WO2022134295A1 - 基于空间相干结构调控的光学成像系统及成像方法 - Google Patents

基于空间相干结构调控的光学成像系统及成像方法 Download PDF

Info

Publication number
WO2022134295A1
WO2022134295A1 PCT/CN2021/077102 CN2021077102W WO2022134295A1 WO 2022134295 A1 WO2022134295 A1 WO 2022134295A1 CN 2021077102 W CN2021077102 W CN 2021077102W WO 2022134295 A1 WO2022134295 A1 WO 2022134295A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
obstacle
lens
imaging system
optical
Prior art date
Application number
PCT/CN2021/077102
Other languages
English (en)
French (fr)
Inventor
陈亚红
彭德明
沈悦晨
孙虎
王飞
蔡阳健
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/764,266 priority Critical patent/US12025429B2/en
Publication of WO2022134295A1 publication Critical patent/WO2022134295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/50Optics for phase object visualisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics

Definitions

  • the invention relates to the technical field of optics, in particular to an optical imaging system and an imaging method based on spatial coherence structure regulation.
  • Optical imaging is the process of converting objective objects into images through light, and it is a crucial way to obtain information. It is closely related to life and inseparable, such as the glasses, cameras, projectors, telescopes and so on.
  • optical imaging is being used more and more widely in various fields of modern scientific research, especially in the fields of biomedicine and optical physics.
  • optical imaging has become an important means to deeply study the individual behavior of living cells and biological macromolecules, as well as to explore the laws of life motion. It can be used to observe individual living cells and even organelles within cells to aid in the manipulation of cells and their organelles.
  • traditional imaging methods mainly include 2f imaging system and 4f imaging system.
  • both the 2f imaging system and the 4f imaging system are imaged through a lens.
  • the lens can be divided into two types: convex lens and concave lens according to the different effects on light.
  • convex lens is more widely studied and applied than concave lens.
  • Its imaging law is also relatively simple: if the object is placed out of focus, an inverted real image will be formed on the other side of the convex lens.
  • the real image has three types: reduced, equal and enlarged. The smaller the object distance, the larger the image distance and the larger the real image. In particular, when both the object distance and the image distance are equal to twice the focal length, the real image is equal and inverted. This situation is the 2f imaging system.
  • the 4f imaging system contains two rigorous Fourier transform processes, allowing researchers to perform spectral analysis and processing of optical information. Adding a specific filter to the frequency plane can cut off the information of certain frequencies, or introduce a certain phase transformation to some specific frequencies, so as to meet people's needs, obtain corresponding information, transform the structure of the image, and obtain the desired image.
  • the most widely used optical imaging system is the 4f imaging system. Usually, it consists of a thin lens with the same focal length, coaxial confocal, and contains three special planes: input plane, frequency plane, and output plane. Its input surface is located at the front focal plane of the first lens; the frequency plane of the system is the frequency domain, which is located at the back focal plane of the first lens and is also the front focal plane of the second lens; the output surface of the system is located in the second lens.
  • the rear focal plane of the surface lens, the image formed by the output is the image of the input symmetrical about the origin. If the focal lengths of the two lenses are not equal, the image output on the imaging plane is only laterally enlarged or reduced by M times. where M is the lateral magnification, which depends on the ratio of the focal lengths of the rear lens to the front lens.
  • the 4f imaging system under fully coherent illumination has important applications in optical signal processing and frequency filtering.
  • the imaging speckle will be large, and when the frequency plane is partially blocked, the imaging will be distorted.
  • the 4f imaging system under incoherent illumination has important applications in microscopic imaging. Using incoherent light as the light source of the 4f imaging system can overcome speckle, but when the frequency plane is blocked, the light utilization rate of the system is low, resulting in weak imaging intensity, large imaging noise, and low image signal-to-noise ratio.
  • the technical problem to be solved by the present invention is to provide an optical imaging system and an imaging method based on spatial coherence structure regulation, in the case that the frequency plane of the 4f optical imaging system is partially blocked, the present invention can realize imaging without speckle, and It greatly improves the utilization rate of system light and improves the signal-to-noise ratio of imaging.
  • the present invention provides a kind of optical imaging system based on spatial coherence structure regulation, including:
  • the light source assembly includes a laser and a first light splitting element, the first light splitting element divides the light beam emitted by the laser into a first light beam and a second light beam;
  • An obstacle optical assembly includes a first lens and a second lens, the first lens is located on the front side of the obstacle, the second lens is located on the rear side of the obstacle, wherein the first lens and the second lens are located on the rear side of the obstacle.
  • the second lens constitutes a 4f imaging system
  • An adjustable optical assembly which is located on the front side of the object to be measured, the adjustable optical assembly includes a first shading element and a spatial light modulator arranged in sequence, and the first light beam passes through the first shading element and the spatial light modulator. entry barrier optics;
  • a front optical assembly the front optical assembly includes a second shading element and a third lens, the second light beam enters the obstacle optical assembly after passing through the second shading element and the third lens in sequence, the third lens and the first
  • the lens constitutes a 4f imaging system
  • a first light detection assembly for detecting optical imaging information of obstacles
  • the first light detection assembly is located in the image space of the obstacle optical assembly
  • the first light detection assembly includes a fourth lens and a first light detector
  • the fourth lens is located on the front side of the first light detector, and the second lens and the fourth lens form a 4f imaging system;
  • the second light detection component which is used for detecting the optical imaging information of the object to be measured, the second light detection component is located in the image space of the obstacle optical component, and the second light detection component includes a second light detector;
  • the computer is connected to a first light detector and a spatial light modulator, the first light detector sends the optical information of the obstacle to the computer, and the computer adjusts the spatial light modulator according to the optical information of the obstacle to The opening of the obstacle is enabled for the second light beam to pass.
  • the first photodetector and/or the second photodetector is a beam profiler.
  • the first shading element and/or the second shading element is a diaphragm.
  • the light source assembly further includes a beam expander, and the beam expander is located between the laser and the first beam splitting element.
  • the first beam splitting element is a first beam splitter.
  • the second beam splitter is located between the object to be measured and the first lens, and the light beam emitted by the third lens is reflected by the second beam splitter and enters the Obstruction optics.
  • the rear end of the second lens is provided with a third beam splitter
  • the second photodetector is located on the first light emitting surface of the third beam splitter
  • the fourth lens is located on the third beam splitter The second light-emitting surface of the beam mirror.
  • the light emitted by the laser is fully coherent linearly polarized light.
