WO2022134172A1 - 内窥镜光学检测方法、装置、电子设备及存储介质 - Google Patents

内窥镜光学检测方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022134172A1
WO2022134172A1 PCT/CN2020/141579 CN2020141579W WO2022134172A1 WO 2022134172 A1 WO2022134172 A1 WO 2022134172A1 CN 2020141579 W CN2020141579 W CN 2020141579W WO 2022134172 A1 WO2022134172 A1 WO 2022134172A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
detection
optical detection
detection device
housing
Prior art date
Application number
PCT/CN2020/141579
Other languages
English (en)
French (fr)
Inventor
易锋
黎静
武大勇
Original Assignee
广州瑞派医疗器械有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州瑞派医疗器械有限责任公司 filed Critical 广州瑞派医疗器械有限责任公司
Publication of WO2022134172A1 publication Critical patent/WO2022134172A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations

Definitions

  • the present application relates to the technical field of medical devices, for example, to an endoscope optical detection method, device, electronic device and storage medium.
  • a medical endoscope is a commonly used medical device, which is mainly composed of a handle part and an insertion part (including a light source and a lens). It enters the human body through the natural pores of the human body, or through a small incision made by surgery. After the medical endoscope product is connected to the monitor, the image captured by the front-end camera will be displayed on the monitor.
  • Medical endoscope is also a precise optical instrument, mainly composed of two parts: optical imaging system and illumination transmission system.
  • optical imaging system mainly composed of two parts: optical imaging system and illumination transmission system.
  • the optical properties such as endoscope angle, resolution, geometric distortion, color reproduction ability, light effect, and illumination are the determinants of the quality of medical endoscopes.
  • the endoscope optical detection equipment of the related art is relatively simple and has low efficiency. Many operations, such as replacing the target and adjusting the guide rail, need to be done manually, and the adjustment is time-consuming and labor-intensive. In addition, the test results need to be judged by the tester's naked eye to observe the detection process.
  • Embodiments of the present application provide an efficient endoscope optical detection method, device, electronic device, and storage medium.
  • a first aspect of the present application provides an endoscope optical detection method, comprising:
  • Integrating sphere item detection is performed on the endoscope
  • the detection results of the endoscope are generated and displayed in real time.
  • the step of acquiring the positioning information of the endoscope inside the housing includes:
  • the moving endoscope is positioned by the light curtain sensor, and the positioning information of the endoscope inside the housing is obtained.
  • the method further includes a debugging step, and the debugging step is specifically:
  • the movement control of the endoscope inside the housing is performed, each movement position of the endoscope is calibrated, and the designated position of the endoscope during the detection is determined.
  • the integrated target detection item includes at least one of an angle of view, a resolution, and a depth of field.
  • the step of performing dark box detection on the endoscope includes:
  • the dark box of the endoscope is detected.
  • a second aspect of the present application provides an endoscope optical detection device, including a detection device body: the detection device body includes a casing, a chassis, an endoscope moving part, a box body moving part, and an integrating sphere moving part;
  • a protective door and a display panel are arranged on the detection device, and a fixing structure for fixing the endoscope is arranged inside the housing;
  • the display panel is used to display the optical detection result of the endoscope in real time
  • the detection device body is also provided with a communication module, and the communication module is used to realize data communication between the detection device body and the remote control terminal;
  • the endoscope moving part is used to control the movement of the endoscope
  • the box body moving part is used to control the movement of the box body, so as to realize the dark box detection of the endoscope;
  • the integrating sphere moving part is used to control the motion of the integrating sphere, so as to realize the integrating sphere detection of the endoscope.
  • the endoscope moving part includes an X-axis moving unit, a Y-axis moving unit, and a Z-axis moving unit;
  • the X-axis moving unit, the Y-axis moving unit and the Z-axis moving unit are used for motion control of the endoscope.
  • the detection device body is further provided with a moving rotation axis, a lead screw module and a pitch rotation axis;
  • the moving rotating shaft, the screw module and the pitching rotating shaft are used to detect the integrated target detection item of the endoscope.
