spine plate, a left side plate, a middle spine plate, The right side panel and the right spine panel, the left spine panel, the middle spine panel and the right spine panel adopt a wavy curved surface structure, the left side panel connects the left spine panel and the middle spine panel, and the right side panel connects Right and middle spinal lamina.
  • the wave crests of the curved surfaces of the left and right ridge plates are consistent and maintain a certain distance from the wave crests of the curved surface of the middle ridge plate.
  • left ridge plate, middle ridge plate and right ridge plate structural curved surfaces are designed according to cosine function, sine function, Gaussian function or polynomial function.
  • the description function of the left spine plate and the right spine plate construction curved surface is f 1
  • the description function of the middle spine plate construction curved surface is f 2
  • the description function of the left spine plate and the right spine plate is f 2
  • the crest distance between the structural surface and the mid-ridge plate structural surface is L 1 .
  • A is the maximum height of the plate unit corresponding to the flow field
  • L 2 is the length of the plate unit.
  • the width of the left spine panel is W 11
  • the width of the left spine panel is W 21
  • the width of the middle spine panel is W 12
  • the width of the right panel is W 22
  • the width of the left spine panel is W 21 .
  • the width of the right ridge plate is W 13
  • the thicknesses of the left ridge plate, left side plate, middle ridge plate, right side plate and right ridge plate are all t.
  • the left spine plate and the right spine plate construct a curved surface and the middle spine plate constructs a curved surface.
  • the peak spacing as well as the length and height of the plate unit can be adjusted according to requirements.
  • the width and thickness of the left spine board, left side board, middle spine board, right side board and right spine board can be adjusted according to needs.
  • the left side panel and the right side panel adopt a lofted curved surface structure.
  • the left side panel is constructed by a lofted curved surface using the contours of the left spine board and the middle spine board as the guiding path
  • the right side panel is constructed by a lofting curved surface using the contours of the right spine board and the middle spine board as the guiding path.
  • the guide path of the left panel construction surface can be set with a custom auxiliary constraint path based on the outlines of the left spine panel and the middle spine panel (construction surface description function) according to the needs, and the right panel construction curved surface
  • the guide path can be set with a custom auxiliary constraint path based on the right spine plate and middle spine plate contours (constructed surface description function) as needed.
  • anode plate and the cathode plate include a single plate unit arranged periodically or a plurality of electrode plate units arranged in a mixed manner.
  • anode plate and the cathode plate are installed back-to-back, fit together in the valley area of the anode plate and cathode plate, and welded in the contact area of the anode plate and cathode plate to form an integrated bipolar plate structure.
  • the anode plate and cathode plate are made of metal alloy thin plates such as stainless steel or titanium alloy through stamping process, and the integrated bipolar plate structure is obtained by laser welding process or resistance spot welding process.
  • the installation method of the anode plate and the cathode plate can be adjusted along the reaction plane direction according to design requirements such as the flow resistance of the cooling flow field, the contact resistance of the bipolar plate, and the height of the bipolar plate.
  • the anode reactant flow areas in adjacent plate units communicate with each other
  • the cathode reactant flow areas communicate with each other
  • the cooling liquid flow areas communicate with each other.
  • the flow area on the upper surface of the anode plate forms the anode flow field of the bipolar plate
  • the flow area on the lower surface of the cathode plate forms the cathode flow field of the bipolar plate.
  • the lower surface of the anode plate is in contact with the cathode.
  • the flow area between the plate surfaces forms the cooling flow field of the bipolar plate.
  • the flow direction of the cathode reactant in the bipolar plate is opposite to the flow direction of the anode reactant, and is perpendicular to the flow direction of the cooling liquid.
  • hydrogen is selected as the cathode reactant in the bipolar plate, and air/oxygen is selected as the anode reactant.