  • the invention also discloses an optical imaging method based on spatial coherence structure regulation, based on the above-mentioned optical imaging system, comprising the following steps:
  • the computer obtains the light intensity image distribution I(l 2 ) of the obstacle in the spectral domain, and designs the spatial distribution of the p(v) function that forms a Fourier transform relationship with the spatial coherence structure of the incident light; wherein, according to the spectral domain
  • the light intensity image distribution I(l 2 ) of the obstacle obtains the opening shape of the obstacle, and the p(v) function is modified according to the opening shape of the obstacle so that all modes of the incident beam can pass through the opening of the obstacle, p(v) is a non-negative function of any vector v ⁇ (v x ,v y );
  • the invention discloses an optical imaging method based on spatial coherence structure regulation, comprising the following steps:
  • the spatial coherence structure of the incident beam is designed so that all modes of the incident beam can pass through the opening of the obstacle;
  • the object to be measured is placed in the optical path, and the optical imaging information of the object to be measured is detected by the second photodetector.
  • the present invention can detect whether there is an obstacle in the frequency domain in the 4f imaging system, and can measure the shape of the obstacle.
  • the present invention designs the coherent structure of the incident light, so that the 4f optical imaging system whose frequency domain is partially blocked has robust characteristics, realizes imaging without speckle, and is extremely It greatly improves the utilization rate of system light, and at the same time improves the signal-to-noise ratio of imaging.
  • Fig. 1 is the light path diagram of the present invention
  • Figure 2 is a flow chart of an optical imaging method based on spatial coherence structure modulation.
  • the present invention discloses an optical imaging system based on spatial coherence structure regulation, including a light source component, an obstacle optical component, an adjustable optical component, a front optical component, a first light detection component, a second light component Probe assembly and computer 17 .
  • the light source assembly includes a laser 1 and a first beam splitting element 3, and the first beam splitting element 3 divides the light beam emitted by the laser 1 into a first beam and a second beam.
  • the obstacle optical assembly includes a first lens 10 and a second lens 12, the first lens 10 is located on the front side of the obstacle 11, and the second lens 12 is located on the rear side of the obstacle 11, wherein the first lens 10 and the second lens 12 constitute 4f imaging system.
  • the adjustable optical assembly is located on the front side of the object to be measured 19 .
  • the adjustable optical assembly includes a first light shielding element 4 and a spatial light modulator 18 arranged in sequence.
  • the first light beam enters after passing through the first light shielding element 4 and the spatial light modulator 18 .
  • Obstruction optics are included in the adjustable optical assembly.
  • the front optical assembly includes a second shading element 6 and a third lens 7.
  • the second light beam enters the obstacle optical assembly through the second shading element 6 and the third lens 7 in turn.
  • the third lens 7 and the first lens 10 form a 4f imaging system. .
  • the first light detection assembly is used to detect the optical imaging information of the obstacle 11.
  • the first light detection assembly is located in the image space of the obstacle optical assembly.
  • the first light detection assembly includes a fourth lens 15 and a first light detector 16.
  • the fourth lens 15 is located on the front side of the first photodetector 16, and the second lens 12 and the fourth lens 15 constitute a 4f imaging system.
  • the second light detection component is used to detect the optical imaging information of the object to be measured, the second light detection component is located in the image space of the obstacle optical component, and the second light detection component includes a second light detector 20 .
  • the computer 17 is connected to the first light detector 16 and the spatial light modulator 18 , the first light detector 16 sends the optical information of the obstacle 11 to the computer 17 , and the computer 17 adjusts the spatial light modulator 18 according to the optical information of the obstacle 11 so that the second light beam can pass through the opening of the obstacle 11 .
  • first photodetector 16 and/or the second photodetector 20 is a beam profiler.
  • the first light-shielding element 4 and/or the second light-shielding element 6 may be a diaphragm, and the diaphragm can be opened and closed to shield light or pass light.
  • the light source assembly further includes a beam expander 2 , and the beam expander 2 is located between the laser 1 and the first light splitting element 3 .
  • the beam expander 2 can expand the beam of the light emitted by the laser 1 .
  • the first beam splitting element 3 is a first beam splitter.
  • the present invention also includes a second beam splitter 9 , which is located between the object to be measured 19 and the first lens 10 , and the light beam emitted by the third lens 7 is reflected by the second beam splitter 9 into the obstacle optical assembly.
  • the rear end of the second lens 12 is provided with a third beam splitter 13
  • the second photodetector 20 is located on the first light emitting surface of the third beam splitter 13
  • the fourth lens 15 is located on the second light emitting surface of the third beam splitter 13 noodle.
  • the light emitted by the laser 1 is perfectly coherent linearly polarized light.
  • the present invention further includes a first reflecting mirror 5 , a second reflecting mirror 8 and a third reflecting mirror 14 .
  • Its working principle is: laser 1 generates a beam of fully coherent linearly polarized light, widens the beam through optical beam expander 2, and adjusts it to a plane wave at the same time, and then divides the beam into two through the first beam splitting element 3, and first uses the first beam splitter 3.
  • the light shielding element 4 blocks the lower light beam, the upper light beam is adjusted by the first reflecting mirror 5, and the second light shielding element 6 is opened, so that the light beam can pass through completely.
  • the light beam passes through the third lens 7 with the same focal length as the lens 10 in the 4f imaging system (composed of the first lens 10, the obstacle 11 and the second lens 12), and then uses the second mirror 8 and the second beam splitter 9 to convert
  • the beam is oriented so that it can be incident on a 4f imaging system (ie, the barrier optics), where the two lenses have the same focal length.
  • Adjust the position of the third lens 7 so that the distance between the first lens 10 and the third lens 7 is equal to the sum of the focal length of the first lens 10 and the focal length of the third lens 7, then the third lens 7 and the first lens 10 constitute a new 4f imaging system.
  • the output light field is partially shielded by the opaque obstacle 11 at the back focal plane of the first lens 10 to obtain a light beam in the shape of an opening that partially shields the obstacle.
  • the light beam passes through the second lens 12 in the 4f imaging system, the beam is divided into two beams by the third beam splitter 13, the propagation direction of the upper beam is adjusted by the third mirror 14, and the light beam passes through the lens of the 4f imaging system.
  • the position of the fourth lens 15 is moved so that the distance between the fourth lens 15 and the second lens 12 is equal to the sum of the focal lengths of the fourth lens 15 and the second lens 12.
  • the second lens 12 and the fourth lens 15 also constitute a new 4f imaging system.
  • the light beam passes through the system, and the output light intensity distribution information recorded by the first photodetector 16 at the back focal plane of the fourth lens 15 is used. , which is the obstacle opening shape symmetrical about the origin.
  • the shape of the opening of the obstacle is obtained by the above method, and the information is fed back to the computer 17, and the coherent structure of the appropriate incident beam is designed accordingly.