  • a third aspect of the present application provides an electronic device, including a processor and a memory;
  • the memory is used to store programs
  • the processor is configured to execute the method according to the first aspect of the present application according to the program.
  • a fourth aspect of the present application provides a storage medium, where the storage medium stores a program, and the program is executed by a processor to complete the method according to the first aspect of the present application.
  • the positioning information of the endoscope inside the casing is first obtained through the endoscope optical detection device, and then the center of the target ring inside the casing is adjusted to the position according to the positioning information of the endoscope.
  • the integrated target detection items of the endoscope, the dark box detection and the integrating sphere item detection are then detected, and finally the detection results can be displayed in real time.
  • the present application improves the efficiency of endoscope optical detection, and does not require manual observation of the detection process with the naked eye, and directly displays the detection results through the display panel, thereby reducing labor costs and further improving detection efficiency.
  • Fig. 1 is the overall step flow chart of the embodiment of the application
  • Fig. 2 is the front view of the appearance of the whole machine according to the embodiment of the application;
  • FIG. 3 is a front view of the internal mechanism of the chassis according to the embodiment of the application.
  • FIG. 4 is a diagram of an endoscope fixing mechanism according to an embodiment of the application.
  • FIG. 5 is a structural diagram of a target light box according to an embodiment of the application.
  • FIG. 6 is a diagram of an integrating sphere mechanism according to an embodiment of the present application.
  • an endoscope optical detection method including:
  • Integrating sphere item detection is performed on the endoscope
  • the detection results of the endoscope are generated and displayed in real time.
  • the present application first obtains the positioning information of the endoscope inside the casing through the endoscope optical detection device, then adjusts the center of the target ring inside the casing to the center of the field of view, and then integrates the endoscope Target detection items are detected, dark box detection and integrating sphere item detection, and finally the detection results can be displayed in real time.
  • the present application improves the efficiency of endoscope optical detection, reduces labor costs, improves detection efficiency, and can be widely used in the technical field of medical devices.
  • the step of acquiring the positioning information of the endoscope inside the housing includes:
  • the moving endoscope is positioned by the light curtain sensor, and the positioning information of the endoscope inside the housing is obtained.
  • the method further includes a debugging step, and the debugging step is specifically:
  • the movement control of the endoscope inside the housing is performed, each movement position of the endoscope is calibrated, and the designated position of the endoscope during the detection is determined.
  • the integrated target detection item includes at least one of an angle of view, a resolution, and a depth of field.
  • the step of performing dark box detection on the endoscope includes:
  • the dark box of the endoscope is detected.
  • an endoscope optical detection device of this embodiment includes a detection device body: the detection device body includes a casing, a chassis, an inner Speculum moving parts, box moving parts and integrating sphere moving parts;
  • a protective door and a display panel are arranged on the detection device, and a fixing structure for fixing the endoscope is arranged inside the housing;
  • the display panel is used to display the optical detection result of the endoscope in real time
  • the detection device body is also provided with a communication module, and the communication module is used to realize data communication between the detection device body and the remote control terminal;
  • the endoscope moving part is used to control the movement of the endoscope
  • the box body moving part is used to control the movement of the box body, so as to realize the dark box detection of the endoscope;
  • the integrating sphere moving part is used to control the motion of the integrating sphere, so as to realize the integrating sphere detection of the endoscope.
  • the endoscope moving part includes an X-axis moving unit, a Y-axis moving unit, and a Z-axis moving unit;
  • the X-axis moving unit, the Y-axis moving unit and the Z-axis moving unit are used for motion control of the endoscope.
  • the detection device body is further provided with a moving rotation axis, a lead screw module and a pitch rotation axis;
  • the moving rotating shaft, the screw module and the pitching rotating shaft are used to detect the integrated target detection item of the endoscope.
  • the power supply 1 observe the display panel 3 , operate the operation panel 2 , open the protective door 4 , clamp the endoscope product to the clamp position 10 , and close the protective door 4 .
  • It mainly controls the integrating sphere moving part 7 , the box body moving part 8 and the endoscope moving part A on the chassis 6 .
