WO2022133916A1 - 机臂组件、无人飞行器及机臂组件的控制方法 - Google Patents

机臂组件、无人飞行器及机臂组件的控制方法 Download PDF

Info

Publication number
WO2022133916A1
WO2022133916A1 PCT/CN2020/139052 CN2020139052W WO2022133916A1 WO 2022133916 A1 WO2022133916 A1 WO 2022133916A1 CN 2020139052 W CN2020139052 W CN 2020139052W WO 2022133916 A1 WO2022133916 A1 WO 2022133916A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
assembly
drive
frequency
support
Prior art date
Application number
PCT/CN2020/139052
Other languages
English (en)
French (fr)
Inventor
李雄飞
赵阳
陈水添
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/139052 priority Critical patent/WO2022133916A1/zh
Publication of WO2022133916A1 publication Critical patent/WO2022133916A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports

Definitions

  • the present application relates to the technical field of aircraft, and in particular, to an arm assembly, an unmanned aerial vehicle and a control method for the arm assembly.
  • rotary-wing UAVs Due to its good stability, simple operation, vertical take-off and landing, simple site requirements and good concealment, rotary-wing UAVs have been widely used and developed in military, civil, scientific and other fields.
  • the natural frequency of the UAV and the excitation frequency of the excitation source mainly the motor or propeller of the UAV
  • the imaging quality and flight stability of the UAV deteriorated, and even caused the plane to explode.
  • the present application provides an arm assembly, an unmanned aerial vehicle, and a control method for the arm assembly, aiming to realize the ability to adjust the natural frequency of the unmanned aerial vehicle, reduce the resonance of the unmanned aerial vehicle, and thereby improve the imaging quality of the photographing device. Flight stability of unmanned aerial vehicles.
  • an embodiment of the present application provides an arm assembly for use in an unmanned aerial vehicle, and the arm assembly includes:
  • an adjustment mechanism connected to at least one of the first arm and the second arm, at least part of the adjustment mechanism can move relative to the first arm and/or the second arm, In order to adjust the natural frequency of the unmanned aerial vehicle, so as to reduce the resonance of the unmanned aerial vehicle.
  • an unmanned aerial vehicle including:
  • the above-mentioned arm assembly is connected to the fuselage.
  • an embodiment of the present application provides a method for controlling an arm assembly, wherein the arm assembly is connected to a fuselage of an unmanned aerial vehicle; the arm assembly includes a first arm, a second arm and an adjustment a mechanism, the adjustment mechanism is connected to at least one of the first arm and the second arm; the control method includes:
  • the excitation source comprising the propeller and/or the power motor of the unmanned aerial vehicle
  • the adjustment mechanism is controlled to move relative to the first arm and/or the second arm, so as to adjust the natural frequency of the unmanned aerial vehicle, thereby reducing the resonance of the unmanned aerial vehicle.
  • the embodiments of the present application provide an arm assembly, an unmanned aerial vehicle, and a control method for the arm assembly.
  • the natural frequency of the unmanned aerial vehicle can be adjusted according to actual needs through the arm assembly during flight, thereby reducing the number of unmanned aerial vehicles.
  • Resonance occurs in the aircraft, which in turn improves the imaging quality of the photographing equipment and the flight stability of the unmanned aircraft, improves the flight safety of the unmanned aircraft, and reduces the risk of bombing.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 3 is a partial structural schematic diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 4 is a partial structural schematic diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an adjustment mechanism provided by an embodiment of the present application.
  • FIG. 6 is a partial structural schematic diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an adjustment mechanism provided by an embodiment of the present application.
  • FIG. 8 is a partial structural schematic diagram of an adjustment mechanism provided by an embodiment of the present application.
  • FIG. 9 is a partial structural schematic diagram of an adjustment mechanism provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a support assembly provided by an embodiment of the present application.
  • FIG. 11 is a partial structural schematic diagram of an adjustment mechanism provided by an embodiment of the present application.
  • FIG. 12 is a partial structural schematic diagram of an adjustment mechanism provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the inventors of the present application found that the rotary-wing UAV has been widely used in military, civil and scientific fields due to its good stability, simple operation, vertical take-off and landing in place, simple site requirements and good concealment. develop.
  • drones In order to facilitate storage and carrying, drones have been designed in such a way that the arms are foldable relative to the fuselage of the drone.
  • the torsion spring provides an anti-return force in the direction of its return, which is relatively small compared to the fixed arm.
  • the foldable arm has the risk that the torsion spring is not enough to resist the buckling, causing the arm to fold back.
  • the stiffness and mode in the return direction are low, and there is a risk of self-excitation of the flight control, thereby affecting the control and flight stability.
  • the UAV drives the propeller to rotate through the motor, thereby providing flight power for the UAV.
  • the working frequency of the propeller that is, the frequency corresponding to the working speed of the propeller.
  • the working frequency of a propeller varies between 30-70Hz
  • its corresponding one-time propeller frequency and double-time propeller frequency range are 30-70Hz and 60-140Hz, respectively.
  • the excitation is transmitted to the pan/tilt camera and inertial measurement unit (IMU) of the UAV through the UAV's own structure.
  • the vibration will affect the camera imaging and the measurement results of the IMU, and will seriously affect the camera imaging quality. and flight stability.
  • the transfer function of the excitation source and the transfer structure (such as the arm), both of which can affect the gimbal camera or the inertial measurement unit.
  • the response of the gimbal camera or inertial measurement unit is large, that is, imaging the camera Mass and inertial measurement units have a greater impact.
  • the propeller frequency is larger, such as three times the propeller frequency and four times the propeller frequency
  • the response of the gimbal camera or the inertial measurement unit is small, that is, the image quality of the camera and the inertial measurement unit are less affected. Therefore, it is usually only concerned with the double and double the propeller frequency.
  • the resonance of the transfer structure should be minimized, and the response of the gimbal camera or inertial measurement unit should be reduced.
  • the natural frequency of its structure remains basically unchanged. Due to the different flight environment (mainly altitude) and working conditions, the rotational speed of the UAV changes within a certain range.
  • the rotational speed variation range is about 30 rpm, and for a relatively small-sized consumer drone, the rotational speed variation range can reach 100 rpm.
  • the excitation frequency of the propeller or motor mainly includes the one-time propeller frequency and the two-time propeller frequency.
  • the variation range is as small as fifty or sixty hertz, and the maximum energy can reach more than two hundred hertz.
  • the natural frequency of the UAV's own structure causes the UAV to resonate, which will seriously affect the imaging quality of the camera and the flight stability of the UAV. Therefore, it is urgent to propose a solution that can solve the problem that the UAV's excitation frequency is close to the UAV's natural frequency and causes the UAV to resonate.
  • the inventor of the present application provides an arm assembly, an unmanned aerial vehicle, and a control method for the arm assembly, so as to realize that the natural frequency of the unmanned aerial vehicle can be adjusted, the resonance of the unmanned aerial vehicle can be reduced, and the shooting device can be improved. imaging quality and flight stability of unmanned aerial vehicles.
  • the unmanned aerial vehicle 1000 may include a rotary-wing unmanned aerial vehicle, a fixed-wing unmanned aerial vehicle, an unmanned helicopter, or a hybrid fixed-wing-rotor-wing unmanned aerial vehicle, among others.
  • the rotor unmanned aerial vehicle may include a dual-rotor aircraft, a tri-rotor aircraft, a quad-rotor aircraft, a hexa-rotor aircraft, an octa-rotor aircraft, a ten-rotor aircraft, or a twelve-rotor aircraft, and the like.
  • the UAV 1000 includes an arm assembly 100 and a fuselage 200 .
  • the arm assembly 100 is connected to the fuselage 200 .
  • the boom assembly 100 includes at least two booms. At least two arms extend out from the fuselage 200 in a radial shape.
  • the arms are movably connected to the fuselage 200 to switch the arms between the use state and the storage state, so as to reduce the space occupied by the unmanned aerial vehicle 1000 in the storage state, and facilitate portability and storage.
  • the UAV 1000 further includes a power system 300 and a flight control system 400 for controlling the flight of the UAV 1000 .
  • the power system 300 is connected to the arm assembly 100, and is used to drive the unmanned aerial vehicle 1000 to realize at least one action such as moving, rotating, and flipping, so as to realize the flight operation.
  • the power system 300 may include at least one electronic governor 301 , at least one propeller 302 , and at least one power motor 303 corresponding to the at least one propeller 302 .
  • the power motor 303 is connected between the electronic governor 301 and the propeller 302 .
  • the power motor 303 and the propeller 302 are arranged on the arm of the arm assembly 100 .
  • the electronic governor 301 is configured to receive the driving signal generated by the flight control system 400 of the UAV 1000 , and provide a driving current to the power motor 303 according to the driving signal, so as to control the rotational speed of the power motor 303 .
  • the power motor 303 is used to drive the propeller 302 to rotate, thereby providing power for the flight of the unmanned aerial vehicle 1000, and the power enables the unmanned aerial vehicle 1000 to realize the movement of one or more degrees of freedom.
  • UAV 1000 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axis may include at least one of a roll axis (roll axis), a pan axis (yaw axis), and a pitch axis (pitch axis).
  • the power motor 303 may be a DC motor or an AC motor.
  • the power motor 303 may be a brushless motor or a brushed motor.
  • the flight control system 400 may include a flight controller and a sensing system.
  • the sensing system is used to measure the attitude information of the UAV 1000, that is, the position information and state information of the UAV 1000 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration or three-dimensional angular velocity, etc.
  • the sensing system may include at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, a barometer, and other sensors.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller is used to control the flight of the UAV 1000, for example, the flight of the UAV 1000 can be controlled according to the attitude information measured by the sensor system. It should be understood that the flight controller can control the UAV 1000 according to pre-programmed instructions, and can also control the UAV 1000 by responding to one or more control instructions from the control terminal.
  • the UAV 1000 further includes a photographing device 500 mounted on the fuselage 200 or the arm assembly 100 .
  • the photographing device 500 can photograph or record data such as images.
  • the photographing apparatus 500 includes a pan-tilt camera.
  • the operating frequency of the propeller 302 (that is, the operating speed of the propeller 302 is determined by the operating frequency of the propeller 302) will also exist.
  • the corresponding frequency is the excitation of a multiple relationship, such as one-time propeller frequency, two-time propeller frequency, three-time propeller frequency, etc.
  • the excitation source includes the propeller 302 and/or the power motor 303, and the excitation frequency of the excitation source has a multiple relationship with the operating frequency of the propeller 302, such as one-time propeller frequency, two-times propeller frequency, three-times propeller frequency, etc.
  • the operating frequency of a certain propeller 302 varies between 30-70 Hz
  • the one-time propeller frequency and the two-time propeller frequency interval corresponding to the operating frequency of the excitation source are 30-70 Hz and 60-140 Hz, respectively.
  • the double or double the propeller frequency of the excitation source is close to the natural frequency of the UAV 1000 itself, the UAV 1000 will resonate, seriously affecting the imaging quality and flight stability of the photographing device 500 .
  • the arm assembly 100 includes a first arm 10, a second arm 20 and an adjustment Institution 30.
  • the adjustment mechanism 30 is connected to at least one of the first arm 10 and the second arm 20 . At least part of the adjustment mechanism 30 can move relative to the first arm 10 and/or the second arm 20 to adjust the natural frequency of the UAV 1000 , thereby reducing the resonance of the UAV 1000 .
  • the adjusting mechanism 30 can move relative to the first arm 10 and/or the second arm 20 . Therefore, during the flight of the unmanned aerial vehicle 1000, the relative position of the adjustment mechanism 30 can be adjusted according to actual requirements, so that the structure of the unmanned aerial vehicle 1000 can be changed during the flying process. That is, the natural frequency of the unmanned aerial vehicle 1000 can be adjusted according to actual needs during the flight, thereby reducing the resonance of the unmanned aerial vehicle 1000, thereby improving the imaging quality of the photographing device 500 and the flight stability of the unmanned aerial vehicle 1000, and The flight safety of the unmanned aerial vehicle 1000 is improved, and the risk of an aircraft explosion is reduced.
  • one end of the adjustment mechanism 30 may be connected to the first arm 10 or the second arm 20 .
  • the other end of the adjusting mechanism 30 may be connected to the body 200 .
  • one end of the adjustment mechanism 30 is connected to the first machine arm 10 .
  • the other end of the adjusting mechanism 30 is connected to the second arm 20 .
  • the natural frequency of the unmanned aerial vehicle 1000 is a physical characteristic of the unmanned aerial vehicle 1000 , which is determined by factors such as the structure, size, weight, and shape of the unmanned aerial vehicle 1000 .
  • the adjustment mechanism 30 is movable relative to the first arm 10 and/or the second arm 20 to adjust the natural frequency of the UAV 1000 such that the natural frequency matches the excitation source of the UAV 1000
  • the excitation frequencies are different or do not have a multiple relationship, thereby reducing the resonance of the unmanned aerial vehicle 1000 .
  • the excitation source includes the propeller 302 and/or the power motor 303 of the UAV 1000 .
  • the natural frequency of the unmanned aerial vehicle 1000 does not have a multiple relationship with the excitation frequency of the excitation source, including: the natural frequency of the unmanned aerial vehicle 1000 is different from the excitation frequency of the excitation source or does not have a 1-fold relationship, a 2-fold relationship, or a 3-fold relationship. relationship, etc.
  • the natural frequency of the UAV 1000 is f 0
  • the excitation frequency of the excitation source is f 1
  • the fact that the natural frequency is different from the excitation frequency of the excitation source of the UAV 1000 or does not have a multiple relationship includes: f 0 is not within the preset range, and the preset range is nf 1 -a ⁇ nf 1 ⁇ nf 1 +a. where n is a positive integer. a can be designed to any suitable value according to actual needs, and is not limited here.
  • the natural frequency of the unmanned aerial vehicle 1000 after the structure is changed is as far as possible away from the excitation frequency of the excitation source, so as to reduce the resonance of the unmanned aerial vehicle 1000 .
  • FIG. 13 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application.
  • the control method can be applied to the unmanned aerial vehicle 1000 to adjust the natural frequency of the unmanned aerial vehicle 1000, thereby reducing the resonance of the unmanned aerial vehicle 1000.
  • the specific steps of adjusting the natural frequency of the unmanned aerial vehicle 1000 include: obtaining the excitation frequency of the excitation source of the unmanned aerial vehicle 1000; according to the excitation frequency, controlling the adjustment mechanism 30 relative to the first arm 10 and/or the second arm 20 to adjust the natural frequency of the UAV 1000.
  • the movement of the adjustment mechanism 30 can be controlled according to the excitation frequency, thereby changing the structure of the UAV 1000 and adjusting the natural frequency of the UAV 1000, thereby reducing the resonance frequency. occur.
  • the excitation frequency is determined based on the target operating frequency of the propeller 302 .
  • acquiring the excitation frequency of the excitation source of the UAV 1000 includes: acquiring the target operating frequency of the excitation source of the UAV 1000; and determining the excitation frequency of the excitation source according to the target operating frequency.
  • the excitation frequency of the excitation source has a multiple relationship with the target operating frequency.
  • the target operating frequency is f 3
  • the excitation frequency f 1 of the excitation source includes m ⁇ f 3 .
  • m is a positive integer.
  • the excitation frequency f 1 of the excitation source includes twice the target operating frequency f 3 and twice the target operating frequency f 3 .
  • controlling the adjustment mechanism 30 to move relative to the first arm 10 and/or the second arm 20 to adjust the natural frequency of the UAV 1000 includes: controlling the adjustment mechanism 30 according to the excitation frequency Movement relative to the first arm 10 and/or the second arm 20 to adjust the natural frequency of the UAV 1000 to the arithmetic square root of one-half twice the target operating frequency of the excitation source.
  • f 0 is the natural frequency of the UAV 1000
  • f 3 is the target operating frequency of the propeller 302 .
  • Determining the excitation frequency of the excitation source according to the target operating frequency includes: if the current operating frequency of the excitation source is different from the target operating frequency, determining the excitation frequency of the excitation source according to the target operating frequency. If the current operating frequency of the excitation source is the same as the target operating frequency, the adjusting mechanism 30 remains stationary relative to the first arm 10 and/or the second arm 20 .
  • the working frequency corresponding to the working speed of the propeller 302 is also different at the current moment and the next moment (that is, the current working frequency is different from the target working frequency).
  • the excitation frequency of the excitation source will also change correspondingly at the current moment and the next moment. If the natural frequency of the unmanned aerial vehicle 1000 remains unchanged between the current moment and the next moment, the excitation frequency of the excitation source may be the same or a multiple of the natural frequency of the unmanned aerial vehicle 1000 at the next moment, resulting in resonance. The imaging quality of the photographing device 500 and the flight stability of the UAV 1000 are seriously affected.
  • the flight controller determines the excitation frequency of the excitation source according to the target operating frequency.
  • the unmanned aerial vehicle 1000 controls the movement of the adjustment mechanism 30 according to the excitation frequency, thereby adjusting the natural frequency of the unmanned aerial vehicle 1000, so that the excitation frequency and the natural frequency of the unmanned aerial vehicle 1000 are not the same or are not multiplied, reducing the occurrence of resonance, thereby improving the shooting equipment.
  • the flight controller determines that the current operating frequency of the excitation source is different from the target operating frequency, and determines The excitation frequency of the excitation source, so as to control the movement of the adjusting mechanism 30 according to the excitation frequency.
  • the subsequent steps are not performed, thereby reducing the processing capacity and power consumption of the flight controller, and improving the Control efficiency of the flight controller.
  • the absolute value of the difference between the current operating frequency of the excitation source and the target operating frequency is greater than the preset threshold, it is determined that the difference between the current operating frequency of the propeller 302 at the current moment and the target operating frequency at the next moment satisfies the inherent Frequency adjustment conditions.
  • determining whether the current operating frequency of the excitation source is the same as the target operating frequency specifically includes: if the absolute value of the difference between the current operating frequency of the excitation source and the target operating frequency is greater than a preset threshold, determining the current operating frequency of the excitation source The operating frequency is different from the target operating frequency. If the absolute value of the difference between the current operating frequency of the excitation source and the target operating frequency is less than or equal to the preset threshold, it is determined that the current operating frequency of the excitation source is the same as the target operating frequency.
  • the preset threshold can be determined according to actual needs, which is not limited here.
  • control method for the unmanned aerial vehicle 1000 further includes: receiving a flight control instruction of the unmanned aerial vehicle 1000, where the flight control instruction includes the target operating frequency of the excitation source.
  • the flight controller receives the flight control instruction of the unmanned aerial vehicle 1000 .
  • the flight control commands include the target operating frequency of the excitation source.
  • the flight controller controls the excitation source to work according to the target operating frequency of the excitation source in the flight control instruction.
  • receiving the flight control instruction of the unmanned aerial vehicle 1000 includes: receiving the flight control instruction of the unmanned aerial vehicle 1000 sent by the control terminal.
  • the control terminal may include a remote controller, a gamepad, and the like.
  • receiving the flight control instruction of the unmanned aerial vehicle 1000 includes: receiving the flight control instruction of the unmanned aerial vehicle 1000 sent by the user.
  • the user may send flight control instructions to the UAV 1000 through different gestures.
  • the UAV 1000 can receive flight control commands sent by the user.
