CN113933966A - 光学镜头、摄像模组及电子设备 - Google Patents

光学镜头、摄像模组及电子设备 Download PDF

Info

Publication number
CN113933966A
CN113933966A CN202111195102.XA CN202111195102A CN113933966A CN 113933966 A CN113933966 A CN 113933966A CN 202111195102 A CN202111195102 A CN 202111195102A CN 113933966 A CN113933966 A CN 113933966A
Authority
CN
China
Prior art keywords
lens
optical
optical lens
lens element
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111195102.XA
Other languages
English (en)
Other versions
CN113933966B (zh
Inventor
曾晗
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jingchao Optical Co Ltd
Original Assignee
Jiangxi Jingchao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jingchao Optical Co Ltd filed Critical Jiangxi Jingchao Optical Co Ltd
Priority to CN202111195102.XA priority Critical patent/CN113933966B/zh
Publication of CN113933966A publication Critical patent/CN113933966A/zh
Application granted granted Critical
Publication of CN113933966B publication Critical patent/CN113933966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

本发明公开的光学镜头、摄像模组及电子设备,光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜;第一透镜具有正屈折力,第二透镜具有负屈折力,第三透镜具有屈折力,第四透镜具有正屈折力,第五透镜具有屈折力,第六透镜具有屈折力,第七透镜具有负屈折力,光学镜头满足以下关系:1<(SD11+SD72)/IMGH<1.2,SD11为第一透镜的物侧面的最大有效半口径;SD72为第七透镜的像侧面最大有效半口径;IMGH为光学镜头的成像面上最大有效成像圆的半径。本发明提供的光学镜头、摄像模组及电子设备,能够在满足轻薄、小型化设计的同时,具有大像面的特点,提高光学镜头的分辨率和成像清晰度,以提升光学镜头的拍摄质量。

Description

光学镜头、摄像模组及电子设备
技术领域
本发明涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。
背景技术
目前,随着摄像技术的发展,人们对光学镜头的成像品质的要求越来越高,不仅要求光学镜头更加轻薄小型化,同时还要达到更高的成像质量。为了达到更高的成像质量,光学镜头需要增加透镜的数量来矫正像差。但是,透镜数量的增加又提高了透镜的加工成型、组装的难度,以及增大了光学镜头的体积。因此,相关技术中,在满足光学镜头轻薄小型化的设计趋势下,光学镜头的画质感较差、分辨率较低,且光学镜头的成像质量也不够清晰,难以满足人们对光学镜头的高清成像要求。
发明内容
本发明实施例公开了一种光学镜头、摄像模组及电子设备,能够在实现光学镜头的轻薄、小型化设计的同时,具有大像面的特点,改善光学镜头的画质感,提高光学镜头的分辨率和成像清晰度,以提升光学镜头的拍摄质量,实现清晰成像。
为了实现上述目的,第一方面,本发明公开了一种光学镜头,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜;
所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;
所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
所述第三透镜具有屈折力,所述第三透镜的像侧面于近光轴处为凹面;
所述第四透镜具有正屈折力,所述第四透镜的物侧面于近光轴处为凸面;
所述第五透镜具有屈折力,所述第五透镜的物侧面于近光轴处为凹面;
所述第六透镜具有屈折力,所述第六透镜的物侧面于近光轴处为凸面,所述第六透镜的像侧面于近光轴处为凹面;
所述第七透镜具有负屈折力,所述第七透镜的像侧面于近光轴处为凹面;
所述光学镜头满足以下关系式:
1<(SD11+SD72)/IMGH<1.2;
其中,SD11为所述第一透镜的物侧面的最大有效半口径;SD72为所述第七透镜的像侧面最大有效半口径;IMGH为所述光学镜头的成像面上最大有效成像圆的半径。
在本申请提供的光学镜头中,第一透镜具有较强的正屈折力,有利于大角度光线进入光学镜头,提高光学镜头的视场范围;第二透镜具有负屈折力,可以良好地矫正第一透镜朝正方向的巨大像差;第一透镜和第二透镜均采用朝物侧凸出的弯月形面型,有助于将屈折力较强的透镜(第一透镜)配置在光学镜头的物侧端,以避免屈折力较强的透镜的形状过度扭曲而难以加工的情况,同时还可以与前后透镜保持合理的空气间隙,有利于缩短光学镜头的光学总长,增大像面大小;以及还有利于边缘光线以平缓角度进入光学镜头,缓解大视场下的边缘成像出现暗角的问题;同时还配合第三透镜提供的正或负屈折力及其像侧面于近光轴处的凹面面型设计,有利于平衡第一透镜产生的场曲和畸变。第四透镜提供的正屈折力及其物侧面于近光轴处的凸面面型设计,有利于矫正第一透镜、第二透镜和第三透镜产生的光程差,同时还配合第五透镜提供的正或负屈折力及物侧面于近光轴处的凹面面型设计,能够进一步矫正第一透镜、第二透镜和第三透镜产生的光程差。而第六透镜提供的正或负屈折力及物侧面和像侧面于近光轴处的凸凹面面型设计,有利于修正光学镜头的像差,提升成像解析力,同时还配合第七透镜提供的负屈折力及其物侧面和像侧面于近光轴处的凹面面型设计,不仅有利于平衡入射光线经过第一透镜至第六透镜所产生的像散、场曲,校正歪曲像;还有利于使光学镜头获得大像面,以匹配更高像素的感光芯片,同时还有利于边缘光线以较小的偏转角射入到像面,从而使得像面边缘也可获得较高的相对亮度,避免暗角,提升成像质量。