  • Enter the programming move the Y-axis part 11 of the endoscope part, and position it through the light curtain sensor 5 (the product needs to be calibrated every time during the debugging stage, and after the debugging is completed and the programming is set, it is moved to the designated position each time).
  • the center of the target ring is adjusted to the center of the field of view of the endoscopic image by observing and adjusting the moving rotating shaft 12 , the Z-axis 14 of the screw module and the pitching rotating shaft 13 . Afterwards, it is only necessary to move the Z-axis 14, Y-axis 11 of the endoscope component screw module and the X-axis 15 of the box component to detect the blank target 16 of the box (for testing the image quality), the determined integrated target 17 ( Target items (such as field of view, resolution, depth of field). Adjust the rotating shaft 20 and rotate the box part by 90° to perform the next integrated target detection. Repeatedly move the endoscope part Y, Z axis and the box part X axis to detect the integrated target detection item.
  • Target items such as field of view, resolution, depth of field
  • the box body is rotated 90° for the detection of the dark box part.
  • Moving the integrating sphere member X-axis 21 brings the endoscope into the detection distance range.
  • the endoscope product enters the interior of the integrating sphere through the hole 23 for the inspection of the integrating sphere item.
  • the protective door 4 is opened, and the product is taken out.
  • the mark 9 in FIG. 3 refers to the Z-axis motion mechanism, which drives the endoscope to move up and down within the Z-axis range.
  • the mark 18 in FIG. 5 refers to the illuminance testing mechanism, and the test items are illuminance, illuminance uniformity, and light effect of the illuminating mirror body.
  • the detection device of the present application mainly includes a casing, a chassis, a moving part of an endoscope, a moving part of a box body, and a moving part of an integrating sphere.
  • the shell has a protective door.
  • the protective door is opened, and then closed after clamping and fixing, and the product is operated through the operation panel on the operating device.
