WO2022134074A1 - 有机电致发光器件、显示面板、显示装置和发光装置 - Google Patents

有机电致发光器件、显示面板、显示装置和发光装置 Download PDF

Info

Publication number
WO2022134074A1
WO2022134074A1 PCT/CN2020/139629 CN2020139629W WO2022134074A1 WO 2022134074 A1 WO2022134074 A1 WO 2022134074A1 CN 2020139629 W CN2020139629 W CN 2020139629W WO 2022134074 A1 WO2022134074 A1 WO 2022134074A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy level
buffer layer
organic electroluminescent
layer
electroluminescent device
Prior art date
Application number
PCT/CN2020/139629
Other languages
English (en)
French (fr)
Inventor
陈雪芹
刘杨
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/139629 priority Critical patent/WO2022134074A1/zh
Priority to CN202080003696.7A priority patent/CN114981274A/zh
Priority to US17/611,676 priority patent/US20220416175A1/en
Publication of WO2022134074A1 publication Critical patent/WO2022134074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic electroluminescence device, a display panel, a display device, and a light-emitting device.
  • OLED (Organic Electroluminescent Device) display panels have the advantages of high color gamut, thinness, flexibility, etc., and are more and more widely used in the display field.
  • the highest occupied molecular orbital (HOMO) energy level of the host material of the organic light-emitting layer is relatively deep, and no device has been developed that can match the highest occupied molecular orbital energy level of the host material and meet the requirements of OLED in other properties.
  • the electron blocking layer material which leads to a relatively large energy level difference of the highest occupied molecular orbital between the electron blocking layer and the host material, which reduces the efficiency of the electron blocking layer in injecting holes into the organic light-emitting layer.
  • the purpose of the present disclosure is to overcome the above-mentioned deficiencies of the prior art, to provide an organic electroluminescent device and a display panel, and to improve the lifespan of the organic electroluminescent device.
  • an organic electroluminescent device comprising an anode, an electron blocking layer, a buffer layer, an organic light-emitting layer and a cathode that are stacked in sequence; wherein the buffer layer has a thickness in the range of 1-100 nm ;
  • the material of the buffer layer includes the compound shown in Chemical Formula 1:
  • X is O or S; one of Y and Z is N(R 4 ) and the other is a single bond;
  • R 1 , R 2 and R 3 are each independently selected from: hydrogen, deuterium, fluorine, cyano, halogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, substituted or An unsubstituted aryl group with a total carbon number of 6-30, a substituted or unsubstituted heteroaryl group with a total carbon number of 4-30, and at least one of R 1 , R 2 and R 3 is selected from the chemical formula 2 the group shown;
  • R 4 is selected from an alkyl group having 1-6 carbon atoms, a cycloalkyl group having 5-10 carbon atoms, an aryl group having 6-30 carbon atoms, and a heteroaryl group having 4-30 carbon atoms.
  • R 1 , R 2 , and R 3 are each independently selected from hydrogen, a substituted or unsubstituted group Ar, and the unsubstituted group Ar is selected from the following groups:
  • the substituted group Ar is a new group formed by the above-mentioned unsubstituted group Ar being substituted by one or more substituents; each substituent on the substituted group Ar is independently selected from deuterium, fluorine, Chlorine, cyano, alkyl with 1 to 6 carbon atoms, cycloalkyl with 3 to 10 carbon atoms; when the substituted group Ar has more than one substituent, each substituent is the same or different .
  • the buffer layer includes one or both of the compound represented by Chemical Formula 3 and the compound represented by Chemical Formula 4:
  • the organic light-emitting layer is an organic light-emitting layer for emitting blue light.
  • the thickness of the buffer layer is 0.05-0.20 times the thickness of the organic light-emitting layer.
  • the organic light-emitting layer includes a mixed host material and a guest material; wherein the host material has a lowest unoccupied molecular orbital energy level that is lower than the buffer layer material.
  • the unoccupied molecular orbital energy level is at least 0.15 eV lower.
  • the lowest unoccupied molecular orbital energy level of the host material is in the range of -2.75 ⁇ -3.15 eV.
  • the lowest unoccupied molecular orbital energy level of the material of the buffer layer is in the range of -2.25 ⁇ -2.65 eV.
  • the energy level of the highest occupied molecular orbital of the material of the buffer layer is higher than the energy level of the highest occupied molecular orbital of the host material, and the highest energy level of the material of the buffer layer
  • the energy levels of the occupied molecular orbitals are in the range of -5.4 to -6 eV.
  • the energy level of the highest occupied molecular orbital of the material of the buffer layer is in the range of -5.5 ⁇ -5.8 eV.
  • the energy level of the highest occupied molecular orbital of the host material is in the range of -5.8 ⁇ -6.2 eV.
  • the energy level of the highest occupied molecular orbital of the material of the electron blocking layer is in the range of -5.25 ⁇ -5.65 eV, and is higher than the highest occupied molecule of the material of the buffer layer energy level of the orbit.
  • the hole mobility of the host material is less than the electron mobility.
  • the excited triplet energy level of the material of the buffer layer is not lower than 2.5 eV; the host material is a thermally activated delayed fluorescent material.
  • the material of the buffer layer is composed of the compound shown in Chemical Formula 1.
  • the buffer layer has a thickness of 3-20 nm.
  • a display panel including the above organic electroluminescent device.
  • a display device including the above-mentioned display panel.
  • a light-emitting device including the above-mentioned organic electroluminescent device.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device in an embodiment of the disclosure.
  • FIG. 2 is a schematic structural diagram of an organic electroluminescent device in an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of energy levels of a part of a film layer of an organic electroluminescent device according to an embodiment of the disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • an organic electroluminescent device may include a stacked hole transport layer, an electron blocking layer and an organic light emitting layer.
  • the organic light-emitting layer can be a mixed film layer of a host material and a guest material, wherein the host material is used to transport electrons and holes, and transfer excitons generated by the recombination of electrons and holes to the guest material, so that the guest material emits light.
  • the HOMO (highest occupied molecular orbital) energy level of the host material is generally deep, and the HOMO energy level of the electron blocking layer is higher than the HOMO energy level of the host material, so as to improve the efficiency of hole injection from the hole transport layer to the organic light emitting layer.
  • an electron blocking layer material with a relatively deep HOMO level and satisfying the requirements in other properties such as electrochemical stability and hole mobility has not yet been found.
  • the organic electroluminescent device includes an anode 100 , a hole transport layer 302 , an electron blocking layer 303 , a buffer layer 304 , an organic light emitting layer 305 and a cathode 200 that are stacked in sequence. ; wherein, the thickness of the buffer layer 304 is in the range of 1-100 nm.
  • the material of the buffer layer 304 includes the compound shown in Chemical Formula 1:
  • X is O or S; one of Y and Z is N(R 4 ) and the other is a single bond;
  • R 1 , R 2 and R 3 are each independently selected from: hydrogen, deuterium, fluorine, cyano, halogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, substituted or An unsubstituted aryl group with a total carbon number of 6-30, a substituted or unsubstituted heteroaryl group with a total carbon number of 4-30, and at least one of R 1 , R 2 and R 3 is selected from the chemical formula 2 the group shown;
  • R 4 is selected from an alkyl group having 1-6 carbon atoms, a cycloalkyl group having 5-10 carbon atoms, an aryl group having 6-30 carbon atoms, and a heteroaryl group having 4-30 carbon atoms.
  • the structure of the buffer layer 304 is shown in Chemical Formula 1.
  • the parent nucleus of the compound shown in chemical formula 1 has a large and rigid conjugate plane, so it has a deep HOMO energy level; the compound shown in chemical formula 1 also has 9-carbazole shown in chemical formula 2 connected to the parent nucleus base, which can improve the hole mobility of the compound represented by Chemical Formula 1 and appropriately increase its HOMO energy level to avoid its HOMO energy level being too low.
  • the HOMO energy level of the buffer layer 304 may be located between the HOMO energy level of the electron blocking layer 303 and the HOMO energy level of the host material of the organic light emitting layer 305 , and the electron blocking layer 303 , the buffer layer 304 and the organic light emitting layer 305 are adjacent to each other.