  • controlling the adjustment mechanism 30 to move relative to the first arm 10 and/or the second arm 20 to adjust the natural frequency of the UAV 1000 includes: controlling the adjustment mechanism 30 relative to the first arm 10 and/or Or the second arm 20 moves to adjust the natural frequency of the UAV 1000, so that the natural frequency is different from the excitation frequency or does not have a multiple relationship.
  • the flight controller controls the adjustment mechanism 30 to move relative to the first arm 10 and/or the second arm 20 according to the excitation frequency, thereby adjusting the natural frequency of the unmanned aerial vehicle 1000, Make the natural frequency different from the excitation frequency as much as possible or not have a multiple relationship, thereby reducing the resonance of the unmanned aerial vehicle 1000, thereby improving the imaging quality of the photographing device 500 and the flight stability of the unmanned aerial vehicle 1000, and improving the unmanned aerial vehicle. 1000 flight safety.
  • controlling the adjustment mechanism 30 to move relative to the first arm 10 and/or the second arm 20 according to the excitation frequency includes: determining a target position of the adjustment mechanism 30 according to the excitation frequency; controlling the adjustment according to the target position The mechanism 30 moves relative to the first arm 10 and/or the second arm 20 .
  • the flight controller determines the target position of the adjustment mechanism 30 relative to the first arm 10 and/or the second arm 20 according to the excitation frequency. After determining the target position, the flight controller controls the adjustment mechanism 30 to move relative to the first arm 10 and/or the second arm 20 to the target position, thereby adjusting the natural frequency of the unmanned aerial vehicle 1000 and reducing the resonance of the unmanned aerial vehicle 1000 .
  • determining the target position of the adjustment mechanism 30 according to the excitation frequency includes: determining the target position of the adjustment mechanism 30 corresponding to the excitation frequency from a preset frequency position map.
  • the preset frequency position mapping table records the mapping relationship between the excitation frequency of the excitation source and the target position of the adjustment mechanism 30 .
  • the flight controller may determine the target position of the adjustment mechanism 30 corresponding to the excitation frequency from the frequency position map.
  • the method before determining the target position of the adjustment mechanism 30 corresponding to the excitation frequency from the preset frequency position mapping table, the method further includes: acquiring a preset frequency position mapping table, and saving the frequency position mapping table, the frequency position mapping table, and the frequency position mapping table.
  • the mapping table records the mapping relationship between the excitation frequency and the target position.
  • the flight controller may obtain a preset frequency position mapping table in advance, and save the frequency position mapping table. Then, the target position of the adjustment mechanism 30 corresponding to the excitation frequency is determined from the frequency position map.
  • the excitation frequency is related to the flight state, flight environment, etc. of the UAV 1000 .
  • the natural frequency is related to attribute information of the unmanned aerial vehicle 1000 .
  • the excitation frequency may change.
  • the operating frequency of the propeller 302 is different in the flight state after the change and the flight state before the change, the excitation frequency also changes correspondingly with the change in the flight state.
  • the flight state includes a hover state or a motion state.
  • the working speed of the propeller 302 changes accordingly
  • the working frequency corresponding to the working speed of the propeller 302 changes
  • the excitation frequency changes accordingly.
  • the flight environment includes altitude information. It can be understood that when the UAV 1000 is flying at different altitudes, the air flow at different altitudes has different effects on the propeller 302, and the working speed of the propeller 302 changes within a certain range, so the excitation frequency of the excitation source will also change with the frequency. varies with different altitudes.
  • the attribute information includes: at least one of the size, weight, and function of the UAV 1000 .
  • the function of the unmanned aerial vehicle 1000 refers to the functional application of the unmanned aerial vehicle 1000, such as professional grade, industry grade, or consumer grade.
  • the first arm 10 and/or the second arm 20 are fixedly connected or non-foldable connected to the fuselage 200 .
  • the first machine arm 10 is fixedly connected with the body 200 as an example for description.
  • the first machine arm 10 and the fuselage 200 are made by integral molding.
  • the first arm 10 and the body 200 are fixedly connected by quick-release parts such as screws.
  • the first arm 10 and/or the second arm 20 can be foldably connected to the fuselage 200 . That is, the first arm 10 and/or the second arm 20 can rotate relative to the fuselage 200 to switch between the use state or the storage state.
  • the first arm 10 and/or the second arm 20 are rotated relative to the fuselage 200 and deployed, so that the first arm 10 and/or the second arm 20 are switched to the use state .
  • the first arm 10 and/or the second arm 20 are rotated relative to the fuselage 200 to be folded, so that the first arm 10 and/or the second arm 20 are switched to the storage state , reducing the occupied space of the unmanned aerial vehicle 1000 and facilitating storage and portability.
  • first arm 10 and/or the second arm 20 are rotatably connected with the fuselage 200 through a hinge structure.
  • At least part of the adjustment mechanism 30 can support at least one of the first arm 10 and the second arm 20 .
  • the first arm 10 and/or the second arm 20 are rotatably connected to the fuselage 200 .
  • At least part of the adjusting mechanism 30 can support the first arm 10 and the fuselage 200 , improve the rigidity and anti-bending force of the first arm 10 along the folded direction, reduce the situation that the first arm 10 is folded back, and thereby improve the unmanned aerial vehicle 1000 .
  • the flight stability and control stability are improved, the flight safety of the unmanned aerial vehicle 1000 is improved, and the risk of bombing is reduced.
  • At least part of the adjusting mechanism 30 can support the second arm 20 and the fuselage 200, so as to improve the rigidity and anti-bending force of the second arm 20 along the foldback direction, reduce the situation that the second arm 20 is folded back, and improve the The flight stability and control stability of the unmanned aerial vehicle 1000 are improved, the flight safety of the unmanned aerial vehicle 1000 is improved, and the risk of an aircraft explosion is reduced.
  • At least part of the adjustment mechanism 30 can support the first arm 10 and the second arm 20, raise the first arm 10 and/or Or the stiffness and anti-bending force of the second arm 20 along the folded-back direction, reduce the situation of the first arm 10 and/or the second arm 20 folded back, improve the flight stability and control stability of the unmanned aerial vehicle 1000, and The flight safety of the unmanned aerial vehicle 1000 is improved, and the risk of an aircraft explosion is reduced.
  • the adjustment mechanism 30 is connected to the first arm 10 and the second arm 20 .
  • the adjustment mechanism 30 includes a support structure 31 and a drive structure 32 .
  • the support structure 31 is connected to the first arm 10 and the second arm 20 .
  • the driving structure 32 is disposed on at least one of the first arm 10 , the second arm 20 and the support assembly 311 .
  • the driving structure 32 is drivingly connected with the supporting structure 31 to drive the supporting structure 31 to move relative to the first arm 10 and/or the second arm 20 , so as to adjust the natural frequency of the UAV 1000 .
  • the driving structure 32 may be provided on one of the first arm 10 , the second arm 20 and the support assembly 311 .
  • any two of the first arm 10 , the second arm 20 and the support assembly 311 are respectively provided with different parts of the driving structure 32 .
  • the first arm 10 , the second arm 20 and the support assembly 311 are respectively provided with different parts of the driving structure 32 .
  • controlling the movement of the adjustment mechanism 30 relative to the first arm 10 and/or the second arm 20 includes: controlling the movement of the drive structure 32 to drive the support structure 31 relative to the first arm 10 and/or the second arm 20 The arm 20 moves.
  • the flight controller can control the movement of the drive structure 32 according to the excitation frequency, so that the drive structure 32 drives the support structure 31 relative to the first arm 10 and/or the second arm 20 . movement to adjust the natural frequency of the unmanned aerial vehicle 1000, thereby reducing the resonance of the unmanned aerial vehicle 1000.
  • the support structure 31 can support the first arm 10 and the second arm 20 , so that the first arm 10 and the second arm 20 can be maintained at a preset relative position.
  • the first arm 10 and/or the second arm 20 can rotate relative to the fuselage 200 .
  • the support structure 31 can support the first arm 10 and the second arm 20, so that the first arm 10 and the second arm
  • the arm 20 can be maintained at the preset relative position corresponding to the use state, so as to improve the stiffness and anti-bending force of the first arm 10 and/or the second arm 20 along the bending direction, and reduce the first arm 10 and/or the second arm 20.
  • the second machine arm 20 is folded back.
  • both ends of the support structure 31 can be slidably connected with the first arm 10 and the second arm 20 respectively.
  • the flight controller can control the movement of the drive structure 32 according to the excitation frequency, so that the drive structure 32 drives the support structure 31 relative to the first arm 10 and/or the second arm 20 .
  • support structure 31 includes opposing first and second ends.
  • the first end of the support structure 31 can be slidably connected with the first machine arm 10
  • the second end of the support structure 31 can be slidably connected with the second machine arm 20 .
  • the drive structure 32 can drive the first end of the support structure 31 to slide relative to the first boom 10 at a first speed, and determine the second end of the support structure 31 to slide relative to the second boom 20 at a second speed , so as to adjust the natural frequency of the unmanned aerial vehicle 1000 , thereby reducing the resonance of the unmanned aerial vehicle 1000 .
  • first speed and the second speed can be designed according to actual requirements, which are not limited here.
  • first speed is greater than the second speed.
  • first speed may also be less than or equal to the second speed.
  • one end of the support structure 31 can be slidably connected to one of the first arm 10 and the second arm 20 , and the other end of the support structure 31 can be connected to the first arm 10 and the second arm 20 in a sliding manner.
  • the other of the arm 10 and the second arm 20 is slidably connected and rotationally connected.
  • support structure 31 includes opposing first and second ends.
  • the first end of the support structure 31 can be slidably connected with the first machine arm 10
  • the second end of the support structure 31 can be slidably connected and rotatably connected with the second machine arm 20 .
  • the drive structure 32 can drive the support structure 31 to move in multiple degrees of freedom to adjust the natural frequency of the UAV 1000 .
  • the flight controller can control the movement of the driving structure 32 according to the excitation frequency, so that the driving structure 32 drives the first end of the supporting structure 31 to slide relative to the first arm 10 and drives the driving structure 32 to move.
  • the second end of the support structure 31 slides and rotates relative to the second arm 20 to adjust the natural frequency of the unmanned aerial vehicle 1000 , thereby reducing the resonance of the unmanned aerial vehicle 1000 .
  • first sliding speed at which the first end of the support structure 31 slides relative to the first arm 10 and the second sliding speed and rotation speed at which the second end of the support structure 31 slides relative to the second arm 20, All can be designed according to actual needs, which is not limited here.
  • the first end of the support structure 31 is slidably connected and rotationally connected with the first machine arm 10
  • the second end of the support structure 31 is slidably connected with the second machine arm 20 .
  • one end of the support structure 31 can be rotatably connected to one of the first arm 10 and the second arm 20 , and the other end of the support structure 31 can be connected to the first arm 10 It is slidably connected and rotationally connected with the other of the second arms 20 .
  • support structure 31 includes opposing first and second ends.
  • the first end of the support structure 31 can be rotatably connected with the first machine arm 10
  • the second end of the support structure 31 can be slidably and rotatably connected with the second machine arm 20 .
  • the drive structure 32 can drive the support structure 31 to move in multiple degrees of freedom to adjust the natural frequency of the UAV 1000 .
  • the flight controller can control the movement of the driving structure 32 according to the excitation frequency, so that the driving structure 32 can drive the first end of the support structure 31 to rotate relative to the first arm 10, and The second end of the driving support structure 31 slides and rotates relative to the second arm 20 to adjust the natural frequency of the unmanned aerial vehicle 1000 , thereby reducing the resonance of the unmanned aerial vehicle 1000 .
  • the first rotational speed at which the first end of the support structure 31 is driven by the driving structure 32 to rotate, and the second rotational speed at which the second end of the support structure 31 is driven to slide and rotate can be designed according to actual needs. , which is not limited here.
  • first end of the support structure 31 can be slidably connected and rotatably connected with the first machine arm 10
  • the second end of the support structure 31 can be rotatably connected with the second machine arm 20 .
  • one end of the support structure 31 can be slidably and rotatably connected to one of the first arm 10 and the second arm 20, and the other end of the support structure 31 can be connected to the first arm 10 and the second arm 20.
  • the other of the two arms 20 is slidably connected and rotationally connected.
  • support structure 31 includes opposing first and second ends.
  • the first end of the support structure 31 can be slidably connected and rotatably connected with the first machine arm 10
  • the second end of the support structure 31 can be slidably connected and rotatably connected with the second machine arm 20 .
  • the drive structure 32 can drive the support structure 31 to move in multiple degrees of freedom to adjust the natural frequency of the UAV 1000 .
  • the flight controller can control the movement of the driving structure 32 according to the excitation frequency, so that the driving structure 32 can drive the first end of the support structure 31 to slide and rotate relative to the first arm 10 . , and drive the second end of the support structure 31 to slide and rotate relative to the second arm 20 to adjust the natural frequency of the unmanned aerial vehicle 1000 , thereby reducing the resonance of the unmanned aerial vehicle 1000 .
  • the driving structure 32 drives the first sliding speed and the rotation speed of the first end of the support structure 31 to slide, and the second sliding speed and the rotation of the second end of the support structure 31.
  • the speed can be designed according to actual needs, which is not limited here.
  • the drive structure 32 includes a first drive assembly 321 .
  • the first drive assembly 321 is disposed on one of the support structure 31 , the first machine arm 10 and the second machine arm 20 , and is used for driving the support structure 31 relative to at least one of the first machine arm 10 and the second machine arm 20 One movement.
  • the first driving assembly 321 is provided on the support structure 31 .
  • the first drive assembly 321 is provided on the first machine arm 10 .
  • the first drive assembly 321 is provided on the second arm 20 .
  • the first drive assembly 321 is used to drive the support structure 31 to move relative to the first arm 10 .
  • the first drive assembly 321 is used to drive the support structure 31 to move relative to the second arm 20 .
  • the first drive assembly 321 is used to drive the support structure 31 to move relative to the first arm 10 and the second arm 20 .
  • the first drive assembly 321 includes a drive motor.
  • the drive motor can directly drive the support structure 31 to move.
  • the drive motor can also drive the support structure 31 to move through the intermediate transmission structure.
  • the intermediate transmission structure may include at least one of a gear transmission structure, a worm gear transmission structure, and the like.
  • the first drive assembly 321 is used to drive the support structure 31 to slide relative to the first arm 10 and the second arm 20 .
  • support structure 31 includes opposing first and second ends.
  • the first end of the support structure 31 can be slidably connected with the first arm 10 .
  • the second end of the support structure 31 can be slidably connected with the second arm 20 .
  • the first driving assembly 321 can drive the first end of the support structure 31 to slide relative to the first arm 10 , and drive the second end of the support structure 31 to slide relative to the second arm 20 .
  • the sliding speed at which the first end of the support structure 31 slides relative to the first arm 10 is the same or approximately the same as the sliding speed at which the second end of the support structure 31 slides relative to the second arm 20 .
  • the first drive assembly 321 is used to drive the support structure 31 to slide and rotate relative to at least one of the first arm 10 and the second arm 20 .
  • support structure 31 includes opposing first and second ends.
  • the first drive assembly 321 can drive the first end of the support structure 31 to slide and rotate relative to the first arm 10
  • the first drive assembly 321 can drive the second end of the support structure 31 to slide relative to the second arm 20 .
  • the first drive assembly 321 can drive the first end of the support structure 31 to slide relative to the first arm 10 , and the first drive assembly 321 can drive the second end of the support structure 31 to slide and rotate relative to the second arm 20 .
  • the first drive assembly 321 can drive the first end of the support structure 31 to slide and rotate relative to the first arm 10 , and the first drive assembly 321 can drive the second end of the support structure 31 to rotate relative to the second arm 20 .
  • the first drive assembly 321 can drive the first end of the support structure 31 to rotate relative to the first arm 10 , and the first drive assembly 321 can drive the second end of the support structure 31 to slide and rotate relative to the second arm 20 .
  • the first drive assembly 321 can drive the first end of the support structure 31 to slide and rotate relative to the first arm 10 , and the first drive assembly 321 can drive the second end of the support structure 31 to slide and rotate relative to the second arm 20 . turn.
  • controlling the movement of the drive structure 32 to drive the support structure 31 to move relative to the first arm 10 and/or the second arm 20 includes: controlling the movement of the first drive assembly 321 to drive the support structure 31 to move relative to the first arm 10 and/or the second arm 20 A machine arm 10 and/or a second machine arm 20 moves.
  • the flight controller can control the movement of the first drive assembly 321 according to the excitation frequency, so that the drive structure 32 drives the support structure 31 to move relative to the first arm 10 and/or the second arm 20 , to adjust the natural frequency of the unmanned aerial vehicle 1000, thereby reducing the resonance of the unmanned aerial vehicle 1000.
  • the first driving assembly 321 is used to drive the support structure 31 to extend and retract, so as to adjust the length of the support structure 31 .
  • the length of the support structure 31 can be adjusted adaptively, which ensures that the support structure 31 is adjusted to a proper position.
  • the first arm 10 and/or the second arm 20 are in use, the first arm 10 and the second arm 20 are not arranged in parallel.
  • the position of the support structure 31 relative to the fuselage 200 changes.
  • the length of the support structure 31 also needs to be changed accordingly.
  • the length of the support structure 31 needs to be adaptively adjusted through the first drive assembly 321 .
  • control method of the unmanned aerial vehicle 1000 further includes controlling the first driving component 321 to drive the support structure 31 to extend and retract, so as to adjust the length of the support structure 31 .
  • the target position of the support structure 31 may be determined.
  • the target length of the support structure 31 may be determined according to the target position of the support structure 31 .
  • the UAV 1000 controls the first drive assembly 321 to drive the support structure 31 to expand and contract according to the target length and the current length of the support structure 31 .
  • the support structure 31 includes a support component 311 .
  • the support assembly 311 is connected to the first arm 10 and the second arm 20 .
  • the first drive assembly 321 is in driving connection with the support assembly 311 .
  • both ends of the support assembly 311 are respectively connected to the first arm 10 and the second arm 20 .
  • the overall shape of the support assembly 311 is rod-like.
  • the support structure 31 further includes a first movable member 312 .
  • the first movable member 312 is connected with the support assembly 311 .
  • the driving structure 32 can drive the first movable member 312 to move in a predetermined direction.
  • the first movable member 312 is movably connected with the first machine arm 10 (or the second machine arm 20 ).
  • the first movable member 312 is fixedly or detachably connected to the support assembly 311 .
  • the driving structure 32 can drive the first movable member 312 to slide or rotate in a predetermined direction, thereby driving the support assembly 311 connected with the first movable member 312 to slide or rotate.
  • the first movable member 312 is detachably connected to the support assembly 311 through a snap structure or a quick release structure or the like.
  • the support assembly 311 can be detached from the first movable member 312, and the first arm 10 and the second arm 20 can be rotated relative to the fuselage 200 to be folded, disassembled and assembled. Simple, easy to store or carry.
  • the driving structure 32 includes a second driving component 322 .
  • the second driving assembly 322 is disposed on the first arm 10 or the second arm 20 .
  • the second driving assembly 322 is in driving connection with the first movable member 312 .
  • the second drive assembly 322 is mounted on the first arm 10 .
  • the second drive assembly 322 is mounted on the second machine arm 20 .
  • the first movable member 312 and the second driving assembly 322 are both disposed on the first machine arm 10 .