  • Each product inspection only needs to input the corresponding programming, the test can be carried out and the result can be output, which is fast and effective.
  • the present application can automatically control target replacement, has higher efficiency, and is more accurate; and can also automatically control the travel of the endoscope to be tested, which is more accurate and saves the manual adjustment process.
  • Embodiments of the present application also provide an electronic device, including a processor and a memory;
  • the memory is used to store programs
  • the processor is configured to execute the method described in FIG. 1 according to the program.
  • An embodiment of the present application further provides a storage medium, where a program is stored in the storage medium, and the program is executed by a processor to complete the method described in FIG. 1 .
  • the functions/operations noted in the block diagrams may occur out of the order noted in the operational diagrams.
  • two blocks shown in succession may, in fact, be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/operations involved.
  • the embodiments presented and described in the flow diagrams of the present application are provided by way of example in order to provide a more comprehensive understanding of the technology. The disclosed methods are not limited to the operations and logic flows presented herein. Alternative embodiments are contemplated in which the order of the various operations are altered and in which sub-operations described as part of larger operations are performed independently.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the present invention. All or part of the steps of the methods described in the various examples are claimed.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

提供了一种内窥镜光学检测方法、装置、电子设备及存储介质。内窥镜光学检测装置包括检测装置本体。检测装置本体包括壳体、底架(6)、内窥镜运动部件(A)、箱体运动部件(8)以及积分球运动部件(7)。该检测装置上设有防护门(4)以及显示面板(3),壳体内部设有固定内窥镜的固定结构(10)。

Description

内窥镜光学检测方法、装置、电子设备及存储介质
本申请要求在2020年12月22日提交中国专利局、申请号为202011524186.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,例如涉及一种内窥镜光学检测方法、装置、电子设备及存储介质。
背景技术
医用内窥镜:医用内窥镜是一种常用的医疗器械,主要由手柄部分、插入部分(含光源及镜头)组成。经人体的天然孔道,或者是经手术做的小切口进入人体内。医用内窥镜产品接通显示器后,会在显示器显示前端摄像头拍摄的影像。
医用内窥镜同时是个精密的光学仪器,主要由光学成像系统和照明传输系统两大部分组成。其中,内窥镜角度、分辨率、几何畸变、色彩还原能力、光效、照明等光学性能是决定医用内窥镜质量的决定因素。