  • the HOMO energy level difference between the two layers is small, which reduces the energy level barrier for hole injection from the former film layer to the latter film layer, thereby improving the hole injection efficiency.
  • the thickness of the buffer layer 304 is controlled at in the range of 1 to 100 nm. In this way, the buffer layer 304 improves the efficiency of injecting holes into the organic light-emitting layer 305 as a whole, which can improve the recombination rate of electrons and holes in the organic light-emitting layer 305 and reduce the amount of holes entering the buffer layer 304 and the electron blocking layer 303 .
  • the compound shown in Chemical Formula 1 does not contain a triarylamine structure, which makes it have a relatively suitable electron cloud density and a sufficiently high tolerance to electrons, which can avoid the structural damage caused by the electrons injected into the organic light-emitting layer 305 , to improve its electrochemical stability.
  • the compound represented by Chemical Formula 1 used in the buffer layer 304 can meet the requirements of the organic electroluminescence device in terms of HOMO level and electron tolerance, and by making the buffer layer 304 Having a small thickness reduces the effect of insufficient hole mobility of the compound represented by Chemical Formula 1. Therefore, although it is impossible to obtain many properties such as having sufficient hole mobility, having a sufficiently deep HOMO energy level, matching the HOMO energy level of the host material of the organic light-emitting layer 305, and having a sufficiently high tolerance to electrons, etc.
  • the required material, the organic electroluminescent device of the present disclosure balances the HOMO energy level, electron tolerance, hole mobility, thickness and other aspects of the buffer layer 304, and finally enables the buffer layer 304 to improve the organic electroluminescence lifetime of light-emitting devices.
  • R 1 , R 2 and R 3 are each independently selected from hydrogen, a substituted or unsubstituted group Ar selected from the following groups:
  • the substituted group Ar is a new group formed by the above-mentioned unsubstituted group Ar being substituted by one or more substituents; each substituent on the substituted group Ar is independently selected from deuterium, fluorine, Chlorine, cyano, alkyl with 1 to 6 carbon atoms, cycloalkyl with 3 to 10 carbon atoms; when the substituted group Ar has more than one substituent, each substituent is the same or different .
  • each substituent shown in Chemical Formula 1 does not contain a diarylamine group, which can prevent the diarylamine group from causing too much electron cloud density on the compound shown in Chemical Formula 1, and avoid causing the compound shown in Chemical Formula 1.
  • Reduced resistance to electrons Referring to FIG. 1 , the buffer layer 304 is in direct contact with the organic light-emitting layer 305 , and electrons in the organic light-emitting layer 305 may cross the energy level barrier and enter the buffer layer 304 or even the electron blocking layer 303 . If the compound represented by the chemical formula 1 has insufficient resistance to electrons, it will be easily destroyed by the impact of electron currents, thereby reducing the lifetime of the organic electroluminescent device.
  • the buffer layer 304 includes the compound shown in Chemical Formula 3 or the compound shown in Chemical Formula 4:
  • the material of the buffer layer 304 is composed of the compound shown in Chemical Formula 1.
  • the organic light-emitting layer 305 is a blue organic light-emitting layer, that is, the organic light-emitting layer 305 for emitting blue light, especially, the organic light-emitting layer 305 for emitting blue fluorescence.
  • the HOMO energy level of the host material in the blue organic light-emitting layer 305 is deeper (lower), so it is more difficult to obtain a buffer layer with a matching HOMO energy level and other properties that fully meet the requirements 304 Materials.
  • the material of the hole transport layer 302 used for the organic electroluminescent devices emitting different colors can be completely the same, so as to achieve the purpose of simplifying the process.
  • the host materials of the organic light-emitting layers 305 of different colors of organic electroluminescent devices have different requirements for the HOMO energy level, and the HOMO energy levels of the host materials in the blue organic light-emitting layer 305 are deeper;
  • the difference in HOMO energy level between the host material and the hole transport layer 302 is larger, and it is more difficult to obtain a suitable material for the electron blocking layer 303 .
  • the electrons in the organic light-emitting layer 305 are more easily transitioned to the electron blocking layer, which easily leads to the destruction of the material of the electron blocking layer by electrons, which in turn leads to the longevity of the organic electroluminescent device. reduce.
  • the material of the buffer layer 304 of the present disclosure is balanced among HOMO energy level, electrochemical stability, hole mobility and thickness, so as to achieve an overall improvement in the performance of the blue organic electroluminescent device, especially Achieve increased lifespan.
  • the HOMO energy level of the material of the buffer layer 304 is higher than the HOMO energy level of the host material.
  • the HOMO energy level of the material of the buffer layer 304 is in the range of -5.4 ⁇ -6 eV. Further, the HOMO energy level of the material of the buffer layer 304 is in the range of -5.5 ⁇ -5.8 eV.
  • the HOMO energy level of the host material is in the range of -5.8 ⁇ -6.2 eV.
  • the HOMO energy level of the material of the buffer layer 304 is lower than the HOMO energy level of the material of the electron blocking layer 303 .
  • the HOMO energy level of the material of the electron blocking layer 303 is in the range of -5.25 to -5.65 eV.
  • the LUMO (lowest unoccupied molecular orbital) energy level of the host material of the organic light emitting layer 305 is at least 0.15 eV lower than the LUMO energy level of the material of the buffer layer 304 .
  • the LUMO energy level of the buffer layer 304 may be higher than the LUMO energy level of the host material of the light-emitting layer, so that the buffer layer 304 can achieve a certain electron blocking effect.
  • the LUMO energy level of the host material is in the range of -2.75 ⁇ -3.15 eV.
  • the LUMO energy level of the material of the buffer layer 304 is low in the range of -2.25 ⁇ -2.65 eV.
  • the LUMO energy level of the material of the buffer layer 304 may be close to the LUMO energy level of the electron blocking layer 303, and the energy level difference between the two may not be greater than 0.3 eV.
  • the LUMO energy level of the electron blocking layer 303 is in the range of -2.2 ⁇ -2.6 eV.
  • the hole mobility of the host material is less than the electron mobility.
  • the recombination center of the recombination of holes and electrons is close to the buffer layer 304 side. This requires that the buffer layer 304 has a good blocking effect on electrons and can withstand the impact of electron current, and the compound represented by Chemical Formula 1 of the present disclosure can meet the above requirements.
  • the recombination center of holes and electrons is close to the side of the buffer layer 304, thinning the organic light-emitting layer 305 will not lead to a significant decrease in the hole-electron recombination rate, and will not lead to the light emission of the organic electroluminescent device.
  • the buffer layer 304 can block and buffer electrons to prevent electron current from impacting the electron blocking layer 303, thereby improving the material life of the electron blocking layer 303 and the life of the organic electroluminescent device.
  • the host material is a thermally activated delayed fluorescent material, so that triplet excitons can be converted into singlet excitons, and the guest material can use the singlet excitons to emit fluorescence.
  • the organic electroluminescence device can utilize triplet excitons and singlet excitons simultaneously, and has high internal quantum efficiency.
  • the excited triplet energy level of the material of the buffer layer 304 is not lower than 2.5 eV; in this way, the buffer layer 304 can block the diffusion of triplet excitons and confine the triplet excitons in the organic light-emitting layer 305 as much as possible. , to improve the internal quantum efficiency of organic electroluminescent devices.
  • the excited triplet energy level of the material of the buffer layer 304 is not lower than 2.6 eV.
  • the organic electroluminescent device includes a cathode 200 and an anode 100 that are oppositely disposed.
  • the material of the anode 100 may be selected from conductive materials with large work function (work function) to facilitate hole injection into the organic layer between the cathode 200 and the anode 100 .
  • the material of the anode 100 can be selected from metals or alloys, such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; it can also be selected from metal oxides, such as oxides.
  • the material of the cathode 200 may be selected from materials having a small work function to facilitate electron injection into the organic layer between the cathode 200 and the anode 100 .
  • the material of the cathode 200 may be selected from metals or alloys, such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof.
  • the present disclosure does not make special limitations on the materials of the cathode 200 and the anode 100 .
  • At least one of the cathode 200 and the anode 100 is a transparent electrode, so as to ensure that the organic electroluminescent device emits light to the outside.
