WO2022052050A1 - 光学成像系统、取像模组和电子装置 - Google Patents

光学成像系统、取像模组和电子装置 Download PDF

Info

Publication number
WO2022052050A1
WO2022052050A1 PCT/CN2020/114839 CN2020114839W WO2022052050A1 WO 2022052050 A1 WO2022052050 A1 WO 2022052050A1 CN 2020114839 W CN2020114839 W CN 2020114839W WO 2022052050 A1 WO2022052050 A1 WO 2022052050A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
optical axis
object side
Prior art date
Application number
PCT/CN2020/114839
Other languages
English (en)
French (fr)
Inventor
杨健
李明
Original Assignee
欧菲光集团股份有限公司
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲精密光学制品有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/114839 priority Critical patent/WO2022052050A1/zh
Publication of WO2022052050A1 publication Critical patent/WO2022052050A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to optical imaging technology, in particular to an optical imaging system, an imaging module and an electronic device.
  • the inventor found that there are at least the following problems in the prior art: although the traditional camera lens mounted on the portable electronic product can meet the requirements of miniaturization, the head of the camera lens is large, which is not conducive to the camera lens The lens is packaged under the screen, and the screen opening is large, which cannot achieve the visual effect of a full screen.
  • the embodiment of the present application proposes an optical imaging system, which sequentially includes from the object side to the image side: a first lens with positive refractive power, the object side of the first lens is convex at the optical axis; Two lenses; the third lens with refractive power; the fourth lens with positive refractive power, the image side of the fourth lens is convex at the optical axis; the fifth lens with refractive power; the sixth lens with refractive power , the object side of the sixth lens is convex at the optical axis, and the image side of the sixth lens is concave at the optical axis; the optical imaging system satisfies the following relationship: 0.5 ⁇ f1/f26 ⁇ 1.6; wherein , f26 is the combined focal length of the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens, and f1 is the effective focal length of the first lens.
  • the above-mentioned optical imaging system has the advantages of wide viewing angle and head miniaturization through reasonable refractive force configuration and face shape setting.
  • the aperture size of the screen of the electronic device can be reduced, which in turn facilitates the under-screen packaging of the optical imaging system, thereby enabling the electronic device to achieve a full-screen visual effect;
  • the optical imaging system has a larger field of view, a wider field of view can be obtained, and foreground objects can be highlighted to meet the user's shooting experience. Further, satisfying the above formula can ensure the small head feature of the optical imaging system.
  • the diaphragm must be placed in the middle, resulting in an increase in the aperture of the first lens. It is impossible to meet the miniaturization; if the ratio is too large, that is, the focal length of the first lens is too large, the optical power will be distributed to the following lenses, and the sensitivity will increase, which is not conducive to assembly and mass production.
  • the image side surface and the object side surface of the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens are non-identical spherical.
  • the aspheric surface shape is conducive to correcting aberrations and improving imaging quality.
  • the optical imaging system satisfies the following relationship: TTL/Imgh ⁇ 1.8; wherein, TTL is the distance from the object side of the first lens to the image plane of the optical imaging system on the optical axis, Imgh is half of the image height corresponding to the maximum angle of view of the optical imaging system. Satisfying the above formula, since the ratio of TTL to Imgh is less than 1.8, the total length of the system can be guaranteed when the image plane is fixed, and the miniaturization requirement can be achieved.
  • the optical imaging system satisfies the following relationship: 1.4 ⁇ TTL/f ⁇ 2; wherein, TTL is the distance from the object side of the first lens to the image plane of the optical imaging system on the optical axis distance, f is the effective focal length of the optical imaging system. Satisfying the above formula helps to determine the optional range of focal length when the total length of the system meets the miniaturization requirements. As a result, the optical system tends to be telephoto, so that the field of view angle is relatively small, and sufficient object information cannot be obtained.
  • the optical imaging system satisfies the following relationship:
  • HFOV is half of the maximum field of view of the optical imaging system.
  • the optical imaging system satisfies the following relationship: FNO ⁇ 2.8; wherein FNO is the f-number of the optical imaging system. Satisfying the above formula, in the case of satisfying the small head, at the same time, a large amount of light passing through the optical imaging system can be achieved. When the luminous flux per unit time of the optical imaging system is large, a clear imaging effect can be achieved even when shooting in a dark environment. If the FNO is too large, on the one hand, the diffraction limit will be reduced, and on the other hand, the luminous flux will be reduced, which is not conducive to shooting in a dark environment.
  • the optical imaging system satisfies the following relationship: (L61-L62)/(2*L63)>0.25, where L61 represents the distance between the intersection of the fringe field of view and the image side surface of the sixth lens from the optical axis The maximum vertical distance, L62 represents the minimum vertical distance from the intersection of the fringe field of view and the image side surface of the sixth lens to the optical axis, and the fringe field of view is the incident light that is incident and converged to the imaging surface of the optical imaging system.
  • L63 represents the maximum vertical distance from the intersection of the central field of view and the image side of the sixth lens to the optical axis, and the central field of view is incident and converges to the center of the imaging plane of the optical imaging system Beam. Satisfying the above formula is conducive to ensuring the relative brightness of the optical imaging system. Even if shooting in a dark environment, the edge of the optical imaging system can achieve a clear imaging effect. If the above formula is not satisfied, vignetting may occur, which is not conducive to stable mass production in the later stage.
  • the optical imaging system satisfies the following relationship: (r11+r12)/(r11-r12) ⁇ 15; wherein, r11 is the radius of curvature of the object side of the sixth lens at the optical axis, r12 is the radius of curvature of the image side surface of the sixth lens at the optical axis. Satisfying the above formula can make the optical imaging system well match the chief ray angle (Chief Ray Angle, CRA) of the photosensitive element. If this ratio requirement is not met, the CRA in the inner field of view cannot be enlarged, and the matching with the CRA of the photosensitive element will be problematic, and it cannot meet the mass production requirements.
  • CRA chief ray angle
  • the optical imaging system further includes a diaphragm located on the object side of the first lens.
  • the position of the diaphragm in the entire optical imaging system is relatively forward, so that the optical imaging system has a telecentric effect, and can increase the efficiency of the image receiving element of the photosensitive element, thereby improving the imaging quality.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens are all made of plastic.
  • the plastic material lens can reduce the weight of the optical imaging system and reduce the production cost.
  • An embodiment of the present invention provides an image capturing module, which includes the optical imaging system described in any of the foregoing embodiments; and a photosensitive element, wherein the photosensitive element is disposed on the image side of the optical imaging system.
  • the imaging module of the embodiment of the present invention includes an optical imaging system, and has the advantages of wide viewing angle and miniaturization of the head at the same time through reasonable refractive force configuration and face shape setting.
  • the aperture size of the screen of the electronic device can be reduced, which in turn facilitates the under-screen packaging of the optical imaging system, thereby enabling the electronic device to achieve a full-screen visual effect;
  • the optical imaging system has a larger field of view, a wider field of view can be obtained, and foreground objects can be highlighted to meet the user's shooting experience.
  • An embodiment of the present invention provides an electronic device, comprising: a casing and the imaging module of the above-mentioned embodiment, wherein the imaging module is mounted on the casing.
  • the electronic device of the embodiment of the present invention includes an imaging module, and the optical imaging system in the imaging module has the advantages of wide viewing angle and head miniaturization at the same time, and under the premise of ensuring the high imaging quality of the optical imaging system, the size of the electronic device is reduced.
  • the size of the opening of the screen is conducive to the under-screen packaging of the optical imaging system, so that the electronic device can achieve a full-screen visual effect; in terms of shooting effect, because the optical imaging system has a larger field of view, a wider field of view can be obtained.
  • the electronic device not only has better imaging capability, but also can improve the screen ratio.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the fifth embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the sixth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an imaging module according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the first lens L1 The first lens L1
  • the third lens L3 is the third lens L3
  • the sixth lens L6 is the sixth lens L6
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “multiple” is two or more, unless otherwise specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply denoting that the first feature is level above the second feature.
  • the first feature is “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level less than the second feature.
  • Field of view In an optical instrument, the angle formed by the lens of the optical instrument as the vertex and the angle formed by the two edges of the maximum range of the object image that can pass through the lens is called the field of view.
  • the size of the field of view determines the field of view of the optical instrument. The larger the field of view, the larger the field of view. That is, objects within the field of view can be photographed through the lens, and objects outside the field of view cannot be seen.
  • the entire visible range corresponds to the imaging surface of the optical instrument one-to-one, and is evenly distributed into N parts from the optical axis outward on the imaging surface.
  • the light of the field converges at the farthest point off the axis and is recorded as 1.0 field of view, 0 to 0.5 is the inner field of view, and 0.6 to 1.0 is the outer field of view.
  • the optical imaging system 10 of the embodiment of the present invention sequentially includes, from the object side to the image side, a first lens L1 with positive refractive power; a second lens L2 with refractive power; and a third lens L3 with refractive power; Fourth lens L4 with positive refractive power; fifth lens L5 with refractive power; sixth lens L6 with refractive power.
  • the first lens L1 has an object side S1 and an image side S2, and the object side S1 is a convex surface at the optical axis;
  • the second lens L2 has an object side S3 and an image side S4;
  • the third lens L3 has an object side S5 and an image side S6, and the third lens L3 has an object side S5 and an image side S6.
  • the four lens elements L4 have an object side S7 and an image side S8, and the image side S8 is convex at the optical axis;
  • the fifth lens L5 has an object side S9 and an image side S10;
  • the sixth lens L6 has an object side S11 and an image side S12, and the object side S11 is convex at the optical axis, and image side S12 is concave at the optical axis.
  • the optical imaging system 10 satisfies the following relationship:
  • HFOV is half of the maximum field angle of the optical imaging system 10 , that is, tan(HFOV) can be any value greater than 1.05, for example, the value can be 1.21, 1.22, etc.
  • the above-mentioned optical imaging system 10 has the advantages of wide viewing angle and miniaturization of the head at the same time through reasonable configuration of refractive power and surface configuration.
  • the aperture size of the screen of the electronic device can be reduced, thereby facilitating the encapsulation of the optical imaging system 10 under the screen to achieve a full-screen visual effect;
  • the In terms of shooting effect because the optical imaging system 10 has a larger field of view, a wider field of view can be obtained, foreground objects can be highlighted, and the user's shooting experience can be satisfied.
  • Satisfying the above formula can maintain the wide-angle and small-head characteristics of the optical imaging system 10; if this value is too small, the FOV of the field of view is too small, and the wide-angle characteristic cannot be achieved, and at the same time, the focal length will increase, and the aperture of the first lens L1 will be increased. will increase, and the small head characteristics cannot be satisfied.
  • the light emitted or reflected by the object enters the optical imaging system 10 from the object side direction, and passes through the first lens L1, the second lens L2, the third lens L3, and the fourth lens in sequence L4, the fifth lens L5 and the sixth lens L6 finally converge on the image plane S15.
  • the optical imaging system 10 further includes an infrared filter L7, and the infrared filter L7 has an object side S13 and an image side S14.
  • the infrared filter L7 is arranged on the image side S12 of the sixth lens L6, and the infrared filter L7 is used to filter the imaging light, and is specifically used to isolate the infrared light and prevent the infrared light from being received by the photosensitive element, thereby preventing the infrared light from affecting the normal image.
  • the color and clarity of the optical imaging system 10 are affected, thereby improving the imaging quality of the optical imaging system 10 .
  • the optical imaging system 10 further includes a stop STO.
  • the stop STO may be disposed on the object side of the first lens L1, between the sixth lens L6 and the infrared filter L7, between any two lenses, or on the surface of any one lens.
  • Aperture STO is used to reduce stray light and help improve image quality.
  • the stop STO is arranged before the first lens L1.
  • the stop STO is arranged on the object side of the first lens L1, that is, the stop STO is arranged between the subject and the first lens L1, or is arranged on the object side of the first lens L1.
  • the position of the stop STO in the entire optical imaging system 10 is relatively forward, so that the optical imaging system 10 has a telecentric effect, and can increase the efficiency of image receiving by the photosensitive element, thereby improving the imaging quality.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , and the sixth lens L6 are all made of plastic.
  • the lenses made of plastic can reduce The weight of the optical imaging system 10 is reduced and the production cost is reduced.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all made of glass.
  • the optical imaging system 10 can withstand Subject to higher temperature and has better optical properties.
  • only the first lens L1 may be made of glass material, and other lenses may be made of plastic material.
  • the first lens L1 closest to the object side can better adapt to the influence of the ambient temperature on the object side, And because other lenses are made of plastic materials, the optical imaging system 10 can maintain a low production cost.
  • the material of the first lens L1 is glass, and the materials of other lenses can be combined arbitrarily. In this way, the optical imaging system 10 can achieve ultra-thinning while correcting aberrations and solving problems such as temperature drift through reasonable configuration of the material of the lens, and the cost is low.
