WO2022131395A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2022131395A1
WO2022131395A1 PCT/KR2020/018419 KR2020018419W WO2022131395A1 WO 2022131395 A1 WO2022131395 A1 WO 2022131395A1 KR 2020018419 W KR2020018419 W KR 2020018419W WO 2022131395 A1 WO2022131395 A1 WO 2022131395A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
heat
substrate
thermoelectric element
conversion module
Prior art date
Application number
PCT/KR2020/018419
Other languages
French (fr)
Korean (ko)
Inventor
손경현
양승호
양승진
황병진
연병훈
이태희
장봉중
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Priority to PCT/KR2020/018419 priority Critical patent/WO2022131395A1/en
Publication of WO2022131395A1 publication Critical patent/WO2022131395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Definitions

  • the present invention relates to a thermoelectric conversion module having improved heating performance through structural improvement, and more particularly, it can include at least two thermoelectric elements to increase thermal conversion efficiency, and cooling and heating in one direction based on the thermoelectric element It is not only possible at the same time, but also relates to a thermoelectric conversion module in which the heating performance of the heating part is increased by extending the length and/or area of the heating part by at least 1.5 times compared to the cooling part.
  • thermoelectric element may be configured by arranging a plurality of pairs of N-type and P-type semiconductors on a plane, connecting them in series using a metal electrode, and arranging them on upper and lower substrates.
  • a temperature difference is applied to the upper and lower parts of the thermoelectric element, power is generated by the Seeback effect.
  • a temperature difference between the upper and lower parts is generated to cool the upper part and heat the lower part. This will generate the Peltier effect. It can be used as a power generation or temperature control device by using the thermoelectric characteristics of the above-described thermoelectric element.
  • the temperature control device may be configured by attaching a heat dissipation member to each of the heat generating unit and the cooling unit of the thermoelectric element, and may simultaneously dehumidify and dry the fluid passing through the cooling unit and the heat generating unit.
  • the fluid flowing into the interior is dehumidified as moisture condenses in the cooling unit, and then, the dehumidified fluid passes through the heating unit and is dried.
  • the air introduced through a fan first passes through a conduit in which the heat dissipating member of the cooling unit is disposed, and then is guided to a separate conduit in which the heat dissipating member of the heat generating unit is disposed, and drying is performed.
  • the cooling unit and the heating unit conduit are separately present as described above, as the flow of the fluid increases, a fluid vortex and a decrease in the flow rate are caused. A problem of lowering occurs.
  • the technical problem to be achieved by the present invention is to increase the heat conversion efficiency by including at least two thermoelectric elements while minimizing the vortex generation and flow velocity reduction of the fluid by simultaneously performing cooling and heating of the fluid in one direction, and heating the heating part It is to provide a novel structure of a thermoelectric conversion module with improved characteristics to increase drying efficiency.
  • the present invention provides a thermoelectric element unit in which at least two thermoelectric elements having a heating unit and a heat absorbing unit are connected in parallel; a cooling unit interposed between opposing heat absorbing units among at least two thermoelectric elements and extending in one direction; a heating part connected to the heating part of the at least two thermoelectric elements, respectively, and extending in another direction on the same plane as the cooling part; and a flow path formed between the cooling unit and the heating unit to allow a heat exchange medium to flow through, wherein the length ( D H ) of the heating unit on a plane is 1.5 times greater than the length of the cooling unit (DC ). module is provided.
  • the length ( D H ) of the heating part on a plane may be 2.0 to 3.0 times greater than the length (DC ) of the cooling part.
  • the flow path may be formed in one direction with respect to the thermoelectric element unit.
  • the thermoelectric element unit may include: a first thermoelectric element having a heat generating unit on one surface and a heat absorbing unit on the other surface; a second thermoelectric element having a heat absorbing part disposed opposite to the heat absorbing part of the first thermoelectric element, and a second thermoelectric element having a heat generating part on an opposite surface of the heat absorbing part, wherein the first thermoelectric element's heat generating part and the second thermoelectric element generate heat
  • the units may be respectively disposed on the outer surface of the thermoelectric element unit.
  • the cooling unit is connected to the heat absorbing part substrate of the first thermoelectric element and the heat absorbing part substrate of the second thermoelectric element
  • the heating part is connected to the heat absorbing part substrate of the first thermoelectric element and the second thermoelectric element. 2 It may be connected to the heating part substrate of the thermoelectric element.
  • the cooling unit one side of which is interposed between the heat absorbing portion substrate of the first thermoelectric element and the heat absorbing portion substrate of the second thermoelectric element is in contact with, and the other side is extended in one direction a first heat transfer member; and a heat absorbing fin provided on the other surface of the first heat transfer member and disposed to extend in one direction.
  • the heat generating unit one side is configured in a "U" shape to contact the heat generating unit substrate of the first thermoelectric element and the heat generating unit substrate of the second thermoelectric element, respectively, the other side is the a second heat transfer member extending in the other direction on the same plane as the cooling unit and connecting the one side to the other side; and heat dissipation fins provided on one side and the other surface of the second heat transfer member and extending in one direction.
  • the heat dissipation fin may include: a first heat dissipation fin disposed on the other surface of the second heat transfer member; and a second heat dissipation fin disposed on one surface of the second heat transfer member in the same direction as the first heat dissipation fin and has a fin height different from that of the first heat dissipation fin.
  • the height of the heat absorbing fin and the height of the first heat dissipation fin may be substantially the same, and the height of the first heat dissipation fin may be greater than the height of the second heat dissipation fin.
  • the end length of the heat absorbing fin, the first heat dissipation fin, and the second heat dissipation fin may be the same with respect to the first heat transfer member.
  • the heat absorbing fin, the first heat dissipation fin, and the second heat dissipation fin may include a plurality of structures each having a hollow shape, a fin shape, or a louver shape.
  • the first heat transfer member, the second heat transfer member, the heat absorbing fin, and the heat dissipation fin are respectively aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) may include at least one metal material.
  • the first thermoelectric element or the second thermoelectric element may include: a first substrate; a second substrate facing the first substrate; a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and a plurality of thermoelectric legs interposed between the first electrode and the second electrode.
  • first substrate and the second substrate may be the same as or different from each other, and may each independently be a ceramic substrate or a conductive substrate.
  • the conductive substrate may include: a metal substrate; and an insulating layer formed on one surface thereof.
  • the first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, and each of aluminum (Al), zinc (Zn), copper (Cu), At least one metal of nickel (Ni) and cobalt (Co) may be included.
  • thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal It may include at least one thermoelectric semiconductor material selected from silicide, Skuttrudite, Silicide, Half heusler, and combinations thereof.
  • thermoelectric conversion module may be provided in a washing machine, a dryer, or a dehumidifier.
  • heat conversion efficiency can be increased by including at least two thermoelectric elements, and the positions of the cooling unit and the heating unit are arranged in one direction with respect to the thermoelectric element as a reference, but the cooling unit and the By adjusting the length/area of the heating unit within a predetermined range, it is possible to significantly improve the heating performance and drying efficiency of the fluid under the same power without generating vortexes and reducing the flow rate of the fluid.
  • thermoelectric conversion module 1 is a perspective view illustrating a thermoelectric conversion module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the thermoelectric conversion module according to FIG. 1 .
  • thermoelectric conversion module 3 is a conceptual diagram illustrating a flow path direction of the thermoelectric conversion module according to FIG. 1 .
  • thermoelectric element 4 is a perspective view illustrating a thermoelectric element according to an embodiment of the present invention.
  • thermoelectric conversion module 5 is a cross-sectional view of a thermoelectric conversion module according to Comparative Example 1 (prior art).
  • thermoelectric conversion module manufactured in Example 1 is a graph showing the results of 5 minutes measurement of the temperature of the heat dissipation fin and the outlet temperature change of the fluid using the thermoelectric conversion module manufactured in Example 1 for each position.
  • thermoelectric conversion module 7 is a graph showing the results of 5 minutes measurement of the temperature of the heat dissipation fin and the outlet temperature change of the fluid using the thermoelectric conversion module manufactured in Comparative Example 1.
  • thermoelectric element unit 100: thermoelectric element unit
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • planar when referred to as “planar”, it means when the target part is viewed from above, and “in cross-section” means when viewed from the side when the cross-section of the target part is vertically cut.
  • An object of the present invention is to provide a novel structure of a thermoelectric conversion module provided in a washing machine or dryer, in which heating performance is significantly increased without vortex generation and flow rate reduction of a fluid through structural improvement.
  • a cooling unit for condensing and removing moisture from a heat exchange medium (eg, fluid, air, etc.) flowing into the interior, a thermoelectric element, and a heating unit for heating the dry air from which moisture has been removed from the cooling unit are included.
  • a heat exchange medium eg, fluid, air, etc.
  • a thermoelectric element e.g., thermoelectric element flowing into the interior
  • a thermoelectric element e.g., a thermoelectric element part
  • a cooling part eg, heat absorbing fin
  • a heat generating part eg, heat dissipating fin
  • thermoelectric elements to increase the thermal conversion efficiency of cooling and heat generation
  • the cooling and heating of the fluid passing through the thermoelectric conversion module to which the thermoelectric element is applied can be simultaneously performed in one conduit, so that the fluid Even if the flow rate of the fluid increases, the flow rate of the fluid can be continuously maintained by reducing the occurrence of vortex of the fluid.
  • the length/area of the heating unit (eg, heat dissipation fin) compared to the cooling unit (eg, heat absorbing fin) provided in the thermoelectric conversion module is extended to a predetermined range.
  • the temperature of the fluid passing through the heat dissipation fin of the thermoelectric conversion module The drying efficiency can be increased by significantly increasing the lifting and heating performance.
  • thermoelectric conversion module serves to remove moisture in a heat exchange medium (eg, fluid, air, etc.) flowing into the device by utilizing a thermoelectric element and to heat the dried heat exchange medium, It can be applied to a washing machine, a dryer and/or a dehumidifier.
  • a heat exchange medium eg, fluid, air, etc.
  • thermoelectric conversion module according to the present invention will be described with reference to the accompanying drawings.
  • the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
  • FIG. 1 is a perspective view schematically showing the structure of a thermoelectric conversion module according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the thermoelectric conversion module
  • FIG. 3 is a flow path provided in the thermoelectric conversion module according to the present invention It is a conceptual diagram indicating the direction.
  • a thermoelectric conversion module includes: a thermoelectric element unit 100 to which at least two thermoelectric elements are connected in parallel; a cooling unit 200 interposed between opposing heat absorbing units among at least two thermoelectric elements and extending in one direction; a heating unit 300 connected to the heating units of the at least two thermoelectric elements, respectively, and extending in other directions on the same plane as the cooling unit 200; and a flow path (not shown) formed to allow a heat exchange medium to flow between the cooling unit 200 and the heat generating unit 300 .
  • the cooling unit 200 and the heat generating unit 300 performing a heat conversion function such as cooling or heating the incoming air (fluid) are, respectively, at least two thermoelectric elements constituting the thermoelectric element unit 100 ( It is disposed adjacent to any one of the first substrate 110 and the second substrate 120 provided in 100A and 100B.
  • a region in which the first substrate 110 of each thermoelectric element 100A, 100B is arranged and connected to perform a heat absorbing function is defined as the cooling unit 200
  • the second substrate of each thermoelectric element 100A, 100B An area in which 120) is arranged and connected to perform a heating function is defined as the heating unit 300 and will be described.
  • the cooling unit 200 functions as a dehumidifier to remove moisture by cooling and condensing air (fluid) introduced from the outside.
  • the heat generating unit 300 serves to heat and dry the dry air from which moisture has been removed from the cooling unit 200 .
  • the thermoelectric element unit 100 includes at least two thermoelectric elements 100A and 100B, which are connected in parallel to each other.
  • the thermoelectric element part 100 may include a first thermoelectric element 100A having a heat generating part on one surface and a heat absorbing part on the other surface; and a heat absorbing part disposed opposite to the heat absorbing part of the first thermoelectric element 100A; and a second thermoelectric element 100B having a heating part on the opposite surface of the heat absorbing part, wherein the heating part of the first thermoelectric element 100A and the heating part of the second thermoelectric element 100B are outside the thermoelectric element part It has a structure arranged on each side.
  • thermoelectric elements 100A and 100B are specifically exemplified and described in parallel.
  • the present invention is not limited to the above description, and an embodiment in which at least two thermoelectric elements 100A and 100B is connected in series or includes a series connection and a parallel connection at the same time also falls within the scope of the present invention.
  • the first thermoelectric element 100A or the second thermoelectric element 100B constituting the thermoelectric element unit 100 has a temperature drop of the cooling unit 200 and the heating unit 300 through thermoelectric characteristics generated when a current is applied. It plays a role in realizing the temperature rise at the same time.
  • the thermoelectric element unit 100 of the present invention includes at least two or more, specifically, two thermoelectric elements 100A and 100B, heat conversion efficiency can be increased during cooling and/or heat generation.
  • the first thermoelectric element 100A or the second thermoelectric element 100B may have a known configuration in which a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor are disposed between a pair of substrates facing each other, and thermoelectric power generation and / Alternatively, all elements for cooling are included.
  • each of the first thermoelectric element 100A or the second thermoelectric element 100B may include a first substrate 110 ; a second substrate 120 facing the first substrate 110; a first electrode and a second electrode respectively disposed between the first substrate 110 and the second substrate 120; and a plurality of thermoelectric legs 130 interposed between the first electrode and the second electrode to form a unit cell.
  • one of the pair of substrates 110 and 120 constitutes a heat absorbing part due to the Peltier effect when current is applied, and the other 110 and 120 constitutes a heat emitting part.
  • the cooling unit 200 is formed on the first substrate 110 connected to the first heat transfer member 210 , and the second substrate 120 connected to the second heat transfer member 310 .
  • the present invention is not limited thereto, and the positions of the heat absorbing part and the heat generating part may be appropriately changed if necessary.
  • the cooling unit 200 serves as a condenser that primarily performs cooling and condensation on air (eg, fluid) flowing into the interior to remove moisture.
  • the cooling unit is interposed between and in contact with the heat absorbing part substrate 110 of the first thermoelectric element 100A and the heat absorbing part substrate 110 of the second thermoelectric element 100B, and in particular, the first thermoelectric element 100A ) and a first heat transfer member 210 so that the heat absorbing function of the first substrate 110 provided in the second thermoelectric element 100B can be transferred; and a heat absorbing fin 220 having a flow path formed therein and extending in one direction.
  • first heat transfer member 210 is interposed between the first thermoelectric element 100A and the second thermoelectric element 100B and is in contact, and the other side is in contact with the outside of the thermoelectric element part 100 along one direction. is extended Specifically, one side of the first heat transfer member 210 is interposed between the first substrate 110 of the first thermoelectric element 100A and the first substrate 110 of the second thermoelectric element 100B in which the endothermic reaction occurs. In direct contact with them, the temperature is lowered, and this cold air is transferred to the heat absorbing fin 220 . Accordingly, the air introduced from the external fan (not shown) is supplied to the cooling unit 200, specifically, through the first substrate 110 provided in the first thermoelectric element 100A and the second thermoelectric element 100B, respectively.
  • the first heat transfer member 10 may have a substantially flat plate shape, and may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Its size can also be adjusted in various ways. Preferably, it may include at least one of copper (Cu) and aluminum (Al).
  • the heat absorbing fins 220 provided on the other surface of the first heat transfer member 210 described above may be disposed on all or part of the other surface of the first heat transfer member 210 spaced apart from the thermoelectric element unit 100 . have.
  • the heat absorbing fins 220 are disposed extending in one direction, for example, disposed in the direction of the flow path through which the fluid moves, specifically, may be disposed in the direction of the bottom of the first heat transfer member 210 .
  • the shape of the heat absorbing fin 220 is not particularly limited, and may have a shape of a heat absorbing fin known in the art. For example, it may include a plurality of structures having a hollow, fin, or louver shape.
  • the heat absorbing fin 220 may be made of a conventional thermally conductive material known in the art, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) It may include at least one kind of metal material.
  • the first heat transfer member 210 and the heat absorbing fin 220 may be configured by bonding separate structures, or may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
  • the air cooled through the cooling unit 200 is discharged as moisture condenses, and then the dried air flows through the inside of the cooling unit 300 , specifically, the flow path formed by the flow path space between the plurality of heat absorbing fins 220 . It flows through the heat generating unit 300 (see FIG. 3).
  • the heat generating unit 300 serves to heat and dry the air condensed in the cooling unit 200 by using the thermal energy received from the thermoelectric element unit 100 .
  • the heating part 300 is a heating part substrate 120 of the thermoelectric element unit 100, specifically, the heating part substrate 120 of the first thermoelectric element 100A and the heating part substrate of the second thermoelectric element 100B ( 120), the second heat transfer member 310 so that the heating function of the second substrate 120 provided in the first thermoelectric element 100A and the second thermoelectric element 100B, for example, can be transmitted. ) and a heat dissipation fin 320 .
  • the heating unit 300 is simply arranged on the opposite surface of the cooling unit 200 around one thermoelectric element 100 , or the cooling unit 200 and the heating unit 300 are identical to each other. It was designed to have a size/area (see FIG. 5 below).