  • the present invention has the following advantages:
  • the present invention can realize the diversion and collision of fluids and promote the generation of strong waves perpendicular to the reaction plane. Control convection and significantly enhance multi-directional fluid disturbance, which is of great significance for improving the material transport characteristics and heat transfer efficiency of the flow field;
  • the present invention ensures the sealing of the electrode plates. By connecting the anode plate and the cathode plate back to back, an anode flow field, a cathode flow field and a cooling flow field with high disturbance characteristics can be formed. Compared with the existing technology, the invention saves materials and is more efficient. Suitable for building high-power fuel cell stacks;
  • the present invention uses smooth wavy curved surfaces and lofted curved surfaces to construct, has a simple structure, low processing difficulty, and a high yield rate, and can be mass-produced based on existing manufacturing processes.
  • Figure 1 is a schematic diagram of the overall structure of the bipolar plate in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of the plate unit in Embodiment 1 of the present invention.
  • Figure 3 is a schematic front structural view of the bipolar plate in Embodiment 1 of the present invention.
  • Figure 4 is a schematic left structural diagram of the bipolar plate in Embodiment 1 of the present invention.
  • Figure 5 is a schematic front structural view of the plate unit in Embodiment 1 of the present invention.
  • Figure 6 is a schematic top view of the structure of the plate unit in Embodiment 1 of the present invention.
  • Figure 7 is a schematic diagram of the flow pattern of anode reactants in Example 1 of the present invention.
  • Figure 8 is a schematic diagram of the flow pattern of cathode reactants in Example 1 of the present invention.
  • FIG. 9 is a schematic diagram of the cooling liquid flow pattern in Embodiment 1 of the present invention.
  • Figure 10 is a comparative diagram of the oxygen content distribution of the catalytic layer in the fuel cell using the bipolar plate (a) in Embodiment 1 of the present invention and the traditional bipolar plate (b);
  • Figure 11 is a comparison diagram of the water content distribution of the GDL/BPP contact layer in the fuel cell using the bipolar plate (a) and the traditional bipolar plate (b) in Embodiment 1 of the present invention;
  • Figure 12 is a schematic diagram of the overall structure of the bipolar plate in Embodiment 2 of the present invention.
  • Figure 13 is a schematic structural diagram of the plate unit in Embodiment 2 of the present invention.
  • Figure 14 is a schematic front structural view of the bipolar plate in Embodiment 2 of the present invention.
  • Figure 15 is a schematic left structural diagram of the bipolar plate in Embodiment 2 of the present invention.
  • Figure 16 is a schematic front structural view of the plate unit in Embodiment 2 of the present invention.
  • Figure 17 is a schematic top structural view of the electrode plate unit in Embodiment 2 of the present invention.
  • a fuel cell bipolar plate with enhanced fluid disturbance includes an anode plate 1 and a cathode plate 2, wherein the anode plate 1 and the cathode plate 2 include several plate units 3, and the plate units 3 It includes a left spine plate 311, a left side plate 321, a middle spine plate 312, a right side plate 322 and a right spine plate 313.
  • the left spine plate 311, the middle spine plate 312 and the right spine plate 313 adopt a wavy curved surface structure.
  • the left side plate 321 The connection between the left spine plate 311 and the middle spine plate 312 is realized.
  • the right side plate 322 realizes the connection between the right spine plate 313 and the middle spine plate 312.
  • the left side plate 321 and the right side plate 322 adopt a lofted curved surface structure.
  • the description function of the curved surface constructed by the left ridge plate 311 and the right ridge plate 313 is f 1
  • the description function of the curved surface constructed by the middle ridge plate 312 is f 2.
  • the left ridge plate 311 and the right ridge plate 313 are related to The crest spacing of the structural surface of the middle spine plate 312 is 2mm.
  • the maximum height of the pole plate unit 3 corresponding to the flow field is 0.5 mm, and the length of the pole plate unit 3 is 4 mm.
  • the left side plate 321 is located between the left spine plate 311 and the middle spine plate 312.
  • the right side plate 322 is located on the right spine.
  • the widths of the left spine plate 311, the left side plate 321, the middle spine plate 312, the right side plate 322 and the right spine plate 313 in the pole plate unit 3 are 0.25mm, 0.5mm, 0.5mm, and 0.5mm respectively. and 0.25mm, and the thickness of each part is 0.1mm.