  • At least one surface of at least one lens in optical imaging system 10 is aspherical.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the The image side surface and the object side surface of the sixth lens L6 are both aspherical surfaces.
  • the aspherical surface shape is conducive to correcting aberrations and improving image quality.
  • the shape of the aspheric surface is determined by the following formula:
  • Z is the longitudinal distance between any point on the aspheric surface and the vertex of the surface
  • r is the distance from any point on the aspheric surface to the optical axis
  • c is the vertex curvature (the inverse of the radius of curvature)
  • k is the conic constant
  • Ai is the i-th aspheric surface order correction factor.
  • the optical imaging system 10 can effectively reduce the size of the optical imaging system 10 by adjusting the curvature radius and aspheric coefficient of each lens surface, effectively correct the aberrations, and improve the imaging quality.
  • the optical imaging system 10 satisfies the following relationship:
  • TTL is the distance on the optical axis from the object side S1 of the first lens L1 to the image plane S15 of the optical imaging system 10 (the total length of the system)
  • Imgh is the maximum angle of view of the optical imaging system corresponding to the Half of the image height, that is, TTL/Imgh can be any value less than 1.8, for example, the value is 1.37, 1.40, 1.41, 1.40, 1.42, 1.37 and so on.
  • the ratio of TTL to Imgh is less than 1.8, the size of the total length of the system can be guaranteed when the image plane S15 is fixed, and the miniaturization requirement can be achieved; if this ratio requirement is not met, the total length of the system will be too long, and miniaturization cannot be achieved.
  • the optical imaging system satisfies the following relationship:
  • TTL is the distance on the optical axis from the object side S1 of the first lens L1 to the image plane S15 of the optical imaging system 10
  • f is the effective focal length of the optical imaging system 10 . That is, TTL/f can be any value within the range of (1.4, 2), for example, the value is 1.63, 1.64, 1.67, 1.68, 1.70, and so on.
  • the optical imaging system satisfies the following relationship:
  • f26 is the combined focal length of the second lens L2 to the sixth lens L6, that is, the combined focal length of the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6, f1 is the effective focal length of the first lens L1. That is, f1/f26 can be any value within the range of (0.5, 1.6), for example, the value is 1.02, 1.21, 0.96, 1.14, 1.46, 1.26 and so on.
  • the diaphragm must be placed in the middle, resulting in an increase in the aperture of the first lens L1, which cannot be Meet the requirements of small heads; if the ratio is too large, that is, the focal length of the first lens L1 is too large, the optical power will be distributed to the following lenses, and the sensitivity will increase, which is not conducive to assembly and mass production.
  • the optical imaging system satisfies the following relationship:
  • FNO is the aperture number of the optical imaging system 10 . That is, FNO can be any value less than 2.8, such as 2.45, 2.60, and so on.
  • the optical imaging system satisfies the following relationship:
  • L61 represents the maximum vertical distance from the intersection of the fringe field of view and the image side S12 of the sixth lens L6 to the optical axis
  • L62 represents the distance of the intersection between the fringe field of view and the image side S12 of the sixth lens L6
  • the minimum vertical distance of the optical axis, the edge field of view is the light beam that is incident and converges to the imaging plane of the optical imaging system 10 at the farthest point from the optical axis
  • L63 represents the center field of view and the image of the sixth lens L6
  • the side is the maximum vertical distance from the intersection of 2 to the optical axis
  • the central field of view is the light beam incident and converging to the center of the imaging plane of the optical imaging system 10 .
  • Satisfying the above formula is beneficial to ensure the relative brightness of the optical imaging system 10 , and even when shooting in a dark environment, the edge of the optical imaging system 10 can achieve a clear imaging effect. If the above formula is not satisfied, vignetting may occur, which is not conducive to stable mass production in the later stage.
  • the optical imaging system satisfies the following relationship:
  • r11 is the radius of curvature of the object side S11 of the sixth lens L6 at the optical axis
  • r12 is the radius of curvature of the image side S12 of the sixth lens L6 at the optical axis. That is, (r11+r12)/(r11-r12) can be any value less than 15, such as -546.12, 5.09, 7.45, 7.82, 6.90, 10.30 and so on.
  • the optical imaging system 10 can well match the chief ray angle (Chief Ray Angle, CRA) of the photosensitive element. If this ratio requirement is not met, the CRA in the inner field of view cannot be enlarged, and the matching with the CRA of the photosensitive element will be problematic, and it cannot meet the mass production requirements.
  • CRA chief ray angle
  • the optical imaging system 10 of the first embodiment sequentially includes from the object side to the image side: a diaphragm STO, a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, The third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis; the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is convex at the optical axis.
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is concave at the optical axis.
  • the object side S9 of the fifth lens L5 is concave at the optical axis, and the image side S10 is concave at the optical axis; the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is at the optical axis. Concave.
  • the object side S1 of the first lens L1 is concave at the circumference, and the image side S2 is convex at the circumference;
  • the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference;
  • the third lens L3 The object side S5 is concave at the circumference, and the image side S6 is convex at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference;
  • the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • the material of the infrared filter L7 is glass.
  • the reference wavelength in the first embodiment is 587 nm, and the optical imaging system 10 in the first embodiment satisfies the conditions of the following table.
  • the elements from the object plane to the image plane S15 are sequentially arranged in the order of the elements from top to bottom in Table 1.
  • Surface numbers 1 and 2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • the first value in the "thickness" parameter column of the first lens is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the following lens on the optical axis.
  • Table 2 is a table of relevant parameters of the aspheric surfaces of each lens in Table 1, wherein K is the conic constant, and Ai is the coefficient corresponding to the i-th high-order term in the aspheric surface type formula.
  • EFL is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 of the first lens L1 to the The distance of the image plane S15 of the optical imaging system 10 on the optical axis.
  • S is the astigmatism curve in the sagittal direction
  • T is the astigmatism curve in the meridional direction.
  • the optical imaging system 10 of the second embodiment sequentially includes from the object side to the image side: a diaphragm STO, a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, The third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is at the optical axis.
  • the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is concave at the optical axis.
  • the object side S9 of the fifth lens L5 is concave at the optical axis, and the image side S10 is concave at the optical axis; the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is at the optical axis. Concave.
  • the object side S1 of the first lens L1 is concave at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 The circumference is concave, the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastic.
  • the material of the infrared filter L7 is glass.
  • the reference wavelength in the second embodiment is 587 nm
  • the parameters of the optical imaging system 10 are given in Table 3 and Table 4, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • EFL is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side surface S1 of the first lens L1 to the The distance of the image plane S15 of the optical imaging system 10 on the optical axis.
  • S is the astigmatism curve in the sagittal direction
  • T is the astigmatism curve in the meridional direction.
  • the optical imaging system 10 of the third embodiment sequentially includes from the object side to the image side: a diaphragm STO, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, The third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis; the object side S3 of the second lens L2 is concave at the optical axis, and the image side S4 is at the optical axis.
  • Convex; the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is at the optical axis.
  • the object side S9 of the fifth lens L5 is concave at the optical axis, and the image side S10 is concave at the optical axis; the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is at the optical axis. Concave.
  • the object side S1 of the first lens L1 is concave at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 The circumference is concave, the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastic.
  • the material of the infrared filter L7 is glass.
  • EFL is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 of the first lens L1 to the The distance of the image plane S15 of the optical imaging system 10 on the optical axis.
  • S is the astigmatism curve in the sagittal direction
  • T is the astigmatism curve in the meridional direction.
  • the optical imaging system 10 of the fourth embodiment sequentially includes from the object side to the image side: a diaphragm STO, a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, A third lens L3 having a positive refractive power, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, a sixth lens L6 having a positive refractive power, and an infrared filter L7.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is concave at the optical axis; the object side S3 of the second lens L2 is concave at the optical axis, and the image side S4 is concave at the optical axis.
  • Convex; the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is convex at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is at the optical axis.
  • the object side S9 of the fifth lens L5 is concave at the optical axis, and the image side S10 is concave at the optical axis; the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is at the optical axis. Concave.
  • the object side S1 of the first lens L1 is concave at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastic.
  • the material of the infrared filter L7 is glass.
  • EFL is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 of the first lens L1 to the The distance of the image plane S15 of the optical imaging system 10 on the optical axis.
  • S is the astigmatism curve in the sagittal direction
  • T is the astigmatism curve in the meridional direction.
  • the optical imaging system 10 of the fifth embodiment sequentially includes from the object side to the image side: a diaphragm STO, a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, The third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis; the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is convex at the optical axis.
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is concave at the optical axis.
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis; the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is at the optical axis. Concave.
  • the object side S1 of the first lens L1 is concave at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 The circumference is concave, the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastic.
  • the material of the infrared filter L7 is glass.
  • EFL is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 of the first lens L1 to the The distance of the image plane S15 of the optical imaging system 10 on the optical axis.
  • S in Fig. 10 is the astigmatism curve in the sagittal direction
  • T is the astigmatism curve in the meridional direction.
  • the optical imaging system 10 of the sixth embodiment sequentially includes from the object side to the image side: a diaphragm STO, a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, The third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the infrared filter L7.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis; the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is convex at the optical axis.
  • Concave surface; the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is at the optical axis.
  • the object side S9 of the fifth lens L5 is concave at the optical axis, and the image side S10 is concave at the optical axis; the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is at the optical axis. Concave.
  • the object side S1 of the first lens L1 is concave at the circumference, and the image side S2 is convex at the circumference;
  • the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference;
  • the third lens L3 The object side S5 is concave at the circumference, and the image side S6 is convex at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference;
  • the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastic.
  • the material of the infrared filter L7 is glass.
  • EFL is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 of the first lens L1 to the The distance of the image plane S15 of the optical imaging system 10 on the optical axis.
  • S in Fig. 12 is the astigmatism curve in the sagittal direction
  • T is the astigmatism curve in the meridional direction.
  • the imaging module 100 includes an optical imaging system 10 and a photosensitive element 20 , and the photosensitive element 20 is disposed on the image side of the optical imaging system 10 .
  • the photosensitive element 20 may be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device).
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the imaging module 100 of the embodiment of the present invention includes an optical imaging system 10, and has the advantages of wide viewing angle and miniaturization of the head at the same time through reasonable configuration of refractive force and surface configuration.
  • the aperture size of the screen of the electronic device can be reduced, thereby facilitating the packaging under the screen of the optical imaging system 10, thereby facilitating the electronic device to achieve a full-screen visual effect;
  • the optical imaging system 10 has a larger field of view, a wider field of view can be obtained, foreground objects can be highlighted, and the user's shooting experience can be satisfied.
  • an electronic device 1000 includes a casing 200 and an imaging module 100 , and the imaging module 100 is installed on the casing 200 for acquiring images.
  • the electronic device 1000 in the embodiment of the present invention includes, but is not limited to, a smart phone (as shown in FIG. 14 ), a car camera lens, a monitoring lens, a tablet computer, a notebook computer, an electronic book reader, a portable multimedia player (PMP), and a portable telephone. , video phones, digital still cameras, mobile medical devices, wearable devices and other electronic devices that support imaging.
  • the optical imaging system 10 in the electronic device 1000 of the above-mentioned embodiment has the advantages of wide viewing angle and miniaturization of the head at the same time through reasonable configuration of refractive force and surface configuration.
  • the aperture size of the screen of the electronic device can be reduced, thereby facilitating the packaging under the screen of the optical imaging system 10, so that the electronic device 1000 can achieve a full-screen visual effect;
  • the optical imaging system 10 has a larger field of view, a wider field of view can be obtained, foreground objects can be highlighted, and the user's shooting experience can be satisfied.
  • the electronic device 1000 not only has better imaging capability, but also can improve the screen ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提出一种光学成像系统、取像模组和电子装置,所述光学成像系统由物侧到像侧依次包括:具有正屈折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面;具有屈折力的第二透镜;具有屈折力的第三透镜;具有正屈折力的第四透镜,所述第四透镜的像侧面于光轴处为凸面;具有屈折力的第五透镜;具有屈折力的第六透镜,所述第六透镜的物侧面于光轴处为凸面,所述第六透镜的像侧面于光轴处为凹面;所述光学成像系统满足:0.5<f1/f26<1.6;其中,f26为所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的组合焦距,f1为所述第一透镜的有效焦距。上述光学成像系统同时具有广视角和头部小型化的优点。