  • at least two or more thermoelectric elements constituting the thermoelectric conversion module are provided, but the arrangement structure of the heat generating unit 300 is modified and the length of the heat generating unit 300 compared to the cooling unit 200 / It is distinguished from the conventional thermoelectric conversion module in that the area ratio is extended to a predetermined range.
  • thermoelectric elements are provided to increase the efficiency of cooling and heat generation, and at the same time reduce the generation of vortex and the flow rate of fluid caused when moving from the cooling unit 200 to the heat generating unit 300 . While preventing , it is possible to significantly improve the heating performance of the heating unit 300 .
  • the length ( D H ) and/or area in the longitudinal direction on the plane of the heating unit 300 may be 1.5 times or more greater than the length (DC ) and/or area of the cooling unit 200, Specifically, it may be 2.0 to 3.0 times larger.
  • the length/area of the heat generating unit 300 compared to the cooling unit 200 specifically, the exposure length/exposed area of the heat dissipation fin 320 provided in the heat generating unit 300, is increased by 1.5 times or more compared to the heat absorbing fin 220. , it is possible to increase the temperature of the fluid by increasing the area of the heat generating unit 300 through which the fluid passes.
  • the lengths (D H , DC C ) of the heating unit 300 and the cooling unit 200 are measured based on the longitudinal length of the thermoelectric conversion module on a plane.
  • it is not particularly limited thereto, and adjusting the width direction length of the heating part 300 and the cooling part 200 or the area of the heating part 300 and the cooling part 200 to a predetermined range is also within the scope of the present invention. belongs to
  • thermoelectric conversion module satisfies the above-described plane length/area ratio parameter and the corresponding numerical value between the heating unit 300 and the cooling unit 200
  • the heating unit 300 constituting the thermoelectric conversion module It is not particularly limited in structure and/or material, shape, size, and the like.
  • the heat generating unit 300 has one side of a “C” shape, and the second substrate 120 of the first thermoelectric element 100A and the second thermoelectric element 100B of the second thermoelectric element 100B. 2 A second heat transfer member 310 in contact with the substrate 120, the other side extending in the other direction on the same plane as the cooling unit 200, the one side and the other side are connected to each other; and a heat dissipation fin 320 having a flow path formed therein and extending in the same direction as the heat absorbing fin 220 .
  • the second heat transfer member 310 may include a first heat transfer unit 311 in contact with the second substrate 120 of the second thermoelectric element 100B; a second heat transfer unit 312 in contact with the second substrate 120 of the first thermoelectric element 100A; A third heat transfer that is spaced apart from the first thermoelectric element 100A, the second thermoelectric element 100B, and the first heat transfer member 210 , and is positioned in parallel with the first heat transfer member 21 on the same plane. part 314; and a connection part 313 connecting the first heat transfer unit 311 , the second heat transfer unit 312 , and the third heat transfer unit 314 .
  • This second heat transfer member 310 is ' ', or the first heat transfer unit 311 in the form of; a second heat transfer unit 312; connection part 313; and the third heat transfer unit 314 may be bonded to each other through a bonding material or tape.
  • the second heat transfer member 310 may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Preferably, it may include at least one of copper (Cu) and aluminum (Al).
  • the size of the second heat transfer member 310 is not particularly limited as long as it satisfies the above-described length/area ratio of the cooling unit 200 to the heat generating unit 300 , and may be variously adjusted.
  • the heat dissipation fins 320 provided on the surface of the second heat transfer member 310 receive heat energy resulting from the exothermic reaction of the thermoelectric element unit 100 from the second heat transfer member 310 and use the heat to cool it. It performs a function of heating the dry air flowing in from the unit 200 to convert it into dry air.
  • the heat dissipation fins 320 may be disposed on a part or all of an area corresponding to the planar size of the heat generating part 300 , for example, all or part of the surface of the second heat transfer member 310 .
  • the heat dissipation fins 320 are preferably disposed on both one surface and the other surface of the second heat transfer member 310 .
  • the heat dissipation fin 320 may include a first heat dissipation fin 321 disposed on the other surface of the second heat transfer member 310 ; and a second heat dissipation fin 322 disposed on one surface of the second heat transfer member 310 in the same direction as the first heat dissipation fin 321 and has a fin height different from that of the first heat dissipation fin 321 .
  • the height of the first heat dissipation fin 321 may be greater than the height of the second heat dissipation fin 322 , and is not particularly limited.
  • the height of the first heat dissipation fin 321 may be substantially the same as the height of the heat absorbing fin 220 .
  • the end length of the heat absorbing fin 220 of the cooling unit 200 and the first heat dissipation fin 321 and the second heat dissipation fin 322 of the heat generating unit 300 with respect to the first heat transfer member 210 is can be the same.
  • the shape of the heat dissipation fin 320 is not particularly limited, and may have a shape known in the art. As an example, it may include a plurality of structures having a hollow, fin, or louver shape.
  • the material of the heat dissipation fin 320 may be configured the same as that of the heat absorbing fin 220 described above, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). It may include at least one kind of metal material.
  • the second heat transfer member 310 and the heat dissipation fin 320 constituting the heat generating unit 300 may be configured by bonding separate structures, or may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
  • the flow path formed inside the cooling unit 200 and the heat generating unit 300 through which a fluid can flow is formed in one direction (or one direction) with respect to the thermoelectric element unit 100 .
  • the heat dissipation fins 320 are disposed extending in the same direction as the heat absorbing fins 220 , and specifically disposed toward the bottom of the second heat transfer member 210 . Accordingly, the flow path formed in the inside of the cooling unit 200 and the heat generating unit 300 may communicate in a straight line, and the thermoelectric conversion module including the above-described flow path increases the flow amount of the fluid, but the fluid vortex and the flow rate. The decrease is minimized, and the flow rate can be maintained (see FIG. 3 below).
  • the first heat transfer member 210 and the second heat transfer member 310 are disposed to be spaced apart from each other. In this case, the distance between them is not particularly limited, and may be appropriately adjusted within a range known in the art. Also, one end of the first heat transfer member 210 may be disposed closer to the thermoelectric element unit 100 than the heat absorbing fin 220 . In addition, one end of the first heat transfer member 210 is positioned in parallel with the second heat transfer member 310 and is specifically formed to extend toward the other side of the second heat transfer member 310 .
  • the separation distance between the thermoelectric element 100 and the heat absorbing fin 220 is equal to or greater than the separation distance between one end of the first heat transfer member 100 and the other side of the second heat transfer member 310 .
  • it is not particularly limited thereto, and may be appropriately changed within a range known in the art.
  • thermoelectric conversion module according to an embodiment of the present invention.
  • it is not limited only by the following manufacturing method, and the steps of each process may be modified or selectively mixed as needed.
  • the thermoelectric conversion module may be manufactured according to a method known in the art. For example, after preparing a plate-shaped first heat transfer member 210 and a bent second heat transfer member 310 having a 'C' shape on one side and a plate shape on the other side, respectively, the thermoelectric element unit 100 ) between the heat absorbing part substrate 110 of the first thermoelectric element 100A and the heat absorbing part substrate 110 of the second thermoelectric element 100B constituting the first heat transfer member 210 by interposing one side of the first heat transfer member 210 to bond, a heat absorbing fin 220 is disposed on the other surface of the first heat transfer member 210 to be bonded.
  • the heating part substrate 120 of the first thermoelectric element 100A and the heating part substrate 120 of the second thermoelectric element 100B are attached to one side of the second heat transfer member 310 having a “C” shape.
  • the second heat dissipation fins 322 and the first heat dissipation fins 321 having different heights are bonded to one side and the other side of the second heat transfer member 310 to complete fabrication.
  • the heat absorbing part substrate 110 of the first thermoelectric element 100A and the heat absorbing part substrate 110 of the second thermoelectric element 100B on the upper and lower surfaces of the first heat transfer member 10 based on one surface, respectively. After bonding, the first thermoelectric element 100A and the second thermoelectric element 100B are moved to one end of the first heat transfer member 10, and the first It may be manufactured by disposing the heat transfer fins 50 .
  • thermoelectric element 100A or 100B constituting the thermoelectric element unit 100 in the thermoelectric conversion module according to an embodiment of the present invention.
  • thermoelectric elements 100A and 100B may include a first substrate 110 ; a second substrate 120 facing the first substrate 110; a first electrode 140a and a second electrode 140b respectively disposed between the first substrate 110 and the second substrate 120; and a plurality of thermoelectric legs 130 interposed between the first electrode 140a and the second electrode 140b.
  • the first substrate 110 and the second substrate 120 each generate an exothermic or endothermic reaction when power is applied to the thermoelectric element, and may be made of a conventional electrically insulating material known in the art.
  • each of the first substrate 110 and the second substrate 120 may be a ceramic substrate composed of one or more of Al 2 O 3 , AlN, SiC, and ZrO 2 .
  • it may be composed of a high heat-resistance insulating resin or engineering plastic.
  • first substrate 110 and the second substrate 120 may be a metal substrate made of a conventional conductive metal material known in the art.
  • each of the first substrate 110 and the second substrate 120 may include at least one metal among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co).
  • Al aluminum
  • Zn zinc
  • Cu copper
  • Ni nickel
  • Co cobalt
  • a first insulating layer is formed on one surface of the first substrate 110 on which the first electrode 140a is disposed, and the second substrate 120 on which the second electrode 140b is disposed.
  • a second insulating layer (not shown) may be formed on one surface, and the first insulating layer and the second insulating layer may have a structure in which they are disposed to face each other.
  • the first insulating layer and the second insulating layer are the same as or different from each other, and a conventional electrically insulating material known in the art for easy film formation may be used without limitation.
  • the thickness of the first insulating layer and the second insulating layer is not particularly limited, and may be, for example, 10 to 150 ⁇ m, specifically 30 to 120 ⁇ m.
  • the first substrate 110 and the second substrate 120 may each have a flat plate shape, and the size or thickness thereof is not particularly limited.
  • the positions of the heat absorption and heat generation of the substrate can be changed according to the direction of the current.
  • One of the two substrates is a cold side substrate on which an endothermic reaction occurs, and a heat dissipation pad may be applied to this substrate.
  • the heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and has a thermal conductivity in the range of 0.5 to 5.0 W/mk, thereby maximizing heat transfer efficiency. It can also act as an insulator.
  • the other one of the two substrates may be a heating part substrate (hot side).
  • the first substrate 110 connected to the above-described first heat transfer member 210 may be a heat absorbing part substrate
  • the second substrate 120 connected to the second heat transfer member 310 may be a heating part substrate. have.
  • a first electrode 140a and a second electrode 140b are respectively disposed on the first substrate 110 and the second substrate 120 that are disposed to face each other. That is, the second electrode 140b is disposed at a position opposite to the first electrode 140a.
  • the material of the first electrode 140a and the second electrode 140b is not particularly limited, and a material used as an electrode in the art may be used without limitation.
  • the first electrode 140a and the second electrode 140b are the same as or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) at least one metal may be used.
  • it may further include nickel, gold, silver, titanium, and the like. Its size can also be adjusted in various ways.
  • it may be a copper (Cu) electrode.
  • the first electrode 140a and the second electrode 140b may be patterned in a predetermined shape, and the shape is not particularly limited.
  • thermoelectric legs 130 are interposed between the first electrode 140a and the second electrode 140b.
  • the thermoelectric leg 130 includes a plurality of P-type thermoelectric legs 131 and N-type thermoelectric legs 132, respectively, which are alternately disposed in one direction. As described above, the P-type thermoelectric leg 131 and the N-type thermoelectric leg 132 adjacent in one direction are electrically connected in series to the first electrode 140a and the second electrode 140b, respectively. Each of these thermoelectric legs 130 includes a thermoelectric semiconductor substrate.
  • thermoelectric semiconductor included in the thermoelectric leg 130 may be formed of a conventional material in the art that generates electricity when a temperature difference occurs at both ends when electricity is applied, or when a temperature difference occurs at both ends.
  • thermoelectric semiconductors including at least one element selected from the group consisting of a transition metal, a rare earth element, a group 13 element, a group 14 element, a group 15 element, and a group 16 element may be used.
  • examples of the rare earth element include Y, Ce, La, and the like
  • examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu
  • It may be at least one of Zn, Ag, and Re
  • examples of the group 13 element may include at least one of B, Al, Ga, and In
  • examples of the group 14 element include C, Si, Ge, Sn, and Pb.
  • examples of the group 15 elements may be at least one of P, As, Sb, and Bi
  • examples of the group 16 elements may include one or more of S, Se, and Te.
  • thermoelectric semiconductors include bismuth (Bi), tellium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce) having a composition containing at least two or more of them. and non-limiting examples thereof, Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, Scoo Terdite (Skuttrudite)-based, silicide (Silicide)-based, half whistler (Half heusler), or a combination thereof, and the like.
  • thermoelectric semiconductor a (Bi,Sb) 2 (Te,Se) 3 thermoelectric semiconductor in which Sb and Se are used as dopants may be exemplified, and as the Co-Sb-based thermoelectric semiconductor, CoSb may be exemplified.
  • Three -type thermoelectric semiconductor can be exemplified, and AgSbTe 2 and CuSbTe 2 can be exemplified as the Sb-Te-based thermoelectric semiconductor, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as the Pb-Te-based thermoelectric semiconductor.
  • thermoelectric semiconductor may be particles having a predetermined size, for example, an average particle diameter may be in the range of about 0.01 to about 100 ⁇ m.
  • thermoelectric semiconductor may be manufactured by various methods, and is not particularly limited.
  • the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method.
  • the thermoelectric leg 62 including the P-type thermoelectric leg and the N-type thermoelectric leg may be formed into a predetermined shape, for example, a rectangular parallelepiped shape by a method such as cutting, and applied to a thermoelectric element.
  • the thermoelectric element 100 includes: between the first electrode 140a and the thermoelectric leg 130 ; and a bonding material (not shown) disposed between at least one of, preferably, both of the thermoelectric leg 130 and the second electrode 140b.
  • a bonding material conventional bonding material components known in the art may be used without limitation.
  • the bonding material is Sn; a composition comprising a first metal of at least one of Pb, Al, and Zn;
  • the first metal may be formed of a composition including a second metal of at least one of Ni, Co, and Ag.
  • thermoelectric element 100 is disposed between the first electrode 140a and the thermoelectric leg 130 ; and a diffusion barrier layer (not shown) disposed between the thermoelectric leg 130 and the second electrode 140b.
  • a diffusion barrier layer can be used without limitation, a conventional component known in the art, for example, includes at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
  • the first electrode 140a and the second electrode 140b may be electrically connected to a power supply.
  • a DC voltage When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg and the electrons of the n-type thermoelectric leg move, thereby generating heat and endothermic heat at both ends of the thermoelectric leg.
  • at least one of the first electrode 140a and the second electrode 140b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move and current flows in the thermoelectric element to generate electricity.
  • thermoelectric element may be manufactured according to a method known in the art.
  • a ceramic substrate or a conductive substrate is used as a substrate, a conductive electrode pattern is formed on one surface of the substrate, and then heat-treated to fix it.
  • an insulating material is coated on one surface of the metal substrate on which the electrode is disposed, specifically, on one surface on which the thermoelectric leg is disposed to prevent conduction.
  • thermoelectric leg For an example of a method of manufacturing a thermoelectric leg using a thermoelectric material, slicing a Bi-Te or CoSb-based thermoelectric material to a desired thickness, and lapping to the final thickness, to increase the height of the material to 1 Adjust the step difference within /100. After forming a diffusion barrier film by surface coating of Co, Ni, Cr, and W on the surface of the thermoelectric material whose step is controlled, dicing, electric discharge machining, and multi-wire The thermoelectric leg is manufactured by cutting it to a desired size through a process such as.
  • thermoelectric legs are disposed between a pair of electrodes and then bonded.
  • a bonding material paste is applied to a predetermined thickness according to the pattern of the first electrode, and n-type and p-type thermoelectric legs are arranged thereon.
  • the final configuration is completed by placing the previously manufactured n-type and p-type thermoelectric legs in a state where only the bonding material is applied. Then, heat treatment at 200 to 500° C., final bonding, and connecting wires to complete the manufacture of the thermoelectric element.
  • thermoelectric conversion module undergoes condensation and drying processes using the effects of endothermic (cooling) and exothermic (heating) realized by applying a thermoelectric element, and includes at least two thermoelectric elements
  • the cooling unit eg, heat absorbing fin
  • the heating unit eg, heat dissipation fin
  • thermoelectric conversion module by extending the length/area of the heating part to a predetermined range compared to the cooling part, high drying efficiency can be exhibited by improving the heating performance of the heating part. Accordingly, when the thermoelectric conversion module according to an embodiment of the present invention is used, an excellent dehumidifying effect can be realized by increasing the heating performance and drying effect of the heat generating unit.
  • thermoelectric conversion module can be very universally applied to various home appliances and industrial equipment, including heat conversion devices requiring drying and dehumidification, washing machines, dryers, dehumidifiers, and the like.
  • thermoelectric conversion module of the present invention is not particularly limited to the above-described configuration, and if necessary, a conventional configuration known in the art may be separately employed, or may be selectively mixed and implemented.
  • thermoelectric conversion module shown in FIGS. 1 and 2 below was manufactured.
  • thermoelectric element having a size of 40.5 X 40.5 mm was used as the first thermoelectric element and the second thermoelectric element constituting the thermoelectric element unit.
