WO2022134051A1 - 一种可透光复合结构及其制备工艺 - Google Patents

一种可透光复合结构及其制备工艺 Download PDF

Info

Publication number
WO2022134051A1
WO2022134051A1 PCT/CN2020/139563 CN2020139563W WO2022134051A1 WO 2022134051 A1 WO2022134051 A1 WO 2022134051A1 CN 2020139563 W CN2020139563 W CN 2020139563W WO 2022134051 A1 WO2022134051 A1 WO 2022134051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
parts
fabric
light
composite structure
Prior art date
Application number
PCT/CN2020/139563
Other languages
English (en)
French (fr)
Inventor
宋伟锋
喻冬青
管世伟
刘建红
Original Assignee
加通汽车内饰(常熟)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加通汽车内饰(常熟)有限公司 filed Critical 加通汽车内饰(常熟)有限公司
Priority to PCT/CN2020/139563 priority Critical patent/WO2022134051A1/zh
Publication of WO2022134051A1 publication Critical patent/WO2022134051A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present application relates to the technical field of decorative materials, in particular to a light-transmitting composite structure and a preparation process thereof.
  • the skin materials are usually made of PVC and PU materials. These two types of materials cannot meet the light-weight requirements of future vehicles due to their high density.
  • the skin structure made of PVC or PU is combined with ordinary 3D spacer fabric to make composite structure for vehicle interior.
  • the existing ordinary 3D fabric has a certain cushioning and resilience performance, the light transmittance is very poor, which makes the vehicle interior The overall light transmission is poor.
  • the main purpose of the present application is to provide a light-transmitting composite structure and a preparation process thereof, so as to solve the above problems.
  • the present application provides a light-transmitting composite structure, comprising a thermoplastic polyolefin skin layer and a 3D fabric buffer layer laminated on one side of the skin layer,
  • the skin material raw materials of the skin layer include PP, PE, color masterbatch, olefin copolymer, vulcanized EPDM and auxiliary agents; the skin layer is prepared by mixing each of the skin material raw materials and then extruding; Among them, the vulcanized EPDM rubber is prepared by dispersing the EPDM rubber in the PP and/or PE plastic matrix; the raw material weight components of the skin material are as follows: PP does not exceed 10 parts, PE does not exceed 10 parts, 20-70 parts of olefin copolymer, no more than 30 parts of vulcanized EPDM rubber, 0.5-2 parts of color masterbatch, 0.1-0.5 part of auxiliary agent, and the total amount of PP, PE, olefin copolymer and vulcanized ethylene-propylene rubber The weight is 100 parts; the light transmittances of the PP, PE and olefin copolymers are all above 80%;
  • the 3D fabric buffer layer includes a first fabric layer and a second fabric layer that are arranged parallel to each other and spaced apart, and further includes a support layer connecting the first fabric layer and the second fabric layer, the first fabric layer having an arrangement of The first mesh of the array, the second fabric layer has second meshes arranged in an array, the support layer is formed by connecting wires, and at least 80% of the supporting wires in the connecting wires are arranged in an I-shape.
  • a pattern layer is further provided between the skin layer and the 3D fabric buffer layer, the pattern layer includes a hollow part for light transmission and a light blocking part for blocking light, the hollow part A pattern is formed together with the light blocking portion.
  • a pattern layer is further provided on the side of the 3D fabric buffer layer facing away from the skin layer, the pattern layer includes a hollow part for light transmission and a light blocking part for blocking light, the hollow part A pattern is formed together with the light blocking portion.
  • the thickness of the skin layer is 0.1-1.0 mm.
  • the thickness ratio of the skin layer and the 3D fabric buffer layer is 1:1-1:40.
  • the composition of the skin material raw materials by weight is specifically: 5 parts of PP, 5 parts of PE, 70 parts of olefin copolymer, 20 parts of vulcanized EPDM rubber, 1.5 parts of color masterbatch, and 0.4 parts of auxiliary agent.
  • the olefin copolymer is at least one of a propylene-ethylene copolymer, an ethylene-octene copolymer, an ethylene-butene copolymer and an ethylene-butene-octene copolymer.
  • the present application provides a preparation process for forming the above light-transmitting composite structure, the preparation process includes: forming the skin layer, forming the 3D fabric buffer layer, and heating The step of compounding or compounding the skin layer and the 3D fabric buffer layer with transparent glue or transparent adhesive film, wherein,
  • the step of forming the skin layer comprises: mixing no more than 10 parts of PP, no more than 10 parts of PE, 20-70 parts of olefin copolymer, no more than 30 parts of vulcanized ethylene-propylene rubber, 0.5-2 parts of The color masterbatch and 0.1-0.5 parts of auxiliary agents are mixed, and the skin layer is obtained by calendering or extrusion molding;
  • the step of forming the 3D fabric buffer layer includes: using fabric threads to weave the first fabric layer and the second fabric layer respectively, and using connecting threads to connect the first fabric layer and the second fabric layer, so that the At least 80% of the connecting threads between the first fabric layer and the second fabric layer are arranged in an I-shape to form the support layer.
  • the present application provides a vehicle interior including the light-permeable composite structure as described above.
  • the present application provides a decoration material, comprising the above-mentioned light-transmitting composite structure.
  • the skin layer ordinary EPDM rubber is first vulcanized into vulcanized EPDM rubber, which significantly improves the strength performance of the rubber material and can ensure the skin layer.
  • the doping amount of the completely opaque rubber material is greatly reduced, and high light transmittance is added to the part where the doping amount of the rubber material is reduced to enhance and toughen.
  • the 3D fabric buffer layer in order to ensure that more light passes through, most of the supporting wire parts are set as I-type, and the maximum reduction is seen from the direction perpendicular to the first fabric layer.
  • the supporting wire part located in the mesh hole further ensures the passage of more light, thereby significantly improving the light transmittance of the composite structure including the skin material and the 3D fabric buffer layer, and improving the light transmittance decorative effect.
  • 1 is a schematic structural diagram of a light-permeable composite structure provided by the application.
  • FIG. 2 is a schematic structural diagram of two structural units of a hexagonal 3D fabric with the first mesh and the second mesh provided by the application;
  • FIG. 3 is a schematic structural diagram of four structural units of a 3D fabric with a first mesh and a second mesh provided in accordance with the present application;
  • FIG. 4 is a schematic structural diagram of four structural units of a 3D fabric in which the first mesh and the second mesh provided by the application are dislocated;
  • FIG. 5 is a schematic diagram illustrating the dislocation size in the present application.
  • the present application improves the skin material and buffer material of vehicle interiors, so that their respective light transmission effects are significantly improved, and the combination of the two also has excellent light transmission. performance.
  • the present application provides a light-transmitting composite structure, comprising a thermoplastic polyolefin skin layer 10 and a 3D fabric buffer layer 20 laminated on one side of the skin layer, wherein,
  • the skin material raw materials of the skin layer 10 include PP, PE, color masterbatch, olefin copolymer, vulcanized EPDM rubber and auxiliary agents; the skin layer 10 is made by mixing and extruding the skin material raw materials. Obtained; wherein, the vulcanized EPDM rubber is prepared by dispersing the EPDM rubber in PP and/or PE plastic matrix; the weight parts of the skin material raw materials are as follows: PP does not exceed 10 parts, and PE does not exceed 10 parts.
  • the 3D fabric buffer layer 20 includes a first fabric layer 100 and a second fabric layer 200 that are parallel and spaced apart from each other, and further includes a support connecting the first fabric layer 100 and the second fabric layer 200 layer 300, the first fabric layer 100 has first meshes 110 arranged in an array, the second fabric layer 200 has second meshes 210 arranged in an array, the support layer 300 is formed by connecting wires 310, At least 80% of the supporting wire portions 311 of the connecting wires 310 are arranged in an I-shape.
  • the skin material of the interior skin layer of the vehicle it needs to be wrapped on the interior frame of the vehicle in a high temperature environment to complete the process of manufacturing the interior of the vehicle.