  • the organic electroluminescent device may include a hole transport layer 302 disposed between the electron blocking layer 303 and the anode 100 .
  • the hole transport layer 302 is used to transport holes from the anode 100 to the electron blocking layer 303 to improve the efficiency of hole injection into the electron blocking layer 303 and reduce the driving voltage of the organic electroluminescent device.
  • the hole transport layer 302 may include one kind of hole transport material, or may include a plurality of different hole transport materials, which is not specifically limited in the present disclosure.
  • the material of the hole transport layer 302 may be a bisarylamine compound, a monoarylamine compound or other types of compounds, and the thickness thereof may be 90-130 nm.
  • the material of the hole transport layer 302 is NPB, and the thickness is 100 nm.
  • the organic electroluminescent device may further include a hole injection layer 301 , and the hole injection layer 301 may be located between the hole transport layer 302 and the anode 100 for transporting holes from the anode 100 to the anode 100 .
  • the hole transport layer 302 improves the efficiency of hole injection into the hole transport layer 302 .
  • the hole injection layer 301 may include one material, or may include a variety of different materials, which is not specifically limited in the present disclosure.
  • the electron blocking layer 303 is located between the hole transport layer 302 and the buffer layer 304 for injecting holes into the buffer layer 304 and then injecting holes into the organic light emitting layer 305 .
  • the buffer layer 304 Due to the existence of the buffer layer 304 , holes do not need to overcome the large energy level barrier between the electron blocking layer 303 and the organic light emitting layer 305 directly, but only need to overcome the small energy level between the electron blocking layer 303 and the buffer layer 304 level barrier, the small energy level barrier between the buffer layer 304 and the organic light-emitting layer 305, which helps to reduce the driving voltage of the organic electroluminescent device, overcomes the insufficient hole mobility of the buffer layer 304 and reduces the driving voltage Similarly, this also helps to improve the efficiency of hole injection into the organic light-emitting layer 305, and overcomes the adverse effect on the hole injection efficiency caused by insufficient hole mobility of the buffer layer 304.
  • the electron blocking layer 303 has a higher LUMO (lowest unoccupied molecular orbital) energy level, so that the energy level difference between the LUMO energy level of the electron blocking layer 303 and the LUMO energy level of the host material of the organic light emitting layer 305 is larger. , so that it can block the flow of electrons, prevent the flow of electrons from entering the hole transport layer 302 and cause the destruction of the hole transport material, and improve the lifespan of the organic electroluminescence device.
  • LUMO lowest unoccupied molecular orbital
  • the electron blocking layer 303 can be selected from arylamine carbazole-based materials, arylamine-furan-based materials or other types of materials, and the thickness thereof can be 3-20 nm.
  • the material of the electron blocking layer 303 may be TCTA, and the thickness may be 10 nm.
  • the buffer layer 304 is located between the electron blocking layer 303 and the organic light-emitting layer 305, and its thickness may be 1-100 nm. In some embodiments, the thickness of the buffer layer 304 is 0.05-0.20 times the thickness of the organic light-emitting layer 305 . In this way, the performance of the organic electroluminescent device can be improved by thinning the organic light-emitting layer 305 of the organic electroluminescent device and adding the buffer layer 304 . In other embodiments, the thickness of the buffer layer 304 may be 3 ⁇ 20 nm. Illustratively, the thickness of the buffer layer 304 is 5 nm.
  • the organic light-emitting layer 305 includes a mixed host material and a guest material, wherein the weight percent of the guest material is less than the weight percent of the host material.
  • the holes and electrons recombine in the organic light-emitting layer 305 to form excitons, and the host material can transfer the excitons to the guest material, so that the guest material emits fluorescence or phosphorescence.
  • the weight ratio of the guest material may be 1% to 8%, so as to avoid fluorescence quenching due to a too large concentration of the guest material.
  • the weight ratio of the guest material may be 5%.
  • the thickness of the organic light-emitting layer 305 may be 20 ⁇ 60 nm.
  • the thickness of the organic light-emitting layer 305 may be 40 nm.
  • the host material can be an anthracene-based material, such as ADN.
  • the guest material may be a fluorescent material or a phosphorescent material.
  • the guest material is a fluorescent material for emitting blue light, and the material may be an arylamine vinyl material, an arylamine pyrene type material, a boron nitrogen type material or other types of materials.
  • the guest material may be DSA-Ph.
  • the organic electroluminescent device may further include a hole blocking layer 306 and an electron transport layer 307 . between the hole blocking layer 306 and the cathode 200 .
  • the hole blocking layer 306 is used to block the diffusion of holes to the electron transport layer 307 to prevent the material of the electron transport layer 307 from being damaged by holes.
  • the LUMO energy level of the hole blocking layer 306 may also be located between the LUMO energy level of the host material and the LUMO energy level of the electron transport layer 307 in order to improve the efficiency of electron injection from the electron transport layer 307 to the organic light emitting layer 305 .
  • the material of the hole blocking layer 306 may be a triazine-based material, a benzimidazole-based material, or other types of materials. Exemplarily, in one embodiment of the present disclosure, the material of the hole blocking layer 306 may be TPBi.
  • the thickness of the hole blocking layer 306 may be in the range of 3 ⁇ 20 nm. For example, in one embodiment of the present disclosure, the thickness of the hole blocking layer 306 may be 10 nm.
  • the electron transport layer 307 is used to improve the electron injection efficiency of the cathode 200 into the organic light-emitting layer 305, and can be selected from triazine-based materials, cyano-based materials, phenanthroline-based materials or other types of materials.
  • the material of the electron transport layer 307 may be BPhen.
  • the thickness of the electron transport layer 307 may be in the range of 20 ⁇ 60 nm.
  • the thickness of the electron transport layer 307 may be in the range of 40 nm.
  • the organic electroluminescent device may further include an electron injection layer 308 , and the electron injection layer 308 is located between the electron transport layer 307 and the cathode 200 for improving the efficiency of electron injection from the cathode 200 to the electron transport layer 307 .
  • device A includes an anode 100 , a hole transport layer 302 , an electron blocking layer 303 , a buffer layer 304 , an organic light-emitting layer 305 , a hole blocking layer 306 , an electron transport layer 307 and a cathode 200 that are stacked in sequence.
  • the material of the anode 100 is ITO, and the thickness is 10 nm.
  • the material of the hole transport layer 302 is NPB, and the thickness is 100 nm.
  • the material of the electron blocking layer 303 is TCTA, and the thickness is 10 nm.
  • the material of the buffer layer 304 is the compound shown in Chemical Formula 3, and the thickness is 5 nm.
  • the thickness of the organic light-emitting layer 305 is 40 nm, wherein the host material is ADN, and the guest material is DAS-Ph; the mass ratio of the guest material in the organic light-emitting layer 305 is 5%.
  • the material of the hole blocking layer 306 is TPBi, and the thickness is 10 nm.
  • the material of the electron transport layer 307 is BPhen, and the thickness is 40 nm.
  • the material of the cathode 200 is a magnesium-silver alloy (the mass ratio of magnesium-silver is 9:1), and the thickness is 80 nm.
  • device B includes an anode 100 , a hole transport layer 302 , an electron blocking layer 303 , a buffer layer 304 , an organic light-emitting layer 305 , a hole blocking layer 306 , an electron transport layer 307 and a cathode 200 that are stacked in sequence.
  • the material of the anode 100 is ITO, and the thickness is 10 nm.
  • the material of the hole transport layer 302 is NPB, and the thickness is 100 nm.
  • the material of the electron blocking layer 303 is TCTA, and the thickness is 10 nm.
  • the material of the buffer layer 304 is the compound shown in Chemical Formula 4, and the thickness is 5 nm.
  • the thickness of the organic light-emitting layer 305 is 40 nm, wherein the host material is ADN, and the guest material is DAS-Ph; the mass ratio of the guest material in the organic light-emitting layer 305 is 5%.
  • the material of the hole blocking layer 306 is TPBi, and the thickness is 10 nm.
  • the material of the electron transport layer 307 is BPhen, and the thickness is 40 nm.
  • the material of the cathode 200 is a magnesium-silver alloy (the mass ratio of magnesium-silver is 9:1), and the thickness is 80 nm.