  • the anode plate 1 and the cathode plate 2 include identical plate units 3 arranged periodically, in which the anode plate 1 and the cathode plate 2 are installed back-to-back, bonded in the trough area, and formed into one body using a laser welding process. bipolar plate structure.
  • the flow area on the upper surface of the anode plate 1 forms the anode flow field of the bipolar plate, and the anode reactant flow areas in adjacent plate units 3 penetrate each other.
  • the circulation area on the lower surface of the cathode plate 2 forms the cathode flow field of the bipolar plate.
  • the cathode reactant circulation areas in adjacent plate units 3 are interconnected, and the flow direction of the cathode reactant is consistent with the anode reactant flow. Movement direction is opposite.
  • the flow area between the lower surface of the anode plate 1 and the upper surface of the cathode plate 2 forms the cooling flow field of the bipolar plate.
  • the coolant flow areas in adjacent plate units 3 penetrate each other, and the flow of coolant The direction is perpendicular to the direction of reactant flow.
  • this embodiment can reduce the average mass fraction of product water in the GDL/BPP contact layer to 7.42%.
  • this embodiment also improves the distribution uniformity of reactants and products, which helps improve the stability of fuel cell operation.
  • a fuel cell bipolar plate with enhanced fluid disturbance includes an anode plate 1 and a cathode plate 2, wherein the anode plate 1 and the cathode plate 2 include several plate units 3, and the plate units 3 It includes a left spine plate 311, a left side plate 321, a middle spine plate 312, a right side plate 322 and a right spine plate 313.
  • the left spine plate 311, the middle spine plate 312 and the right spine plate 313 adopt a wavy curved surface structure.
  • the left side plate 321 The connection between the left spine plate 311 and the middle spine plate 312 is realized.
  • the right side plate 322 realizes the connection between the right spine plate 313 and the middle spine plate 312.
  • the left side plate 321 and the right side plate 322 adopt a lofted curved surface structure.
  • the description function of the curved surface constructed by the left spine plate 311 and the right spine plate 313 is f 1
  • the description function of the curved surface constructed by the middle spine plate 312 is f 2
  • the left spine plate 311 and the right spine plate 313 are related to Middle spine plate 312 structural curve
  • the crest distance of the surface is 4mm.
  • f 2 -0.25cos(0.25 ⁇ x), x ⁇ [0, 8]
  • the maximum height of the plate unit 3 corresponding to the flow field is 0.5 mm, and the length of the plate unit 3 is 8 mm.
  • the left side plate 321 is located between the left spine plate 311 and the middle spine plate 312.
  • the right side plate 322 is located on the right spine.
  • the widths of the left spine plate 311, the left side plate 321, the middle spine plate 312, the right side plate 322 and the right spine plate 313 in the pole plate unit 3 are 0.25mm, 0.5mm, 0.5mm, and 0.5mm respectively. and 0.25mm, and the thickness of each part is 0.1mm.