也即是说,通过选取合适数量的透镜并合理配置各个透镜的屈折力、面型,不仅能够保证光学镜头具有良好的成型良率及组装良率,同时还有利于增大所述光学镜头的像面大小,以使所述光学镜头具有大像面的特点,改善所述光学镜头的画质感,以及提高所述光学镜头的分辨率和成像清晰度,使所述光学镜头具有更好的成像效果,满足人们对所述光学镜头的高清成像要求;并且还使所述光学镜头满足以下关系式:1<(SD11+SD72)/IMGH<1.2时,所述第一透镜的物侧面的口径、所述第七透镜的像侧面的口径和所述光学镜头的像高得到合理配置,有利于增大所述光学镜头的入瞳直径,从而有利于增大所述光学镜头的像面的大小,以使光学镜头能够更好地匹配更高像素的感光芯片,有利于进一步改善光学镜头的成像质量,同时还可以缩短光学镜头的光学总长,有利于光学镜头向小型化的方向发展,从而缩小光学镜头所占用的体积,为搭载有该光学镜头的摄像模组节省了空间。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:7.5mm<TTL/tan(HFOV)<9mm;其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于光轴上的距离(即光学镜头的光学总长),HFOV为所述光学镜头的最大视场角的一半。
当满足上述条件式的限定时,能够对所述光学镜头的光学总长以及最大视场角进行合理配置,有利于在缩短光学总长的同时,使所述光学镜头具备大视角特性,从而能够获取更多的场景内容,丰富光学镜头的成像信息。而当超过上述关系式的上限时,所述光学镜头的光学总长较长,不利于所述光学镜头的小型化设计;而当低于上述关系式的下限时,所述光学镜头的结构过于紧凑,使得像差修正难度加大,从而容易导所述致光学镜头的成像性能降低。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:6<f4/CT4<8.5;其中,f4为所述第四透镜的焦距,CT4为所述第四透镜于光轴上的厚度。
通过对所述第四透镜的屈折力大小以及中心厚度进行合理优化,使得所述第四透镜具有足够的屈折力,有利于降低光线射出所述光学镜头的出射角度,从而有利于降低光束射入感光芯片的入射角度,提高感光芯片的感光性能。而当超过上述关系式的上限时,所述第四透镜的焦距过大,导致所述第四透镜的屈折力不足,使得光线束射入感光芯片的入射角度较大,导致感光芯片识别被摄物信息不足而造成成像失真的现象;而当低于上述关系式的下限时,在满足光学镜头的光学性能的情况下,所述第四透镜的中心厚度过大,导致由塑料材质制得的第四透镜热变形敏感,而造成光学镜头的热稳定性降低。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:2<|SAG71/CT7|<5;其中,SAG71为所述第七透镜的物侧面与光轴的交点至所述第七透镜的物侧面的最大有效半径处于光轴上的距离(即所述第七透镜的物侧面的于最大有效半径处的矢高),CT7为所述第七透镜于光轴上的厚度。
当满足上述关系式的限定时,可以使得所述第七透镜的物侧面的矢高及所述第七透镜的中心厚度的比值得到合理分配,所述第七透镜的面型不会过于弯曲或过于平整,有利于降低所述第七透镜的敏感性,从而有利于提高所述第七透镜的成型加工性和成型良率,便于所述第七透镜的制造及成型,降低所述第七透镜的制造成本;同时,使得所述第七透镜的焦距也可以得到合适控制,以及所述第七透镜也不会过薄或过厚,从而有利于修正物方各透镜(第一透镜至第六透镜)所产生的畸变、场曲,保证光学镜头的畸变、场曲的平衡,即不同视场的畸变、场曲大小趋于平衡,从而可以使光学镜头的整个画面的画质均匀,提高光学镜头的成像质量。当低于上述关系式的下限时,所述第七透镜的矢高较低,会对所述光学镜头的光学性能造成影响,以及所述第七透镜的物侧面于圆周处的面型过于平滑,导致轴外视场光线的偏折能力不足,不利于畸变、场曲和像差的矫正;而当超过上述关系式的上限时,所述第七透镜的物侧面于圆周处的面型过度弯曲,不利于所述第七透镜的加工成型,影响制造良率。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.9<(f1+f2)/f7<1.6;其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f7为所述第七透镜的焦距。
当满足上述关系式的限定时,能够合理地配置所述第一透镜、第二透镜的屈折力之和与所述第七透镜的屈折力的比值,从而能够合理地分配所述第一透镜、第二透镜与所述第七透镜在所述光学镜头中的球差贡献度,进而有利于提升光学镜头的轴上区域的成像质量。当超过上述关系式的上限时,所述第七透镜的负屈折力过强,光线进入成像面的角度过大,容易降低感光芯片的感光性能,以及容易出现暗角,从而影响拍摄质量;当低于上述关系式的下限时,所述第一透镜的正屈折力不足,不利于大角度光线进入所述光学镜头,从而降低了光学镜头的拍摄范围。
作为一种可选的实施方式,在本发明第一方面的实施例中,光学镜头满足以下关系式:0.8<ETAL/CTAL<1;其中,ETAL为所述第一透镜至所述第七透镜的边缘厚度于光轴上的距离之和,透镜的边缘厚度是指:透镜的物侧面的有效径边缘至该透镜的像侧面的有效径边缘在平行于光轴的方向上的厚度,例如,第一透镜的边缘厚度是指:第一透镜的物侧面的有效径边缘至第一透镜的像侧面的有效径边缘在平行于光轴的方向上的厚度,CTAL为所述光学镜头的七个透镜于光轴上的厚度的总和。
当满足上述关系式的限定时,所述光学镜头的所有透镜于光轴上的厚度和边缘厚度可以得到合理配置,有利于各个透镜的注塑成型和组装,同时还有利于使所述光学镜头具有更小的主光线偏射角,以减少所述光学镜头的杂散光,从而提升所述光学镜头的成像质量。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:2.9mm<f/FNO<3.2mm;其中,f为所述光学镜头的有效焦距,FNO为所述光学镜头的光圈数。
当满足上述关系式的限定时,使得所述光学镜头能够在具有较长焦距的同时,具有较小的光圈数,以保证所述光学镜头具有充足的通光量,改善暗光拍摄条件,特别是在暗光环境下也能够获得清晰度良好的拍摄画面,提高所述光学镜头的成像质量,以实现高画质高清晰的拍摄效果。当低于上述关系式的下限时,所述光学镜头的光圈数过大,导致所述光学镜头的通光量不足,导致光学镜头的画面感降低,降低所述光学镜头的成像质量;当超过上述关系式的上限时,所述光学镜头的焦距过长而难以压缩光学镜头的光学总长,导致光学镜头的体积增大,不利于光学镜头满足小型化设计要求。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:2<(CT1+CT2+CT3+CT4)/(CT12+CT23+CT34)<4;其中,CT1为所述第一透镜于光轴上的厚度,CT2为所述第二透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度,CT4为所述第四透镜于光轴上的厚度,CT12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,CT23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离。