  • Device C includes an anode, a hole transport layer, an electron blocking layer, an organic light-emitting layer, a hole blocking layer, an electron transport layer and a cathode that are stacked in sequence.
  • the material of the anode is ITO, and the thickness is 10 nm.
  • the material of the hole transport layer is NPB and the thickness is 100 nm.
  • the material of the electron blocking layer is TCTA, and the thickness is 10 nm.
  • the thickness of the organic light-emitting layer is 45 nm, wherein the host material is ADN, and the guest material is DAS-Ph; the mass proportion of the guest material in the organic light-emitting layer is 5%.
  • the material of the hole blocking layer is TPBi, and the thickness is 10 nm.
  • the material of the electron transport layer is BPhen, and the thickness is 40 nm.
  • the material of the cathode is a magnesium-silver alloy (the mass ratio of magnesium-silver is 9:1), and the thickness is 80 nm.
  • the material of the buffer layer of device A is the compound shown in chemical formula 3; the material of the buffer layer of device B is the compound shown in chemical formula 4; device C is not provided with a buffer layer, and
  • the thickness of the organic light-emitting layer of device C is equal to the sum of the thicknesses of the buffer layer and the organic light-emitting layer of device A.
  • the driving voltage, luminous efficiency and T95 lifetime of device A, device B and device C were tested at a current density of 15 mA/cm 2 . Taking the test data of device C as 100%, normalize the test data of device A and device B. In this way, the test results of device A, device B and device C are obtained, see Table 1.
  • the present disclosure also tested devices A to C (in cd/A) at different current densities (in mA/cm 2 ), and found that the current efficiencies of device A and device B were found at various current densities. Both are higher than device C or basically the same as device C.
  • the present disclosure also tested the variation of the brightness of each device with time at a current density of 10 mA/cm 2 , and found that with the extension of time, the brightness (unit: nit) of device C decreased significantly higher than that of device A and device B. , the brightness of device A and device B in each time period are basically the same.
  • the present disclosure also tested the current density of each device under different driving voltages, and found that the startup voltage of each device was basically the same; under the same driving voltage, the current density of each device was basically the same, and the current density of device A was slightly larger than that of device A.
  • device A and device B are basically the same as device C in terms of luminous efficiency, current efficiency, driving voltage, etc., and there is no performance degradation; device A and device B are significantly better than device C in terms of device life; This shows that, compared with the organic electroluminescence device without the buffer layer, the device lifetime of the organic electroluminescence device of the present disclosure is significantly improved.
  • the present disclosure also examines the distribution of excitons in device C in the organic light-emitting layer. According to the detection results, in the organic light-emitting layer, the exciton concentration increases on the side closer to the electron blocking layer, and the exciton concentration decreases on the side closer to the hole blocking layer. It can be seen that in device C, electrons and holes are mainly recombined on the side close to the electron blocking layer, and electrons easily enter the electron blocking layer and destroy the electron blocking layer.
  • the efficiency of hole injection into the organic light-emitting layer is improved, the recombination rate of electrons is increased, and the electrons entering the electron blocking layer and the buffer layer are reduced; in addition, the material of the buffer layer has good
  • the electron tolerance can effectively withstand electrons and use holes to recombine with incoming electrons, further reducing the electrons entering the electron blocking layer. Therefore, the organic electroluminescent device of the present disclosure can effectively reduce the impact and destruction of electrons on the electron blocking layer, and improve the lifespan of the organic electroluminescent device.
  • Embodiments of the present disclosure further provide a display panel, which includes any organic electroluminescent device described in the above organic electroluminescent device embodiments.