Description

光学成像系统、取像模组和电子装置 技术领域
本发明涉及光学成像技术,特别涉及一种光学成像系统、取像模组和电子装置。
背景技术
近几年,全面屏手机逐渐被消费者所推崇,可见高屏占比已成为手机的一种发展趋势,在这个趋势下,手机摄像镜头的尺寸面临小型化的要求,同时还要保证高成像品质,因此对摄像镜头的规格要求也越来越高。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:传统搭载于可携式电子产品上的摄像镜头虽然可以满足小型化要求,但摄像镜头的头部较大,不利于摄像镜头的屏下封装,且屏幕开孔较大,不能达到全面屏的视觉效果。
发明内容
鉴于以上内容,有必要提出一种光学成像系统、取像模组和电子装置,以解决上述问题。
本申请的实施例提出一种光学成像系统,由物侧到像侧依次包括:具有正屈折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面;具有屈折力的第二透镜;具有屈折力的第三透镜;具有正屈折力的第四透镜,所述第四透镜的像侧面于光轴处为凸面;具有屈折力的第五透镜;具有屈折力的第六透镜,所述第六透镜的物侧面于光轴处为凸面,所述第六透镜的像侧面于光轴处为凹面;所述光学成像系统满足以下关系式:0.5<f1/f26<1.6;其中,f26为所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的组合焦距,f1为所述第一透镜的有效焦距。
上述光学成像系统通过合理的屈折力配置和面型设置,同时具有广视角和头部小型化的优点。一方面,可以在保证光学成像系统高成像质量的前提下,减小电子装置屏幕的开孔大小,进而利于光学成像系统的屏下封装,从而利于电子装置达到全面屏的视觉效果;另一方面,在拍摄效果上,因光学成像系统具有较大视场角,可以获得更加开阔的视野,突出前景物体,满足用户的拍照体验。进一步地,满足上式,可以保证光学成像系统的小头化特征,如果第一透镜为负焦距,则为达到好的性能表现,光阑必须中置,从而导致第一透镜的口径增大,无法满足小头化;如果此比值过大,即第一透镜的焦距过大,会导致光焦度分配到后面几片透镜,敏感性增加,不利于组装量产。
在一些实施例中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的像侧面与物侧面均为非球面。
如此,非球面的面型有利于校正像差,提高成像质量。
在一些实施例中,所述光学成像系统满足以下关系式:TTL/Imgh<1.8;其中,TTL为所述第一透镜的物侧面至所述光学成像系统的像面于光轴上的距离,Imgh为所述光学成像系统最大视场角所对应的像高的一半。满足上式,由于TTL与Imgh比值小于1.8,在像面固定的情况下能保证系统总长的大小,实现小型化要求。
在一些实施例中,所述光学成像系统满足以下关系式:1.4<TTL/f<2;其中,TTL为所述第一透镜的物侧面至所述光学成像系统的像面于光轴上的距离,f为所述光学成像系统的有效焦距。满足上式,有助于在系统总长满足小型化要求的情况下,确定焦距的可选范围,若高于上限,同样的视场角系统总长偏大,不利于小型化;若低于下限,则导致所述光学系统趋于长焦,从而使视场角度偏小,无法获取足够多的物方信息。
在一些实施例中,所述光学成像系统满足以下关系式:
tan(HFOV)>1.05;其中,HFOV为所述光学成像系统最大视场角的一半。合理选择此比值,保持光学成像系统的广角及小头特性;如果此比值偏小,则视场角FOV偏小,无法实现广角特性,同时会导致焦距增大,进而第一透镜的口径会增大,小头特性也无法满足。
在一些实施例中,所述光学成像系统满足以下关系式:FNO<2.8;其中,FNO为所述光学成像系统的光圈数。满足上式,在满足小头的情况下,同时可以实现所述光学成像系统的大通光量。光学成像系统单位时间内的光通量大时,即使在较暗环境下拍摄,也能达到清晰的成像效果。若FNO过大,一方面导致衍射极限降低,一方面光通量减小,不利于较暗环境下的拍摄。
在一些实施例中,所述光学成像系统满足以下关系式:(L61-L62)/(2*L63)>0.25,其中,L61表示边缘视场与所述第六透镜像侧面的交点距光轴的最大垂直距离,L62表示边缘视场与所述第六透镜的像侧面的交点距光轴的最小垂直距离,所述边缘视场为入射并汇聚至所述光学成像系统的成像面的离光轴最远点的光束;L63表示中心视场与所述第六透镜的像侧面的交点距光轴的最大垂直距离,所述中心视场为入射并汇聚至所述光学成像系统的成像面中心的光束。满足上式,有利于保证光学成像系统的相对亮度,即使在较暗环境下拍摄,光学成像系统的边缘也能达到清晰的成像效果。如果不满足上式,可能会导致暗角产生,不利于后期的稳定量产。
在一些实施例中,所述光学成像系统满足以下关系式:(r11+r12)/(r11-r12)<15;其中,r11为所述第六透镜的物侧面于光轴处的曲率半径,r12为所述第六透镜的像侧面于光轴处的曲率半径。满足上式,能使光学成像系统很好地匹配感光元件的主光线角度(Chief Ray Angle,CRA)。如果不满足此比值要求,内视场的CRA无法做大,跟感光元件CRA的匹配性会有问题,无法满足量产要求。
在一些实施例中,所述光学成像系统还包括光阑,所述光阑位于所述第一透镜的物侧。
如此,光阑在整个光学成像系统中的位置较为靠前,使光学成像系统具有远心效果,并可增加感光元件接收影像的效率,从而提高成像质量。
在一些实施例中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述 第五透镜和所述第六透镜的材质均为塑料。
如此,塑料材质的透镜能够减少光学成像系统的重量并降低生成成本。
本发明的实施例提出一种取像模组,包括上述任意实施例所述的光学成像系统;和感光元件,所述感光元件设置于所述光学成像系统的像侧。
本发明实施例的取像模组包括光学成像系统,通过合理的屈折力配置和面型设置,同时具有广视角和头部小型化的优点。一方面,可以在保证光学成像系统高成像质量的前提下,减小电子装置屏幕的开孔大小,进而利于光学成像系统的屏下封装,从而利于电子装置达到全面屏的视觉效果;另一方面,在拍摄效果上,因光学成像系统具有较大视场角,可以获得更加开阔的视野,突出前景物体,满足用户的拍照体验。
本发明的实施例提出一种电子装置,包括:壳体和上述实施例的取像模组,所述取像模组安装在所述壳体上。
本发明实施例的电子装置包括取像模组,该取像模组中的光学成像系统同时具有广视角和头部小型化的优点,保证光学成像系统高成像质量的前提下,减小电子装置屏幕的开孔大小,进而利于光学成像系统的屏下封装,使电子装置可达到全面屏的视觉效果;在拍摄效果上,因光学成像系统具有较大视场角,可以获得更加开阔的视野,突出前景物体,满足用户的拍照体验。该电子装置不仅具有较好的成像能力,还能提高屏占比。
附图说明
图1是本发明第一实施例的光学成像系统的结构示意图。
图2是本发明第一实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图3是本发明第二实施例的光学成像系统的结构示意图。
图4是本发明第二实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图5是本发明第三实施例的光学成像系统的结构示意图。
图6是本发明第三实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图7是本发明第四实施例的光学成像系统的结构示意图。
图8是本发明第四实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图9是本发明第五实施例的光学成像系统的结构示意图。
图10是本发明第五实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图11是本发明第六实施例的光学成像系统的结构示意图。
图12是本发明第六实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图13是本发明实施例的取像模组的结构示意图。
图14是本发明实施例的电子装置的结构示意图。
主要元件符号说明
电子装置                      1000
取像模组                      100
光学成像系统                  10
第一透镜                      L1
第二透镜                      L2
第三透镜                      L3
第四透镜                      L4
第五透镜                      L5
第六透镜                      L6
红外滤光片                    L7
光阑                          STO
物侧面                        S1、S3、S5、S7、S9、S11、S13
像侧面                        S2、S4、S6、S8、S10、S12、S14
像面                          S15
感光元件                      20
壳体                          200
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二 特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
首先,对本申请实施例涉及的术语进行说明:
视场(Field of view,FOV):在光学仪器中,以光学仪器的镜头为顶点,以被摄物的物像可通过镜头的最大范围的两条边缘构成的夹角,称为视场。视场的大小决定了光学仪器的视野范围,视场越大,视野就越大。也就是说,在视场内的物体可以通过镜头被拍摄,在视场外的物体不可视。整个可视范围与光学仪器的成像面一一对应,在成像面上自光轴处向外均匀分布为N个部分,中心视场的光线汇聚于光轴处且记为0视场,边缘视场的光线汇聚于离轴最远点处且记为1.0视场,0~0.5为内视场,0.6~1.0为外视场。
请参阅图1,本发明实施例的光学成像系统10从物侧至像侧依次包括具有正屈折力的第一透镜L1;具有屈折力的第二透镜L2;具有屈折力的第三透镜L3;具有正屈折力的第四透镜L4;具有屈折力的第五透镜L5;具有屈折力的第六透镜L6。
