WO2022133856A1 - 超声相控阵列的阵元布局确定方法、装置及存储介质 - Google Patents

超声相控阵列的阵元布局确定方法、装置及存储介质 Download PDF

Info

Publication number
WO2022133856A1
WO2022133856A1 PCT/CN2020/138839 CN2020138839W WO2022133856A1 WO 2022133856 A1 WO2022133856 A1 WO 2022133856A1 CN 2020138839 W CN2020138839 W CN 2020138839W WO 2022133856 A1 WO2022133856 A1 WO 2022133856A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
ultrasonic phased
phased array
loss function
array element
Prior art date
Application number
PCT/CN2020/138839
Other languages
English (en)
French (fr)
Inventor
洪小平
郭虓
梁立成
黄潇
Original Assignee
深圳市大疆创新科技有限公司
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司, 南方科技大学 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080080916.6A priority Critical patent/CN114730000A/zh
Priority to PCT/CN2020/138839 priority patent/WO2022133856A1/zh
Publication of WO2022133856A1 publication Critical patent/WO2022133856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present application relates to the technical field of acoustic wave detection, and in particular, to a method, a device, and a computer-readable storage medium for determining an array element layout of an ultrasonic phased array, an ultrasonic phased array, and a movable platform.
  • An ultrasonic phased array is a device that can detect the position of a target. It may include an array generator and an array receiver. Among them, the array generator can form an ultrasonic beam in a specific direction under the control of the driving algorithm, and the ultrasonic beam will be reflected after encountering the target in this direction, and the reflected echo can be acquired by the array receiver. By calculating the time interval between the moment when the sound wave is emitted and the moment when the sound wave is received, the distance corresponding to the target object can be calculated, and the position of the target object can be detected.
  • the array elements in the ultrasonic phased array are uniformly distributed. Although the uniform distribution is easy to design and implement, there will be grating lobes whose intensity is equivalent to the main lobe in the sound field. The existence of the grating lobes will greatly affect the ranging results. Authenticity, which creates artifacts in the 3D image and affects the overall quality of the image.
  • embodiments of the present application provide a method, device, and computer-readable storage medium for determining an array element layout of an ultrasonic phased array, an ultrasonic phased array, and a movable platform.
  • One of the purposes is to solve the problem of uniformity.
  • the technical problem that the high side lobe intensity in the array affects the imaging quality.
  • a first aspect of the embodiments of the present application provides an array element layout method for an ultrasonic phased array, including:
  • the parameters to be optimized in the loss function at least include the position parameters of each array element in the ultrasonic phased array, and the value of the loss function is the side lobe level corresponding to the ultrasonic phased array in multiple beam directions fused;
  • Array element layout is performed on the ultrasonic phased array using the target parameters to be optimized.
  • a second aspect of an embodiment of the present application provides an array element layout device for an ultrasonic phased array, including: a processor and a memory storing a computer program, where the processor implements the following steps when executing the computer program:
  • the parameters to be optimized in the loss function at least include the position parameters of each array element in the ultrasonic phased array, and the value of the loss function is the side lobe level corresponding to the ultrasonic phased array in multiple beam directions fused;
  • Array element layout is performed on the ultrasonic phased array using the target parameters to be optimized.
  • a third aspect of the embodiments of the present application provides an ultrasonic phased array, including: a plurality of array elements, where the layout of the plurality of array elements is determined by the array element layout method of the ultrasonic phased array provided by the embodiments of the present application.
  • a fourth aspect of the embodiments of the present application provides a movable platform, including:
  • a driving device connected with the body, the driving device is used to provide power for the movable platform;
  • the array element layout of the ultrasonic phased array is determined by the array element layout method of the ultrasonic phased array provided by the embodiment of the present application.
  • a fifth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, realizes the array of the ultrasonic phased array provided by the embodiments of the present application Meta layout method.
  • the function value of the established loss function can represent the fusion result of the side lobe levels corresponding to the ultrasonic phased array in multiple beam directions, so that the array element layout obtained by optimization based on the loss function , can make the ultrasonic phased array have better detection accuracy in multiple beam directions, and can meet the vision requirements of the robot to perceive the environment.
  • FIG. 1 is a schematic diagram of an ultrasonic detection principle provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a beamforming principle provided by an embodiment of the present application.
  • FIG. 3 is a schematic layout diagram of a uniform array provided by an embodiment of the present application.
  • FIG. 4 is a directional diagram corresponding to a uniform array provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of an array element layout method provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of the confirmation of the array element layout based on the genetic algorithm provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of an optimized array element layout provided by an embodiment of the present application.
  • FIG. 8 is a three-dimensional display diagram of side lobe levels corresponding to different beam directions provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an array element layout apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • An ultrasonic phased array is a device that can detect the position of an object, which can include an array generator and an array receiver.
  • the array generator can form an ultrasonic beam in a specific direction under the control of the driving algorithm, and the ultrasonic beam will be reflected after encountering the target in this direction, and the reflected echo can be acquired by the array receiver.
  • the distance corresponding to the target object can be calculated, and the position of the target object can be detected.
  • FIG. 1 is a schematic diagram of an ultrasonic detection principle provided by an embodiment of the present application.
  • Ultrasonic phased arrays can be composed of multiple array elements.
  • the array element can emit ultrasonic waves or receive ultrasonic waves.
  • the array elements can be piezoelectric ceramics, which use piezoelectric effect and inverse piezoelectric effect to transmit and receive ultrasonic waves. Since the ultrasonic waves emitted by a single array element are close to spherical waves and have no resolution (or no directivity) in the air, multiple array elements can be used to form an array, and a directional beam can be formed by using the principle of wave interference. As shown in FIG. 2 , FIG. 2 is a schematic diagram of a beamforming principle provided by an embodiment of the present application.
  • the ultrasonic phased array may be a two-dimensional array, that is, each array element in the array may be distributed on a plane. Compared with the one-dimensional linear array in which each array element is arranged along a straight line, the two-dimensional array can detect the three-dimensional coordinates of the object in space, so that a three-dimensional image of the scene can be constructed.
  • Ultrasonic phased arrays can be applied to the field of robot perception, for robots to perceive the environment and construct three-dimensional images of the environment or scene.
  • the ultrasonic phased array may be disposed on a movable platform. Movable platforms can be drones, unmanned vehicles, unmanned ships, robots, and more.
  • the ultrasonic phased array may be provided on a terminal device, and the terminal device may be, for example, a mobile phone, a tablet, a computer, or the like.