当满足上述关系式的限定时,所述光学镜头的前四片透镜的厚度和间隙均能得到合理的配置,从而有利于使所述光学镜头的整体结构更加紧凑,可以降低所述光学镜头的光学总长,以满足所述光学镜头的小型化、轻薄化的设计需求;由于提升了所述光学镜头的整体结构紧凑性,使得所述光学镜头能够充分利用其内部空间,从而可以降低在相邻的透镜之间出现杂光、鬼像的风险,提高所述光学镜头的成像解析度。而当超过上述关系式的范围时,不利于所述光学镜头的像差的校正,导致所述光学镜头的成像品质降低;同时,过大的空气间隔与透镜厚度的设置会增加所述光学镜头的光学总长负担,不利于所述光学镜头的小型化设计。
第二方面,本发明公开了一种摄像模组,所述摄像模组包括感光芯片和如上述第一方面所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。具有所述光学镜头的摄像模组能够在满足轻薄、小型化设计的同时,不仅能够改善所述光学镜头的画质感,提高所述光学镜头的分辨率和成像清晰度,以提升所述光学镜头的拍摄质量,实现清晰成像;同时还有利于增大所述光学镜头的入瞳直径,从而有利于增大所述光学镜头的像面的大小,以使所述光学镜头能够更好地匹配更高像素的感光芯片,有利于进一步改善所述光学镜头的成像质量。
第三方面,本发明还公开了一种电子设备,所述电子设备包括壳体和如上述第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有所述摄像模组的电子设备,能够在满足轻薄、小型化设计的同时,不仅能够改善所述光学镜头的画质感,提高所述光学镜头的分辨率和成像清晰度,以提升所述光学镜头的拍摄质量,实现清晰成像;同时还有利于增大所述光学镜头的入瞳直径,从而有利于增大所述光学镜头的像面的大小,以使所述光学镜头能够更好地匹配更高像素的感光芯片,有利于进一步改善所述光学镜头的成像质量。
与现有技术相比,本发明的有益效果在于:
本发明实施例提供的光学镜头、摄像模组及电子设备,所述光学镜头采用七片式透镜,透镜枚数合理,结构巧妙,体积较小。而且通过选取合适数量的透镜并合理配置各个透镜的屈折力、面型,不仅能够保证光学镜头具有良好的成型良率及组装良率,同时还有利于增大所述光学镜头的像面大小,以使所述光学镜头具有大像面的特点,改善所述光学镜头的画质感,以及提高所述光学镜头的分辨率和成像清晰度,使所述光学镜头具有更好的成像效果,满足人们对所述光学镜头的高清成像要求;并且还使所述光学镜头满足以下关系式:1<(SD11+SD72)/IMGH<1.2时,所述第一透镜的物侧面的口径、所述第七透镜的物侧面的口径和所述光学镜头的像高得到合理配置,有利于增大所述光学镜头的入瞳直径,从而有利于增大所述光学镜头的像面的大小,以使光学镜头能够更好地匹配更高像素的感光芯片,有利于进一步改善光学镜头的成像质量,同时还可以缩短光学镜头的光学总长,有利于光学镜头向小型化的方向发展,从而缩小光学镜头所占用的体积,为搭载有该光学镜头的摄像模组节省了空间。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例公开的光学镜头的结构示意图;
图2是本申请第一实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图3是本申请第二实施例公开的光学镜头的结构示意图;
图4是本申请第二实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图5是本申请第三实施例公开的光学镜头的结构示意图;
图6是本申请第三实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图7是本申请第四实施例公开的光学镜头的结构示意图;
图8是本申请第四实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图9是本申请第五实施例公开的光学镜头的结构示意图;
图10是本申请第五实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图11是本申请公开的摄像模组的结构示意图;
图12是本申请公开的电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
下面将结合实施例和附图对本发明的技术方案作进一步的说明。
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,所述光学镜头100包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有(例如正屈折力或负屈折力),第四透镜L4具有正屈折力,第五透镜L5和第六透镜L6均具有屈折力(例如正屈折力或负屈折力),第七透镜L7具有负屈折力。
进一步地,第一透镜L1的物侧面S1于近光轴O处可为凸面,第一透镜L1的像侧面S2于近光轴O处可为凹面;第二透镜L2的物侧面S3于近光轴O处可为凸面,第二透镜L2的像侧面S4于近光轴O处可为凹面;第三透镜L3的物侧面S5于近光轴O处可为凸面或者是凹面,第三透镜L3的像侧面S6于近光轴O处可为凹面;第四透镜L4的物侧面S7于近光轴O处可为凸面,第四透镜L4的像侧面S8于近光轴O处可为凸面或者是凹面;第五透镜L5的物侧面S9于近光轴O处可为凹面,第五透镜L5的像侧面S10于近光轴O处可为凸面或者是凸面;第六透镜L6的物侧面S11于近光轴O处可为凸面,第六透镜L6的像侧面S12于近光轴O处可为凹面;第七透镜L7的物侧面S13于近光轴处可为凸面或者是凹面,第七透镜L7的像侧面S14于近光轴处可为凹面。
在本申请提供的光学镜头100中,第一透镜L1具有较强的正屈折力,有利于大角度光线进入光学镜头100,提高光学镜头100的视场范围;第二透镜L2具有负屈折力,可以良好地矫正第一透镜L1朝正方向的巨大像差;第一透镜L1和第二透镜L2均采用朝物侧凸出的弯月形面型,有助于将屈折力较强的透镜(第一透镜L1)配置在光学镜头100的物侧端,以避免屈折力较强的透镜的形状过度扭曲而难以加工的情况,同时还可以与前后透镜保持合理的空气间隙,有利于缩短光学镜头100的光学总长,增大像面大小;以及还有利于边缘光线以平缓角度进入光学镜头100,缓解大视场下的边缘成像出现暗角的问题;同时还配合第三透镜L3提供的正或负屈折力及其像侧面S6于近光轴处的凹面面型设计,有利于平衡第一透镜L1产生的场曲和畸变。第四透镜L4提供的正屈折力及其物侧面S7于近光轴O处的凸面面型设计,有利于矫正第一透镜L1、第二透镜L2和第三透镜L3产生的光程差,同时还配合第五透镜L5提供的正或负屈折力及物侧面S9于近光轴O处的凹面面型设计,能够进一步矫正第一透镜L1、第二透镜L2和第三透镜L3产生的光程差。而第六透镜L6提供的正或负屈折力及物侧面S11和像侧面S12于近光轴O处的凸凹面面型设计,有利于修正光学镜头100的像差,提升成像解析力,同时还配合第七透镜L7提供的负屈折力及其物侧面S13和像侧面S14于近光轴O处的凹面面型设计,不仅有利于平衡入射光线经过第一透镜L1至第六透L6镜所产生的像散、场曲,校正歪曲像;还有利于使光学镜头100获得大像面,以匹配更高像素的感光芯片,同时还有利于边缘光线以较小的偏转角射入到像面,从而使得像面边缘也可获得较高的相对亮度,避免暗角,提升成像质量。