  • the display panel may be a mobile phone screen, a computer screen, a smart watch screen or other types of display panels. Since the display panel has any of the organic electroluminescent devices described in the above organic electroluminescent device embodiments, it has the same beneficial effects, and details are not described herein again.
  • Embodiments of the present disclosure further provide a display device, where the display device includes any one of the display panel embodiments described above.
  • the display device may be a television, a notebook computer, a smart phone or other types of display devices. Since the display device has any one of the display panels described in the above-mentioned display panel embodiments, it has the same beneficial effects, and details are not described here in the present disclosure.
  • the embodiments of the present disclosure also provide a light-emitting device, the light-emitting device includes any organic electroluminescence device described in the above-mentioned embodiments.
  • the light-emitting device may be a lighting lamp, a warning light or other types of light-emitting devices. Since the light-emitting device has any of the organic electroluminescent devices described in the above-mentioned organic electroluminescent device embodiments, it has the same beneficial effects, which will not be repeated in the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机电致发光器件、显示面板、显示装置和发光装置,属于显示技术领域。有机电致发光器件包括依次层叠设置的阳极、电子阻挡层、缓冲层、有机发光层和阴极;其中,所述缓冲层的厚度在1~100nm范围内;所述缓冲层的材料包括化学式(I)所示的化合物。该有机电致发光器件能够提高器件寿命。

Description

有机电致发光器件、显示面板、显示装置和发光装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种有机电致发光器件、显示面板、显示装置和发光装置。
背景技术
OLED(有机电致发光器件)显示面板具有色域高、轻薄化、可挠性等优点,在显示领域中的应用越来越广泛。在现有技术中,有机发光层的主体材料的最高占据分子轨道(HOMO)能级比较深,且尚未开发出能够与主体材料的最高占据分子轨道能级匹配且在其他性能上满足OLED要求的电子阻挡层材料,这导致电子阻挡层与主体材料之间的最高占据分子轨道能级差比较大,降低了电子阻挡层向有机发光层注入空穴的效率降低。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于克服上述现有技术的不足,提供一种有机电致发光器件和显示面板,提高有机电致发光器件的寿命。
根据本公开的一个方面,提供一种有机电致发光器件,包括依次层叠设置的阳极、电子阻挡层、缓冲层、有机发光层和阴极;其中,所述缓冲层的厚度在1~100nm范围内;
所述缓冲层的材料包括化学式1所示的化合物:
Figure PCTCN2020139629-appb-000001
其中,X为O或者S;Y和Z中的一个为N(R 4)且另一个为单键;
R 1、R 2和R 3各自独立地选自:氢、氘、氟、氰基、卤素、碳原子数 为1~6的烷基、碳原子数为5~10的环烷基、取代或者未取代的总碳原子数为6~30的芳基、取代或者未取代的总碳原子数为4~30的杂芳基,且R 1、R 2和R 3中至少一个选自化学式2所示的基团;
R 4选自碳原子数为1~6的烷基、碳原子数为5~10的环烷基、碳原子数为6~30的芳基、碳原子数为4~30的杂芳基。
在本公开的一种示例性实施例中,R 1、R 2和R 3各自独立地选自氢、取代或未取代的基团Ar,所述未取代的基团Ar选自如下基团:
Figure PCTCN2020139629-appb-000002
所述取代的基团Ar为上述未取代的基团Ar被一个或多个取代基所取代而形成的新基团;取代的基团Ar上的各个取代基各自独立地选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为3~10的环烷基;所述取代的基团Ar的取代基多于1个时,各个取代基相同或不同。
在本公开的一种示例性实施例中,所述缓冲层包括化学式3所示的 化合物和化学式4所示的化合物中的一个或者两个:
Figure PCTCN2020139629-appb-000003
在本公开的一种示例性实施例中,所述有机发光层为用于发出蓝光的有机发光层。
在本公开的一种示例性实施例中,所述缓冲层的厚度,为所述有机发光层的厚度的0.05~0.20倍。
在本公开的一种示例性实施例中,所述有机发光层包括混合的主体材料和客体材料;其中,所述主体材料的最低未占分子轨道能级,比所述缓冲层的材料的最低未占分子轨道能级低至少0.15eV。
在本公开的一种示例性实施例中,所述主体材料的最低未占分子轨道能级在-2.75~-3.15eV范围内。
在本公开的一种示例性实施例中,所述缓冲层的材料的最低未占分子轨道能级低在-2.25~-2.65eV范围内。
在本公开的一种示例性实施例中,所述缓冲层的材料的最高占据分子轨道的能级高于所述主体材料的最高占据分子轨道的能级,且所述缓冲层的材料的最高占据分子轨道的能级在-5.4~-6eV范围内。
在本公开的一种示例性实施例中,所述缓冲层的材料的最高占据分子轨道的能级在-5.5~-5.8eV范围内。
在本公开的一种示例性实施例中,所述主体材料的最高占据分子轨道的能级在-5.8~-6.2eV范围内。
在本公开的一种示例性实施例中,所述电子阻挡层的材料的最高占据分子轨道的能级在-5.25~-5.65eV范围内,且高于所述缓冲层的材料的最高占据分子轨道的能级。
在本公开的一种示例性实施例中,所述主体材料的空穴迁移率小于电子迁移率。
在本公开的一种示例性实施例中,所述缓冲层的材料的激发三重态 能级不低于2.5eV;所述主体材料为热活化延迟荧光材料。
在本公开的一种示例性实施例中,所述缓冲层的材料由化学式1所示的化合物组成。
在本公开的一种示例性实施例中,所述缓冲层的厚度为3~20nm。
根据本公开的另一个方面,提供一种显示面板,包括上述的有机电致发光器件。
根据本公开的另一个方面,提供一种显示装置,包括上述的显示面板。
根据本公开的另一个方面,提供一种发光装置,包括上述的有机电致发光器件。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种实施方式中的有机电致发光器件的结构示意图。
图2为本公开一种实施方式中的有机电致发光器件的结构示意图。
图3为本公开一种实施方式中的有机电致发光器件的部分膜层的能级示意图。
附图标记说明:
100、阳极100;200、阴极200;301、空穴注入层;302、空穴传输层;303、电子阻挡层;304、缓冲层;305、有机发光层;306、空穴阻挡层;307、电子传输层;308、电子注入层。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式 能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
相关技术中,有机电致发光器件可以包括层叠设置的空穴传输层、电子阻挡层和有机发光层。有机发光层可以为主体材料和客体材料的混合膜层,其中主体材料用于传输电子和空穴,并将电子和空穴复合产生的激子传递给客体材料,使得客体材料发光。主体材料的HOMO(最高占据分子轨道)能级一般比较深,电子阻挡层的HOMO能级高于主体材料的HOMO能级,以便提高空穴传输层向有机发光层注入空穴的效率。然而,在相关技术中,尚未找到HOMO能级比较深且在电化学稳定性、空穴迁移率等其他特性均满足要求的电子阻挡层材料。这使得当前使用的电子阻挡层材料的HOMO能级与主体材料的HOMO能级之间的能级差比较大,导致空穴在电子阻挡层与有机发光层的界面处堆积,制约了向有机发光层注入空穴的效率的进一步提升。
本公开提供一种有机电致发光器件,参见图1,有机电致发光器件包括依次层叠设置的阳极100、空穴传输层302、电子阻挡层303、缓冲层304、有机发光层305和阴极200;其中,所述缓冲层304的厚度在1~100nm范围内。
所述缓冲层304的材料包括化学式1所示的化合物:
Figure PCTCN2020139629-appb-000004
其中,X为O或者S;Y和Z中的一个为N(R 4)且另一个为单键;
R 1、R 2和R 3各自独立地选自:氢、氘、氟、氰基、卤素、碳原子数为1~6的烷基、碳原子数为5~10的环烷基、取代或者未取代的总碳原子数为6~30的芳基、取代或者未取代的总碳原子数为4~30的杂芳基,且 R 1、R 2和R 3中至少一个选自化学式2所示的基团;
R 4选自碳原子数为1~6的烷基、碳原子数为5~10的环烷基、碳原子数为6~30的芳基、碳原子数为4~30的杂芳基。