  • the above-mentioned coating process is completed in a high temperature environment in order to soften the skin material, so as to facilitate the stretching and reshaping of the skin material when the mold is closed, because the processing process is usually carried out in a high temperature environment between 170-230 degrees Celsius.
  • the existing TPO skin material as an environment-friendly lightweight material for vehicle interiors, has the following problems in its raw material ratio:
  • a high content of EPDM rubber needs to be added to the raw materials.
  • the amount of EPDM rubber added may be as high as 80%, and the light transmittance of the rubber is extremely low, which significantly affects the
  • the light transmittance of the prepared vehicle skin material causes the light transmittance of the existing TPO skin material to be lower than 0.5%. If the content of EPDM rubber is directly reduced, it will significantly affect the tensile strength and other indicators of the material, resulting in poor durability and feel.
  • the skin material raw materials of the skin layer include PP, PE, color masterbatch, olefin copolymer, vulcanized EPDM rubber and auxiliary agents;
  • the raw materials are mixed and then extruded;
  • the vulcanized EPDM rubber is prepared by dispersing the EPDM rubber in PP and/or PE plastic matrix;
  • the weight components of the skin material raw materials are as follows: PP does not exceed 10 parts, PE not more than 10 parts, olefin copolymer 20-70 parts, vulcanized EPDM rubber not more than 30 parts, color masterbatch 0.5-2 parts, additives 0.1-0.5 parts, and PP, PE, olefin copolymerization
  • the total weight of the compound and the vulcanized EPDM rubber is 100 parts; the light transmittances of the PP, PE and olefin copolymers are all above 80%.
  • the vulcanized EPDM rubber is used instead of the EPDM rubber.
  • the vulcanized EPDM rubber has good properties such as strength and toughness in the subsequent processing of the skin material. Significantly improved, although the light transmittance of the vulcanized EPDM rubber is not high, but compared with the unvulcanized EPDM rubber, higher strength and toughness can be achieved through a lower content.
  • the content of rubber material in the skin material is significantly reduced; then, for the part with reduced rubber content, the olefin copolymer material with high light transmittance is used instead, which can effectively reduce the obstruction to light and ensure that more light can pass through,
  • the light transmittance of the skin material is greatly improved, and the olefin copolymer material also has an excellent strengthening and toughening effect.
  • the strength and toughness of the skin material in the subsequent processing can still be guaranteed. .
  • Transmittance can characterize the ability of light to pass through a medium. Specifically, transmittance is the percentage of the luminous flux passing through the medium to its incident luminous flux. In order to improve the light transmittance of the skin material, it is necessary to increase the light transmittance of its various raw materials as much as possible. Therefore, when selecting the raw materials for the preparation of the skin material, PP, PE and olefin copolymers are all selected as high light transmittance materials with a light transmittance of more than 80%, and the aforementioned light transmittance is measured under the ASTM E1348 standard. of. In this way, on the one hand, the obtained skin material is light in material, and on the other hand, it has good light-transmitting physical properties, and the light transmittance of the obtained thermoplastic polyolefin skin layer can be above 18%.
  • PP and PE materials are used as the skin material raw materials of the skin layer provided in this application, and their function in this application is to adjust the material elongation rate, tensile strength and hardness of the finished skin material, and adapt to the processing of various mold shapes.
  • the auxiliary agent is at least one of antioxidant and light stabilizer.
  • These auxiliaries are all materials that can achieve corresponding functions in the art, for example, the antioxidant can be 1024, 1098 or 1330; the light stabilizer is hindered amine, such as UV-P, UV-234 or UV3808. Due to the low level of additives in the auxiliaries, it will not have any significant effect on the light transmittance of the product.
  • the 3D fabric buffer layer includes a first fabric layer 100 and a second fabric layer 200 that are parallel and spaced apart from each other, and further includes connecting the first fabric layer 100 and a support layer 300 of a second fabric layer 200 having the first meshes 110 arranged in an array, the second fabric layer having the second meshes 210 arranged in an array, the support layer consisting of A connecting wire 310 is formed, and at least 80% of the supporting wire portions 311 of the connecting wire 310 are arranged in an I-shape.
  • the connecting wire 310 may include a supporting wire portion 311 located between two fabric layers and a connecting wire portion 312 woven into the two fabric layers respectively, and each supporting wire portion arranged in an I-shape 311 are substantially parallel, and each supporting wire portion 311 is perpendicular to the first fabric layer 100, or, each supporting wire portion 311 is relative to the first fabric layer 100 with the misalignment between the first mesh 110 and the second mesh 210 tilt.
  • the vertical mentioned here refers to the alignment between the connection position of the support wire portion 311 and the first mesh hole 110 and the connection position of the support wire portion 311 and the second mesh hole 210 , that is, the support wire portion
  • the projection of the connection position of 311 and the first mesh hole 110 on the second fabric layer 200 coincides with the connection position of the support wire portion 311 and the second mesh hole 210.
  • the supporting wire portion 311 located in the mesh hole further ensures the passage of more light.
  • the hexagonal shape of the first mesh and the second mesh in FIG. 2 is just an example
  • the quadrilateral shape of the first mesh and the second mesh in FIG. 3 is just an example
  • the first fabric layer and the The meshes of the second fabric layer can be of various suitable shapes, such as octagonal and the like.
  • each supporting wire portion of the connecting wire is arranged in an I-shape, which is more conducive to light transmission.
  • a part of the supporting wire portion of the connecting wire is arranged in an I-shape, and the other portion of the supporting wire portion is arranged in an I-shape. Then use other setting methods with better support performance, such as V-shaped, X-shaped or a combination of the two.
  • each support wire portion in the connecting wire includes a first support wire portion arranged in an I-shape, and also It includes a second support wire portion arranged in a V-shape and/or an X-shape, and the V-shape arrangement, that is, the shape of the second support wire portion is a V-shape formed by the first wire portion and the second wire portion (the left side is the first wire portion. , the right side is the second line), the upper two ends of the V shape are connected with the connecting line 312 in the first fabric layer 100, and the lower end of the V shape is connected with the connecting line 312 in the second fabric layer 200.
  • the shape of the second support line part is an X shape formed by the third line part and the fourth line part (the third line part is inclined to the right from top to bottom, and the fourth line part is inclined leftward from top to bottom),
  • the upper two ends of the X-shape are connected to the connecting line parts 312 in the first fabric layer 100
  • the lower two end points of the X-shape are connected to the connecting line parts 312 in the second fabric layer 200
  • the number of the first supporting line parts accounts for More than 80% of the total amount of support line parts, and in the embodiment in which the second support line parts are only arranged in a V shape, all the first line parts are parallel to each other, all the third line parts are parallel to each other, and the second support line parts are parallel to each other.
  • the second support portion can be used to strengthen the supporting strength of the light-transmitting fabric.
  • the second support portion is arranged at the edge of the light transmission fabric.
  • the 3D fabric buffer layer is woven from fabric threads 400 and at least the fabric threads 400 form a plurality of meshes.
  • the two fabric layers are the first fabric layer 100 and the second fabric layer 200 respectively, and are formed on the first fabric layer 100
  • the meshes formed in the second fabric layer 200 are the first meshes 110
  • the meshes formed in the second fabric layer 200 are the second meshes 210, wherein the areas of the first meshes 110 and the corresponding second meshes 210 are aligned by 80% to 100% That is, the area where the first mesh hole 110 and the second mesh hole 210 are aligned is 80% to 100% of their respective areas.
  • first mesh hole 110 and the second mesh hole 210 are aligned one by one, the first mesh hole When the area of 110 and the second mesh hole 210 is 100% aligned, for example, referring to FIG. 3 , a first mesh hole 110 and its corresponding second mesh hole 210 form a structural unit, and FIG. 3 shows four structural units whose meshes are quadrilateral.