  • the second shading element 6 is used for shading, the first shading element 4 is fully opened, and the spatially light modulator 18 is used to load the designed spatial coherence structure to obtain partially coherent light of a suitable shape, which is a light source.
  • the light beam is irradiated on the object to be measured 19 , and then enters the 4f imaging system through the second beam splitter 9 .
  • the distance between the object to be measured and the lens 10 is the focal length of the lens 10 .
  • the light beam passes through the partially blocked obstacle 11 , the second lens 12 and the third beam splitter 13 .
  • a second light detector 20 is placed in the imaging plane (ie, the rear focal plane of the second lens 12) to record the light intensity distribution information of the output field.
  • the obtained information is the shape information of the object to be measured 19 .
  • the present invention discloses an optical imaging method based on spatial coherence structure regulation. Based on the above-mentioned optical imaging system, the following steps are included:
  • the light intensity distribution information captured by the first detector is a picture
  • the picture is read by the computer
  • the picture is a matrix
  • a pixel corresponds to a matrix element
  • the stronger the light intensity the corresponding matrix
  • the light intensity distribution I(l 2 ) is the shape information of the partially occluded obstacles.
  • the computer 17 obtains the light intensity image distribution I(l 2 ) of the obstacle in the spectrum domain, and designs the spatial distribution of the p(v) function that forms a Fourier transform relationship with the spatial coherence structure of the incident light; wherein, according to the frequency spectrum
  • the light intensity image distribution I(l 2 ) of the obstacle obtains the opening shape of the obstacle, and the p(v) function is modified according to the opening shape of the obstacle so that all modes of the incident beam can pass through the opening of the obstacle, p(v ) is a non-negative function of any vector v ⁇ (v x ,v y ).
  • the intensity distribution information I(l 2 ) of the output surface is read by a computer.
  • the non-zero area is the opening of the obstacle, and the zero area is the blocked part of the obstacle.
  • design the spatial distribution of the p(v) function which has a Fourier transform relationship with the spatial coherence structure of the incident light; modify the p(v) function according to the shape information I(l 2 ) of the partially occluded obstacle, for I(l 2 ), set the matrix elements adjacent to zero to zero (this operation needs to be repeated many times, the effect is better), and the final matrix is p(v). This allows all modes of the incident beam to pass through the opening of the obstacle.
  • r ⁇ (x,y) represents any position vector on the source plane
  • r 1 ⁇ (x 1 ,y 1 ) and r 2 ⁇ (x 2 ,y 2 ) are the position vectors of any two points on the source plane
  • Indicates the random phase the value range is [0, 2 ⁇ ].
  • the model of the spatial light modulator can be BQ-SLM1024.
  • the focal length of the lens is the same as the thin lens, which requires 1.
  • the distance between the lens added before the 4f imaging system and the first surface lens of the 4f imaging system is equal to the sum of the focal lengths of the two lenses; 2.
  • the lens added after the 4f imaging system is the same as the 4f
  • the distance of the second lens of the imaging system is also equal to the sum of the focal lengths of the two lenses; at this time, the final imaging position is at the back focal plane of the last lens.
  • the lens added in front of the 4f imaging system and the first lens of the 4f imaging system form a new 4f imaging system.
  • c represents a constant
  • l 0 is the coordinate of any point on the input surface
  • k represents the output surface of the new 4f imaging system, and is also the coordinate of any point on the frequency surface of the original 4f imaging system.
  • the light beam passes through a partially blocked obstacle. Assuming that the transmittance function of the obstacle is t(k), the lens added after the 4f imaging system and the second lens of the 4f imaging system also form a new 4f imaging system.
  • the input light field of the system is E(k)t(k).
  • 2 c 2
  • the present invention finds that the light intensity distribution of the output light is the shape information of the obstacle opening symmetrical about the origin.
  • the coherent mode decomposition theory is a milestone achievement of optical coherence theory, first proposed by Wolf.
  • the essence of coherent mode decomposition theory is that a partially coherent light field can be decomposed into a series of fully coherent and mutually uncorrelated fundamental modes. This coherent mode decomposition theory not only helps the present invention understand the intrinsic coherence of random light fields, but also plays an important role in practical applications.
  • the present invention regards the incident light of the 4f imaging system, that is, the partially coherent light, as the superposition of a set of mutually uncorrelated coherent modes.
  • the present invention understands that the disruption of the light intensity distribution of the imaging plane is caused by modes located at the edges of obstacles in the spatial frequency plane. Therefore, the imaging problem here can be analyzed with fully coherent optics.
  • the mode decomposition of the partially coherent light field can be derived from the non-negative condition, where the cross spectral density of the partially coherent light field can be described in integral form as:
  • H(r,v) is an arbitrary kernel function.
  • the kernel function can be written as
  • the spatial coherence structure of the incident beam or the spatial coherence between the incident beam can be designed through the pre-obtained shape of the spatial frequency plane obstacle.
  • the coherence is structured into the spatial distribution of the p(v) function of the Fourier transform relationship, thereby reducing the contribution of modes located at the edge of the obstacle in the spatial frequency plane.
  • M and N represent the number of discrete coordinates in the v x and v y directions, respectively.
  • the total number of discrete ⁇ vm ,n ⁇ is MxN.
  • the range of values for ⁇ v m,n ⁇ depends on the spatial distribution of the function p(v). write it in discrete form
  • Equation (5) is the mode decomposition of a partially coherent light field, where ⁇ mn (r) and ⁇ mn are the modes and their corresponding modal weights, respectively.
  • the hologram loaded by the spatial light modulator can be expressed as
  • the value range is [0, 2 ⁇ ].
  • the transmitted light field can be expressed as t(k) ⁇ mn (k).
  • the light field in the imaging plane can be expressed as
  • ⁇ ( ⁇ x , ⁇ y ) is the lateral position vector in the output imaging plane.
  • both equations (7) and (8) have the Fourier transform form. Therefore, the integral can be solved numerically with the Fast Fourier Transform algorithm.
  • the present invention can adjust the position of the mode on the spatial frequency plane.
  • the present invention discloses an optical imaging method based on spatial coherence structure regulation, comprising the following steps:
  • Step 1 constructing a 4f imaging system, wherein obstacles are located on the spectral plane of the 4f imaging system so that the spectral plane of the 4f imaging system is partially blocked, and an opening is provided through the obstacle;
  • Step 2 Detecting the shape of the obstacle in the spectral domain in the 4f imaging system through the first photodetector
  • Step 3 Design the spatial coherence structure of the incident beam according to the shape of the obstacle in the spectral domain in the 4f imaging system, so that all modes of the incident beam can pass through the opening of the obstacle;
  • Step 4 The object to be measured is placed in the optical path, and the optical imaging information of the object to be measured is detected by the second light detector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种基于空间相干结构调控的光学成像方法,包括以下步骤:构建4f成像系统;通过第一光探测器(16)探测4f成像系统中频谱域障碍物(11)的形状;根据4f成像系统中频谱域障碍物(11)的形状,设计入射光束的空间相干结构,使得入射光束所有模式都能通过障碍物(11)的开口;将待测物体(19)置于光路中,通过第二光探测器(20)探测待测物体(19)的光学成像信息。在4f光学成像系统的频率面被部分遮挡的情况下,能够实现成像无散斑,并且极大提高系统光的利用率,同时提高了成像的信噪比。还公开了一种基于空间相干结构调控的光学成像系统。

