WO2022133735A1 - 光学成像系统、取像模组和电子装置 - Google Patents

光学成像系统、取像模组和电子装置 Download PDF

Info

Publication number
WO2022133735A1
WO2022133735A1 PCT/CN2020/138356 CN2020138356W WO2022133735A1 WO 2022133735 A1 WO2022133735 A1 WO 2022133735A1 CN 2020138356 W CN2020138356 W CN 2020138356W WO 2022133735 A1 WO2022133735 A1 WO 2022133735A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
optical
Prior art date
Application number
PCT/CN2020/138356
Other languages
English (en)
French (fr)
Inventor
刘彬彬
党绪文
李明
邹海荣
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/138356 priority Critical patent/WO2022133735A1/zh
Publication of WO2022133735A1 publication Critical patent/WO2022133735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to optical imaging technology, in particular to an optical imaging system, an imaging module and an electronic device.
  • intelligent electronic devices are gradually popularized in people's daily life, especially electronic devices with diversified camera functions, such as smart terminals with wide-angle camera functions.
  • the front wide-angle of the existing electronic devices is mostly less than 84°, the space size of the photographed object is very different from the viewing angle of the human eye, and the daily use scene is limited.
  • Wide-angle optical lenses have a better sense of scene substitution and are more widely used.
  • the inventor found that there are at least the following problems in the prior art: wide-angle optical lenses are generally thicker, which does not meet the requirements of light and thin electronic equipment. To meet the needs of miniaturization and miniaturization, only limited pixels are supported, and the image quality is poor. In order to realize the wide-angle function of optical lenses, most of the lenses are made of materials with high refractive index, which increases the cost of optical lenses.
  • the embodiment of the present application proposes an optical imaging system, which includes sequentially from the object side to the image side:
  • a first lens with positive refractive power the object side of the first lens is concave at the near optical axis, and the image side is convex at the near optical axis;
  • a second lens with refractive power the object side of the second lens is convex at the near optical axis, and the image side is concave at the near optical axis;
  • a third lens with positive refractive power the object side surface and the image side surface of the third lens are both aspherical;
  • a fourth lens with refractive power wherein the object side surface and the image side surface of the fourth lens are both aspherical;
  • a fifth lens with positive refractive power wherein the object side and the image side of the fifth lens are both aspherical;
  • the sixth lens with negative refractive power the object side of the sixth lens is convex at the near optical axis, the image side is convex at the near circumference, and at least one of the object side and the image side is provided with at least one. inflection point;
  • optical imaging system satisfies the relation:
  • IND2 is the refractive index of the second lens
  • IND3 is the refractive index of the third lens
  • IND4 is the refractive index of the fourth lens
  • IND5 is the refractive index of the fifth lens
  • IND6 is the refractive index of the The refractive index of the sixth lens, SD1 is the vertical distance from the edge of the optically effective area on the object side of the first lens to the optical axis.
  • the optical imaging system can maintain the characteristics of large aperture while the head size is small.
  • the optical imaging system has a small head, which meets the needs of the external beautification of the optical imaging system.
  • the refractive power and surface shape of each lens are reasonably configured to improve the optical imaging system. It reduces the overall thickness of the optical imaging system, which is beneficial to realize the lightness and thinness of the optical imaging system.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system in the first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present invention.
  • FIG. 4 is a graph of spherical aberration, astigmatism and distortion of the optical imaging system in the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present invention.
  • FIG. 6 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system in the third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present invention.
  • FIG. 8 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system in the fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present invention.
  • FIG. 10 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system in the fifth embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to a sixth embodiment of the present invention.
  • FIG. 12 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system in the sixth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the first lens L1 The first lens L1
  • the third lens L3 is the third lens L3
  • the sixth lens L6 is the sixth lens L6
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “multiple” means two or more , unless otherwise specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level less than the second feature.
  • an optical imaging system 10 sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a refractive power, and a third lens L3 having a positive refractive power from the object side to the image side. , a fourth lens L4 with a refractive power, a fifth lens L5 with a positive refractive power, and a sixth lens L6 with a negative refractive power.
  • the first lens L1 has an object side S1 and an image side S2, the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 of the first lens L1 is concave at the near optical axis;
  • the second lens L2 has a The object side S3 and the image side S4, the object side S3 and the image side S4 of the second lens L2 are aspherical;
  • the third lens L3 has the object side S5 and the image side S6, and the third lens L3 The object side S5 and the image side S6 Both are aspherical
  • the fourth lens L4 has an object side S7 and an image side S8, and the object side S7 and the image side S8 of the fourth lens L4 are aspherical;
  • the fifth lens L5 has an object side S9 and an image side S10, the fifth lens L5 has an object side S9 and an image side S10, and the fifth The object side S9 and the image side S10 of the lens L5 are both asp
  • the optical imaging system 10 satisfies the relationship:
  • IND2 is the refractive index of the second lens L2
  • IND3 is the refractive index of the third lens L3
  • IND4 is the refractive index of the fourth lens L4
  • IND5 is the refractive index of the fifth lens L5
  • IND6 is the refractive index of the sixth lens L6 SD1 is the vertical distance from the edge of the optically effective area on the object side of the first lens L1 to the optical axis.
  • the first lens L1 to the sixth lens L6 are made of materials with low refractive index, which helps to greatly reduce the manufacturing cost while maintaining the high structural performance of the optical imaging system; the object of the first lens L1
  • the diameter of the side S1 can be as small as 1.12mm.
  • the small diameter setting allows the optical imaging system to maintain the characteristics of large aperture while the head size is small.
  • the optical imaging system 10 has a small head, which is conducive to the miniaturized design of the lens. The arrangement is beneficial to the external beautification requirements of the optical imaging system 10 .
  • the optical imaging system 10 satisfies the relationship:
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical imaging system 10 on the optical axis
  • IMGH is half of the image height corresponding to the maximum angle of view of the optical imaging system 10 .
  • IMGH determines the size of the photosensitive element. The larger the IMGH, the larger the maximum photosensitive element size that can be supported.
  • the optical imaging system 10 can support high-pixel photosensitive elements; when the upper limit of the relational expression is exceeded, even when TTL/(IMGH*2)>1.0, although the optical imaging system 10 can easily obtain better aberration balance and imaging resolution, but with the increase of the photosensitive element, the TTL of the optical imaging system 10 is difficult to compress, and the lightness and thinness are reduced; when the lower limit of the relation is exceeded, even when TTL/(IMGH*2) ⁇ 0.6, although the optical imaging system 10 has Good lightness and thinness, but the size of the optical imaging system 10 will greatly limit the balance of aberrations, the matching of photosensitive elements and the optimization of imaging resolution; satisfying the above formula and with a reasonable configuration of the refractive power of the lens group, the optical imaging system 10 can obtain Good lightness and thinness.
  • the IMGH determines the size of the photosensitive element. The larger the IMGH, the larger the maximum size of the photosensitive element that can be supported. Therefore, a good aberration balance can be obtained, and the image quality of the optical imaging system 10 can be improved.
  • the optical imaging system 10 satisfies the relationship:
  • CT5 is the thickness of the fifth lens L5 on the optical axis
  • FNO is the aperture number of the optical imaging system 10 .
  • the optical imaging system 10 can adopt a central diaphragm structure, and diaphragms can be set between the first lens L1 and the second lens L2, and between the second lens L2 and the third lens L3; and the range of FNO satisfies 1.55-1.9 , this range can provide enough light input to the optical imaging system 10, which helps to suppress the rapid drop of relative illuminance at the edge of the wide-angle lens; in addition, a larger aperture can provide a higher diffraction limit, with a reasonable
  • the configuration of refractive power can improve the imaging resolution of the optical imaging system and enhance the imaging image quality; further, the change of the thickness and surface shape of the fifth lens L5 can provide a certain distortion and field curvature compensation value for the lens group, so as to be compatible with the sixth lens.
  • the aberration values generated by the lens L6 are balanced; and the fifth lens L5 has less influence on the deflection of light in each field of view, and can provide a smaller light incident angle for the rear lens group, which is helpful for the matching of the optical imaging system and the photosensitive element. , to reduce system sensitivity.
  • the optical imaging system 10 satisfies the relation:
  • FOV is the maximum angle of view of the optical imaging system 10
  • f1 is the effective focal length of the first lens L1.
  • the above-mentioned optical imaging system 10 adopts six lenses, and reasonably configures the refractive power of each lens, which helps to improve the image quality of the optical imaging system 10, and the overall thickness of the optical imaging system 10 is small, which is conducive to keeping the optical imaging system 10.
  • the optical imaging system 10 can achieve an imaging range of 93° to 107°, has a wide-angle feature setting, and cooperates with a reasonable small head feature, suitable for application scenarios with a certain wide-angle requirement, such as the front of a portable smart device.
  • the setting of the positive refractive power of the first lens L1 avoids the obvious problem of the first lens L1 protruding outward caused by the use of negative refractive power under the wide-angle feature, which is beneficial to the arrangement of the lens barrel structure and the overall arrangement of the lens group , Further, the change of the refractive power of the first lens L1, in conjunction with the setting of the central diaphragm, can expand the field of view angle and reduce the aperture to a certain extent, and provide a reasonable edge light deflection angle.
  • the surface type of the aspherical lens can be defined by but not limited to the following aspherical formula:
  • Z is the distance between any point on the aspheric surface and the vertex of the surface parallel to the optical axis
  • r is the vertical distance from any point on the aspheric surface to the optical axis
  • c is the vertex curvature (the reciprocal of the radius of curvature)
  • k is the conic constant
  • Ai is the correction factor for the i-th order of the aspheric surface.
  • the overall size of the optical imaging system 10 can be effectively reduced, the space occupied is small, and the aberration can be effectively corrected to improve the imaging quality.
  • the optical imaging system 10 further includes a stop STO.
  • the stop STO may be disposed in front of the object side of the first lens L1, behind the image side of the sixth lens L6, between any two lenses, or on the surface of any one of the lenses.
  • Aperture STO is used to reduce stray light and help improve image quality.
  • the diaphragm STO is disposed between the object side of the optical imaging system 10 and the object side of the third lens L3. In this way, with the setting of the central diaphragm STO, the field of view can be enlarged to a certain extent, the aperture can be reduced, and a reasonable deflection angle of edge light can be provided.
  • the optical imaging system 10 further includes an infrared filter L7, and the infrared filter L7 has an object side S13 and an image side S14.
  • the infrared filter L7 is arranged between the image side surface of the sixth lens L6 and the imaging surface of the optical imaging system 10, and the infrared filter L7 is used to filter part of the imaged light, and is specifically used to isolate the infrared light and prevent the infrared light from being exposed to light. The components are received, thereby preventing infrared light from affecting the color and clarity of normal images, thereby improving the imaging quality of the optical imaging system 10 .
  • the infrared filter L7 is an infrared cut-off filter.
  • the optical imaging system 10 satisfies the relationship:
  • f3 is the effective focal length of the third lens L3
  • f4 is the effective focal length of the fourth lens L4
  • R41 is the radius of curvature of the object side surface S7 of the fourth lens L4 at the optical axis.
  • the change of the refractive power of the third lens L3 and the fourth lens L4 is increased, so that the surface shape has a significant change, and the configuration of different refractive powers makes the primary field curvature and distortion concentrated on the fifth lens L5 and the sixth lens L6 , dispersed on the object side and the image side of the third lens L3 and the fourth lens L4, thereby reducing the design and assembly sensitivity of the optical imaging system 10, which can improve the production yield of the optical imaging system 10;
  • the force configuration is beneficial to the adjustment and balance of the comprehensive aberration, which can indirectly improve the image quality of the optical imaging system 10 .
  • the optical imaging system satisfies the relationship:
  • ET12 is the distance from the optical effective diameter of the image side of the first lens L1 to the optical effective diameter of the object side of the second lens L2 in the direction parallel to the optical axis