  • the second drive assembly 322 drives the first movable member 312 to move, thereby driving the support assembly 311 connected with the first movable member 312 to move relative to the first machine arm 10 .
  • the first drive assembly 321 can drive the support assembly 311 to extend and retract, so as to adjust the length of the support assembly 311 to accommodate the movement of the support assembly 311 relative to the first arm 10 .
  • the second driving assembly 322 includes a screw drive structure or a screw drive structure or the like.
  • the first movable member 312 is provided with a first threaded connection portion 3121 .
  • the second driving assembly 322 includes a first driving member 3221 and a first adjusting rod 3222 .
  • the first driving member 3221 is arranged on the first machine arm 10 .
  • the first adjusting rod 3222 passes through the first movable member 312 and is connected with the first driving member 3221 .
  • the first adjusting rod 3222 is provided with a first threaded fitting portion 3223 that is screwed with the first threaded connecting portion 3121 to drive the first movable member 312 to slide along the axial direction of the first adjusting rod 3222 .
  • the first arm 10 is provided with a first chute 11 .
  • the first movable member 312 can be slidably matched with the first sliding slot 11 .
  • the first driving member 3221 is fixed on the first machine arm 10 and is located at one end of the first chute 11 .
  • One end of the first adjusting rod 3222 is in driving connection with the first driving member 3221 .
  • the other end of the first adjusting rod 3222 is connected with the first arm 10 through the first bearing mechanism 41 .
  • first driving member 3221 can also be installed at any other suitable position of the first machine arm 10, which is not limited herein.
  • the first bearing mechanism 41 is fixedly connected with the first machine arm 10 , and the first adjusting rod 3222 is rotatably connected with the first bearing mechanism 41 .
  • the first adjusting rod 3222 is located in the first sliding groove 11 .
  • the first threaded connection portion 3121 includes an internal thread structure
  • the first threaded fitting portion 3223 includes an external thread structure matched with the internal thread structure.
  • the first movable member 312 can slide relative to the first chute 11 under the action of the first adjusting rod 3222 and the first driving member 3221 .
  • the first driving member 3221 includes a motor.
  • controlling the drive structure 32 to move to drive the support structure 31 to move relative to the first arm 10 and/or the second arm 20 includes: controlling the first drive member 3221 to drive the first adjustment rod 3222 to move to move The support structure 31 is moved relative to the first arm 10 and/or the second arm 20 .
  • the flight controller can control the movement of the first driving member 3221 according to the excitation frequency, so that the first driving member 3221 drives the support structure 31 relative to the first arm 10 and/or the second arm. 20 to adjust the natural frequency of the unmanned aerial vehicle 1000, thereby reducing the resonance of the unmanned aerial vehicle 1000.
  • the support structure 31 further includes a second movable member 313 .
  • the second movable member 313 is connected with the support assembly 311 .
  • the driving structure 32 can drive the first movable member 312 and the second movable member 313 to move in a predetermined direction.
  • the second movable member 313 is movably connected with the second machine arm 20 .
  • the second drive assembly 322 drives the first movable member 312 to slide relative to the first arm 10
  • the support assembly 311 connected with the first movable member 312 moves together with the first movable member 312
  • the second movable member connected with the support assembly 311 moves together 313 moves relative to the second arm 20 following the support assembly 311 .
  • the driving structure 32 further includes a third driving component 323 , and the third driving component 323 is drivingly connected with the second movable member 313 .
  • the first movable member 312 and the second driving assembly 322 are disposed on one of the first arm 10 and the second arm 20 .
  • the second movable member 313 and the third driving assembly 323 are disposed on the other of the first arm 10 and the second arm 20 .
  • the second movable member 313 is movably connected with the second machine arm 20 .
  • the second movable member 313 is fixedly or detachably connected to the support assembly 311 .
  • the third driving assembly 323 can drive the second movable member 313 to slide or rotate, and then drive the support assembly 311 connected with the second movable member 313 to slide or rotate.
  • the second movable member 313 is detachably connected to the support assembly 311 through a snap structure or a quick release structure or the like.
  • the support assembly 311 can be removed from the second movable member 313, and the first arm 10 and the second arm 20 can be rotated and folded relative to the fuselage 200. It is easy to disassemble and assemble, which is convenient for the storage or transportation of the unmanned aerial vehicle.
  • the first movable member 312 and the second driving component 322 are provided on the first machine arm 10
  • the second movable piece 313 and the third driving component 323 are provided on the second machine arm 20
  • the second driving assembly 322 can drive the first movable member 312 to move relative to the first machine arm 10 , thereby driving the support assembly 311 connected to the first movable member 312 to move relative to the first machine arm 10
  • the third driving assembly 323 can drive the second movable member 313 to move relative to the second machine arm 20 , thereby driving the support assembly 311 connected to the second movable member 313 to move relative to the second machine arm 20 .
  • the first movable member 312 is a slider; and/or the second movable member 313 is a slider.
  • the second movable member 313 is provided with a second threaded connection portion 3131 .
  • the third driving assembly 323 includes a second driving member 3231 and a second adjusting rod 3232 .
  • the second driving member 3231 is disposed on the second arm 20 .
  • the second adjusting rod 3232 passes through the second movable member 313 and is connected with the second driving member 3231 .
  • the second adjusting rod 3232 is provided with a second threaded fitting portion 3233 that is screwed with the second threaded connecting portion 3131 to drive the second movable member 313 to slide along the axial direction of the second adjusting rod 3232 .
  • the second arm 20 is provided with a second chute 21 .
  • the second movable member 313 can be slidably matched with the second sliding slot 21 .
  • the second driving member 3231 is fixed on the second machine arm 20 and is located at one end of the second chute 21 .
  • One end of the second adjusting rod 3232 is drivingly connected with the first driving member 3221 .
  • the other end of the second adjusting rod 3232 is connected with the second arm 20 through the second bearing mechanism 42 .
  • the second driving member 3231 can also be installed at any other suitable position of the second machine arm 20, which is not limited herein.
  • the second bearing mechanism 42 is fixedly connected with the second machine arm 20 , and the second adjusting rod 3232 is rotatably connected with the second bearing mechanism 42 .
  • the second adjusting rod 3232 is located in the second sliding groove 21 .
  • controlling the drive structure 32 to move to drive the support structure 31 to move relative to the first arm 10 and/or the second arm 20 includes: controlling the first drive member 3221 to drive the first adjustment rod 3222 to move, and The second driving member 3231 is controlled to drive the second adjusting rod 3232 to move, so as to move the support structure 31 relative to the first arm 10 and/or the second arm 20 .
  • the flight controller can control the first drive member 3221 to drive the first adjustment rod 3222 to move according to the excitation frequency, and control the second drive member 3231 to drive the second adjustment rod 3232 to move, so as to make the support
  • the structure 31 moves relative to the first arm 10 and/or the second arm 20 .
  • the support assembly 311 includes a motorized push rod. In some embodiments, the support assembly 311 cooperates with the first driving assembly 321 to form an electric push rod, and the length of the electric push rod can realize automatic expansion and contraction.
  • the support assembly 311 includes a first support body 3111 and a second support body 3112 .
  • the first support body 3111 is movably connected with the first machine arm 10 .
  • the second support body 3112 is movably connected with the second machine arm 20 .
  • the first support body 3111 is telescopically connected with the second support body 3112 to adjust the length of the support assembly 311 .
  • first support body 3111 and the first movable member 312 are fixedly connected through a buckle structure or the like.
  • the second support body 3112 is fixedly connected with the second movable member 313 through a snap structure or a hinge structure.
  • the first support body 3111 is slidably connected with the first machine arm 10, and the second support body 3112 is slidably connected with the second machine arm 20, so that the drive assembly is relatively opposite to the first machine arm 10 and/or the second machine arm 20.
  • Arm 20 moves to adjust the natural frequency of UAV 1000 .
  • the second driving assembly 322 can drive the first movable member 312 to slide relative to the first arm 10 , thereby driving the first support body 3111 fixedly connected with the first movable member 312 to slide relative to the first arm 10 .
  • the third driving assembly 323 can drive the second movable member 313 to slide relative to the second arm 20 , thereby driving the second support body 3112 fixedly connected with the second movable member 313 to slide relative to the second arm 20 .
  • the first support body 3111 is slidably connected to the first machine arm 10
  • the second support body 3112 is slidably connected to the second machine arm 20 and rotationally connected, so that the drive assembly is relatively relative to the first machine arm 10 and/or The second arm 20 is moved to adjust the natural frequency of the UAV 1000 .
  • the second drive assembly 322 can drive the first movable member 312 to slide relative to the first arm 10 , thereby driving the first support body 3111 fixedly connected with the first movable member 312 to slide relative to the first arm 10 .
  • the third driving assembly 323 can drive the second movable member 313 to slide relative to the second arm 20 , thereby driving the second support body 3112 fixedly connected with the second movable member 313 to slide relative to the second arm 20 .
  • the first drive assembly 321 can drive the second support body 3112 to rotate relative to the second machine arm 20 .
  • the first support body 3111 is rotatably connected with the first machine arm 10
  • the second support body 3112 is slidably and rotatably connected with the second machine arm 20, so that the drive assembly is relatively relative to the first machine arm 10 and/or The second arm 20 is moved to adjust the natural frequency of the UAV 1000 .
  • the first support body 3111 is slidably and rotatably connected with the first arm 10
  • the second support 3112 is slidably and rotatably connected with the second arm 20 , so that the drive assembly is relative to the first arm 10 . and/or movement of the second arm 20 to adjust the natural frequency of the UAV 1000 .
  • the first support body 3111 includes a sleeve that movably cooperates with the second support body 3112 . Part of the second support body 3112 can slide in the first support body 3111 .
  • the first support body 3111 is provided with a third chute 31112
  • the second support body 3112 is slidably connected with the third chute 31112 .
  • the second support body 3112 includes a support frame 31121 , a third adjustment rod 31122 and a sliding member 31123 .
  • the support frame 31121 can be slidably and/or rotatably connected with the second arm 20 .
  • the first drive assembly 321 is disposed on the support frame 31121 .
  • the third adjusting rod 31122 is in driving connection with the first driving assembly 321 .
  • the sliding member 31123 is connected with the third adjusting rod 31122 and slidingly matched with the first supporting body 3111 .
  • the first drive assembly 321 is drive-connected with the first shaft 33 .
  • the first rotating shaft 33 is connected to the support frame 31121 through a bearing member.
  • the bearing member is fixedly connected to the support frame 31121 .
  • the first rotating shaft 33 is rotatably connected with the bearing member.
  • An end of the first rotating shaft 33 away from the first driving assembly 321 is provided with a fitting portion 31125 .
  • the assembling portion 31125 is fixedly or detachably connected to the third adjusting rod 31122 , so as to realize the fixed or detachable connection between the support frame 31121 and the third adjusting rod 31122 .
  • the first support body 3111 is provided with a third threaded connection portion 31111 .
  • the third adjusting rod 31122 is provided with a third threaded fitting portion 31124 threaded with the third threaded connecting portion 31111 , so as to drive the first support body 3111 to slide along the axial direction of the third adjusting rod 31122 .
  • the first drive assembly 321 can drive the third adjusting rod 31122 to rotate through the first rotating shaft 33, and the third adjusting rod 31122 and the first Telescopic movement of the support body 3111 .
  • the support frame 31121 can be rotatably connected with the second machine arm 20 .
  • the support frame 31121 is rotatably connected with the second machine arm 20 through a hinge structure.
  • the support frame 31121 can be slidably and rotatably connected with the second arm 20 .
  • the support frame 31121 is rotatably connected with the second movable member 313 through a hinge structure.
  • the first drive assembly 321 can drive the support frame 31121 to rotate relative to the second movable member 313 , so as to realize the relative rotation of the support frame 31121 and the second machine arm 20 .
  • the third driving assembly 323 can drive the second movable member 313 to slide relative to the second arm 20, thereby driving the support frame 31121 connected with the second movable member 313 to slide relative to the second arm 20.
  • the support frame 31121 is provided with a first hinge portion 31127 .
  • the second movable member 313 is provided with a second hinge portion 3132 .
  • the second rotating shaft 34 passes through the first hinge portion 31127 and the second hinge portion 3132 , so as to realize the rotational connection between the support frame 31121 and the second movable member 313 .
  • the support frame 31121 is detachably connected with the third adjustment rod 31122 .
  • the first support body 3111 can be detached from the first movable member 312, the third adjustment rod 31122 and the support frame 31121 can be detached, and the first arm 10 and the The second arm 20 rotates relative to the fuselage 200 and is folded, which is easy to assemble and disassemble, and is convenient for storage or carrying of the unmanned aerial vehicle 1000 .
  • one end of the third adjusting rod 31122 is provided with an engaging portion 31126 .
  • the third adjusting rod 31122 is detachably connected to the support frame 31121 through the snap fit of the snap portion 31126 and the fitting portion 31125 .
  • One of the engaging portion 31126 and the assembling portion 31125 is a card slot, and the other is a card protrusion matched with the card slot.
  • At least part of the first support body 3111 and at least part of the third adjusting rod 31122 can be received on the first machine arm 10 .
  • the first support body 3111 and the third adjustment rod 31122 can be at least partially received in the first chute 11 of the first machine arm 10, which can prevent loss on the one hand, and can reduce the loss of the unmanned aerial vehicle 1000 on the other hand.
  • At least part of the second support body 3112 can be received on the second machine arm 20 .
  • the support frame 31121 can support a part to be accommodated in the second chute 21 of the second arm 20, so as to reduce the volume of the unmanned aerial vehicle 1000 when it is accommodated.
  • the support frame 31121 is rotatably connected with the second machine arm 20 .
  • the support frame 31121 can rotate relative to the second machine arm 20 into the second chute 21 .
  • the first support body 3111 can be detached from the first movable member 312
  • the third adjustment rod 31122 can be detached from the support frame 31121 .
  • the first support body 3111 and the third adjustment rod 31122 are accommodated in the first chute 11 .
  • the support frame 31121 is accommodated in the second chute 21 .
  • the first arm 10 and the second arm 20 are rotated and folded relative to the fuselage 200 , which is easy to assemble and disassemble, and facilitates the storage or carrying of the unmanned aerial vehicle 1000 .
  • the control method of the unmanned aerial vehicle according to the embodiment of the present application includes steps S110 to S120.
  • control method can be implemented by a processor, or can be implemented by a control circuit constructed by a plurality of electronic devices.
  • the acquiring the excitation frequency of the excitation source of the unmanned aerial vehicle includes: acquiring a target operating frequency of the excitation source of the unmanned aerial vehicle; determining the excitation of the excitation source according to the target operating frequency frequency.
  • the method before the determining the excitation frequency of the excitation source according to the target operation frequency, the method further includes: determining whether the current operation frequency of the excitation source is the same as the target operation frequency;
  • the determining the excitation frequency of the excitation source according to the target operating frequency includes: if the current operating frequency of the excitation source is different from the target operating frequency, determining the excitation frequency of the excitation source according to the target operating frequency .
  • the determining whether the current operating frequency of the excitation source is the same as the target operating frequency includes: if the absolute value of the difference between the current operating frequency of the excitation source and the target operating frequency is greater than Preset threshold, determine that the current operating frequency of the excitation source is different from the target operating frequency; if the absolute value of the difference between the current operating frequency of the excitation source and the target operating frequency is less than or equal to the preset threshold, determine The current operating frequency of the excitation source is the same as the target operating frequency.
  • the method further includes: receiving a flight control instruction of the unmanned aerial vehicle, the flight control instruction including a target operating frequency of the excitation source.
  • controlling the adjustment mechanism to move relative to the first arm and/or the second arm to adjust the natural frequency of the UAV includes: controlling the adjustment mechanism to move relative to the first arm and/or the second arm to adjust the natural frequency of the unmanned aerial vehicle.
  • the arm and/or the second arm is moved to adjust the natural frequency of the UAV so that the natural frequency is different from the excitation frequency or does not have a multiple relationship.
  • controlling the adjustment mechanism to move relative to the first arm and/or the second arm according to the excitation frequency includes:
  • a target position of the adjustment mechanism is determined; according to the target position, the adjustment mechanism is controlled to move relative to the first arm and/or the second arm.
  • the determining the target position of the adjustment mechanism according to the excitation frequency includes: determining the target position of the adjustment mechanism corresponding to the excitation frequency from a preset frequency position map.
  • the method before determining the target position of the adjustment mechanism corresponding to the excitation frequency from a preset frequency position mapping table, the method further includes: acquiring a preset frequency position mapping table, and saving the A frequency position mapping table, the frequency position mapping table records the mapping relationship between the excitation frequency and the target position.
  • the excitation frequency is related to the flight state and flight environment of the UAV; and/or the natural frequency is related to attribute information of the UAV.
  • the flight state includes: a hovering state or a motion state; and/or the flight environment includes altitude information; and/or the attribute information includes: size and weight of the UAV , at least one of the functions.
  • the adjustment mechanism includes a drive structure and a support structure; the controlling the adjustment mechanism to move relative to the first arm and/or the second arm includes: controlling the drive structure to move , so as to drive the support structure to move relative to the first arm and/or the second arm.
  • the drive structure includes a first drive assembly; and the controlling movement of the drive structure to drive the support structure to move relative to the first arm and/or the second arm includes : control the movement of the first drive assembly to drive the support structure to move relative to the first arm and/or the second arm.
  • control method further includes: controlling the first driving assembly to drive the support structure to expand and contract, so as to adjust the length of the support structure.
  • the driving structure includes a first driving member and a first adjusting rod, the first driving member is drivingly connected with the supporting structure through the first adjusting rod; the controlling the movement of the driving structure , to drive the support structure to move relative to the first arm and/or the second arm, including:
  • the first driving member is controlled to drive the first adjusting rod to move, so as to move the support structure relative to the first arm and/or the second arm.
  • the driving structure includes a first driving member, a first adjusting rod, a second driving member and a second adjusting rod, and the first driving member is transmitted with the supporting structure through the first adjusting rod the second driving member is connected with the supporting structure through the second adjusting rod; the controlling the movement of the driving structure so as to drive the supporting structure relative to the first arm and/or the supporting structure Movement of the second arm, including:
  • controlling the adjustment mechanism to move relative to the first arm and/or the second arm according to the excitation frequency, so as to adjust the natural frequency of the UAV includes:
  • the adjustment mechanism is controlled to move relative to the first arm and/or the second arm, so as to adjust the natural frequency of the UAV to be twice the target operating frequency of the excitation source The arithmetic square root of one-half.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种机臂组件(100),包括第一机臂(10)、第二机臂(20)和调节机构(30);调节机构(30)连接于第一机臂(10)和第二机臂(20)中的至少一者上,至少部分调节机构(30)能够相对第一机臂(10)和/或第二机臂(20)运动,以调节无人飞行器(1000)的固有频率,从而减少无人飞行器(1000)产生共振的情况,进而提高拍摄装置(500)的成像质量和无人飞行器(1000)的飞行稳定性。还涉及无人飞行器(1000)及机臂组件(100)的控制方法。