  • ultrasonic phased array Compared with lidar, ultrasonic phased array has some advantages in detection. Specifically, the ultrasonic phased array realizes ranging based on ultrasonic waves, and ultrasonic waves are not easily affected by ambient light and the optical properties of materials, and can also have a good detection effect in scenes with high reflectivity and high external illumination; and ultrasonic waves It also has a certain penetration ability, and can also detect in water mist, sand and other environments.
  • the array elements in the ultrasonic phased array may be uniformly distributed.
  • FIG. 3 is a schematic layout diagram of a uniform array provided by an embodiment of the present application.
  • the array elements in a uniform array can maintain the same spacing, and the array elements can be aligned both horizontally and vertically.
  • the uniform array is a layout method that is easy to design and implement. However, when the uniform array layout method is used, grating lobes with an intensity equivalent to the main lobe will appear in the sound field, and the existence of the grating lobes will greatly affect the authenticity of the ranging results. , will form artifacts in the 3D image and affect the overall quality of the image.
  • FIG. 4 is a directional diagram corresponding to the uniform array provided by the embodiment of the present application.
  • the array element spacing of the ultrasonic phased array corresponding to Figure 4 is twice the wavelength.
  • the beam direction or beam angle is 0 degrees
  • the abscissa represents the angle of different beam directions
  • the ordinate represents the sound intensity. It can be seen that, in addition to the main lobe in the 0-degree beam direction, grating lobes with the same intensity as the main lobe are also generated in other directions, and these grating lobes will seriously affect the detection effect.
  • the array elements in the ultrasonic phased array can adopt a non-uniform layout, so that side lobes (grating lobes) can be effectively suppressed.
  • FIG. 5 is a flowchart of the array element layout method provided by the embodiment of the present application. . The method may include the following steps:
  • the problem of determining the optimal array element layout can be regarded as an optimization problem.
  • the parameters to be optimized may at least include the position parameters of each element in the ultrasonic phased array, for example, the X-axis coordinate and the Y-axis coordinate of each element.
  • the goal of the optimization problem is to determine an optimal non-uniform array element layout.
  • the evaluation method of the advantages and disadvantages of the array element layout that is, to define what kind of array element layout is desired.
  • the array element layout of , and the evaluation method can be described by the loss function.
  • the advantages and disadvantages of the array element layout are related to the suppression effect of the array element layout on the side lobes.
  • the side lobes generated are also different.
  • an array element layout may have low side lobes in the beam direction A, which has a better effect of suppressing side lobes. , but it may have high side lobes in the beam direction B, and the effect of side lobe suppression is poor.
  • the side lobe level corresponding to the specific direction can be used to evaluate the quality of the array element layout, that is, the specific direction.
  • the ultrasonic phased array used in the field of robot perception, since the robot's perception of the environment is multi-directional, the ultrasonic phased array needs to have high detection accuracy in multiple directions, that is, in multiple beam directions. All have better sidelobe suppression effect. Then, in an embodiment, the side lobe levels corresponding to multiple beam directions may be fused, and the merits of the array element layout may be evaluated by using the fusion results of the side lobe levels corresponding to the multiple beam directions. In specific implementation, a loss function that can describe the fusion result can be established, and the advantages and disadvantages of the array element layout can be quantified as the value of the loss function. The better the comprehensive effect of the sidelobe suppression of the layout in multiple directions, the better the layout of the array elements.
  • the multiple beam directions may include each beam direction within a target field of view, and the target field of view may be a detection range required by a robot or a movable platform.
  • the function value of the established loss function can represent the fusion result of the side lobe levels corresponding to the ultrasonic phased array in multiple beam directions, so that the array element layout obtained by optimization based on the loss function , can make the ultrasonic phased array have better detection accuracy in multiple beam directions, and can meet the vision requirements of the robot to perceive the environment.
  • constraints corresponding to the loss function can also be established.
  • the aperture range corresponding to the ultrasonic phased array may be determined according to the detection environment, and the constraint conditions corresponding to the aperture range may be established.
  • the number range of the array elements may also be determined according to the cost control requirement, and a constraint condition corresponding to the number range may be established.
  • the size of the array elements may also be determined according to the technological level, and the minimum spacing between the array elements may be determined according to the size, and a constraint condition corresponding to the minimum spacing may be established.
  • the target parameter to be optimized can be obtained through optimization by a specified optimization algorithm.
  • the specified optimization algorithm may include, but is not limited to, any of the following: genetic algorithm, particle swarm algorithm, ant colony algorithm, and simulated annealing algorithm.
  • the parameters to be optimized may be initialized to obtain one or more sets of parameters to be optimized.
  • Each set of parameters to be optimized corresponds to one array element layout, so the value of the loss function corresponding to various array element layouts can be calculated through the established loss function.
  • various array element layouts can be adjusted or updated (that is, the parameter values of each group of parameters to be optimized are adjusted or updated), and the adjusted or updated array element layout can be adjusted or updated.
  • the value of the corresponding loss function can be calculated again...iterate in this way until the termination condition is satisfied, then the target parameter to be optimized that minimizes the value of the loss function can be selected from the final groups of parameters to be optimized.
  • the target parameters to be optimized correspond to the optimal array element layout. Therefore, the ultrasonic phased array can be arranged according to the target parameters to be optimized, and finally it can be obtained in multiple beam directions. Ultrasonic phased array with good sidelobe suppression.
  • the value of the loss function may be calculated by weighting the side lobe levels corresponding to the multiple beam directions of the ultrasonic phased array.
  • different weights can be set for different beam directions according to different scene requirements.
  • a higher weight may be set for the target beam direction, and a lower weight may be set for other beam directions other than the target beam direction.
  • the central field of view requires higher detection accuracy than the edge field of view. Therefore, the beam direction in the central field of view can be determined as the target beam direction, and a higher value can be set for it. weights, so that the optimized array element layout has better sidelobe suppression effect in the direction of the central field of view.
  • the side lobe levels corresponding to different beam directions may be different.
  • the side lobe level may also be referred to as a peak side-lobe level (PSLL), which may be the ratio of the intensity of the largest side lobe to the main lobe in the pattern.
  • PSLL peak side-lobe level
  • the pattern of the ultrasonic phased array can be the correspondence between the sound intensity and the direction, that is, after the beam direction is determined, the sound intensity corresponding to each direction can be obtained from the pattern.