Description

基于空间相干结构调控的光学成像系统及成像方法 技术领域
本发明涉及光学技术领域,具体涉及一种基于空间相干结构调控的光学成像系统及成像方法。
背景技术
光学成像是通过光将客观物体转化为图像的过程,是一种至关重要的获取信息的方式。它与生活息息相关,密不可分,例如使用的眼镜、照相机、投影仪、望远镜等。如今,光学成像正在被越来越广泛地应用于现代科学研究的各个领域特别是生物医学领域和光学物理领域。在生物和医学研究中,光学成像已成为深入研究活体细胞和生物大分子个体行为,以及探索生命运动规律的重要手段。它可以用来观察单个活细胞甚至在细胞内的细胞器,以辅助对细胞及其细胞器的操控。在光学物理研究中,传统成像方式主要有2f成像系统和4f成像系统。在光学中,无论是2f成像系统还是4f成像系统都是经过透镜成像,透镜按照对光的作用不同可分为凸透镜和凹透镜两种,实际中凸透镜比凹透镜研究和应用广泛的多。其成像规律也较为简单:物体若置于焦点之外,在凸透镜另一侧成倒立的实像,实像有缩小、等大、放大三种。物距越小,像距越大,实像越大。特别地,当物距和像距都等于两倍焦距时,成等大倒立的实像,这种情况便是2f成像系统。若物体放在焦点之内,在凸透镜同一侧成正立放大的虚像。物距越大,像距越大,虚像越大。另外一方面4f成像系统包含两个严格的傅里叶变换过程,使得研究者可以实现对光信息进行频谱分析和处理。在频率平面加入特定的滤波器,可以截断某些频率的信息,或使得某些特定频率引入一定的相位变换,实现人们的需要,获得相应的信息,改造像的结构,获得 需要的图像。
随着科学技术的日益发展,对光学成像的研究也日益趋深,人们对光学成像技术的要求也越来越高。现有传统的4f成像系统要求极其苛刻,当其频率面被外界障碍物部分遮挡后,输出面成像质量将会受到严重影响。因此,在光学成像系统如何有效克服外界干扰,实现高质量成像显得尤为重要。
目前使用最为广泛的光学成像系统是4f成像系统。通常情况下,它是由一对焦距相等、同轴共焦的薄透镜而组成,包含三个特殊的面:输入平面、频率平面、输出平面。其输入面位于第一面透镜的前焦面;系统的频率平面也就是频率域,位于第一面透镜的后焦面,同时也是第二面透镜的前焦面;系统的输出面位于第二面透镜的后焦面,其输出所成的像,即为等大关于原点对称的输入的像。若两透镜的焦距不相等时,在成像面输出的像仅仅横向放大或缩小M倍。其中M为横向放大率,取决于后透镜与前透镜的焦距之比。
目前研究人员主要运用完全相干光和非相干光照明4f成像系统,其中,完全相干照明情况下的4f成像系统,在光信号处理、频率滤波中具有重要应用。然而利用完全相干光作为4f成像系统的光源,由于完全相干光的高相干性,会使得成像散斑多,并且在频率面被部分遮挡的情况下,成像将会发生畸变。而对于非相干照明情况下的4f成像系统在显微成像中具有重要应用。利用非相干光作为4f成像系统的光源,虽然可以克服散斑,但是当频率面有遮挡时,系统的光利用率低,导致成像强度弱,成像噪声大,图像信噪比低。
发明内容
本发明要解决的技术问题是提供一种基于空间相干结构调控的光学成像系统及成像方法,其在4f光学成像系统的频率面被部分遮挡的情况下,本发明能够实现成像无散斑,并且极大提高系统光的利用率,同时提高了成像的信噪比。
为了解决上述技术问题,本发明提供了一种基于空间相干结构调控的光学 成像系统,包括:
光源组件,所述光源组件包括激光器和第一分光元件,所述第一分光元件将激光器射出的光束分成第一光束和第二光束;
障碍光学组件,所述障碍光学组件包括第一透镜和第二透镜,所述第一透镜位于障碍物的前侧,所述第二透镜位于障碍物的后侧,其中,所述第一透镜和第二透镜构成4f成像系统;
可调光学组件,其位于待测物体的前侧,所述可调光学组件包括依次设置的第一遮光元件和空间光调制器,所述第一光束经第一遮光元件和空间光调制器后进入障碍光学组件;
前置光学组件,所述前置光学组件包括第二遮光元件和第三透镜,所述第二光束依次经第二遮光元件和第三透镜后进入障碍光学组件,所述第三透镜和第一透镜构成4f成像系统;
第一光探测组件,其用于检测障碍物的光学成像信息,所述第一光探测组件位于障碍光学组件的像空间,所述第一光探测组件包括第四透镜和第一光探测器,所述第四透镜位于所述第一光探测器的前侧,所述第二透镜和第四透镜构成4f成像系统;
第二光探测组件,其用于检测待测物体的光学成像信息,所述第二光探测组件位于障碍光学组件的像空间,所述第二光探测组件包括第二光探测器;
计算机,所述计算机与第一光探测器和空间光调制器连接,所述第一光探测器将障碍物的光学信息发送至计算机,所述计算机根据障碍物的光学信息调节空间光调制器以使得第二光束能够通过障碍物的开口。
作为优选的,所述第一光探测器和/或第二光探测器为光束轮廓分析仪。
作为优选的,所述第一遮光元件和/或第二遮光元件为光阑。
作为优选的,所述光源组件还包括扩束镜,所述扩束镜位于激光器与第一分光元件之间。
作为优选的,所述第一分光元件为第一分束镜。
作为优选的,还包括第二分束镜,所述第二分束镜位于待测物体与第一透镜之间,所述第三透镜出射的光束经所述第二分束镜反射进入所述障碍光学组件。
作为优选的,所述第二透镜的后端设置有第三分束镜,所述第二光探测器位于第三分束镜的第一出光面,所述第四透镜位于所述第三分束镜的第二出光面。
作为优选的,所述激光器发出的光为完全相干线偏振光。
本发明还公开了一种基于空间相干结构调控的光学成像方法,基于上述的光学成像系统,包括以下步骤:
S1、令第一遮光元件处于遮光状态,第二遮光元件处于打开状态,利用第一光探测器检测频谱域障碍物的光强图像分布I(l 2),其中,l 2为输出面的任意一点坐标;
S2、所述计算机获取频谱域障碍物的光强图像分布I(l 2),并设计与入射光空间相干结构成傅里叶变换关系的p(v)函数的空间分布;其中,根据频谱域障碍物的光强图像分布I(l 2)获得障碍物的开口形状,根据障碍物的开口形状修改p(v)函数以使得入射光束的所有模式都能通过障碍物的开口,p(v)是任意矢量v≡(v x,v y)的非负函数;
S3、根据p(v)函数得到入射光的交叉谱密度W(r 1,r 2),进而得到空间光调制 器加载的光场
Figure PCTCN2021077102-appb-000001
其中,r≡(x,y)表示源平面上任意位置矢量,r 1≡(x 1,y 1)和r 2≡(x 2,y 2)是源平面上任意两点的位置矢量,
Figure PCTCN2021077102-appb-000002
表示随机相位,取值范围为[0,2π];
S4、令第二遮光元件处于遮光状态,第一遮光元件处于打开状态,利用第二光探测器采集待测物体的光强图像分布信息
Figure PCTCN2021077102-appb-000003
本发明公开了一种基于空间相干结构调控的光学成像方法,包括以下步骤:
构建4f成像系统,其中,障碍物位于所述4f成像系统的频谱面以使得4f成像系统的频谱面被部分遮挡,所述障碍物上贯通设置有开口;
通过第一光探测器探测4f成像系统中频谱域障碍物的形状;
根据4f成像系统中频谱域障碍物的形状,设计入射光束的空间相干结构,使得入射光束所有模式都能通过障碍物的开口;
将待测物体置于光路中,通过第二光探测器探测待测物体的光学成像信息。