Description

机臂组件、无人飞行器及机臂组件的控制方法 技术领域
本申请涉及飞行器技术领域,尤其涉及一种机臂组件、无人飞行器及机臂组件的控制方法。
背景技术
旋翼式无人机由于其稳定性好,操纵简单,能够原地垂直起降,场地要求简单,隐蔽性好,在军事、民用、科学等领域均得到了广泛的应用和发展。传统的旋翼式无人机,存在无人机的固有频率与激励源(主要是无人机的电机或者螺旋桨)的激励频率接近或者近似呈倍数关系而使得无人机产生共振的风险,从而造成无人机成像质量和飞行稳定性变差,甚至造成炸机。
发明内容
本申请提供了一种机臂组件、无人飞行器及机臂组件的控制方法,旨在实现能够调节无人飞行器的固有频率,减少无人飞行器产生共振的情况,从而提高拍摄装置的成像质量和无人飞行器的飞行稳定性。
第一方面,本申请实施例提供了一种机臂组件,用于无人飞行器,所述机臂组件包括:
第一机臂;
第二机臂;
调节机构,连接于所述第一机臂和所述第二机臂中的至少一者上,至少部分所述调节机构能够相对所述第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而减少所述无人飞行器产生共振的情况。
第二方面,本申请实施例提供了一种无人飞行器,包括:
机身;以及
上述的机臂组件,与所述机身连接。
第三方面,本申请实施例提供了一种机臂组件的控制方法,所述机臂组件与无人飞行器的机身连接;所述机臂组件包括第一机臂、第二机臂和调节机构,所述调节机构连接于所述第一机臂和所述第二机臂中的至少一者上;所述控制方法包括:
获取所述无人飞行器的激励源的激励频率,所述激励源包括所述无人飞行器的螺旋桨和/或动力电机;
根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而减少所述无人飞行器产生共振的情况。
本申请实施例提供了一种机臂组件、无人飞行器及机臂组件的控制方法,无人飞行器的固有频率在飞行过程中能够根据实际需要通过机臂组件进行调节,从而减少所述无人飞行器产生共振的情况,进而提高了拍摄设备的成像质量和无人飞行器的飞行稳定性,并提高了无人飞行器的飞行安全性,降低发生炸机的风险。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无人飞行器的结构示意图;
图2是本申请实施例提供的一种无人飞行器的结构示意图;
图3是本申请实施例提供的一种无人飞行器的部分结构示意图;
图4是本申请实施例提供的一种无人飞行器的部分结构示意图;
图5是本申请实施例提供的一种调节机构的结构示意图;
图6是本申请实施例提供的一种无人飞行器的部分结构示意图;
图7是本申请实施例提供的一种调节机构的结构示意图;
图8是本申请实施例提供的一种调节机构的部分结构示意图;
图9是本申请实施例提供的一种调节机构的部分结构示意图;
图10是本申请实施例提供的一种支撑组件的结构示意图;
图11是本申请实施例提供的一种调节机构的部分结构示意图;
图12是本申请实施例提供的一种调节机构的部分结构示意图;
图13是本申请实施例提供的一种无人飞行器的控制方法的流程示意图。
附图标记说明:
1000、无人飞行器;
100、机臂组件;
10、第一机臂;11、第一滑槽;20、第二机臂;21、第二滑槽;
30、调节机构;31、支撑结构;311、支撑组件;3111、第一支撑体;31111、第三螺纹连接部;31112、第三滑槽;3112、第二支撑体;31121、支撑架;31122、第三调节杆;31123、滑动件;31124、第三螺纹配合部;31125、装配部;31126、卡合部;31127、第一铰接部;
312、第一活动件;3121、第一螺纹连接部;313、第二活动件;3131、第二螺纹连接部;3132、第二铰接部;
32、驱动结构;321、第一驱动组件;322、第二驱动组件;3221、第一驱动件;3222、第一调节杆;3223、第一螺纹配合部;323、第三驱动组件;3231、第二驱动件;3232、第二调节杆;3233、第二螺纹配合部;
33、第一转轴;34、第二转轴;41、第一轴承机构;42、第二轴承机构;
200、机身;300、动力系统;301、电子调速器;302、螺旋桨;303、动力电机;400、飞行控制系统;500、拍摄设备。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本申请的发明人发现,旋翼式无人机由于其稳定性好,操纵简单,能够原地垂直起降,场地要求简单,隐蔽性好,在军事、民用、科学领域均得到了广泛的应用和发展。为了方便收纳和携带,无人机开始被设计成机臂相对无人机的机身可折叠的形式。传统的可折叠式机臂,其回折方向靠扭转弹簧提供抗回折力,该回折力相比于固定式机臂来说相对较小。当无人机朝某些方向大机动飞行时,可折叠式机臂存在扭转弹簧抗回折力不够导致机臂出现回折的风险。回折方向的刚度和模态偏低,存在飞控自激的风险,从而影响控制和飞行的稳定性。
无人机通过电机驱动螺旋桨转动,从而为无人机提供飞行动力。在无人机飞行过程中,由于电机的转子的偏心力和螺旋桨所受到的空气气流等因素的影响,会同时存在螺旋桨的工作频率(即螺旋桨的工作转速所对应的频率)成倍数关系的激励,比如一倍桨频、2倍桨频、3倍桨频等。比如,某螺旋桨的工作频率在30-70Hz之间变化,那它对应的一倍桨频和二倍桨频区间分别为30-70Hz 和60-140Hz。
激励通过无人机自身的结构传递到无人机的云台相机及惯性测量单元(Inertial measurement unit,IMU),振动会对相机成像和惯性测量单元的测量结果造成影响,会严重影响相机成像质量和飞行稳定性。激励源和传递结构(比如机臂)的传递函数,二者均会对云台相机或者惯性测量单元造成影响。
对于激励源(比如螺旋桨+电机)一侧,由于在一倍桨频和二倍桨频区间,激励源振动的振幅较大,造成云台相机或者惯性测量单元的响应较大,即对相机成像质量和惯性测量单元影响较大。而在三倍桨频、四倍桨频等更大倍数桨频时,造成云台相机或者惯性测量单元的响应较小,即对相机成像质量和惯性测量单元影响较小。因而通常只关注一倍桨频和二倍桨频。
对于传递结构一侧,则尽可能减少传递结构出现共振的情况,减少云台相机或者惯性测量单元的响应。
对于飞行过程中结构不能自动调节的无人机,其结构的固有频率基本保持不变,由于飞行环境(主要是海拔高度)和工况的不同,无人机的转速是在一定区间内变化的,对于尺寸相对较大的行业机,其转速变化区间大约为30转/秒,对于尺寸相对较小的消费级无人机,其转速变化区间能达到100转/秒。螺旋桨或者电机的激励频率主要包括一倍桨频和二倍桨频,其变化区间小则五六十赫兹,大能达到两百多赫兹,极易出现一倍桨频或二倍桨频接近于无人机自身结构的固有频率而使无人机发生共振,会严重影响相机成像质量和无人机的飞行稳定性。因此,亟需提出一种能够解决无人机的激励频率与无人机的固有频率接近而导致无人机发生共振的问题。
为此,本申请的发明人提供一种机臂组件、无人飞行器及机臂组件的控制方法,以实现能够调节无人飞行器的固有频率,减少无人飞行器产生共振的情况,从而提高拍摄装置的成像质量和无人飞行器的飞行稳定性。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请实施例提供的一种无人飞行器1000。无人飞行器1000可以包括旋翼无人飞行器、固定翼无人飞行器、无人直升机或者固定翼-旋翼混合的无人飞行器等。其中,旋翼无人飞行器可包括双旋翼飞行器、三旋翼飞行器、四旋翼飞行器、六旋翼飞行器、八旋翼飞行器、十旋翼飞行器或者十二旋 翼飞行器等。
请参阅图2,在一些实施例中,该无人飞行器1000包括机臂组件100和机身200。机臂组件100与机身200连接。
示例性地,机臂组件100包括至少两个机臂。至少两个机臂呈辐射状从机身200延伸而出。
示例性地,机臂与机身200活动连接,以使机臂在使用状态和收纳状态之间切换,以减小在收纳状态下无人飞行器1000的占用空间,便于携带和收纳。
请参阅图2,在一些实施例中,无人飞行器1000还包括动力系统300和用于控制无人飞行器1000飞行的飞行控制系统400。动力系统300与机臂组件100连接,用于驱动无人飞行器1000实现移动、转动、翻转等至少一个动作,从而实现飞行作业。
请参阅图2,动力系统300可以包括至少一个电子调速器301、至少一个螺旋桨302以及与至少一个螺旋桨302对应的至少一个动力电机303。其中,动力电机303连接在电子调速器301与螺旋桨302之间。动力电机303和螺旋桨302设置在机臂组件100的机臂上。
电子调速器301用于接收无人飞行器1000的飞行控制系统400产生的驱动信号,并根据驱动信号提供驱动电流给动力电机303,以控制动力电机303的转速。动力电机303用于驱动螺旋桨302旋转,从而为无人飞行器1000的飞行提供动力,该动力使得无人飞行器1000能够实现一个或多个自由度的运动。在某些实施例中,无人飞行器1000可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(roll轴)、航向轴(yaw轴)、俯仰轴(pitch轴)中的至少一个。
应理解,动力电机303可以是直流电机,也可以交流电机。另外,动力电机303可以是无刷电机,也可以是有刷电机。
请参阅图2,飞行控制系统400可以包括飞行控制器和传感系统。传感系统用于测量无人无人飞行器1000的姿态信息,即无人飞行器1000在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度或者三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定 位系统(Global Positioning System,GPS)。飞行控制器用于控制无人飞行器1000的飞行,例如,可以根据传感系统测量的姿态信息控制无人飞行器1000的飞行。应理解,飞行控制器可以按照预先编好的程序指令对无人飞行器1000进行控制,也可以通过响应来自控制终端的一个或多个控制指令对无人飞行器1000进行控制。
请参阅图2,在一些实施例中,无人飞行器1000还包括拍摄设备500,搭载于机身200或者机臂组件100上。拍摄设备500能够拍摄或者录制图像等数据。示例性地,拍摄设备500包括云台相机。
可以理解地,在动力系统300工作过程中,由于动力电机303的转子的偏心力和螺旋桨302所受到的空气气流等因素的影响,会同时存在螺旋桨302的工作频率(即螺旋桨302的工作转速所对应的频率)成倍数关系的激励,比如一倍桨频、2倍桨频、3倍桨频等。即激励源包括螺旋桨302和/或动力电机303,该激励源的激励频率与螺旋桨302的工作频率成倍数关系,比如,一倍桨频、2倍桨频、3倍桨频等。比如,某螺旋桨302的工作频率在30-70Hz之间变化,则激励源的工作频率对应的一倍桨频和二倍桨频区间分别为30-70Hz和60-140Hz。若激励源的一倍桨频或者二倍桨频,接近于无人飞行器1000自身结构的固有频率,则无人飞行器1000会产生共振,严重影响拍摄设备500的成像质量和飞行稳定性。
为了提高拍摄设备500的成像质量和无人飞行器1000的飞行稳定性,请参阅图3和图4,在一些实施例中,机臂组件100包括第一机臂10、第二机臂20和调节机构30。调节机构30连接于第一机臂10和第二机臂20中的至少一者上。至少部分调节机构30能够相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
上述实施例提供的机臂组件100,调节机构30能够相对第一机臂10和/或第二机臂20运动。因而在无人飞行器1000飞行过程中,可以根据实际需求调节调节机构30的相对位置,使得无人飞行器1000的自身结构在飞行过程中能够发生变化。即无人飞行器1000的固有频率在飞行过程中能够根据实际需要进行调节,从而减少无人飞行器1000产生共振的情况,进而提高了拍摄设备500的成像质量和无人飞行器1000的飞行稳定性,并提高了无人飞行器1000的飞行安全性,降低发生炸机的风险。
示例性地,调节机构30的一端可以连接于第一机臂10或第二机臂20。调节机构30的另一端可以连接于机身200。
示例性地,调节机构30的一端连接于第一机臂10。调节机构30的另一端连接于第二机臂20。
可以理解地,无人飞行器1000的固有频率是无人飞行器1000的一种物理特征,由无人飞行器1000的结构、尺寸、重量、形状等因素决定。
在一些实施例中,至少部分调节机构30能够相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,从而使固有频率与无人飞行器1000的激励源的激励频率不同或者不具有倍数关系,进而减少无人飞行器1000产生共振的情况。激励源包括无人飞行器1000的螺旋桨302和/或动力电机303。
可以理解地,无人飞行器1000的固有频率与激励源的激励频率不具有倍数关系包括:无人飞行器1000的固有频率与激励源的激励频率不同或者不具有1倍关系、2倍关系、3倍关系等。
假设无人飞行器1000的固有频率为f 0,激励源的激励频率为f 1。固有频率与无人飞行器1000的激励源的激励频率不同或者不具有倍数关系包括:f 0不在预设范围内,该预设范围为nf 1-a≤nf 1≤nf 1+a。其中,n为正整数。a可以根据实际需求设计为任意合适的数值,在此不作限制。
可以理解地,至少部分调节机构30相对第一机臂和/或第二机臂运动后,无人飞行器1000的自身结构得到改变,改变结构后的无人飞行器1000的固有频率与激励源的激励频率不同或者不具有倍数关系。
示例性地,改变结构后的无人飞行器1000的固有频率尽可能地远离激励源的激励频率,以减少无人飞行器1000产生共振的情况。
请结合前述实施例参阅图13,图13是本申请实施例提供的一种无人飞行器的控制方法的流程示意图。该控制方法可以应用在无人飞行器1000中,用于调节无人飞行器1000的固有频率,进而减少无人飞行器1000发生共振的情况。
示例性地,调节无人飞行器1000的固有频率的具体步骤包括:获取无人飞行器1000的激励源的激励频率;根据激励频率,控制调节机构30相对第一机臂10和/或第二机臂20运动,从而调节无人飞行器1000的固有频率。
可以理解地,在激励源的激励频率确定的情况下,可以根据该激励频率, 控制调节机构30运动,从而改变无人飞行器1000的自身结构,调节无人飞行器1000的固有频率,进而减少共振的发生。
在一些实施例中,激励频率根据螺旋桨302的目标工作频率进行确定。示例性地,获取无人飞行器1000的激励源的激励频率,包括:获取无人飞行器1000的激励源的目标工作频率;根据目标工作频率确定激励源的激励频率。
可以理解地,在动力电机303或者螺旋桨302工作的过程中,由于动力电机303的转子的偏心力和螺旋桨302受到空气气流等因素影响,会存在螺旋桨302的工作频率倍数的激励。示例性地,当螺旋桨302以目标工作频率工作时,激励源的激励频率与目标工作频率成倍数关系。比如,目标工作频率为f 3,激励源的激励频率f 1包括m×f 3。其中,m为正整数。示例性地,激励源的激励频率f 1包括一倍的目标工作频率f 3,以及两倍的目标工作频率f 3
在一些实施例中,根据激励频率,控制调节机构30相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,包括:根据激励频率,控制调节机构30相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率至激励源的目标工作频率的两倍的二分之一的算术平方根。
示例性地,
Figure PCTCN2020139052-appb-000001
其中,f 0为无人飞行器1000的固有频率,f 3为螺旋桨302的目标工作频率。
在一些实施例中,根据目标工作频率确定激励源的激励频率之前,确定激励源的当前工作频率与目标工作频率是否相同。根据目标工作频率确定激励源的激励频率,包括:若激励源的当前工作频率与目标工作频率不同,根据目标工作频率确定激励源的激励频率。若激励源的当前工作频率与目标工作频率相同,则调节机构30相对第一机臂10和/或第二机臂20保持静止。
可以理解地,当螺旋桨302的工作转速在当前时刻和下一时刻不同时,螺旋桨302的工作转速对应的工作频率在当前时刻和下一时刻也不相同(即当前工作频率与目标工作频率不同),则激励源的激励频率在当前时刻和下一时刻也会相应发生改变。若无人飞行器1000的固有频率在当前时刻和下一时刻保持不变,则在下一时刻,激励源的激励频率可能会与无人飞行器1000的固有频率 相同或者成倍数关系,由此产生共振,严重影响拍摄设备500的成像质量和无人飞行器1000的飞行稳定性。
为此,在一些实施例中,若激励源的当前工作频率与目标工作频率不同,飞行控制器根据目标工作频率确定激励源的激励频率。无人飞行器1000根据激励频率控制调节机构30运动,从而调节无人飞行器1000的固有频率,使得激励频率与无人飞行器1000固有频率不相同或者不成倍数关系,减少发生共振的情况,从而提高拍摄设备500的成像质量和无人飞行器1000的飞行稳定性,并提高无人飞行器1000的飞行安全。
可以理解地,当螺旋桨302在当前时刻的当前工作频率与在下一时刻的目标工作频率的差值满足固有频率调节条件时,飞行控制器确定激励源的当前工作频率与目标工作频率不同,并确定激励源的激励频率,以便于根据该激励频率控制调节机构30运动。当螺旋桨302在当前时刻的当前工作频率与在下一时刻的目标工作频率的差值不满足固有频率调节条件时,则不执行后续的步骤,由此减少飞行控制器的处理量和功耗,提高飞行控制器的控制效率。
示例性地,若激励源的当前工作频率与目标工作频率的差值的绝对值大于预设阈值,则确定螺旋桨302在当前时刻的当前工作频率与在下一时刻的目标工作频率的差值满足固有频率调节条件。
在一些实施例中,确定激励源的当前工作频率与目标工作频率是否相同,具体包括:若激励源的当前工作频率与目标工作频率的差值的绝对值大于预设阈值,确定激励源的当前工作频率与目标工作频率不同。若激励源的当前工作频率与目标工作频率的差值的绝对值小于或者等于预设阈值,确定激励源的当前工作频率与目标工作频率相同。预设阈值可以根据实际需求进行确定,在此不作限定。
在一些实施例中,无人飞行器1000的控制方法,还包括:接收无人飞行器1000的飞行控制指令,飞行控制指令包括激励源的目标工作频率。