第一透镜L1具有物侧面S1及像侧面S2,物侧面S1于光轴处为凸面;第二透镜L2具有物侧面S3及像侧面S4;第三透镜L3具有物侧面S5及像侧面S6,第四透镜L4具有物侧面S7及像侧面S8,像侧面S8于光轴处为凸面;第五透镜L5具有物侧面S9及像侧面S10;第六透镜L6具有物侧面S11及像侧面S12,物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。另外,光学成像系统10的像侧还有一像面S15,优选地,像面S15可以为感光元件的接收面。
光学成像系统10满足下列关系式:
tan(HFOV)>1.05;
其中,HFOV为所述光学成像系统10最大视场角的一半,即tan(HFOV)可以为大于1.05的任意取值,例如,取值可为1.21、1.22等。
上述光学成像系统10通过合理的屈折力配置和面型设置,同时具有广视角和头部小型化的优点。一方面,可以在保证光学成像系统10高成像质量的前提下,减小电子装置屏幕的开孔大小,进而利于光学成像系统10进行屏下封装,达到全面屏的视觉效果;另一方面,在拍摄效果上,因光学成像系统10具有较大视场角,可以获得更加开阔的视野,突出前景物体,满足用户的拍照体验。
满足上式,能够保持光学成像系统10的广角及小头特性;如果此值偏小,则视场角FOV偏小,无法实现广角特性,同时会导致焦距增大,进而第一透镜L1的口径会增大, 小头特性也无法满足。
当光学成像系统10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像系统10,并依次穿过第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6,最终汇聚到像面S15上。
在一些实施例中,光学成像系统10还包括红外滤光片L7,红外滤光片L7具有物侧面S13及像侧面S14。红外滤光片L7设置在第六透镜L6的像侧面S12,红外滤光片L7用于过滤成像的光线,具体用于隔绝红外光,防止红外光被感光元件接收,从而防止红外光对正常影像的色彩与清晰度造成影响,进而提高光学成像系统10的成像品质。
在一些实施例中,光学成像系统10还包括光阑STO。光阑STO可以设置在第一透镜L1的物侧、第六透镜L6与红外滤光片L7之间、任意两个透镜之间或任意一个透镜的表面上。光阑STO用以减少杂散光,有助于提升影像质量。优选的,光阑STO设置于第一透镜L1之前。在一些实施例中,光阑STO设置于第一透镜L1的物侧,即光阑STO设置于被摄物体与第一透镜L1之间,或设于第一透镜L1的物侧面上,此时光阑STO在整个光学成像系统10中的位置较为靠前,使光学成像系统10具有远心效果,并可增加感光元件接收影像的效率,从而提高成像质量。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料,此时,塑料材质的透镜能够减少光学成像系统10的重量并降低生成成本。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为玻璃,此时,光学成像系统10能够耐受较高的温度且具有较好的光学性能。在另一些实施例中,也可以仅是第一透镜L1为玻璃材质,而其他透镜为塑料材质,此时,最靠近物侧的第一透镜L1能够较好地适应物侧环境温度的影响,且由于其他透镜为塑料材质的关系,从而使光学成像系统10保持较低的生产成本。或者,在一些实施例中,第一透镜L1的材质为玻璃,其他透镜的材质可任意组合。如此,光学成像系统10通过对透镜的材料的合理配置,在校正像差和解决温漂等问题的同时可以实现超薄化,且成本较低。
在一些实施例中,光学成像系统10中至少有一个透镜的至少一个表面为非球面。例如,在一些实施例中,光学成像系统10中的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的像侧面与物侧面均为非球面。非球面的面型有利于校正像差,提高成像质量。
非球面的面型由以下公式决定:
Figure PCTCN2020114839-appb-000001
其中,Z是非球面上任意一点与表面顶点的纵向距离,r是非球面上任意一点到光轴的距离,c的顶点曲率(曲率半径的倒数),k是圆锥常数,Ai是非球面第i-th阶的修正系数。
如此,光学成像系统10可以通过调节各透镜表面的曲率半径和非球面系数,有效减小光学成像系统10的尺寸,并有效地修正像差,提高成像质量。
在一些实施例中,光学成像系统10满足以下关系式:
TTL/Imgh<1.8;
其中,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离(系统总长),Imgh为所述光学成像系统最大视场角所对应的像高的一半,即TTL/Imgh可以为小于1.8的任意取值,例如取值为1.37、1.40、1.41、1.40、1.42、1.37等。
满足上式,由于TTL与Imgh比值小于1.8,在像面S15固定的情况下能保证系统总长的大小,实现小型化要求;如果不满足此比值要求,系统总长会超长,无法实现小型化。
在一些实施例中,所述光学成像系统满足以下关系式:
1.4<TTL/f<2;
其中,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离,f为所述光学成像系统10的有效焦距。即TTL/f可以为(1.4,2)范围内的任意取值,例如取值为1.63、1.64、1.67、1.68、1.70等。
满足上式,有助于在系统总长满足小型化要求的情况下,确定焦距的可选范围,若不满足此范围,焦距过小会导致视场角偏大,这就得要求有更长的系统总长;焦距过大,会导致视场角偏小,也会相应的要求增加系统总长,以满足性能要求。
在一些实施例中,所述光学成像系统满足以下关系式:
0.5<f1/f26<1.6;
其中,f26为所述第二透镜L2至所述第六透镜L6的组合焦距,即第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的组合焦距,f1为所述第一透镜L1的有效焦距。即f1/f26可以为(0.5,1.6)范围内的任意取值,例如取值为1.02、1.21、0.96、1.14、1.46、1.26等。
满足上式,可以保证光学成像系统10的小头化,如果第一透镜L1为负焦距,则为达到好的性能表现,光阑必须中置,从而导致第一透镜L1的口径增大,无法满足小头化要求;如果此比值过大,即第一透镜L1的焦距过大,会导致光焦度分配到后面几片透镜,敏感性增加,不利于组装量产。
在一些实施例中,所述光学成像系统满足以下关系式:
FNO<2.8;
其中,FNO为所述光学成像系统10的光圈数。即FNO可以为小于2.8的任意取值,例如取值为2.45、2.60等。
满足上式,在满足小头的情况下,同时可以实现所述光学成像系统10的大通光量。光学成像系统10单位时间内的光通量大时,即使在较暗环境下拍摄,也能达到清晰的成像效果。若FNO过大,一方面导致衍射极限降低,一方面光通量减小,不利于较暗环境下的拍摄。
在一些实施例中,所述光学成像系统满足以下关系式:
(L61-L62)/(2*L63)>0.25;
请再次参见图1,L61表示边缘视场与所述第六透镜L6像侧面S12的交点距光轴的最大垂直距离,L62表示边缘视场与所述第六透镜L6的像侧面S12的交点距光轴的最小垂直距离, 所述边缘视场为入射并汇聚至所述光学成像系统10的成像面的离光轴最远点的光束;L63表示中心视场与所述第六透镜L6的像侧面是2的交点距光轴的最大垂直距离,所述中心视场为入射并汇聚至所述光学成像系统10的成像面中心的光束。
满足上式,有利于保证光学成像系统10的相对亮度,即使在较暗环境下拍摄,光学成像系统10的边缘也能达到清晰的成像效果。如果不满足上式,可能会导致暗角产生,不利于后期的稳定量产。
在一些实施例中,所述光学成像系统满足以下关系式:
(r11+r12)/(r11-r12)<15;
其中,r11为所述第六透镜L6的物侧面S11于光轴处的曲率半径,r12为所述第六透镜L6的像侧面S12于光轴处的曲率半径。即(r11+r12)/(r11-r12)可以为小于15的任意取值,例如取值为-546.12、5.09、7.45、7.82、6.90、10.30等。
满足上式,能使光学成像系统10很好地匹配感光元件的主光线角度(Chief Ray Angle,CRA)。如果不满足此比值要求,内视场的CRA无法做大,跟感光元件CRA的匹配性会有问题,无法满足量产要求。
第一实施例
请参照图1和图2,第一实施例的光学成像系统10由物侧到像侧依次包括:光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、及红外滤光片L7。
其中,第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。红外滤光片L7的材质为玻璃。
第一实施例的光学成像系统符合以下条件:tan(HFOV)=1.21,TTL/Imgh=1.37,TTL/f=1.63,f1/f26=1.02,FNO=2.45,(L61-L62)/(2*L63)=0.32,(r11+r12)/(r11-r12)=6.90。
第一实施例中的参考波长为587nm,且第一实施例中的光学成像系统10满足下面表格 的条件。由物面至像面S15的各元件依次按照表1从上至下的各元件的顺序排列。面序号1和2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。第一透镜的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。表2为表1中各透镜的非球面表面的相关参数表,其中K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表1
Figure PCTCN2020114839-appb-000002
需要说明的是,EFL为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离。
表2
面序号 K A4 A6 A8 A10 A12 A14 A16 A18 A20
1 -1.7870 -0.0600 0.1264 -4.1726 47.2284 -326.0259 1390.0988 -3604.9844 5229.8543 -3266.4588
2 37.6561 -0.1839 -0.3966 3.0482 -21.5481 90.4546 -236.4204 377.7106 -336.7218 128.0101
3 -67.2116 -0.0962 0.0920 -2.6518 9.6315 -20.8066 22.8802 -9.6364 0.0000 0.0000
4 -10.0684 -0.1382 0.5435 -2.4026 4.1061 -4.0947 2.4810 -0.7247 0.0000 0.0000