  • the direction map can be represented by the following formula:
  • I is the sound intensity
  • E is the sound pressure
  • is the azimuth angle
  • ⁇ s is the azimuth angle corresponding to the beam direction
  • M*N is the number of array elements
  • x is the abscissa of the array element
  • y is the ordinate of the array element
  • is the wavelength.
  • the pattern corresponding to the beam direction can be determined by the above formula.
  • the first beam direction is taken as an example.
  • the first beam direction can be any direction within the field of view.
  • the maximum side lobe can be determined from the pattern corresponding to the first beam direction.
  • the intensity of the main lobe and the intensity of the main lobe (other lobes except the main lobe are all side lobes), and the ratio of the intensity of the maximum side lobe to the intensity of the main lobe is determined as the side lobe level corresponding to the first beam direction.
  • the parameter to be optimized may further include an identification parameter corresponding to each array element, and the identification parameter may be used to characterize whether the array element is valid.
  • the number of array elements can be established with corresponding constraints.
  • the constraints can include the maximum upper limit of the number of array elements.
  • the number of array elements may not be fixed, but due to cost considerations, the number of array elements The number should not exceed the set maximum limit. Therefore, when establishing the loss function, the identification parameters used to characterize whether the array elements are valid can be added to the parameters to be optimized, so that during the optimization process, the optimization algorithm can invalidate unnecessary array elements by adjusting the identification parameters of the array elements. , to reduce the number of array elements as much as possible while ensuring the side lobe suppression effect, and reduce the manufacturing cost of the ultrasonic phased array.
  • the amplitude parameters of each array element can also be added to the parameters to be optimized.
  • the amplitude of each array element can also be used as an influence loss.
  • the variable of the value of the function can be updated or adjusted, which can make the value of the loss function corresponding to the determined target parameter to be optimized smaller, and achieve better sidelobe suppression effect.
  • the ultrasonic frequency corresponding to the ultrasonic phased array may be 40Khz.
  • FIG. 6 is a flowchart of the confirmation of the array element layout based on the genetic algorithm provided by the embodiment of the present application.
  • the parameters to be optimized may be initialized to obtain a first-generation population composed of multiple groups of parameters to be optimized.
  • S602 Calculate the value of the corresponding loss function for each individual in the population (ie, each group of parameters to be optimized).
  • step S604. Determine whether the termination condition is met. If the termination condition is met (the termination condition may be that the set number of iterations is reached, or the value of the loss function is smaller than the preset value, or the value of the loss function converges), then proceed to step S605; if not If the termination condition is satisfied, it can return to step S602.
  • S605 Select an individual whose value of the loss function is the smallest from the last generation of the population, and determine the parameter to be optimized corresponding to the individual as the target parameter.
  • the array element layout of the ultrasonic phased array may be performed according to the target parameter.
  • FIG. 7 is a schematic diagram of an optimized array element layout provided by an embodiment of the present application
  • FIG. 8 is a three-dimensional display diagram of side lobe levels corresponding to different beam directions based on the optimized array element layout.
  • the X-axis coordinate and the Y-axis coordinate of a point can determine the beam direction corresponding to the point
  • the Z-axis coordinate of the point corresponds to the side lobe level (PSLL) corresponding to the beam direction.
  • PSLL side lobe level
  • the function value of the established loss function can represent the fusion result of the side lobe levels corresponding to the ultrasonic phased array in multiple beam directions, so that the array element layout obtained by optimization based on the loss function , can make the ultrasonic phased array have better detection accuracy in multiple beam directions, and can meet the vision requirements of the robot to perceive the environment.
  • FIG. 9 is a schematic structural diagram of an array element layout apparatus provided by an embodiment of the present application.
  • the apparatus may include: a processor 910 and a memory 920 storing a computer program, the processor implements the following steps when executing the computer program:
  • the parameters to be optimized in the loss function at least include the position parameters of each array element in the ultrasonic phased array, and the value of the loss function is the side lobe level corresponding to the ultrasonic phased array in multiple beam directions fused;
  • Array element layout is performed on the ultrasonic phased array using the target parameters to be optimized.
  • the value of the loss function is obtained by weighted calculation of side lobe levels corresponding to the ultrasonic phased array in multiple beam directions.
  • the weight of the side lobe level corresponding to the target beam direction is higher than the weight of the side lobe intensities corresponding to other beam directions.
  • the first beam direction is any one of the multiple beam directions, and the side lobe level corresponding to the first beam direction is determined by using a pattern corresponding to the first beam direction.
  • use the pattern corresponding to the first beam direction to determine the side lobe level corresponding to the first beam direction including:
  • the ratio of the intensity of the maximum side lobe to the intensity of the main lobe is determined as the side lobe level corresponding to the first beam direction.
  • the parameter to be optimized further includes an identification parameter corresponding to each array element, and the identification parameter is used to represent whether the array element is valid.
  • the parameters to be optimized further include amplitude parameters of each array element.
  • the multiple beam directions include respective beam directions within the target field of view.
  • the determining the target parameter to be optimized that minimizes the value of the loss function includes:
  • the optimization is performed with the objective of minimizing the value of the loss function, and the objective parameter to be optimized that minimizes the value of the loss function is obtained.
  • the specified optimization algorithm includes any one of the following: genetic algorithm, particle swarm algorithm, ant colony algorithm, and simulated annealing algorithm.
  • the ultrasonic phased array is a two-dimensional array.
  • the ultrasonic phased array is used to construct a three-dimensional image of the scene.
  • the ultrasonic frequency corresponding to the ultrasonic phased array includes 40Khz.
  • the function value of the established loss function can represent the fusion result of the sidelobe levels corresponding to the ultrasonic phased array in multiple beam directions, so that the array element layout obtained by optimization based on the loss function , can make the ultrasonic phased array have better detection accuracy in multiple beam directions, and can meet the vision requirements of the robot to perceive the environment.
  • the embodiment of the present application further provides an ultrasonic phased array, which includes: a plurality of array elements, and the layout of the plurality of array elements is determined by the array element layout method of the ultrasonic phased array provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the removable platform may include:
  • a driving device 1020 connected to the body 1010, the driving device is used to provide power for the movable platform;
  • the array element layout of the ultrasonic phased array is determined by the array element layout method of the ultrasonic phased array provided in the embodiment of the present application.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, realizes the array elements of the ultrasonic phased array provided by the embodiments of the present application layout method.
  • Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
  • Computer-usable storage media includes permanent and non-permanent, removable and non-removable media, and storage of information can be accomplished by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase-change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Flash Memory or other memory technology
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Magnetic tape cassettes magnetic tape magnetic disk storage or other magnetic storage devices or any other non-

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种超声相控阵列的阵元布局方法,包括:建立损失函数,损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,损失函数的值是超声相控阵列在多个波束方向对应的旁瓣等级融合得到的(502);确定使损失函数的值最小的目标待优化参数(504);利用目标待优化参数对超声相控阵列进行阵元布局(506)。超声相控阵列的阵元布局方法确定的阵元布局可以使超声相控阵列在多个波束方向均有较好的探测准确度,能够满足机器人感知环境的视野需求。

Description

超声相控阵列的阵元布局确定方法、装置及存储介质 技术领域
本申请涉及声波探测技术领域,尤其涉及一种超声相控阵列的阵元布局确定方法、装置及计算机可读存储介质,一种超声相控阵列以及一种可移动平台。
背景技术
超声相控阵列是一种可以探测目标物位置的设备。其可以包括阵列发生器和阵列接收器。其中,阵列发生器在驱动算法的控制下可以朝特定方向形成超声波波束,超声波波束在遇到该方向上的目标物后会被反射,反射的回波可以被阵列接收器获取。通过计算发射声波的时刻和接收到声波的时刻之间的时间间隔,可以计算出目标物对应的距离,实现对目标物位置的探测。
目前,超声相控阵列中的阵元是均匀分布的,均匀分布虽易于设计和实现,但声场中会出现强度与主瓣相当的栅瓣,栅瓣的存在会极大的影响测距结果的真实性,会在三维图像中形成伪像,影响图像的整体质量。
发明内容
有鉴于此,本申请实施例提供了一种超声相控阵列的阵元布局确定方法、装置及计算机可读存储介质,一种超声相控阵列以及一种可移动平台,目的之一是解决均匀阵列中旁瓣强度过高影响成像质量的技术问题。
本申请实施例第一方面提供一种超声相控阵列的阵元布局方法,包括:
建立损失函数,所述损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级融合得到的;
确定使所述损失函数的值最小的目标待优化参数;
利用所述目标待优化参数对所述超声相控阵列进行阵元布局。
本申请实施例第二方面提供一种超声相控阵列的阵元布局装置,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
建立损失函数,所述损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级融合得到的;
确定使所述损失函数的值最小的目标待优化参数;
利用所述目标待优化参数对所述超声相控阵列进行阵元布局。
本申请实施例第三方面提供一种超声相控阵列,包括:多个阵元,所述多个阵元的布局是通过本申请实施例提供的超声相控阵列的阵元布局方法确定的。
本申请实施例第四方面提供一种可移动平台,包括:
机体;
与所述机体连接的驱动装置,所述驱动装置用于为所述可移动平台提供动力;
搭载在所述机体上的超声相控阵列,所述超声相控阵列的阵元布局是通过本申请实施例提供的超声相控阵列的阵元布局方法确定的。
本申请实施例第五方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的超声相控阵列的阵元布局方法。
本申请实施例提供的阵元布局方法,所建立的损失函数的函数值可以表征超声相控阵列在多个波束方向对应的旁瓣等级的融合结果,从而基于该损失函数优化得到的阵元布局,可以使超声相控阵列在多个波束方向均有较好的探测准确度,能够满足机器人感知环境的视野需求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的超声波探测原理示意图。
图2是本申请实施例提供的波束形成原理示意图。
图3是本申请实施例提供的均匀阵列的布局示意图。
图4是本申请实施例提供的均匀阵列对应的方向图。
图5是本申请实施例提供的阵元布局方法的流程图。
图6是本申请实施例提供的基于遗传算法的阵元布局确认流程图。
图7是本申请实施例提供的优化后的阵元布局示意图。
图8是本申请实施例提供的不同波束方向对应的旁瓣等级的三维展示图。
图9是本申请实施例提供的阵元布局装置的结构示意图。
图10是本申请实施例提供的可移动平台的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
超声相控阵列是一种可以探测目标物位置的设备,其可以包括阵列发生器和阵列接收器。其中,阵列发生器在驱动算法的控制下可以朝特定方向形成超声波波束,超声波波束在遇到该方向上的目标物后会被反射,反射的回波可以被阵列接收器获取。通过计算发射声波的时刻和接收到声波的时刻之间的时间间隔,可以计算出目标物对应的距离,实现对目标物位置的探测。可以参考图1,图1是本申请实施例提供的超声波探测原理示意图。
超声相控阵列可以由多个阵元组成。阵元可以发出超声波,也可以接收超声波,在一个例子中,阵元可以是压电陶瓷,利用压电效应和逆压电效应来发射和接收超声波。由于单个阵元发出的超声波接近于球面波,在空气中没有分辨率(或者说没有指向性),因此,可以利用多个阵元形成阵列,利用波的干涉原理形成有方向性的波束。如图2所示,图2是本申请实施例提供的波束形成原理示意图。
在一种实施方式中,超声相控阵列可以是二维阵列,即阵列中的各个阵元可以分布在一个平面上。相比于各阵元沿一条直线排列的一维线阵,二维阵列可以探测出空间中目标物的三维坐标,从而可以构建场景的三维图像。
超声相控阵列可以应用于机器人感知领域,用于机器人对环境进行感知,构建环境或场景的三维图像。在一种实施方式中,超声相控阵列可以设置在可移动平台上。可移动平台可以是无人机、无人车、无人船、机器人等等。在一种实施方式中,超声相控阵列可以设置在终端设备上,终端设备比如可以是手机、平板、电脑等。
相比激光雷达,超声相控阵列在探测上具有一些优势。具体的,超声相控阵列是 基于超声波实现测距的,而超声波不容易受到环境光和材料光学性质的影响,在高反射率、高外部光照的场景也能有较好的探测效果;并且超声波也具有一定的穿透能力,在水雾、沙尘等环境中也可以进行探测。