示例性地,当激励源在下一时刻需要改变工作频率时,飞行控制器接收无人飞行器1000的飞行控制指令。飞行控制指令包括激励源的目标工作频率。飞行控制器接收到飞行控制指令后,根据飞行控制指令中激励源的目标工作频率控制激励源工作。
示例性地,接收无人飞行器1000的飞行控制指令,包括:接收控制终端发送的无人飞行器1000的飞行控制指令。控制终端可以包括遥控器、游戏手柄等。
示例性地,接收无人飞行器1000的飞行控制指令,包括:接收用户发送的无人飞行器1000的飞行控制指令。比如,用户可以通过不同手势向无人飞行器1000发送飞行控制指令。无人飞行器1000能够接收用户发送的飞行控制指令。
在一些实施例中,控制调节机构30相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,包括:控制调节机构30相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,从而使固有频率与激励频率不同或者不具有倍数关系。
示例性地,在确定激励源的激励频率后,飞行控制器根据该激励频率控制调节机构30相对第一机臂10和/或第二机臂20运动,从而调节无人飞行器1000的固有频率,尽可能使固有频率与激励频率不同或者不具有倍数关系,进而减少无人飞行器1000发生共振的情况,由此提高拍摄设备500的成像质量和无人飞行器1000的飞行稳定性,并提高无人飞行器1000的飞行安全。
在一些实施例中,根据激励频率,控制调节机构30相对第一机臂10和/或第二机臂20运动,包括:根据激励频率,确定调节机构30的目标位置;根据目标位置,控制调节机构30相对第一机臂10和/或第二机臂20运动。
示例性地,在确定激励源的激励频率后,飞行控制器根据该激励频率确定调节机构30相对第一机臂10和/或第二机臂20的目标位置。确定目标位置后,飞行控制器控制调节机构30相对第一机臂10和/或第二机臂20运动至目标位置,从而调节无人飞行器1000的固有频率,减少无人飞行器1000发生共振的情况。
示例性地,根据激励频率,确定调节机构30的目标位置,包括:从预设的频率位置映射表中确定与激励频率对应的调节机构30的目标位置。
具体地,预设的频率位置映射表记录有激励源的激励频率与调节机构30的目标位置的映射关系。在确定激励频率后,飞行控制器可以从频率位置映射表中确定与激励频率对应的调节机构30的目标位置。
在一些实施例中,从预设的频率位置映射表中确定与激励频率对应的调节机构30的目标位置之前,还包括:获取预设的频率位置映射表,并保存频率位置映射表,频率位置映射表记录有激励频率与目标位置的映射关系。
可以理解地,飞行控制器可以预先获取预设的频率位置映射表,并保存频率位置映射表。然后,从该频率位置映射表中确定与激励频率对应的调节机构30的目标位置。
在一些实施例中,激励频率与无人飞行器1000的飞行状态、飞行环境等相关。固有频率与无人飞行器1000的属性信息相关。
可以理解地,无人飞行器1000的飞行状态变化时,激励频率可能发生变化。示例性地,螺旋桨302的工作频率在变化后的飞行状态和变化前的飞行状态不同时,激励频率也随着飞行状态的变化而相应发生变化。
示例性地,飞行状态包括:悬停状态或者运动状态。
比如,无人飞行器1000从悬停状态切换至运动状态时,螺旋桨302的工作转速随之变化,螺旋桨302的工作转速对应的工作频率发生改变,激励频率相应发生变化。
示例性地,飞行环境包括海拔信息。可以理解地,无人飞行器1000在不同海拔高度飞行时,不同海拔高度下的空气气流对螺旋桨302的影响不同,螺旋桨302的工作转速在一定区间内变化,由此激励源的激励频率也会随着不同海拔高度变化而变化。
示例性地,属性信息包括:无人飞行器1000的尺寸、重量、功能中的至少一种。可以理解地,无人飞行器1000的功能是指无人飞行器1000的功能应用,比如专业级、行业级或者消费级等。
在一些实施例中,第一机臂10和/或第二机臂20固定连接或者不可折叠连接于机身200。以第一机臂10与机身200固定连接为例进行说明。比如,第一机臂10与机身200通过一体成型制得。又如,第一机臂10与机身200通过螺丝等快拆件固定连接。
在另一些实施例中,第一机臂10和/或第二机臂20可折叠连接于机身200。即第一机臂10和/或第二机臂20能够相对机身200转动,以在使用状态或者收纳状态之间切换。当需要使用无人飞行器1000时,将第一机臂10和/或第二机臂20相对机身200转动而展开,从而使得第一机臂10和/或第二机臂20切换至使用状态。当需要收纳无人飞行器1000时,将第一机臂10和/或第二机臂20相对机身200转动而折叠,从而使得第一机臂10和/或第二机臂20切换至收纳状态,减小无人飞行器1000的占用空间,便于收纳和携带。
示例性地,第一机臂10和/或第二机臂20通过铰链结构与机身200转动连接。
请参阅图4,在一些实施例中,至少部分调节机构30能够支撑第一机臂10和第二机臂20中的至少一者。
示例性地,第一机臂10和/或第二机臂20转动连接于机身200。至少部分调节机构30能够支撑第一机臂10和机身200,提高第一机臂10沿回折方向的刚度和抗回折力,减少第一机臂10出现回折的情况,从而提高无人飞行器1000的飞行稳定性和控制稳定性,并提高了无人飞行器1000的飞行安全性,降低发生炸机的风险。
示例性地,至少部分调节机构30能够支撑第二机臂20和机身200,从而提高第二机臂20沿回折方向的刚度和抗回折力,减少第二机臂20出现回折的情况,提高无人飞行器1000的飞行稳定性和控制稳定性,并提高了无人飞行器1000的飞行安全性,降低发生炸机的风险。
示例性地,当第一机臂10和/或第二机臂20处于使用状态时,至少部分调节机构30能够支撑第一机臂10和第二机臂20,提高第一机臂10和/或第二机臂20沿回折方向的刚度和抗回折力,减少第一机臂10和/或第二机臂20出现回折的情况,提高无人飞行器1000的飞行稳定性和控制稳定性,并提高了无人飞行器1000的飞行安全性,降低发生炸机的风险。
请参阅图5,在一些实施例中,调节机构30连接于第一机臂10和第二机臂20。调节机构30包括支撑结构31和驱动结构32。支撑结构31连接于第一机臂10和第二机臂20。驱动结构32设于第一机臂10、第二机臂20和支撑组件311中的至少一者上。驱动结构32与支撑结构31传动连接,以带动支撑结构31相对第一机臂10和/或第二机臂20运动,从而调节无人飞行器1000的固有频率。
比如,驱动结构32可以设于第一机臂10、第二机臂20和支撑组件311中的其中一者上。又如,第一机臂10、第二机臂20和支撑组件311中的任意两者上分别设有驱动结构32的不同部分。再如,第一机臂10、第二机臂20和支撑组件311分别设有驱动结构32的不同部分。
在一些实施例中,控制调节机构30相对第一机臂10和/或第二机臂20运动,包括:控制驱动结构32运动,以驱动支撑结构31相对第一机臂10和/或第二机臂20运动。
示例性地,在确定激励源的激励频率后,飞行控制器能够根据该激励频率控制驱动结构32运动,从而使得驱动结构32驱动支撑结构31相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
请参阅图4,在一些实施例中,支撑结构31能够顶持第一机臂10和第二机臂20,以使得第一机臂10和第二机臂20能够保持在预设相对位置。
示例性地,第一机臂10和/或第二机臂20能够相对机身200转动。当第一机臂10和/或第二机臂20从收纳状态切换至使用状态时,支撑结构31能够顶持第一机臂10和第二机臂20,使得第一机臂10和第二机臂20能够保持在使用状态所对应的预设相对位置,提高第一机臂10和/或第二机臂20沿回折方向的刚度和抗回折力,减少第一机臂10和/或第二机臂20出现回折的情况。
在一些实施例中,支撑结构31两端分别能够与第一机臂10和第二机臂20滑动连接。
示例性地,在确定激励源的激励频率后,飞行控制器能够根据该激励频率控制驱动结构32运动,从而使得驱动结构32驱动支撑结构31相对第一机臂10和/或第二机臂20滑动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
示例性地,支撑结构31包括相对的第一端和第二端。支撑结构31的第一端能够与第一机臂10滑动连接,支撑结构31的第二端能够与第二机臂20滑动连接。
在一些实施方式中,驱动结构32能够驱动支撑结构31的第一端以第一速度相对第一机臂10滑动,并确定支撑结构31的第二端以第二速度相对第二机臂20滑动,从而调节无人飞行器1000的固有频率,进而减少无人飞行器1000产生共振的情况。
可以理解地,第一速度和第二速度可以根据实际需求进行设计,在此不作限制。示例性地,第一速度大于第二速度。示例性地,第一速度也可以小于或者等于第二速度。
请参阅图3和图4,在一些实施例中,支撑结构31的一端能够与第一机臂10和第二机臂20中的其中一者滑动连接,支撑结构31的另一端能够与第一机臂10和第二机臂20中的另一者滑动连接和转动连接。
示例性地,支撑结构31包括相对的第一端和第二端。在一些实施方式中,支撑结构31的第一端能够与第一机臂10滑动连接,支撑结构31的第二端能够与第二机臂20滑动连接和转动连接。如此,驱动结构32能够驱动支撑结构31在多个自由度运动,以调节无人飞行器1000的固有频率。
示例性地,在确定激励源的激励频率后,飞行控制器能够根据该激励频率控制驱动结构32运动,从而使得驱动结构32驱动支撑结构31的第一端相对第一机臂10滑动,并驱动支撑结构31的第二端相对第二机臂20滑动和转动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
可以理解地,支撑结构31的第一端相对第一机臂10滑动的第一滑动速度,以及支撑结构31的第二端相对第二机臂20滑动的第二滑动速度和转动的转动速度,均可以根据实际需求进行设计,在此不作限制。
在另一些实施方式中,支撑结构31的第一端与第一机臂10滑动连接和转动连接,支撑结构31的第二端与第二机臂20滑动连接。
请参阅图6,在一些实施例中,支撑结构31的一端能够与第一机臂10和第二机臂20中的其中一者转动连接,支撑结构31的另一端能够与第一机臂10和第二机臂20中的另一者滑动连接和转动连接。
示例性地,支撑结构31包括相对的第一端和第二端。在一些实施方式中,支撑结构31的第一端能够与第一机臂10转动连接,支撑结构31的第二端能够与第二机臂20滑动连接和转动连接。如此,驱动结构32能够驱动支撑结构31在多个自由度运动,以调节无人飞行器1000的固有频率。
示例性地,在确定激励源的激励频率后,飞行控制器能够根据该激励频率控制驱动结构32运动,从而使得驱动结构32能够驱动支撑结构31的第一端相对第一机臂10转动,并驱动支撑结构31的第二端相对与第二机臂20滑动和转动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
示例性地,驱动结构32驱动支撑结构31的第一端转动的第一转动速度,以及驱动支撑结构31的第二端滑动的滑动速度和转动的第二转动速度,均可以 根据实际需求进行设计,在此不作限制。
在另一些实施方式中,支撑结构31的第一端能够与第一机臂10滑动连接和转动连接,支撑结构31的第二端能够与第二机臂20转动连接。
在一些实施例中,支撑结构31的一端能够与第一机臂10和第二机臂20中的其中一者滑动连接和转动连接,支撑结构31的另一端能够与第一机臂10和第二机臂20中的另一者滑动连接和转动连接。
示例性地,支撑结构31包括相对的第一端和第二端。在一些实施方式中,支撑结构31的第一端能够与第一机臂10滑动连接和转动连接,支撑结构31的第二端能够与第二机臂20滑动连接和转动连接。如此,驱动结构32能够驱动支撑结构31在多个自由度运动,以调节无人飞行器1000的固有频率。
示例性地,在确定激励源的激励频率后,飞行控制器能够根据该激励频率控制驱动结构32运动,从而使得驱动结构32能够驱动支撑结构31的第一端相对第一机臂10滑动和转动,并驱动支撑结构31的第二端相对与第二机臂20滑动和转动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
示例性地,驱动结构32驱动支撑结构31的第一端滑动的第一滑动速度和转动的第一转动速度,以及驱动支撑结构31的第二端滑动的第二滑动速度和转动的第二转动速度,均可以根据实际需求进行设计,在此不作限制。
在一些实施例中,驱动结构32包括第一驱动组件321。第一驱动组件321设于支撑结构31、第一机臂10和第二机臂20中的其中一者上,用于驱动支撑结构31相对第一机臂10和第二机臂20中的至少一者运动。
示例性地,第一驱动组件321设于支撑结构31上。
示例性地,第一驱动组件321设于第一机臂10上。
示例性地,第一驱动组件321设于第二机臂20上。
示例性地,第一驱动组件321用于驱动支撑结构31相对第一机臂10运动。
示例性地,第一驱动组件321用于驱动支撑结构31相对第二机臂20运动。
示例性地,第一驱动组件321用于驱动支撑结构31相对第一机臂10和第二机臂20运动。
示例性地,第一驱动组件321包括驱动电机。驱动电机可以直接驱动支撑结构31运动。驱动电机也可以通过中间传动结构驱动支撑结构31运动。中间 传动结构可以包括齿轮传动结构、涡轮蜗杆传动结构等中的至少一者。
在一些实施例中,第一驱动组件321用于驱动支撑结构31相对第一机臂10和第二机臂20滑动。
示例性地,支撑结构31包括相对的第一端和第二端。支撑结构31的第一端能够与第一机臂10滑动连接。支撑结构31的第二端能够与第二机臂20滑动连接。第一驱动组件321能够驱动支撑结构31的第一端相对第一机臂10滑动,并驱动支撑结构31的第二端相对第二机臂20滑动。
示例性地,支撑结构31的第一端相对第一机臂10滑动的滑动速度与支撑结构31的第二端相对第二机臂20滑动的滑动速度相同或者大致相同。
在一些实施例中,第一驱动组件321用于驱动支撑结构31相对第一机臂10和第二机臂20中的至少一者滑动和转动。
示例性地,支撑结构31包括相对的第一端和第二端。第一驱动组件321能够驱动支撑结构31的第一端相对第一机臂10滑动和转动,第一驱动组件321能够驱动支撑结构31的第二端相对第二机臂20滑动。
示例性地,第一驱动组件321能够驱动支撑结构31的第一端相对第一机臂10滑动,第一驱动组件321能够驱动支撑结构31的第二端相对第二机臂20滑动和转动。
示例性地,第一驱动组件321能够驱动支撑结构31的第一端相对第一机臂10滑动和转动,第一驱动组件321能够驱动支撑结构31的第二端相对第二机臂20转动。
示例性地,第一驱动组件321能够驱动支撑结构31的第一端相对第一机臂10转动,第一驱动组件321能够驱动支撑结构31的第二端相对第二机臂20滑动和转动。
示例性地,第一驱动组件321能够驱动支撑结构31的第一端相对第一机臂10滑动和转动,第一驱动组件321能够驱动支撑结构31的第二端相对第二机臂20滑动和转动。
在一些实施例中,控制驱动结构32运动,以驱动支撑结构31相对第一机臂10和/或第二机臂20运动,包括:控制第一驱动组件321运动,以驱动支撑结构31相对第一机臂10和/或第二机臂20运动。
示例性地,在确定激励频率后,飞行控制器能够根据该激励频率控制第一 驱动组件321运动,从而使得驱动结构32驱动支撑结构31相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
在一些实施例中,第一驱动组件321用于驱动支撑结构31伸缩,以调节支撑结构31的长度。如此,在支撑结构31相对第一机臂10和/或第二机臂20运动过程中,支撑结构31的长度能够自适应地调节,为支撑结构31调整至合适位置提供了保障。
示例性地,第一机臂10和/或第二机臂20在使用状态时,第一机臂10与第二机臂20为非平行设置。当支撑结构31相对第一机臂10和/或第二机臂20运动时,支撑结构31相对机身200的位置发生变化。支撑结构31相对机身200的位置改变,支撑结构31的长度也需要相应改变。为了适应支撑结构31相对机身200的位置变化,需要通过第一驱动组件321适应性地调整支撑结构31的长度。
在一些实施例中,无人飞行器1000的控制方法还包括控制第一驱动组件321驱动支撑结构31伸缩,以调节支撑结构31的长度。
示例性地,在确定激励源的激励频率后,可以确定支撑结构31的目标位置。支撑结构31的目标位置确定后,可以根据支撑结构31的目标位置,确定支撑结构31的目标长度。无人飞行器1000根据该目标长度和支撑结构31的当前长度控制第一驱动组件321驱动支撑结构31伸缩。
请参阅图5,在一些实施例中,支撑结构31包括支撑组件311。支撑组件311连接于第一机臂10和第二机臂20。第一驱动组件321与支撑组件311传动连接。
示例性地,支撑组件311的两端分别连接于第一机臂10和第二机臂20。
示例性地,支撑组件311整体的形状呈杆状。
请参阅图5,在一些实施例中,支撑结构31还包括第一活动件312。第一活动件312与支撑组件311连接。驱动结构32能够驱动第一活动件312沿预设方向运动。
示例性地,第一活动件312与第一机臂10(或者第二机臂20)活动连接。第一活动件312与支撑组件311固定连接或者可拆卸连接。驱动结构32能够驱动第一活动件312沿预设方向滑动或者转动,进而驱动与第一活动件312连接 的支撑组件311滑动或者转动。
示例性地,第一活动件312通过卡扣结构或者快拆件结构等与支撑组件311可拆卸连接。如此,在不需要使用无人飞行器1000时,可以将支撑组件311从第一活动件312上拆下,并将第一机臂10和第二机臂20相对机身200转动而折叠,拆装简单,便于收纳或者携带。
请参阅图7,在一些实施例中,驱动结构32包括第二驱动组件322。第二驱动组件322设于第一机臂10或者第二机臂20上。第二驱动组件322与第一活动件312传动连接。
比如,第二驱动组件322安装于第一机臂10上。又如,第二驱动组件322安装于第二机臂20上。
示例性地,第一活动件312和第二驱动组件322均设于第一机臂10上。第二驱动组件322驱动第一活动件312运动,从而驱动与第一活动件312连接的支撑组件311相对第一机臂10运动。与此同时,第一驱动组件321能够驱动支撑组件311伸缩,从而调节支撑组件311的长度,以适应支撑组件311相对第一机臂10运动。