5 82.1620 -0.4090 0.3399 0.3550 -7.0334 23.2957 -35.8331 29.3838 -12.4917 2.1538
6 4.4683 -0.3800 0.7279 -0.9424 -0.6307 3.5705 -4.6154 2.9129 -0.9283 0.1191
7 -4.9879 -0.3642 1.2450 -0.8331 -2.6255 6.4317 -6.4658 3.4772 -0.9790 0.1131
8 -3.2284 -0.3486 1.2357 -3.3061 5.7262 -6.4636 4.7184 -2.1418 0.5498 -0.0609
9 -99.0000 0.6052 -0.7182 0.3164 0.1107 -0.2469 0.1554 -0.0503 0.0084 -0.0006
10 1.1450 0.7799 -1.2381 1.0996 -0.6622 0.2696 -0.0715 0.0117 -0.0011 0.0000
11 -4.5530 0.0804 -0.3427 0.2185 -0.0470 -0.0055 0.0048 -0.0010 0.0001 0.0000
12 -3.4095 -0.0536 -0.1144 0.1139 -0.0470 0.0107 -0.0014 0.0001 0.0000 0.0000
其中图2中S是弧矢方向的像散曲线,T是子午方向的象散曲线。
第二实施例
请参照图3和图4,第二实施例的光学成像系统10由物侧到像侧依次包括:光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、及红外滤光片L7。
其中,第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凸面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。红外滤光片L7的材质为玻璃。
第二实施例的光学成像系统10符合以下条件:tan(HFOV)=1.22,TTL/Imgh=1.40,TTL/f=1.67,f1/f26=1.21,FNO=2.45,(L61-L62)/(2*L63)=0.36,(r11+r12)/(r11-r12)=7.45。
第二实施例中的参考波长为587nm,光学成像系统10的各参数由表3和表4给出,且其中各参数的定义可由第一实施例得出,在此不再赘述。
表3
Figure PCTCN2020114839-appb-000003
Figure PCTCN2020114839-appb-000004
需要说明的是,EFL为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离。
表4
面序号 K A4 A6 A8 A10 A12 A14 A16 A18 A20
1 -0.0679 -0.0506 0.2082 -6.4236 82.0765 -625.7980 2915.6074 -8167.2645 12640.0459 -8309.6402
2 18.3090 -0.1476 -0.2639 1.5520 -11.9852 51.3008 -135.3960 216.1839 -190.9766 71.4160
3 -53.0210 -0.1065 0.0859 -2.1893 7.3737 -15.1756 15.2152 -5.6460 0.0000 0.0000
4 -99.0000 -0.1088 0.3497 -1.6846 2.7473 -2.3343 1.1099 -0.2827 0.0000 0.0000
5 102.1620 -0.3556 0.6490 -2.5430 4.7712 -4.7187 4.2963 -4.7252 3.3502 -0.9415
6 5.4582 -0.3187 0.7611 -1.6909 2.0301 -1.3134 0.4973 -0.1491 0.0482 -0.0093
7 1.6296 -0.2815 0.6731 0.4671 -3.9226 6.4685 -5.3301 2.4499 -0.6045 0.0629
8 -2.7974 -0.1772 0.3041 -0.4720 0.3579 0.0603 -0.3882 0.3362 -0.1243 0.0172
9 -86.3552 0.5101 -0.5300 0.3000 -0.1164 0.0325 -0.0066 0.0009 -0.0001 0.0000
10 1.1450 0.6100 -0.7179 0.4711 -0.2081 0.0632 -0.0128 0.0017 -0.0001 0.0000
11 -4.0089 0.1027 -0.2273 0.1099 -0.0189 -0.0015 0.0012 -0.0002 0.0000 0.0000
12 -3.1451 -0.0017 -0.1046 0.0692 -0.0217 0.0039 -0.0004 0.0000 0.0000 0.0000
其中图4中S是弧矢方向的像散曲线,T是子午方向的象散曲线。
第三实施例
请参照图5和图6,第三实施例的光学成像系统10由物侧到像侧依次包括:光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、及红外滤光片L7。
其中,第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凸面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。红外滤光片L7的材质为玻璃。
第三实施例的光学成像系统10符合以下条件:tan(HFOV)=1.21,TTL/Imgh=1.41,TTL/f=1.68,f1/f26=0.96,FNO=2.45,(L61-L62)/(2*L63)=0.35,(r11+r12)/(r11-r12)=7.82。
表5
Figure PCTCN2020114839-appb-000005
需要说明的是,EFL为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离。
表6
面序号 K A4 A6 A8 A10 A12 A14 A16 A18 A20
1 -0.1548 -0.0536 0.2682 -7.0831 84.6175 -612.2649 2737.1290 -7424.7654 11215.7032 -7245.7835
2 18.3090 -0.1339 -0.4101 3.6150 -26.4826 113.3799 -299.7440 478.0511 -421.5499 157.8797
3 -53.0210 -0.0970 -0.0989 -0.6503 0.9122 -0.4579 -1.8420 2.0301 0.0000 0.0000
4 0.0000 -0.1446 0.1777 -0.0528 -1.7510 3.5047 -2.5702 0.6201 0.0000 0.0000
5 82.1620 -0.3327 0.1698 -0.0786 -0.0583 -2.0626 8.1024 -11.3814 7.1299 -1.7077
6 5.3955 -0.2237 0.1286 0.3169 -1.6714 3.1036 -3.0028 1.6203 -0.4632 0.0545
7 1.4299 -0.2005 0.2706 1.0861 -4.1876 6.2822 -5.1258 2.3978 -0.6060 0.0643
8 -2.7441 -0.1885 0.4402 -0.9810 1.4111 -1.3342 0.8039 -0.2889 0.0560 -0.0045
9 -81.9399 0.4843 -0.4698 0.2121 -0.0439 -0.0038 0.0051 -0.0015 0.0002 0.0000
10 1.1450 0.6150 -0.7348 0.4776 -0.2053 0.0602 -0.0118 0.0015 -0.0001 0.0000
11 -3.9232 0.1229 -0.2774 0.1616 -0.0482 0.0083 -0.0008 0.0000 0.0000 0.0000
12 -3.1147 0.0031 -0.1231 0.0870 -0.0305 0.0064 -0.0008 0.0001 0.0000 0.0000
其中图6中S是弧矢方向的像散曲线,T是子午方向的象散曲线。
第四实施例
请参照图7和图8,第四实施例的光学成像系统10由物侧到像侧依次包括:光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、 及红外滤光片L7。
其中,第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凸面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凸面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。红外滤光片L7的材质为玻璃。
第四实施例的光学成像系统10符合以下条件:tan(HFOV)=1.22,TTL/Imgh=1.40,TTL/f=1.70,f1/f26=1.14,FNO=2.45,(L61-L62)/(2*L63)=0.37,(r11+r12)/(r11-r12)=-546.12。
表7
Figure PCTCN2020114839-appb-000006
需要说明的是,EFL为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离。
表8
面序号 K A4 A6 A8 A10 A12 A14 A16 A18 A20
1 0.2814 -0.0656 0.9673 -21.4019 252.706 -1805.146 7948.144 -21128.612 31112.477 -19498.847
2 23.9458 -0.1067 -0.6178 5.7570 -41.788 180.5160 -485.500 791.8068 -717.0294 277.0186
3 -72.4485 -0.2156 0.8143 -5.1042 13.6959 -21.2027 14.0813 -1.7154 0.0000 0.0000