在本公开提供的有机电致发光器件中,缓冲层304的结构如化学式1所示。化学式1所示的化合物的母核具有较大且刚性的共轭平面,因此其具有较深HOMO能级;化学式1所示的化合物还在母核上连接有化学式2所示的9-咔唑基,这可以改善化学式1所示的化合物的空穴迁移率并适当提高其HOMO能级,避免其HOMO能级太低。如此,缓冲层304的HOMO能级可以位于电子阻挡层303的HOMO能级和有机发光层305的主体材料的HOMO能级之间,电子阻挡层303、缓冲层304和有机发光层305中相邻两层之间的HOMO能级差小,减小了空穴从前一膜层向后一膜层注入的能级势垒,进而提高了空穴注入效率。为了缓解化学式1所示的化合物的空穴迁移率不足的缺陷,避免缓冲层304的空穴迁移率不足而导致向有机发光层305的注入空穴的效率严重降低,缓冲层304的厚度控制在1~100nm范围内。如此,该缓冲层304在整体上提高了向有机发光层305注入空穴的效率,这可以提高电子-空穴在有机发光层305内的复合率,减少进入缓冲层304和电子阻挡层303的电子,进而降低电子流对缓冲层304和电子阻挡层303的冲击,减少电子对缓冲层304的材料和电子阻挡层303的材料的破坏,进而提高有机电致发光器件的寿命。不仅如此,该化学式1所示的化合物不含有三芳胺结构,这使得其具有较为适宜的电子云密度,对电子具有足够高的耐受性,可以避免有机发光层305注入的电子导致其结构破坏,提高其电化学稳定性。
本公开的有机电致发光器件中,缓冲层304所采用的化学式1所示的化合物在HOMO能级和电子耐受性等方面均能够满足有机电致发光器件的需求,且通过使得缓冲层304具有小的厚度而降低化学式1所示的化合物的空穴迁移率不足所产生的影响。因此,尽管无法获得能够同时满足具有足够的空穴迁移率、HOMO能级足够深其能够与有机发光层305的主体材料的HOMO能级匹配、能够对电子具有足够高的耐受性等诸多性能要求的材料,本公开的有机电致发光器件通过对缓冲层304的HOMO能级、电子耐受性、空穴迁移率、厚度等不同方面进行平衡,最终使得该缓 冲层304能够提高有机电致发光器件的寿命。
可选地,R 1、R 2和R 3各自独立地选自氢、取代或未取代的基团Ar,所述未取代的基团Ar选自如下基团:
Figure PCTCN2020139629-appb-000005
所述取代的基团Ar为上述未取代的基团Ar被一个或多个取代基所取代而形成的新基团;取代的基团Ar上的各个取代基各自独立地选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为3~10的环烷基;所述取代的基团Ar的取代基多于1个时,各个取代基相同或不同。
如此,化学式1所示的各个取代基中,不包含有二芳胺基,这可以避免二芳胺基导致化学式1所示的化合物上的电子云密度太大,避免导致化学式1所示的化合物对电子的耐受性降低。参见图1,缓冲层304与有机发光层305直接接触,有机发光层305的电子有可能越过能级势垒而进入缓冲层304甚至电子阻挡层303。如果化学式1所示的化合物对电子的耐 受性不足,将容易在电子流的冲击下而破坏,进而导致有机电致发光器件的寿命降低。当然地,可以理解的是,由于本公开的化合物没有通过取代基大幅提高其电子云密度,尤其是没有形成三芳胺类结构,因此其空穴迁移率受到影响,这是本公开化学式1所示的化合物在HOMO能级、电化学稳定性和空穴迁移率之间进行的平衡。
在本公开的一种实施方式中,所述缓冲层304包括化学式3所示的化合物或者化学式4所示的化合物:
Figure PCTCN2020139629-appb-000006
在本公开的一种实施方式中,所述缓冲层304的材料由化学式1所示的化合物组成。
在本公开的一种实施方式中,所述有机发光层305为蓝色有机发光层,即用于发出蓝光的有机发光层305,尤其是可以为用于发出蓝色荧光的有机发光层305。相较于其他颜色的有机发光层305,蓝色有机发光层305中的主体材料的HOMO能级更深(更低),因此更难以获得HOMO能级与之匹配且其他性能完全满足要求的缓冲层304材料。尤其是在一些显示面板中,用于发出不同颜色的有机电致发光器件的空穴传输层302材料可以完全相同,以达成简化工艺的目的。而不同颜色的有机电致发光器件的有机发光层305的主体材料对HOMO能级的要求不同,蓝色有机发光层305中的主体材料的HOMO能级更深;这使得蓝色有机发光层305中的主体材料与空穴传输层302之间的HOMO能级差更大,更难以获得合适的电子阻挡层303材料。另外,由于空穴难以注入至有机发光层305,这使得有机发光层305中的电子更容易跃迁至电子阻挡层,容易导致电子阻挡层的材料被电子破坏,进而导致有机电致发光器件的寿命降低。
而本公开的缓冲层304的材料在HOMO能级、电化学稳定性、空穴迁移率和厚度之间进行平衡,以实现在整体上提高蓝色有机电致发光器件的性能的提高,尤其是实现寿命的提高。
可选地,参见图3,所述缓冲层304的材料的HOMO能级高于所述主体材料的HOMO能级。在本公开的一种实施方式中,所述缓冲层304的材料的HOMO能级在-5.4~-6eV范围内。进一步地,所述缓冲层304的材料的HOMO能级在-5.5~-5.8eV范围内。
在本公开的另一种实施方式中,所述主体材料的HOMO能级在-5.8~-6.2eV范围内。
可选地,参见图3,所述缓冲层304的材料的HOMO能级低于所述电子阻挡层303的材料的HOMO能级。在本公开的一种实施方式中,所述电子阻挡层303的材料的HOMO能级在-5.25~-5.65eV范围内。
可选地,参见图3,所述有机发光层305的主体材料的LUMO(最低未占分子轨道)能级,比所述缓冲层304的材料的LUMO能级低至少0.15eV。该缓冲层304的LUMO能级可以高于发光层主体材料的LUMO能级,使得该缓冲层304能够实现一定的电子阻挡作用。在本公开的一种实施方式中,所述主体材料的LUMO能级在-2.75~-3.15eV范围内。在本公开的另一种实施方式中,所述缓冲层304的材料的LUMO能级低在-2.25~-2.65eV范围内。
可选地,缓冲层304的材料的LUMO能级可以与电子阻挡层303的LUMO能级接近,两者之间的能级差可以不大于0.3eV。在本公开的一种实施方式中,电子阻挡层303的LUMO能级在-2.2~-2.6eV范围内。
可选地,所述主体材料的空穴迁移率小于电子迁移率。如此,在有机发光层305内,空穴和电子复合的复合中心靠近缓冲层304一侧。这需要缓冲层304对电子具有较好的阻挡作用且能够耐受电子流的冲击,本公开的化学式1所示的化合物可以满足以上需求。另一方面,由于空穴和电子复合的复合中心靠近缓冲层304一侧,因此减薄有机发光层305不会导致空穴-电子复合率的明显降低,不会导致有机电致发光器件的发光效率的下降。另外,由于主体材料对电子的传输速率比较快,因此如果不设置该缓冲层304,则很容易产生电子流冲击电子阻挡层303的情况,这将会导致电子阻挡层303的材料在电子流的冲击下出现破坏,进而降低有机电致发光器件的寿命。本公开中,该缓冲层304可以对电子进行阻挡和缓冲,避免电子流冲击电子阻挡层303,进而提高电子阻挡层303的材料寿命和 提高有机电致发光器件的寿命。
可选地,所述主体材料为热活化延迟荧光材料,如此可以将三重态激子转化为单重态激子,客体材料可以利用单重态激子而发出荧光。如此,该有机电致发光器件可以同时利用三重态激子和单重态激子,具有高的内量子效率。进一步地,所述缓冲层304的材料的激发三重态能级不低于2.5eV;如此,该缓冲层304可以阻挡三重态激子的扩散,将三重态激子尽量约束于有机发光层305内,提高有机电致发光器件的内量子效率。在本公开的一种实施方式中,所述缓冲层304的材料的激发三重态能级不低于2.6eV。
参见图1,本公开提供的有机电致发光器件包括相对设置的阴极200和阳极100。其中,阳极100的材料可以选自具有大逸出功(功函数,work function)的导电材料,以助于空穴注入至阴极200和阳极100之间的有机层。示例性地,阳极100的材料可以选自金属或者合金,例如可以选自镍、铂、钒、铬、铜、锌和金或它们的合金;也可以选自金属氧化物,例如可以选自氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO)等;也可以选自金属氧化物和金属的组合,例如可以选自ZnO:Al或SnO 2:Sb等;还可以选自导电聚合物,例如选自聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺等。
阴极200的材料可以选自具有小逸出功的材料,以助于电子注入至阴极200和阳极100之间的有机层。示例性地,阴极200的材料可以选自金属或者合金,例如选自镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金。本公开对阴极200和阳极100的材料不做特殊的限定。
可以理解的是,阴极200和阳极100中的至少一个为透明电极,以保证有机电致发光器件向外出射光线。
有机电致发光器件可以包括空穴传输层302,空穴传输层302设于电子阻挡层303与阳极100之间。空穴传输层302用于将空穴从阳极100传输至电子阻挡层303,以提高向电子阻挡层303注入空穴的效率并降低有机电致发光器件的驱动电压。空穴传输层302可以包括一种空穴传输材料,也可以包括多种不同的空穴传输材料,本公开对此不做特殊的限定。可选 地,空穴传输层302的材料可以为双芳胺类化合物、单芳胺类化合物或者其他类型的化合物,其厚度可以为90~130nm。示例性地,在本公开的一种实施方式中,空穴传输层302的材料为NPB,厚度为100nm。
可选地,参见图2,有机电致发光器件还可以包括空穴注入层301,空穴注入层301可以位于空穴传输层302和阳极100之间,用于将空穴从阳极100传输至空穴传输层302,提高空穴向空穴传输层302注入空穴的效率。空穴注入层301可以包括一种材料,也可以包括多种不同的材料,本公开对此不做特殊的限定。
可选地,电子阻挡层303位于空穴传输层302和缓冲层304之间,其用于向缓冲层304注入空穴,进而向有机发光层305注入空穴。由于缓冲层304的存在,因此空穴无需直接克服电子阻挡层303与有机发光层305之间的大的能级势垒,而仅需克服电子阻挡层303与缓冲层304之间的小的能级势垒、缓冲层304与有机发光层305之间的小的能级势垒,这有助于降低有机电致发光器件的驱动电压,克服缓冲层304的空穴迁移率不足而对驱动电压产生的不利影响;同样的,这也有助于提高向有机发光层305注入空穴的效率,克服缓冲层304的空穴迁移率不足而对空穴注入效率的不利影响。
可选地,电子阻挡层303具有较高的LUMO(最低未占分子轨道)能级,使得电子阻挡层303的LUMO能级与有机发光层305主体材料之间的LUMO能级的能级差较大,进而使得其能够阻挡电子流,避免电子流进入空穴传输层302而导致空穴传输材料破坏,提高有机电致发光器件的寿命。