考虑到光学镜头100多应用于例如手机、平板电脑、智能手表等电子设备,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的材质均可为塑料,从而使得光学镜头100具有良好的光学效果的同时,还可减轻光学镜头100的整体重量,以及可以具有良好的轻便性,并更易于对透镜复杂面型的加工。同时,前述的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7均可为非球面。
一些实施例中,光学镜头100还包括光阑102,光阑102可为孔径光阑或视场光阑,其可设置在光学镜头100的物侧与第一透镜L1的物侧面S1之间。可以理解的是,在其他实施例中,该光阑102也可设置在相邻的两个透镜之间,例如设置在第二透镜L2和第三透镜L3之间,根据实际情况调整设置,本实施例对此不作具体限定。
一些实施例中,光学镜头100还包括滤光片L8,例如红外滤光片,红外滤光片可设置在第七透镜L7的像侧面S14与光学镜头100的成像面101之间,从而可滤除诸如可见光等其他波段的光线,而仅让红外光通过,因此,选用红外滤光片,通过滤除红外光,提升成像品质,使成像更加符合人眼的视觉体验;以及所述光学镜头100可作为红外光学镜头使用,即,光学镜头100能够在昏暗的环境及其他特殊的应用场景下也能成像并能获得较好的影像效果。可以理解的,该滤光片L7可以是光学玻璃镀膜制成的,也可以是有色玻璃制成的,或者其他材质的滤光片,可根据实际需要进行选择,在本实施例不作具体限定。
一些实施例中,光学镜头100满足以下关系式:1<(SD11+SD72)/IMGH<1.2;其中,SD11为第一透镜L1的物侧面S1的最大有效半口径;SD72为第七透镜L7的像侧面S14最大有效半口径;IMGH为光学镜头100的成像面101上最大有效成像圆的半径,即,光学镜头100的像高。
当满足上述条件式的限定时,第一透镜L1的物侧面S1的口径、第七透镜L7的像侧面S14的口径和光学镜头100的像高得到合理配置,有利于增大光学镜头100的入瞳直径,从而有利于增大光学镜头100的像面的大小,以使光学镜头100能够更好地匹配更高像素的感光芯片,有利于进一步改善光学镜头100的成像质量,同时还可以缩短光学镜头100的光学总长,有利于光学镜头100向小型化的方向发展,从而缩小光学镜头100所占用的体积,为搭载有该光学镜头100的摄像模组节省了空间。
一些实施例中,光学镜头100满足以下关系式:7.5mm<TTL/tan(HFOV)<9mm;其中,TTL为第一透镜L1的物侧面S1至光学镜头100的成像面101于光轴O上的距离,即,光学镜头100的光学总长,HFOV为光学镜头100的最大视场角的一半。
当满足上述条件式的限定时,能够对光学镜头100的光学总长以及最大视场角进行合理配置,有利于在缩短光学总长的同时,使光学镜头100具备大视角特性,从而能够获取更多的场景内容,丰富光学镜头100的成像信息。而当超过上述关系式的上限时,光学镜头100的光学总长较长,不利于光学镜头100的小型化设计;而当低于上述关系式的下限时,光学镜头100的结构过于紧凑,使得像差修正难度加大,从而容易导致所述光学镜头100的成像性能降低。
一些实施例中,光学镜头100满足以下关系式:6<f4/CT4<8.5;其中,f4为第四透镜L4的焦距,CT4为第四透镜L4于光轴O上的厚度。
通过对第四透镜L4的屈折力大小以及中心厚度进行合理优化,使得第四透镜L4具有足够的屈折力,有利于降低光线射出所述光学镜头100的出射角度,从而有利于降低光束射入感光芯片的入射角度,提高感光芯片的感光性能。而当超过上述关系式的上限时,第四透镜L4的焦距过大,导致第四透镜L4的屈折力不足,使得光线束射入感光芯片的入射角度较大,导致感光芯片识别被摄物信息不足而造成成像失真的现象;而当低于上述关系式的下限时,在满足光学镜头100的光学性能的情况下,第四透镜L4的中心厚度过大,导致由塑料材质制得的第四透镜L4热变形敏感,而造成所述光学镜头100的热稳定性降低。
一些实施例中,光学镜头100满足以下关系式:2<|SAG71/CT7|<5;其中,SAG71为第七透镜L7的物侧面S13与光轴O的交点至第七透镜L7的物侧面S13的最大有效半径处于光轴O上的距离,即,第七透镜L7的物侧面S13的于最大有效半径处的矢高,CT7为第七透镜L7于光轴O上的厚度。
当满足上述关系式的限定时,可以使得第七透镜L7的物侧面S13的矢高及第七透镜L7的中心厚度的比值得到合理分配,第七透镜L7的面型不会过于弯曲或过于平整,利于降低第七透镜L7的敏感性,从而有利于提高第七透镜L7的成型加工性和成型良率,便于第七透镜L7的制造及成型,降低第七透镜L7的制造成本;同时,使得第七透镜L7的焦距也可以得到合适控制,以及第七透镜L7也不会过薄或过厚,从而有利于修正物方各透镜(第一透镜L1至第六透镜L6)所产生的畸变、场曲,保证光学镜头100的畸变、场曲的平衡,即不同视场的畸变、场曲大小趋于平衡,从而可以使光学镜头100的整个画面的画质均匀,提高光学镜头100的成像质量。当低于上述关系式的下限时,第七透镜L7的矢高较低,会对光学镜头100的光学性能造成影响,以及第七透镜L7的物侧面S13于圆周处的面型过于平滑,导致轴外视场光线的偏折能力不足,不利于畸变、场曲和像差的矫正;而当超过上述关系式的上限时,第七透镜L7的物侧面S13于圆周处的面型过度弯曲,不利于第七透镜L7的加工成型,影响制造良率。
一些实施例中,光学镜头100满足以下关系式:0.9<(f1+f2)/f7<1.6;其中,f1为第一透镜L1的焦距,f2为第二透镜L2的焦距,f7为第七透镜L7的焦距。
当满足上述关系式的限定时,能够合理地配置第一透镜L1、第二透镜L2的屈折力之和与第七透镜L7的屈折力的比值,从而能够合理地分配第一透镜L1、第二透镜L2与第七透镜L7在光学镜头100中的球差贡献度,进而有利于提升光学镜头100的轴上区域的成像质量。当超过上述关系式的上限时,第七透镜L7的负屈折力过强,光线进入成像面101的角度过大,容易降低感光芯片的感光性能,以及容易出现暗角,从而影响拍摄质量;当低于上述关系式的下限时,第一透镜L1的正屈折力不足,不利于大角度光线进入所述光学镜头100,从而降低了光学镜头100的拍摄范围。