  • Embodiment 2 the installation method of anode plate 1 and cathode plate 2, the formation method of anode flow field, cathode flow field and cooling flow field, and the corresponding fluid flow method are consistent with Embodiment 1, and therefore will not be described again.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种增强流体扰动的燃料电池双极板,包括阳极板(1)和阴极板(2),该阳极板(1)和阴极板(2)包括若干极板单元(3),所述的极板单元(3)包括左脊板(311)、左侧板(321)、中脊板(312)、右侧板(322)和右脊板(313),各脊板采用波浪形曲面构造,并且相邻两脊板构造曲面的波峰保持一定间距,各侧板连接相邻两脊板并采用放样曲面构造,两极板背靠背贴合安装。该双极板结构可以实现流体的分流和碰撞,产生垂直于反应平面的强制对流,显著增强流体多方位扰动。与现有技术相比,本发明可以同时强化阳、阴极流场的物质传输特性以及冷却流场的换热效率,进而提高燃料电池的输出性能,而且该结构适于批量化生产。

Description

一种增强流体扰动的燃料电池双极板 技术领域
本发明属于燃料电池技术领域,涉及一种增强流体扰动的燃料电池双极板。
背景技术
氢能作为一种环境友好的绿色能源越来越受到关注,质子交换膜燃料电池(PEMFC)是一种能够直接将氢能转换为电能的动力装置,具有可在低温环境快速启动、低热辐射、低噪声、低排放和高功率密度等突出优点,在交通运输、固定电站和航空航天等领域具有广泛的应用前景。PEMFC主要由双极板(BPP)、膜电极组件(MEA)、密封元件等零部件组成。BPP作为燃料电池的关键组件,除了具有结构支撑和电流传导的作用,其中分布的流场还可以促进反应物及冷却液均匀分配,并及时排出反应产物,是燃料电池进行水气管理的重要场所,因此,BPP的结构设计非常关键。
随着关键技术不断革新,PEMFC的功率密度得到了长足的进步,但距离大规模的商业化应用还有很大的提升空间。具有高扰动特性的流场可以促进燃料电池的物质传输、排水和换热,能够显著提高反应均匀性和电池输出性能,是BPP结构设计的重要方向。
经过现有技术文献的检索发现,中国发明专利CN109643809A公开了一种啮合式超薄金属双极板及其三维流场,该发明通过梯形截面并结合波浪形底面的流道结构设计来增强燃料电池中的流体扰动,但该设计依然保留传统的脊槽结构,脊下部分的气体扩散层(GDL)被压缩,因此对整个流场水气传输性能提升有限。韩国发明专利KR102034457B1公开了一种燃料电池用气流隔板,该发明通过分布多个三维通孔元件有效的分离气体和液体流通区域,避免反应物传质路径堵塞,同时利用通孔元件改变气体流动路径形成有利于装置排水的紊流状态,但该发明不具备密封性,无法单独作为燃料电池电堆的极板使用,而且生产成本较高。中国发明专利CN113823809A公开了一种燃料电池双极板的流场结构,该发明在每块极板表 面设计“十”字型凸台阵列,通过凸台之间形成的网状气体流通路径增强流场强制对流,强化燃料电池内部的传质效果和换热效率,但该发明中极板表面为简单的平面,而且气体流通路径的截面保持一致,难以产生垂直于反应平面方向的强制对流。综上所述,已公开的具有高扰动特性的燃料电池极板结构虽然在一定程度上能够增强流体扰动,但依旧存在许多问题,包括:不具备密封性,生产成本较高以及流体扰动提升有限等,这也进一步限制了现有技术的实际应用效果。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种增强流体扰动的燃料电池双极板,本发明密封性良好,既能增强流体扰动,提高燃料电池水气管理性能,又便于制造装配。
本发明的目的可以通过以下技术方案来实现:
一种增强流体扰动的燃料电池双极板,包括阳极板和阴极板,该阳极板和阴极板包括若干极板单元,所述的极板单元包括左脊板、左侧板、中脊板、右侧板和右脊板,所述的左脊板、中脊板和右脊板采用波浪形曲面构造,所述的左侧板连接左脊板和中脊板,所述的右侧板连接右脊板和中脊板。
进一步地,所述的左脊板和右脊板构造曲面的波峰保持一致,并与中脊板构造曲面的波峰保持一定间距。
进一步地,所述的左脊板、中脊板和右脊板构造曲面按照余弦函数、正弦函数、高斯函数或多项式函数进行设计。