  • first mesh hole 110 and the second mesh hole 210 are aligned one by one, and each corner of the first mesh hole 110 is connected to the corner of the second mesh hole 210 through the connecting line portion 312 to form a straight shape Columnar structure, when the area alignment of the first mesh hole 110 and the second mesh hole 210 is greater than or equal to 80% and less than 100%, referring to FIG.
  • the first mesh hole 110 and the second mesh hole 210 are arranged in a staggered position , each corner of the first mesh hole 110 is connected with the corner of the second mesh hole 210 through the connecting line portion 312 to form an oblique columnar structure, and the part where the first mesh hole 110 and the second mesh hole 210 are aligned is shown in FIG. 5 , refers to the overlapping portion of the projection of the first mesh 110 on the second fabric layer 200 and the nearest second mesh 210 , that is, the shaded portion in FIG. 5 , and the aligned area is the area of the shaded portion. Setting the first mesh holes 110 and the second mesh holes 210 to be one-to-one or close to one-to-one alignment reduces the staggering of the first mesh holes 110 and the second mesh holes 210 , thereby ensuring more light to pass through.
  • the first mesh 110 and the second mesh 210 are aligned as much as possible, and on the other hand, the supporting wire portion 311 is made as perpendicular to the fabric layer as possible, which can effectively reduce the obstruction to light, It ensures that more light can pass through, thereby greatly improving the light transmittance of the light-transmitting fabric.
  • a pattern layer is further provided between the skin layer and the 3D fabric buffer layer, the pattern layer includes a hollow part for light transmission and a light blocking part for blocking light, the hollow part A pattern is formed together with the light blocking portion.
  • the light-permeable composite structure provided by the present application can present a pattern with a decorative effect or an indication function on its surface in some application scenarios.
  • a pattern layer is further provided between the skin layer and the 3D fabric buffer layer,
  • the pattern layer includes a hollow part for transmitting light and a light blocking part for blocking light, and the hollow part and the light blocking part together form a pattern.
  • the light-transmitting composite structure is covered on the light source.
  • the light-transmitting composite structure presents a conventional artificial leather appearance, and when the light source is on, a pattern is presented on the surface of the light-transmitting structure.
  • the pattern layer By implanting the pattern layer in the light-transmitting composite structure, the pattern layer can be made very close to the surface of the light-transmitting composite structure, and the light hardly scatters, so the pattern presented is very clear. No requirement, no need to set the light source to a specific shape.
  • a pattern layer is further provided on the side of the 3D fabric buffer layer facing away from the skin layer, the pattern layer includes a hollow part for light transmission and a light blocking part for blocking light, the hollow part A pattern is formed together with the light blocking portion.
  • the 3D fabric is not in direct contact with other structures (such as the internal skeleton of the vehicle), etc., so as to form protection for the 3D fabric.
  • the thickness of the skin layer is 0.1-1.0 mm.
  • the thickness of the skin layer may be 0.1-1.0 mm.
  • the thickness ratio of the skin layer and the 3D fabric buffer layer is 1:1-1:40.
  • the thickness of the 3D fabric buffer layer can be selected as 1.0-4.0mm, and the thickness ratio of the skin layer and the 3D fabric buffer layer is 1:1-1:40.
  • the composition of the skin material raw materials by weight is specifically: 5 parts of PP, 5 parts of PE, 70 parts of olefin copolymer, 20 parts of vulcanized EPDM rubber, 1.5 parts of color masterbatch, and 0.4 parts of auxiliary agent.
  • the olefin copolymer is at least one of a propylene-ethylene copolymer, an ethylene-octene copolymer, an ethylene-butene copolymer and an ethylene-butene-octene copolymer.
  • Olefin copolymers have the characteristics of abundant raw material sources and excellent comprehensive properties, and are suitable for the preparation of artificial skin materials.
  • the present application selects the olefin copolymer as at least one of propylene-ethylene copolymer, ethylene-octene copolymer, ethylene-butene copolymer and ethylene-butene-octene copolymer, these copolymers are While ensuring sufficient light transmission as much as possible, it can also ensure that the strength and toughness of the obtained skin material in the post-processing process are at a high level.
  • the present application also provides a manufacturing process for the above-mentioned light-transmitting composite structure, and the specific manufacturing process includes:
  • the step of forming the skin layer comprises: mixing no more than 10 parts of PP, no more than 10 parts of PE, 20-70 parts of olefin copolymer, no more than 30 parts of vulcanized ethylene-propylene rubber, 0.5-2 parts of The color masterbatch and 0.1-0.5 parts of auxiliary agents are mixed, and the skin layer is obtained by calendering or extrusion molding;
  • the step of forming the 3D fabric buffer layer includes: using fabric threads to weave the first fabric layer and the second fabric layer respectively, and using connecting threads to connect the first fabric layer and the second fabric layer, so that the At least 80% of the connecting threads between the first fabric layer and the second fabric layer are arranged in an I-shape to form the support layer.
  • the extruder can be selected as a twin-screw extruder.
  • the mixed raw materials are injected into the extruder through the feeding port, and the temperature of the extruder is controlled within the range of 180-230°C, and the extruder is kept
  • the line speed is 0-15m/min, and the thermoplastic polyolefin skin layer of corresponding width and thickness can be produced according to product requirements.
  • the surface treatment agent is made of water-based polyurethane material. Since the thickness of the surface treatment agent layer formed by the surface treatment agent is relatively thin, it has little effect on the light transmittance of the finished skin material. In addition, the TPO skin material can also be embossed.
  • the applicant has found that if all the raw materials are mixed and stirred at one time and then extruded through a screw extruder according to conventional means, the skin color of the skin product is often uneven, the color is too dark in some parts, and the parts are close to transparent. The appearance of the skin product is greatly affected.
  • the reason for the aforementioned situation is that because the color masterbatch content in the skin material is significantly lower than that of other main materials, if it is directly mixed with all other raw materials It will often cause uneven dispersion of the color masterbatch and agglomeration.
  • a part of the olefin copolymer and/or the vulcanized ethylene-propylene-diene rubber is premixed and granulated with the color masterbatch.
  • the particles obtained by premixing and granulation pass through the twin-screw extruder together with other materials in the raw material, which can greatly improve the dispersion uniformity of the color masterbatch in the finished skin material and prevent agglomeration.
  • a part of the olefin copolymer is premixed and granulated with the color masterbatch, or a part of the vulcanized EPDM rubber is premixed with the color masterbatch.
  • 20%-50% of the olefin copolymer is premixed and granulated with the color masterbatch, or 40%-60% of the vulcanized EPDM rubber is mixed with the color masterbatch.
  • Pre-mixing and granulating, or pre-mixing and granulating 20%-30% of the olefin copolymer and 20%-30% of the vulcanized EPDM rubber with the color masterbatch If the weight fraction of the olefin copolymer and/or vulcanized ethylene propylene rubber to be premixed and granulated with the color masterbatch is too low, the effect of sufficient premixing cannot be achieved. The weight fraction of the olefin copolymer and/or vulcanized ethylene-propylene-diene propylene rubber is too high, which may cause uneven dispersion of the color masterbatch during this premixing.
  • the present application also provides a vehicle interior, which can be used in vehicles such as automobiles and trains, and adopts the light-permeable composite structure as described above, thereby realizing the light-transmitting effect of the vehicle interior. .
  • the present application also provides a decorative material, which can be used for vehicle decoration, furniture decoration and other application environments such as 3C equipment (communication equipment, computer equipment, consumer electronic equipment), etc.
  • the light-transmitting composite structure as described above can achieve the light-transmitting effect of the decorative material.