因此,亟需一种医用内窥镜在性能评估的检测装置及方法,用于检测医用内窥镜角度、分辨率、几何畸变、色彩还原能力、光效、照明等光学性能。
相关技术的内窥镜光学检测设备都比较简单,效率较低,很多操作比如更换标靶、调节导轨需要手动完成,调整费时费力。此外,测试结果需要通过测试人员肉眼观察检测过程并作出结果判断。
发明内容
本申请实施例提供一种高效的内窥镜光学检测方法、装置、电子设备及存储介质。
本申请的第一方面提供了一种内窥镜光学检测方法,包括:
将内窥镜固定于壳体内部;
获取所述内窥镜在壳体内部的定位信息;
根据所述内窥镜的定位信息,将壳体内部的靶标圆环的圆心调整至视场中心;
对所述内窥镜的集成标靶检测项进行检测;
对所述内窥镜进行暗箱检测;
对所述内窥镜进行积分球项目检测;
生成所述内窥镜的检测结果并实时展示。
在一些实施例中,所述获取所述内窥镜在壳体内部的定位信息这一步骤,包括:
对所述内窥镜进行运动控制;
通过光幕式传感器对运动中的内窥镜进行定位,获取所述内窥镜在壳体内部的定位信息。
在一些实施例中,所述方法还包括调试步骤,所述调试步骤具体为:
对壳体内部的内窥镜进行运动控制,对所述内窥镜的每个运动位置进行标定,确定所述内窥镜在检测期间的指定位置。
在一些实施例中,所述集成标靶检测项包括视场角、分辨率以及景深中的至少之一。
在一些实施例中,所述对所述内窥镜进行暗箱检测这一步骤,包括:
对壳体内的箱体部件进行旋转控制后,对所述内窥镜的暗箱进行检测。
本申请的第二方面提供了一种内窥镜光学检测装置,包括检测装置本体:所述检测装置本体包括壳体、底架、内窥镜运动部件、箱体运动部件以及积分球运动部件;
其中,所述检测装置上设有防护门以及显示面板,所述壳体内部设有固定内窥镜的固定结构;
所述显示面板,用于对内窥镜的光学检测结果进行实时展示;
所述检测装置本体内还设有通讯模块,所述通讯模块用于实现检测装置本体与远程控制端之间的数据通讯;
所述内窥镜运动部件,用于对所述内窥镜进行运动控制;
所述箱体运动部件,用于对所述箱体进行运动控制,以实现对内窥镜的暗箱检测;
所述积分球运动部件,用于对所述积分球进行运动控制,以实现对所述内窥镜的积分球检测。
在一些实施例中,所述内窥镜运动部件包括X轴移动单元、Y轴移动单元 以及Z轴移动单元;
所述X轴移动单元、Y轴移动单元以及Z轴移动单元,用于对所述内窥镜进行运动控制。
在一些实施例中,所述检测装置本体内还设有移动旋转轴、丝杆模组以及俯仰旋转轴;
所述移动旋转轴、丝杆模组以及俯仰旋转轴,用于对内窥镜的集成标靶检测项进行检测。
本申请的第三方面提供了一种电子设备,包括处理器以及存储器;
所述存储器用于存储程序;
所述处理器用于根据所述程序执行如本申请第一方面所述的方法。
本申请的第四方面提供了一种存储介质,所述存储介质存储有程序,所述程序被处理器执行完成如本申请第一方面所述的方法。
本申请的实施例首先通过内窥镜光学检测装置获取所述内窥镜在壳体内部的定位信息,然后根据所述内窥镜的定位信息,将壳体内部的靶标圆环的圆心调整至视场中心,接着对所述内窥镜的集成标靶检测项进行检测、暗箱检测以及积分球项目检测,最后能够实时展示检测结果。本申请提高了内窥镜光学检测的效率,而且无需人工肉眼观察检测过程,通过显示面板直接展示检测结果,减少了人工成本,进一步提高了检测效率。
附图说明
图1为本申请实施例的整体步骤流程图;
图2为本申请实施例的整机外观主视图;
图3为本申请实施例的机箱内部机构主视图;
图4为本申请实施例的内窥镜固定机构图;
图5为本申请实施例的标靶光箱机构图;
图6为本申请实施例的积分球机构图。
具体实施方式
下面结合说明书附图和具体实施例对本申请作进一步解释和说明。对于本申请实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
参见图1,本申请提供了一种内窥镜光学检测方法,包括:
将内窥镜固定于壳体内部;
获取所述内窥镜在壳体内部的定位信息;
根据所述内窥镜的定位信息,将壳体内部的靶标圆环的圆心调整至视场中心;
对所述内窥镜的集成标靶检测项进行检测;
对所述内窥镜进行暗箱检测;
对所述内窥镜进行积分球项目检测;
生成所述内窥镜的检测结果并实时展示。
本申请首先通过内窥镜光学检测装置获取所述内窥镜在壳体内部的定位信息,然后将壳体内部的靶标圆环的圆心调整至视场中心,接着对所述内窥镜的集成标靶检测项进行检测、暗箱检测以及积分球项目检测,最后能够实时展示检测结果。本申请提高了内窥镜光学检测的效率,减少了人工成本,提高了检测效率,可广泛应用于医疗器械技术领域。
在一些实施例中,所述获取所述内窥镜在壳体内部的定位信息这一步骤,包括:
对所述内窥镜进行运动控制;
通过光幕式传感器对运动中的内窥镜进行定位,获取所述内窥镜在壳体内部的定位信息。
在一些实施例中,所述方法还包括调试步骤,所述调试步骤具体为:
对壳体内部的内窥镜进行运动控制,对所述内窥镜的每个运动位置进行标定,确定所述内窥镜在检测期间的指定位置。
在一些实施例中,所述集成标靶检测项包括视场角、分辨率以及景深中的至少之一。
在一些实施例中,所述对所述内窥镜进行暗箱检测这一步骤,包括:
对壳体内的箱体部件进行旋转控制后,对所述内窥镜的暗箱进行检测。
下面再详细描述本申请的内窥镜光学检测装置的结构,具体的,本实施例的一种内窥镜光学检测装置,包括检测装置本体:所述检测装置本体包括壳体、底架、内窥镜运动部件、箱体运动部件以及积分球运动部件;