作为优选的技术方案,所述的左脊板和右脊板构造曲面的描述函数为f1,所述的中脊板构造曲面的描述函数为f2,所述的左脊板和右脊板构造曲面与中脊板构造曲面的波峰间距为L1,两种构造曲面的描述函数可以为多种,以余弦函数为例:
f1=0.5A cos(2πxL2 -1),x∈[0,L2]
f2=-0.5A cos(2πxL2 -1),x∈[0,L2]
其中,A为极板单元对应流场的最大高度,L2为极板单元的长度。
所述的左脊板的宽度为W11,所述的左侧板的宽度为W21,所述的中脊板的宽度为W12,所述的右侧板的宽度为W22,所述的右脊板的宽度为W13,所述的左脊板、左侧板、中脊板、右侧板和右脊板的厚度都为t。
作为优选的技术方案,所述的左脊板和右脊板构造曲面与中脊板构造曲面的波 峰间距以及极板单元的长度和高度可以根据需求进行调整。
作为优选的技术方案,所述的左脊板、左侧板、中脊板、右侧板和右脊板的宽度和厚度可以根据需求进行调整。
进一步地,所述的左侧板和右侧板采用放样曲面构造。
进一步地,所述的左侧板通过以左脊板和中脊板轮廓为引导路径的放样曲面构造,所述的右侧板通过以右脊板和中脊板轮廓为引导路径的放样曲面构造。
进一步地,所述的左侧板构造曲面的引导路径可以根据需求在左脊板和中脊板轮廓(构造曲面描述函数)的基础上设置自定义辅助约束路径,所述的右侧板构造曲面的引导路径可以根据需求在右脊板和中脊板轮廓(构造曲面描述函数)的基础上设置自定义辅助约束路径。
进一步地,所述的阳极板和阴极板包括周期排列的单一极板单元或混合排列的多种极板单元。
进一步地,所述的阳极板和阴极板背靠背安装,在阳极板和阴极板的波谷区域贴合,在阳极板和阴极板的接触区域焊接形成一体化的双极板结构。
作为优选的技术方案,所述的阳极板和阴极板均采用不锈钢或钛合金等金属合金薄板经冲压工艺获得,一体化的双极板结构采用激光焊接工艺或电阻点焊焊接工艺获得。
作为优选的技术方案,所述的阳极板和阴极板的安装方式可以根据冷却流场的流通阻力、双极板接触电阻和双极板高度等设计需求沿反应平面方向进行调整。
进一步地,相邻极板单元中的阳极反应物流通区域相互贯通,阴极反应物流通区域相互贯通,冷却液流通区域相互贯通。
进一步地,所述的阳极板上表面的流通区域形成双极板的阳极流场,所述的阴极板下表面的流通区域形成双极板的阴极流场,所述的阳极板下表面与阴极板上表面间的流通区域形成双极板的冷却流场。
作为优选的技术方案,双极板中的阴极反应物流通方向与阳极反应物流通方向相反,并且与冷却液流通方向互相垂直。
作为优选的技术方案,双极板中的阴极反应物选择氢气,阳极反应物选择空气/氧气。
与现有技术相比,本发明具有以下优点:
(1)本发明可以实现流体的分流和碰撞,并促使其产生垂直于反应平面的强 制对流,显著增强流体多方位扰动,对于提升流场物质传输特性和换热效率具有重要意义;
(2)本发明保证了极板的密封性,通过将阳极板和阴极板背靠背连接便可以形成具有高扰动特点的阳极流场、阴极流场和冷却流场,相对现有技术节省材料,更适合于组建大功率燃料电池电堆;
(3)本发明采用平滑的波浪形曲面和放样曲面进行构造,结构简单,加工难度低,良品率高,可以基于现有制造工艺进行批量化生产。
附图说明
图1为本发明实施例1中双极板整体结构示意图;
图2为本发明实施例1中极板单元结构示意图;
图3为本发明实施例1中双极板正视结构示意图;
图4为本发明实施例1中双极板左视结构示意图;
图5为本发明实施例1中极板单元正视结构示意图;
图6为本发明实施例1中极板单元俯视结构示意图;
图7为本发明实施例1中阳极反应物流动方式示意图;
图8为本发明实施例1中阴极反应物流动方式示意图;
图9为本发明实施例1中冷却液流动方式示意图;
图10为采用本发明实施例1中双极板(a)和传统双极板(b)的燃料电池中催化层的氧含量分布对比图;
图11为采用本发明实施例1中双极板(a)和传统双极板(b)的燃料电池中GDL/BPP接触层的水含量分布对比图;
图12为本发明实施例2中双极板整体结构示意图;
图13为本发明实施例2中极板单元结构示意图;
图14为本发明实施例2中双极板正视结构示意图;
图15为本发明实施例2中双极板左视结构示意图;
图16为本发明实施例2中极板单元正视结构示意图;
图17为本发明实施例2中极板单元俯视结构示意图。
图中标记说明:
1—阳极板、2—阴极板、3—极板单元、311—左脊板、312—中脊板、313—右
脊板、321—左侧板、322—右侧板。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