可选地,电子阻挡层303可以选自芳胺咔唑类材料、芳胺呋喃类材料或者其他类型的材料,其厚度可以为3~20nm。示例性地,在本公开的一种实施方式中,电子阻挡层303的材料可以为TCTA,厚度可以为10nm。
缓冲层304位于电子阻挡层303和有机发光层305之间,其厚度可以为1~100nm。在一些实施方式中,所述缓冲层304的厚度为所述有机发光层305的厚度的0.05~0.20倍。如此,可以通过减薄有机电致发光器件的有机发光层305并增设缓冲层304的方式,来提高有机电致发光器件的性能。在另外一些实施方式中,缓冲层304的厚度可以为3~20nm。示例性, 缓冲层304的厚度为5nm。
有机发光层305包括混合的主体材料和客体材料,其中,客体材料的重量百分比小于主体材料的重量百分比。空穴和电子在有机发光层305内复合形成激子,主体材料可以将激子传递给客体材料,使得客体材料发出荧光或者磷光。
可选地,在有机发光层305中,客体材料的重量比可以为1%~8%,以避免客体材料浓度太大而发生荧光淬灭。示例性地,在本公开的一种实施方式中,在有机发光层305中,客体材料的重量比可以为5%。
可选地,有机发光层305的厚度可以为20~60nm。示例性地,在本公开的一种实施方式中,有机发光层305的厚度可以为40nm。
可选地,主体材料可以为蒽类材料,例如可以为ADN。
可选地,客体材料可以为荧光材料或者磷光材料。在本公开的一种实施方式中,客体材料为用于发出蓝光的荧光材料,其材料可以为芳胺乙烯类材料、芳胺芘类材料、硼氮类材料或者其他类型的材料。示例性地,在本公开的一种实施方式中,客体材料可以为DSA-Ph。
可选地,参见图2,有机电致发光器件还可以包括空穴阻挡层306和电子传输层307,空穴阻挡层306设于有机发光层305远离阳极100的一侧,电子传输层307设于空穴阻挡层306和阴极200之间。
空穴阻挡层306用于阻挡空穴向电子传输层307的扩散,避免电子传输层307的材料被空穴破坏。空穴阻挡层306的LUMO能级还可以位于主体材料的LUMO能级和电子传输层307的LUMO能级之间,以便提高电子传输层307向有机发光层305注入电子的效率。空穴阻挡层306的材料可以为三嗪类材料、苯并咪唑类材料或者其他类型的材料。示例性地,在本公开的一种实施方式中,空穴阻挡层306的材料可以为TPBi。空穴阻挡层306的厚度可以在3~20nm范围内。示例性地,在本公开的一种实施方式中,空穴阻挡层306的厚度可以为10nm。
电子传输层307用于提高阴极200向有机发光层305的电子注入效率,其可以选用三嗪类材料、氰基类材料、菲啰啉类材料或者其他类型材料。示例性地,在本公开的一种实施方式中,电子传输层307的材料可以为BPhen。电子传输层307的厚度可以在20~60nm范围内。示例性地,在本 公开的一种实施方式中,电子传输层307的厚度可以为40nm范围。
可选地,参见图1,有机电致发光器件还可以包括电子注入层308,电子注入层308位于电子传输层307与阴极200之间,用于提高阴极200向电子传输层307注入电子的效率。
下面,示例性地提供三种不同的有机电致发光器件以及三个有机电致发光器件性能测试比较结果,以便对本公开的有机电致发光器件的结构和性能做进一步的解释和说明。
器件A:
参见图1,器件A包括依次层叠设置的阳极100、空穴传输层302、电子阻挡层303、缓冲层304、有机发光层305、空穴阻挡层306、电子传输层307和阴极200。其中,阳极100的材料为ITO,厚度为10nm。空穴传输层302的材料为NPB,厚度为100nm。电子阻挡层303的材料为TCTA,厚度为10nm。缓冲层304的材料为化学式3所示的化合物,厚度为5nm。有机发光层305的厚度为40nm,其中,主体材料为ADN,客体材料为DAS-Ph;客体材料在有机发光层305中的质量占比为5%。空穴阻挡层306的材料为TPBi,厚度为10nm。电子传输层307的材料为BPhen,厚度为40nm。阴极200的材料为镁银合金(镁银的质量比为9:1),厚度为80nm。
器件B:
参见图1,器件B包括依次层叠设置的阳极100、空穴传输层302、电子阻挡层303、缓冲层304、有机发光层305、空穴阻挡层306、电子传输层307和阴极200。其中,阳极100的材料为ITO,厚度为10nm。空穴传输层302的材料为NPB,厚度为100nm。电子阻挡层303的材料为TCTA,厚度为10nm。缓冲层304的材料为化学式4所示的化合物,厚度为5nm。有机发光层305的厚度为40nm,其中,主体材料为ADN,客体材料为DAS-Ph;客体材料在有机发光层305中的质量占比为5%。空穴阻挡层306的材料为TPBi,厚度为10nm。电子传输层307的材料为BPhen,厚度为40nm。阴极200的材料为镁银合金(镁银的质量比为9:1),厚度为80nm。
器件C:
器件C包括依次层叠设置的阳极、空穴传输层、电子阻挡层、有机发光层、空穴阻挡层、电子传输层和阴极。其中,阳极的材料为ITO,厚度 为10nm。空穴传输层的材料为NPB,厚度为100nm。电子阻挡层的材料为TCTA,厚度为10nm。有机发光层的厚度为45nm,其中,主体材料为ADN,客体材料为DAS-Ph;客体材料在有机发光层中的质量占比为5%。空穴阻挡层的材料为TPBi,厚度为10nm。电子传输层的材料为BPhen,厚度为40nm。阴极的材料为镁银合金(镁银的质量比为9:1),厚度为80nm。
其中,各个化合物的结构式如下:
Figure PCTCN2020139629-appb-000007
在上述器件A、器件B和器件C中,器件A的缓冲层的材料为化学 式3所示的化合物;器件B的缓冲层的材料为化学式4所示的化合物;器件C没有设置缓冲层,且器件C的有机发光层的厚度等于器件A的缓冲层和有机发光层的厚度之和。
在15mA/cm 2的电流密度下,对器件A、器件B和器件C的驱动电压、发光效率和T95寿命进行测试。将器件C的测试数据作为100%,对器件A和器件B的测试数据进行归一化处理。如此,获得器件A、器件B和器件C的测试结果,请参见表1。
表1:器件A~C的性能测试结果
有机电致发光器件 驱动电压(V) 发光效率(Cd/A) T95寿命(h)
器件C 100% 100% 100%
器件A 102% 104% 117%
器件B 101% 103% 115%
根据表1可以看出,相较于器件C,器件A和器件B的驱动电压并没有显著的提升,且发光效率也没有出现降低的情形,但是有机电致发光器件的寿命得到了显著的提升。这表明,本公开提供的有机电致发光器件可以在保持驱动电压、发光效率等性能的前提下,提高有机电致发光器件的寿命。
本公开还在不同的电流密度(单位是mA/cm 2)下对器件A~器件C的(单位是cd/A)进行了测试,发现在各个电流密度下,器件A和器件B的电流效率均高于器件C或者与器件C基本持平。
本公开还在10mA/cm 2的电流密度下测试了各个器件的亮度随时间变化情况,发现随着时间的延长,器件C的亮度(单位是尼特)下降程度显著高于器件A和器件B,器件A和器件B在各个时间段的亮度基本持平。
本公开还测试了各个器件在不同的驱动电压下的电流密度,发现各个器件的启动电压基本一致;在相同的驱动电压下,各个器件的电流密度基本一致,且器件A的电流密度略大于器件B的电流密度,器件B的电流密度略大于器件C的电流密度。
所有这些测试均表明,器件A和器件B在发光效率、电流效率、驱动电压等方面与器件C基本持平,没有出现性能下降的情况;器件A和 器件B在器件寿命方面显著优于器件C;这表明,相较于没有设置缓冲层的有机电致发光器件,本公开的有机电致发光器件的器件寿命得到了显著的提升。
本公开还检测了器件C中的激子在有机发光层中的分布情况。根据检测结果,在有机发光层中,越靠近电子阻挡层的一侧激子浓度越大,越靠近空穴阻挡层的一侧激子浓度越小。由此可见,在器件C中,电子-空穴主要在靠近电子阻挡层的一侧复合,电子容易进入电子阻挡层而破坏电子阻挡层。而在器件A和器件B中,由于提高了向有机发光层注入空穴的效率,提高了电子的复合率,减少了进入电子阻挡层和缓冲层的电子;另外,缓冲层的材料具有很好的电子耐受性,可以有效的耐受电子并利用空穴与进入的电子复合,进一步减少进入电子阻挡层的电子。因此,本公开的有机电致发光器件,可以有效的减少电子对电子阻挡层的冲击和破坏,提高有机电致发光器件的寿命。
本公开实施方式还提供一种显示面板,该显示面板包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该显示面板可以为手机屏幕、电脑屏幕、智能手表屏幕或者其他类型的显示面板。由于该显示面板具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本公开在此不再赘述。
本公开实施方式还提供一种显示装置,该显示装置包括上述显示面板实施方式所描述的任意一种。该显示装置可以为电视机、笔记本电脑、智能手机或者其他类型的显示装置。由于该显示装置具有上述显示面板实施方式所描述的任意一种显示面板,因此具有相同的有益效果,本公开在此不再赘述。
本公开实施方式还提供一种发光装置,该发光装置包括上述实施方式所描述的任意一种有机电致发光器件。该发光装置可以为照明灯、警示灯或者其他类型的发光装置。由于该发光装置具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本公开在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或 者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (19)

  1. 一种有机电致发光器件,包括依次层叠设置的阳极、电子阻挡层、缓冲层、有机发光层和阴极;其中,所述缓冲层的厚度在1~100nm范围内;
    所述缓冲层的材料包括化学式1所示的化合物:
    Figure PCTCN2020139629-appb-100001
    其中,X为O或者S;Y和Z中的一个为N(R 4)且另一个为单键;
    R 1、R 2和R 3各自独立地选自:氢、氘、氟、氰基、卤素、碳原子数为1~6的烷基、碳原子数为5~10的环烷基、取代或者未取代的总碳原子数为6~30的芳基、取代或者未取代的总碳原子数为4~30的杂芳基,且R 1、R 2和R 3中至少一个选自化学式2所示的基团;
    R 4选自碳原子数为1~6的烷基、碳原子数为5~10的环烷基、碳原子数为6~30的芳基、碳原子数为4~30的杂芳基。
  2. 根据权利要求1所述的有机电致发光器件,其中,R 1、R 2和R 3各自独立地选自氢、取代或未取代的基团Ar,所述未取代的基团Ar选自如下基团:
    Figure PCTCN2020139629-appb-100002
    Figure PCTCN2020139629-appb-100003
    所述取代的基团Ar为上述未取代的基团Ar被一个或多个取代基所取代而形成的新基团;取代的基团Ar上的各个取代基各自独立地选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为3~10的环烷基;所述取代的基团Ar的取代基多于1个时,各个取代基相同或不同。
  3. 根据权利要求1所述的有机电致发光器件,其中,所述缓冲层包括化学式3所示的化合物和化学式4所示的化合物中的一个或者两个;
    Figure PCTCN2020139629-appb-100004
  4. 根据权利要求1所述的有机电致发光器件,其中,所述有机发光层为用于发出蓝光的有机发光层。
  5. 根据权利要求1所述的有机电致发光器件,其中,所述缓冲层的厚度,为所述有机发光层的厚度的0.05~0.20倍。
  6. 根据权利要求1所述的有机电致发光器件,其中,所述有机发光层包括混合的主体材料和客体材料;其中,所述主体材料的最低未占分子轨道能级,比所述缓冲层的材料的最低未占分子轨道能级低至少0.15eV。
  7. 根据权利要求6所述的有机电致发光器件,其中,所述主体材料 的最低未占分子轨道能级在-2.75~-3.15eV范围内。
  8. 根据权利要求6所述的有机电致发光器件,其中,所述缓冲层的材料的最低未占分子轨道能级低在-2.25~-2.65eV范围内。
  9. 根据权利要求6所述的有机电致发光器件,其中,所述缓冲层的材料的最高占据分子轨道的能级高于所述主体材料的最高占据分子轨道的能级,且所述缓冲层的材料的最高占据分子轨道的能级在-5.4~-6eV范围内。
  10. 根据权利要求9所述的有机电致发光器件,其中,所述缓冲层的材料的最高占据分子轨道的能级在-5.5~-5.8eV范围内。
  11. 根据权利要求9所述的有机电致发光器件,其中,所述主体材料的最高占据分子轨道的能级在-5.8~-6.2eV范围内。
  12. 根据权利要求9所述的有机电致发光器件,其中,所述电子阻挡层的材料的最高占据分子轨道的能级在-5.25~-5.65eV范围内,且高于所述缓冲层的材料的最高占据分子轨道的能级。
  13. 根据权利要求6所述的有机电致发光器件,其中,所述主体材料的空穴迁移率小于电子迁移率。
  14. 根据权利要求6所述的有机电致发光器件,其中,所述缓冲层的材料的激发三重态能级不低于2.5eV;所述主体材料为热活化延迟荧光材料。
  15. 根据权利要求1所述的有机电致发光器件,其中,所述缓冲层的材料由化学式1所示的化合物组成。
  16. 根据权利要求1所述的有机电致发光器件,其中,所述缓冲层的厚度为3~20nm。
  17. 一种显示面板,包括权利要求1~16任意一项所述的有机电致发光器件。
  18. 一种显示装置,包括权利要求17所述的显示面板。
  19. 一种发光装置,包括权利要求1~16任意一项所述的有机电致发光器件。
PCT/CN2020/139629 2020-12-25 2020-12-25 有机电致发光器件、显示面板、显示装置和发光装置 WO2022134074A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/139629 WO2022134074A1 (zh) 2020-12-25 2020-12-25 有机电致发光器件、显示面板、显示装置和发光装置
CN202080003696.7A CN114981274A (zh) 2020-12-25 2020-12-25 有机电致发光器件、显示面板、显示装置和发光装置
US17/611,676 US20220416175A1 (en) 2020-12-25 2020-12-25 Organic electroluminescence device, display panel, display device, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139629 WO2022134074A1 (zh) 2020-12-25 2020-12-25 有机电致发光器件、显示面板、显示装置和发光装置

Publications (1)

Publication Number Publication Date
WO2022134074A1 true WO2022134074A1 (zh) 2022-06-30

Family

ID=82158705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139629 WO2022134074A1 (zh) 2020-12-25 2020-12-25 有机电致发光器件、显示面板、显示装置和发光装置

Country Status (3)

Country Link
US (1) US20220416175A1 (zh)
CN (1) CN114981274A (zh)
WO (1) WO2022134074A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179645A1 (ja) * 2012-05-30 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2014057659A1 (ja) * 2012-10-12 2014-04-17 出光興産株式会社 化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2015019019A (ja) * 2013-07-12 2015-01-29 出光興産株式会社 有機エレクトロルミネッセンス素子
CN107619412A (zh) * 2016-07-15 2018-01-23 株式会社Lg化学 新的杂环化合物及利用它的有机发光元件
KR20180138422A (ko) * 2017-06-21 2018-12-31 성균관대학교산학협력단 지연형광 재료 및 이를 발광층의 호스트 재료 또는 도펀트 재료로 포함하는 유기발광장치
KR20190010499A (ko) * 2017-07-20 2019-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179645A1 (ja) * 2012-05-30 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2014057659A1 (ja) * 2012-10-12 2014-04-17 出光興産株式会社 化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2015019019A (ja) * 2013-07-12 2015-01-29 出光興産株式会社 有機エレクトロルミネッセンス素子
CN107619412A (zh) * 2016-07-15 2018-01-23 株式会社Lg化学 新的杂环化合物及利用它的有机发光元件
KR20180138422A (ko) * 2017-06-21 2018-12-31 성균관대학교산학협력단 지연형광 재료 및 이를 발광층의 호스트 재료 또는 도펀트 재료로 포함하는 유기발광장치
KR20190010499A (ko) * 2017-07-20 2019-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자

Also Published As

Publication number Publication date
US20220416175A1 (en) 2022-12-29
CN114981274A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
TWI673894B (zh) 有機電致發光器件
CN109088008B (zh) 一种有机发光器件及显示面板
CN102439746B (zh) 用于有机电子器件的内部连接器
TW543337B (en) Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
CN108807481B (zh) 一种有机发光显示面板及显示装置
US11930651B2 (en) Organic luminescent material, organic electroluminescent element and display device
CN108011047B (zh) 一种红光有机电致发光器件
CN109817818B (zh) 一种有机电致发光器件和显示装置
CN108011040B (zh) 一种绿光有机电致发光器件
EP2747160A2 (en) Organic light emitting diode
TW201210101A (en) Organic electroluminescent element
CN102738414A (zh) 一种蓝光荧光有机发光二极管及其制备方法
JP2006066380A (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
KR20060011066A (ko) 유기 전계 발광 소자
CN105514292A (zh) 一种oled器件及其制作方法、oled显示器
JP4565921B2 (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
CN109599493A (zh) 一种有机电致发光器件
CN101569027B (zh) 具有由双极材料制成的阻挡层的有机发光二极管
WO2022078094A1 (zh) 发光器件、显示基板
WO2022134074A1 (zh) 有机电致发光器件、显示面板、显示装置和发光装置
JP2007318130A (ja) 有機発光デバイス、発光層、およびその製造方法
US20220102648A1 (en) Organic light-emitting devices, display panels and display apparatuses
WO2022227458A1 (zh) 有机电致发光器件及显示装置
US8823050B2 (en) Organic light-emitting device
CN109994632B (zh) 有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 20.10.2023