本发明的有益效果:
1、本发明可以探测出4f成像系统中频率域是否含有障碍物,且能测量出障碍物的形状。
2、在4f光学成像系统的频率面被部分遮挡的情况下,本发明设计入射光的相干结构,使得频率域被部分遮挡的4f光学成像系统具有鲁棒特性,实现成像无散斑,并且极大提高系统光的利用率,同时提高了成像的信噪比。
附图说明
图1为本发明的光路图;
图2为基于空间相干结构调控的光学成像方法的流程图。
图中标号说明:1、激光器;2、扩束镜;3、第一分光元件;4、第一遮光 元件;5、第一反射镜;6、第二遮光元件;7、第三透镜;8、第二反射镜;9、第二分束镜;10、第一透镜;11、障碍物;12、第二透镜;13、第三分束镜;14、第三反射镜;15、第四透镜;16、第一光探测器;17、计算机;18、空间光调制器;19、待测物体;20、第二光探测器。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的公开了一种基于空间相干结构调控的光学成像系统,包括光源组件、障碍光学组件、可调光学组件、前置光学组件、第一光探测组件、第二光探测组件和计算机17。
光源组件包括激光器1和第一分光元件3,第一分光元件3将激光器1射出的光束分成第一光束和第二光束。
障碍光学组件包括第一透镜10和第二透镜12,第一透镜10位于障碍物11的前侧,第二透镜12位于障碍物11的后侧,其中,第一透镜10和第二透镜12构成4f成像系统。
可调光学组件位于待测物体19的前侧,可调光学组件包括依次设置的第一遮光元件4和空间光调制器18,第一光束经第一遮光元件4和空间光调制器18后进入障碍光学组件。
前置光学组件包括第二遮光元件6和第三透镜7,第二光束依次经第二遮光元件6和第三透镜7后进入障碍光学组件,第三透镜7和第一透镜10构成4f成像系统。
第一光探测组件用于检测障碍物11的光学成像信息,第一光探测组件位于障碍光学组件的像空间,第一光探测组件包括第四透镜15和第一光探测器16, 第四透镜15位于第一光探测器16的前侧,第二透镜12和第四透镜15构成4f成像系统。
第二光探测组件用于检测待测物体的光学成像信息,第二光探测组件位于障碍光学组件的像空间,第二光探测组件包括第二光探测器20。
计算机17与第一光探测器16和空间光调制器18连接,第一光探测器16将障碍物11的光学信息发送至计算机17,计算机17根据障碍物11的光学信息调节空间光调制器18以使得第二光束能够通过障碍物11的开口。
其中,第一光探测器16和/或第二光探测器20为光束轮廓分析仪。第一遮光元件4和/或第二遮光元件6可为光阑,通过打开可关闭光阑,可实现遮挡光或通光。
本发明中,光源组件还包括扩束镜2,扩束镜2位于激光器1与第一分光元件3之间。扩束镜2可以对激光器1发出的光扩束。第一分光元件3为第一分束镜。
本发明还包括第二分束镜9,第二分束镜9位于待测物体19与第一透镜10之间,第三透镜7出射的光束经第二分束镜9反射进入障碍光学组件。第二透镜12的后端设置有第三分束镜13,第二光探测器20位于第三分束镜13的第一出光面,第四透镜15位于第三分束镜13的第二出光面。激光器1发出的光为完全相干线偏振光。
如图1所示,本发明还包括第一反射镜5、第二反射镜8和第三反射镜14。其工作原理是:激光器1产生一束完全相干线偏振光,通过光学扩束镜2将光束扩宽,同时调整为平面波,之后经过第一分光元件3将光束一分为二,先利用第一遮光元件4将下面的光束挡住,上面的光束利用第一反射镜5调整方向,打开第二遮光元件6,使得光束完全通过。光束经过与4f成像系统(由第一透镜10、障碍物11和第二透镜12组成)中透镜10焦距相同的第三透镜7,再利 用第二反射镜8和第二分束镜9,将光束调整方向,使光束能入射到4f成像系统中(即障碍光学组件),该系统中两个透镜具有相同的焦距。调节第三透镜7的位置,使得第一透镜10和第三透镜7之间的距离等于第一透镜10焦距与第三透镜7焦距之和,那么第三透镜7和第一透镜10构成一个新的4f成像系统。其输出光场通过位于第一透镜10的后焦面的部分遮挡不透明障碍物11,得到部分遮挡障碍物的开口形状的光束。光束透过4f成像系统中的第二透镜12,经过第三分束镜13将光束分为两束,通过第三反射镜14调整上方的光束的传播方向,光束再通过与4f成像系统透镜中第二透镜12焦距相同的第四透镜15,移动第四透镜15的位置,使得第四透镜15和第二透镜12之间的距离等于第四透镜15和第二透镜12的焦距之和。那么,第二透镜12和第四透镜15同样构成了新的4f成像系统,光束通过该系统,利用第一光探测器16在第四透镜15的后焦面记录得到的输出光光强分布信息,即为关于原点对称的障碍物开口形状。
通过上述方法获得了障碍物的开口形状,并将信息反馈到计算机17中,据此设计适当入射光束的相干结构。使用第二遮光元件6遮光,完全打开第一遮光元件4,利用空间光调制器18加载设计好空间相干结构,得到合适形状的部分相干光,即为光源。光束照射在待测物体19上,通过第二分束镜9再入射到4f成像系统中,待测物体与透镜10的距离为透镜10的焦距。同样的,光束经过部分遮挡的障碍物11和第二透镜12以及第三分束镜13。在成像平面(即第二透镜12后焦平面)中放置第二光探测器20,以记录输出场的光强分布信息。得到的信息即为待测物体19的形状信息。
如图2所示,本发明公开了一种基于空间相干结构调控的光学成像方法,基于上述的光学成像系统,包括以下步骤:
S1、令第一遮光元件4处于遮光状态,第二遮光元件6处于打开状态,利用第一光探测器16检测频谱域障碍物的光强图像分布I(l 2),其中,l 2为输出面 的任意一点坐标。
在本发明中,第一探测器拍摄的光强分布信息是一张图片,计算机读取这张图片,这张图片就是一个矩阵,一个像素点对应一个矩阵元,光强越强,对应的矩阵元数值越大,光强为零的地方,数值即为0。光强分布I(l 2)即为部分遮挡障碍物的形状信息。
S2、所述计算机17获取频谱域障碍物的光强图像分布I(l 2),并设计与入射光空间相干结构成傅里叶变换关系的p(v)函数的空间分布;其中,根据频谱域障碍物的光强图像分布I(l 2)获得障碍物的开口形状,根据障碍物的开口形状修改p(v)函数以使得入射光束的所有模式都能通过障碍物的开口,p(v)是任意矢量v≡(v x,v y)的非负函数。
本发明中,通过计算机读取输出面的强度分布信息I(l 2),光强越强,对应的数值越大,光强为零的地方,数值即为0。其中非零区域为障碍物的开口,零区域为障碍物遮挡部分。并且设计与入射光空间相干结构成傅里叶变换关系的p(v)函数的空间分布;根据部分遮挡障碍物的形状信息I(l 2)修改得到p(v)函数,对于I(l 2)的矩阵元,令其与零相邻的矩阵元置为零(此操作需要多次重复,效果更佳),最后所得矩阵即为p(v)。这样就可以使得入射光束的所有模式都能通过障碍物的开口。
S3、根据p(v)函数得到入射光的交叉谱密度W(r 1,r 2),进而得到空间光调制器18加载的光场
Figure PCTCN2021077102-appb-000004
其中,r≡(x,y)表示源平面上任意位置矢量,r 1≡(x 1,y 1)和r 2≡(x 2,y 2)是源平面上任意两点的位置矢量,