Abstract

本申请提供了一种可透光复合结构及其制备工艺,可透光复合结构包括热塑性聚烯烃表皮层和3D织物缓冲层,表皮层的原料为:PP不超过10份,PE不超过10份,烯烃共聚物20-70份,硫化三元乙丙橡胶不超过30份,色母粒0.5-2份,助剂0.1-0.5份,且PP、PE、烯烃共聚物和硫化三元乙丙橡胶总重量为100份;PP、PE和烯烃共聚物的透光率均为80%以上;表皮层通过将各表皮材料原料混合后挤出或压延制得;3D织物缓冲层包括相互平行且间隔设置的第一织物层和第二织物层,还包括连接第一织物层和第二织物层的支撑层,第一织物层具有排成阵列的第一网孔,第二织物层具有排成阵列的第二网孔,支撑层由至少80%的支撑线部呈I型设置的连接丝线形成。本申请显著提高复合结构的透光性能。

Description

一种可透光复合结构及其制备工艺 技术领域
本申请涉及装饰材料技术领域,具体涉及一种可透光复合结构及其制备工艺。
背景技术
现代社会中,消费者对于透光性装饰材料的需求日益提升,作为一种透光性装饰材料,透光性交通工具内饰材料逐渐被引入到交通工具内饰的开发过程中,如何使得交通工具内饰材料既有皮革质感又有高透光性能成为本领域亟待解决的技术问题。
现有的透光交通工具内饰中,表皮材料通常是由PVC及PU材料制成,这两类材料因密度较高,无法满足未来交通工具的轻量化的需求。将PVC或PU制作的表皮结构和普通3D间隔织物结合制作交通工具内饰用复合结构,由于现有普通3D织物尽管有着一定的缓冲回弹性能,但透光性非常差,使得交通工具内饰的整体透光性不佳。
发明内容
基于上述现状,本申请的主要目的在于提供一种可透光复合结构及其制备工艺,以解决上述问题。
为实现上述目的,本申请采用的技术方案如下:
第一方面,本申请提供了一种可透光复合结构,包括热塑性聚烯烃表皮层和复合于所述表皮层一侧的3D织物缓冲层,
所述表皮层的表皮材料原料包括PP、PE、色母粒、烯烃共聚物、硫化三元乙丙橡胶和助剂;所述表皮层通过将各所述表皮材料原料混合后挤出制得;其中,硫化三元乙丙橡胶是三元乙丙橡胶分散在PP和/或PE塑料基体中制备得到的;所述表皮材料原料重量份组成为:PP不超过10份,PE不超过10份, 烯烃共聚物20-70份,硫化三元乙丙橡胶不超过30份,色母粒0.5-2份,助剂0.1-0.5份,且PP、PE、烯烃共聚物和硫化三元乙丙橡胶总重量为100份;所述PP、PE和烯烃共聚物的透光率均为80%以上;
所述3D织物缓冲层包括相互平行且间隔设置的第一织物层和第二织物层,还包括连接所述第一织物层和第二织物层的支撑层,所述第一织物层具有排成阵列的第一网孔,所述第二织物层具有排成阵列的第二网孔,所述支撑层由连接丝线形成,所述连接丝线中至少80%的支撑线部呈I型设置。
可选地,在所述表皮层和所述3D织物缓冲层之间还设有图案层,所述图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。
可选地,在所述3D织物缓冲层背离所述表皮层的一面还设有图案层,所述图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。
可选地,所述表皮层的厚度为0.1-1.0mm。
可选地,所述表皮层和所述3D织物缓冲层的厚度比值为1:1-1:40。
可选地,所述表皮材料原料重量份组成具体为:PP 5份,PE 5份,烯烃共聚物70份,硫化三元乙丙橡胶20份,色母粒1.5份,助剂0.4份。
可选地,所述烯烃共聚物为丙烯-乙烯共聚物、乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丁烯-辛烯共聚物中的至少一种。
第二方面本申请提供了一种用于形成如上的可透光复合结构的制备工艺,所述制备工艺包括:形成所述表皮层的步骤,形成所述3D织物缓冲层的步骤,以及通过加热复合或者透明胶水或者透明胶膜将所述表皮层与所述3D织物缓冲层复合的步骤,其中,
形成所述表皮层的步骤包括:将不超过10份的PP、不超过10份的PE、20-70份的烯烃共聚物、不超过30份的硫化三元乙丙橡胶、0.5-2份的色母粒、0.1-0.5份的助剂混合,利用压延成型或挤出机挤出成型,得到所述表皮层;
形成所述3D织物缓冲层的步骤包括:采用织物丝线分别编织所述第一织物层和所述第二织物层,采用连接丝线连接所述第一织物层和所述第二织物层,使位于所述第一织物层和所述第二织物层之间的连接丝线的至少80%呈I型设置,形成所述支撑层。
第三方面,本申请提供了一种交通工具内饰,包括如上所述的可透光复合结构。
第四方面,本申请提供了一种装饰材料,包括如上所述的可透光复合结构。
本申请提供的可透光复合结构,一方面,对于其中的表皮层,先将普通的三元乙丙橡胶硫化成为硫化三元乙丙橡胶,显著提高了橡胶材料的强度性能,可以在保证表皮材料在后加工过程中的强度等加工性能的同时,大大降低完全不透光的橡胶材料的掺杂量,对橡胶材料掺杂量降低的部分,加入高透光率、并起到增强增韧的烯烃共聚物材料;另一方面,对于其中3D织物缓冲层,为保证更多的光线穿过,将大部分支撑线部设置为I型,最大程度的降低从垂直于第一织物层方向看位于网孔内的支撑线部,从而进一步保证更多光线的通过,从而显著提高包括表皮材料和3D织物缓冲层在内的复合结构的透光性,提高透光装饰效果。
本申请的其他有益效果,将在具体实施方式中通过具体技术特征和技术方案的介绍来阐述,本领域技术人员通过这些技术特征和技术方案的介绍,应能理解所述技术特征和技术方案带来的有益技术效果。