4 -84.8419 -0.2271 -0.6357 4.0767 -11.268 15.0536 -9.6033 2.3209 0.0000 0.0000
5 98.2930 -0.1058 -1.1912 1.8132 5.9390 -33.8633 69.7828 -73.0219 38.6863 -8.2891
6 0.0000 0.2489 -1.5707 4.6091 -8.6466 10.0082 -7.0281 2.9181 -0.6596 0.0625
7 -2.1692 -0.1644 -0.2831 3.5991 -9.0353 11.0663 -7.5944 2.9659 -0.6112 0.0509
8 -2.7599 -0.1491 -0.0578 0.6183 -1.2790 1.4617 -1.0608 0.4917 -0.1311 0.0151
9 -33.8660 0.5104 -0.4649 0.1776 -0.0037 -0.0276 0.0127 -0.0028 0.0003 0.0000
10 1.1499 0.4149 -0.5284 0.3462 -0.1489 0.0432 -0.0083 0.0010 -0.0001 0.0000
11 -3.6934 0.1465 -0.2715 0.1361 -0.0305 0.0022 0.0004 -0.0001 0.0000 0.0000
12 -3.4484 0.0604 -0.1698 0.0990 -0.0293 0.0052 -0.0006 0.0000 0.0000 0.0000
其中图8中S是弧矢方向的像散曲线,T是子午方向的象散曲线。
第五实施例
请参照图9和图10,第五实施例的光学成像系统10由物侧到像侧依次包括:光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6、及红外滤光片L7。
其中,第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。红外滤光片L7的材质为玻璃。
第五实施例的光学成像系统10符合以下条件:tan(HFOV)=1.21,TTL/Imgh=1.42,TTL/f=1.68,f1/f26=1.46,FNO=2.45,(L61-L62)/(2*L63)=0.33,(r11+r12)/(r11-r12)=5.09。
表9
Figure PCTCN2020114839-appb-000007
Figure PCTCN2020114839-appb-000008
需要说明的是,EFL为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离。
表10
面序号 K A4 A6 A8 A10 A12 A14 A16 A18 A20
1 -1.6629 -0.0664 0.2067 -5.2516 59.5857 -419.1291 1839.0705 -4920.9021 7357.4534 -4719.0323
2 33.7221 -0.1954 -0.4000 2.9819 -19.2743 76.5153 -189.9749 287.7766 -242.6256 86.8394
3 -54.1010 -0.0587 -0.1987 -1.0023 4.1266 -9.6665 11.2839 -5.0713 0.0000 0.0000
4 -5.4404 -0.0256 -0.0235 -0.6321 1.1566 -1.2008 0.8675 -0.3159 0.0000 0.0000
5 82.2121 -0.3343 0.2736 -0.5696 -0.6791 5.5090 -9.5442 7.7607 -3.1062 0.4837
6 4.7055 -0.2601 0.1734 0.1954 -1.4856 3.0051 -3.0220 1.6540 -0.4718 0.0547
7 -6.5730 -0.0069 -0.3853 2.2805 -5.3730 6.7967 -5.0409 2.2047 -0.5270 0.0530
8 -2.3212 -0.2993 0.5507 -0.7872 0.7917 -0.5464 0.2513 -0.0764 0.0160 -0.0019
9 -99.0000 0.1479 0.0832 -0.3588 0.3689 -0.2094 0.0727 -0.0154 0.0018 -0.0001
10 13.3429 0.5352 -0.6764 0.4632 -0.2085 0.0631 -0.0126 0.0016 -0.0001 0.0000
11 -3.2313 0.0972 -0.2384 0.1393 -0.0410 0.0068 -0.0006 0.0000 0.0000 0.0000
12 -2.9546 -0.0190 -0.0877 0.0639 -0.0222 0.0046 -0.0006 0.0001 0.0000 0.0000
其中图10中S是弧矢方向的像散曲线,T是子午方向的象散曲线。
第六实施例
请参照图11和图12,第六实施例的光学成像系统10由物侧到像侧依次包括:光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、及红外滤光片L7。
其中,第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面;第二透镜L2的 物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。红外滤光片L7的材质为玻璃。
第六实施例的光学成像系统10符合以下条件:tan(HFOV)=1.21,TTL/Imgh=1.37,TTL/f=1.64,f1/f26=1.26,FNO=2.60,(L61-L62)/(2*L63)=0.35,(r11+r12)/(r11-r12)=10.30。
表11
Figure PCTCN2020114839-appb-000009
需要说明的是,EFL为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为所述第一透镜L1的物侧面S1至所述光学成像系统10的像面S15于光轴上的距离。
表12
面序号 K A4 A6 A8 A10 A12 A14 A16 A18 A20
1 -4.2566 -0.0888 0.7192 -17.8957 231.3085 -1838.810 9084.409 -27232.82 45373.768 -32249.97
2 32.8383 -0.2006 -0.5530 5.0330 -37.6423 172.3984 -493.922 862.5071 -837.7021 346.3258
3 -63.385 -0.0658 -0.2980 -0.5948 2.9697 -8.1747 10.3685 -4.7419 0.0000 0.0000
4 0.0000 0.0040 -0.1041 -0.8704 1.8720 -2.0197 1.2980 -0.4137 0.0000 0.0000
5 83.8100 -0.3086 0.5379 -2.0705 3.0701 1.1355 -8.1576 9.5663 -4.9356 0.9824
6 4.4004 -0.4175 1.0182 -2.4640 3.4973 -2.5598 0.6651 0.2702 -0.2170 0.0401
7 -6.5730 -0.4614 1.4133 -2.0724 1.4174 -0.0919 -0.5473 0.3962 -0.1210 0.0144
8 -3.7441 -0.3608 1.1747 -2.4980 3.2636 -2.6145 1.2171 -0.2772 0.0120 0.0038
9 -99.000 0.5701 -0.5283 -0.0183 0.4014 -0.3825 0.1857 -0.0512 0.0076 -0.0005
10 21.1450 0.8057 -1.1743 0.9330 -0.4883 0.1710 -0.0392 0.0056 -0.0005 0.0000
11 -4.1686 0.1022 -0.3418 0.2319 -0.0754 0.0129 -0.0010 0.0000 0.0000 0.0000
12 -3.2579 -0.0362 -0.1176 0.0964 -0.0344 0.0068 -0.0008 0.0001 0.0000 0.0000
其中图12中S是弧矢方向的像散曲线,T是子午方向的象散曲线。
请参照图13,本发明实施例的取像模组100包括光学成像系统10和感光元件20,感光元件20设置在光学成像系统10的像侧。
具体地,感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)影像感测器或者电荷耦合元件(CCD,Charge-coupled Device)。
本发明实施例的取像模组100包括光学成像系统10,通过合理的屈折力配置和面型设置,同时具有广视角和头部小型化的优点。一方面,可以在保证光学成像系统10高成像质量的前提下,减小电子装置屏幕的开孔大小,进而利于光学成像系统10的屏下封装,从而利于电子装置达到全面屏的视觉效果;另一方面,在拍摄效果上,因光学成像系统10具有较大视场角,可以获得更加开阔的视野,突出前景物体,满足用户的拍照体验。
请参照图14,本发明实施例的电子装置1000包括壳体200和取像模组100,取像模组100安装在壳体200上以用于获取图像。
本发明实施例的电子装置1000包括但不限于为智能手机(如图14)、汽车车载镜头、监控镜头、平板电脑、笔记本电脑、电子书籍阅读器、便携多媒体播放器(PMP)、便携电话机、视频电话机、数码静物相机、移动医疗装置、可穿戴式设备等支持成像的电子装置。
上述实施例的电子装置1000中的光学成像系统10通过合理的屈折力配置和面型设置,同时具有广视角和头部小型化的优点。一方面,可以在保证光学成像系统10高成像质量的前提下,减小电子装置屏幕的开孔大小,进而利于光学成像系统10的屏下封装,使电子装置1000可达到全面屏的视觉效果;另一方面,在拍摄效果上,因光学成像系统10具有较大视场角,可以获得更加开阔的视野,突出前景物体,满足用户的拍照体验。该电子装置1000不仅具有较好的成像能力,还能提高屏占比。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (12)