  • a copper (Cu) metal plate was used as the first heat transfer member 300 used in the cooling unit and the second heat transfer member 400 used in the heat generating unit, respectively.
  • a thin metal having a thickness of 0.3 mm was used for the first and second heat transfer members, and heat absorbing fins and heat dissipating fins disposed on the surface of the heat transfer member were each made of Al alloy-based louver fins.
  • the length of the cooling unit including the first heat transfer member and the heat absorbing fin was 40 mm
  • the length of the heating unit including the second heat transfer member, the first heat dissipation fin, and the second heat dissipation fin was 80 mm.
  • the first and second heat transfer members and the heat dissipation fins were joined with solder paste, and thermal grease was applied between the thermoelectric element and the first and second heat transfer members to increase heat transfer efficiency and then joined using heat-resistant silicone.
  • the thermoelectric conversion module of Example 1 was manufactured.
  • thermoelectric conversion module of Comparative Example 1 was manufactured in the same manner as in Example 1, except that the length of the heat generating unit including the second heat transfer member and the heat dissipation fin was 40 mm instead of 80 mm in the same manner as the cooling unit (below see Fig. 5).
  • thermoelectric conversion module of Example 1 Compared with the thermoelectric conversion module of Example 1, one thermoelectric element was used.
  • the length of the heat dissipation fin of the heat dissipation part was manufactured to have the same size of 40 mm as the heat dissipation fin of the cooling part, and after placement in the conduit, an evaluation was performed to check the temperature difference between the inlet and the outlet by passing the fluid.
  • thermoelectric conversion module manufactured in Example 1 and Comparative Example 1 was placed in the conduit and the fluid was passed through, and then the temperature of each position of the heat dissipation fin and the temperature change of the fluid at the inlet and outlet were confirmed.
  • the results are shown in Table 1 and FIGS. 6-7, respectively.
  • thermoelectric conversion module of Comparative Example 1 As shown in Table 1, the temperature of the fluid passing through the thermoelectric conversion module of Comparative Example 1 was only about 40.0°C, and the temperature of the heating part was also 64°C (see FIG. 7 below). In contrast, in the thermoelectric conversion module of Example 1, it was found that the temperature of the heating part and the temperature of the fluid passing through the heating part were significantly increased compared to Comparative Example 1 (see FIG. 6 ). Through this, in the thermoelectric conversion module of the present invention, it was confirmed that the temperature of the fluid passing through the conduit was significantly increased and the heating performance was significantly increased under the same power condition through structural improvement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention provides a thermoelectric conversion module having improved heating performance for the same amount of power through structural improvement, and more specifically provides a thermoelectric conversion module which comprises at least two thermoelectric elements and thus can increase heat conversion efficiency in cooling and heating, and in which cooling and heating of a fluid passing through the inside are carried out in one conduit, wherein the length and/or area of a heating part is/are increased relative to a cooling part to be in a predetermined range, so that the fluid heating performance is improved.

Description

열전 변환 모듈thermoelectric conversion module
본 발명은 구조 개선을 통해 가열 성능이 향상된 열전 변환 모듈에 관한 것으로, 보다 상세하게는 적어도 2개의 열전소자를 포함하여 열변환 효율을 상승시킬 수 있으며, 상기 열전소자를 기준으로 일방향에서 냉각과 가열이 동시에 가능할 뿐만 아니라 냉각부 대비 발열부의 길이 및/또는 면적을 최소 1.5배 이상 확장시켜 발열부의 가열 성능이 증대된 열전 변환 모듈에 관한 것이다.The present invention relates to a thermoelectric conversion module having improved heating performance through structural improvement, and more particularly, it can include at least two thermoelectric elements to increase thermal conversion efficiency, and cooling and heating in one direction based on the thermoelectric element It is not only possible at the same time, but also relates to a thermoelectric conversion module in which the heating performance of the heating part is increased by extending the length and/or area of the heating part by at least 1.5 times compared to the cooling part.
일반적으로 열전 소자는 복수의 쌍을 이루는 N형과 P형 반도체를 각각 평면에 배열한 후, 이들을 금속 전극을 이용해 직렬로 연결하고, 이를 상부 및 하부 기판에 배치하여 구성될 수 있다. 이러한 열전소자의 상부와 하부에 온도 차이를 부여하면 제백효과(Seeback)에 의해 전력을 발생시키게 되고, 또한 일정 전력을 인가할 경우 상부와 하부의 온도 차이를 발생시켜 상부는 냉각되고, 하부는 발열되는 펠티어 효과(Peltier)를 발생시키게 된다. 전술한 열전소자의 열전 특성을 이용하여 전력 발전 또는 온도 제어 장치로 사용될 수 있다.In general, a thermoelectric element may be configured by arranging a plurality of pairs of N-type and P-type semiconductors on a plane, connecting them in series using a metal electrode, and arranging them on upper and lower substrates. When a temperature difference is applied to the upper and lower parts of the thermoelectric element, power is generated by the Seeback effect. In addition, when a constant power is applied, a temperature difference between the upper and lower parts is generated to cool the upper part and heat the lower part. This will generate the Peltier effect. It can be used as a power generation or temperature control device by using the thermoelectric characteristics of the above-described thermoelectric element.
한편 온도 제어 장치는 열전 소자의 발열부와 냉각부에 각각 방열 부재를 부착시켜 구성될 수 있으며, 상기 냉각부와 발열부를 통과하는 유체의 제습과 건조를 병행할 수 있다. 일례로, 내부로 유입되는 유체는 냉각부에서 수분이 응집됨에 따라 제습되고, 이어서 습기가 제거된 유체는 발열부를 통과함에 따라 건조가 진행된다. 종래 열전소자를 이용하는 건조기 등은 팬을 통해 유입된 공기가 냉각부의 방열부재가 배치된 도관을 1차로 통과하며, 이어서 발열부의 방열부재가 배치된 별도의 도관으로 유도되어 건조가 진행된다. 상기와 같이 냉각부와 발열부의 도관이 별개로 존재하는 구조인 경우, 유체의 유동이 증가함에 따라 유체 와류, 유속 감소 등이 초래되며, 이러한 유속 감소로 인해 유체가 원활히 이송되지 않아 건조 효율이 필수로 저하되는 문제점이 발생되게 된다.Meanwhile, the temperature control device may be configured by attaching a heat dissipation member to each of the heat generating unit and the cooling unit of the thermoelectric element, and may simultaneously dehumidify and dry the fluid passing through the cooling unit and the heat generating unit. For example, the fluid flowing into the interior is dehumidified as moisture condenses in the cooling unit, and then, the dehumidified fluid passes through the heating unit and is dried. In a dryer using a conventional thermoelectric element, the air introduced through a fan first passes through a conduit in which the heat dissipating member of the cooling unit is disposed, and then is guided to a separate conduit in which the heat dissipating member of the heat generating unit is disposed, and drying is performed. In the case of a structure in which the cooling unit and the heating unit conduit are separately present as described above, as the flow of the fluid increases, a fluid vortex and a decrease in the flow rate are caused. A problem of lowering occurs.
본 발명이 이루고자 하는 기술적 과제는, 유체의 냉각과 가열을 하나의 방향에서 동시에 실시하여 유체의 와류발생 및 유속 감소를 최소화하면서, 적어도 2개의 열전소자를 포함하여 열전환 효율을 높이고, 발열부의 가열 특성이 향상되어 건조효율을 높일 수 있는 열전 변환 모듈의 신규 구조를 제공하는 것이다. The technical problem to be achieved by the present invention is to increase the heat conversion efficiency by including at least two thermoelectric elements while minimizing the vortex generation and flow velocity reduction of the fluid by simultaneously performing cooling and heating of the fluid in one direction, and heating the heating part It is to provide a novel structure of a thermoelectric conversion module with improved characteristics to increase drying efficiency.
본 발명의 다른 목적 및 이점은 하기 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 설명될 수 있다.Other objects and advantages of the present invention may be more clearly explained by the following detailed description and claims.
상기한 기술적 과제를 달성하기 위해, 본 발명은 발열부와 흡열부를 갖는 적어도 2개의 열전소자가 병렬 연결된 열전소자부; 적어도 2개의 열전소자 중 대향 배치되는 흡열부 사이에 개재(介在)되고, 일방향으로 연장배치되는 냉각부; 상기 적어도 2개의 열전소자의 발열부와 각각 연결되고, 상기 냉각부와 동일 평면 상에서 타방향으로 연장 배치되는 발열부; 및 상기 냉각부 및 상기 발열부 사이에 열교환 매체가 흐를 수 있게 형성된 유로;를 포함하고, 평면 상에서 상기 발열부의 길이(DH)는 상기 냉각부(DC)의 길이 대비 1.5 배 이상 큰 열전 변환 모듈을 제공한다.In order to achieve the above technical object, the present invention provides a thermoelectric element unit in which at least two thermoelectric elements having a heating unit and a heat absorbing unit are connected in parallel; a cooling unit interposed between opposing heat absorbing units among at least two thermoelectric elements and extending in one direction; a heating part connected to the heating part of the at least two thermoelectric elements, respectively, and extending in another direction on the same plane as the cooling part; and a flow path formed between the cooling unit and the heating unit to allow a heat exchange medium to flow through, wherein the length ( D H ) of the heating unit on a plane is 1.5 times greater than the length of the cooling unit (DC ). module is provided.
본 발명의 일 실시예를 들면, 평면 상에서 상기 발열부의 길이(DH)는 상기 냉각부의 길이(DC) 대비 2.0 내지 3.0배일 수 있다. For an embodiment of the present invention, the length ( D H ) of the heating part on a plane may be 2.0 to 3.0 times greater than the length (DC ) of the cooling part.
본 발명의 일 실시예를 들면, 상기 유로는 당해 열전소자부를 기준으로 일방향으로 형성될 수 있다. In one embodiment of the present invention, the flow path may be formed in one direction with respect to the thermoelectric element unit.
본 발명의 일 실시예를 들면, 상기 열전소자부는, 일면에 발열부와 타면에 흡열부를 갖는 제1 열전소자; 상기 제1 열전소자의 흡열부와 대향 배치된 흡열부, 및 상기 흡열부의 반대면에 발열부를 갖는 제2 열전소자;를 포함하며, 상기 제1 열전소자의 발열부와 상기 제2 열전소자의 발열부는 당해 열전소자부의 외측면에 각각 배치될 수 있다. In one embodiment of the present invention, the thermoelectric element unit may include: a first thermoelectric element having a heat generating unit on one surface and a heat absorbing unit on the other surface; a second thermoelectric element having a heat absorbing part disposed opposite to the heat absorbing part of the first thermoelectric element, and a second thermoelectric element having a heat generating part on an opposite surface of the heat absorbing part, wherein the first thermoelectric element's heat generating part and the second thermoelectric element generate heat The units may be respectively disposed on the outer surface of the thermoelectric element unit.
본 발명의 일 실시예를 들면, 상기 냉각부는 상기 제1 열전소자의 흡열부 기판 및 상기 제2 열전소자의 흡열부 기판과 연결되고, 상기 발열부는 상기 제1 열전소자의 발열부 기판 및 상기 제2 열전소자의 발열부 기판과 연결될 수 있다. In one embodiment of the present invention, the cooling unit is connected to the heat absorbing part substrate of the first thermoelectric element and the heat absorbing part substrate of the second thermoelectric element, and the heating part is connected to the heat absorbing part substrate of the first thermoelectric element and the second thermoelectric element. 2 It may be connected to the heating part substrate of the thermoelectric element.
본 발명의 일 실시예를 들면, 상기 냉각부는, 일측이 상기 제1 열전소자의 흡열부 기판 및 상기 제2 열전소자의 흡열부 기판 사이에 개재(介在)되어 접촉하고, 타측이 일방향으로 연장되는 제1 열전달 부재; 및 상기 제1 열전달 부재의 타측 표면에 마련되고, 일방향으로 연장 배치된 흡열핀;을 포함할 수 있다. For one embodiment of the present invention, the cooling unit, one side of which is interposed between the heat absorbing portion substrate of the first thermoelectric element and the heat absorbing portion substrate of the second thermoelectric element is in contact with, and the other side is extended in one direction a first heat transfer member; and a heat absorbing fin provided on the other surface of the first heat transfer member and disposed to extend in one direction.
본 발명의 일 실시예를 들면, 상기 발열부는, 일측이 "ㄷ"자 형으로 구성되어 상기 제1 열전소자의 발열부 기판 및 상기 제2 열전소자의 발열부 기판과 각각 접촉하고, 타측이 상기 냉각부와 동일 평면 상에서 타방향으로 연장되며, 상기 일측과 상기 타측이 연결된 제2 열전달 부재; 및 상기 제2 열전달 부재의 일측 및 타측 표면에 마련되고, 일방향으로 연장 배치되는 방열핀;을 포함할 수 있다. For one embodiment of the present invention, the heat generating unit, one side is configured in a "U" shape to contact the heat generating unit substrate of the first thermoelectric element and the heat generating unit substrate of the second thermoelectric element, respectively, the other side is the a second heat transfer member extending in the other direction on the same plane as the cooling unit and connecting the one side to the other side; and heat dissipation fins provided on one side and the other surface of the second heat transfer member and extending in one direction.
본 발명의 일 실시예를 들면, 상기 방열핀은, 상기 제2 열전달 부재의 타측 표면에 배치되는 제1 방열핀; 및 상기 제2 열전달 부재의 일측 표면 중 상기 제1 방열핀과 동일한 방향에 배치되고, 상기 제1 방열핀과 상이한 핀 높이를 갖는 제2 방열핀;을 포함할 수 있다. In one embodiment of the present invention, the heat dissipation fin may include: a first heat dissipation fin disposed on the other surface of the second heat transfer member; and a second heat dissipation fin disposed on one surface of the second heat transfer member in the same direction as the first heat dissipation fin and has a fin height different from that of the first heat dissipation fin.
본 발명의 일 실시예를 들면, 상기 흡열핀의 높이와 상기 제1 방열핀의 높이는 실질적으로 동일하고, 상기 제1 방열핀의 높이는 상기 제2 방열핀의 높이 보다 큰 것일 수 있다. For an embodiment of the present invention, the height of the heat absorbing fin and the height of the first heat dissipation fin may be substantially the same, and the height of the first heat dissipation fin may be greater than the height of the second heat dissipation fin.
본 발명의 일 실시예를 들면, 상기 흡열핀, 제1 방열핀, 및 제2 방열 핀은 당해 제1 열전달 부재를 기준으로 끝단의 길이가 같을 수 있다. In one embodiment of the present invention, the end length of the heat absorbing fin, the first heat dissipation fin, and the second heat dissipation fin may be the same with respect to the first heat transfer member.
본 발명의 일 실시예를 들면, 상기 흡열핀, 제1 방열핀, 및 제2 방열 핀은 각각 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함할 수 있다. For an embodiment of the present invention, the heat absorbing fin, the first heat dissipation fin, and the second heat dissipation fin may include a plurality of structures each having a hollow shape, a fin shape, or a louver shape.
본 발명의 일 실시예를 들면, 상기 제1 열전달 부재, 제2 열전달 부재, 흡열핀, 및 방열핀은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함할 수 있다. In one embodiment of the present invention, the first heat transfer member, the second heat transfer member, the heat absorbing fin, and the heat dissipation fin are respectively aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) may include at least one metal material.
본 발명의 일 실시예를 들면, 상기 제1 열전소자 또는 제2 열전소자는, 제1 기판; 상기 제1 기판과 대향 배치된 제2 기판; 상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그를 포함할 수 있다. In one embodiment of the present invention, the first thermoelectric element or the second thermoelectric element may include: a first substrate; a second substrate facing the first substrate; a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and a plurality of thermoelectric legs interposed between the first electrode and the second electrode.
본 발명의 일 실시예를 들면, 제1 기판과 제2 기판은 서로 동일하거나 또는 상이하며, 각각 독립적으로 세라믹 기판 또는 도전성 기판일 수 있다. For example, the first substrate and the second substrate may be the same as or different from each other, and may each independently be a ceramic substrate or a conductive substrate.
본 발명의 일 실시예를 들면, 상기 도전성 기판은, 금속 기판; 및 이의 일면에 형성된 절연층을 포함할 수 있다. In one embodiment of the present invention, the conductive substrate may include: a metal substrate; and an insulating layer formed on one surface thereof.
본 발명의 일 실시예를 들면, 상기 제1 기판, 제2 기판, 제1 전극, 또는 제2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. In one embodiment of the present invention, the first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, and each of aluminum (Al), zinc (Zn), copper (Cu), At least one metal of nickel (Ni) and cobalt (Co) may be included.
본 발명의 일 실시예를 들면, 상기 열전 레그는 Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 및 이들의 조합으로부터 선택되는 적어도 하나의 열전반도체 물질을 포함할 수 있다. In one embodiment of the present invention, the thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal It may include at least one thermoelectric semiconductor material selected from silicide, Skuttrudite, Silicide, Half heusler, and combinations thereof.
본 발명의 일 실시예를 들면, 상기 열전 변환 모듈은 세탁기, 건조기 또는 제습기에 구비될 수 있다. In one embodiment of the present invention, the thermoelectric conversion module may be provided in a washing machine, a dryer, or a dehumidifier.