一些实施例中,光学镜头100满足以下关系式:0.8<ETAL/CTAL<1;其中,ETAL为第一透镜L1至第七透镜L7的边缘厚度于光轴O上的距离之和,透镜的边缘厚度是指:透镜的物侧面的有效径边缘至该透镜的像侧面的有效径边缘在平行于光轴的方向上的厚度,例如,第一透镜L1的边缘厚度是指:第一透镜L1的物侧面S1的有效径边缘至第一透镜L1的像侧面S2的有效径边缘在平行于光轴O的方向上的厚度,CTAL为光学镜头100的七个透镜于光轴O上的厚度的总和。
当满足上述关系式的限定时,光学镜头100的所有透镜于光轴O上的厚度和边缘厚度可以得到合理配置,有利于各个透镜的注塑成型和组装,同时还有利于使光学镜头100具有更小的主光线偏射角,以减少光学镜头的100杂散光,从而提升光学镜头100的成像质量。
一些实施例中,光学镜头100满足以下关系式:2.9mm<f/FNO<3.2mm;其中,f为光学镜头100的有效焦距,FNO为光学镜头100的光圈数。
当满足上述关系式的限定时,使得光学镜头100能够在具有较长焦距的同时,具有较小的光圈数,以保证光学镜头100具有充足的通光量,改善暗光拍摄条件,特别是在暗光环境下也能够获得清晰度良好的拍摄画面,提高光学镜头100的成像质量,以实现高画质高清晰的拍摄效果。当低于上述关系式的下限时,光学镜头100的光圈数过大,导致光学镜头100的通光量不足,导致光学镜头100的画面感降低,降低光学镜头100的成像质量;当超过上述关系式的上限时,光学镜头100的焦距过长而难以压缩光学镜头100的光学总长,导致光学镜头100的体积增大,不利于光学镜头100满足小型化设计要求。
一些实施例中,光学镜头100满足以下关系式:
2<(CT1+CT2+CT3+CT4)/(CT12+CT23+CT34)<4;其中,CT1为第一透镜L1于光轴O上的厚度,CT2为第二透镜L2于光轴O上的厚度,CT3为第三透镜L3于光轴O上的厚度,CT4为第四透镜L4于光轴O上的厚度,CT12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴O上的距离,CT23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴O上的距离,CT34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴O上的距离。
当满足上述关系式的限定时,光学镜头100的前四片透镜的厚度和间隙均能得到合理的配置,从而有利于使光学镜头100的整体结构更加紧凑,可以降低光学镜头100的光学总长,以满足光学镜头100的小型化、轻薄化的设计需求。由于提升了光学镜头100的整体结构紧凑性,使得光学镜头100能够充分利用其内部空间,从而可以降低在相邻的透镜之间出现杂光、鬼像的风险,提高光学镜头100的成像解析度。而当超过上述关系式的范围时,不利于光学镜头100的像差的校正,导致光学镜头100的成像品质降低;同时,过大的空气间隔与透镜厚度的设置会增加光学镜头100的光学总长负担,不利于光学镜头100的小型化设计。
以下将结合具体参数对本实施例的光学镜头100进行详细说明。
第一实施例
本申请的第一实施例公开的光学镜头100的结构示意图,如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和滤光片L8。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力。关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1的物侧面S1、像侧面S2于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面和凸面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处均为凹面;第六透镜L6的物侧面S11、像侧面S12于近光轴O处分别为凸面和凹面;第七透镜L7的物侧面S13、像侧面S14于近光轴O处分别为凸面和凹面。
具体地,以所述光学镜头100的有效焦距f=5.8135mm、所述光学镜头100的半视场角HFOV=39.977°、所述光学镜头100的光学总长TTL=7mm、光圈大小FNO=1.88为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号1和2分别对应第一透镜L1的物侧面S1和像侧面S2。表1中的Y半径为相应面序号的物侧面或像侧面于近光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑102于“厚度”参数列中的数值为光阑102至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴O的正方向,当该值为负时,表明光阑102设置于后一表面顶点的右侧,若光阑102厚度为正值时,光阑102在后一表面顶点的左侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm。且表1中各个透镜的有效焦距、折射率、阿贝数的参考波长均为587.56nm。
表1
Figure BDA0003301998990000131
在第一实施例中,第一透镜L1至第七透镜L7的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure BDA0003301998990000132
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中Y半径R的倒数);K为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表2给出了可用于第一实施例中各个非球面镜面S1-S14的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure BDA0003301998990000133
Figure BDA0003301998990000141
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为486.13nm、587.56nm以及656.27nm下的光线球差曲线图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为587.56nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长587.56nnm下,光学镜头100的像散得到了较好的补偿。
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为587.56nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在该波长587.56nm下,该光学镜头100的畸变得到了很好的校正。