  1. 一种光学成像系统,其特征在于,由物侧到像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面;
    具有屈折力的第二透镜;
    具有屈折力的第三透镜;
    具有正屈折力的第四透镜,所述第四透镜的像侧面于光轴处为凸面;
    具有屈折力的第五透镜;
    具有屈折力的第六透镜,所述第六透镜的物侧面于光轴处为凸面,所述第六透镜的像侧面于光轴处为凹面;
    所述光学成像系统满足以下关系式:
    0.5<f1/f26<1.6;
    其中,f26为所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的组合焦距,f1为所述第一透镜的有效焦距。
  2. 如权利要求1所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的像侧面与物侧面均为非球面。
  3. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下关系式:
    TTL/Imgh<1.8;
    其中,TTL为所述第一透镜的物侧面至所述光学成像系统的像面于光轴上的距离,Imgh为所述光学成像系统最大视场角所对应的像高的一半。
  4. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下关系式:
    1.4<TTL/f<2;
    其中,TTL为所述第一透镜的物侧面至所述光学成像系统的像面于光轴上的距离,f为所述光学成像系统的有效焦距。
  5. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下关系式:
    tan(HFOV)>1.05;
    其中,HFOV为所述光学成像系统最大视场角的一半。
  6. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下关系式:
    FNO<2.8;
    其中,FNO为所述光学成像系统的光圈数。
  7. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下关系式:
    (L61-L62)/(2*L63)>0.25
    其中,L61表示边缘视场与所述第六透镜像侧面的交点距光轴的最大垂直距离,L62表示边缘视场与所述第六透镜的像侧面的交点距光轴的最小垂直距离,所述边缘视场为入射并汇聚至所述光学成像系统的成像面的离光轴最远点的光束;L63表示中心视场与所述第六透镜的像侧面的交点距光轴的最大垂直距离,所述中心视场为入射并汇聚至所述光学成像系统的成像面中心的光束。
  8. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下关系式:
    (r11+r12)/(r11-r12)<15;
    其中,r11为所述第六透镜的物侧面于光轴处的曲率半径,r12为所述第六透镜的像侧面于光轴处的曲率半径。
  9. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还包括光阑,所述光阑位于所述第一透镜的物侧。
  10. 如权利要求1所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的材质均为塑料。
  11. 一种取像模组,其特征在于,包括:
    如权利要求1至10中任意一项所述的光学成像系统;和
    感光元件,所述感光元件设置于所述光学成像系统的像侧。
  12. 一种电子装置,其特征在于,包括:
    壳体;和
    如权利要求11所述的取像模组,所述取像模组安装在所述壳体上。
PCT/CN2020/114839 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置 WO2022052050A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114839 WO2022052050A1 (zh) 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114839 WO2022052050A1 (zh) 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置