在一些实施例中,第二驱动组件322包括螺杆传动结构或者丝杆传动结构等。
请参阅图7和图8,在一些实施例中,第一活动件312设有第一螺纹连接部3121。第二驱动组件322包括第一驱动件3221和第一调节杆3222。第一驱动件3221设于第一机臂10上。第一调节杆3222穿设第一活动件312并与第一驱动件3221连接。第一调节杆3222设有与第一螺纹连接部3121螺接的第一螺纹配合部3223,以驱动第一活动件312沿第一调节杆3222的轴向滑动。
请参阅图8,第一机臂10上设有第一滑槽11。第一活动件312能够与第一滑槽11滑动配合。示例性地,第一驱动件3221固定于第一机臂10上并位于第一滑槽11的一端。第一调节杆3222的一端与第一驱动件3221传动连接。第一调节杆3222的另一端通过第一轴承机构41与第一机臂10连接。
可以理解地,第一驱动件3221也可以安装于第一机臂10的其他任意合适位置,在此不作限制。
示例性地,第一轴承机构41与第一机臂10固定连接,第一调节杆3222与第一轴承机构41转动连接。示例性地,第一调节杆3222位于第一滑槽11 内。
示例性地,第一螺纹连接部3121包括内螺纹结构,第一螺纹配合部3223包括与该内螺纹结构配合的外螺纹结构。通过第一螺旋连接部与第一螺纹配合部3223的螺接,能够使得第一活动件312在第一调节杆3222和第一驱动件3221的作用下相对第一滑槽11滑动。下述螺纹连接部与螺纹配合部的具体结构参照上述第一螺纹连接部3121和第一螺纹配合部3223,在此不再赘述。
示例性地,第一驱动件3221包括电机。
在一些实施例中,控制驱动结构32运动,以驱动支撑结构31相对第一机臂10和/或第二机臂20运动,包括:控制第一驱动件3221驱动第一调节杆3222运动,以使支撑结构31相对第一机臂10和/或第二机臂20运动。
示例性地,在确定激励频率后,飞行控制器能够根据该激励频率控制第一驱动件3221运动,从而使得第一驱动件3221驱动支撑结构31相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率,从而减少无人飞行器1000产生共振的情况。
请参阅图8,在一些实施例中,支撑结构31还包括第二活动件313。第二活动件313与支撑组件311连接。驱动结构32能够驱动第一活动件312和第二活动件313沿预设方向运动。
示例性地,第二活动件313与第二机臂20活动连接。第二驱动组件322驱动第一活动件312相对第一机臂10滑动时,与第一活动件312连接的支撑组件311跟随第一活动件312一起运动,与支撑组件311连接的第二活动件313跟随支撑组件311相对第二机臂20运动。
请参阅图8,在一些实施例中,驱动结构32还包括第三驱动组件323,第三驱动组件323与第二活动件313传动连接。第一活动件312和第二驱动组件322设于第一机臂10和第二机臂20的其中一者上。第二活动件313和第三驱动组件323设于第一机臂10和第二机臂20的另一者上。
示例性地,第二活动件313与第二机臂20活动连接。第二活动件313与支撑组件311固定连接或者可拆卸连接。第三驱动组件323能够驱动第二活动件313滑动或者转动,进而驱动与第二活动件313连接的支撑组件311滑动或者转动。
示例性地,第二活动件313通过卡扣结构或者快拆件结构等与支撑组件311 可拆卸连接。如此,在机臂组件100需要切换至收纳状态时,可以将支撑组件311从第二活动件313上拆下,并将第一机臂10和第二机臂20相对机身200转动而折叠,拆装简单,便于无人飞行器的收纳或者运输。
示例性地,第一活动件312和第二驱动组件322设于第一机臂10上,第二活动件313和第三驱动组件323设于第二机臂20上。第二驱动组件322能够驱动第一活动件312相对第一机臂10运动,从而驱动与第一活动件312连接的支撑组件311相对第一机臂10运动。第三驱动组件323能够驱动第二活动件313相对第二机臂20运动,从而驱动与第二活动件313连接的支撑组件311相对第二机臂20运动。
示例性地,第一活动件312为滑块;和/或,第二活动件313为滑块。
请参阅图7和图9,在一些实施例中,第二活动件313设有第二螺纹连接部3131。第三驱动组件323包括第二驱动件3231和第二调节杆3232。第二驱动件3231设于第二机臂20上。第二调节杆3232穿设第二活动件313并与第二驱动件3231连接。第二调节杆3232设有与第二螺纹连接部3131螺接的第二螺纹配合部3233,以驱动第二活动件313沿第二调节杆3232的轴向滑动。
请参阅图9,第二机臂20上设有第二滑槽21。第二活动件313能够与第二滑槽21滑动配合。示例性地,第二驱动件3231固定于第二机臂20上并位于第二滑槽21的一端。第二调节杆3232的一端与第一驱动件3221传动连接。第二调节杆3232的另一端通过第二轴承机构42与第二机臂20连接。
可以理解地,第二驱动件3231也可以安装于第二机臂20的其他任意合适位置,在此不作限制。
示例性地,第二轴承机构42与第二机臂20固定连接,第二调节杆3232与第二轴承机构42转动连接。示例性地,第二调节杆3232位于第二滑槽21内。
在一些实施例中,控制驱动结构32运动,以驱动支撑结构31相对第一机臂10和/或第二机臂20运动,包括:控制第一驱动件3221驱动第一调节杆3222运动,并控制第二驱动件3231驱动第二调节杆3232运动,以使支撑结构31相对第一机臂10和/或第二机臂20运动。
示例性地,在确定激励频率后,飞行控制器能够根据该激励频率控制第一驱动件3221驱动第一调节杆3222运动,并控制第二驱动件3231驱动第二调节杆3232运动,以使支撑结构31相对第一机臂10和/或第二机臂20运动。
在一些实施例中,支撑组件311包括电动推杆。在一些实施例中,支撑组件311与第一驱动组件321配合形成一电动推杆,电动推杆的长度能够实现自动伸缩。
请参阅图4和图10,在一些实施例中,支撑组件311包括第一支撑体3111和第二支撑体3112。第一支撑体3111与第一机臂10活动连接。第二支撑体3112与第二机臂20活动连接。第一支撑体3111与第二支撑体3112伸缩连接,以调节支撑组件311的长度。
示例性地,第一支撑体3111与第一活动件312通过卡扣结构等固定连接。第二支撑体3112与第二活动件313通过卡扣结构或者铰接结构等固定连接。
在一些实施例中,第一支撑体3111与第一机臂10滑动连接,第二支撑体3112与第二机臂20滑动连接,从而使得驱动组件相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率。示例性地,第二驱动组件322能够驱动第一活动件312相对第一机臂10滑动,从而带动与第一活动件312固定连接的第一支撑体3111相对第一机臂10滑动。第三驱动组件323能够驱动第二活动件313相对第二机臂20滑动,从而带动与第二活动件313固定连接的第二支撑体3112相对第二机臂20滑动。
在一些实施例中,第一支撑体3111与第一机臂10滑动连接,第二支撑体3112与第二机臂20滑动连接和转动连接,从而使得驱动组件相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率。第二驱动组件322能够驱动第一活动件312相对第一机臂10滑动,从而带动与第一活动件312固定连接的第一支撑体3111相对第一机臂10滑动。第三驱动组件323能够驱动第二活动件313相对第二机臂20滑动,从而带动与第二活动件313固定连接的第二支撑体3112相对第二机臂20滑动。第一驱动组件321能够驱动第二支撑体3112相对第二机臂20转动。
在一些实施例中,第一支撑体3111与第一机臂10转动连接,第二支撑体3112与第二机臂20滑动连接和转动连接,从而使得驱动组件相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率。
在一些实施例中,第一支撑体3111与第一机臂10滑动连接和转动连接,第二支撑体3112与第二机臂20滑动连接和转动连接,从而使得驱动组件相对第一机臂10和/或第二机臂20运动,以调节无人飞行器1000的固有频率。
在一些实施例中,第一支撑体3111包括与第二支撑体3112活动配合的套筒。部分第二支撑体3112能够在第一支撑体3111内滑动。请参阅图11,示例性地,第一支撑体3111内设有第三滑槽31112,第二支撑体3112与第三滑槽31112滑动连接。
请参阅图10和图11,在一些实施例中,第二支撑体3112包括支撑架31121、第三调节杆31122和滑动件31123。支撑架31121能够与第二机臂20滑动连接和/或转动连接。第一驱动组件321设于支撑架31121上。第三调节杆31122与第一驱动组件321传动连接。滑动件31123与第三调节杆31122连接,并与第一支撑体3111滑动配合。
请参阅图11,示例性地,第一驱动组件321与第一转轴33传动连接。第一转轴33通过轴承构件与支撑架31121连接。轴承构件与支撑架31121固定连接。第一转轴33与轴承构件转动连接。第一转轴33远离第一驱动组件321的一端设有装配部31125。该装配部31125与第三调节杆31122固定连接或者可拆卸连接,从而实现支撑架31121与第三调节杆31122的固定连接或者可拆卸连接。
请参阅图10,在一些实施例中,第一支撑体3111上设有第三螺纹连接部31111。第三调节杆31122上设有与第三螺纹连接部31111螺接的第三螺纹配合部31124,以驱动第一支撑体3111沿第三调节杆31122的轴向滑动。
示例性地,第一驱动组件321通过第一转轴33能够带动第三调节杆31122旋转,并通过第三螺纹连接部31111与第三螺纹配合部31124的螺接实现第三调节杆31122与第一支撑体3111的伸缩运动。
在一些实施例中,支撑架31121能够与第二机臂20转动连接。
示例性地,支撑架31121通过铰接结构与第二机臂20转动连接。
在一些实施例中,支撑架31121能够与第二机臂20滑动连接和转动连接。
示例性地,支撑架31121通过铰接结构与第二活动件313转动连接。第一驱动组件321能够驱动支撑架31121相对第二活动件313转动,从而实现支撑架31121与第二机臂20的相对转动。第三驱动组件323能够驱动第二活动件 313相对第二机臂20滑动,从而驱动与第二活动件313连接的支撑架31121相对第二机臂20滑动。
请参阅图12,示例性地,支撑架31121上设有第一铰接部31127。第二活动件313上设有第二铰接部3132。第二转轴34穿设第一铰接部31127和第二铰接部3132,从而实现支撑架31121与第二活动件313的转动连接。
在一些实施例中,支撑架31121与第三调节杆31122可拆卸连接。如此,在不需要使用无人飞行器1000时,可以将第一支撑体3111从第一活动件312上拆下,将第三调节杆31122和支撑架31121拆离,并将第一机臂10和第二机臂20相对机身200转动而折叠,拆装简单,便于无人飞行器1000的收纳或者携带。
请参阅图11,示例性地,第三调节杆31122的一端设有卡合部31126。第三调节杆31122通过卡合部31126与装配部31125卡合配合实现与支撑架31121的可拆卸连接。卡合部31126和装配部31125中的其中一者为卡槽,另一者为与卡槽配合的卡凸。
在一些实施例中,至少部分第一支撑体3111和至少部分第三调节杆31122能够收纳于第一机臂10上。
示例性地,第一支撑体3111和第三调节杆31122能够至少部分收纳于第一机臂10的第一滑槽11内,一方面能够防止丢失,另一方面能够减小无人飞行器1000在收纳时的体积。
在一些实施例中,至少部分第二支撑体3112能够收纳于第二机臂20上。
示例性地,支撑架31121能够支撑部分收纳于第二机臂20的第二滑槽21内,以减小无人飞行器1000在收纳时的体积。
示例性地,支撑架31121与第二机臂20能够转动连接。在支撑架31121与第三调节杆31122分离时,支撑架31121能够相对第二机臂20转动至第二滑槽21内。
示例性地,在不需要使用无人飞行器1000时,可以将第一支撑体3111从第一活动件312上拆下,第三调节杆31122与支撑架31121拆离。将第一支撑体3111和第三调节杆31122收纳于第一滑槽11内。将支撑架31121收纳于第二滑槽21。将第一机臂10和第二机臂20相对机身200转动而折叠,拆装简单,便于无人飞行器1000的收纳或者携带。
如图13所示,本申请实施例的无人飞行器的控制方法包括步骤S110至步骤S120。
S110、获取所述无人飞行器的激励源的激励频率,所述激励源包括所述无人飞行器的螺旋桨和/或动力电机。
S120、根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而减少所述无人飞行器产生共振的情况。
可以理解的,所述控制方法的步骤可以由处理器实现,也可以由多个电子器件搭建的控制电路实现。
本申请实施例提供的无人飞行器的具体原理和实现方式均与前述实施例的无人飞行器类似,此处不再赘述。
在一些实施例中,所述获取所述无人飞行器的激励源的激励频率,包括:获取所述无人飞行器的激励源的目标工作频率;根据所述目标工作频率确定所述激励源的激励频率。
在一些实施例中,所述根据所述目标工作频率确定所述激励源的激励频率之前,还包括:确定所述激励源的当前工作频率与所述目标工作频率是否相同;
所述根据所述目标工作频率确定所述激励源的激励频率,包括:若所述激励源的当前工作频率与所述目标工作频率不同,根据所述目标工作频率确定所述激励源的激励频率。
在一些实施例中,所述确定所述激励源的当前工作频率与所述目标工作频率是否相同,包括:若所述激励源的当前工作频率与所述目标工作频率的差值的绝对值大于预设阈值,确定所述激励源的当前工作频率与所述目标工作频率不同;若所述激励源的当前工作频率与所述目标工作频率的差值的绝对值小于或者等于预设阈值,确定所述激励源的当前工作频率与所述目标工作频率相同。
在一些实施例中,还包括:接收所述无人飞行器的飞行控制指令,所述飞行控制指令包括所述激励源的目标工作频率。
在一些实施例中,所述控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,包括:控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而使所述固有频率与所述激励频率不同或者不具有倍数关系。
在一些实施例中,所述根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,包括:
根据所述激励频率,确定所述调节机构的目标位置;根据所述目标位置,控制所述调节机构相对所述第一机臂和/或第二机臂运动。
在一些实施例中,所述根据所述激励频率,确定所述调节机构的目标位置,包括:从预设的频率位置映射表中确定与所述激励频率对应的所述调节机构的目标位置。
在一些实施例中,所述从预设的频率位置映射表中确定与所述激励频率对应的所述调节机构的目标位置之前,还包括:获取预设的频率位置映射表,并保存所述频率位置映射表,所述频率位置映射表记录有激励频率与目标位置的映射关系。
在一些实施例中,所述激励频率与所述无人飞行器的飞行状态、飞行环境相关;和/或,所述固有频率与所述无人飞行器的属性信息相关。
在一些实施例中,所述飞行状态包括:悬停状态或者运动状态;和/或,所述飞行环境包括海拔信息;和/或,所述属性信息包括:所述无人飞行器的尺寸、重量、功能中的至少一种。
在一些实施例中,所述调节机构包括驱动结构和支撑结构;所述控制所述调节机构相对所述第一机臂和/或所述第二机臂运动,包括:控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
在一些实施例中,所述驱动结构包括第一驱动组件;所述控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,包括:控制第一驱动组件运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
在一些实施例中,所述控制方法还包括:控制所述第一驱动组件驱动所述支撑结构伸缩,以调节所述支撑结构的长度。
在一些实施例中,所述驱动结构包括第一驱动件和第一调节杆,所述第一驱动件通过所述第一调节杆与所述支撑结构传动连接;所述控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,包括:
控制所述第一驱动件驱动所述第一调节杆运动,以使所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
在一些实施例中,所述驱动结构包括第一驱动件、第一调节杆、第二驱动件和第二调节杆,所述第一驱动件通过所述第一调节杆与所述支撑结构传动连接,所述第二驱动件通过所述第二调节杆与所述支撑结构传动连接;所述控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,包括:
控制所述第一驱动件驱动所述第一调节杆运动,并控制所述第二驱动件驱动所述第二调节杆运动,以使所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
在一些实施例中,所述根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,包括:
根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率至所述激励源的目标工作频率的两倍的二分之一的算术平方根。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指 示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体方法步骤、特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体方法步骤、特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (56)