附图说明
以下将参照附图对根据本申请的优选实施方式进行描述。图中:
图1为本申请提供的的可透光复合结构的结构示意图;
图2为本申请提供的第一网孔和第二网孔为六边形的3D织物两个结构单元的结构示意图;
图3为根据本申请提供的第一网孔与第二网孔对正设置的3D织物四个结构单元的结构示意图;
图4为本申请提供的第一网孔与第二网孔错位设置的3D织物四个结构单元的结构示意图;
图5为对本申请中的错位尺寸的说明的示意图。
具体实施方式
以下基于实施例对本申请进行描述,但是本申请并不仅仅限于这些实施例。在下文对本申请的细节描述中,详尽描述了一些特定的细节部分,为了避 免混淆本申请的实质,公知的方法、过程、流程、元件并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
为了显著提高交通工具内饰的透光效果,本申请对交通工具内饰的表皮材料和缓冲材料做了改进,使其各自的透光效果有明显提升,且二者复合之后也有优异的透光性能。
基于此,第一方面,参见图1,本申请提供了一种可透光复合结构,包括热塑性聚烯烃表皮层10和复合于所述表皮层一侧的3D织物缓冲层20,其中,
所述表皮层10的表皮材料原料包括PP、PE、色母粒、烯烃共聚物、硫化三元乙丙橡胶和助剂;所述表皮层10通过将各所述表皮材料原料混合后挤出制得;其中,硫化三元乙丙橡胶是三元乙丙橡胶分散在PP和/或PE塑料基体中制备得到的;所述表皮材料原料重量份组成为:PP不超过10份,PE不超过10份,烯烃共聚物20-70份,硫化三元乙丙橡胶不超过30份,色母粒0.5-2份,助剂0.1-0.5份,且PP、PE、烯烃共聚物和硫化三元乙丙橡胶总重量为100份;所述PP、PE和烯烃共聚物的透光率均为80%以上;
参见图1-4,所述3D织物缓冲层20包括相互平行且间隔设置的第一织物层100和第二织物层200,还包括连接所述第一织物层100和第二织物层200的支撑层300,所述第一织物层100具有排成阵列的第一网孔110,所述第二织物层200具有排成阵列的第二网孔210,所述支撑层300由连接丝线310形成,所述连接丝线310中至少80%的支撑线部311呈I型设置。
具体地,对于交通工具内饰表皮层的表皮材料来说,其需要在高温环境下包覆在交通工具内部骨架上、完成交通工具内饰制作的过程。使用高温环境完成前述包覆工艺,是为了软化该表皮材料,便于模具合模时对该表皮材料进行拉伸并重新塑型,由于该加工过程通常在170-230摄氏度之间的高温环境下进 行,需要表皮材料此时具备足够的拉伸强度等加工性能,方可在包覆工艺实施过程中,不会被拉破,制作出外表无破损的交通工具内饰。
本申请的发明人发现,现有的TPO表皮材料作为一种交通工具内饰可用的环境友好型的轻量化材料,其原料配比存在如下问题:为了保证交通工具内饰制作过程中,表皮材料在高温下的拉伸强度等物理性能,需要在原料中添加高含量的三元乙丙橡胶,三元乙丙橡胶的添加量可能高达80%,而该橡胶透光性极低,显著影响了所制得的交通工具表皮材料的透光性,导致现有的TPO表皮材料的透光性低于0.5%。如果直接减少三元乙丙橡胶的含量,则又会显著影响材料的拉伸强度等指标,导致耐用性和手感变差。
本申请提供的可透光复合结构中,表皮层的表皮材料原料包括PP、PE、色母粒、烯烃共聚物、硫化三元乙丙橡胶和助剂;所述表皮层通过将各所述表皮材料原料混合后挤出制得;其中,硫化三元乙丙橡胶是三元乙丙橡胶分散在PP和/或PE塑料基体中制备得到的;所述表皮材料原料重量份组成为:PP不超过10份,PE不超过10份,烯烃共聚物20-70份,硫化三元乙丙橡胶不超过30份,色母粒0.5-2份,助剂0.1-0.5份,且PP、PE、烯烃共聚物和硫化三元乙丙橡胶总重量为100份;所述PP、PE和烯烃共聚物的透光率均为80%以上。
通过上述的原料配比设置,首先,采用硫化后的三元乙丙橡胶代替三元乙丙橡胶,硫化后的三元乙丙橡胶的对于表皮材料的后续加工过程中的强度和韧性等性能有显著提升,尽管硫化后的三元乙丙橡胶透光性并不高,但是相比未经硫化的三元乙丙橡胶,可以通过更低的含量实现更高的强度和韧性性能,因此,可以显著降低在表皮材料中橡胶材料的含量;继而,对于橡胶含量降低的部分,采用高透光率的烯烃共聚物材料代替,该材料能够有效降低对光线的阻碍,保证更多的光线能够通过,从而大大提高了表皮材料的透光率,且烯烃共聚物材料也有着优良的增强增韧作用,通过和硫化三元乙丙橡胶的配合,依然可以保证表皮材料在后续加工过程中的强度和韧性。
透光率能够表征光线透过介质的能力,具体来说,透光率是透过该介质的光通量与其入射光通量的百分比。为了提高表皮材料的透光率,需要尽可能提高其各种原料的透光率。因此,在对表皮材料的制备原料进行选择时,将PP、PE和烯烃共聚物均选为透光率为80%以上的高透光率材料,前述透光率是在 ASTM E1348标准下进行测定的。如此,所制得的表皮材料一方面材质较轻,另一方面有良好的透光物理性能,所制得的热塑性聚烯烃表皮层的透光率可在18%以上。
PP和PE材料作为本申请提供的表皮层的表皮材料原料,在本申请中起到的作用是调节表皮材料成品的材料拉伸率、拉伸强度及硬度等,适应各种模具造型的加工。
所述助剂为抗氧化剂、光稳定剂中的至少一种。这些助剂均为本领域能够实现相应功能的材料,例如,所述抗氧化剂可为1024、1098或1330;光稳定剂为受阻胺类,如UV-P,UV-234或UV3808。由于助剂的添加剂很低,因此不会对产品的透光率有任何明显的影响。