Figure PCTCN2021077102-appb-000005
表示随机相位,取值范围为[0,2π]。本发明中,空间光调制器的型号可为BQ-SLM1024。
S4、令第二遮光元件6处于遮光状态,第一遮光元件4处于打开状态,利用第二光探测器采集待测物体的光强图像分布信息
Figure PCTCN2021077102-appb-000006
对于上述测试方法,其工作原理如下:
原理1、获取频率面的障碍物的形状信息。
在4f光学成像系统的频率面被部分遮挡的情况下,若想要不破坏4f成像系统的同时得到频率面的障碍物的形状信息,可在4f成像系统的前后各加一面焦距与成像系统中的透镜焦距相同薄透镜,要求1.在4f成像系统前所加的透镜与4f成像系统的第一面透镜距离等于两透镜的焦距之和;2.在4f成像系统后所加的透镜与4f成像系统的第二面透镜距离同样等于两透镜的焦距之和;此时最后的成像位置在最后一面透镜的后焦面。那么在这种情况下,4f成像系统前所加的透镜与4f成像系统的第一面透镜组成了一个新的4f成像系统。对于这个新的4f成像系统,由于输入光源为平面波,即输入光场E(l 0)=c,c表示常数,l 0为输入面任意一点坐标,那么入射光光强I(l 0)=c 2。光束经过传输,在这个新4f成像系统频率面的电场可表示为
Figure PCTCN2021077102-appb-000007
其中l 1为频率面的任意一点坐标。该系统的频率面为自由空间,无遮挡物,那么这个新的4f成像系统输出光场可表示为
Figure PCTCN2021077102-appb-000008
其中k表示新的4f成像系统输出面、同时也是原4f成像系统频率面任意一点的坐标。本发明发现(1)和(2)两个等式都具有傅里叶变换形式。因此,积分可以用快速傅里叶变换算法进行数值求解。此外,本发明还注意输出场 E(k)=E(-l 0)=c和输出强度I(k)=I(-l 0)。光束通过部分遮挡的障碍物,假定障碍物的透过率函数为t(k),那么在4f成像系统后所加的透镜与4f成像系统的第二面透镜同样组成了一个新的4f成像系统这种情况下,该系统的输入光场为E(k)t(k),同样的,由于其频率域为自由空间,可以直接通过两次傅里叶变换得到输出光场E(r 2)=E(-k)t(-k),那么对应的光强为I(l 2)=|E(-k)t(-k)| 2=c 2|t(-k)| 2,其中l 2为输出面的任意一点坐标。如此本发明发现,输出光的光强分布即为关于原点对称的障碍物开口形状信息。
原理2、模式叠加合成部分相干光作为入射光。
实验研究发现,对于空间频率平面被不透明物体部分遮挡的4f光学成像系统,在高相干照明情况下,输出图像严重失真,而随着入射光的空间相干性的降低,图像质量显著提高。为了解释上述效应的原理,本发明将相干模式分解理论应用于部分相干光。相干模式分解理论是光学相干理论的一个里程碑式的成果,是沃夫首先提出的。相干模式分解理论的实质是,部分相干光场可以分解为一系列完全相干和互不相关的基本模式的和。这种相干模式分解理论不仅有助于本发明理解随机光场的内在相干性,而且在实际应用方面也起着重要的作用。本发明将4f成像系统的入射光,即部分相干光视为一组互不相关的相干模式的叠加。本发明了解到成像平面的光强分布的破坏是由位于空间频率平面的障碍物边缘的模式引起的。因此,这里的成像问题可以用完全相干光学来分析。
从非负条件可以推导出部分相干光场的模式分解,其中部分相干光场的交叉光谱密度可以用积分形式描述为:
W(r 1,r 2)=∫∫p(v)H *(r 1,v)H(r 2,v)d 2v   (3)
其中r 1≡(x 1,y 1)和r 2≡(x 2,y 2)是源平面上任意两点的位置矢量,p(v)是任意矢 量v≡(v x,v y)的非负函数,H(r,v)是一个任意的核函数。对于谢尔模型光源,核函数可以写成
Figure PCTCN2021077102-appb-000009
其中S(r)=W(r,r)是光源的光谱密度。而对于非负函数p(v),若要获得高质量和高信噪比的图像,可以通过预先获得的空间频率平面障碍物的形状,来进行设计入射光束的空间相干结构或与入射光空间相干结构成傅里叶变换关系的p(v)函数的空间分布,从而减少位于空间频率平面的障碍物边缘的模式的贡献。具体可根据障碍物的形状来修改了p(v)函数,使得它的形状在障碍物的开口内,这确保了入射光束的所有模式都能通过障碍物的开口。因此,在空间频率平面,所有模式的透射函数t(k)=1,输出面可以完美成像。
为了得到模式分解,本发明将v的坐标转化为离散形式,即v被写成离散形式{v m,n}={(v xm,v yn)},其中m=1,2,...,M和n=1,2,...,N。这里M和N分别表示v x和v y方向上离散坐标的数目。离散{v m,n}的总数为MxN。{v m,n}值的范围取决于函数p(v)的空间分布。将其写成离散的形式
Figure PCTCN2021077102-appb-000010
一旦p(v)转换成离散形式,将公式(5)代入公式(3)中,其积分形式可近似为有限求和形式,即
Figure PCTCN2021077102-appb-000011
其中α mn=p(v m,n)Δv xΔv y和φ mn(r)=H(r,v m,n),Δv x和Δv y是v x和v y方向上两个 相邻离散坐标的间隔。方程(5)是部分相干光场的模式分解,其中φ mn(r)和α mn分别是模式及其相应的模态权重。由
Figure PCTCN2021077102-appb-000012
可得,空间光调制器加载的全息图可表示为
Figure PCTCN2021077102-appb-000013
其中
Figure PCTCN2021077102-appb-000014
表示随机相位,取值范围为[0,2π]。
原理3、4f光学成像系统中光场传输。
在4f成像系统中,部分相干光照明的成像问题现在减少到模式的传播问题。对于阶(m,n)的模式传播通过4f成像系统,在空间频率平面中的光场,即第一薄透镜的后焦平面,可以写成
Figure PCTCN2021077102-appb-000015
其中k≡(k x,k y)表示空间频率平面上的位置向量,O(r)是物体的透射函数。本发明假设透射函数为t(k)的障碍物放置在空间频率平面上,部分遮挡光场。因此,光场经历障碍物后,透射光场可以表示为t(k)ψ mn(k)。在4f成像系统中通过第二薄透镜后,成像平面中的光场可以表示为
Figure PCTCN2021077102-appb-000016
其中ρ≡(ρ xy)是输出成像平面中的横向位置矢量。
本发明中,两个等式(7)和(8)都具有傅里叶变换形式。因此,积分可以用快速傅里叶变换算法进行数值求解。此外,本发明还注意到当t(k)=1时, 输出场
Figure PCTCN2021077102-appb-000017
和输出强度
Figure PCTCN2021077102-appb-000018
此外,在本发明的实验中,光谱密度S(ρ)在物体区域内相对均匀。因此,对于t(k)=1,在输出平面上的强度
Figure PCTCN2021077102-appb-000019