  1. 一种机臂组件,用于无人飞行器,其特征在于,所述机臂组件包括:
    第一机臂;
    第二机臂;
    调节机构,连接于所述第一机臂和所述第二机臂中的至少一者上,至少部分所述调节机构能够相对所述第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而减少所述无人飞行器产生共振的情况。
  2. 根据权利要求1所述的机臂组件,其特征在于,至少部分所述调节机构能够相对所述第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而使所述固有频率与所述无人飞行器的激励源的激励频率不同或者不具有倍数关系;所述激励源包括所述无人飞行器的螺旋桨和/或动力电机。
  3. 根据权利要求2所述的机臂组件,其特征在于,所述激励频率根据所述螺旋桨的目标工作频率进行确定。
  4. 根据权利要求1所述的机臂组件,其特征在于,至少部分所述调节机构能够支撑所述第一机臂和所述第二机臂中的至少一者。
  5. 根据权利要求1-4任一项所述的机臂组件,其特征在于,所述调节机构连接于所述第一机臂和所述第二机臂,所述调节机构包括:
    支撑结构,连接于所述第一机臂和所述第二机臂;
    驱动结构,设于所述第一机臂、所述第二机臂和所述支撑组件中的至少一者上,所述驱动结构与所述支撑结构传动连接,以带动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,从而调节所述无人飞行器的固有频率。
  6. 根据权利要求5所述的机臂组件,其特征在于,所述支撑结构能够顶持所述第一机臂和所述第二机臂,以使得所述第一机臂和所述第二机臂能够保持在预设相对位置。
  7. 根据权利要求5所述的机臂组件,其特征在于,所述支撑结构两端分别能够与所述第一机臂和所述第二机臂滑动连接。
  8. 根据权利要求5所述的机臂组件,其特征在于,所述支撑结构的一端能够与所述第一机臂和所述第二机臂中的其中一者滑动连接,所述支撑结构的另 一端能够与所述第一机臂和所述第二机臂中的另一者滑动连接和转动连接。
  9. 根据权利要求5所述的机臂组件,其特征在于,所述支撑结构的一端能够与所述第一机臂和所述第二机臂中的其中一者转动连接,所述支撑结构的另一端能够与所述第一机臂和所述第二机臂中的另一者滑动连接和转动连接。
  10. 根据权利要求5所述的机臂组件,其特征在于,所述支撑结构的一端能够与所述第一机臂和所述第二机臂中的其中一者滑动连接和转动连接,所述支撑结构的另一端能够与所述第一机臂和所述第二机臂中的另一者滑动连接和转动连接。
  11. 根据权利要求5-10任一项所述的机臂组件,其特征在于,所述驱动结构包括:
    第一驱动组件,设于所述支撑结构、所述第一机臂和所述第二机臂中的其中一者上,用于驱动所述支撑结构相对所述第一机臂和所述第二机臂中的至少一者运动。
  12. 根据权利要求11所述的机臂组件,其特征在于,所述第一驱动组件用于驱动所述支撑结构相对所述第一机臂和所述第二机臂滑动。
  13. 根据权利要求11所述的机臂组件,其特征在于,所述第一驱动组件用于驱动所述支撑结构相对所述第一机臂和所述第二机臂中的至少一者滑动和转动。
  14. 根据权利要求11所述的机臂组件,其特征在于,所述第一驱动组件用于驱动所述支撑结构伸缩,以调节所述支撑结构的长度。
  15. 根据权利要求11所述的机臂组件,其特征在于,所述第一驱动组件包括驱动电机。
  16. 根据权利要求11所述的机臂组件,其特征在于,所述支撑结构包括:
    支撑组件,连接于所述第一机臂和所述第二机臂,所述第一驱动组件与所述支撑组件传动连接。
  17. 根据权利要求16所述的机臂组件,其特征在于,所述支撑结构还包括:
    第一活动件,与所述支撑组件连接,所述驱动结构能够驱动所述第一活动件沿预设方向运动。
  18. 根据权利要求17所述的机臂组件,其特征在于,所述驱动结构包括:
    第二驱动组件,设于所述第一机臂或者所述第二机臂上,与所述第一活动 件传动连接。
  19. 根据权利要求18所述的机臂组件,其特征在于,所述第二驱动组件包括螺杆传动结构或者丝杆传动结构。
  20. 根据权利要求19所述的机臂组件,其特征在于,所述第一活动件设有第一螺纹连接部,所述第二驱动组件包括:
    第一驱动件,设于所述第一机臂上;
    第一调节杆,穿设所述第一活动件并与所述第一驱动件连接;设有与所述第一螺纹连接部螺接的第一螺纹配合部,以驱动所述第一活动件沿所述第一调节杆的轴向滑动。
  21. 根据权利要求18所述的机臂组件,其特征在于,所述支撑结构还包括:
    第二活动件,与所述支撑组件连接,所述驱动结构能够驱动所述第一活动件和所述第二活动件沿预设方向运动。
  22. 根据权利要求21所述的机臂组件,其特征在于,所述驱动结构还包括:
    第三驱动组件,与所述第二活动件传动连接;所述第一活动件和所述第二驱动组件设于所述第一机臂和所述第二机臂的其中一者上,所述第二活动件和所述第三驱动组件设于所述第一机臂和所述第二机臂的另一者上。
  23. 根据权利要求22所述的机臂组件,其特征在于,所述第二活动件设有第二螺纹连接部,所述第三驱动组件包括:
    第二驱动件,设于所述第二机臂上;
    第二调节杆,穿设所述第二活动件并与所述第二驱动件连接;设有与所述第二螺纹连接部螺接的第二螺纹配合部,以驱动所述第二活动件沿所述第二调节杆的轴向滑动。
  24. 根据权利要求16所述的机臂组件,其特征在于,所述支撑组件包括电动推杆。
  25. 根据权利要求16所述的机臂组件,其特征在于,所述支撑组件包括:
    第一支撑体,与所述第一机臂活动连接;
    第二支撑体,与所述第二机臂活动连接,所述第一支撑体与所述第二支撑体伸缩连接,以调节所述支撑组件的长度。
  26. 根据权利要求25所述的机臂组件,其特征在于,第一支撑体与所述第一机臂滑动连接,所述第二支撑体与所述第二机臂滑动连接。
  27. 根据权利要求25所述的机臂组件,其特征在于,所述第一支撑体与所述第一机臂滑动连接,所述第二支撑体与所述第二机臂滑动连接和转动连接。
  28. 根据权利要求25所述的机臂组件,其特征在于,所述第一支撑体与所述第一机臂转动连接,所述第二支撑体与所述第二机臂滑动连接和转动连接。
  29. 根据权利要求25所述的机臂组件,其特征在于,所述第一支撑体与所述第一机臂滑动连接和转动连接,所述第二支撑体与所述第二机臂滑动连接和转动连接。
  30. 根据权利要求25所述的机臂组件,其特征在于,所述第一支撑体包括与所述第二支撑体活动配合的套筒。
  31. 根据权利要求25所述的机臂组件,其特征在于,所述第二支撑体包括:
    支撑架,能够与所述第二机臂滑动连接和/或转动连接,所述第一驱动组件设于所述支撑架上;
    第三调节杆,与所述第一驱动组件传动连接;
    滑动件,与所述第三调节杆连接,并与所述第一支撑体滑动配合。
  32. 根据权利要求31所述的机臂组件,其特征在于,所述第一支撑体上设有第三螺纹连接部;所述第三调节杆上设有与所述第三螺纹连接部螺接的第三螺纹配合部,以驱动所述第一支撑体沿所述第三调节杆的轴向滑动。
  33. 根据权利要求31所述的机臂组件,其特征在于,所述支撑架能够与所述第二机臂转动连接。
  34. 根据权利要求31所述的机臂组件,其特征在于,所述支撑架能够与所述第二机臂滑动连接和转动连接。
  35. 根据权利要求31所述的机臂组件,其特征在于,所述支撑架与所述第三调节杆可拆卸连接。
  36. 根据权利要求35所述的机臂组件,其特征在于,至少部分所述第一支撑体和至少部分所述第三调节杆能够收纳于所述第一机臂上。
  37. 根据权利要求35所述的机臂组件,其特征在于,至少部分第二支撑体能够收纳于所述第二机臂上。
  38. 一种无人飞行器,其特征在于,包括:
    机身;以及
    权利要求1-37任一项所述的机臂组件,与所述机身连接。
  39. 根据权利要求38所述的无人飞行器,其特征在于,所述机臂与所述机身活动连接,以使所述机臂在使用状态和收纳状态之间切换。
  40. 一种机臂组件的控制方法,其特征在于,所述机臂组件与无人飞行器的机身连接;所述机臂组件包括第一机臂、第二机臂和调节机构,所述调节机构连接于所述第一机臂和所述第二机臂中的至少一者上;所述控制方法包括:
    获取所述无人飞行器的激励源的激励频率,所述激励源包括所述无人飞行器的螺旋桨和/或动力电机;
    根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而减少所述无人飞行器产生共振的情况。
  41. 根据权利要求40所述的控制方法,其特征在于,所述获取所述无人飞行器的激励源的激励频率,包括:
    获取所述无人飞行器的激励源的目标工作频率;
    根据所述目标工作频率确定所述激励源的激励频率。
  42. 根据权利要求41所述的控制方法,其特征在于,所述根据所述目标工作频率确定所述激励源的激励频率之前,还包括:
    确定所述激励源的当前工作频率与所述目标工作频率是否相同;
    所述根据所述目标工作频率确定所述激励源的激励频率,包括:
    若所述激励源的当前工作频率与所述目标工作频率不同,根据所述目标工作频率确定所述激励源的激励频率。
  43. 根据权利要求42所述的控制方法,其特征在于,所述确定所述激励源的当前工作频率与所述目标工作频率是否相同,包括:
    若所述激励源的当前工作频率与所述目标工作频率的差值的绝对值大于预设阈值,确定所述激励源的当前工作频率与所述目标工作频率不同;
    若所述激励源的当前工作频率与所述目标工作频率的差值的绝对值小于或者等于预设阈值,确定所述激励源的当前工作频率与所述目标工作频率相同。
  44. 根据权利要求42所述的控制方法,其特征在于,还包括:
    接收所述无人飞行器的飞行控制指令,所述飞行控制指令包括所述激励源的目标工作频率。
  45. 根据权利要求40-44任一项所述的控制方法,其特征在于,所述控制 所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,包括:
    控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,从而使所述固有频率与所述激励频率不同或者不具有倍数关系。
  46. 根据权利要求40-45任一项所述的控制方法,其特征在于,所述根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,包括:
    根据所述激励频率,确定所述调节机构的目标位置;
    根据所述目标位置,控制所述调节机构相对所述第一机臂和/或第二机臂运动。
  47. 根据权利要求46所述的控制方法,其特征在于,所述根据所述激励频率,确定所述调节机构的目标位置,包括:
    从预设的频率位置映射表中确定与所述激励频率对应的所述调节机构的目标位置。
  48. 根据权利要求47所述的控制方法,其特征在于,所述从预设的频率位置映射表中确定与所述激励频率对应的所述调节机构的目标位置之前,还包括:
    获取预设的频率位置映射表,并保存所述频率位置映射表,所述频率位置映射表记录有激励频率与目标位置的映射关系。
  49. 根据权利要求48所述的控制方法,其特征在于,所述激励频率与所述无人飞行器的飞行状态、飞行环境相关;和/或,所述固有频率与所述无人飞行器的属性信息相关。
  50. 根据权利要求49所述的控制方法,其特征在于,所述飞行状态包括:悬停状态或者运动状态;和/或,
    所述飞行环境包括海拔信息;和/或,
    所述属性信息包括:所述无人飞行器的尺寸、重量、功能中的至少一种。
  51. 根据权利要求40-50任一项所述的控制方法,其特征在于,所述调节机构包括驱动结构和支撑结构;所述控制所述调节机构相对所述第一机臂和/或所述第二机臂运动,包括:
    控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
  52. 根据权利要求51所述的控制方法,其特征在于,所述驱动结构包括第一驱动组件;所述控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,包括:
    控制第一驱动组件运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
  53. 根据权利要求52所述的控制方法,其特征在于,所述控制方法还包括:
    控制所述第一驱动组件驱动所述支撑结构伸缩,以调节所述支撑结构的长度。
  54. 根据权利要求51-53任一项所述的控制方法,其特征在于,所述驱动结构包括第一驱动件和第一调节杆,所述第一驱动件通过所述第一调节杆与所述支撑结构传动连接;所述控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,包括:
    控制所述第一驱动件驱动所述第一调节杆运动,以使所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
  55. 根据权利要求51-53任一项所述的控制方法,其特征在于,所述驱动结构包括第一驱动件、第一调节杆、第二驱动件和第二调节杆,所述第一驱动件通过所述第一调节杆与所述支撑结构传动连接,所述第二驱动件通过所述第二调节杆与所述支撑结构传动连接;所述控制所述驱动结构运动,以驱动所述支撑结构相对所述第一机臂和/或所述第二机臂运动,包括:
    控制所述第一驱动件驱动所述第一调节杆运动,并控制所述第二驱动件驱动所述第二调节杆运动,以使所述支撑结构相对所述第一机臂和/或所述第二机臂运动。
  56. 根据权利要求40-55任一项所述的控制方法,其特征在于,所述根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率,包括:
    根据所述激励频率,控制所述调节机构相对第一机臂和/或所述第二机臂运动,以调节所述无人飞行器的固有频率至所述激励源的目标工作频率的两倍的二分之一的算术平方根。
PCT/CN2020/139052 2020-12-24 2020-12-24 机臂组件、无人飞行器及机臂组件的控制方法 WO2022133916A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139052 WO2022133916A1 (zh) 2020-12-24 2020-12-24 机臂组件、无人飞行器及机臂组件的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139052 WO2022133916A1 (zh) 2020-12-24 2020-12-24 机臂组件、无人飞行器及机臂组件的控制方法