本申请提供的3D织物缓冲层,如图1-4所示,3D织物缓冲层包括相互平行且间隔设置的第一织物层100和第二织物层200,还包括连接所述第一织物层100和第二织物层200的支撑层300,所述第一织物层具有排成阵列的第一网孔110,所述第二织物层具有排成阵列的第二网孔210,所述支撑层由连接丝线310形成,所述连接丝线310中至少80%的支撑线部311呈I型设置。
具体地,进一步参见图2-4,连接丝线310可包括位于两个织物层之间的支撑线部311以及分别织入两个织物层的连接线部312,呈I型设置的各支撑线部311大致平行,且各支撑线部311垂直于第一织物层100,或者,各支撑线部311随着第一网孔110与第二网孔210之间的错位而相对于第一织物层100倾斜。可以理解的是,此处所述的垂直,指的是支撑线部311与第一网孔110的连接位置和支撑线部311与第二网孔210的连接位置对正,即,支撑线部311与第一网孔110的连接位置在第二织物层200上的投影与支撑线部311与第二网孔210的连接位置重合,因编织和丝线自身的挺度造成的弯曲(参照图1)也属于本申请所述的垂直的范畴。由于连接丝线310的大部分支撑线部311大致平行,且支撑线部311与第一网孔110、第二网孔210的连接位置对应,最大程度的降低从垂直于第一织物层100方向看位于网孔内的支撑线部311,从而进一步保证更多光线的通过。本领域技术人员可以理解,图2的第一网孔和第二网孔为六边形只是一个示例,图3的第一网孔和第二网孔为四边形只是一个示例,第一织物层和第二织物层的网孔可以为各种适合的形状,如还可以为八边形等等。
在一个实施例中,连接丝线中各支撑线部均呈I型设置,这样更有利于透光,在另一个实施例中,连接丝线中一部分支撑线部呈I型设置,另一部分支撑线部则采用其他支撑性能更好的设置方式,例如采用V型、X型或者两者相结合的方式,具体地,连接丝线中的各支撑线部包括呈I型设置的第一支撑线部,还包括呈V型和/或X型设置的第二支撑线部,V型设置即第二支撑线部的形状为由第一线部和第二线部形成的V形(左侧为第一线部,右侧为第二线部),V形的上部两端点与第一织物层100中的连接线部312相连,V形的下部端点与第二织物层200中的连接线部312相连,X型设置即第二支撑线部的形状为由第三线部和第四线部形成的X形(由上至下向右倾斜为第三线部,由上至下向左倾斜为第四线部),X形的上部两端点与第一织物层100中的连接线部312相连,X形的下部两端点与第二织物层200中的连接线部312相连,其中,第一支撑线部的数量占支撑线部总量的80%以上,且在第二支撑线部仅呈V型设置的实施例中,所有的第一线部相互平行,所有的第三线部相互平行,在第二支撑线部仅呈X型设置的实施例中,所有的第三线部相互平行,所有的第四线部相互平行,在第二支撑线部中既有呈V型设置又有呈X型设置的实施例中,所有的第一线部、第三线部相互平行,所有的第二线部、第四线部相互平行,使得第二支撑部尽量少的挡光,如此,既能够保证三维间隔织物的透光性,又能够利用第二支撑线部来加强透光织物的支撑强度。为了尽量降低第二支撑部对透光效果的影响,进一步优选地,第二支撑部设置在透光织物的边缘位置。
进一步地,3D织物缓冲层由织物丝线400织成并至少由织物丝线400形成多个网孔,两个织物层分别为第一织物层100和第二织物层200,形成于第一织物层100的网孔为第一网孔110,形成于第二织物层200的网孔为第二网孔210,其中,第一网孔110与相应的第二网孔210面积对正80%到100%,即,第一网孔110与第二网孔210对正的面积为各自面积的80%到100%,当第一网孔110与第二网孔210一一对正时,第一网孔110与第二网孔210面积对正100%时,例如参照图3,一个第一网孔110与其对应的第二网孔210形成一个结构单元,图3是网孔为四边形的四个结构单元,每个结构单元中,第一网孔110与第二网孔210一一对正,第一网孔110的每个角均通过连接线部312与第二网孔210的角相连形成直形柱状结构,第一网孔110与第二网孔210 面积对正大于等于80%且小于100%时,参照图4,每个结构单元中,第一网孔110与第二网孔210错位设置,第一网孔110的每个角均通过连接线部312与第二网孔210的角相连形成斜柱状结构,第一网孔110与第二网孔210对正的部分如图5所示,指的是第一网孔110在第二织物层200上的投影和距离其最近的第二网孔210重叠的部分,即图5中的阴影部分,对正的面积即阴影部分的面积。将第一网孔110和第二网孔210设置为一一对正或者接近于一一对正,减少第一网孔110和第二网孔210的交错,从而保证更多的光线穿过。
通过上述的结构设置,一方面使得第一网孔110和第二网孔210尽可能的对正,一方面使得支撑线部311尽可能地与织物层相垂直,能够有效降低对光线的阻碍,保证更多的光线能够通过,从而大大提高了透光织物的透光率。
可选地,在所述表皮层和所述3D织物缓冲层之间还设有图案层,所述图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。
本申请提供的可透光复合结构可以在某些应用场景中,在其表面呈现出具有装饰效果或指示功能的图案,基于此,在表皮层和3D织物缓冲层之间还设有图案层,图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。如此,将该透光性复合结构覆盖在光源上,当光源关灭时,透光性复合结构呈现常规的人造革外观,而当光源点亮时,在透光性结构的表面呈现出图案。通过将图案层植于透光性复合结构内,能够使得图案层距离透光性复合结构的表面非常近,光线几乎不会发生散射,因此呈现的图案非常清晰,而且,如此设置对光源的形状无要求,无需将光源设置为特定造型。
可选地,在所述3D织物缓冲层背离所述表皮层的一面还设有图案层,所述图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。这样通过将表皮层和图案层分设在3D织物缓冲层两侧,使3D织物不与其它结构(例如交通工具内部骨架)等直接接触,对3D织物形成保护。
可选地,所述表皮层的厚度为0.1-1.0mm。
根据不同的应用场景需要,所述表皮层的厚度可为0.1-1.0mm。
可选地,所述表皮层和所述3D织物缓冲层的厚度比值为1:1-1:40。
根据实际使用需要,可将3D织物缓冲层的厚度选为1.0-4.0mm,则表皮层和3D织物缓冲层的厚度比值为1:1-1:40。
可选地,所述表皮材料原料重量份组成具体为:PP 5份,PE 5份,烯烃共聚物70份,硫化三元乙丙橡胶20份,色母粒1.5份,助剂0.4份。
在上述原料配比区间内选取多组不同配比的原料做试验,并分别检测表皮成品的同样的后加工条件下拉伸强度和在ASTM E1348标准下的透光率,申请人进一步发现,在配比为PP5份,PE5份,烯烃共聚物70份,硫化三元乙丙橡胶20份,色母粒1.5份,助剂0.4份时,所制备的表皮材料的透光率和在后加工条件下的拉伸强度同时达到极值。
可选地,所述烯烃共聚物为丙烯-乙烯共聚物、乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丁烯-辛烯共聚物中的至少一种。
烯烃共聚物性能上具有原料来源丰富、综合性能优良等特点,适用于人造表皮材料的制备。优选地,本申请将烯烃共聚物选为丙烯-乙烯共聚物、乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丁烯-辛烯共聚物中的至少一种,这些共聚物在尽可能保证充分透光的同时,还能保证所制得的表皮材料在后加工过程中的强度和韧性在较高的水平。
第二方面,本申请还提供了上述可透光复合结构的制作工艺,具体的制备工艺包括:
形成所述表皮层的步骤,形成所述3D织物缓冲层的步骤,以及通过加热复合或者透明胶水或者透明胶膜将所述表皮层与所述3D织物缓冲层复合的步骤,其中,
形成所述表皮层的步骤包括:将不超过10份的PP、不超过10份的PE、20-70份的烯烃共聚物、不超过30份的硫化三元乙丙橡胶、0.5-2份的色母粒、0.1-0.5份的助剂混合,利用压延成型或挤出机挤出成型,得到所述表皮层;
形成所述3D织物缓冲层的步骤包括:采用织物丝线分别编织所述第一织物层和所述第二织物层,采用连接丝线连接所述第一织物层和所述第二织物层,使位于所述第一织物层和所述第二织物层之间的连接丝线的至少80%呈I型设置,形成所述支撑层。
具体地,挤出机可选择为双螺杆挤出机,挤出时,将混合后的原料通过喂料口注入挤出机,控制挤出机温度在180-230℃范围内,保持挤出机线速为 0-15m/min,根据产品要求生产相应幅宽和厚度的热塑性聚烯烃表皮层。
表面处理剂采用水性聚氨酯材料,由于表面处理剂形成的表面处理剂层厚度较薄,对成品表皮材料的透光性的影响不大,另外,还可对TPO表皮材料进行压花处理。
进一步地,申请人发现,如果按照常规的手段,一次性将所有的原料混合搅拌后通过螺杆挤出机挤出成型,经常会出现表皮制品皮色不均匀,局部颜色过深,而局部接近透明的情况,十分影响表皮制品的美观,经过申请人进一步研究发现,前述情况出现的原因是,由于因为表皮材料中的色母含量显著低于其它主料,若直接将其与所有的其它原料混合就往往会造成色母粒分散不均、出现团聚现象,而本申请中,先将烯烃共聚物和/或硫化三元乙丙橡胶中的一部分与色母粒进行预混造粒,而后在将预混造粒得到的粒子与原料中的其它材料一起通过双螺杆挤出机,能够大大提高色母粒在表皮材料成品中的分散均匀性,防止出现团聚。
在一个实施例里,将所述烯烃共聚物中的一部分与所述色母粒进行预混造粒,或将所述硫化三元乙丙橡胶中的一部分与所述色母粒进行预混造粒,或将所述烯烃共聚物中的一部分和硫化三元乙丙橡胶中的一部分与所述色母粒进行预混造粒。
具体地,将所述烯烃共聚物的20%-50%与所述色母粒进行预混造粒,或将所述硫化三元乙丙橡胶的40%-60%与所述色母粒进行预混造粒,或将所述烯烃共聚物的20%-30%和硫化三元乙丙橡胶的20%-30%与所述色母粒进行预混造粒。如果与色母粒进行预混造粒的烯烃共聚物和/或硫化三元乙丙橡胶的重量份数过低,则无法达到充分预混的效果,而如果与色母粒进行预混造粒的烯烃共聚物和/或硫化三元乙丙橡胶的重量份数过高,可能在本次预混时就发生了色母粒分散不均的情况。
第三方面,本申请还提供了一种交通工具内饰,该内饰可用在汽车、火车等交通工具中,采用如上所述的可透光复合结构,从而实现交通工具内饰的透光效果。
第四方面,本申请还提供了一种装饰材料,该装饰材料可用于交通工具装饰用,也可用于家具装饰和3C设备(通讯设备、电脑设备、消费类电子设备)等其它应用环境,采用如上所述的可透光复合结构,从而实现装饰材料的透光 效果。
本领域的技术人员能够理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本申请的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本申请的权利要求范围内。

Claims (10)

  1. 一种可透光复合结构,包括热塑性聚烯烃表皮层和复合于所述表皮层一侧的3D织物缓冲层,其特征在于,
    所述表皮层的表皮材料原料包括PP、PE、色母粒、烯烃共聚物、硫化三元乙丙橡胶和助剂;所述表皮层通过将各所述表皮材料原料混合后挤出制得;其中,硫化三元乙丙橡胶是三元乙丙橡胶分散在PP和/或PE塑料基体中制备得到的;所述表皮材料原料重量份组成为:PP不超过10份,PE不超过10份,烯烃共聚物20-70份,硫化三元乙丙橡胶不超过30份,色母粒0.5-2份,助剂0.1-0.5份,且PP、PE、烯烃共聚物和硫化三元乙丙橡胶总重量为100份;所述PP、PE和烯烃共聚物的透光率均为80%以上;
    所述3D织物缓冲层包括相互平行且间隔设置的第一织物层和第二织物层,还包括连接所述第一织物层和第二织物层的支撑层,所述第一织物层具有排成阵列的第一网孔,所述第二织物层具有排成阵列的第二网孔,所述支撑层由连接丝线形成,所述连接丝线中至少80%的支撑线部呈I型设置。
  2. 根据权利要求1所述的复合结构,其特征在于,在所述表皮层和所述3D织物缓冲层之间还设有图案层,所述图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。
  3. 根据权利要求1所述的复合结构,其特征在于,在所述3D织物缓冲层背离所述表皮层的一面还设有图案层,所述图案层包括用于透光的镂空部和用于挡光的挡光部,所述镂空部和所述挡光部共同形成图案。
  4. 根据权利要求1-3中任一项所述的复合结构,其特征在于,所述表皮层的厚度为0.1-1.0mm。
  5. 根据权利要求1-4中任一项所述的复合结构,其特征在于,所述表皮层和所述3D织物缓冲层的厚度比值为1:1-1:40。
  6. 根据权利要求1所述的复合结构,其特征在于,所述表皮材料原料重量份组成具体为:PP 5份,PE 5份,烯烃共聚物70份,硫化三元乙丙橡胶20份,色母粒1.5份,助剂0.4份。
  7. 根据权利要求1所述的复合结构,其特征在于,所述烯烃共聚物为丙烯-乙烯共聚物、乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丁烯-辛烯共聚物中的至少一种。
  8. 一种用于形成如权利要求1-7任一项所述的可透光复合结构的制备工艺,其特征在于,所述制备工艺包括:形成所述表皮层的步骤,形成所述3D织物缓冲层的步骤,以及通过加热复合或者透明胶水或者透明胶膜将所述表皮层与所述3D织物缓冲层复合的步骤,其中,
    形成所述表皮层的步骤包括:将不超过10份的PP、不超过10份的PE、20-70份的烯烃共聚物、不超过30份的硫化三元乙丙橡胶、0.5-2份的色母粒、0.1-0.5份的助剂混合,利用压延成型或挤出机挤出成型,得到所述表皮层;
    形成所述3D织物缓冲层的步骤包括:采用织物丝线分别编织所述第一织物层和所述第二织物层,采用连接丝线连接所述第一织物层和所述第二织物层,使位于所述第一织物层和所述第二织物层之间的连接丝线的至少80%呈I型设置,形成所述支撑层。
  9. 一种交通工具内饰,其特征在于,包括如权利要求1至7中任一项所述的可透光复合结构。
  10. 一种装饰材料,其特征在于,包括如权利要求1至7中任一项所述的可透光复合结构。
PCT/CN2020/139563 2020-12-25 2020-12-25 一种可透光复合结构及其制备工艺 WO2022134051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139563 WO2022134051A1 (zh) 2020-12-25 2020-12-25 一种可透光复合结构及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139563 WO2022134051A1 (zh) 2020-12-25 2020-12-25 一种可透光复合结构及其制备工艺

Publications (1)

Publication Number Publication Date
WO2022134051A1 true WO2022134051A1 (zh) 2022-06-30

Family

ID=82157134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139563 WO2022134051A1 (zh) 2020-12-25 2020-12-25 一种可透光复合结构及其制备工艺

Country Status (1)

Country Link
WO (1) WO2022134051A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053235A (ja) * 2016-09-26 2018-04-05 アキレス株式会社 クロロスルホン化ポリエチレンゴム組成物およびクロロスルホン化ポリエチレンゴム引布
CN210116215U (zh) * 2019-04-11 2020-02-28 上海延锋金桥汽车饰件系统有限公司 可透光表皮以及包括该可透光表皮的可透光饰件
US20200139814A1 (en) * 2016-07-11 2020-05-07 Shanghai Yanfeng Jinqiao Automotive Trim Systems Co. Ltd. Vehicle interior component
CN210860986U (zh) * 2018-09-20 2020-06-26 米勒纺织品有限公司 发光式蒙护组件
CN111501190A (zh) * 2020-03-23 2020-08-07 东华大学 具有浮纹效果的纯双色提花经编间隔织物及其编织方法
CN112029178A (zh) * 2019-06-03 2020-12-04 贝内克-长顺汽车内饰材料(张家港)有限公司 具有透光特性的tpo组合物及含有该组合物的tpo人造革

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200139814A1 (en) * 2016-07-11 2020-05-07 Shanghai Yanfeng Jinqiao Automotive Trim Systems Co. Ltd. Vehicle interior component
JP2018053235A (ja) * 2016-09-26 2018-04-05 アキレス株式会社 クロロスルホン化ポリエチレンゴム組成物およびクロロスルホン化ポリエチレンゴム引布
CN210860986U (zh) * 2018-09-20 2020-06-26 米勒纺织品有限公司 发光式蒙护组件
CN210116215U (zh) * 2019-04-11 2020-02-28 上海延锋金桥汽车饰件系统有限公司 可透光表皮以及包括该可透光表皮的可透光饰件
CN112029178A (zh) * 2019-06-03 2020-12-04 贝内克-长顺汽车内饰材料(张家港)有限公司 具有透光特性的tpo组合物及含有该组合物的tpo人造革
CN111501190A (zh) * 2020-03-23 2020-08-07 东华大学 具有浮纹效果的纯双色提花经编间隔织物及其编织方法

Similar Documents

Publication Publication Date Title
KR101203019B1 (ko) 인조 잔디용 폴리에틸렌 조성물
CN101343837B (zh) 环保型阻燃网布
JP2015523901A (ja) プロピレン系エラストマーを含むカーペット及びその製造方法
CN113072765B (zh) 可透光皮革材料及其制作工艺和可透光复合结构
CN114957844B (zh) 一种改性柔性热塑性聚烯烃防水卷材用树脂母粒及其制备方法和利用其制备的防水卷材
CN103395264A (zh) 彩色热塑性聚烯烃防水卷材及制备方法
WO2018121274A1 (zh) 反射器
CN103254508A (zh) 一种丙烯基弹性体发泡材料
KR20010010884A (ko) 우수한 가공성 및 투습도를 갖는 통기성 필름용 조성물
WO2022134051A1 (zh) 一种可透光复合结构及其制备工艺
CN216545075U (zh) 一种复合革、交通工具内饰和装饰材料
CN102516621A (zh) 聚乙烯基热塑性弹性体及其制备方法和复合塑料
CN113072766A (zh) 一种可透光表皮材料及其制作工艺和一种可透光复合结构
CN113071171B (zh) 一种可透光复合结构及其制备工艺
KR102244250B1 (ko) 인조잔디 파일사의 제조방법 및 그 방법에 따른 인조잔디 파일사
KR100439560B1 (ko) 고강도 피이 타포린의 제조방법
WO2022134056A1 (zh) 一种可透光表皮材料及其制作工艺和一种可透光复合结构
WO2022134048A1 (zh) 可透光皮革材料及其制作工艺和可透光复合结构
JP3197863B2 (ja) 建築工事用ポリプロピレンメッシュシート
KR20020091288A (ko) 압출코팅용 수지조성물을 이용한 타포린 및 이의제조방법
KR101981956B1 (ko) 자동차 부품용 복합 조성물 및 이로부터 형성된 자동차 부품
JPH11101000A (ja) 建築工事用ポリプロピレンメッシュシート
KR102449495B1 (ko) 광투과율이 우수한 농업용 직조필름
JP2004042330A (ja) 建材用透湿防水シート
JP2003089942A (ja) ネット状物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966616

Country of ref document: EP

Kind code of ref document: A1