在一种实施方式中,超声相控阵列中的阵元可以均匀分布。可以参考图3,图3是本申请实施例提供的均匀阵列的布局示意图。如图3所示,均匀阵列中的阵元之间可以保持相同的间隔,阵元之间在横向和竖向均可以保持对齐。均匀阵列是一种易于设计和实现的布局方式,但采用均匀阵列的布局方式时,声场中会出现强度与主瓣相当的栅瓣,栅瓣的存在会极大的影响测距结果的真实性,会在三维图像中形成伪像,影响图像的整体质量。
可以参考图4,图4是本申请实施例提供的均匀阵列对应的方向图。图4所对应的超声相控阵列的阵元间距为两倍波长,图4的方向图中,波束方向或波束角为0度,横坐标表示不同波束方向的角度,纵坐标表示声强。可见,除在0度波束方向的主瓣以外,其他方向还产生了强度与主瓣相当的栅瓣,这些栅瓣会严重影响探测效果。
申请人经过研究发现,声场中之所以会产生这样的栅瓣,是因为超声相控阵列的阵元布局是均匀的,具体的,在两两阵元之间的间距相等时,在栅瓣产生的方向上将发生声波相干增强。因此,在一种实施方式中,超声相控阵列中的阵元可以采用非均匀的布局方式,从而可以有效的抑制旁瓣(栅瓣)。
非均匀的阵元布局有多种不同的实施方式,并且,不同的非均匀布局在抑制旁瓣的效果上也会有很大的不同。为确定最优的一种阵元布局,本申请实施例提供了一种超声相控阵列的阵元布局方法,可以参考图5,图5是本申请实施例提供的阵元布局方法的流程图。该方法可以包括以下步骤:
S502、建立损失函数,所述损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级融合得到的。
S504、确定使所述损失函数的值最小的目标待优化参数。
S506、利用所述目标待优化参数对所述超声相控阵列进行阵元布局。
确定最优阵元布局的问题可以看成是一个优化问题。在该优化问题中,待优化参数至少可以包括超声相控阵列中各个阵元的位置参数,比如可以是各个阵元的X轴坐标和Y轴坐标。优化问题的目标是确定一种最优的非均匀阵元布局,而在确定最优的阵元布局之前,需要先确定阵元布局优劣的评价方式,即定义怎样的阵元布局是想要的阵元布局,而该评价方式可以通过损失函数进行描述。
阵元布局的优劣与阵元布局对旁瓣的抑制效果相关。对于一种阵元布局,若其形成的波束方向不同,则其产生的旁瓣也不同,比如一种阵元布局可能在波束方向A是低旁瓣的,有较好的抑制旁瓣的效果,但在波束方向B则可能是高旁瓣的,旁瓣抑制的效果差。在一种实施方式中,若仅需要超声相控阵列在特定方向有较高的探测准确度,则可以利用该特定方向对应的旁瓣等级来评价该阵元布局的优劣,即该特定方向对应的旁瓣等级越低,则对旁瓣的抑制效果越好,则认为该阵元布局越优。
但对应用于机器人感知领域的超声相控阵列,由于机器人对环境的感知是多方向的,因此,需要超声相控阵列在多个方向均具有较高的探测准确度,即在多个波束方向都有较好的旁瓣抑制效果。那么,在一种实施方式中,可以融合多个波束方向对应的旁瓣等级,并利用多个波束方向对应的旁瓣等级的融合结果评价该阵元布局的优劣。在具体实现时,可以建立可以描述该融合结果的损失函数,则可以将阵元布局的优劣量化为损失函数的值,一种阵元布局对应的损失函数的值越低,则该阵元布局在多个方向的旁瓣抑制的综合效果就越好,该阵元布局就越优。
在一种实施方式中,所述的多个波束方向可以包括目标视野范围内的各个波束方向,目标视野范围可以是机器人或可移动平台要求的探测范围。
本申请实施例提供的阵元布局方法,所建立的损失函数的函数值可以表征超声相控阵列在多个波束方向对应的旁瓣等级的融合结果,从而基于该损失函数优化得到的阵元布局,可以使超声相控阵列在多个波束方向均有较好的探测准确度,能够满足机器人感知环境的视野需求。
可以理解的,在损失函数确定后,还可以建立所述损失函数对应的约束条件。在一种实施方式中,可以根据探测环境确定超声相控阵列对应的口径范围,并可以建立与该口径范围对应的约束条件。在一种实施方式中,还可以根据成本控制需求确定阵元的数量范围,并可以建立与该数量范围对应的约束条件。在一种实施方式中,还可以根据工艺水平确定阵元的尺寸,并可以根据该尺寸确定阵元间的最小间距,建立该最小间距对应的约束条件。
在确定使损失函数的值最小的目标待优化参数时,在一种实施方式中,可以通过指定的最优化算法优化得到目标待优化参数。这里,指定的最优化算法可以包括但不限于以下任一种:遗传算法、粒子群算法、蚁群算法、模拟退火算法。
在通过指定的最优化算法确定所述目标待优化参数时,具体的,可以对待优化参数进行初始化,得到一组或多组待优化参数。每组待优化参数对应一种阵元布局,因此可以通过建立的损失函数计算各种阵元布局对应的损失函数的值。根据各种阵元布 局对应的损失函数的值,可以对各种阵元布局进行调整或更新(即对各组待优化参数的参数值进行调整或更新),对调整或更新后的阵元布局可以再次计算各自对应的损失函数的值……如此迭代,直至满足终止条件,则可以从最终的各组待优化参数中选取出使损失函数的值最小的目标待优化参数。
在确定目标待优化参数后,目标待优化参数对应的是最优的阵元布局,因此可以根据目标待优化参数对超声相控阵列进行阵元布局,最终可以得到在多个波束方向均能较好的抑制旁瓣的超声相控阵列。
在一种实施方式中,损失函数的值可以是超声相控阵列在多个波束方向对应的旁瓣等级加权计算得到的。这里,可以根据不同的场景需求,对不同的波束方向设定不同的权重。在一种实施方式中,可以对目标波束方向设置较高的权重,对目标波束方向以外的其他波束方向设置较低的权重。可以举个例子,对于机器人感知环境而言,中心视场对探测准确度的要求高于边缘视场,因此可以将中心视场内的波束方向确定为目标波束方向,为其设定较高的权重,以使优化得到的阵元布局在中心视场方向有更好的旁瓣抑制效果。
如前所述,不同波束方向对应的旁瓣等级可以是不同的。这里,旁瓣等级也可以称为峰值旁瓣等级(peak side-lobe level,PSLL),其可以是方向图中最大旁瓣与主瓣的强度比值。具体的,对于一种阵列布局,在确定其在多个波束方向对应的旁瓣等级时,可以获取其在多个波束方向对应的方向图,利用各个波束方向对应的方向图可以确定各个波束方向对应的旁瓣等级。
超声相控阵列的方向图可以是声强和方向的对应关系,即在波束方向确定后,各个方向所对应的声强均可以从方向图中获取。方向图可以通过以下式子表示:
Figure PCTCN2020138839-appb-000001
Figure PCTCN2020138839-appb-000002
其中,I表示声强,E表示声压,θ为方位角,
Figure PCTCN2020138839-appb-000003
为立体角,θ s为波束方向对应的方位角,
Figure PCTCN2020138839-appb-000004
为波束方向对应的立体角,M*N为阵元的数量,x为阵元的横坐标,y为阵元的纵坐标,λ为波长。
对于一种阵列布局(即各阵元的坐标x和y确定),当波束方向θ s
Figure PCTCN2020138839-appb-000005
确定后,可以通过上述式子确定该波束方向对应的方向图。这里以第一波束方向为例,第一波束方向可以是视野范围内的任一方向,在得到第一波束方向对应的方向图后,可以从第一波束方向对应的方向图中确定最大旁瓣的强度以及主瓣的强度(除主瓣以外的其他 瓣均为旁瓣),将该最大旁瓣的强度与主瓣强度的比值确定为第一波束方向对应的旁瓣等级。
在一种实施方式中,待优化参数还可以包括各个阵元对应的标识参数,所述标识参数可以用于表征该阵元是否有效。如前文所述,阵元数量可以建立有对应的约束条件,具体的,该约束条件可以包括阵元数量的最大上限,换言之,阵元数量可以不是固定的,但出于成本的考虑,阵元数量不应超出所设定的最大上限。因此,在建立损失函数时,可以在待优化参数中加入用于表征阵元是否有效的标识参数,使得优化过程中,最优化算法可以通过调整阵元的标识参数使不必要的阵元无效化,在确保旁瓣抑制效果的同时尽可能减少阵元数量,降低超声相控阵列的制作成本。
为进一步提高旁瓣抑制效果,在一种实施方式中,还可以在待优化参数中加入各个阵元的振幅参数,如此,除了阵元的几何坐标外,各个阵元的振幅也可以作为影响损失函数的值的变量,可以进行更新或调整,可以使确定出的目标待优化参数对应的损失函数的值更小,达到更好的旁瓣抑制效果。
在一种实施方式中,超声相控阵列对应的超声波频率可以是40Khz。
下面提供一个利用遗传算法确定超声相控阵列的阵元布局的例子。可以参考图6,图6是本申请实施例提供的基于遗传算法的阵元布局确认流程图。
S601、可以对待优化参数进行初始化,得到多组待优化参数构成的第一代种群。
S602、对种群中的每个个体(即每组待优化参数)计算其对应的损失函数的值。
S603、对种群进行选择、交叉以及变异处理。
S604、确定是否满足终止条件,若满足终止条件(终止条件可以是达到设定的迭代次数,或者损失函数的值小于预设值,或者损失函数的值收敛),则可以进入步骤S605;若不满足终止条件,则可以返回步骤S602。
S605、从最后一代种群中选择使损失函数的值最小的个体,将该个体对应的待优化参数确定为目标参数。
S606、可以根据该目标参数对超声相控阵列进行阵元布局。
可以参考图7和图8,图7是本申请实施例提供的优化后的阵元布局示意图,图8是基于优化后的阵元布局的不同波束方向对应的旁瓣等级的三维展示图。图8中,一个点的X轴坐标与Y轴坐标可以确定该点对应的波束方向,该点的Z轴坐标对应的是该波束方向对应的旁瓣等级(PSLL)。可见,在立体角45度范围内,旁瓣等级可以低于0.4,在视野范围内有较好的旁瓣抑制效果。
本申请实施例提供的阵元布局方法,所建立的损失函数的函数值可以表征超声相 控阵列在多个波束方向对应的旁瓣等级的融合结果,从而基于该损失函数优化得到的阵元布局,可以使超声相控阵列在多个波束方向均有较好的探测准确度,能够满足机器人感知环境的视野需求。
下面可以参考图9,图9是本申请实施例提供的阵元布局装置的结构示意图。该装置可以包括:处理器910和存储有计算机程序的存储器920,所述处理器在执行所述计算机程序时实现以下步骤:
建立损失函数,所述损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级融合得到的;
确定使所述损失函数的值最小的目标待优化参数;
利用所述目标待优化参数对所述超声相控阵列进行阵元布局。
可选的,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级加权计算得到的。
可选的,目标波束方向对应的旁瓣等级的权重高于其他波束方向对应的旁瓣强度的权重。
可选的,第一波束方向是所述多个波束方向中的任一波束方向,所述第一波束方向对应的旁瓣等级是利用所述第一波束方向对应的方向图确定的。
可选的,利用所述第一波束方向对应的方向图确定所述第一波束方向对应的旁瓣等级,包括:
从所述第一波束方向对应的方向图中确定最大旁瓣的强度;
将所述最大旁瓣的强度与主瓣强度的比值确定为所述第一波束方向对应的旁瓣等级。
可选的,所述待优化参数还包括各个阵元对应的标识参数,所述标识参数用于表征所述阵元是否有效。
可选的,所述待优化参数还包括各个阵元的振幅参数。
可选的,所述多个波束方向包括目标视野范围内的各个波束方向。
可选的,所述确定使所述损失函数的值最小的目标待优化参数,包括:
利用指定的最优化算法,以所述损失函数的值最小为目标进行优化,得到使所述损失函数的值最小的目标待优化参数。
可选的,所述指定的最优化算法包括以下任一种:遗传算法、粒子群算法、蚁群算法、模拟退火算法。
可选的,所述超声相控阵列是二维阵列。
可选的,所述超声相控阵列用于构建场景的三维图像。
可选的,所述超声相控阵列对应超声波频率包括40Khz。
以上所提供的各种实施方式的阵元布局装置,其具体实现可以参考前文中的相应说明,在此不再赘述。
本申请实施例提供的阵元布局装置,所建立的损失函数的函数值可以表征超声相控阵列在多个波束方向对应的旁瓣等级的融合结果,从而基于该损失函数优化得到的阵元布局,可以使超声相控阵列在多个波束方向均有较好的探测准确度,能够满足机器人感知环境的视野需求。
本申请实施例还提供了一种超声相控阵列,其包括:多个阵元,所述多个阵元的布局是通过本申请实施例提供的超声相控阵列的阵元布局方法确定的。
下面可以参考图10,图10是本申请实施例提供的可移动平台的结构示意图。该可移动平台可以包括:
机体1010;
与所述机体1010连接的驱动装置1020,所述驱动装置用于为所述可移动平台提供动力;
搭载在所述机体上的超声相控阵列1030,所述超声相控阵列的阵元布局是通过本申请实施例提供的超声相控阵列的阵元布局方法确定的。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的超声相控阵列的阵元布局方法。
以上针对每个保护主题均提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由对各种实施方式进行组合,由此构成各种不同的技术方案。而本申请文件限于篇幅,未能对所有组合而得的技术方案展开说明,但可以理解的是,这些未能展开的技术方案也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存 储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (29)

  1. 一种超声相控阵列的阵元布局方法,其特征在于,包括:
    建立损失函数,所述损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级融合得到的;
    确定使所述损失函数的值最小的目标待优化参数;
    利用所述目标待优化参数对所述超声相控阵列进行阵元布局。
  2. 根据权利要求1所述的方法,其特征在于,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级加权计算得到的。
  3. 根据权利要求2所述的方法,其特征在于,目标波束方向对应的旁瓣等级的权重高于其他波束方向对应的旁瓣强度的权重。
  4. 根据权利要求1所述的方法,其特征在于,第一波束方向是所述多个波束方向中的任一波束方向,所述第一波束方向对应的旁瓣等级是利用所述第一波束方向对应的方向图确定的。
  5. 根据权利要求4所述的方法,其特征在于,利用所述第一波束方向对应的方向图确定所述第一波束方向对应的旁瓣等级,包括:
    从所述第一波束方向对应的方向图中确定最大旁瓣的强度;
    将所述最大旁瓣的强度与主瓣强度的比值确定为所述第一波束方向对应的旁瓣等级。
  6. 根据权利要求1所述的方法,其特征在于,所述待优化参数还包括各个阵元对应的标识参数,所述标识参数用于表征所述阵元是否有效。
  7. 根据权利要求1所述的方法,其特征在于,所述待优化参数还包括各个阵元的振幅参数。