Publications (1)

Publication Number Publication Date
WO2022052050A1 true WO2022052050A1 (zh) 2022-03-17

Family

ID=80632599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114839 WO2022052050A1 (zh) 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置

Country Status (1)

Country Link
WO (1) WO2022052050A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044250A (ja) * 2012-08-24 2014-03-13 Sony Corp 撮像レンズおよび撮像装置
CN107817572A (zh) * 2016-09-14 2018-03-20 大立光电股份有限公司 影像镜头组、取像装置及电子装置
CN108241200A (zh) * 2016-12-26 2018-07-03 三星电机株式会社 光学成像系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044250A (ja) * 2012-08-24 2014-03-13 Sony Corp 撮像レンズおよび撮像装置
CN107817572A (zh) * 2016-09-14 2018-03-20 大立光电股份有限公司 影像镜头组、取像装置及电子装置
CN108241200A (zh) * 2016-12-26 2018-07-03 三星电机株式会社 光学成像系统

Similar Documents

Publication Publication Date Title
CN111999859A (zh) 光学成像系统、取像模组和电子装置
CN113391433B (zh) 光学镜头、摄像模组及电子设备
CN113552696A (zh) 光学系统、取像模组及电子设备
CN113156619A (zh) 光学系统、摄像模组及电子设备
CN212540863U (zh) 光学成像系统、取像模组和电子装置
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
CN214151197U (zh) 光学系统、摄像模组及电子设备
TW201918741A (zh) 光學成像鏡頭
WO2022082512A1 (zh) 光学成像系统、取像模组及电子装置
CN108431663B (zh) 用于拍摄图像的标准到远摄镜头系统
CN111983786A (zh) 光学成像系统、取像模组和电子装置
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN110967805B (zh) 光学摄像镜头组、取像模组及电子装置
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN214845997U (zh) 光学系统、摄像模组及电子设备
CN110927924A (zh) 光学摄像镜头组、取像模组和电子装置
CN214474193U (zh) 光学系统、摄像模组及电子设备
WO2022056934A1 (zh) 光学成像系统、取像模组和电子装置
WO2022052050A1 (zh) 光学成像系统、取像模组和电子装置
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
WO2022011550A1 (zh) 光学成像系统、取像模组和电子装置
WO2022011546A1 (zh) 光学镜头、取像模组及电子装置
CN113933966A (zh) 光学镜头、摄像模组及电子设备
CN113933969A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20952838

Country of ref document: EP

Kind code of ref document: A1