表明当模式完全通过空间频率平面时,4f光学系统输出平面上的完美图像。然而,障碍物的透射函数t(k)对于空间频率平面上的所有位置k并不均匀,t(k)=1只对障碍物的开放区域。通过调控v m,n,本发明可以调整模式在空间频率平面上的位置。当模式位于t(k)=1的区域时,输出场将形成输入物体的完美图像。当模式位于障碍物的开口区域外[即t(k)=0]时,输出场将完全黑暗。否则,当模式位于障碍物的边缘,即部分被障碍物遮挡时,输出场将被扭曲,无法清楚地识别。
在另一实施例中,本发明公开了一种基于空间相干结构调控的光学成像方法,包括以下步骤:
步骤一、构建4f成像系统,其中,障碍物位于所述4f成像系统的频谱面以使得4f成像系统的频谱面被部分遮挡,所述障碍物上贯通设置有开口;
步骤二、通过第一光探测器探测4f成像系统中频谱域障碍物的形状;
步骤三、根据4f成像系统中频谱域障碍物的形状,设计入射光束的空间相干结构,使得入射光束所有模式都能通过障碍物的开口;
步骤四、将待测物体置于光路中,通过第二光探测器探测待测物体的光学成像信息。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种基于空间相干结构调控的光学成像系统,其特征在于,包括:
    光源组件,所述光源组件包括激光器和第一分光元件,所述第一分光元件将激光器射出的光束分成第一光束和第二光束;
    障碍光学组件,所述障碍光学组件包括第一透镜和第二透镜,所述第一透镜位于障碍物的前侧,所述第二透镜位于障碍物的后侧,其中,所述第一透镜和第二透镜构成4f成像系统;
    可调光学组件,其位于待测物体的前侧,所述可调光学组件包括依次设置的第一遮光元件和空间光调制器,所述第一光束经第一遮光元件和空间光调制器后进入障碍光学组件;
    前置光学组件,所述前置光学组件包括第二遮光元件和第三透镜,所述第二光束依次经第二遮光元件和第三透镜后进入障碍光学组件,所述第三透镜和第一透镜构成4f成像系统;
    第一光探测组件,其用于检测障碍物的光学成像信息,所述第一光探测组件位于障碍光学组件的像空间,所述第一光探测组件包括第四透镜和第一光探测器,所述第四透镜位于所述第一光探测器的前侧,所述第二透镜和第四透镜构成4f成像系统;
    第二光探测组件,其用于检测待测物体的光学成像信息,所述第二光探测组件位于障碍光学组件的像空间,所述第二光探测组件包括第二光探测器;
    计算机,所述计算机与第一光探测器和空间光调制器连接,所述第一光探测器将障碍物的光学信息发送至计算机,所述计算机根据障碍物的光学信息调节空间光调制器以使得第二光束能够通过障碍物的开口。
  2. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,所述第一光探测器和/或第二光探测器为光束轮廓分析仪。
  3. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,所述第一遮光元件和/或第二遮光元件为光阑。
  4. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,所述光源组件还包括扩束镜,所述扩束镜位于激光器与第一分光元件之间。
  5. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,所述第一分光元件为第一分束镜。
  6. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,还包括第二分束镜,所述第二分束镜位于待测物体与第一透镜之间,所述第三透镜出射的光束经所述第二分束镜反射进入所述障碍光学组件。
  7. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,所述第二透镜的后端设置有第三分束镜,所述第二光探测器位于第三分束镜的第一出光面,所述第四透镜位于所述第三分束镜的第二出光面。
  8. 如权利要求1所述的基于空间相干结构调控的光学成像系统,其特征在于,所述激光器发出的光为完全相干线偏振光。
  9. 一种基于空间相干结构调控的光学成像方法,基于权利要求1-8任一项所述的光学成像系统,其特征在于,包括以下步骤:
    S1、令第一遮光元件处于遮光状态,第二遮光元件处于打开状态,利用第一光探测器检测频谱域障碍物的光强图像分布I(l 2),其中,l 2为输出面的任意一点坐标;
    S2、所述计算机获取频谱域障碍物的光强图像分布I(l 2),并设计与入射光 空间相干结构成傅里叶变换关系的p(v)函数的空间分布;其中,根据频谱域障碍物的光强图像分布I(l 2)获得障碍物的开口形状,根据障碍物的开口形状修改p(v)函数以使得入射光束的所有模式都能通过障碍物的开口,p(v)是任意矢量v≡(v x,v y)的非负函数;
    S3、根据p(v)函数得到入射光的交叉谱密度W(r 1,r 2),进而得到空间光调制器加载的光场
    Figure PCTCN2021077102-appb-100001
    其中,r≡(x,y)表示源平面上任意位置矢量,r 1≡(x 1,y 1)和r 2≡(x 2,y 2)是源平面上任意两点的位置矢量,
    Figure PCTCN2021077102-appb-100002
    表示随机相位,取值范围为[0,2π];
    S4、令第二遮光元件处于遮光状态,第一遮光元件处于打开状态,利用第二光探测器采集待测物体的光强图像分布信息。
  10. 一种基于空间相干结构调控的光学成像方法,其特征在于,包括以下步骤:
    构建4f成像系统,其中,障碍物位于所述4f成像系统的频谱面以使得4f成像系统的频谱面被部分遮挡,所述障碍物上贯通设置有开口;
    通过第一光探测器探测4f成像系统中频谱域障碍物的形状;
    根据4f成像系统中频谱域障碍物的形状,设计入射光束的空间相干结构,使得入射光束所有模式都能通过障碍物的开口;
    将待测物体置于光路中,通过第二光探测器探测待测物体的光学成像信息。
PCT/CN2021/077102 2020-12-21 2021-02-20 基于空间相干结构调控的光学成像系统及成像方法 WO2022134295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,266 US12025429B2 (en) 2020-12-21 2021-02-20 Optical imaging system and imaging method regulated based on spatial coherence structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011515882.7A CN112304246B (zh) 2020-12-21 2020-12-21 基于空间相干结构调控的光学成像系统及成像方法
CN202011515882.7 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022134295A1 true WO2022134295A1 (zh) 2022-06-30