第二实施例
请参照图3,图3为本申请第二实施例的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和滤光片L8。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力。关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第二实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处均为凹面。
在第二实施例中,以光学镜头100的有效焦距f=5.5156mm、光学镜头100的半视场角的HFOV=40.9253°、光学镜头100的光学总长TTL=6.8mm、光圈大小FNO=1.9为例。
该第二实施例中的其他各项参数由下列表3给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm。且表3中各个透镜的有效焦距、折射率、阿贝数的参考波长为587.56nm。
表3
Figure BDA0003301998990000151
在第二实施例中,表4给出了可用于第二实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表4
Figure BDA0003301998990000161
请参阅图4,图4示出了第二实施例的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅第一实施例所述,此处不再赘述。由图4中的(A)可以看出,第二实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图4中的(B)可以看出,在波长587.56nm下,光学镜头100的像散得到了较好的补偿。由图4中的(C)可以看出,在波长587.56nm下,该光学镜头100的畸变得到了很好的校正。
第三实施例
请参照图5,图5示出了本申请第三实施例的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和滤光片L8。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力。关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第三实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第四透镜L4的物侧面S7、像侧面S8于近光轴O处均为凸面。第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面和凸面。
在第三实施例中,以光学镜头100的有效焦距f=5.7742mm、光学镜头100的半视场角的HFOV=40.1687°、光学镜头100的光学总长TTL=7mm、光圈大小FNO=1.84为例。
该第三实施例中的其他各项参数由下列表5给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm。且表5中各个透镜的有效焦距、折射率、阿贝数的参考波长为587.56nm。
表5
Figure BDA0003301998990000171
在第三实施例中,表6给出了可用于第三实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表6
Figure BDA0003301998990000172
Figure BDA0003301998990000181
请参阅图6,图6示出了第三实施例的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅第一实施例所述,此处不再赘述。由图6中的(A)可以看出,第三实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图6中的(B)可以看出,在波长587.56nm下,光学镜头100的像散得到了较好的补偿。由图6中的(C)可以看出,在波长587.56nm下,该光学镜头100的畸变得到了很好的校正。
第四实施例
请参阅图7,为本申请第四实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和滤光片L8。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力。关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第四实施例中,各个透镜的面型可参见上述第一实施例中的各个透镜的面型,此处不再赘述。
在第四实施例中,以光学镜头100的焦距f=5.7559mm、光学镜头100的半视场角的HFOV=40.8338°、光学镜头100的光学总长TTL=7mm、光圈大小FNO=1.86为例。
该第四实施例中的其他各项参数由下列表7给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm。且表7中各个透镜的有效焦距、折射率、阿贝数的参考波长为587.56nm。
表7
Figure BDA0003301998990000191
在第四实施例中,表8给出了可用于第四实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表8
Figure BDA0003301998990000192
Figure BDA0003301998990000201
请参阅图8,图8示出了第四实施例的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅第一实施例所述,此处不再赘述。由图8中的(A)可以看出,第四实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图8中的(B)可以看出,在波长587.56nm下,光学镜头100的像散得到了较好的补偿。由图8中的(C)可以看出,在波长587.56nm下,该光学镜头100的畸变得到了很好的校正。
第五实施例
请参阅图9,为本申请第五实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和滤光片L8。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有负屈折力,第七透镜L7具有负屈折力。关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第五实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凹面和凸面,第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凹面。