其中,所述检测装置上设有防护门以及显示面板,所述壳体内部设有固定内窥镜的固定结构;
所述显示面板,用于对内窥镜的光学检测结果进行实时展示;
所述检测装置本体内还设有通讯模块,所述通讯模块用于实现检测装置本体与远程控制端之间的数据通讯;
所述内窥镜运动部件,用于对所述内窥镜进行运动控制;
所述箱体运动部件,用于对所述箱体进行运动控制,以实现对内窥镜的暗箱检测;
所述积分球运动部件,用于对所述积分球进行运动控制,以实现对所述内窥镜的积分球检测。
在一些实施例中,所述内窥镜运动部件包括X轴移动单元、Y轴移动单元以及Z轴移动单元;
所述X轴移动单元、Y轴移动单元以及Z轴移动单元,用于对所述内窥镜进行运动控制。
在一些实施例中,所述检测装置本体内还设有移动旋转轴、丝杆模组以及俯仰旋转轴;
所述移动旋转轴、丝杆模组以及俯仰旋转轴,用于对内窥镜的集成标靶检测项进行检测。
参见图2、图3、图4、图5和图6,下面介绍本申请的内窥镜光学检测装置的工作原理:
接通电源1,观察显示面板3,对操作面板2进行操作,开启防护门4,将内窥镜产品装夹至夹具位10,关闭防护门4。主要是对底架6上的积分球运动部件7、箱体运动部件8、内窥镜运动部件A进行控制。输入编程,移动内窥镜部件Y轴部分11,通过光幕式传感器5进行定位(调试阶段需要每次对产品进行位置标定,调试完毕定好编程后,每次均移动到指定位置)。通过观察调节移动旋转轴12、丝杆模组Z轴14和俯仰旋转轴13使标靶圆环的圆心调到内窥镜影像的视场中心。后续只需移动内窥镜部件丝杆模组Z轴14、Y轴11和箱体部件X轴15来检测箱体的空白标靶16(用于测试影像质量)、确定的集成标 靶17(用于测试视场角、视向角、分辨率、景深、畸变)、预留的集成标靶19(用于预留测试新增内容)上的标靶项目(如视场角、分辨率、景深)。调节旋转轴20,箱体部件旋转90°可进行下一个集成标靶检测。重复移动内窥镜部件Y、Z轴和箱体部件X轴来检测集成标靶检测项。箱体部件旋转90°进行暗箱部分检测。检测完箱体四工位,移动11内窥镜部件Y轴到积分球22待检位置。移动积分球部件X轴21使内窥镜进入检测距离范围。内窥镜产品通过孔位23进入积分球内部进行积分球项目检测。检测完毕后打开防护门4,取出产品。
图3中的标记9是指Z轴运动机构,带动内窥镜在Z轴范围内上下移动。
图5中的标记18是指的是照度测试机构,测试项目为照度、照度均匀性、照明镜体光效。
综上所述,本申请的检测装置主要包含外壳、底架、内窥镜运动部分、箱体运动部分、积分球运动部分。外壳有防护门,在检测时,开启防护门,装夹固定后关闭,通过操作装置上的操作面板对产品进行操作。输入编程方案,通过X、Y、Z轴的联动,将固定在夹具位的产品运行至设定好行程距离,与内置的检测部件配合输出检测结果。每次产品的检测只需输入对应的编程,就能进行测试并输出结果,快速有效。
本申请能够自动控制标靶更换、效率更高、更准确;还能自动控制待测内窥镜行进,更精准且省去了手动调节过程。
本申请实施例还提供了一种电子设备,包括处理器以及存储器;
所述存储器用于存储程序;
所述处理器用于根据所述程序执行如图1所述的方法。
本申请实施例还提供了一种存储介质,所述存储介质存储有程序,所述程序被处理器执行完成如图1所述的方法。
在一些可选择的实施例中,在方框图中提到的功能/操作可以不按照操作示图提到的顺序发生。例如,取决于所涉及的功能/操作,连续示出的两个方框实际上可以被大体上同时地执行或所述方框有时能以相反顺序被执行。此外,在本申请的流程图中所呈现和描述的实施例以示例的方式被提供,目的在于提供对技术更全面的理解。所公开的方法不限于本文所呈现的操作和逻辑流程。可选择的实施例是可预期的,其中各种操作的顺序被改变以及其中被描述为较大操作的一部分的子操作被独立地执行。
此外,虽然在功能性模块的背景下描述了本申请,但应当理解的是,除非另有相反说明,所述的功能和/或特征中的一个或多个可以被集成在单个物理装置和/或软件模块中,或者一个或多个功能和/或特征可以在单独的物理装置或软 件模块中被实现。还可以理解的是,有关每个模块的实际实现的详细讨论对于理解本申请是不必要的。更确切地说,考虑到在本文中公开的装置中各种功能模块的属性、功能和内部关系的情况下,在工程师的常规技术内将会了解该模块的实际实现。因此,本领域技术人员运用普通技术就能够在无需过度试验的情况下实现在权利要求书中所阐明的本申请。还可以理解的是,所公开的特定概念仅仅是说明性的,并不意在限制本申请的范围。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA) 等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims (10)

  1. 一种内窥镜光学检测方法,包括:
    将内窥镜固定于壳体内部;
    获取所述内窥镜在壳体内部的定位信息;
    根据所述内窥镜的定位信息,将壳体内部的靶标圆环的圆心调整至视场中心;
    对所述内窥镜的集成标靶检测项进行检测;
    对所述内窥镜进行暗箱检测;
    对所述内窥镜进行积分球项目检测;
    生成所述内窥镜的检测结果并实时展示。
  2. 根据权利要求1所述的一种内窥镜光学检测方法,其中,所述获取所述内窥镜在壳体内部的定位信息这一步骤,包括:
    对所述内窥镜进行运动控制;
    通过光幕式传感器对运动中的内窥镜进行定位,获取所述内窥镜在壳体内部的定位信息。
  3. 根据权利要求1所述的一种内窥镜光学检测方法,所述方法还包括调试步骤,所述调试步骤具体为:
    对壳体内部的内窥镜进行运动控制,对所述内窥镜的每个运动位置进行标定,确定所述内窥镜在检测期间的指定位置。
  4. 根据权利要求1所述的一种内窥镜光学检测方法,其中,所述集成标靶检测项包括视场角、分辨率以及景深中的至少之一。
  5. 根据权利要求1所述的一种内窥镜光学检测方法,其中,所述对所述内窥镜进行暗箱检测这一步骤,包括:
    对壳体内的箱体部件进行旋转控制后,对所述内窥镜的暗箱进行检测。
  6. 一种内窥镜光学检测装置,包括检测装置本体:所述检测装置本体包括壳体、底架、内窥镜运动部件、箱体运动部件以及积分球运动部件;
    其中,所述检测装置上设有防护门以及显示面板,所述壳体内部设有固定内窥镜的固定结构;
    所述显示面板,用于对内窥镜的光学检测结果进行实时展示;
    所述检测装置本体内还设有通讯模块,所述通讯模块用于实现检测装置本体与远程控制端之间的数据通讯;
    所述内窥镜运动部件,用于对所述内窥镜进行运动控制;
    所述箱体运动部件,用于对所述箱体进行运动控制,以实现对内窥镜的暗箱检测;
    所述积分球运动部件,用于对所述积分球进行运动控制,以实现对所述内窥镜的积分球检测。
  7. 根据权利要求6所述的一种内窥镜光学检测装置,其中,
    所述内窥镜运动部件包括X轴移动单元、Y轴移动单元以及Z轴移动单元;
    所述X轴移动单元、Y轴移动单元以及Z轴移动单元,用于对所述内窥镜进行运动控制。
  8. 根据权利要求6所述的一种内窥镜光学检测装置,其中,所述检测装置本体内还设有移动旋转轴、丝杆模组以及俯仰旋转轴;
    所述移动旋转轴、丝杆模组以及俯仰旋转轴,用于对内窥镜的集成标靶检测项进行检测。
  9. 一种电子设备,包括处理器以及存储器;
    所述存储器用于存储程序;
    所述处理器用于根据所述程序执行如权利要求1-5中任一项所述的方法。
  10. 一种存储介质,所述存储介质存储有程序,所述程序被处理器执行完成如权利要求1-5中任一项所述的方法。
PCT/CN2020/141579 2020-12-22 2020-12-30 内窥镜光学检测方法、装置、电子设备及存储介质 WO2022134172A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011524186.2 2020-12-22
CN202011524186.2A CN112729778A (zh) 2020-12-22 2020-12-22 一种内窥镜光学检测方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022134172A1 true WO2022134172A1 (zh) 2022-06-30

Family

ID=75605139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141579 WO2022134172A1 (zh) 2020-12-22 2020-12-30 内窥镜光学检测方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN112729778A (zh)
WO (1) WO2022134172A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113724256B (zh) * 2021-11-01 2022-01-18 极限人工智能有限公司 一种内窥镜的照明镜体光效测试系统
CN115281579B (zh) * 2022-06-17 2023-04-11 中山市微视医用科技有限公司 一种内窥镜多功能测试系统及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115684A1 (en) * 2007-03-16 2008-09-25 Lighthouse Imaging Corporation System and method for an illumination-quality test
CN105662314A (zh) * 2015-12-30 2016-06-15 天津市医疗器械质量监督检验中心 内窥镜检测系统
CN209984180U (zh) * 2019-04-08 2020-01-24 苏州舜上光电科技有限公司 一种测试内窥镜摄像系统的装置
CN110749421A (zh) * 2018-07-24 2020-02-04 深圳市矽电半导体设备有限公司 发光器件测试一体机
CN210204672U (zh) * 2019-04-08 2020-03-31 苏州舜上光电科技有限公司 一种胶囊内窥镜光学参数测试系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201005666Y (zh) * 2007-01-05 2008-01-16 湖北华中光电科技有限公司 一种医用硬管内窥镜检测仪
DE102014210619A1 (de) * 2014-06-04 2015-12-17 Olympus Winter & Ibe Gmbh Endoskop mit berührungsloser Abstandsmessung
CN106153302B (zh) * 2015-03-24 2019-03-12 北京威斯顿亚太光电仪器有限公司 一种用于硬管内窥镜成像畸变的测量方法
CN206772557U (zh) * 2017-01-04 2017-12-19 北京威斯顿亚太光电仪器有限公司 一种用于医疗硬管内窥镜光学参数的检测装置
CN209459871U (zh) * 2019-03-01 2019-10-01 西安华强航天电子有限责任公司 一种多功能内窥镜检测装置
CN210571296U (zh) * 2019-07-16 2020-05-19 韶关市技师学院(韶关市高级技工学校、韶关市职工大学、韶关市农业学校) 一种硬式内窥镜性能检测装置
CN110530608A (zh) * 2019-07-16 2019-12-03 韶关市技师学院(韶关市高级技工学校、韶关市职工大学、韶关市农业学校) 一种硬式内窥镜性能检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115684A1 (en) * 2007-03-16 2008-09-25 Lighthouse Imaging Corporation System and method for an illumination-quality test
CN105662314A (zh) * 2015-12-30 2016-06-15 天津市医疗器械质量监督检验中心 内窥镜检测系统
CN110749421A (zh) * 2018-07-24 2020-02-04 深圳市矽电半导体设备有限公司 发光器件测试一体机
CN209984180U (zh) * 2019-04-08 2020-01-24 苏州舜上光电科技有限公司 一种测试内窥镜摄像系统的装置
CN210204672U (zh) * 2019-04-08 2020-03-31 苏州舜上光电科技有限公司 一种胶囊内窥镜光学参数测试系统

Also Published As

Publication number Publication date
CN112729778A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022134172A1 (zh) 内窥镜光学检测方法、装置、电子设备及存储介质
JP5000942B2 (ja) ストロボ照明制御システムおよびその方法
JP5222796B2 (ja) 光学素子の偏芯調整組立方法および偏芯調整組立装置
US8106943B2 (en) Microscope image pickup system, microscope image pickup method and recording medium
CN105004723A (zh) 病理切片扫描3d成像与融合装置及方法
US6498642B1 (en) Endoscope inspection system
WO2018207471A1 (ja) 制御装置、制御システム、制御方法、及びプログラム
CN101101857B (zh) 缺陷修复装置
JP2003222801A (ja) 顕微鏡画像撮影装置
KR100902636B1 (ko) 적외선 카메라 모듈 테스트 장치
TWI224189B (en) Fluorescence measuring apparatus
CN107466475A (zh) 用于检查透光光学组件的设备和方法
KR20240032104A (ko) 반사 표본의 거시적 검사를 위한 시스템, 방법 및 장치
KR101015807B1 (ko) 표면 검사 장치 및 표면 검사 방법
CN113405781A (zh) 一种多功能内窥镜检测设备
JP2000262476A (ja) 眼検査用立体顕微鏡における照明装置及びその方法
CN106290413A (zh) 一种用于pcb板过孔检测的x线摄影装置
JPH0735645A (ja) 液晶パネルの検査装置
CN207689105U (zh) 自动对焦大广角镜头环测平行光管检测平台
JP2016038528A (ja) 偏光顕微鏡および偏光顕微鏡制御装置、並びに円偏光観察方法
KR20060112414A (ko) 비엘유 검사장치
Madrid-Wolff et al. 4f Koehler transmitted illumination condenser for teaching and low-cost microscopic imaging
EP3156780A1 (en) Test probes for smart inspection
JP4119828B2 (ja) 光学部材検査装置による球面部の検査方法
US20210063719A1 (en) Universal Microscope Stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966734

Country of ref document: EP

Kind code of ref document: A1