如图1至4所示,一种增强流体扰动的燃料电池双极板,包括阳极板1和阴极板2,其中,阳极板1和阴极板2包括若干极板单元3,而极板单元3包括左脊板311、左侧板321、中脊板312、右侧板322和右脊板313,左脊板311、中脊板312和右脊板313采用波浪形曲面构造,左侧板321实现左脊板311和中脊板312的连接,右侧板322实现右脊板313和中脊板312的连接,左侧板321和右侧板322采用放样曲面构造。
如图2和图5所示,左脊板311和右脊板313构造曲面的描述函数为f1,中脊板312构造曲面的描述函数为f2,左脊板311和右脊板313与中脊板312构造曲面的波峰间距为2mm,两种构造曲面的描述函数如下:
f1=0.25cos(0.5πx),x∈[0,4]
f2=-0.25cos(0.5πx),x∈[0,4]
其中,极板单元3对应流场的最大高度为0.5mm,极板单元3的长度为4mm。
如图2所示,左侧板321位于左脊板311和中脊板312之间,通过以左脊板311和中脊板312轮廓为引导路径的放样曲面构造,右侧板322位于右脊板313和中脊板312之间,通过以右脊板313和中脊板312轮廓为引导路径的放样曲面构造。
如图6所示,极板单元3中左脊板311、左侧板321、中脊板312、右侧板322和右脊板313的宽度分别为0.25mm、0.5mm、0.5mm、0.5mm和0.25mm,各部分的厚度都为0.1mm。
如图1所示,阳极板1和阴极板2包括周期排列的完全相同的极板单元3,其中,阳极板1和阴极板2背靠背安装,在波谷区域贴合,并采用激光焊接工艺形成一体的双极板结构。
如图7所示,阳极板1上表面的流通区域形成双极板的阳极流场,相邻极板单元3中的阳极反应物流通区域相互贯通。
如图8所示,阴极板2下表面的流通区域形成双极板的阴极流场,相邻极板单元3中的阴极反应物流通区域相互贯通,并且阴极反应物的流动方向与阳极反应物流动方向相反。
如图9所示,阳极板1下表面与阴极板2上表面间的流通区域形成双极板的冷却流场,相邻极板单元3中的冷却液流通区域相互贯通,并且冷却液的流动方向与反应物流动方向相互垂直。
将相同反应面积的本实施例与传统的具有平行流场的双极板进行对比,通过ANSYS FLUENT软件进行仿真分析。如图10所示,将采用本实施例所述的双极板(a)和传统双极板(b)的燃料电池中催化层的氧气(反应物)含量分布情况进行对比。可以发现,图10(a)中氧气质量分数明显高于图10(b),说明本实施例可以给燃料电池提供更多的氧气,有效提高燃料电池输出性能。对图10(a)和(b)两截面中所有节点的氧气含量进行统计分析,结果表明,本实施例可以提高燃料电池催化层中氧气的平均质量分数达11.32%。另一方面,将采用本实施例中所述的双极板(a)和传统双极板(b)的燃料电池中GDL/BPP接触层的水(产物)含量分布情况进行对比,结果如图11所示。可以发现,图11(a)中水质量分数明显低于图11(b),说明本实施例可以更加及时的排出燃料电池的产物水,降低反应物传输通道的堵塞程度,减少传质极化,实现燃料电池更高的性能输出。进一步对图11(a)和(b)两截面中所有节点的水含量进行统计分析,结果表明,本实施例可以降低GDL/BPP接触层中产物水的平均质量分数达7.42%。此外,结合图10和图11中氧气和水的分布规律可以发现,本实施例还提高了反应物和产物的分布均匀性,这有助于提升燃料电池运行的稳定性。
实施例2:
如图12至15所示,一种增强流体扰动的燃料电池双极板,包括阳极板1和阴极板2,其中,阳极板1和阴极板2包括若干极板单元3,而极板单元3包括左脊板311、左侧板321、中脊板312、右侧板322和右脊板313,左脊板311、中脊板312和右脊板313采用波浪形曲面构造,左侧板321实现左脊板311和中脊板312的连接,右侧板322实现右脊板313和中脊板312的连接,左侧板321和右侧板322采用放样曲面构造。
如图13和图16所示,左脊板311和右脊板313构造曲面的描述函数为f1,中脊板312构造曲面的描述函数为f2,左脊板311和右脊板313与中脊板312构造曲 面的波峰间距为4mm,两种构造曲面的描述函数如下:
f1=-0.25cos(0.25πx),x∈[0,8]
f2=-0.25cos(0.25πx),x∈[0,8]
其中,极板单元3对应流场的最大高度为0.5mm,极板单元3的长度为8mm。
如图13所示,左侧板321位于左脊板311和中脊板312之间,通过以左脊板311和中脊板312轮廓为引导路径的放样曲面构造,右侧板322位于右脊板313和中脊板312之间,通过以右脊板313和中脊板312轮廓为引导路径的放样曲面构造。
如图17所示,极板单元3中左脊板311、左侧板321、中脊板312、右侧板322和右脊板313的宽度分别为0.25mm、0.5mm、0.5mm、0.5mm和0.25mm,各部分的厚度都为0.1mm。
实施例2中阳极板1和阴极板2的安装方式,阳极流场、阴极流场和冷却流场的形成方式,以及相应流体流动方式与实施例1保持一致,因此不再赘述。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种增强流体扰动的燃料电池双极板,包括阳极板(1)和阴极板(2),其特征在于,该阳极板(1)和阴极板(2)包括若干极板单元(3),所述的极板单元(3)包括左脊板(311)、左侧板(321)、中脊板(312)、右侧板(322)和右脊板(313),所述的左脊板(311)、中脊板(312)和右脊板(313)采用波浪形曲面构造,所述的左侧板(321)连接左脊板(311)和中脊板(312),所述的右侧板(322)连接右脊板(313)和中脊板(312)。
  2. 根据权利要求1所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的左脊板(311)和右脊板(313)构造曲面的波峰保持一致,并与中脊板(312)构造曲面的波峰保持一定间距。
  3. 根据权利要求1所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的左脊板(311)、中脊板(312)和右脊板(313)构造曲面按照余弦函数、正弦函数、高斯函数或多项式函数进行设计。
  4. 根据权利要求1所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的左侧板(321)和右侧板(322)采用放样曲面构造。
  5. 根据权利要求4所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的左侧板(321)通过以左脊板(311)和中脊板(312)轮廓为引导路径的放样曲面构造,所述的右侧板(322)通过以右脊板(313)和中脊板(312)轮廓为引导路径的放样曲面构造。
  6. 根据权利要求5所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的左侧板(321)构造曲面的引导路径在左脊板(311)和中脊板(312)轮廓的基础上设置辅助约束路径,所述的右侧板(322)构造曲面的引导路径在右脊板(313)和中脊板(312)轮廓的基础上设置辅助约束路径。
  7. 根据权利要求1所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的阳极板(1)和阴极板(2)包括周期排列的单一极板单元(3)或混合排列的多种极板单元(3)。
  8. 根据权利要求1或7所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的阳极板(1)和阴极板(2)背靠背贴合安装,在阳极板(1)和阴极 板(2)的波谷区域贴合,在阳极板(1)和阴极板(2)的接触区域焊接形成一体化的双极板结构。
  9. 根据权利要求1或7所述的一种增强流体扰动的燃料电池双极板,其特征在于,相邻极板单元(3)中的阳极反应物流通区域相互贯通,阴极反应物流通区域相互贯通,冷却液流通区域相互贯通。
  10. 根据权利要求1或7所述的一种增强流体扰动的燃料电池双极板,其特征在于,所述的阳极板(1)上表面的流通区域形成双极板的阳极流场,所述的阴极板(2)下表面的流通区域形成双极板的阴极流场,所述的阳极板(1)下表面与阴极板(2)上表面间的流通区域形成双极板的冷却流场。
PCT/CN2023/075389 2022-08-29 2023-02-10 一种增强流体扰动的燃料电池双极板 WO2024045496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211040662.2 2022-08-29
CN202211040662.2A CN115275254A (zh) 2022-08-29 2022-08-29 一种增强流体扰动的燃料电池双极板

Publications (1)

Publication Number Publication Date
WO2024045496A1 true WO2024045496A1 (zh) 2024-03-07

Family

ID=83754486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075389 WO2024045496A1 (zh) 2022-08-29 2023-02-10 一种增强流体扰动的燃料电池双极板

Country Status (2)

Country Link
CN (1) CN115275254A (zh)
WO (1) WO2024045496A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275254A (zh) * 2022-08-29 2022-11-01 上海交通大学 一种增强流体扰动的燃料电池双极板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008058A1 (en) * 2015-07-06 2017-01-12 Toyota Boshoku Kabushiki Kaisha Method for forming metal plate and apparatus for forming metal plate
CN107004885A (zh) * 2014-10-18 2017-08-01 莱茵兹密封垫有限公司 隔离板和电化学系统
CN115275254A (zh) * 2022-08-29 2022-11-01 上海交通大学 一种增强流体扰动的燃料电池双极板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004885A (zh) * 2014-10-18 2017-08-01 莱茵兹密封垫有限公司 隔离板和电化学系统
US20170008058A1 (en) * 2015-07-06 2017-01-12 Toyota Boshoku Kabushiki Kaisha Method for forming metal plate and apparatus for forming metal plate
CN115275254A (zh) * 2022-08-29 2022-11-01 上海交通大学 一种增强流体扰动的燃料电池双极板

Also Published As

Publication number Publication date
CN115275254A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN109994752A (zh) 一种燃料电池双极板
WO2024045496A1 (zh) 一种增强流体扰动的燃料电池双极板
CN111668506B (zh) 一种新型氢燃料电池金属双极板
WO2022134477A1 (zh) 一种波浪形燃料电池单电池及电堆
CN112909283A (zh) 一种质子交换膜燃料电池双极板
CN111509250A (zh) 一种质子交换膜燃料电池金属双极板
CN111952623A (zh) 一种燃料电池双极板
CN112038659A (zh) 适用于燃料电池的流场板及燃料电池
CN113013437B (zh) 一种具有渐缩坡面结构的燃料电池阴极流道
CN112133937A (zh) 质子交换膜燃料电池流道结构及质子交换膜燃料电池
CN217035679U (zh) 一种金属双极板及质子交换膜燃料电池
TWI474548B (zh) 極板與使用該極板的極板組
CN215118955U (zh) 一种用于燃料电池的双极板及燃料电池
CN113782763A (zh) 一种用于质子交换膜燃料电池双极板的新型气体流道结构
CN211743309U (zh) 一种氢燃料电池膜电极发电性能测试用双极板
CN209896180U (zh) 一种燃料电池双极板
CN116826094A (zh) 一种氢燃料电池用导流型多孔流道及双极板结构
CN114725423B (zh) 一种双极板及燃料电池
CN115513486B (zh) 一种单极板、双极板、电堆及燃料电池
CN115020738B (zh) 一种单极板、双极板及电堆
CN115472857A (zh) 一种高功率氢燃料电池金属双极板
CN110289431A (zh) 一种z字形的燃料电池流场板
CN116314918A (zh) 一种反相波浪形流场的质子交换膜燃料电池双极板
CN113013435B (zh) 一种质子交换膜燃料电池以生物血管为灵感的流道布局
CN215184082U (zh) 一种大功率质子交换膜燃料电池双极板的阳极流场

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18271475

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858539

Country of ref document: EP

Kind code of ref document: A1