Family

ID=74487491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077102 WO2022134295A1 (zh) 2020-12-21 2021-02-20 基于空间相干结构调控的光学成像系统及成像方法

Country Status (3)

Country Link
US (1) US12025429B2 (zh)
CN (1) CN112304246B (zh)
WO (1) WO2022134295A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304246B (zh) 2020-12-21 2021-03-23 苏州大学 基于空间相干结构调控的光学成像系统及成像方法
CN112804060A (zh) * 2021-04-08 2021-05-14 苏州大学 基于随机光场空间相干结构调控的光学加密系统及方法
CN113916792B (zh) * 2021-09-07 2024-04-05 山东师范大学 一种基于相干结构的远场成像方法及系统
CN115061282B (zh) * 2022-05-27 2023-11-10 浙江理工大学 一种基于扭曲相位调制的矢量光场尺寸与角度可控系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538817B1 (en) * 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
CN102707365A (zh) * 2012-06-25 2012-10-03 哈尔滨工业大学 正负条形相位光阑及采用该光阑的4f相位相干非线性成像系统及对非线性折射率测量方法
CN102865832A (zh) * 2012-09-18 2013-01-09 西安电子科技大学 基于相位恢复的4f镜面检测成像系统及其方法
CN104871064A (zh) * 2012-12-20 2015-08-26 浜松光子学株式会社 光观察装置
US20160320598A1 (en) * 2013-12-20 2016-11-03 Centre National De La Recherche Scientifique Optical tomography apparatus and method
CN106646895A (zh) * 2017-01-13 2017-05-10 湖北工业大学 一种基于空间光调制器的激光光束整形装置及方法
CN107024763A (zh) * 2017-05-16 2017-08-08 广东欧谱曼迪科技有限公司 一种双通道结构光数字相衬显微成像系统及其实现方法
CN108873323A (zh) * 2018-07-09 2018-11-23 苏州大学 一种实现边缘增强成像的方法及系统
CN112304246A (zh) * 2020-12-21 2021-02-02 苏州大学 基于空间相干结构调控的光学成像系统及成像方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272095B1 (en) * 1994-07-22 2001-08-07 California Institute Of Technology Apparatus and method for storing and/or reading data on an optical disk
JP3521113B2 (ja) * 1998-03-27 2004-04-19 パイオニア株式会社 体積ホログラフィックメモリ光情報記録再生装置
DE60123468T2 (de) * 2000-12-22 2007-08-02 Danmarks Tekniske Universitet Verfahren und vorrichtung zur erzeugung einer phasenmodulierten wellenfront elektromagnetischer strahlung
US7911919B2 (en) * 2006-03-20 2011-03-22 Panasonic Corporation Information recording/reproducing device and hologram recording/reproducing method
JP4830989B2 (ja) * 2007-06-27 2011-12-07 富士ゼロックス株式会社 ホログラム記録装置、ホログラム再生装置、ホログラム記録方法及びホログラム再生方法
EP2188587A4 (en) * 2007-09-13 2017-01-18 Duke University Apparatuses, systems, and methods for low-coherence interferometry (lci)
US20090177094A1 (en) * 2008-01-08 2009-07-09 Oncoscope, Inc. Systems and methods for tissue examination, diagnostic, treatment, and/or monitoring
AU2011207444A1 (en) * 2010-01-22 2012-08-09 Duke University Multiple window processing schemes for spectroscopic optical coherence tomography (OCT) and fourier domain low coherence interferometry
JP6394850B2 (ja) * 2013-09-20 2018-09-26 大学共同利用機関法人自然科学研究機構 補償光学系及び光学装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538817B1 (en) * 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
CN102707365A (zh) * 2012-06-25 2012-10-03 哈尔滨工业大学 正负条形相位光阑及采用该光阑的4f相位相干非线性成像系统及对非线性折射率测量方法
CN102865832A (zh) * 2012-09-18 2013-01-09 西安电子科技大学 基于相位恢复的4f镜面检测成像系统及其方法
CN104871064A (zh) * 2012-12-20 2015-08-26 浜松光子学株式会社 光观察装置
US20160320598A1 (en) * 2013-12-20 2016-11-03 Centre National De La Recherche Scientifique Optical tomography apparatus and method
CN106646895A (zh) * 2017-01-13 2017-05-10 湖北工业大学 一种基于空间光调制器的激光光束整形装置及方法
CN107024763A (zh) * 2017-05-16 2017-08-08 广东欧谱曼迪科技有限公司 一种双通道结构光数字相衬显微成像系统及其实现方法
CN108873323A (zh) * 2018-07-09 2018-11-23 苏州大学 一种实现边缘增强成像的方法及系统
CN112304246A (zh) * 2020-12-21 2021-02-02 苏州大学 基于空间相干结构调控的光学成像系统及成像方法

Also Published As

Publication number Publication date
US12025429B2 (en) 2024-07-02
CN112304246B (zh) 2021-03-23
CN112304246A (zh) 2021-02-02
US20230175837A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2022134295A1 (zh) 基于空间相干结构调控的光学成像系统及成像方法
CN108508588B (zh) 一种多约束信息的无透镜全息显微相位恢复方法及其装置
US11397312B2 (en) Structured illumination with optimized illumination geometry
JP2007513427A (ja) 光学システムおよびデジタルシステムの設計を最適化するシステムおよび方法
US9404857B2 (en) White light diffraction tomography of unlabeled live cells
CN105043543A (zh) 一种可调控超瑞利散斑场的制作装置及其制作方法
JP2002196230A (ja) 結像シミュレーション法及びそれを用いた結像シミュレーション装置及び記憶媒体
US20140085713A1 (en) Phase Derivative Microscopy
CN108469685B (zh) 一种超分辨率关联成像系统及成像方法
Li et al. Far‐Field Synthetic Aperture Imaging via Fourier Ptychography with Quasi‐Plane Wave Illumination
US8917393B2 (en) Method and apparatus for providing image data
Wu et al. A lensless LED matrix-based ptychographic microscopy imaging method using loss correction and adaptive step size
Gong et al. Periodicity analysis on cat-eye reflected beam profiles of optical detectors
US10931899B1 (en) Systems and methods for simulation of shearographic imaging
US20220244516A1 (en) Microscope device and data generation method using microscope
Gong et al. Total variation optimization for imaging through turbid media with transmission matrix
Gianini et al. Glare removal as an ill-conditioned problem
JP2022093315A (ja) ハイスループットのレンズレスイメージング方法及びシステム
Xie et al. Squirrel search algorithm optimization for imaging through scattering media using gradient structural similarity
JP6436753B2 (ja) 位相差干渉顕微装置
CN115711866B (zh) 基于环形扫描照明的定量相衬层析显微装置和方法
Trattner et al. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy
US20240264423A1 (en) High throughput lensless imaging method and system thereof
Hammadi et al. Qualitative and Quantitative Studies of the Effects of Spherical Aberration on the Optical System in the Cases of Coherent and Incoherent Illumination
Xu et al. Image clarity of membrane diffractive imaging system using total-scale Retinex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908309

Country of ref document: EP

Kind code of ref document: A1