在第五实施例中,以光学镜头100的焦距f=5.8531mm、光学镜头100的半视场角的HFOV=39.8256°、光学镜头100的光学总长TTL=7.1mm、光圈大小FNO=1.84为例。
该第五实施例中的其他各项参数由下列表9给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm。且表9中各个透镜的有效焦距、折射率、阿贝数的参考波长为587.56nm。
表9
Figure BDA0003301998990000211
在第五实施例中,表10给出了可用于第五实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表10
Figure BDA0003301998990000212
Figure BDA0003301998990000221
请参阅图10,图10示出了第五实施例的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅第一实施例所述,此处不再赘述。由图10中的(A)可以看出,第五实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图10中的(B)可以看出,在波长587.56nm下,光学镜头100的像散得到了较好的补偿。由图10中的(C)可以看出,在波长587.56nm下,该光学镜头100的畸变得到了很好的校正。
请参阅表11,表11为本申请第一实施例至第五实施例中各关系式的比值汇总。
表11
Figure BDA0003301998990000222
请参阅图11,本申请还公开了一种摄像模组,摄像模组200包括感光芯片201和如上述第一实施例至第五实施例中任一实施例所述的光学镜头100,所述感光芯片201设置于光学镜头100的像侧。光学镜头100可用于接收被摄物的光信号并投射到感光芯片201,感光芯片201可用于将对应于被摄物的光信号转换为图像信号。这里不做赘述。可以理解的,具有所述摄像模组200的电子设备,能够在满足轻薄、小型化设计的同时,不仅能够改善所述光学镜头100的画质感,提高所述光学镜头100的分辨率和成像清晰度,以提升所述光学镜头100的拍摄质量,实现清晰成像;同时还有利于增大所述光学镜头100的入瞳直径,从而有利于增大所述光学镜头100的像面的大小,以使所述光学镜头100能够更好地匹配更高像素的感光芯片,有利于进一步改善所述光学镜头100的成像质量。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
请参阅图12,本申请还公开了一种电子设备,所述电子设备300包括壳体301和如上述的摄像模组200,摄像模组200设于壳体301以获取影像信息。其中,电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器等。可以理解的,具有上述摄像模组200的电子设备300,也具有上述光学镜头100的全部技术效果。即,所述电子设备300能够在使得光学镜头100在满足轻薄、小型化设计的同时,不仅能够改善所述光学镜头100的画质感,提高所述光学镜头100的分辨率和成像清晰度,以提升所述光学镜头100的拍摄质量,实现清晰成像;同时还有利于增大所述光学镜头100的入瞳直径,从而有利于增大所述光学镜头100的像面的大小,以使所述光学镜头100能够更好地匹配更高像素的感光芯片,有利于进一步改善所述光学镜头100的成像质量。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
以上对本发明实施例公开的一种光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种光学镜头,其特征在于,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜;
所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;
所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
所述第三透镜具有屈折力,所述第三透镜的像侧面于近光轴处为凹面;
所述第四透镜具有正屈折力,所述第四透镜的物侧面于近光轴处为凸面;
所述第五透镜具有屈折力,所述第五透镜的物侧面于近光轴处为凹面;
所述第六透镜具有屈折力,所述第六透镜的物侧面于近光轴处为凸面,所述第六透镜的像侧面于近光轴处为凹面;
所述第七透镜具有负屈折力,所述第七透镜的像侧面于近光轴处为凹面;
所述光学镜头满足以下关系式:
1<(SD11+SD72)/IMGH<1.2;
其中,SD11为所述第一透镜的物侧面的最大有效半口径;SD72为所述第七透镜的像侧面最大有效半口径;IMGH为所述光学镜头的成像面上最大有效成像圆的半径。
2.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
7.5mm<TTL/tan(HFOV)<9mm;
其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于光轴上的距离,HFOV为所述光学镜头的最大视场角的一半。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
6<f4/CT4<8.5;
其中,f4为所述第四透镜的焦距,CT4为所述第四透镜于光轴上的厚度。
4.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
2<|SAG71/CT7|<5;
其中,SAG71为所述第七透镜的物侧面与光轴的交点至所述第七透镜的物侧面的最大有效半径处于光轴上的距离,CT7为所述第七透镜于光轴上的厚度。
5.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
0.9<(f1+f2)/f7<1.6;
其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f7为所述第七透镜的焦距。
6.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
0.8<ETAL/CTAL<1;
其中,ETAL为所述第一透镜至所述第七透镜的边缘厚度于光轴上的距离之和,CTAL为所述光学镜头的七个透镜于光轴上的厚度的总和。
7.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
2.9mm<f/FNO<3.2mm;
其中,f为所述光学镜头的有效焦距,FNO为所述光学镜头的光圈数。
8.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