본 발명의 일 실시예에 따르면, 적어도 2개의 열전소자를 포함하여 열변환 효율을 상승시킬 수 있으며, 당해 열전소자를 기준으로 하여 냉각부와 발열부의 위치를 하나의 방향으로 배치하되, 냉각부와 발열부의 길이/면적을 소정 범위로 조절함으로써, 유체의 와류발생 및 유속감소 없이 동일 전력 하에서 유체의 가열 성능 및 건조 효율을 유의적으로 개선할 수 있다. According to an embodiment of the present invention, heat conversion efficiency can be increased by including at least two thermoelectric elements, and the positions of the cooling unit and the heating unit are arranged in one direction with respect to the thermoelectric element as a reference, but the cooling unit and the By adjusting the length/area of the heating unit within a predetermined range, it is possible to significantly improve the heating performance and drying efficiency of the fluid under the same power without generating vortexes and reducing the flow rate of the fluid.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다. Effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 열전 변환 모듈을 나타내는 사시도이다. 1 is a perspective view illustrating a thermoelectric conversion module according to an embodiment of the present invention.
도 2는 도 1에 따른 열전 변환 모듈의 단면도이다. FIG. 2 is a cross-sectional view of the thermoelectric conversion module according to FIG. 1 .
도 3은 도 1에 따른 열전 변환 모듈의 유로 방향을 나타내는 개념도이다. 3 is a conceptual diagram illustrating a flow path direction of the thermoelectric conversion module according to FIG. 1 .
도 4는 본 발명의 일 실시예에 따른 열전소자를 나타내는 사시도이다. 4 is a perspective view illustrating a thermoelectric element according to an embodiment of the present invention.
도 5는 비교예 1 (종래기술)에 따른 열전 변환 모듈의 단면도이다. 5 is a cross-sectional view of a thermoelectric conversion module according to Comparative Example 1 (prior art).
도 6은 실시예 1에서 제조된 열전 변환 모듈을 이용하여 방열핀의 위치별 온도 및 유체의 출구온도 변화를 5분간 측정한 결과를 나타내는 그래프이다. 6 is a graph showing the results of 5 minutes measurement of the temperature of the heat dissipation fin and the outlet temperature change of the fluid using the thermoelectric conversion module manufactured in Example 1 for each position.
도 7은 비교예 1에서 제조된 열전 변환 모듈을 이용하여 방열핀의 위치별 온도 및 유체의 출구온도 변화를 5분간 측정한 결과를 나타내는 그래프이다.7 is a graph showing the results of 5 minutes measurement of the temperature of the heat dissipation fin and the outlet temperature change of the fluid using the thermoelectric conversion module manufactured in Comparative Example 1.
<부호의 설명><Explanation of code>
100: 열전소자부100: thermoelectric element unit
100A: 제1 열전소자100A: first thermoelectric element
100B: 제2 열전소자100B: second thermoelectric element
110: 제1 기판110: first substrate
120: 제2 기판120: second substrate
130: 열전 반도체130: thermoelectric semiconductor
131: p형 열전 반도체131: p-type thermoelectric semiconductor
132: n형 열전 반도체132: n-type thermoelectric semiconductor
140a, 140b: 전극140a, 140b: electrode
200: 냉각부200: cooling unit
210: 제1 열전달 부재210: first heat transfer member
220: 흡열핀220: heat absorbing fin
300: 발열부300: heating part
310: 제2 열전달 부재310: second heat transfer member
311: 제1 발열 전달부311: first heat transfer unit
312: 제2 발열 전달부312: second heat transfer unit
313: 연결부313: connection
314: 제3 발열 전달부314: third heat transfer unit
320: 방열핀320: heat dissipation fin
321: 제1 방열핀, 321: a first heat dissipation fin;
322: 제2 방열핀322: second heat dissipation fin
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이때 본 명세서 전체 걸쳐 동일 참조 부호는 동일 구조를 지칭한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Examples of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is not limited to the following examples Examples are not limited thereto. In this case, the same reference numerals refer to the same structures throughout this specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly defined in particular.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily indicated for convenience of description, the present invention is not necessarily limited to the illustrated bar. In order to clearly express various layers and regions in the drawings, the thicknesses are enlarged. And in the drawings, for convenience of description, the thickness of some layers and regions are exaggerated.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다. 그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우 뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.In addition, throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated. In addition, throughout the specification, "on" or "on" means that it includes not only the case located above or below the target part, but also the case where there is another part in the middle, and the direction of gravity must be It does not mean that it is positioned above the reference. And, in the present specification, terms such as “first” and “second” do not indicate any order or importance, but are used to distinguish components from each other. And, when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
아울러, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.In addition, throughout the specification, when referred to as "planar", it means when the target part is viewed from above, and "in cross-section" means when viewed from the side when the cross-section of the target part is vertically cut.
본 발명은 세탁기나 건조기에 구비되는 열전 변환 모듈로서, 구조개선을 통하여 유체의 와류발생 및 유속감소 없이 가열 성능이 유의적으로 증대된 열전 변환 모듈의 신규 구조를 제공하고자 한다. An object of the present invention is to provide a novel structure of a thermoelectric conversion module provided in a washing machine or dryer, in which heating performance is significantly increased without vortex generation and flow rate reduction of a fluid through structural improvement.
이를 위해, 본 발명에서는 내부로 유입되는 열교환 매체(예, 유체, 공기 등)로부터 수분을 응축 및 제거하는 냉각부, 열전소자, 및 상기 냉각부에서 수분이 제거된 건조 공기를 가열하는 발열부를 포함하되, 적어도 2개 이상의 열전소자를 구비하여 열전소자부를 구성하고, 상기 열전소자부를 중심으로 냉각부(예, 흡열핀)와 발열부(예, 방열핀)를 일방향으로 배치한다. 상기와 같이, 복수 개의 열전소자를 구비하여 냉각 및 발열의 열전환 효율을 상승시킴과 동시에, 열전소자가 적용된 열전 변환 모듈을 통과하는 유체의 냉각과 가열을 하나의 도관에서 동시에 진행할 수 있으므로, 유체의 유동량이 증가하더라도 유체의 와류 발생을 저감시켜 유체의 유속을 지속적으로 유지할 수 있다. To this end, in the present invention, a cooling unit for condensing and removing moisture from a heat exchange medium (eg, fluid, air, etc.) flowing into the interior, a thermoelectric element, and a heating unit for heating the dry air from which moisture has been removed from the cooling unit are included. However, at least two or more thermoelectric elements are provided to constitute a thermoelectric element part, and a cooling part (eg, heat absorbing fin) and a heat generating part (eg, heat dissipating fin) are disposed in one direction around the thermoelectric element part. As described above, by providing a plurality of thermoelectric elements to increase the thermal conversion efficiency of cooling and heat generation, the cooling and heating of the fluid passing through the thermoelectric conversion module to which the thermoelectric element is applied can be simultaneously performed in one conduit, so that the fluid Even if the flow rate of the fluid increases, the flow rate of the fluid can be continuously maintained by reducing the occurrence of vortex of the fluid.
또한 본 발명에서는 열전 변환 모듈에 구비되는 냉각부(예, 흡열핀) 대비 발열부(예, 방열핀)의 길이/면적을 소정 범위로 확장한다. 이와 같이 유체가 통과하는 발열부(예, 방열핀)의 노출길이/면적을 냉각부의 흡열핀 대비 최소 1.5배 이상, 구체적으로 2배 내지 3배로 증가시킴으로써, 열전 변환 모듈의 방열핀을 통과하는 유체의 온도 상승 및 가열 성능을 유의적으로 증대시켜 건조 효율을 높일 수 있다.In addition, in the present invention, the length/area of the heating unit (eg, heat dissipation fin) compared to the cooling unit (eg, heat absorbing fin) provided in the thermoelectric conversion module is extended to a predetermined range. As such, by increasing the exposure length/area of the heat generating unit (eg, heat dissipation fin) through which the fluid passes to at least 1.5 times or more, specifically 2 to 3 times, compared to the heat absorbing fin of the cooling unit, the temperature of the fluid passing through the heat dissipation fin of the thermoelectric conversion module The drying efficiency can be increased by significantly increasing the lifting and heating performance.
<열전 변환 모듈><Thermoelectric conversion module>
본 발명의 일 실시예에 따른 열전 변환 모듈은, 열전소자를 활용하여 장치 내 유입되는 열교환 매체(예, 유체, 공기 등) 내 수분을 제거하고, 건조된 열교환 매체를 가열하는 기능을 하는 것으로서, 세탁기, 건조기 및/또는 제습기 등에 적용될 수 있다. A thermoelectric conversion module according to an embodiment of the present invention serves to remove moisture in a heat exchange medium (eg, fluid, air, etc.) flowing into the device by utilizing a thermoelectric element and to heat the dried heat exchange medium, It can be applied to a washing machine, a dryer and/or a dehumidifier.
이하, 첨부된 도면을 참조하여 본 발명에 따른 열전 변환 모듈의 바람직한 실시형태를 설명한다. 그러나 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다. Hereinafter, a preferred embodiment of the thermoelectric conversion module according to the present invention will be described with reference to the accompanying drawings. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
도 1은 본 발명의 제1 실시예에 따른 열전 변환 모듈의 구조를 개략적으로 나타낸 사시도이며, 도 2는 상기 열전 변환 모듈의 단면도이며, 도 3은 본 발명에 따른 열전 변환 모듈에 구비되는 유로의 방향을 나타내는 개념도이다. 1 is a perspective view schematically showing the structure of a thermoelectric conversion module according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of the thermoelectric conversion module, and FIG. 3 is a flow path provided in the thermoelectric conversion module according to the present invention It is a conceptual diagram indicating the direction.
도 1 내지 3을 참조하면, 본 발명의 일 실시예에 따른 열전 변환 모듈은, 적어도 2개의 열전소자가 병렬 연결된 열전소자부(100); 적어도 2개의 열전소자 중 대향 배치되는 흡열부 사이에 개재(介在)되고, 일방향으로 연장 배치되는 냉각부(200); 상기 적어도 2개의 열전소자의 발열부와 각각 연결되고, 상기 냉각부(200)와 동일 평면 상에서 타방향으로 연장 배치되는 발열부(300); 상기 냉각부(200) 및 상기 발열부(300) 사이에 열교환 매체가 흐를 수 있게 형성된 유로(미도시);를 포함한다. 1 to 3 , a thermoelectric conversion module according to an embodiment of the present invention includes: a thermoelectric element unit 100 to which at least two thermoelectric elements are connected in parallel; a cooling unit 200 interposed between opposing heat absorbing units among at least two thermoelectric elements and extending in one direction; a heating unit 300 connected to the heating units of the at least two thermoelectric elements, respectively, and extending in other directions on the same plane as the cooling unit 200; and a flow path (not shown) formed to allow a heat exchange medium to flow between the cooling unit 200 and the heat generating unit 300 .
여기서, 유입되는 공기(유체)에 대한 냉각 또는 가열 등의 열변환 기능을 수행하는 냉각부(200)와 발열부(300)는 각각, 열전소자부(100)를 구성하는 적어도 2개의 열전소자(100A, 100B)에 구비되는 제1 기판(110) 및 제2 기판(120) 중 어느 하나와 인접 배치된다. 이때 각 열전소자(100A, 100B)의 제1 기판(110)이 배치 및 연결되어 흡열기능을 수행하는 영역을 냉각부(200)로 정의하고, 각 열전소자(100A, 100B)의 제2 기판(120)이 배치 및 연결되어 발열기능을 수행하는 영역을 발열부(300)로 정의하여 설명하기로 한다. 이러한 냉각부(200)는 외부에서 유입된 공기(유체)를 냉각 및 응축시켜 수분을 제거하는 제습작용을 한다. 또한 발열부(300)는 냉각부(200)에서 수분이 제거된 건조 공기를 가열시켜 건조시키는 작용을 한다. Here, the cooling unit 200 and the heat generating unit 300 performing a heat conversion function such as cooling or heating the incoming air (fluid) are, respectively, at least two thermoelectric elements constituting the thermoelectric element unit 100 ( It is disposed adjacent to any one of the first substrate 110 and the second substrate 120 provided in 100A and 100B. At this time, a region in which the first substrate 110 of each thermoelectric element 100A, 100B is arranged and connected to perform a heat absorbing function is defined as the cooling unit 200, and the second substrate of each thermoelectric element 100A, 100B ( An area in which 120) is arranged and connected to perform a heating function is defined as the heating unit 300 and will be described. The cooling unit 200 functions as a dehumidifier to remove moisture by cooling and condensing air (fluid) introduced from the outside. In addition, the heat generating unit 300 serves to heat and dry the dry air from which moisture has been removed from the cooling unit 200 .
열전소자부(100)는 적어도 2개의 열전소자(100A, 100B)를 포함하며, 이들이 서로 병렬 연결된 것이다. 구체적으로, 상기 열전소자부(100)는 일면에 발열부와 타면에 흡열부를 갖는 제1 열전소자(100A); 및 상기 제1 열전소자(100A)의 흡열부와 대향 배치된 흡열부; 및 상기 흡열부의 반대면에 발열부를 갖는 제2 열전소자(100B);를 포함하며, 상기 제1 열전소자(100A)의 발열부와 상기 제2 열전소자(100B)의 발열부는 당해 열전소자부의 외측면에 각각 배치되는 구조를 갖는다. The thermoelectric element unit 100 includes at least two thermoelectric elements 100A and 100B, which are connected in parallel to each other. Specifically, the thermoelectric element part 100 may include a first thermoelectric element 100A having a heat generating part on one surface and a heat absorbing part on the other surface; and a heat absorbing part disposed opposite to the heat absorbing part of the first thermoelectric element 100A; and a second thermoelectric element 100B having a heating part on the opposite surface of the heat absorbing part, wherein the heating part of the first thermoelectric element 100A and the heating part of the second thermoelectric element 100B are outside the thermoelectric element part It has a structure arranged on each side.
한편 본 발명에서는 적어도 2개의 열전소자(100A, 100B)가 병렬연결된 것을 구체적으로 예시하여 설명하였다. 그러나 전술한 내용에 한정되지 않으며, 적어도 2개의 열전소자(100A, 100B)가 직렬연결되거나 또는 직렬연결과 병렬연결을 동시에 포함하는 실시형태 역시 본 발명의 범주에 속한다. Meanwhile, in the present invention, at least two thermoelectric elements 100A and 100B are specifically exemplified and described in parallel. However, the present invention is not limited to the above description, and an embodiment in which at least two thermoelectric elements 100A and 100B is connected in series or includes a series connection and a parallel connection at the same time also falls within the scope of the present invention.
상기 열전소자부(100)를 구성하는 제1 열전소자(100A) 또는 제2 열전소자(100B)는, 전류 인가시 발생되는 열전 특성을 통해 냉각부(200)의 온도 하강 및 발열부(300)의 온도 상승을 동시에 구현하는 역할을 한다. 특히 본 발명의 열전소자부(100)는 적어도 2개 이상, 구체적으로 2개의 열전소자(100A, 100B)를 포함하므로, 냉각 및/또는 발열시 열전환 효율을 높일 수 있다. 이러한 제1 열전소자(100A) 또는 제2 열전소자(100B)는 상호 대향하는 한 쌍의 기판 사이에 P형 열전반도체와 N형 열전반도체가 배치되는 공지의 구성을 가질 수 있으며, 열전 발전 및/또는 냉각용 소자를 모두 포함한다. The first thermoelectric element 100A or the second thermoelectric element 100B constituting the thermoelectric element unit 100 has a temperature drop of the cooling unit 200 and the heating unit 300 through thermoelectric characteristics generated when a current is applied. It plays a role in realizing the temperature rise at the same time. In particular, since the thermoelectric element unit 100 of the present invention includes at least two or more, specifically, two thermoelectric elements 100A and 100B, heat conversion efficiency can be increased during cooling and/or heat generation. The first thermoelectric element 100A or the second thermoelectric element 100B may have a known configuration in which a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor are disposed between a pair of substrates facing each other, and thermoelectric power generation and / Alternatively, all elements for cooling are included.
일 구체예를 들면, 상기 제1 열전소자(100A) 또는 제2 열전소자(100B)는 각각, 제1 기판(110); 상기 제1 기판(110)과 대향 배치된 제2 기판(120); 상기 제1 기판(110)과 제2 기판(120) 사이에 각각 배치된 제1 전극과 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그(130)를 포함하여 단위 셀을 형성할 수 있다. 이러한 제1 열전소자(100A) 또는 제2 열전소자(100B)는 전류 인가시 펠티어 효과에 의해 한쌍의 기판(110, 120) 중 하나는 흡열부를 구성하며, 다른 하나(110, 120)는 발열부를 구성하게 된다. 본 발명의 일 실시예에서는, 제1 열전달 부재(210)와 연결되는 제1 기판(110)에 냉각부(200)가 형성되며, 제2 열전달 부재(310)와 연결되는 제2 기판(120)에 발열부(300)가 형성되는 것을 예로 들어 설명한다. 즉, 제1 기판(110)이 흡열부 기판이며, 제2 기판(120)이 발열부 기판이다. 그러나 이에 제한되는 것은 아니며, 필요에 따라 흡열부와 발열부의 위치를 적절히 변경할 수 있다. For example, each of the first thermoelectric element 100A or the second thermoelectric element 100B may include a first substrate 110 ; a second substrate 120 facing the first substrate 110; a first electrode and a second electrode respectively disposed between the first substrate 110 and the second substrate 120; and a plurality of thermoelectric legs 130 interposed between the first electrode and the second electrode to form a unit cell. In the first thermoelectric element 100A or the second thermoelectric element 100B, one of the pair of substrates 110 and 120 constitutes a heat absorbing part due to the Peltier effect when current is applied, and the other 110 and 120 constitutes a heat emitting part. will make up In one embodiment of the present invention, the cooling unit 200 is formed on the first substrate 110 connected to the first heat transfer member 210 , and the second substrate 120 connected to the second heat transfer member 310 . An example in which the heating part 300 is formed in the That is, the first substrate 110 is a heat absorbing part substrate, and the second substrate 120 is a heat absorbing part substrate. However, the present invention is not limited thereto, and the positions of the heat absorbing part and the heat generating part may be appropriately changed if necessary.
냉각부(200)는 내부로 유입되는 공기(예, 유체)에 대하여 1차적으로 냉각 응축을 수행하여 습기를 제거하는 응축기 역할을 한다. 이러한 냉각부는 제1 열전소자(100A)의 흡열부 기판(110)과 제2 열전소자(100B)의 흡열부 기판(110) 사이에 개재되어 이들과 접촉하도록 배치되며, 특히 제1 열전소자(100A)와 제2 열전소자(100B)에 구비되는 제1 기판(110)의 흡열기능이 전달될 수 있도록 제1 열전달 부재(210); 및 내부에 유로가 형성되고 일방향으로 연장 배치된 흡열핀(220)을 포함한다. The cooling unit 200 serves as a condenser that primarily performs cooling and condensation on air (eg, fluid) flowing into the interior to remove moisture. The cooling unit is interposed between and in contact with the heat absorbing part substrate 110 of the first thermoelectric element 100A and the heat absorbing part substrate 110 of the second thermoelectric element 100B, and in particular, the first thermoelectric element 100A ) and a first heat transfer member 210 so that the heat absorbing function of the first substrate 110 provided in the second thermoelectric element 100B can be transferred; and a heat absorbing fin 220 having a flow path formed therein and extending in one direction.
상기 제1 열전달 부재(210)는 일측이 제1 열전소자(100A)와 제2 열전소자(100B) 사이에 개재(介在)되어 접촉하고, 타측은 일방향에 따라 열전소자부(100)의 외부로 연장된다. 구체적으로, 제1 열전달 부재(210)의 일측은 흡열반응이 일어나는 제1 열전소자(100A)의 제1 기판(110)과 제2 열전소자(100B)의 제1 기판(110) 사이에 개재되어 이들과 직접 접촉하여 온도를 낮추게 되며, 이러한 냉기를 흡열핀(220)으로 전달하게 된다. 이에 따라, 외부의 팬(미도시)에서 유입되는 공기는 제1 열전소자(100A)와 제2 열전소자(100B)에 각각 구비되는 제1 기판(110)을 통해 냉각부(200), 구체적으로 제1 열전달 부재(210) 및 흡열핀(220)과 접촉하면서 공기의 온도가 낮아지게 되며, 이를 통해 다습한 공기의 수분을 응축시킬 수 있게 된다. 이러한 제1 열전달 부재(10)는 대략 평판 형태일 수 있으며, 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있다. 일례로, 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. 바람직하게는 구리(Cu) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다. One side of the first heat transfer member 210 is interposed between the first thermoelectric element 100A and the second thermoelectric element 100B and is in contact, and the other side is in contact with the outside of the thermoelectric element part 100 along one direction. is extended Specifically, one side of the first heat transfer member 210 is interposed between the first substrate 110 of the first thermoelectric element 100A and the first substrate 110 of the second thermoelectric element 100B in which the endothermic reaction occurs. In direct contact with them, the temperature is lowered, and this cold air is transferred to the heat absorbing fin 220 . Accordingly, the air introduced from the external fan (not shown) is supplied to the cooling unit 200, specifically, through the first substrate 110 provided in the first thermoelectric element 100A and the second thermoelectric element 100B, respectively. While in contact with the first heat transfer member 210 and the heat absorbing fin 220, the temperature of the air is lowered, thereby condensing moisture in the humid air. The first heat transfer member 10 may have a substantially flat plate shape, and may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Its size can also be adjusted in various ways. Preferably, it may include at least one of copper (Cu) and aluminum (Al).
전술한 제1 열전달 부재(210)의 타측 표면에 마련되는 흡열핀(220)은, 열전소자부(100)와 이격 배치되는 제1 열전달 부재(210)의 타측 표면의 전부 또는 일부에 배치될 수 있다. 이러한 흡열핀(220)은 일방향으로 연장 배치되되, 일례로 유체가 이동하는 유로 방향으로 배치되며, 구체적으로 제1 열전달 부재(210)의 저면 방향으로 배치될 수 있다. 상기 흡열핀(220)의 형상은 특별히 제한되지 않으며, 당 분야에 공지된 흡열핀 형상을 가질 수 있다. 일례로 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함할 수 있다. 또한 흡열핀(220)은 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있으며, 일례로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함할 수 있다. 그리고 제1 열전달 부재(210)와 흡열핀(220)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. 이때 접합방법은 당 분야에 공지된 통상의 방법에 따라 실시될 수 있으며, 일례로 접합재를 사용하여 접합하거나 테이프를 사용할 수도 있다. The heat absorbing fins 220 provided on the other surface of the first heat transfer member 210 described above may be disposed on all or part of the other surface of the first heat transfer member 210 spaced apart from the thermoelectric element unit 100 . have. The heat absorbing fins 220 are disposed extending in one direction, for example, disposed in the direction of the flow path through which the fluid moves, specifically, may be disposed in the direction of the bottom of the first heat transfer member 210 . The shape of the heat absorbing fin 220 is not particularly limited, and may have a shape of a heat absorbing fin known in the art. For example, it may include a plurality of structures having a hollow, fin, or louver shape. In addition, the heat absorbing fin 220 may be made of a conventional thermally conductive material known in the art, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) It may include at least one kind of metal material. In addition, the first heat transfer member 210 and the heat absorbing fin 220 may be configured by bonding separate structures, or may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
냉각부(200)를 경유하여 냉각된 공기는 습기가 응결하여 배출되며, 이후 건조된 공기는 냉각부(300)의 내부, 구체적으로 복수의 흡열핀(220) 사이의 유로 공간에 의해 형성된 유로를 거쳐 발열부(300) 내부로 유입된다(도 3 참조).The air cooled through the cooling unit 200 is discharged as moisture condenses, and then the dried air flows through the inside of the cooling unit 300 , specifically, the flow path formed by the flow path space between the plurality of heat absorbing fins 220 . It flows through the heat generating unit 300 (see FIG. 3).
발열부(300)는 열전소자부(100)에서 전달받은 열에너지를 이용하여 냉각부(200)에서 응축된 공기를 가열 및 건조하는 역할을 한다. 이러한 발열부(300)는 열전소자부(100)의 발열부 기판(120), 구체적으로 제1 열전소자(100A)의 발열부 기판(120) 및 제2 열전소자(100B)의 발열부 기판(120)과 각각 접촉하도록 배치되며, 일례로 제1 열전소자(100A)와 제2 열전소자(100B)에 구비되는 제2 기판(120)의 발열기능이 전달될 수 있도록, 제2 열전달 부재(310)와 방열핀(320)을 포함한다.The heat generating unit 300 serves to heat and dry the air condensed in the cooling unit 200 by using the thermal energy received from the thermoelectric element unit 100 . The heating part 300 is a heating part substrate 120 of the thermoelectric element unit 100, specifically, the heating part substrate 120 of the first thermoelectric element 100A and the heating part substrate of the second thermoelectric element 100B ( 120), the second heat transfer member 310 so that the heating function of the second substrate 120 provided in the first thermoelectric element 100A and the second thermoelectric element 100B, for example, can be transmitted. ) and a heat dissipation fin 320 .
한편 종래 열전 변환 모듈은 하나의 열전소자(100)를 중심으로 냉각부(200)의 반대면에 발열부(300)를 단순 배치하거나, 또는 냉각부(200)와 발열부(300)가 상호 동일한 크기/면적을 갖도록 설계하였다(하기 도 5 참조). 이에 비해, 본 발명에서는 열전 변환 모듈을 구성하는 열전소자를 적어도 2개 이상 구비하되, 발열부(300)의 배치구조를 변형함과 동시에, 냉각부(200) 대비 발열부(300)의 길이/면적 비율을 소정 범위로 확장한다는 점에서, 종래 열전 변환 모듈과 구별된다. 이러한 구조변경을 통해, 본 발명에서는 적어도 2개의 열전소자를 구비하여 냉각 및 발열의 효율을 상승시킴과 동시에, 냉각부(200)에서 발열부(300)로 이동시 초래되는 유체의 와류 발생 및 유속 감소를 방지하면서, 발열부(300)의 가열성능을 유의적으로 향상시킬 수 있다. On the other hand, in the conventional thermoelectric conversion module, the heating unit 300 is simply arranged on the opposite surface of the cooling unit 200 around one thermoelectric element 100 , or the cooling unit 200 and the heating unit 300 are identical to each other. It was designed to have a size/area (see FIG. 5 below). In contrast, in the present invention, at least two or more thermoelectric elements constituting the thermoelectric conversion module are provided, but the arrangement structure of the heat generating unit 300 is modified and the length of the heat generating unit 300 compared to the cooling unit 200 / It is distinguished from the conventional thermoelectric conversion module in that the area ratio is extended to a predetermined range. Through this structural change, in the present invention, at least two thermoelectric elements are provided to increase the efficiency of cooling and heat generation, and at the same time reduce the generation of vortex and the flow rate of fluid caused when moving from the cooling unit 200 to the heat generating unit 300 . While preventing , it is possible to significantly improve the heating performance of the heating unit 300 .
일 구체예를 들면, 상기 발열부(300)의 평면 상에서 길이방향 길이(DH) 및/또는 면적은 냉각부(200)의 길이(DC) 및/또는 면적 대비 1.5 배 이상 클 수 있으며, 구체적으로 2.0 내지 3.0배 클 수 있다. 이와 같이 냉각부(200) 대비 발열부(300)의 길이/면적, 구체적으로 발열부(300)에 구비되는 방열핀(320)의 노출 길이/노출 면적을 흡열핀(220) 대비 1.5 배 이상 확장함으로써, 유체가 통과하는 발열부(300)의 면적 증대를 통해 유체의 온도를 높일 수 있다. 특히 동일 전력 조건하에서, 종래 열전 변환 모듈 대비 유체의 가열 성능 및 건조효율을 현저히 개선할 수 있다. 본 발명에서, 발열부(300)와 냉각부(200)의 길이(DH, DC)는 평면 상에서 당해 열전 변환 모듈의 길이방향 길이를 기준으로 측정한 것이다. 그러나 이에 특별히 제한되지 않으며, 상기 발열부(300)와 냉각부(200)의 폭방향 길이, 또는 발열부(300)와 냉각부(200)의 면적을 소정 범위로 조절하는 것 또한 본 발명의 범주에 속한다. For example, the length ( D H ) and/or area in the longitudinal direction on the plane of the heating unit 300 may be 1.5 times or more greater than the length (DC ) and/or area of the cooling unit 200, Specifically, it may be 2.0 to 3.0 times larger. In this way, the length/area of the heat generating unit 300 compared to the cooling unit 200, specifically, the exposure length/exposed area of the heat dissipation fin 320 provided in the heat generating unit 300, is increased by 1.5 times or more compared to the heat absorbing fin 220. , it is possible to increase the temperature of the fluid by increasing the area of the heat generating unit 300 through which the fluid passes. In particular, under the same power condition, it is possible to significantly improve the heating performance and drying efficiency of the fluid compared to the conventional thermoelectric conversion module. In the present invention, the lengths (D H , DC C ) of the heating unit 300 and the cooling unit 200 are measured based on the longitudinal length of the thermoelectric conversion module on a plane. However, it is not particularly limited thereto, and adjusting the width direction length of the heating part 300 and the cooling part 200 or the area of the heating part 300 and the cooling part 200 to a predetermined range is also within the scope of the present invention. belongs to
한편 본 발명에 따른 열전 변환 모듈은 전술한 발열부(300)와 냉각부(200) 간의 평면길이/면적비 파라미터(parameter) 및 해당 수치를 만족한다면, 열전 변환 모듈을 구성하는 발열부(300)의 구조 및/또는 재료, 형태, 크기 등에 특별히 제한되지 않는다. On the other hand, if the thermoelectric conversion module according to the present invention satisfies the above-described plane length/area ratio parameter and the corresponding numerical value between the heating unit 300 and the cooling unit 200, the heating unit 300 constituting the thermoelectric conversion module It is not particularly limited in structure and/or material, shape, size, and the like.
일 구체예를 들면, 상기 발열부(300)는, 일측이 "ㄷ"자 형으로 구성되어 상기 제1 열전소자(100A)의 제2 기판(120) 및 상기 제2 열전소자(100B)의 제2 기판(120)과 각각 접촉하고, 타측이 상기 냉각부(200)와 동일 평면 상에서 타방향으로 연장되며, 상기 일측과 상기 타측이 연결된 제2 열전달 부재(310); 및 내부에 유로가 형성되고 상기 흡열핀(220)과 동일한 방향으로 연장 배치된 방열핀(320)을 포함한다.For example, the heat generating unit 300 has one side of a “C” shape, and the second substrate 120 of the first thermoelectric element 100A and the second thermoelectric element 100B of the second thermoelectric element 100B. 2 A second heat transfer member 310 in contact with the substrate 120, the other side extending in the other direction on the same plane as the cooling unit 200, the one side and the other side are connected to each other; and a heat dissipation fin 320 having a flow path formed therein and extending in the same direction as the heat absorbing fin 220 .
보다 구체적으로, 제2 열전달 부재(310)는 제2 열전소자(100B)의 제2 기판(120)과 접촉하는 제1 발열 전달부(311); 제1 열전소자(100A)의 제2 기판(120)과 접촉하는 제2 발열 전달부(312); 상기 제1 열전소자(100A), 제2 열전소자(100B) 및 제1 열전달 부재(210)와 각각 이격 배치되고, 제1 열전달 부재(21)와 동일 평면 상에 나란하게 위치하는 제3 발열 전달부(314); 및 상기 제1 발열 전달부(311), 상기 제2 발열 전달부(312) 및 상기 제3 발열 전달부(314)를 연결하는 연결부(313)를 포함한다. 이러한 제2 열전달 부재(310)는 '
Figure PCTKR2020018419-appb-I000001
' 형태로 이루어진 일체형이거나 또는 상기 제1 발열 전달부(311); 제2 발열 전달부(312); 연결부(313); 및 제3 발열 전달부(314)를 접합재나 테이프 등을 통해 상호 접합된 형태일 수 있다. 이러한 제2 열전달 부재(310)는 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있다. 일례로, 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. 바람직하게는 구리(Cu) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다. 또한 제2 열전달 부재(310)의 크기는 전술한 냉각부(200) 대비 발열부(300)의 길이/면적 비율을 만족시킨다면 특별히 제한되지 않으며, 다양하게 조절 가능하다.
More specifically, the second heat transfer member 310 may include a first heat transfer unit 311 in contact with the second substrate 120 of the second thermoelectric element 100B; a second heat transfer unit 312 in contact with the second substrate 120 of the first thermoelectric element 100A; A third heat transfer that is spaced apart from the first thermoelectric element 100A, the second thermoelectric element 100B, and the first heat transfer member 210 , and is positioned in parallel with the first heat transfer member 21 on the same plane. part 314; and a connection part 313 connecting the first heat transfer unit 311 , the second heat transfer unit 312 , and the third heat transfer unit 314 . This second heat transfer member 310 is '
Figure PCTKR2020018419-appb-I000001
', or the first heat transfer unit 311 in the form of; a second heat transfer unit 312; connection part 313; and the third heat transfer unit 314 may be bonded to each other through a bonding material or tape. The second heat transfer member 310 may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Preferably, it may include at least one of copper (Cu) and aluminum (Al). In addition, the size of the second heat transfer member 310 is not particularly limited as long as it satisfies the above-described length/area ratio of the cooling unit 200 to the heat generating unit 300 , and may be variously adjusted.
상기 제2 열전달 부재(310)의 표면에 마련되는 방열핀(320)은, 열전소자부(100)의 발열반응에서 기인한 열에너지를 제2 열전달 부재(310)로부터 전달받고, 그 열을 이용하여 냉각부(200)에서 유입되는 건조 공기를 가열하여 건조한 공기로 전환하는 기능을 수행한다. 이러한 방열핀(320)은 발열부(300)의 평면 크기에 대응되는 영역의 일부 또는 전부에 배치될 수 있으며, 일례로, 제2 열전달 부재(310) 표면의 전부 또는 일부 영역에 배치될 수 있다. 발열부(300)의 가열 성능을 높이기 위해서, 방열핀(320)은 제2 열전달 부재(310)의 일측 표면 및 타측 표면에 모두 배치되는 것이 바람직하다. The heat dissipation fins 320 provided on the surface of the second heat transfer member 310 receive heat energy resulting from the exothermic reaction of the thermoelectric element unit 100 from the second heat transfer member 310 and use the heat to cool it. It performs a function of heating the dry air flowing in from the unit 200 to convert it into dry air. The heat dissipation fins 320 may be disposed on a part or all of an area corresponding to the planar size of the heat generating part 300 , for example, all or part of the surface of the second heat transfer member 310 . In order to increase the heating performance of the heat generating unit 300 , the heat dissipation fins 320 are preferably disposed on both one surface and the other surface of the second heat transfer member 310 .
일 구체예를 들면, 상기 방열핀(320)은, 제2 열전달 부재(310)의 타측 표면에 배치되는 제1 방열핀(321); 및 상기 제2 열전달 부재(310)의 일측 표면 중 상기 제1 방열핀(321)과 동일한 방향으로 배치되고, 상기 제1 방열핀(321)과 상이한 핀 높이를 갖는 제2 방열핀(322)을 포함한다. 일례로, 제1 방열핀(321)의 높이는 제2 방열핀(322)의 높이 보다 클 수 있으며, 특별히 제한되지 않는다. 그리고 제1 방열핀(321)의 높이는 흡열핀(220)의 높이와 실질적으로 동일할 수 있다. 또한 냉각부(200)의 흡열핀(220)과, 발열부(300)의 제1 방열핀(321) 및 제2 방열 핀(322)은 당해 제1 열전달 부재(210)를 기준으로 끝단의 길이가 동일할 수 있다. For example, the heat dissipation fin 320 may include a first heat dissipation fin 321 disposed on the other surface of the second heat transfer member 310 ; and a second heat dissipation fin 322 disposed on one surface of the second heat transfer member 310 in the same direction as the first heat dissipation fin 321 and has a fin height different from that of the first heat dissipation fin 321 . For example, the height of the first heat dissipation fin 321 may be greater than the height of the second heat dissipation fin 322 , and is not particularly limited. In addition, the height of the first heat dissipation fin 321 may be substantially the same as the height of the heat absorbing fin 220 . In addition, the end length of the heat absorbing fin 220 of the cooling unit 200 and the first heat dissipation fin 321 and the second heat dissipation fin 322 of the heat generating unit 300 with respect to the first heat transfer member 210 is can be the same.
또한 방열핀(320)의 형상은 특별히 제한되지 않으며, 당 분야에 공지된 형상을 가질 수 있다. 일례로, 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함할 수 있다. 또한 방열핀(320)의 재질은 전술한 흡열핀(220)과 동일하게 구성될 수 있으며, 일례로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함할 수 있다. 그리고 발열부(300)를 구성하는 제2 열전달 부재(310)와 방열핀(320)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. 이때 접합방법은 당 분야에 공지된 통상의 방법에 따라 실시될 수 있으며, 일례로 접합재를 사용하여 접합하거나 테이프를 사용할 수도 있다. In addition, the shape of the heat dissipation fin 320 is not particularly limited, and may have a shape known in the art. As an example, it may include a plurality of structures having a hollow, fin, or louver shape. In addition, the material of the heat dissipation fin 320 may be configured the same as that of the heat absorbing fin 220 described above, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). It may include at least one kind of metal material. In addition, the second heat transfer member 310 and the heat dissipation fin 320 constituting the heat generating unit 300 may be configured by bonding separate structures, or may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
한편 냉각부(200) 및 발열부(300) 내부에 형성되어 유체가 흐를 수 있는 유로는, 당해 열전소자부(100)를 기준으로 일방향(또는 편방향)으로 형성된다. 이를 위해, 상기 방열핀(320)은 흡열핀(220)과 동일한 방향으로 연장 배치되며, 구체적으로 제2 열전달 부재(210)의 저면 방향으로 배치된다. 이에 따라, 냉각부(200)의 내부 및 발열부(300)의 내부에 형성된 유로는 일직선으로 연통될 수 있으며, 전술한 유로를 구비하는 열전 변환 모듈은 유체의 유동량이 증가하더라도, 유체 와류 및 유속 감소 등이 최소화되어, 유속을 유지할 수 있다(하기 도 3 참조). On the other hand, the flow path formed inside the cooling unit 200 and the heat generating unit 300 through which a fluid can flow is formed in one direction (or one direction) with respect to the thermoelectric element unit 100 . To this end, the heat dissipation fins 320 are disposed extending in the same direction as the heat absorbing fins 220 , and specifically disposed toward the bottom of the second heat transfer member 210 . Accordingly, the flow path formed in the inside of the cooling unit 200 and the heat generating unit 300 may communicate in a straight line, and the thermoelectric conversion module including the above-described flow path increases the flow amount of the fluid, but the fluid vortex and the flow rate. The decrease is minimized, and the flow rate can be maintained (see FIG. 3 below).
본 발명의 열전 변환 모듈에 구비되는 냉각부(200)와 발열부(300)의 열교환 성능을 고려하여, 제1 열전달 부재(210)와 제2 열전달 부재(310)는 상호 이격 배치된다. 이때 이들 간의 이격 거리는 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절할 수 있다. 또한 제1 열전달 부재(210)의 일단은 흡열핀(220)보다 열전소자부(100)와 인접하게 배치될 수 있다. 그리고 제1 열전달 부재(210)의 일단은 제2 열전달 부재(310)와 나란하게 위치하며, 구체적으로 제2 열전달 부재(310)의 타측을 향해 연장하여 형성된다. In consideration of the heat exchange performance of the cooling unit 200 and the heating unit 300 provided in the thermoelectric conversion module of the present invention, the first heat transfer member 210 and the second heat transfer member 310 are disposed to be spaced apart from each other. In this case, the distance between them is not particularly limited, and may be appropriately adjusted within a range known in the art. Also, one end of the first heat transfer member 210 may be disposed closer to the thermoelectric element unit 100 than the heat absorbing fin 220 . In addition, one end of the first heat transfer member 210 is positioned in parallel with the second heat transfer member 310 and is specifically formed to extend toward the other side of the second heat transfer member 310 .
일 구체예를 들면, 열전소자(100)와 흡열핀(220) 사이의 이격 거리는, 제1 열전달 부재(100)의 일단과 제2 열전달 부재(310)의 타측 사이의 이격 거리와 동일하거나 또는 클 수 있다. 그러나 이에 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 변경 가능하다.For example, the separation distance between the thermoelectric element 100 and the heat absorbing fin 220 is equal to or greater than the separation distance between one end of the first heat transfer member 100 and the other side of the second heat transfer member 310 . can However, it is not particularly limited thereto, and may be appropriately changed within a range known in the art.
이하, 본 발명의 일 실시형태에 따른 열전 변환 모듈의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다. Hereinafter, a method of manufacturing a thermoelectric conversion module according to an embodiment of the present invention will be described. However, it is not limited only by the following manufacturing method, and the steps of each process may be modified or selectively mixed as needed.
상기 열전 변환 모듈은 당 분야에 공지된 방법에 따라 제조될 수 있다. 일 실시예를 들면, 판형의 제1 열전달 부재(210)와 일측이 'ㄷ'자 형태로 구성되고, 타측이 판형인 절곡된 제2 열전달 부재(310)를 각각 준비한 후, 열전소자부(100)를 구성하는 제1 열전소자(100A)의 흡열부 기판(110)과 제2 열전소자(100B)의 흡열부 기판(110) 사이에 상기 제1 열전달 부재(210)의 일측을 개재시켜 접합하고, 제1 열전달 부재(210)의 타측 표면에 흡열핀(220)을 배치하여 접합한다. 이어서, 제2 열전달 부재(310)의 "ㄷ"자 형으로 구성되는 일측에 제1 열전소자(100A)의 발열부 기판(120)과 제2 열전소자(100B)의 발열부 기판(120)을 각각 배치하고 접합한 후, 제2 열전달 부재(310)의 일측 및 타측에 각각 높이가 상이한 제2 방열핀(322)과 제1 방열핀(321)을 접합하여 제작이 완료될 수 있다. The thermoelectric conversion module may be manufactured according to a method known in the art. For example, after preparing a plate-shaped first heat transfer member 210 and a bent second heat transfer member 310 having a 'C' shape on one side and a plate shape on the other side, respectively, the thermoelectric element unit 100 ) between the heat absorbing part substrate 110 of the first thermoelectric element 100A and the heat absorbing part substrate 110 of the second thermoelectric element 100B constituting the first heat transfer member 210 by interposing one side of the first heat transfer member 210 to bond, , a heat absorbing fin 220 is disposed on the other surface of the first heat transfer member 210 to be bonded. Next, the heating part substrate 120 of the first thermoelectric element 100A and the heating part substrate 120 of the second thermoelectric element 100B are attached to one side of the second heat transfer member 310 having a “C” shape. After each arrangement and bonding, the second heat dissipation fins 322 and the first heat dissipation fins 321 having different heights are bonded to one side and the other side of the second heat transfer member 310 to complete fabrication.
전술한 방법 이외에, 제1 열전달 부재(10)의 일면을 기준으로 그 상하면에 각각 제1 열전소자(100A)의 흡열부 기판(110)과 제2 열전소자(100B)의 흡열부 기판(110)을 접합한 후, 상기 제1 열전소자(100A)와 제2 열전소자(100B)를 제1 열전달 부재(10)의 일측 말단부로 이동시키고, 상기 제1 열전달 부재(10)의 타측 말단부에 제1 열전달 핀(50)을 배치하여 제조될 수도 있다. In addition to the above-described method, the heat absorbing part substrate 110 of the first thermoelectric element 100A and the heat absorbing part substrate 110 of the second thermoelectric element 100B on the upper and lower surfaces of the first heat transfer member 10 based on one surface, respectively. After bonding, the first thermoelectric element 100A and the second thermoelectric element 100B are moved to one end of the first heat transfer member 10, and the first It may be manufactured by disposing the heat transfer fins 50 .
도 4는 본 발명의 일 실시예에 따른 열전 변환 모듈에서, 열전소자부(100)를 구성하는 하나의 열전 소자(100A 또는 100B)의 구조를 개략적으로 나타낸 사시도이다. 4 is a perspective view schematically illustrating the structure of one thermoelectric element 100A or 100B constituting the thermoelectric element unit 100 in the thermoelectric conversion module according to an embodiment of the present invention.
도 4를 참조하면, 상기 열전 소자(100A, 100B)는, 제1 기판(110); 상기 제1 기판(110)과 대향 배치된 제2 기판(120); 상기 제1 기판(110)과 제2 기판(120) 사이에 각각 배치된 제1 전극(140a)과 제2 전극(140b); 및 상기 제1 전극(140a)과 상기 제2 전극(140b) 사이에 개재된 복수의 열전 레그(130)를 포함한다.Referring to FIG. 4 , the thermoelectric elements 100A and 100B may include a first substrate 110 ; a second substrate 120 facing the first substrate 110; a first electrode 140a and a second electrode 140b respectively disposed between the first substrate 110 and the second substrate 120; and a plurality of thermoelectric legs 130 interposed between the first electrode 140a and the second electrode 140b.
제1 기판(110)과 제2 기판(120)은 각각 열전 소자에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것으로, 당 분야에 공지된 통상의 전기 절연성 재질로 구성될 수 있다. 일례를 들면, 제1 기판(110)과 제2 기판(120)은 각각 Al2O3, AlN, SiC 및 ZrO2 중 하나 또는 그 이상의 조성으로 구성되는 세라믹 기판일 수 있다. 또는 고내열성 절연성 수지나 엔지니어링 플라스틱 등으로 구성될 수도 있다. The first substrate 110 and the second substrate 120 each generate an exothermic or endothermic reaction when power is applied to the thermoelectric element, and may be made of a conventional electrically insulating material known in the art. For example, each of the first substrate 110 and the second substrate 120 may be a ceramic substrate composed of one or more of Al 2 O 3 , AlN, SiC, and ZrO 2 . Alternatively, it may be composed of a high heat-resistance insulating resin or engineering plastic.
또한 제1 기판(110)과 제2 기판(120)은 당 분야에 공지된 통상의 도전성 금속 재질로 구성된 금속 기판일 수 있다. 일례를 들면, 제1 기판(110)과 제2 기판(120)은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. 이때 도전성 제1 기판(110)과 도전성 제2 기판(120) 상에 전극(미도시)이 직접적으로 배치될 경우 전기적으로 도통하게 되므로, 이들 사이에는 당 분야에 공지된 전기절연성 물질이 개재(介在)되게 된다. 이에 따라, 제1 전극(140a)이 배치되는 제1 기판(110)의 일면 상에 제1절연층(미도시)이 형성되고, 제2 전극(140b)이 배치되는 제2 기판(120)의 일면 상에 제2절연층(미도시)이 형성되며, 상기 제1절연층과 제2절연층은 서로 마주보도록 대향 배치되는 구조를 가질 수 있다. 상기 제1절연층과 제2절연층은 서로 동일하거나 또는 상이하며, 성막이 용이한 당 분야에 공지된 통상의 전기절연성 물질을 제한 없이 사용할 수 있다. 제1절연층과 제2절연층의 두께는 특별히 제한되지 않으며, 일례로 10 내지 150 ㎛이며, 구체적으로 30 내지 120 ㎛일 수 있다. In addition, the first substrate 110 and the second substrate 120 may be a metal substrate made of a conventional conductive metal material known in the art. For example, each of the first substrate 110 and the second substrate 120 may include at least one metal among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). may include In this case, when an electrode (not shown) is directly disposed on the conductive first substrate 110 and the conductive second substrate 120 , it becomes electrically conductive, so an electrically insulating material known in the art is interposed between them. ) will be Accordingly, a first insulating layer (not shown) is formed on one surface of the first substrate 110 on which the first electrode 140a is disposed, and the second substrate 120 on which the second electrode 140b is disposed. A second insulating layer (not shown) may be formed on one surface, and the first insulating layer and the second insulating layer may have a structure in which they are disposed to face each other. The first insulating layer and the second insulating layer are the same as or different from each other, and a conventional electrically insulating material known in the art for easy film formation may be used without limitation. The thickness of the first insulating layer and the second insulating layer is not particularly limited, and may be, for example, 10 to 150 μm, specifically 30 to 120 μm.
상기 제1 기판(110)과 제2 기판(120)은 각각 평판 형상일 수 있으며, 그 크기나 두께 등에 특별히 제한되지 않는다. The first substrate 110 and the second substrate 120 may each have a flat plate shape, and the size or thickness thereof is not particularly limited.
이때 기판의 흡열과 발열의 발생 위치는 전류의 방향에 따라 변경 가능하다. 2개의 기판 중 하나는 흡열반응이 발생하는 흡열부(cold side) 기판이며, 이러한 기판에 방열패드가 적용될 수도 있다. 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성될 수 있으며, 0.5 내지 5.0 W/mk 범위의 열 전도도를 가짐으로써 열 전달 효율을 극대화시킬 수 있다. 또한 절연체 역할을 할 수 있다. 또한 2개의 기판 중 다른 하나는 발열부 기판(hot side)일 수 있다. 일례를 들면, 전술한 제1 열전달 부재(210)와 연결되는 제1 기판(110)이 흡열부 기판이고, 제2 열전달 부재(310)와 연결되는 제2 기판(120)이 발열부 기판일 수 있다. In this case, the positions of the heat absorption and heat generation of the substrate can be changed according to the direction of the current. One of the two substrates is a cold side substrate on which an endothermic reaction occurs, and a heat dissipation pad may be applied to this substrate. The heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and has a thermal conductivity in the range of 0.5 to 5.0 W/mk, thereby maximizing heat transfer efficiency. It can also act as an insulator. In addition, the other one of the two substrates may be a heating part substrate (hot side). For example, the first substrate 110 connected to the above-described first heat transfer member 210 may be a heat absorbing part substrate, and the second substrate 120 connected to the second heat transfer member 310 may be a heating part substrate. have.
서로 마주보도록 대향 배치된 제1 기판(110)과 제2 기판(120) 상에 각각 제1 전극(140a)과 제2 전극(140b)이 배치된다. 즉, 제1 전극(140a)과 대향하는 위치에 제2 전극(140b)이 배치된다.A first electrode 140a and a second electrode 140b are respectively disposed on the first substrate 110 and the second substrate 120 that are disposed to face each other. That is, the second electrode 140b is disposed at a position opposite to the first electrode 140a.
제1 전극(140a)과 제2 전극(140b)의 재질은 특별히 제한되지 않으며, 당 분야에서 전극으로 사용되는 재질을 제한 없이 사용할 수 있다. 일례로, 제1 전극 (140a)과 제2 전극(140b)은 서로 동일하거나 또는 상이하며, 각각 독립적으로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 사용할 수 있다. 그 외 니켈, 금, 은, 티타늄 등을 더 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. 바람직하게는 구리(Cu) 전극일 수 있다. 상기 제1 전극(140a)과 제2 전극(140b)은 소정의 형상으로 패턴화될 수 있으며, 그 형상은 특별히 제한되지 않는다. The material of the first electrode 140a and the second electrode 140b is not particularly limited, and a material used as an electrode in the art may be used without limitation. For example, the first electrode 140a and the second electrode 140b are the same as or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) at least one metal may be used. In addition, it may further include nickel, gold, silver, titanium, and the like. Its size can also be adjusted in various ways. Preferably, it may be a copper (Cu) electrode. The first electrode 140a and the second electrode 140b may be patterned in a predetermined shape, and the shape is not particularly limited.
상기 제1 전극(140a)과 제2 전극(140b) 사이에 복수의 열전 레그(130)가 개재된다. A plurality of thermoelectric legs 130 are interposed between the first electrode 140a and the second electrode 140b.
상기 열전 레그(130)는 복수의 P형 열전 레그(131)와 N형 열전 레그(132)를 각각 포함하며, 이들이 일방향으로 교번하여 배치된다. 이와 같이 일방향으로 이웃하는 P형 열전 레그(131) 및 N형 열전 레그(132)는 그 상면 및 하면이 각각 제1 전극(140a) 및 제2 전극(140b)과 전기적으로 직렬 연결된다. 이러한 각각의 열전 레그(130)는 열전반도체 기재를 포함한다.The thermoelectric leg 130 includes a plurality of P-type thermoelectric legs 131 and N-type thermoelectric legs 132, respectively, which are alternately disposed in one direction. As described above, the P-type thermoelectric leg 131 and the N-type thermoelectric leg 132 adjacent in one direction are electrically connected in series to the first electrode 140a and the second electrode 140b, respectively. Each of these thermoelectric legs 130 includes a thermoelectric semiconductor substrate.
상기 열전 레그(130)에 포함되는 열전반도체는 전기가 인가되면 양단에 온도차가 발생하거나, 또는 그 양단에 온도차가 발생하면 전기가 발생하는 당 업계의 통상적인 재료로 형성될 수 있다. 일례로, 전이금속, 희토류 원소, 13족 원소, 14족 원소, 15족 원소 및 16족 원소로 이루어진 군으로부터 선택되는 적어도 하나의 원소를 포함하는 열전반도체를 하나 이상 사용할 수 있다. 여기서, 희토류 원소의 예로는 Y, Ce, La 등이 있으며, 상기 전이금속의 예로는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, 및 Re 중 하나 이상일 수 있으며, 상기 13족 원소의 예로는 B, Al, Ga, 및 In 중 하나 이상일 수 있으며, 상기 14족 원소의 예로는 C, Si, Ge, Sn, 및 Pb 중 하나 이상일 수 있으며, 상기 15족 원소의 예로는 P, As, Sb, 및 Bi 중 하나 이상일 수 있고, 상기 16족 원소의 예로는 S, Se, 및 Te 중 하나 이상을 사용할 수 있다. The thermoelectric semiconductor included in the thermoelectric leg 130 may be formed of a conventional material in the art that generates electricity when a temperature difference occurs at both ends when electricity is applied, or when a temperature difference occurs at both ends. For example, one or more thermoelectric semiconductors including at least one element selected from the group consisting of a transition metal, a rare earth element, a group 13 element, a group 14 element, a group 15 element, and a group 16 element may be used. Here, examples of the rare earth element include Y, Ce, La, and the like, and examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, It may be at least one of Zn, Ag, and Re, and examples of the group 13 element may include at least one of B, Al, Ga, and In, and examples of the group 14 element include C, Si, Ge, Sn, and Pb. may be one or more of the group 15 elements, and examples of the group 15 elements may be at least one of P, As, Sb, and Bi, and examples of the group 16 elements may include one or more of S, Se, and Te.
사용 가능한 열전 반도체로는 비스무트(Bi), 텔레륨(Te), 코발트(Co), 사마륨(Sb), 인듐(In), 및 세륨(Ce) 중 적어도 2개 이상을 포함하는 조성으로 이루어진 질 수 있으며, 이의 비제한적인 예로는, Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 또는 이들의 조합 등이 있다. 구체적인 일례를 들면, Bi-Te계 열전반도체로는 Sb 및 Se가 도펀트로서 사용된 (Bi,Sb)2(Te,Se)3계 열전반도체를 예시할 수 있으며, Co-Sb계 열전반도체로서는 CoSb3계 열전반도체를 예시할 수 있으며, Sb-Te계 열전반도체로서는 AgSbTe2, CuSbTe2를 예시할 수 있고, Pb-Te계 열전반도체로서는 PbTe, (PbTe)mAgSbTe2 등을 예시할 수 있다. 바람직하게는 Bi-Te계 또는 CoSb계 열전 재료로 구성될 수 있다. 상기 열전 반도체는 소정 크기를 갖는 입자일 수 있으며, 예를 들어 평균 입경이 약 0.01 내지 약 100 ㎛의 범위일 수 있다.Usable thermoelectric semiconductors include bismuth (Bi), tellium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce) having a composition containing at least two or more of them. and non-limiting examples thereof, Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, Scoo Terdite (Skuttrudite)-based, silicide (Silicide)-based, half whistler (Half heusler), or a combination thereof, and the like. As a specific example, as the Bi-Te-based thermoelectric semiconductor, a (Bi,Sb) 2 (Te,Se) 3 thermoelectric semiconductor in which Sb and Se are used as dopants may be exemplified, and as the Co-Sb-based thermoelectric semiconductor, CoSb may be exemplified. Three -type thermoelectric semiconductor can be exemplified, and AgSbTe 2 and CuSbTe 2 can be exemplified as the Sb-Te-based thermoelectric semiconductor, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as the Pb-Te-based thermoelectric semiconductor. Preferably, it may be composed of a Bi-Te-based or CoSb-based thermoelectric material. The thermoelectric semiconductor may be particles having a predetermined size, for example, an average particle diameter may be in the range of about 0.01 to about 100 μm.
이와 같은 열전 반도체는 다양한 방법으로 제조될 수 있으며, 특별히 제한되지 않는다. 일례로, 열전 반도체는 용융방사 회전법(melt-spining)이나 기상원자화법(gas atomization) 등을 수행한 후 가압소결법을 순차적으로 진행하여 제조될 수 있다. 이러한 P형 열전 레그 및 N형 열전 레그를 포함하는 열전 레그(62)는 절단 가공 등의 방법으로 소정의 형상, 일례로 직육면체의 형상으로 형성하여 열전 소자에 적용될 수 있다. Such a thermoelectric semiconductor may be manufactured by various methods, and is not particularly limited. For example, the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method. The thermoelectric leg 62 including the P-type thermoelectric leg and the N-type thermoelectric leg may be formed into a predetermined shape, for example, a rectangular parallelepiped shape by a method such as cutting, and applied to a thermoelectric element.
본 발명에 따른 열전 소자(100)는, 제1 전극(140a)과 열전 레그(130) 사이; 및 상기 열전 레그(130)와 제2 전극(140b) 사이 중 적어도 하나, 바람직하게는 이들 모두의 사이에 배치되는 접합재(미도시)를 포함한다. 이러한 접합재는 당 분야에 공지된 통상의 접합재 성분을 제한 없이 사용할 수 있다. 일례로, 상기 접합재는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 제1 금속을 포함하는 조성; 또는 상기 제1 금속;과 Ni, Co, 및 Ag 중 적어도 하나의 제2 금속을 포함하는 조성으로 이루어질 수 있다. The thermoelectric element 100 according to the present invention includes: between the first electrode 140a and the thermoelectric leg 130 ; and a bonding material (not shown) disposed between at least one of, preferably, both of the thermoelectric leg 130 and the second electrode 140b. As the bonding material, conventional bonding material components known in the art may be used without limitation. In one example, the bonding material is Sn; a composition comprising a first metal of at least one of Pb, Al, and Zn; Alternatively, the first metal may be formed of a composition including a second metal of at least one of Ni, Co, and Ag.
선택적으로, 상기 열전 소자(100)는 제1 전극(140a)과 열전 레그(130) 사이; 및 열전 레그(130)와 제2 전극(140b) 사이에 배치되는 확산방지층(미도시)을 더 포함할 수 있다. 이러한 확산방지층은 당 분야에 공지된 통상의 성분을 제한 없이 사용할 수 있으며, 일례로 탄탈늄(Ta), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.Optionally, the thermoelectric element 100 is disposed between the first electrode 140a and the thermoelectric leg 130 ; and a diffusion barrier layer (not shown) disposed between the thermoelectric leg 130 and the second electrode 140b. Such a diffusion barrier layer can be used without limitation, a conventional component known in the art, for example, includes at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
일례를 들면, 제1 전극(140a) 및 제2 전극(140b)은 전력 공급원에 전기적으로 연결될 수 있다. 외부에서 DC 전압을 인가했을 때 p-타입 열전 레그의 정공과 n-타입 열전 레그의 전자가 이동함으로써 열전 레그 양단에서 발열과 흡열이 일어날 수 있다. 또한 제1 전극(140a) 및 제2 전극(140b) 중 적어도 하나는 열 공급원에 노출될 수 있다. 외부 열 공급원에 의하여 열을 공급받으면 전자와 정공이 이동하면서 열전소자에 전류의 흐름이 생겨 발전(發電)을 일으킬 수 있다.For example, the first electrode 140a and the second electrode 140b may be electrically connected to a power supply. When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg and the electrons of the n-type thermoelectric leg move, thereby generating heat and endothermic heat at both ends of the thermoelectric leg. Also, at least one of the first electrode 140a and the second electrode 140b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move and current flows in the thermoelectric element to generate electricity.
전술한 열전소자는 당 분야에 공지된 방법에 따라 제조될 수 있다. 이러한 제조방법의 일례를 들면, 기판으로는 세라믹 기판이나 도전성 기판을 사용하고, 상기 기판의 일면 상에 도전성 전극 패턴을 구성한 후, 열처리하여 고착화시킨다. 이때 금속 기판을 사용할 경우, 전극이 배치되는 금속 기판의 일면, 구체적으로 열전 레그가 배치되는 일면 상에 절연성 물질을 도포하여 통전(通電)을 방지한다. The above-described thermoelectric element may be manufactured according to a method known in the art. As an example of such a manufacturing method, a ceramic substrate or a conductive substrate is used as a substrate, a conductive electrode pattern is formed on one surface of the substrate, and then heat-treated to fix it. In this case, when a metal substrate is used, an insulating material is coated on one surface of the metal substrate on which the electrode is disposed, specifically, on one surface on which the thermoelectric leg is disposed to prevent conduction.
열전 재료를 이용하여 열전레그를 제조하는 방법의 일례를 들면, Bi-Te 또는 CoSb계 열전재료를 목적 두께에 맞게 슬라이싱을 진행하고, 최종 두께에 맞게 랩핑(lapping)을 진행하여 소재의 높이를 1/100 이내로 단차 조절한다. 단차가 제어된 열전 소재의 표면에 Co, Ni, Cr, 및 W 등의 표면 코팅을 진행하여 확산방지막을 형성한 후, 최종적으로 재료의 크기에 맞게 다이싱(dicing), 방전가공, Multi-wire 등의 공정을 통하여 원하는 크기로 절단하여 열전 레그가 제조된다. For an example of a method of manufacturing a thermoelectric leg using a thermoelectric material, slicing a Bi-Te or CoSb-based thermoelectric material to a desired thickness, and lapping to the final thickness, to increase the height of the material to 1 Adjust the step difference within /100. After forming a diffusion barrier film by surface coating of Co, Ni, Cr, and W on the surface of the thermoelectric material whose step is controlled, dicing, electric discharge machining, and multi-wire The thermoelectric leg is manufactured by cutting it to a desired size through a process such as.
이어서, 복수 개의 열전 레그를 한쌍의 전극 사이에 배치한 후 접합한다. 상기 접합 단계의 일례를 들면, 제1 전극의 패턴에 맞게 접합재 페이스트를 일정 두께로 도포하고, 그 위에 n형 및 p형의 열전 레그를 배열한다. 이후 반대쪽인 대향 전극(제2 전극)의 경우 접합재만 도포한 상태에서 기존에 제작되어 있는 n형 및 p형 열전 레그가 배열된 부분에 배치하여 최종 구성을 완료한다. 이어서, 200 내지 500℃로 열처리하여 최종 접합하고 전선을 연결하여 열전 소자의 제작이 완료된다.Next, a plurality of thermoelectric legs are disposed between a pair of electrodes and then bonded. As an example of the bonding step, a bonding material paste is applied to a predetermined thickness according to the pattern of the first electrode, and n-type and p-type thermoelectric legs are arranged thereon. After that, in the case of the opposite electrode (second electrode) on the opposite side, the final configuration is completed by placing the previously manufactured n-type and p-type thermoelectric legs in a state where only the bonding material is applied. Then, heat treatment at 200 to 500° C., final bonding, and connecting wires to complete the manufacture of the thermoelectric element.
본 발명의 일 실시예에 따른 열전 변환 모듈은, 열전소자를 적용하여 구현되는 흡열(냉각) 및 발열(가열)의 효과를 이용하여 응축 및 건조과정을 거치되, 적어도 2개의 열전소자를 구비함과 동시에 냉각부(예, 흡열핀)와 발열부(예, 방열핀)를 열전소자를 중심으로 일방향(편방향)으로 배치한다. 이에 따라, 냉각 및 발열시 열전환 효율을 상승시킴과 동시에, 하나의 배관에서 흐르는 유체의 냉각과 가열을 동시에 진행할 수 있다. 또한 유체의 이동 경로를 단축시켜 유체의 유동량이 증가하더라도 유체와류, 유속 감소 등이 최소화되어 유체의 속도를 지속적으로 유지할 수 있다. 아울러 본 발명에서는 냉각부 대비 발열부의 길이/면적을 소정 범위로 확장 설계함으로써, 발열부의 가열 성능 향상을 통해 높은 건조효율을 발휘할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 열전 변환 모듈을 사용할 경우, 발열부의 가열 성능 및 건조 효과를 증대시켜 우수한 제습 효과를 구현할 수 있다.The thermoelectric conversion module according to an embodiment of the present invention undergoes condensation and drying processes using the effects of endothermic (cooling) and exothermic (heating) realized by applying a thermoelectric element, and includes at least two thermoelectric elements At the same time, the cooling unit (eg, heat absorbing fin) and the heating unit (eg, heat dissipation fin) are arranged in one direction (one-way) around the thermoelectric element. Accordingly, it is possible to increase the heat conversion efficiency during cooling and heat generation, and to simultaneously perform cooling and heating of a fluid flowing in one pipe. In addition, by shortening the movement path of the fluid, even if the flow amount of the fluid increases, the fluid vortex and the flow velocity decrease are minimized, so that the velocity of the fluid can be continuously maintained. In addition, in the present invention, by extending the length/area of the heating part to a predetermined range compared to the cooling part, high drying efficiency can be exhibited by improving the heating performance of the heating part. Accordingly, when the thermoelectric conversion module according to an embodiment of the present invention is used, an excellent dehumidifying effect can be realized by increasing the heating performance and drying effect of the heat generating unit.
이와 같이, 본 발명의 실시예에 따른 열전 변환 모듈은 건조, 제습이 필요한 열전환장치, 세탁기, 건조기, 제습기 등을 포함하는 다양한 가전장비, 산업장비 등에 매우 범용적으로 적용할 수 있다. 또한 본 발명의 열전 변환 모듈은 전술한 구성에 특별히 한정되지 않으며, 필요에 따라 당 분야에 공지된 통상의 구성을 별도로 채용하거나, 또는 선택적으로 혼용하여 실시될 수도 있다. As such, the thermoelectric conversion module according to an embodiment of the present invention can be very universally applied to various home appliances and industrial equipment, including heat conversion devices requiring drying and dehumidification, washing machines, dryers, dehumidifiers, and the like. In addition, the thermoelectric conversion module of the present invention is not particularly limited to the above-described configuration, and if necessary, a conventional configuration known in the art may be separately employed, or may be selectively mixed and implemented.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples only illustrate the present invention, and the present invention is not limited by the following examples.
[실시예 1][Example 1]
하기 도 1 및 2에 도시된 열전 변환 모듈을 제작하였다. The thermoelectric conversion module shown in FIGS. 1 and 2 below was manufactured.
구체적으로, 열전소자부를 구성하는 제1 열전소자와 제2 열전소자로서 각각 40.5 X 40.5 mm 크기의 Bi-Te계 열전소자를 사용하였다. 냉각부에 사용되는 제1 열전달 부재(300)와 발열부에 사용되는 제2 열전달 부재(400)로는 각각 구리(Cu) 금속 플레이트를 사용하였다. 상기 제1 및 2 열전달 부재는 두께 0.3mm의 박형 금속을 사용하였으며, 상기 열전달 부재의 표면에 배치되는 흡열핀과 방열핀은 각각 Al 합금 계열의 루버핀으로 구성하였다. 또한 제1 열전달 부재와 흡열핀을 포함하는 냉각부의 길이는 40mm로 구성하였으며, 제2 열전달 부재와 제1 방열핀, 제2 방열핀을 포함하는 발열부의 길이는 80mm로 구성하였다. 그리고 제1 및 제2 열전달 부재와 방열핀의 접합은 솔더 페이스트로 접합하였고, 열전달 효율의 상승을 위하여 열전소자와 제1 및 제2 열전달 부재 간은 써멀구리스를 도포한 후 내열 실리콘을 이용하여 접합함으로써 실시예 1의 열전 변환 모듈을 제조하였다.Specifically, a Bi-Te-based thermoelectric element having a size of 40.5 X 40.5 mm was used as the first thermoelectric element and the second thermoelectric element constituting the thermoelectric element unit. A copper (Cu) metal plate was used as the first heat transfer member 300 used in the cooling unit and the second heat transfer member 400 used in the heat generating unit, respectively. A thin metal having a thickness of 0.3 mm was used for the first and second heat transfer members, and heat absorbing fins and heat dissipating fins disposed on the surface of the heat transfer member were each made of Al alloy-based louver fins. In addition, the length of the cooling unit including the first heat transfer member and the heat absorbing fin was 40 mm, and the length of the heating unit including the second heat transfer member, the first heat dissipation fin, and the second heat dissipation fin was 80 mm. In addition, the first and second heat transfer members and the heat dissipation fins were joined with solder paste, and thermal grease was applied between the thermoelectric element and the first and second heat transfer members to increase heat transfer efficiency and then joined using heat-resistant silicone. The thermoelectric conversion module of Example 1 was manufactured.
[비교예 1][Comparative Example 1]
제2 열전달 부재와 방열핀을 포함하는 발열부의 길이를 80mm 대신 냉각부와 동일하게 40 mm로 구성한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 비교예 1의 열전 변환 모듈을 제작하였다(하기 도 5 참조). A thermoelectric conversion module of Comparative Example 1 was manufactured in the same manner as in Example 1, except that the length of the heat generating unit including the second heat transfer member and the heat dissipation fin was 40 mm instead of 80 mm in the same manner as the cooling unit (below see Fig. 5).
실시예 1의 열전 변환 모듈과 비교하여 1개의 열전 소자를 사용하였다. 방열부의 방열핀 길이를 냉각부의 방열핀과 동일한 40mm의 크기로 제작하여, 도관 내 배치 후 유체를 통과시켜 입구와 출구의 온도차이를 확인하는 평가를 진행하였다.Compared with the thermoelectric conversion module of Example 1, one thermoelectric element was used. The length of the heat dissipation fin of the heat dissipation part was manufactured to have the same size of 40 mm as the heat dissipation fin of the cooling part, and after placement in the conduit, an evaluation was performed to check the temperature difference between the inlet and the outlet by passing the fluid.
[평가예 1][Evaluation Example 1]
실시예 1 및 비교예 1에서 제작된 열전 변환 모듈을 도관 내에 배치하고 유체를 통과시켰으며, 이후 방열핀의 위치별 온도 및 입구와 출구에서 유체의 온도 변화를 확인하였다. 그 결과를 하기 표 1과 도 6-7에 각각 나타내었다. The thermoelectric conversion module manufactured in Example 1 and Comparative Example 1 was placed in the conduit and the fluid was passed through, and then the temperature of each position of the heat dissipation fin and the temperature change of the fluid at the inlet and outlet were confirmed. The results are shown in Table 1 and FIGS. 6-7, respectively.
구분division 인가전력
(W)
applied power
(W)
방열핀(℃)Heat radiation fin (℃) 유체 온도(℃)Fluid temperature (°C) 길이 비율
(발열부 : 냉각부)
length ratio
(heating part: cooling part)
유체의
온도 변화
(℃)
fluid
temperature change
(℃)
냉각부cooling unit 발열부heating element 입구Entrance 출구exit
실시예1Example 1 6060 33.233.2 74.474.4 25.725.7 63.463.4 2 : 12:1 41.241.2
비교예1Comparative Example 1 6060 24.024.0 64.064.0 25.225.2 43.143.1 1 : 11:1 40.040.0
상기 표 1에 나타난 바와 같이, 비교예 1의 열전 변환 모듈을 통과한 유체의 온도는 대략 40.0℃에 불과하였으며, 발열부의 온도 역시 64℃를 나타냈다(하기 도 7 참조). 이에 비해, 실시예 1의 열전 변환 모듈은, 비교예 1 대비 발열부의 온도 및 상기 발열부를 통과한 유체의 온도가 현저히 증가하였다는 것을 알 수 있었다(도 6 참조). 이를 통해, 본 발명의 열전 변환 모듈은 구조 개선을 통해 동일 전력 조건 하에서 도관을 통과한 유체의 온도가 현저히 상승하고, 가열 성능이 유의적으로 증대되었다는 것을 확인할 수 있었다. As shown in Table 1, the temperature of the fluid passing through the thermoelectric conversion module of Comparative Example 1 was only about 40.0°C, and the temperature of the heating part was also 64°C (see FIG. 7 below). In contrast, in the thermoelectric conversion module of Example 1, it was found that the temperature of the heating part and the temperature of the fluid passing through the heating part were significantly increased compared to Comparative Example 1 (see FIG. 6 ). Through this, in the thermoelectric conversion module of the present invention, it was confirmed that the temperature of the fluid passing through the conduit was significantly increased and the heating performance was significantly increased under the same power condition through structural improvement.

Claims (18)

  1. 발열부와 흡열부를 갖는 적어도 2개의 열전소자가 병렬 연결된 열전소자부;a thermoelectric element unit in which at least two thermoelectric elements having a heating unit and a heat absorbing unit are connected in parallel;
    적어도 2개의 열전소자 중 대향 배치되는 흡열부 사이에 개재(介在)되고, 일방향으로 연장 배치되는 냉각부;a cooling unit interposed between opposing heat absorbing units among at least two thermoelectric elements and extending in one direction;
    상기 적어도 2개의 열전소자의 발열부와 각각 연결되고, 상기 냉각부와 동일 평면 상에서 타방향으로 연장 배치되는 발열부; 및a heating part connected to the heating part of the at least two thermoelectric elements, respectively, and extending in another direction on the same plane as the cooling part; and
    상기 냉각부 및 상기 발열부 사이에 열교환 매체가 흐를 수 있게 형성된 유로;를 포함하고, a flow path formed between the cooling unit and the heat generating unit to allow a heat exchange medium to flow;
    평면 상에서 상기 발열부의 길이(DH)는 상기 냉각부(DC)의 길이 대비 1.5 배 이상 큰 것인, 열전 변환 모듈.The length ( D H ) of the heating part on a plane is 1.5 times greater than the length of the cooling part (DC ), the thermoelectric conversion module.
  2. 제1항에 있어서, According to claim 1,
    평면 상에서 상기 발열부의 길이(DH)는 상기 냉각부의 길이(DC) 대비 2.0 내지 3.0배인, 열전 변환 모듈. The length ( D H ) of the heating part on a plane is 2.0 to 3.0 times of the length (DC ) of the cooling part, a thermoelectric conversion module.
  3. 제1항에 있어서, According to claim 1,
    상기 유로는 당해 열전소자부를 기준으로 일방향으로 형성되는, 열전 변환 모듈. The flow path is formed in one direction with respect to the thermoelectric element unit, the thermoelectric conversion module.
  4. 제1항에 있어서, According to claim 1,
    상기 열전소자부는, The thermoelectric element unit,
    일면에 발열부와 타면에 흡열부를 갖는 제1 열전소자;a first thermoelectric element having a heating part on one surface and a heat absorbing part on the other surface;
    상기 제1 열전소자의 흡열부와 대향 배치된 흡열부, 및 상기 흡열부의 반대면에 발열부를 갖는 제2 열전소자;를 포함하며,a second thermoelectric element having a heat absorbing portion disposed opposite to the heat absorbing portion of the first thermoelectric element, and a heat generating portion on an opposite surface of the heat absorbing portion;
    상기 제1 열전소자의 발열부와 상기 제2 열전소자의 발열부는 당해 열전소자부의 외측면에 각각 배치되는, 열전 변환 모듈. The thermoelectric conversion module, wherein the heating part of the first thermoelectric element and the heating part of the second thermoelectric element are respectively disposed on an outer surface of the thermoelectric element part.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 냉각부는 상기 제1 열전소자의 흡열부 기판 및 상기 제2 열전소자의 흡열부 기판과 연결되고, The cooling unit is connected to the heat absorbing part substrate of the first thermoelectric element and the heat absorbing part substrate of the second thermoelectric element,
    상기 발열부는 상기 제1 열전소자의 발열부 기판 및 상기 제2 열전소자의 발열부 기판과 연결되는, 열전 변환 모듈. The thermoelectric conversion module, wherein the heating part is connected to the heating part substrate of the first thermoelectric element and the heating part substrate of the second thermoelectric element.
  6. 제4항에 있어서, 5. The method of claim 4,
    상기 냉각부는, The cooling unit,
    일측이 상기 제1 열전소자의 흡열부 기판 및 상기 제2 열전소자의 흡열부 기판 사이에 개재(介在)되어 접촉하고, 타측이 일방향으로 연장되는 제1 열전달 부재; 및 a first heat transfer member having one side interposed between the heat absorbing part substrate of the first thermoelectric element and the heat absorbing part substrate of the second thermoelectric element to be in contact, and the other side extending in one direction; and
    상기 제1 열전달 부재의 타측 표면에 마련되고, 일방향으로 연장 배치된 흡열핀;a heat absorbing fin provided on the other surface of the first heat transfer member and extending in one direction;
    을 포함하는 열전 변환 모듈. Thermoelectric conversion module comprising a.
  7. 제1항에 있어서, According to claim 1,
    상기 발열부는, The heating part,
    일측이 "ㄷ"자 형으로 구성되어 상기 제1 열전소자의 발열부 기판 및 상기 제2 열전소자의 발열부 기판과 각각 접촉하고, 타측이 상기 냉각부와 동일 평면 상에서 타방향으로 연장되며, 상기 일측과 상기 타측이 연결된 제2 열전달 부재; 및One side is configured in a “C” shape to contact the heating unit substrate of the first thermoelectric element and the heating unit substrate of the second thermoelectric element, respectively, and the other side extends in the other direction on the same plane as the cooling unit, a second heat transfer member connected to one side and the other side; and
    상기 제2 열전달 부재의 일측 및 타측 표면에 마련되고, 일방향으로 연장 배치되는 방열핀;heat dissipation fins provided on one side and the other surface of the second heat transfer member and extending in one direction;
    을 포함하는 열전 변환 모듈. Thermoelectric conversion module comprising a.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 방열핀은, The heat dissipation fin is
    상기 제2 열전달 부재의 타측 표면에 배치되는 제1 방열핀; 및 a first heat dissipation fin disposed on the other surface of the second heat transfer member; and
    상기 제2 열전달 부재의 일측 표면 중 상기 제1 방열핀과 동일한 방향에 배치되고, 상기 제1 방열핀과 상이한 핀 높이를 갖는 제2 방열핀;을 포함하는, 열전 변환 모듈. and a second heat dissipation fin disposed on one surface of the second heat transfer member in the same direction as the first heat dissipation fin and has a fin height different from that of the first heat dissipation fin.
  9. 제6항 또는 제8항에 있어서, 9. The method according to claim 6 or 8,
    상기 흡열핀의 높이와 상기 제1 방열핀의 높이는 실질적으로 동일하고, The height of the heat absorbing fin and the height of the first heat dissipation fin are substantially the same,
    상기 제1 방열핀의 높이는 상기 제2 방열핀의 높이 보다 큰 것인, 열전 변환 모듈.The height of the first heat dissipation fin will be greater than the height of the second heat dissipation fin, the thermoelectric conversion module.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 흡열핀, 제1 방열핀, 및 제2 방열 핀은 당해 제1 열전달 부재를 기준으로 끝단의 길이가 같은, 열전 변환 모듈. The heat absorbing fin, the first heat dissipation fin, and the second heat dissipation fin have the same end length with respect to the first heat transfer member.
  11. 제10항에 있어서, 11. The method of claim 10,
    상기 흡열핀, 제1 방열핀, 및 제2 방열 핀은 각각 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함하는 열전 변환 모듈. The heat absorbing fin, the first heat dissipation fin, and the second heat dissipation fin each include a plurality of structures having a hollow, fin, or louver shape.
  12. 제6항 또는 제7항에 있어서, 8. The method according to claim 6 or 7,
    상기 제1 열전달 부재, 제2 열전달 부재, 흡열핀, 및 방열핀은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함하는 열전 변환 모듈.The first heat transfer member, the second heat transfer member, the heat absorbing fin, and the heat dissipation fin are made of at least one of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co), respectively. Thermoelectric conversion module comprising a.
  13. 제4항에 있어서, 5. The method of claim 4,
    상기 제1 열전소자 또는 제2 열전소자는, The first thermoelectric element or the second thermoelectric element,
    제1 기판; a first substrate;
    상기 제1 기판과 대향 배치된 제2 기판;a second substrate facing the first substrate;
    상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and
    상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그를 포함하는, 열전 변환 모듈. A thermoelectric conversion module comprising a plurality of thermoelectric legs interposed between the first electrode and the second electrode.
  14. 제13항에 있어서, 14. The method of claim 13,
    제1 기판과 제2 기판은 서로 동일하거나 또는 상이하며, 각각 독립적으로 세라믹 기판 또는 도전성 기판인 열전 변환 모듈. The first substrate and the second substrate are the same as or different from each other, and each independently a ceramic substrate or a conductive substrate.
  15. 제14항에 있어서, 15. The method of claim 14,
    상기 도전성 기판은, 금속 기판; 및 이의 일면에 형성된 절연층을 포함하는 열전 변환 모듈. The conductive substrate may include a metal substrate; and an insulating layer formed on one surface thereof.
  16. 제13항에 있어서, 14. The method of claim 13,
    상기 제1 기판, 제2 기판, 제1 전극, 또는 제2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함하는 열전 변환 모듈. The first substrate, the second substrate, the first electrode, or the second electrode are the same as or different from each other, and each of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) ) A thermoelectric conversion module comprising at least one metal.
  17. 제13항에 있어서, 14. The method of claim 13,
    상기 열전 레그는 Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 및 이들의 조합으로부터 선택되는 적어도 하나의 열전반도체 물질을 포함하는 열전 변환 모듈.The thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, Skuttrudite (Skuttrudite) A thermoelectric conversion module comprising at least one thermoelectric semiconductor material selected from )-based, silicide-based, half-heusler, and combinations thereof.
  18. 제1항에 있어서,According to claim 1,
    세탁기, 건조기 또는 제습기에 구비되는 열전 변환 모듈.A thermoelectric conversion module provided in a washing machine, dryer or dehumidifier.
PCT/KR2020/018419 2020-12-16 2020-12-16 Thermoelectric conversion module WO2022131395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/018419 WO2022131395A1 (en) 2020-12-16 2020-12-16 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/018419 WO2022131395A1 (en) 2020-12-16 2020-12-16 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
WO2022131395A1 true WO2022131395A1 (en) 2022-06-23

Family

ID=82057660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018419 WO2022131395A1 (en) 2020-12-16 2020-12-16 Thermoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2022131395A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101602A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Drum washing machine and clothes dryer using thermoelectric module
KR20150096180A (en) * 2014-02-14 2015-08-24 엘지이노텍 주식회사 Device using thermoelectric moudule
KR20150126828A (en) * 2013-01-14 2015-11-13 젠썸 인코포레이티드 Thermoelectric-based thermal management of electrical devices
KR20160116776A (en) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 Dehumidifier
KR20200034983A (en) * 2018-04-04 2020-04-01 엘지이노텍 주식회사 Thermoelectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101602A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Drum washing machine and clothes dryer using thermoelectric module
KR20150126828A (en) * 2013-01-14 2015-11-13 젠썸 인코포레이티드 Thermoelectric-based thermal management of electrical devices
KR20150096180A (en) * 2014-02-14 2015-08-24 엘지이노텍 주식회사 Device using thermoelectric moudule
KR20160116776A (en) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 Dehumidifier
KR20200034983A (en) * 2018-04-04 2020-04-01 엘지이노텍 주식회사 Thermoelectric element

Similar Documents

Publication Publication Date Title
US20080023056A1 (en) Thermoelectric Conversion System and of Increasing Efficiency of Thermoelectric Conversion System
WO2020218753A1 (en) Heat conversion device
JPH04216656A (en) Integrated-circuit package provided with thermoelectric cooler
WO2020085681A1 (en) Thermoelectric element and manufacturing method therefor
WO2018110794A1 (en) Thermoelectric element restrained from oxidation and volatilization and fabrication method therefor
US6660925B1 (en) Thermoelectric device having co-extruded P-type and N-type materials
WO2017039363A1 (en) Vehicle lamp
WO2020159177A1 (en) Thermoelectric device
WO2022131395A1 (en) Thermoelectric conversion module
WO2016159591A1 (en) Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
WO2022102800A1 (en) Thermoelectric conversion module
WO2017026856A1 (en) Vehicle lamp
WO2021145621A1 (en) Power generation apparatus
WO2020246749A1 (en) Thermoelectric device
KR102510123B1 (en) Thermoelectric element
WO2022092357A1 (en) Heat conversion device comprising thermoelectric element
WO2020004827A1 (en) Thermoelectric element
JP4609817B2 (en) Semiconductor laser module
WO2021201494A1 (en) Thermoelectric element
WO2020153799A1 (en) Thermoelectric element
WO2021029590A1 (en) Thermoelectric device
WO2018226046A1 (en) Heat conversion apparatus
KR20220085982A (en) Thermoelectric conversion module
WO2017209549A1 (en) Thermoelectric leg and thermoelectric element comprising same
WO2018143780A1 (en) Thermoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966049

Country of ref document: EP

Kind code of ref document: A1