  • ET45 is the optical effective diameter of the image side S8 of the fourth lens L4. The distance from the diameter to the optical effective diameter of the object side surface S9 of the fifth lens L5 in the direction parallel to the optical axis.
  • the change of the aperture gap between the first lens L1 and the second lens L2 enables the optical imaging system to have a large aperture and wide-angle structure, and at the same time, it can quickly compress the light deflection of the incident light at the first lens L1 and the second lens L2, In order to adjust the optical path of the light by the rear lens group; further, the reasonable cooperation of the first lens L1 and the second lens L2 can introduce a small amount of aberration, which is beneficial to the aberration correction of the optical imaging system; in addition, the fourth lens L4 and the third lens The five-lens L5 has a reasonable surface shape and a good fit, which avoids the appearance of local positive lenses. Combined with the coating process, it can reduce the stray light ghost image caused by the secondary reflection between the lenses and improve the imaging purity of the optical imaging system. .
  • the optical imaging system 10 satisfies the relationship:
  • f6 is the effective focal length of the sixth lens L6, and R61 is the radius of curvature of the object side surface S11 of the sixth lens L6 at the optical axis.
  • the configuration of the refractive power of the sixth lens L6 in the direction perpendicular to the optical axis is uniform, and the distortion, field curvature and astigmatism generated by the front lens group are greatly corrected; at the same time, excessive bending of the sixth lens L6 is avoided, thereby facilitating the molding and manufacturing of the lens;
  • the change of the surface shape of the sixth lens L6 can guide the light of each field of view to produce an appropriate angle deflection, so that the optical imaging system can better match the electronic photosensitive chip.
  • the optical imaging system 10 satisfies the relationship:
  • R31 is the curvature radius of the object side S5 of the third lens L3 at the optical axis
  • BF is the minimum distance between the image side S12 of the sixth lens L6 and the image plane in the direction parallel to the optical axis.
  • the optical imaging system 10 has a long enough flange back focus, which is in line with the manufacturability of design and manufacturing, can better match the photosensitive elements, and has sufficient advantages in the arrangement of different lens barrels to meet the requirements of the lens group.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • the lenses made of plastic can reduce The weight of the optical imaging system 10 and the production cost are reduced.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all made of glass.
  • the optical imaging system 10 can withstand Subject to higher temperature and has better optical properties.
  • only the first lens L1 may be made of glass, and other lenses may be made of plastic.
  • the first lens L1 closest to the object side can better withstand the influence of the ambient temperature on the object side , and because other lenses are made of plastic materials, the optical imaging system 10 maintains a low production cost.
  • the material of the first lens L1 is glass, and the materials of other lenses can be arbitrarily combined.
  • the optical imaging system 10 of the first embodiment sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a positive refractive power, a diaphragm STO, a The third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • FIG. 2 shows the spherical aberration curve of the optical imaging system 10 at wavelengths of 650nm, 610nm, 587nm, 555nm, and 470nm in the first embodiment, and the astigmatism diagram of the light at the wavelength of 587nm.
  • the distortion curve at 587 nm, and the optical imaging system 10 in the first embodiment satisfies the conditions in Table 1 and Table 2 below.
  • the object side S1 of the first lens L1 is concave at the near optical axis, and the image side S2 is convex at the near optical axis;
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is near the optical axis.
  • the optical axis is concave;
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is convex at the near optical axis;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis, and the image is concave at the near optical axis.
  • the side S8 is concave at the near optical axis; the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S11 of the sixth lens L6 is at the near optical axis It is a convex surface, and the image side S12 is a concave surface at the near optical axis.
  • the object side S1 of the first lens L1 is a convex surface near the circumference, and the image side S2 is a concave surface near the circumference;
  • the object side S3 of the second lens L2 is a convex surface near the circumference, and the image side S4 is concave at the near circumference;
  • the object side S5 of the third lens L3 is concave at the near circumference, and the image side S6 is convex at the near circumference;
  • the object side S7 of the fourth lens L4 is concave at the near circumference, and the image side S8 is concave at the near circumference;
  • the object side S9 of the fifth lens L5 is concave near the circumference, and the image side S10 is convex near the circumference;
  • the object side S11 of the sixth lens L6 is convex near the circumference, and the image side S12 is convex near the circumference.
  • Table 1 shows the surface type, Y radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and focal length of the lens of the optical imaging system 10 of the first embodiment, wherein the focal length, refractive index and Abbe
  • the reference wavelength of the number is 587nm
  • the optical imaging system 10 in the first embodiment satisfies the conditions in Table 1 below
  • the units of Y radius, thickness, and the effective focal length of the lens are all millimeters (mm)
  • Y in this embodiment Radius is the radius of curvature of the lens at the near optical axis.
  • the first value in the "thickness" parameter column of the lens is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the rear surface in the image side direction on the optical axis
  • the value of the aperture STO in the "thickness” parameter column is the distance from the aperture STO to the vertex of the next surface (the vertex refers to the intersection of the surface and the optical axis) on the optical axis.
  • the direction of the lens image side is the positive direction of the optical axis.
  • the value is negative, it means that the diaphragm STO is set on the right side of the vertex of the surface in Figure 1. If the thickness of the diaphragm STO is positive, the diaphragm is on the surface. Left side of vertex.
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10
  • TTL is the object side S1 of the first lens L1 to the optical imaging The distance of the imaging plane of the system 10 on the optical axis.
  • Table 2 shows the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the surface types S2, S3 of the aspheric surfaces in the first embodiment.
  • FIG. 2(A) shows longitudinal spherical aberration curves of the optical imaging system 10 in the first embodiment at wavelengths of 650 nm, 610 nm, 587 nm, 555 nm, and 470 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the normalized field of view. It can be seen from FIG. 2(A) that the spherical aberration value of the optical imaging system 10 in the first embodiment is better, which means that the imaging quality of the optical imaging system 10 in this embodiment is better.
  • FIG. 2(B) is a light astigmatism diagram of the optical imaging system 10 in the first embodiment at a wavelength of 587 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from FIG. 2(B) that the astigmatism of the optical imaging system 10 in this embodiment is well compensated.
  • FIG. 2(C) is a distortion curve diagram of the optical imaging system 10 in the first embodiment at a wavelength of 587 nm.
  • the abscissa represents the distortion
  • the ordinate represents the image height
  • the unit is mm. It can be seen from FIG. 2(C) that at a wavelength of 587 nm, the distortion of the optical imaging system 10 in this embodiment is well corrected.
  • the optical imaging system 10 in this embodiment has small aberrations, good imaging quality, and excellent imaging quality.
  • the optical imaging system 10 of the second embodiment sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, an aperture STO, a The third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is concave at the near optical axis, and the image side S2 is convex at the near optical axis;
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is near the optical axis.
  • the optical axis is concave;
  • the object side S5 of the third lens L3 is concave at the near optical axis, and the image side S6 is convex at the near optical axis;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis, and the image side S6 is concave at the near optical axis.
  • the side S8 is convex at the near optical axis; the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S11 of the sixth lens L6 is at the near optical axis. It is a convex surface, and the image side S12 is a concave surface at the near optical axis.
  • the object side S1 of the first lens L1 is a convex surface near the circumference, and the image side S2 is a convex surface near the circumference;
  • the object side S3 of the second lens L2 is a convex surface near the circumference, and the image side S4 is concave at the near circumference;
  • the object side S5 of the third lens L3 is concave at the near circumference, and the image side S6 is convex at the near circumference;
  • the object side S7 of the fourth lens L4 is concave at the near circumference, and the image side S8 is concave at the near circumference;
  • the object side S9 of the fifth lens L5 is concave near the circumference, and the image side S10 is convex near the circumference;
  • the object side S11 of the sixth lens L6 is convex near the circumference, and the image side S12 is convex near the circumference.
  • Table 3 shows the surface type, Y radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and focal length of the lens of the optical imaging system 10 of the first embodiment, and the above parameters are limited to the same as the first embodiment
  • the reference wavelengths for the focal length, refractive index and Abbe number are all 587 nm, and the optical imaging system 10 in the second embodiment satisfies the conditions in Table 3 below.
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10
  • TTL is the distance from the object side of the first lens to the optical imaging system The distance of the imaging plane on the optical axis.
  • Table 4 gives the higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 of the surface types S2, S3 that can be used for the aspheric surfaces in the second embodiment.
  • FIG. 4(A) shows longitudinal spherical aberration curves of the optical imaging system 10 in the second embodiment at wavelengths of 650 nm, 610 nm, 587 nm, 555 nm, and 470 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the normalized field of view. It can be seen from FIG. 4(A) that the spherical aberration value of the optical imaging system 10 in the second embodiment is better, which indicates that the imaging quality of the optical imaging system 10 in this embodiment is better.
  • FIG. 4(B) is a light astigmatism diagram of the optical imaging system 10 in the second embodiment at a wavelength of 587 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from FIG. 4(B) that the astigmatism of the optical imaging system 10 in this embodiment is well compensated.
  • FIG. 4(C) is a distortion curve diagram of the optical imaging system 10 in the second embodiment at a wavelength of 587 nm.
  • the abscissa represents the distortion
  • the ordinate represents the image height
  • the unit is mm. It can be seen from FIG. 4(C) that at a wavelength of 587 nm, the distortion of the optical imaging system 10 in this embodiment is well corrected.
  • the optical imaging system 10 in this embodiment has small aberrations, good imaging quality, and excellent imaging quality.
  • the optical imaging system 10 of the third embodiment sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a positive refractive power, a diaphragm STO, a The third lens L3 with positive refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is concave at the near optical axis, and the image side S2 is convex at the near optical axis;
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is near the optical axis.
  • the optical axis is concave;
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis;
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image is concave at the near optical axis.
  • the side S8 is concave at the near optical axis; the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S11 of the sixth lens L6 is at the near optical axis It is a convex surface, and the image side S12 is a concave surface at the near optical axis.
  • the object side S1 of the first lens L1 is a convex surface near the circumference, and the image side S2 is a concave surface near the circumference;
  • the object side S3 of the second lens L2 is a convex surface near the circumference, and the image side S4 is concave at the near circumference;
  • the object side surface S5 of the 3rd lens L3 is a convex surface near the circumference, and the image side S6 is a concave surface near the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface near the circumference, and the image side S8 is a convex surface near the circumference;
  • the object side S9 of the fifth lens L5 is concave near the circumference, and the image side S10 is concave near the circumference;
  • the object side S11 of the sixth lens L6 is concave near the circumference, and the image side S12 is convex near the circumference.
  • Table 5 shows the surface type, Y radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and focal length of the lens of the optical imaging system 10 of the first embodiment, and the above parameters are limited to the same as the first embodiment
  • the reference wavelengths for the focal length, refractive index and Abbe number are all 587 nm, and the optical imaging system 10 in the third embodiment satisfies the conditions in Table 5 below.
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10
  • TTL is the distance from the object side of the first lens to the optical imaging system The distance of the imaging plane on the optical axis.
  • Table 6 shows the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the surface types S2, S3 of the aspheric surfaces in the third embodiment.
  • FIG. 6(A) shows longitudinal spherical aberration curves of the optical imaging system 10 in the third embodiment at wavelengths of 650 nm, 610 nm, 587 nm, 555 nm, and 470 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the normalized field of view. It can be seen from FIG. 6(A) that the spherical aberration value of the optical imaging system 10 in the third embodiment is better, indicating that the imaging quality of the optical imaging system 10 in this embodiment is better.
  • FIG. 6(B) is a light astigmatism diagram of the optical imaging system 10 in the third embodiment at a wavelength of 587 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from FIG. 6(B) that the astigmatism of the optical imaging system 10 in this embodiment is well compensated.
  • FIG. 6(C) is a distortion curve diagram of the optical imaging system 10 in the third embodiment at a wavelength of 587 nm.
  • the abscissa represents the distortion
  • the ordinate represents the image height
  • the unit is mm. It can be seen from FIG. 6(C) that at a wavelength of 587 nm, the distortion of the optical imaging system 10 in this embodiment is well corrected.
  • the optical imaging system 10 in this embodiment has small aberrations, good imaging quality, and excellent imaging quality.
  • the optical imaging system 10 of the fourth embodiment sequentially includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a diaphragm STO, a lens with a The third lens L3 with positive refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is concave at the near optical axis, and the image side S2 is convex at the near optical axis;
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is near the optical axis.
  • the optical axis is concave;
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis;
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image is concave at the near optical axis.
  • the side S8 is concave at the near optical axis; the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S11 of the sixth lens L6 is at the near optical axis It is a convex surface, and the image side S12 is a concave surface at the near optical axis.
  • the object side S1 of the first lens L1 is a convex surface at the near circumference, and the image side S2 is a concave surface at the near circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near circumference, and the image side S4 is a convex surface at the near circumference;
  • the object side S5 of the third lens L3 is a convex surface at the near circumference, and the image side S6 is a concave surface at the near circumference;
  • the object side S7 of the fourth lens L4 is a concave surface at the near circumference, and the image side S8 is a convex surface at the near circumference;
  • the object side S9 of the fifth lens L5 is concave near the circumference, and the image side S10 is convex near the circumference;
  • the object side S11 of the sixth lens L6 is convex near the circumference, and the image side S12 is convex near the circumference.
  • Table 7 shows the surface type, Y radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and focal length of the lens of the optical imaging system 10 of the first embodiment, and the above parameters are limited to the same as the first embodiment
  • the reference wavelengths of the focal length, refractive index and Abbe number are all 587 nm, and the optical imaging system 10 in the fourth embodiment satisfies the conditions in Table 7 below.
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10
  • TTL is the distance from the object side of the first lens to the optical imaging system The distance of the imaging plane on the optical axis.
  • Table 8 shows the higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 of the surface types S2, S3 that can be used for the aspheric surfaces in the fourth embodiment.
  • FIG. 8(A) shows longitudinal spherical aberration curves of the optical imaging system 10 in the fourth embodiment at wavelengths of 650 nm, 610 nm, 587 nm, 555 nm, and 470 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the normalized field of view. It can be seen from FIG. 8(A) that the spherical aberration value of the optical imaging system 10 in the fourth embodiment is better, which means that the imaging quality of the optical imaging system 10 in this embodiment is better.
  • FIG. 8(B) is a light astigmatism diagram of the optical imaging system 10 in the fourth embodiment at a wavelength of 587 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from FIG. 8(B) that the astigmatism of the optical imaging system 10 in this embodiment is well compensated.
  • FIG. 8(C) is a distortion curve diagram of the optical imaging system 10 in the fourth embodiment at a wavelength of 587 nm.
  • the abscissa represents the distortion
  • the ordinate represents the image height
  • the unit is mm. It can be seen from FIG. 8(C) that at a wavelength of 587 nm, the distortion of the optical imaging system 10 in this embodiment is well corrected.
  • the optical imaging system 10 in this embodiment has small aberrations, good imaging quality, and excellent imaging quality.
  • the optical imaging system 10 of the fifth embodiment sequentially includes, from the object side to the image side, a first lens L1 with positive refractive power, a diaphragm STO, a second lens L2 with positive refractive power, a The third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is concave at the near optical axis, and the image side S2 is convex at the near optical axis;
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is near the optical axis.
  • the optical axis is concave;
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis;
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image is concave at the near optical axis.
  • the side S8 is concave at the near optical axis; the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S11 of the sixth lens L6 is at the near optical axis It is a convex surface, and the image side S12 is a concave surface at the near optical axis.
  • the object side S1 of the first lens L1 is a concave surface at the near circumference, and the image side S2 is a convex surface at the near circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near circumference, and the image side S4 is a convex surface at the near circumference;
  • the object side surface S5 of the 3rd lens L3 is a convex surface near the circumference, and the image side S6 is a concave surface near the circumference;
  • the object side S7 of the fourth lens L4 is a concave surface near the circumference, and the image side S8 is a concave surface near the circumference;
  • the object side S9 of the fifth lens L5 is concave near the circumference, and the image side S10 is convex near the circumference;
  • the object side S11 of the sixth lens L6 is concave near the circumference, and the image side S12 is convex near the circumference.
  • Table 9 shows the surface type, Y radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and focal length of the lens of the optical imaging system 10 of the first embodiment, and the above parameters are limited to the same as the first embodiment
  • the reference wavelengths of the focal length, refractive index and Abbe number are all 587 nm, and the optical imaging system 10 in the fifth embodiment satisfies the conditions in Table 9 below.
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10
  • TTL is the distance from the object side of the first lens to the optical imaging system The distance of the imaging plane on the optical axis.
  • Table 10 shows the higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the surface types S2, S3 of the aspheric surfaces in the fifth embodiment.
  • FIG. 10(A) shows longitudinal spherical aberration curves of the optical imaging system 10 in the fifth embodiment at wavelengths of 650 nm, 610 nm, 587 nm, 555 nm, and 470 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the normalized field of view. It can be seen from FIG. 10(A) that the spherical aberration value of the optical imaging system 10 in the fifth embodiment is better, which means that the imaging quality of the optical imaging system 10 in this embodiment is better.
  • FIG. 10(B) is a light astigmatism diagram of the optical imaging system 10 in the fifth embodiment at a wavelength of 587 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from FIG. 10(B) that the astigmatism of the optical imaging system 10 in this embodiment is well compensated.
  • FIG. 10(C) is a distortion curve diagram of the optical imaging system 10 in the fifth embodiment at a wavelength of 587 nm.
  • the abscissa represents the distortion
  • the ordinate represents the image height
  • the unit is mm. It can be seen from FIG. 10(C) that at a wavelength of 587 nm, the distortion of the optical imaging system 10 in this embodiment is well corrected.
  • the optical imaging system 10 in this embodiment has small aberrations, good imaging quality, and excellent imaging quality.
  • the optical imaging system 10 of the sixth embodiment sequentially includes a first lens L1 with positive refractive power, a diaphragm STO, a second lens L2 with positive refractive power, and a The third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is concave at the near optical axis, and the image side S2 is convex at the near optical axis;
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is near the optical axis.
  • the optical axis is concave;
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis;
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image is concave at the near optical axis.
  • the side S8 is concave at the near optical axis; the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S11 of the sixth lens L6 is at the near optical axis It is a convex surface, and the image side S12 is a concave surface at the near optical axis.
  • the object side S1 of the first lens L1 is a convex surface at the near circumference, and the image side S2 is a concave surface at the near circumference;
  • the object side S3 of the second lens L2 is a concave surface at the near circumference, and the image side S4 is a convex surface at the near circumference;
  • the object side surface S5 of the 3rd lens L3 is a convex surface near the circumference, and the image side S6 is a convex surface near the circumference;
  • the object side S7 of the fourth lens L4 is a concave surface near the circumference, and the image side S8 is a concave surface near the circumference;
  • the object side S9 of the fifth lens L5 is concave near the circumference, and the image side S10 is convex near the circumference;
  • the object side S11 of the sixth lens L6 is concave near the circumference, and the image side S12 is convex near the circumference.
  • Table 11 shows the surface type, Y radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and focal length of the lens of the optical imaging system 10 of the first embodiment, and the above parameters are limited to the same as the first embodiment
  • the reference wavelengths for the focal length, refractive index and Abbe number are all 587 nm, and the optical imaging system 10 in the sixth embodiment satisfies the conditions in Table 11 below.
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10
  • TTL is the distance from the object side of the first lens to the optical imaging system The distance of the imaging plane on the optical axis.
  • Table 12 shows the higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the surface types S2, S3 of the aspheric surfaces in the sixth embodiment.
  • FIG. 12(A) shows longitudinal spherical aberration curves of the optical imaging system 10 in the sixth embodiment at wavelengths of 650 nm, 610 nm, 587 nm, 555 nm, and 470 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the normalized field of view. It can be seen from FIG. 12(A) that the spherical aberration value of the optical imaging system 10 in the sixth embodiment is better, indicating that the imaging quality of the optical imaging system 10 in this embodiment is better.
  • FIG. 12(B) is a light astigmatism diagram of the optical imaging system 10 in the sixth embodiment at a wavelength of 587 nm.
  • the abscissa represents the focus shift
  • the ordinate represents the image height
  • the unit is mm.
  • the astigmatic curves represent the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from FIG. 12(B) that the astigmatism of the optical imaging system 10 in this embodiment is well compensated.
  • FIG. 12(C) is a distortion curve diagram of the optical imaging system 10 in the sixth embodiment at a wavelength of 587 nm.
  • the abscissa represents the distortion
  • the ordinate represents the image height
  • the unit is mm. It can be seen from FIG. 12(C) that at a wavelength of 587 nm, the distortion of the optical imaging system 10 in this embodiment is well corrected.
  • FIG. 12(A), FIG. 12(B) and FIG. 12(C) It can be seen from FIG. 12(A), FIG. 12(B) and FIG. 12(C) that the optical imaging system 10 in this embodiment has smaller aberrations, better imaging quality, and excellent imaging quality.
  • Table 13 shows TTL/(IMGH*2), FOV/f1, CT5/FNO, (IND2+IND3+IND4+IND5+IND6)/SD1 in the optical imaging systems 10 of the first to sixth embodiments, (f3+
  • the imaging module 100 includes an optical imaging system 10 and a photosensitive element 20 , and the photosensitive element 20 is disposed on the image side of the optical imaging system 10 .
  • the photosensitive element 20 can be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device).
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the optical imaging system 10 in the imaging module 100 uses six lenses to reasonably configure the refractive power of each lens, which helps to improve the image quality of the optical imaging system 10 and the overall thickness of the optical imaging system 10 It is small, which is beneficial to keep the optical imaging system 10 light and thin.
  • at least four of the six lenses are made of low-refractive index materials, which can greatly reduce the manufacturing cost;
  • the size of the head of the system 10 is small, which meets the needs of the external beautification of the optical imaging system 10; further, the optical imaging system 10 realizes the imaging range of 93°-107°, the setting of small and wide angle, and the reasonable small head characteristics. Application scenarios with certain wide-angle requirements.
  • the electronic device 1000 includes a casing 200 and an imaging module 100 , and the imaging module 100 is installed on the casing 200 for acquiring images.
  • the electronic device 1000 in the embodiment of the present invention includes, but is not limited to, a smartphone, a car camera lens, a monitoring lens, a tablet computer, a notebook computer, an electronic book reader, a portable multimedia player (PMP), a portable phone, a video phone, Imaging-enabled electronic devices such as digital still cameras, mobile medical devices, wearable devices, etc.
  • PMP portable multimedia player
  • the optical optical imaging system 10 in the electronic device 1000 of the above-mentioned embodiment adopts six lenses and reasonably configures the refractive power of each lens, which helps to improve the image quality of the optical imaging system 10, and the overall thickness of the optical imaging system 10 is small. , which is beneficial to keep the optical imaging system 10 light and thin.
  • at least four of the six lenses are made of low-refractive index materials, which can greatly reduce the manufacturing cost;
  • the size of the head is small, which meets the needs of the external beautification of the optical imaging system 10; further, the optical imaging system 10 realizes an imaging range of 93° to 107°, a small and wide angle setting, and a reasonable small head feature, suitable for a certain wide angle. required application scenarios.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提出一种光学成像系统、取像模组和电子装置。光学成像系统包括:具有正屈折力的第一透镜;具有屈折力的第二透镜;具有正屈折力的第三透镜;具有屈折力的第四透镜;具有正屈折力的第五透镜;具有负屈折力的第六透镜,第六透镜的物侧面在近光轴处为凸面、像侧面在近圆周处为凸面,且其物侧面与像侧面中的至少一个面设置有至少一个反曲点;所述光学成像系统满足关系式:3.9/mm<(IND2+IND3+IND4+IND5+IND6)/SD1<7.0/mm,其中,IND2~IND6分别为第二透镜至第六透镜的折射率,SD1为第一透镜物侧面的光学有效径处到光轴的垂直距离。上述光学成像系统采用多个低折射率的透镜配合,可实现广角功能并节省成本,通过合理配置各个透镜的屈折力,使光学成像系统的厚度较小,支持高像素、高品质成像。

Description

光学成像系统、取像模组和电子装置 技术领域
本发明涉及光学成像技术,特别涉及一种光学成像系统、取像模组和电子装置。
背景技术
目前,随着科学技术的发展,智能电子设备在人们日常生活逐渐普及,特别是具有多样化摄像功能的电子设备,例如具有广角摄像功能的智能终端。现有的电子设备的前置广角大多小于84°,所拍摄的物空间大小与人眼可视角度相差很大,日常使用场景有限。
广角的光学镜头具有较好的场景代入感且应用更加广泛,然而,在实现本申请过程中,发明人发现现有技术中至少存在如下问题:广角光学镜头的普遍较厚,不满足电子设备轻薄化和微型化的需求,仅支持有限的像素,像质较差,为了实现光学镜头的广角功能,镜片大多采用高折射率的材料,增加了光学镜头的成本。
发明内容
鉴于以上内容,有必要提出一种光学成像系统、取像模组和电子装置,以解决上述问题。
本申请的实施例提出一种光学成像系统,由物侧到像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面在近光轴处为凹面、像侧面在近光轴处为凸面;
具有屈折力的第二透镜,所述第二透镜的物侧面在近光轴处为凸面、像侧面在近光轴处为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面和像侧面均为非球面;
具有屈折力的第四透镜,所述第四透镜的物侧面和像侧面均为非球面;
具有正屈折力的第五透镜,所述第五透镜的物侧面和像侧面均为非球面;
具有负屈折力的第六透镜,所述第六透镜的物侧面在近光轴处为凸面、像侧面在近圆周处为凸面,且其物侧面与像侧面中的至少一个面设置有至少一个反曲点;
所述光学成像系统满足关系式:
3.9mm -1<(IND2+IND3+IND4+IND5+IND6)/SD1<7.0mm -1
其中,IND2为所述第二透镜的折射率,IND3为所述第三透镜的折射率,IND4为所述第四透镜的折射率,IND5为所述第五透镜的折射率,IND6为所述第六透镜的折射率,SD1为所述第一透镜的物侧面光学有效区域边缘到光轴的垂直距离。
如此,通过六片透镜中至少四片透镜采用低折射率材料,在保持具有高结构性能的同时,可大幅降低制造成本;此外,第一透镜物侧面的口径较小且可调节范围较大,可让光学成像 系统保持大光圈特征的同时头部尺寸较小,光学成像系头部小,满足光学成像系统外部美化的需求,同时合理配置各个透镜的屈折力与面型,以提升光学成像系统的像质,减少光学成像系统的整体厚度,有利于实现光学成像系统的轻薄性。
附图说明
图1是本发明第一实施例的光学成像系统的结构示意图。
图2是本发明第一实施例中光学成像系统的球差、像散和畸变曲线图。
图3是本发明第二实施例的光学成像系统的结构示意图。
图4是本发明第二实施例中光学成像系统的球差、像散和畸变曲线图。
图5是本发明第三实施例的光学成像系统的结构示意图。
图6是本发明第三实施例中光学成像系统的球差、像散和畸变曲线图。
图7是本发明第四实施例的光学成像系统的结构示意图。
图8是本发明第四实施例中光学成像系统的球差、像散和畸变曲线图。
图9是本发明第五实施例的光学成像系统的结构示意图。
图10是本发明第五实施例中光学成像系统的球差、像散和畸变曲线图。
图11是本发明第六实施例的光学成像系统的结构示意图。
图12是本发明第六实施例中光学成像系统的球差、像散和畸变曲线图。
图13是本发明实施例的电子装置的结构示意图。
主要元件符号说明
电子装置                     1000
取像模组                     100
光学成像系统                 10
第一透镜                     L1
第二透镜                     L2
第三透镜                     L3
第四透镜                     L4
第五透镜                     L5
第六透镜                     L6
红外滤光片                   L7
光阑                         STO
物侧面                       S1、S3、S5、S7、S9、S11、S13
像侧面                       S2、S4、S6、S8、S10、S12、S14
成像面                       S15
感光元件                     20
壳体                         200
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有屈折力的第四透镜L4、具有正屈折力的第五透镜L5及具有负屈折力的第六透镜L6。
第一透镜L1具有物侧面S1及像侧面S2,第一透镜L1的物侧面S1在近光轴处为凸面,第一透镜L1的像侧面S2在近光轴处为凹面;第二透镜L2具有物侧面S3及像侧 面S4,第二透镜L2的物侧面S3和像侧面S4均为非球面;第三透镜L3具有物侧面S5及像侧面S6,第三透镜L3的物侧面S5和像侧面S6均为非球面,第四透镜L4具有物侧面S7及像侧面S8,第四透镜L4的物侧面S7和像侧面S8均为非球面;第五透镜L5具有物侧面S9及像侧面S10,第五透镜L5的物侧面S9及像侧面S10均为非球面;第六透镜L6具有物侧面S11及像侧面S12,第六透镜L6的物侧面S11在近光轴处为凸面,第六透镜L6的像侧面S12在近圆周处为凸面,且其物侧面S11与像侧面S12中的至少一个面设置有至少一个反曲点。
在一些实施例中,光学成像系统10满足关系式:
3.9mm -1<(IND2+IND3+IND4+IND5+IND6)/SD1<7.0mm -1
其中,IND2为第二透镜L2的折射率,IND3为第三透镜L3的折射率,IND4为第四透镜L4的折射率,IND5为第五透镜L5的折射率,IND6为第六透镜L6的折射率,SD1为第一透镜L1的物侧面光学有效区域边缘到光轴的垂直距离。
如此,第一透镜L1至第六透镜L6中大于4片的透镜采用低折射率的材料,在保持光学成像系统具有高结构性能的同时,有助于大幅降低制造成本;第一透镜L1的物侧面S1口径最小可达1.12mm,小口径的设置,可让光学成像系统保持大光圈特征的同时头部尺寸较小,光学成像系统10的头部小,有利于镜头的小型化设计,也有利于光学成像系统10外部美化需求的布置。
在一些实施例中,光学成像系统10满足关系式:
0.64≤TTL/(IMGH*2)<0.72;
其中,TTL为第一透镜L1物侧面S1至光学成像系统10的成像面在光轴上的距离,IMGH为光学成像系统10的最大视场角所对应的像高的一半。其中,IMGH决定了感光元件的大小,IMGH越大,可支持的最大感光元件尺寸越大。
满足上式,可使光学成像系统10支持高像素的感光元件;当超出关系式上限,甚至TTL/(IMGH*2)>1.0时,虽然光学成像系统10可较易获得较好的像差平衡和成像解像力,但随着感光元件的增大,光学成像系统10的TTL难以压缩,轻薄性下降;当超出关系式下限,甚至TTL/(IMGH*2)<0.6时,虽然光学成像系统10具备良好的轻薄性,但光学成像系统10尺寸会大幅限制像差的平衡、感光元件的匹配与成像解像力的优化;满足上式,并配合合理的透镜组屈折力配置,可使得光学成像系统10获得良好的轻薄性,此外,IMGH决定了感光元件的大小,IMGH越大,可支持的最大感光元件尺寸越大,因此可获得良好的像差平衡,提升光学成像系统10的像质。
在一些实施例中,光学成像系统10满足关系式:
0.18mm<CT5/FNO≤0.5mm;
其中,CT5为第五透镜L5在光轴上的厚度,FNO为光学成像系统10的光圈数。
光学成像系统10可采用中置光阑结构,可在第一透镜L1和第二透镜L2之间、第二透镜L2和第三透镜L3之间的设置光阑;而FNO的范围满足1.55~1.9,该范围可为光学成像系统10提供足够的进光量,有助于抑制广角镜头边缘视场的相对照度下降过快的情况;此外, 较大的光圈,可提供更高的衍射极限,配合合理的屈折力配置,可提高光学成像系统的成像解像力,增强成像像质;进一步地,第五透镜L5厚度与面型的变化,可为透镜组提供一定的畸变与场曲补偿值,以便与第六透镜L6产生的像差值平衡;且第五透镜L5对各视场光线的偏折影响较小,可为后面透镜组提供较小的光线入射角度,有助于光学成像系统与感光元件的匹配,降低系统敏感度。
光学成像系统10满足关系式:
2.0deg/mm<FOV/f1<15.0deg/mm;
其中,FOV为所述光学成像系统10的最大视场角,f1为第一透镜L1的有效焦距。
上述光学成像系统10通过采用六片透镜,合理配置各个透镜的屈折力,有助于提升光学成像系统10的像质,并且光学成像系统10的整体厚度较小,有利于使光学成像系统10保持轻薄性,进一步地,光学成像系统10可实现93°~107°的取像范围,具有广角的特征设置,配合合理的小头特征,适合具有一定广角需求的应用场景,如便携智能设备的前置摄像装置;第一透镜L1正屈折力的设置,避免了广角特征下采用负屈折力引起的第一透镜L1向外突出明显的问题,有利于镜筒结构的排布与镜组整体的布置,进一步地,第一透镜L1的屈折力变化,配合中置光阑的设置,可一定程度扩大视场角、缩小口径,提供合理的边缘光线偏折角度。
非球面透镜的面型可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020138356-appb-000001
其中,Z是非球面上任意一点与表面顶点之间平行于光轴的距离,r是非球面上任意一点到光轴的垂直距离,c的顶点曲率(曲率半径的倒数),k是圆锥常数,Ai是非球面第i-th阶的修正系数。
如此,通过调节各透镜表面的曲率半径和非球面系数,有效减小光学成像系统10的整体尺寸,占用空间较小,且能够有效地修正像差,提高成像质量。
在一些实施例中,光学成像系统10还包括光阑STO。光阑STO可以设置在第一透镜L1的物侧面之前、第六透镜L6的像侧面之后、任意两个透镜之间或任意一个透镜的表面上。光阑STO用以减少杂散光,有助于提升影像质量。优选的,光阑STO设置于所述光学成像系统10的物侧与所述第三透镜L3的物侧面之间。如此,配合中置光阑STO的设置,可一定程度扩大视场角、缩小口径,提供合理的边缘光线偏折角度。
在一些实施例中,光学成像系统10还包括红外滤光片L7,红外滤光片L7具有物侧面S13及像侧面S14。红外滤光片L7设置在第六透镜L6的像侧面与光学成像系统10的成像面之间,红外滤光片L7用于过滤部分成像的光线,具体用于隔绝红外光,防止红外光被感光元件接收,从而防止红外光对正常影像的色彩与清晰度造成影响,进而提高光学成像系统10的成像品质。优选地,红外滤光片L7为红外截止滤光片。
在一些实施例中,光学成像系统10满足关系式:
(f3+|f4|)/|R41|<40.0;
其中,f3为第三透镜L3的有效焦距,f4为第四透镜L4的有效焦距,R41为第四透镜L4的物侧面S7在光轴处的曲率半径。
如此,增大第三透镜L3和第四透镜L4的屈折力变化,使面型具有明显变化,且不同屈折力的配置,使得集中于第五透镜L5和第六透镜L6的初级场曲与畸变,分散在第三透镜L3和第四透镜L4的物侧面与像侧面,从而降低光学成像系统10的设计与组装敏感性,可提升光学成像系统10的生产良率;此外,分散像差的屈折力配置有利于综合像差的调整与平衡,可间接提升光学成像系统10的像质。
在一些实施例中,光学成像系统满足关系式:
1.4<ET12/ET45<33.3;
其中,ET12为第一透镜L1像侧面的光学有效径处至第二透镜L2的物侧面的光学有效径处在平行于光轴方向上的距离,ET45为第四透镜L4像侧面S8的光学有效径处至所述第五透镜L5物侧面S9的光学有效径处在平行于光轴方向上的距离。
如此,第一透镜L1和第二透镜L2的口径间隙的变化,使光学成像系统具有大光圈广角结构的同时,可快速压缩入射光线在第一透镜L1和第二透镜L2处的光线偏折,以便后面透镜组对光线的光路调整;进一步地,第一透镜L1和第二透镜L2的合理配合,引入的像差量微小,利于光学成像系统的像差校正;此外,第四透镜L4和第五透镜L5的面型合理,且配合情况良好,避免了局部正透镜的出现,并结合镀膜工艺,可减少透镜间的二次反射引起的杂光鬼像,提升了光学成像系统的成像纯净度。
在一些实施例中,光学成像系统10满足关系式:
1.0<|f6|/R61<7.2;
其中,f6为第六透镜L6的有效焦距,R61为第六透镜L6的物侧面S11在光轴处的曲率半径。
如此,使得第六透镜L6在垂直于光轴方向的屈折力配置均匀,大幅修正前面透镜组产生的畸变、场曲、像散;同时避免第六透镜L6过度弯曲,从而易于透镜的成型制造;此外,第六透镜L6面型的变化,可引导各视场光线产生适当的角度偏转,进而使光学成像系统可以更好地匹配电子感光芯片。
在一些实施例中,光学成像系统10满足关系式:
3.2<|R31|/BF<14.2;
其中,R31为第三透镜L3的物侧面S5在光轴处的曲率半径,BF为第六透镜L6的像侧面S12与像面在平行在光轴方向的最小距离。
如此,使得光学成像系统10具备足够长的法兰后焦,符合设计与加工制造的工艺性,可更好的匹配感光元件,且在不同镜筒的排布中有足够的优势,满足透镜组在不同镜筒中的排布使用;此外,第三透镜L3的屈折力变化,可为像差的分散和光线角度的偏转提供一定支持;第三透镜L3面型简单,降低了透镜的制造成型难度。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜 L5及第六透镜L6的材质均为塑料,此时,塑料材质的透镜能够减少光学成像系统10的重量并降低生产成本。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为玻璃,此时,光学成像系统10能够耐受较高的温度且具有较好的光学性能。在另一些实施例中,也可以仅是第一透镜L1为玻璃材质,而其他透镜为塑料材质,此时,最靠近物侧的第一透镜L1能够较好地耐受物侧的环境温度影响,且由于其他透镜为塑料材质的关系,从而使光学成像系统10保持较低的生产成本。在其他实施例中,第一透镜L1的材质为玻璃,其他透镜的材质可任意组合。
第一实施例
请参照图1和图2,第一实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及红外滤光片L7。
请参见图2,图2示出了第一实施例中光学成像系统10在波长650nm,610nm,587nm,555nm,470nm下的光线球差曲线图,在波长587nm下的光线像散图,在波长587nm下的畸变曲线图,且第一实施例中的光学成像系统10满足下面表1、表2的条件。
其中,第一透镜L1的物侧面S1在近光轴处为凹面,像侧面S2在近光轴处为凸面;第二透镜L2的物侧面S3在近光轴处为凸面,像侧面S4在近光轴处为凹面;第三透镜L3的物侧面S5在近光轴处为凸面,像侧面S6在近光轴处为凸面;第四透镜L4的物侧面S7在近光轴处为凹面,像侧面S8在近光轴处为凹面;第五透镜L5的物侧面S9在近光轴处为凹面,像侧面S10在近光轴处为凸面;第六透镜L6的物侧面S11在近光轴处为凸面,像侧面S12在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,像侧面S2在近圆周处为凹面;第二透镜L2的物侧面S3在近圆周处为凸面,像侧面S4在近圆周处为凹面;第三透镜L3的物侧面S5在近圆周处为凹面,像侧面S6在近圆周处为凸面;第四透镜L4的物侧面S7在近圆周处为凹面,像侧面S8在近圆周处为凹面;第五透镜L5的物侧面S9在近圆周处为凹面,像侧面S10在近圆周处为凸面;第六透镜L6的物侧面S11在近圆周处为凸面,像侧面S12在近圆周处为凸面。
表1示出了实施例一光学成像系统10的透镜的表面类型、Y半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的焦距,其中,焦距、折射率和阿贝数的参考波长均为587nm,且第一实施例中的光学成像系统10满足下面表1的条件,Y半径、厚度、透镜的有效焦距的单位均为毫米(mm),本实施例中的Y半径是透镜于近光轴处的曲率半径。另外,透镜的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面在光轴上的距离;光阑STO于“厚度”参数列中的数值为光阑STO至后一表面顶点(顶点指表面与光轴的交点)在光轴上的距离,我们默认第一透镜L1物侧面到最后一枚透镜像侧面的方向为光轴的正方向,当该值为负时,表明光阑STO设置于图1中该表面顶点的右侧,若光阑STO厚度为正值时,光阑在该表面顶点的左侧。
表1
Figure PCTCN2020138356-appb-000002
需要说明的是,f为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的最大视场角,TTL为第一透镜L1的物侧面S1到光学成像系统10的成像面在光轴上的距离。
表2给出了可用于第一实施例中非球面的面型S2、S3的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020138356-appb-000003
Figure PCTCN2020138356-appb-000004
请参照图2(A),图2(A)示出了第一实施例中的光学成像系统10在波长为650nm,610nm,587nm,555nm,470nm下的纵向球差曲线图。图2(A)中,横坐标表示焦点偏移,纵坐标表示归一化视场。由图2(A)可以看出,第一实施例中的光学成像系统10的球差数值较佳,说明本实施例中的光学成像系统10的成像质量较好。
请参照图2(B),图2(B)为第一实施例中的光学成像系统10在波长为587nm下的光线像散图。其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S。由图2(B)可以看出,本实施例中的光学成像系统10的像散得到了较好的补偿。
请参照图2(C),图2(C)为第一实施例中的光学成像系统10在波长为587nm下的畸变曲线图。其中,横坐标表示畸变,纵坐标表示像高,单位为mm。由图2(C)可以看出,在波长587nm下,本实施例中的光学成像系统10的畸变得到了很好的校正。
由图2(A)、图2(B)和图2(C)可以看出,本实施例中的光学成像系统10的像差较小、成像质量较好,具有优良的成像品质。
第二实施例
请参照图3和图4,第二实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及红外滤光片L7。
其中,第一透镜L1的物侧面S1在近光轴处为凹面,像侧面S2在近光轴处为凸面;第二透镜L2的物侧面S3在近光轴处为凸面,像侧面S4在近光轴处为凹面;第三透镜L3的物侧面S5在近光轴处为凹面,像侧面S6在近光轴处为凸面;第四透镜L4的物侧面S7在近光轴处为凹面,像侧面S8在近光轴处为凸面;第五透镜L5的物侧面S9在近光轴处为凹面,像侧面S10在近光轴处为凸面;第六透镜L6的物侧面S11在近光轴处为凸面,像侧面S12在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,像侧面S2在近圆周处为凸面;第二透镜L2的物侧面S3在近圆周处为凸面,像侧面S4在近圆周处为凹面;第三透镜L3的物侧面S5在近圆周处为凹面,像侧面S6在近圆周处为凸面;第四透镜L4的物侧面S7在近圆周处为凹面,像侧面S8在近圆周处为凹面;第五透镜L5的物侧面S9在近圆周处为凹面,像侧面S10在近圆周处为凸面;第六透镜L6的物侧面S11在近圆周处为凸面,像侧面S12在近圆周 处为凸面。
表3示出了实施例一光学成像系统10的透镜的表面类型、Y半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的焦距,且上述参数限定同第一实施例中,为避免重复,这里不再赘述,焦距、折射率和阿贝数的参考波长均为587nm,且第二实施例中的光学成像系统10满足下面表3的条件。
表3
Figure PCTCN2020138356-appb-000005
需要说明的是,f为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的最大视场角,TTL为第一透镜的物侧面到光学成像系统的成像面在光轴上的距离。
表4给出了可用于第二实施例中非球面的面型S2、S3的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表4
Figure PCTCN2020138356-appb-000006
Figure PCTCN2020138356-appb-000007
请参照图4(A),图4(A)示出了第二实施例中的光学成像系统10在波长为650nm,610nm,587nm,555nm,470nm下的纵向球差曲线图。图4(A)中,横坐标表示焦点偏移,纵坐标表示归一化视场。由图4(A)可以看出,第二实施例中的光学成像系统10的球差数值较佳,说明本实施例中的光学成像系统10的成像质量较好。
请参照图4(B),图4(B)为第二实施例中的光学成像系统10在波长为587nm下的光线像散图。其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S。由图4(B)可以看出,本实施例中的光学成像系统10的像散得到了较好的补偿。
请参照图4(C),图4(C)为第二实施例中的光学成像系统10在波长为587nm下的畸变曲线图。其中,横坐标表示畸变,纵坐标表示像高,单位为mm。由图4(C)可以看出,在波长587nm下,本实施例中的光学成像系统10的畸变得到了很好的校正。
由图4(A)、图4(B)和图4(C)可以看出,本实施例中的光学成像系统10的像差较小、成像质量较好,具有优良的成像品质。
第三实施例
请参照图5和图6,第三实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及红外滤光片L7。
其中,第一透镜L1的物侧面S1在近光轴处为凹面,像侧面S2在近光轴处为凸面;第二透镜L2的物侧面S3在近光轴处为凸面,像侧面S4在近光轴处为凹面;第三透镜L3的物侧面S5在近光轴处为凸面,像侧面S6在近光轴处为凹面;第四透镜L4的物侧面S7在近光轴处为凸面,像侧面S8在近光轴处为凹面;第五透镜L5的物侧面S9在近光轴处为凹面,像侧面S10在近光轴处为凸面;第六透镜L6的物侧面S11在近光轴处为凸面,像侧面S12在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,像侧面S2在近圆周处为凹面;第二透镜 L2的物侧面S3在近圆周处为凸面,像侧面S4在近圆周处为凹面;第三透镜L3的物侧面S5在近圆周处为凸面,像侧面S6在近圆周处为凹面;第四透镜L4的物侧面S7在近圆周处为凸面,像侧面S8在近圆周处为凸面;第五透镜L5的物侧面S9在近圆周处为凹面,像侧面S10在近圆周处为凹面;第六透镜L6的物侧面S11在近圆周处为凹面,像侧面S12在近圆周处为凸面。
表5示出了实施例一光学成像系统10的透镜的表面类型、Y半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的焦距,且上述参数限定同第一实施例中,为避免重复,这里不再赘述,焦距、折射率和阿贝数的参考波长均为587nm,且第三实施例中的光学成像系统10满足下面表5的条件。
表5
Figure PCTCN2020138356-appb-000008
需要说明的是,f为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的最大视场角,TTL为第一透镜的物侧面到光学成像系统的成像面在光轴上的距离。
表6给出了可用于第三实施例中非球面的面型S2、S3的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表6
Figure PCTCN2020138356-appb-000009
Figure PCTCN2020138356-appb-000010
请参照图6(A),图6(A)示出了第三实施例中的光学成像系统10在波长为650nm,610nm,587nm,555nm,470nm下的纵向球差曲线图。图6(A)中,横坐标表示焦点偏移,纵坐标表示归一化视场。由图6(A)可以看出,第三实施例中的光学成像系统10的球差数值较佳,说明本实施例中的光学成像系统10的成像质量较好。
请参照图6(B),图6(B)为第三实施例中的光学成像系统10在波长为587nm下的光线像散图。其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S。由图6(B)可以看出,本实施例中的光学成像系统10的像散得到了较好的补偿。
请参照图6(C),图6(C)为第三实施例中的光学成像系统10在波长为587nm下的畸变曲线图。其中,横坐标表示畸变,纵坐标表示像高,单位为mm。由图6(C)可以看出,在波长587nm下,本实施例中的光学成像系统10的畸变得到了很好的校正。
由图6(A)、图6(B)和图6(C)可以看出,本实施例中的光学成像系统10的像差较小、成像质量较好,具有优良的成像品质。
第四实施例
请参照图7和图8,第四实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及红外滤光片L7。
其中,第一透镜L1的物侧面S1在近光轴处为凹面,像侧面S2在近光轴处为凸面;第二透镜L2的物侧面S3在近光轴处为凸面,像侧面S4在近光轴处为凹面;第三透镜L3的物 侧面S5在近光轴处为凸面,像侧面S6在近光轴处为凹面;第四透镜L4的物侧面S7在近光轴处为凸面,像侧面S8在近光轴处为凹面;第五透镜L5的物侧面S9在近光轴处为凹面,像侧面S10在近光轴处为凸面;第六透镜L6的物侧面S11在近光轴处为凸面,像侧面S12在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,像侧面S2在近圆周处为凹面;第二透镜L2的物侧面S3在近圆周处为凸面,像侧面S4在近圆周处为凸面;第三透镜L3的物侧面S5在近圆周处为凸面,像侧面S6在近圆周处为凹面;第四透镜L4的物侧面S7在近圆周处为凹面,像侧面S8在近圆周处为凸面;第五透镜L5的物侧面S9在近圆周处为凹面,像侧面S10在近圆周处为凸面;第六透镜L6的物侧面S11在近圆周处为凸面,像侧面S12在近圆周处为凸面。
表7示出了实施例一光学成像系统10的透镜的表面类型、Y半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的焦距,且上述参数限定同第一实施例中,为避免重复,这里不再赘述,焦距、折射率和阿贝数的参考波长均为587nm,且第四实施例中的光学成像系统10满足下面表7的条件。
表7
Figure PCTCN2020138356-appb-000011
需要说明的是,f为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的最大视场角,TTL为第一透镜的物侧面到光学成像系统的成像面在光轴上的距离。
表8给出了可用于第四实施例中非球面的面型S2、S3的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表8
Figure PCTCN2020138356-appb-000012
请参照图8(A),图8(A)示出了第四实施例中的光学成像系统10在波长为650nm,610nm,587nm,555nm,470nm下的纵向球差曲线图。图8(A)中,横坐标表示焦点偏移,纵坐标表示归一化视场。由图8(A)可以看出,第四实施例中的光学成像系统10的球差数值较佳,说明本实施例中的光学成像系统10的成像质量较好。
请参照图8(B),图8(B)为第四实施例中的光学成像系统10在波长为587nm下的光线像散图。其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S。由图8(B)可以看出,本实施例中的光学成像系统10的像散得到了较好的补偿。
请参照图8(C),图8(C)为第四实施例中的光学成像系统10在波长为587nm下的畸变曲线图。其中,横坐标表示畸变,纵坐标表示像高,单位为mm。由图8(C)可以看出,在波长587nm下,本实施例中的光学成像系统10的畸变得到了很好的校正。
由图8(A)、图8(B)和图8(C)可以看出,本实施例中的光学成像系统10的像差较小、成像质量较好,具有优良的成像品质。
第五实施例
请参照图9和图10,第五实施例的光学成像系统10由物侧到像侧依次包括具有正屈折 力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及红外滤光片L7。
其中,第一透镜L1的物侧面S1在近光轴处为凹面,像侧面S2在近光轴处为凸面;第二透镜L2的物侧面S3在近光轴处为凸面,像侧面S4在近光轴处为凹面;第三透镜L3的物侧面S5在近光轴处为凸面,像侧面S6在近光轴处为凹面;第四透镜L4的物侧面S7在近光轴处为凸面,像侧面S8在近光轴处为凹面;第五透镜L5的物侧面S9在近光轴处为凹面,像侧面S10在近光轴处为凸面;第六透镜L6的物侧面S11在近光轴处为凸面,像侧面S12在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凹面,像侧面S2在近圆周处为凸面;第二透镜L2的物侧面S3在近圆周处为凸面,像侧面S4在近圆周处为凸面;第三透镜L3的物侧面S5在近圆周处为凸面,像侧面S6在近圆周处为凹面;第四透镜L4的物侧面S7在近圆周处为凹面,像侧面S8在近圆周处为凹面;第五透镜L5的物侧面S9在近圆周处为凹面,像侧面S10在近圆周处为凸面;第六透镜L6的物侧面S11在近圆周处为凹面,像侧面S12在近圆周处为凸面。
表9示出了实施例一光学成像系统10的透镜的表面类型、Y半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的焦距,且上述参数限定同第一实施例中,为避免重复,这里不再赘述,焦距、折射率和阿贝数的参考波长均为587nm,且第五实施例中的光学成像系统10满足下面表9的条件。
表9
Figure PCTCN2020138356-appb-000013
需要说明的是,f为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的最大视场角,TTL为第一透镜的物侧面到光学成像系统的成像面在光轴上的距离。
表10给出了可用于第五实施例中非球面的面型S2、S3的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表10
Figure PCTCN2020138356-appb-000014
请参照图10(A),图10(A)示出了第五实施例中的光学成像系统10在波长为650nm,610nm,587nm,555nm,470nm下的纵向球差曲线图。图10(A)中,横坐标表示焦点偏移,纵坐标表示归一化视场。由图10(A)可以看出,第五实施例中的光学成像系统10的球差数值较佳,说明本实施例中的光学成像系统10的成像质量较好。
请参照图10(B),图10(B)为第五实施例中的光学成像系统10在波长为587nm下的光线像散图。其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S。由图10(B)可以看出,本实施例中的光学成像系统10的像散得到了较好的补偿。
请参照图10(C),图10(C)为第五实施例中的光学成像系统10在波长为587nm下的畸变曲线图。其中,横坐标表示畸变,纵坐标表示像高,单位为mm。由图10(C)可以看 出,在波长587nm下,本实施例中的光学成像系统10的畸变得到了很好的校正。
由图10(A)、图10(B)和图10(C)可以看出,本实施例中的光学成像系统10的像差较小、成像质量较好,具有优良的成像品质。
第六实施例
请参照图11和图12,第六实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及红外滤光片L7。
其中,第一透镜L1的物侧面S1在近光轴处为凹面,像侧面S2在近光轴处为凸面;第二透镜L2的物侧面S3在近光轴处为凸面,像侧面S4在近光轴处为凹面;第三透镜L3的物侧面S5在近光轴处为凸面,像侧面S6在近光轴处为凹面;第四透镜L4的物侧面S7在近光轴处为凸面,像侧面S8在近光轴处为凹面;第五透镜L5的物侧面S9在近光轴处为凹面,像侧面S10在近光轴处为凸面;第六透镜L6的物侧面S11在近光轴处为凸面,像侧面S12在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,像侧面S2在近圆周处为凹面;第二透镜L2的物侧面S3在近圆周处为凹面,像侧面S4在近圆周处为凸面;第三透镜L3的物侧面S5在近圆周处为凸面,像侧面S6在近圆周处为凸面;第四透镜L4的物侧面S7在近圆周处为凹面,像侧面S8在近圆周处为凹面;第五透镜L5的物侧面S9在近圆周处为凹面,像侧面S10在近圆周处为凸面;第六透镜L6的物侧面S11在近圆周处为凹面,像侧面S12在近圆周处为凸面。
表11示出了实施例一光学成像系统10的透镜的表面类型、Y半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的焦距,且上述参数限定同第一实施例中,为避免重复,这里不再赘述,焦距、折射率和阿贝数的参考波长均为587nm,且第六实施例中的光学成像系统10满足下面表11的条件。
表11
Figure PCTCN2020138356-appb-000015
Figure PCTCN2020138356-appb-000016
需要说明的是,f为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的最大视场角,TTL为第一透镜的物侧面到光学成像系统的成像面在光轴上的距离。
表12给出了可用于第六实施例中非球面的面型S2、S3的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表12
Figure PCTCN2020138356-appb-000017
请参照图12(A),图12(A)示出了第六实施例中的光学成像系统10在波长为650nm,610nm,587nm,555nm,470nm下的纵向球差曲线图。图12(A)中,横坐标表示焦点偏移,纵坐标表示归一化视场。由图12(A)可以看出,第六实施例中的光学成像系统10的球差数值较佳,说明本实施例中的光学成像系统10的成像质量较好。
请参照图12(B),图12(B)为第六实施例中的光学成像系统10在波长为587nm下的光线像散图。其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm。像散曲线表示子 午成像面弯曲T和弧矢成像面弯曲S。由图12(B)可以看出,本实施例中的光学成像系统10的像散得到了较好的补偿。
请参照图12(C),图12(C)为第六实施例中的光学成像系统10在波长为587nm下的畸变曲线图。其中,横坐标表示畸变,纵坐标表示像高,单位为mm。由图12(C)可以看出,在波长587nm下,本实施例中的光学成像系统10的畸变得到了很好的校正。
由图12(A)、图12(B)和图12(C)可以看出,本实施例中的光学成像系统10的像差较小、成像质量较好,具有优良的成像品质。
表格13示出了第一实施例至第六实施例的光学成像系统10中TTL/(IMGH*2),FOV/f1,CT5/FNO,(IND2+IND3+IND4+IND5+IND6)/SD1,(f3+|f4|)/|R41|,ET12/ET45、|f6|/R61和|R31|/BF的值。
表格13
Figure PCTCN2020138356-appb-000018
请参照图13,本发明实施例的取像模组100包括光学成像系统10和感光元件20,感光元件20设置在光学成像系统10的像侧。
具体地,感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)影像感测器或者电荷耦合元件(CCD,Charge-coupled Device)。
本发明实施例的取像模组100中的光学成像系统10通过采用六片透镜,合理配置各个透镜的屈折力,有助于提升光学成像系统10的像质,并且光学成像系统10的整体厚度较小,有利于使光学成像系统10保持轻薄性,同时,六片透镜中至少四片透镜采用低折射率材料,可大幅降低制造成本;第一透镜L1物侧面的口径较小,使光学成像系统10头部尺寸较小, 满足光学成像系统10外部美化的需求;进一步地,光学成像系统10实现93°~107°的取像范围,小广角的设置,配合合理的小头特征,适合具有一定广角需求的应用场景。
请继续参照图13,本发明实施例的电子装置1000包括壳体200和取像模组100,取像模组100安装在壳体200上以用于获取图像。
本发明实施例的电子装置1000包括但不限于为智能手机、汽车车载镜头、监控镜头、平板电脑、笔记本电脑、电子书籍阅读器、便携多媒体播放器(PMP)、便携电话机、视频电话机、数码静物相机、移动医疗装置、可穿戴式设备等支持成像的电子装置。
上述实施例的电子装置1000中的光光学成像系统10通过采用六片透镜,合理配置各个透镜的屈折力,有助于提升光学成像系统10的像质,并且光学成像系统10的整体厚度较小,有利于使光学成像系统10保持轻薄性,同时,六片透镜中至少四片透镜采用低折射率材料,可大幅降低制造成本;第一透镜L1物侧面的口径较小,使光学成像系统10头部尺寸较小,满足光学成像系统10外部美化的需求;进一步地,光学成像系统10实现93°~107°的取像范围,小广角的设置,配合合理的小头特征,适合具有一定广角需求的应用场景。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (10)

  1. 一种光学成像系统,其特征在于,由物侧到像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面在近光轴处为凹面、像侧面在近光轴处为凸面;
    具有屈折力的第二透镜,所述第二透镜的物侧面在近光轴处为凸面、像侧面在近光轴处为凹面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面和像侧面均为非球面;
    具有屈折力的第四透镜,所述第四透镜的物侧面和像侧面均为非球面;
    具有正屈折力的第五透镜,所述第五透镜的物侧面和像侧面均为非球面;
    具有负屈折力的第六透镜,所述第六透镜的物侧面在近光轴处为凸面、像侧面在近圆周处为凸面,且其物侧面与像侧面中的至少一个面设置有至少一个反曲点;
    所述光学成像系统满足关系式:
    3.9mm -1<(IND2+IND3+IND4+IND5+IND6)/SD1<7.0mm -1
    其中,IND2为所述第二透镜的折射率,IND3为所述第三透镜的折射率,IND4为所述第四透镜的折射率,IND5为所述第五透镜的折射率,IND6为所述第六透镜的折射率,SD1为所述第一透镜物侧面的光学有效径处到光轴的垂直距离。
  2. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:
    0.64≤TTL/(IMGH*2)<0.72;
    其中,TTL为所述第一透镜物侧面至所述光学成像系统的成像面在光轴上的距离,IMGH为所述光学成像系统的最大视场角所对应的像高的一半。
  3. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:
    0.18mm<CT5/FNO≤0.5mm;
    其中,CT5为所述第五透镜在光轴上的厚度,FNO为所述光学成像系统的光圈数。
  4. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:
    2.0deg/mm<FOV/f1<15.0deg/mm;
    其中,FOV为所述光学成像系统的最大视场角,f1为所述第一透镜的有效焦距。
  5. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:
    (f3+|f4|)/|R41|<40.0;
    其中,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距,R41为所述第四透镜的物侧面在光轴处的曲率半径。
  6. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:
    1.4<ET12/ET45<33.3;
    其中,ET12为所述第一透镜像侧面的光学有效径处至所述第二透镜物侧面的光学有效径处在平行于光轴方向上的距离,ET45为所述第四透镜像侧面的光学有效径处至所述第五透镜物侧面的光学有效径处在平行于光轴方向上的距离。
  7. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:
    1.0<|f6|/R61<7.2;
    其中,f6为所述第六透镜的有效焦距,R61为所述第六透镜的物侧面在光轴处的曲率半径。
  8. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足关系式:3.2<|R31|/BF<14.2;
    其中,R31为所述第三透镜的物侧面在光轴处的曲率半径,BF为所述第六透镜的像侧面至成像面在平行于光轴方向上的最小距离。
  9. 一种取像模组,其特征在于,包括:
    如权利要求1至8中任意一项所述的光学成像系统;及
    感光元件,所述感光元件设置于所述光学成像系统的像侧。
  10. 一种电子装置,其特征在于,包括:
    壳体;及
    权利要求9所述的取像模组,所述取像模组安装在所述壳体上。
PCT/CN2020/138356 2020-12-22 2020-12-22 光学成像系统、取像模组和电子装置 WO2022133735A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138356 WO2022133735A1 (zh) 2020-12-22 2020-12-22 光学成像系统、取像模组和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138356 WO2022133735A1 (zh) 2020-12-22 2020-12-22 光学成像系统、取像模组和电子装置

Publications (1)

Publication Number Publication Date
WO2022133735A1 true WO2022133735A1 (zh) 2022-06-30

Family

ID=82157291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138356 WO2022133735A1 (zh) 2020-12-22 2020-12-22 光学成像系统、取像模组和电子装置

Country Status (1)

Country Link
WO (1) WO2022133735A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107918185A (zh) * 2016-10-05 2018-04-17 大立光电股份有限公司 光学摄影系统组、取像装置及电子装置
CN110161653A (zh) * 2016-05-20 2019-08-23 大立光电股份有限公司 光学影像镜头、取像装置及电子装置
CN111025561A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111338058A (zh) * 2020-04-09 2020-06-26 南昌欧菲精密光学制品有限公司 光学镜头、取像模组及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161653A (zh) * 2016-05-20 2019-08-23 大立光电股份有限公司 光学影像镜头、取像装置及电子装置
CN107918185A (zh) * 2016-10-05 2018-04-17 大立光电股份有限公司 光学摄影系统组、取像装置及电子装置
CN111025561A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111338058A (zh) * 2020-04-09 2020-06-26 南昌欧菲精密光学制品有限公司 光学镜头、取像模组及电子装置

Similar Documents

Publication Publication Date Title
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
CN112526726A (zh) 光学成像系统、取像模组和电子装置
CN113946038B (zh) 光学镜头、摄像模组及电子设备
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
WO2022165840A1 (zh) 光学系统、摄像模组及电子设备
WO2022052051A1 (zh) 光学成像系统、取像模组和电子装置
WO2022061676A1 (zh) 光学镜头、取像模组及电子装置
CN114296213A (zh) 光学镜头、摄像模组及电子设备
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
CN212540864U (zh) 光学成像系统、取像模组和电子装置
CN114265184B (zh) 光学镜头、摄像模组及电子设备
CN114153050B (zh) 光学系统和具有其的取像模组、电子装置
WO2022236663A1 (zh) 光学变焦系统、变焦模组及电子设备
WO2022133735A1 (zh) 光学成像系统、取像模组和电子装置
CN113433652B (zh) 光学系统、镜头模组和电子设备
WO2022011550A1 (zh) 光学成像系统、取像模组和电子装置
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
CN114721126A (zh) 光学镜头、摄像模组及电子设备
WO2022088086A1 (zh) 光学成像系统、取像模组及电子装置
CN114002822A (zh) 光学镜头、摄像模组及电子设备
CN114637094A (zh) 光学镜头、摄像模组及电子设备
CN111198434B (zh) 摄像光学镜头
CN214151203U (zh) 光学成像系统、取像模组和电子装置
WO2022126661A1 (zh) 光学成像系统、取像模组及电子装置
WO2022052050A1 (zh) 光学成像系统、取像模组和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966316

Country of ref document: EP

Kind code of ref document: A1