Publications (1)

Publication Number Publication Date
WO2022133916A1 true WO2022133916A1 (zh) 2022-06-30

Family

ID=82157214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139052 WO2022133916A1 (zh) 2020-12-24 2020-12-24 机臂组件、无人飞行器及机臂组件的控制方法

Country Status (1)

Country Link
WO (1) WO2022133916A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105882984A (zh) * 2016-05-24 2016-08-24 北京浩恒征途航空科技有限公司 一种油动多旋翼飞行器
KR20170078318A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비행체에 대한 무선 전력 전송 장치 및 비행체
CN108006136A (zh) * 2017-10-19 2018-05-08 湖南鲲鹏智汇无人机技术有限公司 一种无人机用多级减振装置
JP2020040511A (ja) * 2018-09-10 2020-03-19 株式会社菊池製作所 マルチコプターおよび消音装置
CN111976949A (zh) * 2020-09-15 2020-11-24 深圳大漠大智控技术有限公司 一种无人机消隙降震结构及无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078318A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비행체에 대한 무선 전력 전송 장치 및 비행체
CN105882984A (zh) * 2016-05-24 2016-08-24 北京浩恒征途航空科技有限公司 一种油动多旋翼飞行器
CN108006136A (zh) * 2017-10-19 2018-05-08 湖南鲲鹏智汇无人机技术有限公司 一种无人机用多级减振装置
JP2020040511A (ja) * 2018-09-10 2020-03-19 株式会社菊池製作所 マルチコプターおよび消音装置
CN111976949A (zh) * 2020-09-15 2020-11-24 深圳大漠大智控技术有限公司 一种无人机消隙降震结构及无人机

Similar Documents

Publication Publication Date Title
US11124298B2 (en) Foldable UAV
US11427319B2 (en) Foldable multi-rotor aerial vehicle
JP7265017B2 (ja) 無人飛行システム及び無人飛行システムに用いられる制御システム
KR101762489B1 (ko) 소형 무인 항공기에 사용하기 위한 2축 플랫폼 및 소형 무인 항공기에 사용하기 위한 3축 플랫폼
US20220137643A1 (en) Aircraft control method and aircraft
JP6409503B2 (ja) 観測装置
EP2780228B1 (en) Transformable aerial vehicle
US11305875B2 (en) Mult-functional compartment
WO2018040006A1 (zh) 控制方法、装置和系统、飞行器、载体及操纵装置
JP2020501969A (ja) 変形可能装置
WO2019056865A1 (zh) 云台及具有此云台的无人机
WO2015085499A1 (zh) 非正交轴载体
WO2019084818A1 (zh) 多旋翼无人机的飞行控制方法、装置及多旋翼无人机
WO2020087349A1 (zh) 无人机及其云台控制方法
WO2019023906A1 (zh) 同步方法、设备和系统
WO2019073415A1 (en) AERIAL SYSTEM COMPRISING A FOLDING FRAME ARCHITECTURE
CN109606718A (zh) 一种三轴稳定云台及无人机
CN111566005A (zh) 可折叠旋翼叶片组件和具有可折叠旋翼叶片组件的飞行器
CN210052062U (zh) 无人机目标跟踪与定位装置
WO2022133916A1 (zh) 机臂组件、无人飞行器及机臂组件的控制方法
WO2021168821A1 (zh) 可移动平台的控制方法和设备
WO2020168519A1 (zh) 拍摄参数的调整方法、拍摄设备以及可移动平台
US20240132237A1 (en) Aerial vehicle
CN220743384U (zh) 一种无人机旋翼多功能支撑臂
WO2021103865A1 (zh) 控制装置、摄像系统、移动体、控制方法以及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966488

Country of ref document: EP

Kind code of ref document: A1