  8. 根据权利要求1所述的方法,其特征在于,所述多个波束方向包括目标视野范围内的各个波束方向。
  9. 根据权利要求1所述的方法,其特征在于,所述确定使所述损失函数的值最小的目标待优化参数,包括:
    利用指定的最优化算法,以所述损失函数的值最小为目标进行优化,得到使所述损失函数的值最小的目标待优化参数。
  10. 根据权利要求9所述的方法,其特征在于,所述指定的最优化算法包括以下任一种:遗传算法、粒子群算法、蚁群算法、模拟退火算法。
  11. 根据权利要求1所述的方法,其特征在于,所述超声相控阵列是二维阵列。
  12. 根据权利要求11所述的方法,其特征在于,所述超声相控阵列用于构建场景的三维图像。
  13. 根据权利要求1所述的方法,其特征在于,所述超声相控阵列对应超声波频率包括40Khz。
  14. 一种超声相控阵列的阵元布局装置,其特征在于,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    建立损失函数,所述损失函数中的待优化参数至少包括超声相控阵列中各个阵元的位置参数,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级融合得到的;
    确定使所述损失函数的值最小的目标待优化参数;
    利用所述目标待优化参数对所述超声相控阵列进行阵元布局。
  15. 根据权利要求14所述的装置,其特征在于,所述损失函数的值是所述超声相控阵列在多个波束方向对应的旁瓣等级加权计算得到的。
  16. 根据权利要求15所述的装置,其特征在于,目标波束方向对应的旁瓣等级的权重高于其他波束方向对应的旁瓣强度的权重。
  17. 根据权利要求14所述的装置,其特征在于,第一波束方向是所述多个波束方向中的任一波束方向,所述第一波束方向对应的旁瓣等级是利用所述第一波束方向对应的方向图确定的。
  18. 根据权利要求17所述的装置,其特征在于,利用所述第一波束方向对应的方向图确定所述第一波束方向对应的旁瓣等级,包括:
    从所述第一波束方向对应的方向图中确定最大旁瓣的强度;
    将所述最大旁瓣的强度与主瓣强度的比值确定为所述第一波束方向对应的旁瓣等级。
  19. 根据权利要求14所述的装置,其特征在于,所述待优化参数还包括各个阵元对应的标识参数,所述标识参数用于表征所述阵元是否有效。
  20. 根据权利要求14所述的装置,其特征在于,所述待优化参数还包括各个阵元的振幅参数。
  21. 根据权利要求14所述的装置,其特征在于,所述多个波束方向包括目标视野范围内的各个波束方向。
  22. 根据权利要求14所述的装置,其特征在于,所述确定使所述损失函数的值最 小的目标待优化参数,包括:
    利用指定的最优化算法,以所述损失函数的值最小为目标进行优化,得到使所述损失函数的值最小的目标待优化参数。
  23. 根据权利要求22所述的装置,其特征在于,所述指定的最优化算法包括以下任一种:遗传算法、粒子群算法、蚁群算法、模拟退火算法。
  24. 根据权利要求14所述的装置,其特征在于,所述超声相控阵列是二维阵列。
  25. 根据权利要求24所述的装置,其特征在于,所述超声相控阵列用于构建场景的三维图像。
  26. 根据权利要求14所述的装置,其特征在于,所述超声相控阵列对应超声波频率包括40Khz。
  27. 一种超声相控阵列,其特征在于,包括:多个阵元,所述多个阵元的布局是通过如权利要求1-13任一项所述的超声相控阵列的阵元布局方法确定的。
  28. 一种可移动平台,其特征在于,包括:
    机体;
    与所述机体连接的驱动装置,所述驱动装置用于为所述可移动平台提供动力;
    搭载在所述机体上的超声相控阵列,所述超声相控阵列的阵元布局是通过如权利要求1-13任一项所述的超声相控阵列的阵元布局方法确定的。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-13任一项所述的超声相控阵列的阵元布局方法。
PCT/CN2020/138839 2020-12-24 2020-12-24 超声相控阵列的阵元布局确定方法、装置及存储介质 WO2022133856A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080080916.6A CN114730000A (zh) 2020-12-24 2020-12-24 超声相控阵列的阵元布局确定方法、装置及存储介质
PCT/CN2020/138839 WO2022133856A1 (zh) 2020-12-24 2020-12-24 超声相控阵列的阵元布局确定方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138839 WO2022133856A1 (zh) 2020-12-24 2020-12-24 超声相控阵列的阵元布局确定方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022133856A1 true WO2022133856A1 (zh) 2022-06-30

Family

ID=82157135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138839 WO2022133856A1 (zh) 2020-12-24 2020-12-24 超声相控阵列的阵元布局确定方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114730000A (zh)
WO (1) WO2022133856A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115470660A (zh) * 2022-10-31 2022-12-13 中国西安卫星测控中心 一种球柱面阵差波束零深优化方法及装置
CN117706541A (zh) * 2024-02-06 2024-03-15 四川省华盾防务科技股份有限公司 相控阵多目标跟踪方法、装置、设备及存储介质
CN117805247A (zh) * 2023-12-29 2024-04-02 广东融创高科检测鉴定有限公司 一种混凝土缺陷超声检测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12040552B2 (en) * 2021-02-09 2024-07-16 The Johns Hopkins University Phased array antenna with reduced node count
CN116011190A (zh) * 2022-12-12 2023-04-25 网络通信与安全紫金山实验室 有源太赫兹相控阵的设计方法、装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2367188A (en) * 2000-09-25 2002-03-27 Ogier Electronics Ltd Shaped antenna beam
CN102567574A (zh) * 2011-12-08 2012-07-11 中国舰船研究设计中心 船舶大规模平面相控阵天线优化布局方法
CN103792525A (zh) * 2014-01-23 2014-05-14 西安电子科技大学 一种分布式宽带相控阵雷达阵列基线长度及带宽优化方法
CN108808266A (zh) * 2018-06-12 2018-11-13 电子科技大学 一种用于不规则子阵排列的四维天线阵联合优化方法
CN109885872A (zh) * 2019-01-10 2019-06-14 杭州电子科技大学 一种基于差分进化算法的均匀面阵稀疏优化方法
CN110032805A (zh) * 2019-04-16 2019-07-19 电子科技大学 一种地理约束下的稀疏线性阵列优化布阵方法
CN110061361A (zh) * 2019-05-22 2019-07-26 中国电子科技集团公司第五十四研究所 一种相控阵天线及其设计和扩展方法
CN111985145A (zh) * 2019-05-21 2020-11-24 合肥若森智能科技有限公司 一种大间距相控阵天线栅瓣抑制方法及抑制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2367188A (en) * 2000-09-25 2002-03-27 Ogier Electronics Ltd Shaped antenna beam
CN102567574A (zh) * 2011-12-08 2012-07-11 中国舰船研究设计中心 船舶大规模平面相控阵天线优化布局方法
CN103792525A (zh) * 2014-01-23 2014-05-14 西安电子科技大学 一种分布式宽带相控阵雷达阵列基线长度及带宽优化方法
CN108808266A (zh) * 2018-06-12 2018-11-13 电子科技大学 一种用于不规则子阵排列的四维天线阵联合优化方法
CN109885872A (zh) * 2019-01-10 2019-06-14 杭州电子科技大学 一种基于差分进化算法的均匀面阵稀疏优化方法
CN110032805A (zh) * 2019-04-16 2019-07-19 电子科技大学 一种地理约束下的稀疏线性阵列优化布阵方法
CN111985145A (zh) * 2019-05-21 2020-11-24 合肥若森智能科技有限公司 一种大间距相控阵天线栅瓣抑制方法及抑制系统
CN110061361A (zh) * 2019-05-22 2019-07-26 中国电子科技集团公司第五十四研究所 一种相控阵天线及其设计和扩展方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115470660A (zh) * 2022-10-31 2022-12-13 中国西安卫星测控中心 一种球柱面阵差波束零深优化方法及装置
CN115470660B (zh) * 2022-10-31 2023-03-14 中国西安卫星测控中心 一种球柱面阵差波束零深优化方法及装置
CN117805247A (zh) * 2023-12-29 2024-04-02 广东融创高科检测鉴定有限公司 一种混凝土缺陷超声检测方法及系统
CN117805247B (zh) * 2023-12-29 2024-07-26 广东融创高科检测鉴定有限公司 一种混凝土缺陷超声检测方法及系统
CN117706541A (zh) * 2024-02-06 2024-03-15 四川省华盾防务科技股份有限公司 相控阵多目标跟踪方法、装置、设备及存储介质
CN117706541B (zh) * 2024-02-06 2024-04-16 四川省华盾防务科技股份有限公司 相控阵多目标跟踪方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114730000A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2022133856A1 (zh) 超声相控阵列的阵元布局确定方法、装置及存储介质
US11874371B2 (en) Sparse optimization method based on cross-shaped three-dimensional imaging sonar array
CN106407723B (zh) 面向低副瓣的稀疏排布阵列天线激励电流幅度的确定方法
CN108445303B (zh) 一种近场电磁散射特性模拟方法
CN112612024A (zh) 微波阵列快速成像方法
CN105246005B (zh) 基于混合引力搜索算法的立体传声器阵列优化设计方法
CN112162266B (zh) 一种基于凸优化理论的共形阵二维波束优化方法
CN111638511A (zh) 基于信号融合的多雷达空间配准的协同探测方法及装置
CN112083430A (zh) 一种适用于轨道角动量三维成像声呐的旁瓣抑制方法
CN110736976B (zh) 一种任意阵形的声纳波束形成器性能估计方法
CN105974377B (zh) 一种对数字阵列雷达自适应调零技术的干扰方法
CN112698337B (zh) 一种宽带三维成像声呐稀疏布阵方法
CN110554383B (zh) 用于微波频段的mimo环形阵列方位向成像方法及装置
TW202119776A (zh) 使用相位陣列天線的快速空間搜尋
Kerstens et al. An optimized planar MIMO array approach to in-air synthetic aperture sonar
CN116381604A (zh) 面向声场测量多目标协同三维传声器阵列优化方法及装置
CN115032592A (zh) 一种换能器阵列的阵形优化方法及换能器阵列
KR20200009388A (ko) 최적화 기법을 이용한 단원형배열안테나의 합차 모노펄스 부엽식별 방법
Reijniers et al. An Optimized Spatial Sampling Strategy for Wide-View Planar Array 3-D Sonar Sensors
Song et al. Ultrasonic phased array sparse-TFM imaging based on deep learning and genetic algorithm
Alexopoulos Radar systems considerations for phased array aperture design using conformal transformations on Riemannian manifolds
CN113466802B (zh) 基于粒子群算法与最优波束合成方法的距离模糊抑制方法
CN113409223B (zh) 基于粒子群算法与投影方法的距离模糊抑制方法和装置
Holmes Circular harmonics beamforming with spheroidal baffles
CN115169250B (zh) 基于改进混合整数差分进化的麦克风阵列优化方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966429

Country of ref document: EP

Kind code of ref document: A1