2<(CT1+CT2+CT3+CT4)/(CT12+CT23+CT34)<4;
其中,CT1为所述第一透镜于光轴上的厚度,CT2为所述第二透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度,CT4为所述第四透镜于光轴上的厚度,CT12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,CT23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离。
9.一种摄像模组,其特征在于,所述摄像模组包括感光芯片和如权利要求1-8任一项所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。
10.一种电子设备,其特征在于,所述电子设备包括壳体和如权利要求9所述的摄像模组,所述摄像模组设于所述壳体。
CN202111195102.XA 2021-10-13 2021-10-13 光学镜头、摄像模组及电子设备 Active CN113933966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111195102.XA CN113933966B (zh) 2021-10-13 2021-10-13 光学镜头、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111195102.XA CN113933966B (zh) 2021-10-13 2021-10-13 光学镜头、摄像模组及电子设备

Publications (2)

Publication Number Publication Date
CN113933966A true CN113933966A (zh) 2022-01-14
CN113933966B CN113933966B (zh) 2023-08-08

Family

ID=79279186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111195102.XA Active CN113933966B (zh) 2021-10-13 2021-10-13 光学镜头、摄像模组及电子设备

Country Status (1)

Country Link
CN (1) CN113933966B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355579A (zh) * 2022-03-11 2022-04-15 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072403A (ja) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN110618522A (zh) * 2019-10-29 2019-12-27 浙江舜宇光学有限公司 摄像透镜组
US20210072507A1 (en) * 2018-05-02 2021-03-11 Zhejiang Sunny Optical Co., Ltd Optical imaging system
CN113448059A (zh) * 2019-11-06 2021-09-28 浙江舜宇光学有限公司 光学成像镜头
CN113484997A (zh) * 2021-09-08 2021-10-08 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072403A (ja) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
US20210072507A1 (en) * 2018-05-02 2021-03-11 Zhejiang Sunny Optical Co., Ltd Optical imaging system
CN110618522A (zh) * 2019-10-29 2019-12-27 浙江舜宇光学有限公司 摄像透镜组
CN113448059A (zh) * 2019-11-06 2021-09-28 浙江舜宇光学有限公司 光学成像镜头
CN113484997A (zh) * 2021-09-08 2021-10-08 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355579A (zh) * 2022-03-11 2022-04-15 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Also Published As

Publication number Publication date
CN113933966B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN113917667A (zh) 摄像镜头
CN112363302B (zh) 光学系统、摄像模组及电子设备
CN113946038B (zh) 光学镜头、摄像模组及电子设备
CN114114654B (zh) 光学系统、取像模组及电子设备
CN113741006A (zh) 光学镜头、摄像模组及电子设备
CN111812806A (zh) 光学系统、摄像模组及电子设备
CN114660783B (zh) 光学镜头、摄像模组及电子设备
CN114114645B (zh) 光学镜头、摄像模组及电子设备
CN115480364A (zh) 光学镜头、摄像模组及电子设备
CN114296213A (zh) 光学镜头、摄像模组及电子设备
CN113933966B (zh) 光学镜头、摄像模组及电子设备
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN114415343B (zh) 光学系统、摄像模组及电子设备
CN114460723B (zh) 光学系统、摄像模组及电子设备
CN113960759B (zh) 光学镜头、摄像模组及电子设备
CN113866961B (zh) 光学镜头、摄像模组及电子设备
CN114153050B (zh) 光学系统和具有其的取像模组、电子装置
CN113933969B (zh) 光学镜头、摄像模组及电子设备
CN114755803A (zh) 光学镜头、摄像模组及电子设备
CN114859511A (zh) 光学镜头、摄像模组及电子设备
CN114371547A (zh) 光学镜头、摄像模组及电子设备
CN114675408A (zh) 光学系统、取像模组及电子设备
CN113484985A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant