WO2022092357A1 - Heat conversion device comprising thermoelectric element - Google Patents

Heat conversion device comprising thermoelectric element Download PDF

Info

Publication number
WO2022092357A1
WO2022092357A1 PCT/KR2020/014960 KR2020014960W WO2022092357A1 WO 2022092357 A1 WO2022092357 A1 WO 2022092357A1 KR 2020014960 W KR2020014960 W KR 2020014960W WO 2022092357 A1 WO2022092357 A1 WO 2022092357A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat
conversion device
transfer fin
substrate
Prior art date
Application number
PCT/KR2020/014960
Other languages
French (fr)
Korean (ko)
Inventor
이태희
양승호
양승진
황병진
연병훈
손경현
장봉중
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Publication of WO2022092357A1 publication Critical patent/WO2022092357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction

Definitions

  • the present invention relates to a heat conversion device including a thermoelectric element, and more particularly, to a heat conversion device with improved drying efficiency through structural improvement of a heat conversion device for drying provided in a washing machine or dryer.
  • An object of the present invention is to provide a novel structure of a hot air supply device for a dryer by utilizing the characteristics of a thermoelectric element.
  • the present invention provides a first heat transfer member including a first area and a second area on one surface; a first heat transfer fin disposed in the first region; a thermoelectric element having one side disposed in the second region; and a second heat transfer fin disposed on the other side of the thermoelectric element, wherein the coil-shaped heater unit is disposed between the thermoelectric element and the second heat transfer fin and applies thermal energy to the thermoelectric element.
  • Heat including; A conversion device is provided.
  • the first heat transfer member may be connected to a heat absorbing unit substrate of the thermoelectric element, and the heater unit may be connected to a heat generating unit substrate of the thermoelectric element.
  • the heater unit may have a circular shape bent in a spiral, a rectangular shape, or a shape bent in a twist shape along the length direction of the coil.
  • the heater unit may include at least one thermally conductive material selected from the group consisting of copper, aluminum, and nichrome.
  • a second heat transfer member disposed between the heater unit and the second heat transfer fin may be further included.
  • a heater cover part disposed between the thermoelectric element and the second heat transfer fin and surrounding the heater part may be further included.
  • the heater cover part may include a hollow part into which the heater part is inserted.
  • the heater cover part may have a rectangular ring shape with upper and lower surfaces open, or a square shape with one side open.
  • the heater cover part may include at least one thermally conductive material of copper, nichrome, and SUS.
  • the heat conversion device based on the second area of the first heat transfer member, (i) a thermoelectric element; heater unit; and the second heat transfer fins are sequentially disposed, or (ii) a thermoelectric element; heater unit; a second heat transfer member; and the second heat transfer fins are sequentially disposed, or (ii) a thermoelectric element; a heater cover unit accommodated therein; and a structure in which the second heat transfer fins are sequentially disposed.
  • thermoelectric element, the second heat transfer member, and the heater cover have substantially the same size on a plane, and the width direction length of the second heat transfer fin is larger than a size corresponding to the plane of the thermoelectric element. can be small
  • the first heat transfer fin and the thermoelectric element are spaced apart from each other, the first heat transfer fin and the second heat transfer fin are spaced apart from each other, and the first heat transfer fin and the second heat transfer fin are spaced apart from each other.
  • the separation distance L1 may be greater than the separation distance L2 between the thermoelectric element and the first heat transfer fin.
  • first heat transfer fin and the second heat transfer fin may include a plurality of structures each having a hollow, fin, or louver shape.
  • the height H1 of the first heat transfer fin and the height H2 of the second heat transfer fin may be different from each other.
  • the height H1 of the first heat transfer fin may be greater than the height H2 of the second heat transfer fin.
  • the first heat transfer fin and the second heat transfer fin may have the same end length with respect to the first heat transfer member.
  • the first heat transfer member, the second heat transfer member, the first heat transfer fin, and the second heat transfer fin may each include aluminum (Al), zinc (Zn), copper (Cu), and nickel (Ni). , and may include at least one metal material of cobalt (Co).
  • the thermoelectric element may include: a first substrate; a second substrate facing the first substrate; a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and a plurality of thermoelectric legs interposed between the first electrode and the second electrode.
  • the first substrate and the second substrate may be the same as or different from each other, and may each independently be a ceramic substrate or a conductive substrate.
  • the conductive substrate may include: a metal substrate; and an insulating layer formed on one surface thereof.
  • the first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, and each of aluminum (Al), zinc (Zn), copper (Cu), At least one metal of nickel (Ni) and cobalt (Co) may be included.
  • the heat conversion device may be provided in a washing machine, a dryer or a dehumidifier.
  • thermoelectric element and the heater unit are integrated, the roles of the condenser and heater belonging to the existing warm air structure for a dryer are replaced with a thermoelectric element, and the heat insufficient in the thermoelectric element is supplemented by the heater unit. By doing so, power efficiency can be improved.
  • the required area is reduced compared to the conventional structure of the heat conversion device for the dryer, thereby shortening the temperature increase time of the supplied air as well as achieving miniaturization.
  • FIG. 1 is a perspective view showing a heat conversion device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the heat conversion device according to FIG. 1 .
  • FIG 3 is a perspective view showing a heat conversion device according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the heat conversion device according to FIG. 3 .
  • FIG. 5 is a perspective view showing a heat conversion device according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the heat conversion device according to FIG.
  • FIG. 7 is a coil shape of a heater unit according to an embodiment of the present invention.
  • FIG. 8 is a coil shape of a heater unit according to another embodiment of the present invention.
  • FIG. 9 is a coil shape of a heater unit according to another embodiment of the present invention.
  • thermoelectric element 10 is a perspective view illustrating a thermoelectric element according to an embodiment of the present invention.
  • first heat transfer fin heat absorbing fin
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • planar when referred to as “planar”, it means when the target part is viewed from above, and “in cross-section” means when viewed from the side when the cross-section of the target part is vertically cut.
  • An object of the present invention is to provide a novel structure of a conventional hot air supply device for a dryer by utilizing the characteristics of a thermoelectric element.
  • a heat absorbing part eg, a heat absorbing fin or a first heat transfer fin
  • a thermoelectric element that removes moisture from the air flowing into the device, a thermoelectric element, and a heating part for heating dry air from which moisture has been removed from the heat absorbing part
  • a heat dissipation fin or a second heat transfer fin for example, a heat dissipation fin or a second heat transfer fin
  • a heater for adding insufficient thermal energy to the thermoelectric element functioning as a condenser and a heater is disposed between the thermoelectric element and the heat generating unit.
  • the drying efficiency can be significantly improved by increasing the condensation effect and the heating effect through an increase in ⁇ T of the thermoelectric element.
  • the heater unit and the heat generating unit are integrated, it is possible to realize miniaturization of the module.
  • the above-described heat absorbing unit, thermoelectric element, and heat generating unit are provided to have a predetermined structure.
  • the heat absorbing fin removes moisture from the high temperature and high humidity hot air introduced into the device and serves as a condenser for cooling.
  • the thermoelectric element serves to assist the temperature drop of the heat absorbing fin (the first heat transfer fin) and the temperature increase of the heater unit through the application of current, so that the target temperature can be reached with less current.
  • the heater unit compensates for insufficient thermal energy in the thermoelectric element to heat the condensed air, thereby exhibiting the effect of further increasing moisture control and temperature increase efficiency in a limited space.
  • the heat conversion device can increase drying efficiency by first performing cooling and condensation on the initially introduced air, and then drying the air through drying and heating secondarily. there is.
  • the configuration of the above-described heat conversion device may be appropriately modified or selectively mixed as needed.
  • the heat conversion device is a heat conversion device that removes moisture in the air introduced into the device by using a thermoelectric element and heats dry air, and may be applied to a washing machine, a dryer, and/or a dehumidifier.
  • a heat conversion device includes a heat transfer member including a second area (B) in contact with a thermoelectric element and a first area (A) spaced apart from the thermoelectric element; a first heat transfer fin disposed in the first region and configured to remove moisture from the air introduced from the outside; a thermoelectric element disposed in the second region; a heater unit for adding thermal energy to the thermoelectric element; and a second heat transfer fin configured to heat the dry air from which moisture has been removed from the first heat transfer fin.
  • the first heat transfer fins and the second heat transfer fins performing a heat conversion function such as cooling or heating the introduced air may be disposed adjacent to any one of the first and second substrates of the thermoelectric element.
  • a region in which the first substrate 61 of the thermoelectric element 60 is disposed and connected to perform a heat absorbing function is defined as a heat absorbing part, and the second substrate 63 of the thermoelectric element 60 is disposed and connected to provide a heat generating function.
  • An area to be performed is defined as a heat generating unit and will be described.
  • FIG. 1 is a perspective view schematically showing the structure of a heat conversion device 100 according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the heat conversion device 100 .
  • the heat conversion device 100 according to an embodiment of the present invention, a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; a first heat transfer fin 50 disposed in the first area A; a thermoelectric element (60) having one side disposed in the second region (B); and a second heat transfer fin 40 disposed on the other side of the thermoelectric element 60, disposed between the thermoelectric element 60 and the second heat transfer fin 40, the thermoelectric element 40 It includes a; heater unit 30 for adding thermal energy to the.
  • the thermoelectric element 60 may have a known configuration in which a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor are disposed between a pair of opposing substrates, and includes all elements for thermoelectric power generation and/or cooling.
  • the thermoelectric element 60 may include a first substrate 61 ; a second substrate 63 facing the first substrate 61; a first electrode and a second electrode respectively disposed between the first substrate 61 and the second substrate 63; and a plurality of thermoelectric legs 62 interposed between the first electrode and the second electrode to form a unit cell.
  • one of the pair of substrates 61 and 63 constitutes a heat absorbing part and the other 61 and 63 constitutes a heat generating part due to the Peltier effect when current is applied.
  • the heat absorbing part is formed on the first substrate 61 connected to the first heat transfer member 10
  • the heating part is formed on the second substrate 63 connected to the heater part 30 .
  • the first substrate 61 is a heat absorbing part substrate
  • the second substrate 62 is a heat absorbing part substrate.
  • the present invention is not limited thereto, and the positions of the heat absorbing part and the heat generating part may be appropriately changed if necessary.
  • the first heat transfer fins 50 that primarily perform cooling and condensation with respect to the incoming air are disposed in contact with the heat absorbing portion of the thermoelectric element 60 , and in particular of the first substrate 61 of the thermoelectric element 60 .
  • the first heat transfer member 10 is disposed so that the heat absorbing function can be transferred to be connected.
  • the first heat transfer member 10 includes a second area B in contact with the thermoelectric element 60 and a first area A in which the first heat transfer fin 50 is provided and spaced apart from the thermoelectric element 60 . ) is included. Specifically, the second region B of the first heat transfer member 10 is brought into contact with the first substrate 61 on which the endothermic reaction of the thermoelectric element 60 occurs to lower the temperature, and this cold air is cooled to the first heat transfer fin ( 50) will be transferred. Accordingly, the air flowing in from the external fan (not shown) is in contact with the first heat transfer member 10 and the first heat transfer fin 50 through the first substrate 61 of the thermoelectric element 600, The temperature is lowered, which allows the moisture in the humid air to condense.
  • the first heat transfer member 10 may have a substantially flat plate shape, and may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Its size can also be adjusted in various ways. Preferably, it may include at least one of copper (Cu) and aluminum (Al). In this case, the first heat transfer member 10 and the first heat transfer fin 50 may be configured by bonding separate structures, or may be implemented as an integrated structure.
  • the first heat transfer fin 50 disposed on the first area A of the first heat transfer member 10 described above is a condenser that removes moisture from hot and humid air flowing in from a fan (not shown) and cools it. play a role
  • the first heat transfer fins 50 may be disposed in all or part of the first area A of the first heat transfer member 10 .
  • the shape of the first heat transfer fin 50 is not particularly limited, and may have a shape of a heat absorbing fin known in the art. For example, it may include a plurality of structures having a hollow, fin, or louver shape.
  • the first heat transfer fin 50 may be made of a conventional thermally conductive material known in the art, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) may include at least one metal material.
  • the air cooled through the inside of the first heat transfer fin 50 is discharged by condensation of moisture inside, and then the dried air is introduced into the second heat transfer fin 40 through an air flow path (not shown). do.
  • the second heat transfer fin 40 that heats and dries the dried air is disposed to contact the second substrate 63 that is the heat generating unit substrate of the thermoelectric element 60 .
  • the second substrate 63 of the thermoelectric element 60 and the second heat transfer fin 40 are directly disposed so as to be in surface contact without a separate intermediate member, and the heater unit 30 is disposed between them. By additionally disposing, it is implemented to compensate for insufficient heat of the thermoelectric element 60 .
  • the heater unit 30 is connected to the heat generating unit of the thermoelectric element 60, for example, the second substrate 63, and heat energy insufficient in the thermoelectric element 60 serving as a heater and a condenser belonging to the existing warm air structure for a dryer. It acts as an addition and complements.
  • the heater unit 30 is not particularly limited in shape, size, structure, etc. as long as it can emit thermal energy, and may have a configuration known in the art. In order to increase the heat transfer area, it is preferable to have a shape bent in a spiral. For example, as shown in FIGS. 7 to 9, it may be a circular shape bent in a spiral, a rectangular shape, or a shape bent in a twist shape along the longitudinal direction of the coil.
  • the heater unit 30 may be made of a conventional thermally conductive material known in the art, and may include, for example, at least one selected from the group consisting of copper, aluminum, and nichrome.
  • the size of the heater unit 30 is not particularly limited, and may be the same as or smaller than the size corresponding to the plane of the above-described thermoelectric element 60 .
  • a second heat transfer fin 40 serving as a heat dissipation fin for heating air is disposed on the bottom surface of the heater unit 30 described above. That is, both the thermal energy resulting from the exothermic reaction of the thermoelectric element 60 and the additional thermal energy generated in the heater unit 30 are transferred to the inside of the second heat transfer fin 40, and use the heat to the first heat transfer fin 50 ), converts the dehydrated air into dry air.
  • the second heat transfer fins 40 may be disposed in some or all of the area corresponding to the planar size of the heater unit 30 .
  • the heater unit 30 and the second heat transfer fin 40 may be configured by bonding separate structures, or may be implemented as an integrated structure.
  • the shape of the second heat transfer fin 40 is not particularly limited, and may have a shape known in the art.
  • the second heat transfer fin 40 may be the same as that of the first heat transfer fin 50 described above, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and at least one metal material of cobalt (Co).
  • the first heat transfer fin 50 and the thermoelectric element 60 are spaced apart from each other, and the first heat transfer fin 50 and the second heat transfer fin 40 may have a structure spaced apart from each other.
  • the separation distance between them is not particularly limited, but the separation distance L1 between the first heat transfer fin 50 and the second heat transfer fin 40 is the separation distance between the thermoelectric element 60 and the first heat transfer fin 40 ( It is preferable to be larger than L2).
  • the separation distance L1 between the first heat transfer fin 50 and the second heat transfer fin 40 is 5.0 to 50.0 mm
  • the separation distance L2 between the first heat transfer fin 50 and the thermoelectric element 60 may be 3.0 to 40.0 mm.
  • the height H1 of the first heat transfer fin 50 and the height H2 of the second heat transfer fin 40 may be different from each other.
  • the height H1 of the first heat transfer fin 50 is the first 2 It may be greater than the height H2 of the heat transfer fin 40 .
  • the first heat transfer fin 50 and the second heat transfer fin 40 may have the same end length with respect to the first heat transfer member 10 .
  • the heat conversion device 100 includes a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; a first heat transfer fin 50 disposed in the first area A; a thermoelectric element 60 and a heater unit 30 sequentially arranged in the second region (B); and a second heat transfer fin 40 .
  • the thermoelectric element 60 , the heater unit 30 , and the second heat transfer fin 40 sequentially stacked based on the second region B may be configured by bonding separate structures, or integrated It can also be implemented as a structure.
  • the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
  • the heat conversion device may be manufactured according to a method known in the art.
  • one side of the thermoelectric element 60 specifically, the heat absorbing part substrate 61 is bonded to the second region B of the first heat transfer member 10 , and the first heat transfer member 10 is The first heat transfer fins 50 are disposed in the first region (A) and joined.
  • the heater unit 30 and the second heat transfer fin 40 are sequentially disposed on the other side of the thermoelectric element 60 bonded to the first heat transfer member 10 and joined to complete the fabrication.
  • thermoelectric element 60 After bonding one side of the thermoelectric element 60 to one surface of the first heat transfer member 10 , the thermoelectric element 60 is moved to one end of the first heat transfer member 10 , and the second It may be manufactured by disposing the first heat transfer fins 50 at the other end of the first heat transfer member 10 .
  • FIGS. 3 and 4 are perspective and cross-sectional views schematically illustrating the structure of the heat conversion device 200 according to the second embodiment of the present invention.
  • the same reference numerals as in Figs. 1 and 2 denote the same members.
  • FIGS. 3 and 4 content overlapping with FIGS. 1 and 2 will not be described again, and only differences will be described.
  • the heat conversion device 200 according to the second embodiment of the present invention compared with FIGS. 1-2 in which the heater unit 30 and the second heat transfer fin 40 are in direct contact, A second heat transfer member 11 is further included between the heater unit 30 and the second heat transfer fin 40 .
  • the non-planar shape of the heater unit 30 and the second heat transfer fin 40 is Due to this, it is difficult to attach and the structural stability is lowered, and this may make it difficult to continuously exhibit the effect of improving the drying efficiency of the heat conversion device.
  • the second heat transfer member 10 adopted in the second embodiment is made of a plate-shaped heat conductive material, and thus maintains the adhesive force between the heater unit 30 and the second heat transfer fin 40 to secure structural stability. While doing so, thermal energy generated by the thermoelectric element 60 and the heater unit 30 may be smoothly transferred to the second heat transfer fin 40 .
  • the second heat transfer member 11 may be in the form of a flat plate, and may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Preferably, it may include at least one of copper (Cu) and aluminum (Al).
  • the size of the second heat transfer member 11 may be variously adjusted. For example, it may have substantially the same size as the size corresponding to the plane of the thermoelectric element 60 . However, it is not particularly limited thereto.
  • the heat conversion device 200 includes a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; and a first heat transfer fin 50 disposed in the first area A;
  • a thermoelectric element 60 , a heater unit 30 , a second heat transfer member 11 , and a second heat transfer fin 40 are sequentially disposed in the second region B .
  • the thermoelectric element 60 , the heater unit 30 , the second heat transfer member 11 , and the second heat transfer fin 40 sequentially stacked based on the second region B are separate structures. It may be configured by bonding, or may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
  • FIG. 5 and 6 are perspective and cross-sectional views schematically illustrating the structure of the heat conversion device 300 according to the third embodiment of the present invention.
  • the same reference numerals as in Figs. 1 and 2 denote the same members.
  • FIG. 1 a heat conversion device 300 according to a third embodiment of the present invention is shown in FIG. 1 to which a thermoelectric element 60 , a heater unit 30 and a second heat transfer fin 40 are directly attached.
  • a heater cover part 20 in which a coil-shaped heater part 30 is embedded is further included between the thermoelectric element 60 and the second heat transfer fin 40 .
  • thermoelectric element 60 and the heater unit 30 are in direct contact, the performance of the thermoelectric element 60 is deteriorated due to overheating of the heater unit 30, and the heater In case of malfunction, the thermoelectric element must be replaced together.
  • attachment is difficult, and structural stability is lowered, thereby making it difficult to exhibit the effect of improving the drying efficiency of the heat conversion device.
  • the heater cover unit 20 adopted in the third embodiment prevents direct contact between the thermoelectric element 60 and the heater unit 30 to fundamentally solve the above-described problems, and the heater accommodated therein Since the thermal energy of the part 30 can be completely transferred to the second heat transfer fin 40 , a desired effect can be exhibited.
  • the heater cover unit 20 adopted in the third embodiment prevents direct contact between the thermoelectric element 60 and the heater unit 30 to fundamentally solve the above-described problems, and the heater accommodated therein Since the thermal energy of the part 30 can be completely transferred to the second heat transfer fin 40 , a desired effect can be exhibited.
  • it is made of a plate-shaped thermally conductive material, it is possible to continuously maintain the adhesive force between the heater unit 30 and the second heat transfer fin 40 .
  • the heater cover 20 can transfer the heat energy of the heater 30 to the thermoelectric element 60 and the second heat transfer fin 40 while accommodating the heater 30 therein, the shape and material It is not particularly limited.
  • the heater cover part 20 may include a hollow part into which the heater part 30 can be inserted.
  • the heater cover unit 20 may have a rectangular ring shape with upper and lower surfaces open, or a rectangular shape with one side open.
  • the heater cover unit 20 may be made of a conventional thermally conductive material known in the art, and may include, for example, at least one thermally conductive material of copper, nichrome, and SUS.
  • the size of the heater cover part 20 can be adjusted in various ways. For example, it may have substantially the same size as the size corresponding to the plane of the thermoelectric element 60 . However, it is not particularly limited thereto.
  • the heat conversion device 300 includes a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; a first heat transfer fin 50 disposed in the first area A; A thermoelectric element 60 sequentially arranged in the second region B, a heater cover 20 in which the heater 30 is accommodated, and a second heat transfer fin 40 are provided.
  • the thermoelectric element 60, the heater cover part 20, and the second heat transfer fin 40 sequentially stacked based on the second region B may be configured by bonding separate structures, or It may be implemented as an integrated structure.
  • the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
  • the shape of the coil of the heater unit 30 is specifically exemplified.
  • the present invention is not limited thereto, and may be modified to have various shapes and sizes.
  • a fin type or a louver type is specifically exemplified as the first heat transfer fin 50 and the second heat transfer fin 40 , but the present invention is not limited thereto and the shape of a conventional heat dissipation fin and/or a heat absorbing fin known in the art. can all be applied.
  • thermoelectric element 60 is a perspective view schematically showing the structure of the thermoelectric element 60 according to an embodiment of the present invention.
  • the thermoelectric element 60 includes a first substrate 61 ; a second substrate 63 facing the first substrate 61; a first electrode 64a and a second electrode 64b respectively disposed between the first substrate 61 and the second substrate 63; and a plurality of thermoelectric legs 62 interposed between the first electrode 64a and the second electrode 64b.
  • each of the first substrate 61 and the second substrate 63 generates an exothermic or endothermic reaction when power is applied to the thermoelectric element 60 , and may be made of a conventional electrically insulating material known in the art.
  • each of the first substrate 61 and the second substrate 63 may be a ceramic substrate composed of one or more compositions of Al 2 O 3 , AlN, SiC, and ZrO 2 .
  • it may be composed of a high heat-resistance insulating resin or engineering plastic.
  • first substrate 61 and the second substrate 63 may be a metal substrate made of a conventional conductive metal material known in the art.
  • each of the first substrate 61 and the second substrate 63 may include at least one metal selected from among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). may include At this time, when an electrode (not shown) is directly disposed on the conductive first substrate 61 and the conductive second substrate 63, electrical conduction occurs, so that an electrically insulating material known in the art is interposed therebetween.
  • a first insulating layer (not shown) is formed on one surface of the first substrate 61 on which the first electrode is disposed, and a second insulation layer on one surface of the second substrate 63 on which the second electrode is disposed.
  • a layer (not shown) may be formed, and the first insulating layer and the second insulating layer may have a structure in which they are disposed to face each other.
  • the first insulating layer and the second insulating layer are the same as or different from each other, and a conventional electrically insulating material known in the art for easy film formation may be used without limitation.
  • the thickness of the first insulating layer and the second insulating layer is not particularly limited, and may be, for example, 10 to 150 ⁇ m, specifically 30 to 120 ⁇ m.
  • the first substrate 61 and the second substrate 62 may each have a flat plate shape, and the size or thickness thereof is not particularly limited.
  • the positions of the heat absorption and heat generation of the substrate can be changed according to the direction of the current.
  • One of the two substrates is a cold side substrate on which an endothermic reaction occurs, and a heat dissipation pad may be applied to this substrate.
  • the heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and has a thermal conductivity in the range of 0.5 to 5.0 W/mk, thereby maximizing heat transfer efficiency. It can also act as an insulator.
  • the other one of the two substrates may be a heating part substrate (hot side).
  • the first substrate 61 connected to the above-described first heat transfer member 10 may be a heat absorbing unit substrate
  • the second substrate 63 connected to the heater unit 30 may be a heat generating unit substrate.
  • a first electrode 64a and a second electrode 64b are respectively disposed on the first substrate 61 and the second substrate 63 that are disposed to face each other. That is, the second electrode 64b is disposed at a position opposite to the first electrode 64a.
  • the material of the first electrode 64a and the second electrode 64b is not particularly limited, and a material used as an electrode in the art may be used without limitation.
  • the first electrode 64a and the second electrode 64b are the same as or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) at least one metal may be used.
  • it may further include nickel, gold, silver, titanium, and the like. Its size can also be adjusted in various ways.
  • it may be a copper (Cu) electrode.
  • the first electrode 64a and the second electrode 64b may be patterned in a predetermined shape, and the shape is not particularly limited.
  • thermoelectric legs 62 are interposed between the first electrode 64a and the second electrode 64b.
  • the thermoelectric leg 62 includes a plurality of P-type thermoelectric legs 62a and N-type thermoelectric legs 62b, respectively, which are alternately disposed in one direction. As described above, the P-type thermoelectric leg 62a and the N-type thermoelectric leg 62b adjacent in one direction are electrically connected in series to the first electrode 64a and the second electrode 64b, respectively. Each of these thermoelectric legs 62 includes a thermoelectric semiconductor substrate.
  • thermoelectric semiconductor included in the thermoelectric leg 62 may be formed of a conventional material in the art that generates electricity when a temperature difference occurs at both ends when electricity is applied, or when a temperature difference occurs at both ends.
  • thermoelectric semiconductors including at least one element selected from the group consisting of a transition metal, a rare earth element, a group 13 element, a group 14 element, a group 15 element, and a group 16 element may be used.
  • examples of the rare earth element include Y, Ce, La, and the like
  • examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu
  • It may be at least one of Zn, Ag, and Re
  • examples of the group 13 element may include at least one of B, Al, Ga, and In
  • examples of the group 14 element include C, Si, Ge, Sn, and Pb.
  • examples of the group 15 elements may be at least one of P, As, Sb, and Bi
  • examples of the group 16 elements may include one or more of S, Se, and Te.
  • thermoelectric semiconductors include bismuth (Bi), tellium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce) having a composition containing at least two or more of them. and non-limiting examples thereof, Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, Scoo Terdite (Skuttrudite)-based, silicide (Silicide)-based, half whistler (Half heusler), or a combination thereof, and the like.
  • thermoelectric semiconductor a (Bi,Sb) 2 (Te,Se) 3 thermoelectric semiconductor in which Sb and Se are used as dopants may be exemplified, and as the Co-Sb-based thermoelectric semiconductor, CoSb may be exemplified.
  • Three -type thermoelectric semiconductor can be exemplified, and AgSbTe 2 and CuSbTe 2 can be exemplified as the Sb-Te-based thermoelectric semiconductor, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as the Pb-Te-based thermoelectric semiconductor.
  • thermoelectric semiconductor may be particles having a predetermined size, for example, an average particle diameter may be in the range of about 0.01 to about 100 ⁇ m.
  • thermoelectric semiconductor may be manufactured by various methods, and is not particularly limited.
  • the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method.
  • the thermoelectric leg 62 including the P-type thermoelectric leg and the N-type thermoelectric leg may be formed into a predetermined shape, for example, a rectangular parallelepiped shape by a method such as cutting, and applied to a thermoelectric element.
  • the thermoelectric element 60 includes: between the first electrode 64a and the thermoelectric leg 62 ; and a bonding material (not shown) disposed between at least one, preferably both, of the thermoelectric leg 62 and the second electrode 64b.
  • the bonding material conventional bonding material components known in the art may be used without limitation.
  • the bonding material is Sn; a composition comprising a first metal of at least one of Pb, Al, and Zn;
  • the first metal may have a composition including a second metal of at least one of Ni, Co, and Ag.
  • thermoelectric element 60 is disposed between the first electrode 64a and the thermoelectric leg 62; and a diffusion barrier layer (not shown) disposed between the thermoelectric leg 62 and the second electrode 64b.
  • a diffusion barrier layer can be used without limitation, a conventional component known in the art, for example, includes at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
  • the first electrode and the second electrode may be electrically connected to a power source.
  • a DC voltage When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg and the electrons of the n-type thermoelectric leg move, so that heat and endotherm can occur at both ends of the thermoelectric leg.
  • at least one of the first electrode and the second electrode may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move and current flows in the thermoelectric element to generate electricity.
  • thermoelectric element may be manufactured according to a method known in the art.
  • a ceramic substrate or a conductive substrate is used as a substrate, a conductive electrode pattern is formed on one surface of the substrate, and then heat-treated to fix it.
  • an insulating material is coated on one surface of the metal substrate on which the electrode is disposed, specifically, on one surface on which the thermoelectric leg is disposed to prevent conduction.
  • thermoelectric leg For an example of a method of manufacturing a thermoelectric leg using a thermoelectric material, slicing a Bi-Te or CoSb-based thermoelectric material to a desired thickness, and lapping to the final thickness, to increase the height of the material to 1 Adjust the step difference within /100. After forming a diffusion barrier film by surface coating of Co, Ni, Cr, and W on the surface of the thermoelectric material whose step is controlled, dicing, electric discharge machining, and multi-wire The thermoelectric leg is manufactured by cutting it to a desired size through a process such as.
  • thermoelectric legs are disposed between a pair of electrodes and then bonded.
  • a bonding material paste is applied to a predetermined thickness according to the pattern of the first electrode, and n-type and p-type thermoelectric legs are arranged thereon.
  • the final configuration is completed by placing the previously manufactured n-type and p-type thermoelectric legs in a state where only the bonding material is applied. Then, heat treatment at 200 to 500° C., final bonding, and connecting wires to complete the manufacture of the thermoelectric element.
  • the thermal conversion device according to an embodiment of the present invention is dried by optimizing moisture control and temperature increase efficiency in a limited space through condensation and drying processes using the effects of heat generation and endotherm realized by applying a thermoelectric element. Efficiency can be continuously improved. Accordingly, when using the heat conversion device according to an embodiment of the present invention, it is possible to implement an excellent dehumidifying effect by increasing the condensation effect.
  • the heat conversion device can be very universally applied to various home appliances and industrial equipment, including washing machines, dryers, dehumidifiers, etc. requiring drying and dehumidification.

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

The present invention relates to a heat conversion device comprising a thermoelectric element and, more particularly, provides a heat conversion device having improved drying efficiency as a result of a structural improvement made to a heat conversion device for drying which is used during the manufacture of a washing machine or a drier.

Description

열전 소자를 포함하는 열전환장치Thermal conversion device including a thermoelectric element
본 발명은 열전소자를 포함하는 열전환장치에 관한 것으로, 보다 상세하게는 세탁기나 건조기에 구비되는 건조용 열전환장치의 구조개선을 통하여 건조 효율이 향상된 열전환장치에 관한 것이다. The present invention relates to a heat conversion device including a thermoelectric element, and more particularly, to a heat conversion device with improved drying efficiency through structural improvement of a heat conversion device for drying provided in a washing machine or dryer.
종래 건조기는, 팬을 통해 유입된 공기가 습기를 함유하고 있으므로, 응축기를 지나면서 공기로부터 습기를 제거하고, 이어서 히터를 통해 습기가 제거된 공기를 가열하여 옷감이 있는 건조 드럼으로 들어가는 일련의 순환 과정으로 작동된다.In the conventional dryer, since the air introduced through the fan contains moisture, moisture is removed from the air as it passes through the condenser, and then the dehumidified air is heated through a heater to enter a drying drum with cloth in a series of circulation works as a process.
그러나 전술한 과정 중에 가열된 공기로부터 습기가 제대로 제거되지 않아 다량의 수분이 여전히 잔존하게 되고, 이로 인해 건조 효율이 저하되는 문제가 발생하게 된다. 또한 건조기 내 온도 조절이 용이하지 않을 뿐만 아니라, 설령 습기 제거를 위해 건조기의 내부 온도를 높일 경우, 과열로 인한 화재 위험성 및 에너지 소비량이 증대되는 문제점이 발생하게 된다. 그리고 고온의 온풍으로 인해 건조기 내 옷감 손상이 초래될 수 있다. However, moisture is not properly removed from the heated air during the above-described process, so that a large amount of moisture still remains, which causes a problem in that drying efficiency is lowered. In addition, it is not easy to control the temperature in the dryer, and even if the internal temperature of the dryer is increased to remove moisture, there is a problem in that the risk of fire and energy consumption increase due to overheating. In addition, the high-temperature hot air may cause damage to the fabric in the dryer.
본 발명이 이루고자 하는 기술적 과제는 열전소자의 특성을 활용하여 건조기용 열풍공급장치의 신규 구조를 제공하는 것이다. An object of the present invention is to provide a novel structure of a hot air supply device for a dryer by utilizing the characteristics of a thermoelectric element.
본 발명의 다른 목적 및 이점은 하기 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 설명될 수 있다.Other objects and advantages of the present invention may be more clearly explained by the following detailed description and claims.
상기한 기술적 과제를 달성하기 위해, 본 발명은 일면에 제1 영역과 제2 영역을 포함하는 제1 열전달 부재; 상기 제1 영역에 배치되는 제1 열전달 핀; 상기 제2 영역에 일측이 배치되는 열전소자; 및 상기 열전소자의 타측에 배치되는 제2 열전달 핀;을 포함하고, 상기 열전소자와 상기 제2 열전달 핀 사이에 배치되고, 상기 열전소자에 열에너지를 부가하는 코일 형상의 히터부;를 포함하는 열전환장치를 제공한다. In order to achieve the above technical object, the present invention provides a first heat transfer member including a first area and a second area on one surface; a first heat transfer fin disposed in the first region; a thermoelectric element having one side disposed in the second region; and a second heat transfer fin disposed on the other side of the thermoelectric element, wherein the coil-shaped heater unit is disposed between the thermoelectric element and the second heat transfer fin and applies thermal energy to the thermoelectric element. Heat including; A conversion device is provided.
본 발명의 일 실시예를 들면, 상기 제1 열전달 부재는 상기 열전소자의 흡열부 기판과 연결되고, 상기 히터부는 상기 열전소자의 발열부 기판과 연결될 수 있다. In an embodiment of the present invention, the first heat transfer member may be connected to a heat absorbing unit substrate of the thermoelectric element, and the heater unit may be connected to a heat generating unit substrate of the thermoelectric element.
본 발명의 일 실시예를 들면, 상기 히터부는 나선형으로 절곡된 원형 형상, 사각형 형상, 또는 코일의 길이방향을 따라가면서 트위스트 형태로 절곡된 형상일 수 있다. For an embodiment of the present invention, the heater unit may have a circular shape bent in a spiral, a rectangular shape, or a shape bent in a twist shape along the length direction of the coil.
본 발명의 일 실시예를 들면, 상기 히터부는 구리, 알루미늄, 및 니크롬으로 구성된 군에서 선택된 적어도 1종 이상의 열전도성 재질을 포함할 수 있다. For an embodiment of the present invention, the heater unit may include at least one thermally conductive material selected from the group consisting of copper, aluminum, and nichrome.
본 발명의 일 실시예를 들면, 상기 히터부와 상기 제2 열전달 핀 사이에 배치되는 제2 열전달 부재를 더 포함할 수 있다. According to an embodiment of the present invention, a second heat transfer member disposed between the heater unit and the second heat transfer fin may be further included.
본 발명의 일 실시예를 들면, 상기 열전소자와 상기 제2 열전달 핀 사이에 배치되고, 상기 히터부를 감싸는 히터 커버부를 더 포함할 수 있다. According to an embodiment of the present invention, a heater cover part disposed between the thermoelectric element and the second heat transfer fin and surrounding the heater part may be further included.
본 발명의 일 실시예를 들면, 상기 히터 커버부는 상기 히터부가 삽입 배치될 수 있는 중공부를 포함할 수 있다. For an embodiment of the present invention, the heater cover part may include a hollow part into which the heater part is inserted.
본 발명의 일 실시예를 들면, 상기 히터 커버부는 상하면이 개방된 사각링 형상이거나, 또는 일 측면이 개방된 사각형 형상일 수 있다. For one embodiment of the present invention, the heater cover part may have a rectangular ring shape with upper and lower surfaces open, or a square shape with one side open.
본 발명의 일 실시예를 들면, 상기 히터 커버부는 구리, 니크롬 및 SUS 중 적어도 1종 이상의 열전도성 재질을 포함할 수 있다. In an embodiment of the present invention, the heater cover part may include at least one thermally conductive material of copper, nichrome, and SUS.
본 발명의 일 실시예를 들면, 상기 열전환장치는, 당해 제1 열전달 부재의 제2 영역을 기준으로, (i) 열전소자; 히터부; 및 제2 열전달 핀이 순차적으로 배치되거나, (ii) 열전소자; 히터부; 제2 열전달 부재; 및 제2 열전달 핀이 순차적으로 배치되거나, 또는 (ii) 열전소자; 히터부가 내부에 수용된 히터 커버부; 및 제2 열전달 핀이 순차적으로 배치되는 구조일 수 있다. In one embodiment of the present invention, the heat conversion device, based on the second area of the first heat transfer member, (i) a thermoelectric element; heater unit; and the second heat transfer fins are sequentially disposed, or (ii) a thermoelectric element; heater unit; a second heat transfer member; and the second heat transfer fins are sequentially disposed, or (ii) a thermoelectric element; a heater cover unit accommodated therein; and a structure in which the second heat transfer fins are sequentially disposed.
본 발명의 일 실시예를 들면, 상기 열전소자, 제2 열전달 부재 및 히터 커버부는 평면상에서 실질적으로 동일한 크기를 가지며, 상기 제2 열전달 핀의 폭방향 길이는 상기 열전소자의 평면에 대응되는 크기보다 작을 수 있다. In an embodiment of the present invention, the thermoelectric element, the second heat transfer member, and the heater cover have substantially the same size on a plane, and the width direction length of the second heat transfer fin is larger than a size corresponding to the plane of the thermoelectric element. can be small
본 발명의 일 실시예를 들면, 상기 제1 열전달 핀과 상기 열전소자는 이격 배치되고, 상기 제1 열전달 핀과 상기 제2 열전달 핀은 이격 배치되며, 상기 제1 열전달 핀과 제2 열전달 핀의 이격 거리(L1)는 상기 열전소자와 상기 제1 열전달 핀의 이격 거리(L2)보다 클 수 있다. In one embodiment of the present invention, the first heat transfer fin and the thermoelectric element are spaced apart from each other, the first heat transfer fin and the second heat transfer fin are spaced apart from each other, and the first heat transfer fin and the second heat transfer fin are spaced apart from each other. The separation distance L1 may be greater than the separation distance L2 between the thermoelectric element and the first heat transfer fin.
본 발명의 일 실시예를 들면, 상기 제1 열전달 핀과 상기 제2 열전달 핀은 각각 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함할 수 있다. For example, the first heat transfer fin and the second heat transfer fin may include a plurality of structures each having a hollow, fin, or louver shape.
본 발명의 일 실시예를 들면, 상기 제1 열전달 핀의 높이(H1)와 상기 제2 열전달 핀의 높이(H2)는 서로 다른 것일 수 있다. In an embodiment of the present invention, the height H1 of the first heat transfer fin and the height H2 of the second heat transfer fin may be different from each other.
본 발명의 일 실시예를 들면, 상기 제1 열전달 핀의 높이(H1)는 상기 제2 열전달 핀의 높이(H2)보다 더 큰 것일 수 있다. For example, the height H1 of the first heat transfer fin may be greater than the height H2 of the second heat transfer fin.
본 발명의 일 실시예를 들면, 상기 제1 열전달 핀과 제2 열전달 핀은, 당해 제1 열전달 부재를 기준으로 끝단의 길이가 같은 것일 수 있다. In one embodiment of the present invention, the first heat transfer fin and the second heat transfer fin may have the same end length with respect to the first heat transfer member.
본 발명의 일 실시예를 들면, 상기 제1 열전달 부재, 제2 열전달 부재, 제1 열전달 핀과 제2 열전달 핀은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함할 수 있다. In an embodiment of the present invention, the first heat transfer member, the second heat transfer member, the first heat transfer fin, and the second heat transfer fin may each include aluminum (Al), zinc (Zn), copper (Cu), and nickel (Ni). , and may include at least one metal material of cobalt (Co).
본 발명의 일 실시예를 들면, 상기 열전소자는, 제1 기판; 상기 제1 기판과 대향 배치된 제2 기판; 상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그를 포함할 수 있다. In one embodiment of the present invention, the thermoelectric element may include: a first substrate; a second substrate facing the first substrate; a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and a plurality of thermoelectric legs interposed between the first electrode and the second electrode.
본 발명의 일 실시예를 들면, 상기 제1 기판과 제2 기판은 서로 동일하거나 또는 상이하며, 각각 독립적으로 세라믹 기판 또는 도전성 기판일 수 있다. In one embodiment of the present invention, the first substrate and the second substrate may be the same as or different from each other, and may each independently be a ceramic substrate or a conductive substrate.
본 발명의 일 실시예를 들면, 상기 도전성 기판은, 금속 기판; 및 이의 일면에 형성된 절연층을 포함할 수 있다. In one embodiment of the present invention, the conductive substrate may include: a metal substrate; and an insulating layer formed on one surface thereof.
본 발명의 일 실시예를 들면, 상기 제1 기판, 제2 기판, 제1 전극, 또는 제2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. In one embodiment of the present invention, the first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, and each of aluminum (Al), zinc (Zn), copper (Cu), At least one metal of nickel (Ni) and cobalt (Co) may be included.
본 발명의 일 실시예를 들면, 상기 열전환장치는 세탁기, 건조기 또는 제습기에 구비될 수 있다. In one embodiment of the present invention, the heat conversion device may be provided in a washing machine, a dryer or a dehumidifier.
본 발명의 일 실시예에 따르면, 열전소자와 히터부가 일체화된 구조를 채택함으로써, 기존 건조기용 온풍 구조에 속하는 응축기와 가열기의 역할을 열전소자로 대체하고, 상기 열전소자에 부족한 열을 히터부로 보완함으로써 전력 효율을 향상시킬 수 있다. According to an embodiment of the present invention, by adopting a structure in which the thermoelectric element and the heater unit are integrated, the roles of the condenser and heater belonging to the existing warm air structure for a dryer are replaced with a thermoelectric element, and the heat insufficient in the thermoelectric element is supplemented by the heater unit. By doing so, power efficiency can be improved.
또한 본 발명에서는 기존 건조기용 열 전환장치 구조 대비 요구면적이 축소되어 공급되는 공기의 승온 시간을 단축시킬 뿐만 아니라 소형화를 도모할 수 있다. In addition, in the present invention, the required area is reduced compared to the conventional structure of the heat conversion device for the dryer, thereby shortening the temperature increase time of the supplied air as well as achieving miniaturization.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다. Effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 열전환장치를 나타내는 사시도이다. 1 is a perspective view showing a heat conversion device according to an embodiment of the present invention.
도 2는 도 1에 따른 열전환장치의 단면도이다. FIG. 2 is a cross-sectional view of the heat conversion device according to FIG. 1 .
도 3은 본 발명의 다른 일 실시예에 따른 열전환장치를 나타내는 사시도이다.3 is a perspective view showing a heat conversion device according to another embodiment of the present invention.
도 4는 도 3에 따른 열전환장치의 단면도이다. FIG. 4 is a cross-sectional view of the heat conversion device according to FIG. 3 .
도 5는 본 발명의 다른 일 실시예에 따른 열전환장치를 나타내는 사시도이다.5 is a perspective view showing a heat conversion device according to another embodiment of the present invention.
도 6은 도 5에 따른 열전환장치의 단면도이다. 6 is a cross-sectional view of the heat conversion device according to FIG.
도 7은 본 발명의 일 실시예에 따른 히터부의 코일 형상이다. 7 is a coil shape of a heater unit according to an embodiment of the present invention.
도 8은 본 발명의 다른 일 실시예에 따른 히터부의 코일 형상이다. 8 is a coil shape of a heater unit according to another embodiment of the present invention.
도 9는 본 발명의 다른 일 실시예에 따른 히터부의 코일 형상이다. 9 is a coil shape of a heater unit according to another embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 열전소자를 나타내는 사시도이다. 10 is a perspective view illustrating a thermoelectric element according to an embodiment of the present invention.
<부호의 설명><Explanation of code>
100, 200: 열전환장치100, 200: heat conversion device
A: 제1 영역A: first area
B: 제2 영역B: second area
10: 제1 열전달 부재10: first heat transfer member
11: 제2 열전달 부재11: second heat transfer member
20: 히터 커버부20: heater cover part
30: 히터부30: heater unit
40: 제2 열전달 핀(방열핀)40: second heat transfer fin (heat dissipation fin)
50: 제1 열전달 핀(흡열핀)50: first heat transfer fin (heat absorbing fin)
60: 열전소자60: thermoelectric element
61: 제1 기판61: first substrate
62: 열전 레그62: thermoelectric leg
63: 제2 기판63: second substrate
64a, 64b: 전극64a, 64b: electrodes
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이때 본 명세서 전체 걸쳐 동일 참조 부호는 동일 구조를 지칭한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Examples of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is not limited to the following examples Examples are not limited thereto. In this case, the same reference numerals refer to the same structures throughout this specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly defined in particular.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily indicated for convenience of description, the present invention is not necessarily limited to the illustrated bar. In order to clearly express various layers and regions in the drawings, the thicknesses are enlarged. And in the drawings, for convenience of description, the thickness of some layers and regions are exaggerated.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다. 그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우 뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.In addition, throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated. In addition, throughout the specification, "on" or "on" means that it includes not only the case located above or below the target part, but also the case where there is another part in the middle, and the direction of gravity must be It does not mean that it is positioned above the reference. And, in the present specification, terms such as “first” and “second” do not indicate any order or importance, but are used to distinguish components from each other. And, when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
아울러, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.In addition, throughout the specification, when referred to as "planar", it means when the target part is viewed from above, and "in cross-section" means when viewed from the side when the cross-section of the target part is vertically cut.
본 발명은 열전소자의 특성을 활용하여 종래 건조기용 열풍공급장치의 신규 구조를 제공하고자 한다.An object of the present invention is to provide a novel structure of a conventional hot air supply device for a dryer by utilizing the characteristics of a thermoelectric element.
이를 위해, 본 발명에서는 장치 내부로 유입되는 공기로부터 수분을 제거하는 흡열부(예, 흡열핀 또는 제1 열전달 핀), 열전소자, 및 상기 흡열부에서 수분이 제거된 건조 공기를 가열하는 발열부(예, 방열핀 또는 제2 열전달 핀)를 포함하되, 응축기와 가열기의 기능을 하는 열전소자에 부족한 열에너지를 부가하는 히터부를 상기 열전소자와 상기 발열부 사이에 배치된다. 이에 따라, 열전소자의 △T 증가를 통해 응축 효과와 가열효과를 증대시켜 건조 효율을 유의적으로 개선할 수 있다. 또한 히터부와 발열부가 일체화됨으로써 모듈의 소형화를 구현할 수 있다.To this end, in the present invention, a heat absorbing part (eg, a heat absorbing fin or a first heat transfer fin) that removes moisture from the air flowing into the device, a thermoelectric element, and a heating part for heating dry air from which moisture has been removed from the heat absorbing part (For example, a heat dissipation fin or a second heat transfer fin), but including a heater for adding insufficient thermal energy to the thermoelectric element functioning as a condenser and a heater is disposed between the thermoelectric element and the heat generating unit. Accordingly, the drying efficiency can be significantly improved by increasing the condensation effect and the heating effect through an increase in ΔT of the thermoelectric element. In addition, since the heater unit and the heat generating unit are integrated, it is possible to realize miniaturization of the module.
구체적으로, 본 발명에서는 전술한 흡열부, 열전소자 및 발열부가 소정의 구조를 갖도록 구비하는데, 이때 흡열핀은 장치 내부로 유입된 고온 다습한 온풍으로부터 습기를 제거하고 냉각하는 응축기 역할을 수행한다. 또한 열전소자는 전류 인가를 통해 흡열핀(제1 열전달 핀)의 온도 하강과 히터부의 승온 보조 역할을 수행하여 더 적은 전류로 목표 온도에 도달할 수 있도록 한다. 그리고 히터부는 열전소자에 부족한 열에너지를 보완하여 응축된 공기를 가열함으로써, 제한된 공간에서의 습기 제어 및 승온 효율을 보다 상승시키는 효과를 발휘할 수 있다. Specifically, in the present invention, the above-described heat absorbing unit, thermoelectric element, and heat generating unit are provided to have a predetermined structure. In this case, the heat absorbing fin removes moisture from the high temperature and high humidity hot air introduced into the device and serves as a condenser for cooling. In addition, the thermoelectric element serves to assist the temperature drop of the heat absorbing fin (the first heat transfer fin) and the temperature increase of the heater unit through the application of current, so that the target temperature can be reached with less current. In addition, the heater unit compensates for insufficient thermal energy in the thermoelectric element to heat the condensed air, thereby exhibiting the effect of further increasing moisture control and temperature increase efficiency in a limited space.
전술한 구성을 통해 본 발명의 실시예에 따른 열전환장치는, 최초 유입되는 공기에 대하여 1차적으로 냉각 응축을 수행한 후 2차적으로 건조 가열을 통해 공기를 효과적으로 건조하여 건조 효율을 증대시킬 수 있다. 전술한 열전환장치의 구성은 필요에 따라 적절히 변형되거나 또는 선택적으로 혼용하여 실시될 수도 있다. Through the above-described configuration, the heat conversion device according to an embodiment of the present invention can increase drying efficiency by first performing cooling and condensation on the initially introduced air, and then drying the air through drying and heating secondarily. there is. The configuration of the above-described heat conversion device may be appropriately modified or selectively mixed as needed.
<열전환장치><Heat conversion device>
본 발명의 일 실시예에 따른 열전환장치는, 열전소자를 활용하여 장치 내 유입되는 공기 내 수분을 제거하고 건조공기를 가열하는 열전환장치로서, 세탁기, 건조기 및/또는 제습기 등에 적용될 수 있다. The heat conversion device according to an embodiment of the present invention is a heat conversion device that removes moisture in the air introduced into the device by using a thermoelectric element and heats dry air, and may be applied to a washing machine, a dryer, and/or a dehumidifier.
일 구체예에 따른 열전환장치는, 열전소자와 접하는 제2 영역(B)과 열전소자와 이격되는 제1 영역(A)을 포함하는 열전달 부재; 상기 제1 영역에 배치되고, 외부에서 유입된 공기의 수분을 제거하는 제1 열전달 핀; 상기 제2 영역에 배치된 열전소자; 상기 열전소자에 열에너지를 부가하는 히터부; 및 상기 제1 열전달 핀에서 수분 제거된 건조공기를 가열하는 제2 열전달 핀을 포함한다.A heat conversion device according to an embodiment includes a heat transfer member including a second area (B) in contact with a thermoelectric element and a first area (A) spaced apart from the thermoelectric element; a first heat transfer fin disposed in the first region and configured to remove moisture from the air introduced from the outside; a thermoelectric element disposed in the second region; a heater unit for adding thermal energy to the thermoelectric element; and a second heat transfer fin configured to heat the dry air from which moisture has been removed from the first heat transfer fin.
여기서, 유입되는 공기에 대한 냉각 또는 가열 등의 열변환 기능을 수행하는 제1 열전달 핀과 제2 열전달 핀은 상기 열전소자의 제1 기판 및 제2 기판 중 어느 하나와 인접하여 배치될 수 있다. 이때 열전소자(60)의 제1 기판(61)이 배치 및 연결되어 흡열기능을 수행하는 영역을 흡열부로 정의하고, 열전소자(60)의 제2 기판(63)이 배치 및 연결되어 발열기능을 수행하는 영역을 발열부로 정의하여 설명하기로 한다. Here, the first heat transfer fins and the second heat transfer fins performing a heat conversion function such as cooling or heating the introduced air may be disposed adjacent to any one of the first and second substrates of the thermoelectric element. At this time, a region in which the first substrate 61 of the thermoelectric element 60 is disposed and connected to perform a heat absorbing function is defined as a heat absorbing part, and the second substrate 63 of the thermoelectric element 60 is disposed and connected to provide a heat generating function. An area to be performed is defined as a heat generating unit and will be described.
이하, 첨부된 도면을 참조하여 본 발명에 따른 열전환장치(100)의 바람직한 실시형태를 설명한다. 그러나 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다. Hereinafter, a preferred embodiment of the heat conversion device 100 according to the present invention will be described with reference to the accompanying drawings. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
도 1은 본 발명의 제1 실시예에 따른 열전환장치(100)의 구조를 개략적으로 나타낸 사시도이며, 도 2는 상기 열전환장치(100)의 단면도이다. 1 is a perspective view schematically showing the structure of a heat conversion device 100 according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the heat conversion device 100 .
도 1 및 2를 참조하면, 본 발명의 일 실시예에 따른 열전환장치(100)는, 일면에 제1 영역(A)과 제2 영역(B)을 포함하는 제1 열전달 부재(10); 상기 제1 영역(A)에 배치되는 제1 열전달 핀(50); 상기 제2 영역(B)에 일측이 배치되는 열전소자(60); 및 상기 열전소자(60)의 타측에 배치되는 제2 열전달 핀(40);을 포함하고, 상기 열전소자(60)와 상기 제2 열전달 핀(40) 사이에 배치되고, 상기 열전소자(40)에 열에너지를 부가하는 히터부(30);를 포함한다. 1 and 2, the heat conversion device 100 according to an embodiment of the present invention, a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; a first heat transfer fin 50 disposed in the first area A; a thermoelectric element (60) having one side disposed in the second region (B); and a second heat transfer fin 40 disposed on the other side of the thermoelectric element 60, disposed between the thermoelectric element 60 and the second heat transfer fin 40, the thermoelectric element 40 It includes a; heater unit 30 for adding thermal energy to the.
상기 열전소자(60)는 상호 대향하는 한 쌍의 기판 사이에 P형 열전반도체와 N형 열전반도체가 배치되는 공지의 구성을 가질 수 있으며, 열전 발전 및/또는 냉각용 소자를 모두 포함한다. The thermoelectric element 60 may have a known configuration in which a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor are disposed between a pair of opposing substrates, and includes all elements for thermoelectric power generation and/or cooling.
일 구체예를 들면, 상기 열전소자(60)는 제1 기판(61); 상기 제1 기판(61)과 대향 배치된 제2 기판(63); 상기 제1 기판(61)과 제2 기판(63) 사이에 각각 배치된 제1 전극과 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그(62)를 포함하여 단위 셀을 형성할 수 있다. 이러한 열전소자(60)는 전류 인가시 펠티어 효과에 의해 한쌍의 기판(61, 63) 중 하나는 흡열부를 구성하며, 다른 하나(61, 63)는 발열부를 구성하게 된다. 본 발명의 제1 실시예에서는, 제1 열전달부재(10)와 연결되는 제1 기판(61)에 흡열부가 형성되며, 히터부(30)와 연결되는 제2 기판(63)에 발열부가 형성되는 것을 예로 들어 설명한다. 즉, 제1 기판(61)이 흡열부 기판이며, 제2 기판(62)이 발열부 기판이다. 그러나 이에 제한되는 것은 아니며, 필요에 따라 흡열부와 발열부의 위치를 적절히 변경할 수 있다. For example, the thermoelectric element 60 may include a first substrate 61 ; a second substrate 63 facing the first substrate 61; a first electrode and a second electrode respectively disposed between the first substrate 61 and the second substrate 63; and a plurality of thermoelectric legs 62 interposed between the first electrode and the second electrode to form a unit cell. In the thermoelectric element 60, one of the pair of substrates 61 and 63 constitutes a heat absorbing part and the other 61 and 63 constitutes a heat generating part due to the Peltier effect when current is applied. In the first embodiment of the present invention, the heat absorbing part is formed on the first substrate 61 connected to the first heat transfer member 10 , and the heating part is formed on the second substrate 63 connected to the heater part 30 . will be described as an example. That is, the first substrate 61 is a heat absorbing part substrate, and the second substrate 62 is a heat absorbing part substrate. However, the present invention is not limited thereto, and the positions of the heat absorbing part and the heat generating part may be appropriately changed if necessary.
유입되는 공기에 대하여 1차적으로 냉각 응축을 수행하는 제1 열전달 핀(50)은 상기 열전소자(60)의 흡열부와 접촉하도록 배치되며, 특히 열전소자(60)의 제1 기판(61)의 흡열기능이 전달될 수 있도록 제1 열전달 부재(10)를 배치하여 연결되도록 한다. The first heat transfer fins 50 that primarily perform cooling and condensation with respect to the incoming air are disposed in contact with the heat absorbing portion of the thermoelectric element 60 , and in particular of the first substrate 61 of the thermoelectric element 60 . The first heat transfer member 10 is disposed so that the heat absorbing function can be transferred to be connected.
상기 제1 열전달 부재(10)는 열전소자(60)와 접하는 제2 영역(B)과, 상기 열전소자(60)와 이격 배치되고, 제1 열전달 핀(50)이 마련되는 제1 영역(A)을 포함한다. 구체적으로, 제1 열전달 부재(10)의 제2 영역(B)은 열전소자(60)의 흡열반응이 일어나는 제1 기판(61)과 접촉하여 온도를 낮추게 되며, 이러한 냉기를 제1 열전달 핀(50)으로 전달하게 된다. 이에 따라, 외부의 팬(미도시)에서 유입되는 공기는 열전소자(600)의 제1 기판(61)을 통해 제1 열 전달부재(10) 및 제1 열전달 핀(50)과 접촉하면서 공기의 온도가 낮아지게 되며, 이를 통해 다습한 공기의 수분을 응축시킬 수 있게 된다. 이러한 제1 열전달 부재(10)는 대략 평판 형태일 수 있으며, 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있다. 일례로, 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. 바람직하게는 구리(Cu) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다. 이때 제1 열전달 부재(10)와 제1 열전달 핀(50)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. The first heat transfer member 10 includes a second area B in contact with the thermoelectric element 60 and a first area A in which the first heat transfer fin 50 is provided and spaced apart from the thermoelectric element 60 . ) is included. Specifically, the second region B of the first heat transfer member 10 is brought into contact with the first substrate 61 on which the endothermic reaction of the thermoelectric element 60 occurs to lower the temperature, and this cold air is cooled to the first heat transfer fin ( 50) will be transferred. Accordingly, the air flowing in from the external fan (not shown) is in contact with the first heat transfer member 10 and the first heat transfer fin 50 through the first substrate 61 of the thermoelectric element 600, The temperature is lowered, which allows the moisture in the humid air to condense. The first heat transfer member 10 may have a substantially flat plate shape, and may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Its size can also be adjusted in various ways. Preferably, it may include at least one of copper (Cu) and aluminum (Al). In this case, the first heat transfer member 10 and the first heat transfer fin 50 may be configured by bonding separate structures, or may be implemented as an integrated structure.
전술한 제1 열전달 부재(10)의 제1 영역(A) 상에 배치되는 제1 열전달 핀(50)은, 팬(미도시)으로부터 유입되는 고온 다습한 공기로부터 습기를 제거하고, 냉각하는 응축기 역할을 수행한다. 이러한 제1 열전달 핀(50)은 제1 열전달 부재(10)의 제1 영역(A)의 전부 또는 일부에 배치될 수 있다. 제1 열전달 핀(50)의 형상은 특별히 제한되지 않으며, 당 분야에 공지된 흡열핀 형상을 가질 수 있다. 일례로 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함할 수 있다. 또한 제1 열전달 핀(50)은 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있으며, 일례로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함할 수 있다. The first heat transfer fin 50 disposed on the first area A of the first heat transfer member 10 described above is a condenser that removes moisture from hot and humid air flowing in from a fan (not shown) and cools it. play a role The first heat transfer fins 50 may be disposed in all or part of the first area A of the first heat transfer member 10 . The shape of the first heat transfer fin 50 is not particularly limited, and may have a shape of a heat absorbing fin known in the art. For example, it may include a plurality of structures having a hollow, fin, or louver shape. In addition, the first heat transfer fin 50 may be made of a conventional thermally conductive material known in the art, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) may include at least one metal material.
한편 제1 열전달 핀(50)의 내부를 경유하여 냉각된 공기는 내부의 습기가 응결하여 배출되며, 이후 건조된 공기는 공기 유로(미도시)를 거쳐 제2 열전달 핀(40) 내부로 유입되게 된다. 건조된 공기를 가열 및 건조하는 제2 열전달 핀(40)은 열전소자(60)의 발열부 기판인 제2 기판(63)과 접촉하도록 배치된다. 특히 발열기능을 원활히 전달하기 위해서, 별도의 중간부재 없이 열전소자(60)의 제2 기판(63)과 제2 열전달 핀(40)이 면접촉하도록 직접 배치되되, 이들 사이에 히터부(30)를 추가 배치함으로써, 열전소자(60)의 부족한 열을 보완할 수 있도록 구현한다. Meanwhile, the air cooled through the inside of the first heat transfer fin 50 is discharged by condensation of moisture inside, and then the dried air is introduced into the second heat transfer fin 40 through an air flow path (not shown). do. The second heat transfer fin 40 that heats and dries the dried air is disposed to contact the second substrate 63 that is the heat generating unit substrate of the thermoelectric element 60 . In particular, in order to smoothly transmit the heat generating function, the second substrate 63 of the thermoelectric element 60 and the second heat transfer fin 40 are directly disposed so as to be in surface contact without a separate intermediate member, and the heater unit 30 is disposed between them. By additionally disposing, it is implemented to compensate for insufficient heat of the thermoelectric element 60 .
히터부(30)는 열전소자(60)의 발열부, 예컨대 제2 기판(63)에 연결되어, 기존 건조기용 온풍 구조에 속하는 응축기와 가열기의 역할을 수행하는 열전소자(60)에 부족한 열에너지를 부가하여 보완하는 역할을 한다. 이러한 히터부(30)는 열에너지를 방출할 수 있다면 형상, 크기, 구조 등에 특별히 제한되지 않으며, 당 분야에 공지된 구성을 가질 수 있다. 전열 면적을 높이기 위해서, 나선형으로 절곡된 형상을 갖는 것이 바람직하다. 일례를 들면, 하기 도 7 내지 9에 도시된 바와 같이 나선형으로 절곡된 원형 형상, 사각형 형상, 또는 코일의 길이방향을 따라가면서 트위스트 형태로 절곡된 형상일 수 있다. 상기 히터부(30)는 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있으며, 일례로 구리, 알루미늄, 및 니크롬으로 구성된 군에서 선택된 적어도 1종 이상을 포함할 수 있다. 또한 히터부(30)의 크기는 특별히 제한되지 않으며, 전술한 열전소자(60)의 평면에 대응되는 크기와 같거나 작을 수 있다. The heater unit 30 is connected to the heat generating unit of the thermoelectric element 60, for example, the second substrate 63, and heat energy insufficient in the thermoelectric element 60 serving as a heater and a condenser belonging to the existing warm air structure for a dryer. It acts as an addition and complements. The heater unit 30 is not particularly limited in shape, size, structure, etc. as long as it can emit thermal energy, and may have a configuration known in the art. In order to increase the heat transfer area, it is preferable to have a shape bent in a spiral. For example, as shown in FIGS. 7 to 9, it may be a circular shape bent in a spiral, a rectangular shape, or a shape bent in a twist shape along the longitudinal direction of the coil. The heater unit 30 may be made of a conventional thermally conductive material known in the art, and may include, for example, at least one selected from the group consisting of copper, aluminum, and nichrome. In addition, the size of the heater unit 30 is not particularly limited, and may be the same as or smaller than the size corresponding to the plane of the above-described thermoelectric element 60 .
전술한 히터부(30)의 저면에는, 공기를 가열하는 방열핀 역할의 제2 열전달 핀(40)이 배치된다. 즉, 열전소자(60)의 발열반응에서 기인한 열에너지와 히터부(30)에서 발생한 추가 열에너지가 제2 열전달 핀(40)의 내부로 모두 전달되고, 그 열을 이용하여 제1 열전달 핀(50)에서 수분이 제거된 공기를 건조한 공기로 전환하는 기능을 수행한다. 이러한 제2 열전달 핀(40)은 히터부(30)의 평면 크기에 대응되는 영역의 일부 또는 전부에 배치될 수 있다. 또한 히터부(30)와 제2 열전달 핀(40)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. 상기 제2 열전달 핀(40)의 형상은 특별히 제한되지 않으며, 당 분야에 공지된 형상을 가질 수 있다. 일례로, 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함할 수 있다. 또한 제2 열전달 핀(40)의 재질은 전술한 제1 열전달 핀(50)과 동일하게 구성될 수 있으며, 일례로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함할 수 있다. A second heat transfer fin 40 serving as a heat dissipation fin for heating air is disposed on the bottom surface of the heater unit 30 described above. That is, both the thermal energy resulting from the exothermic reaction of the thermoelectric element 60 and the additional thermal energy generated in the heater unit 30 are transferred to the inside of the second heat transfer fin 40, and use the heat to the first heat transfer fin 50 ), converts the dehydrated air into dry air. The second heat transfer fins 40 may be disposed in some or all of the area corresponding to the planar size of the heater unit 30 . In addition, the heater unit 30 and the second heat transfer fin 40 may be configured by bonding separate structures, or may be implemented as an integrated structure. The shape of the second heat transfer fin 40 is not particularly limited, and may have a shape known in the art. As an example, it may include a plurality of structures having a hollow, fin, or louver shape. In addition, the material of the second heat transfer fin 40 may be the same as that of the first heat transfer fin 50 described above, for example, aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and at least one metal material of cobalt (Co).
한편 열전환장치(100) 내부로 유입되는 공기의 수분 제거 및 건조 공기의 가열을 통한 건조 효율 상승을 위해서, 제1 열전달 핀(50)과 열전소자(60)는 이격 배치되고, 제1 열전달 핀(50)과 제2 열전달 핀(40)은 이격 배치되는 구조일 수 있다. 이때, 이들 간의 이격 거리는 특별히 제한되지 않으나, 제1 열전달 핀(50)과 제2 열전달 핀(40)의 이격 거리(L1)는 열전소자(60)와 제1 열전달 핀(40)의 이격 거리(L2)보다 큰 것이 바람직하다. 일례로, 제1 열전달 핀(50)과 제2 열전달 핀(40)의 이격 거리(L1)은 5.0 내지 50.0 mm이며, 제1 열전달 핀(50)과 열전소자(60)의 이격 거리(L2)는 3.0 내지 40.0 mm일 수 있다. 그러나 이에 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 변경 가능하다. Meanwhile, in order to remove moisture from the air introduced into the heat conversion device 100 and increase drying efficiency through heating of the dry air, the first heat transfer fin 50 and the thermoelectric element 60 are spaced apart from each other, and the first heat transfer fin 50 and the second heat transfer fin 40 may have a structure spaced apart from each other. At this time, the separation distance between them is not particularly limited, but the separation distance L1 between the first heat transfer fin 50 and the second heat transfer fin 40 is the separation distance between the thermoelectric element 60 and the first heat transfer fin 40 ( It is preferable to be larger than L2). For example, the separation distance L1 between the first heat transfer fin 50 and the second heat transfer fin 40 is 5.0 to 50.0 mm, and the separation distance L2 between the first heat transfer fin 50 and the thermoelectric element 60 . may be 3.0 to 40.0 mm. However, it is not particularly limited thereto, and may be appropriately changed within a range known in the art.
또한 제1 열전달 핀(50)의 높이(H1)와 상기 제2 열전달 핀(40)의 높이(H2)는 서로 다를 수 있으며, 일례로 제1 열전달 핀(50)의 높이(H1)는 상기 제2 열전달 핀(40)의 높이(H2)보다 더 클 수 있다. 그리고, 제1 열전달 핀(50)과 제2 열전달 핀(40)은, 당해 제1 열전달 부재(10)을 기준으로 끝단의 길이가 동일할 수 있다. In addition, the height H1 of the first heat transfer fin 50 and the height H2 of the second heat transfer fin 40 may be different from each other. For example, the height H1 of the first heat transfer fin 50 is the first 2 It may be greater than the height H2 of the heat transfer fin 40 . In addition, the first heat transfer fin 50 and the second heat transfer fin 40 may have the same end length with respect to the first heat transfer member 10 .
일 구체예를 들면, 상기 제1 실시예에 따른 열전환장치(100)는, 일면에 제1 영역(A)과 제2 영역(B)을 포함하는 제1 열전달 부재(10); 상기 제1 영역(A)에 배치된 제1 열전달 핀(50); 상기 제2 영역(B)에 순차적으로 배치된 열전소자(60), 히터부(30); 및 제2 열전달 핀(40)을 구비한다. 여기서, 당해 제2 영역(B)을 기준으로 순차적으로 적층된 열전소자(60), 히터부(30), 및 제2 열전달 핀(40)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. 이때 접합방법은 당 분야에 공지된 통상의 방법에 따라 실시될 수 있으며, 일례로 접합재를 사용하여 접합하거나 테이프를 사용할 수도 있다. For example, the heat conversion device 100 according to the first embodiment includes a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; a first heat transfer fin 50 disposed in the first area A; a thermoelectric element 60 and a heater unit 30 sequentially arranged in the second region (B); and a second heat transfer fin 40 . Here, the thermoelectric element 60 , the heater unit 30 , and the second heat transfer fin 40 sequentially stacked based on the second region B may be configured by bonding separate structures, or integrated It can also be implemented as a structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
이하, 본 발명의 일 실시형태에 따른 열전환장치의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다. Hereinafter, a method for manufacturing a heat conversion device according to an embodiment of the present invention will be described. However, it is not limited only by the following manufacturing method, and the steps of each process may be modified or selectively mixed as needed.
상기 열전환장치는 당 분야에 공지된 방법에 따라 제조될 수 있다. 일 실시예를 들면, 제1 열전달 부재(10)의 제2 영역(B)에 열전소자(60)의 일측, 구체적으로 흡열부 기판(61)을 접합하고, 제1 열전달 부재(10)의 제1 영역(A)에 제1 열전달 핀(50)을 배치하여 접합한다. 이어서, 제1 열전달 부재(10)와 접합된 열전소자(60)의 타측에 히터부(30)와 제2 열전달 핀(40)을 순차적으로 배치하여 접합하여 제작이 완료된다. The heat conversion device may be manufactured according to a method known in the art. For example, one side of the thermoelectric element 60 , specifically, the heat absorbing part substrate 61 is bonded to the second region B of the first heat transfer member 10 , and the first heat transfer member 10 is The first heat transfer fins 50 are disposed in the first region (A) and joined. Next, the heater unit 30 and the second heat transfer fin 40 are sequentially disposed on the other side of the thermoelectric element 60 bonded to the first heat transfer member 10 and joined to complete the fabrication.
전술한 방법 이외에, 제1 열전달 부재(10)의 일면에 열전소자(60)의 일측을 접합한 후, 상기 열전소자(60)를 제1 열전달 부재(10)의 일측 말단부로 이동시키고, 상기 제1 열전달 부재(10)의 타측 말단부에 제1 열전달 핀(50)을 배치하여 제조될 수도 있다. In addition to the above-described method, after bonding one side of the thermoelectric element 60 to one surface of the first heat transfer member 10 , the thermoelectric element 60 is moved to one end of the first heat transfer member 10 , and the second It may be manufactured by disposing the first heat transfer fins 50 at the other end of the first heat transfer member 10 .
이하에서는 본 발명의 일 실시예에 따른 열전환장치의 다양한 변형예에 관하여 도 3 내지 도 6을 참조로 설명하도록 한다.Hereinafter, various modifications of the heat conversion device according to an embodiment of the present invention will be described with reference to FIGS. 3 to 6 .
도 3 및 4는 본 발명의 제2 실시예에 따른 열전환장치(200)의 구조를 간략히 도시한 사시도와 단면도이다. 도 3~4에서 도 1~2와 동일한 참조 부호는 동일한 부재를 나타낸다. 3 and 4 are perspective and cross-sectional views schematically illustrating the structure of the heat conversion device 200 according to the second embodiment of the present invention. In Figs. 3 to 4, the same reference numerals as in Figs. 1 and 2 denote the same members.
이하 도 3~4에 대한 설명에서는 도 1~2와 중복되는 내용은 다시 설명하지 않으며, 차이점에 대해서만 설명한다. 도 3 및 4를 참조하면, 본 발명의 제2 실시예에 따른 열전환장치(200)는, 히터부(30)와 제2 열전달 핀(40)이 직접 접촉하는 도 1-2와 비교하여, 히터부(30)와 제2 열전달 핀(40) 사이에 제2 열전달 부재(11)를 더 포함한다. Hereinafter, in the description of FIGS. 3 and 4 , content overlapping with FIGS. 1 and 2 will not be described again, and only differences will be described. 3 and 4, the heat conversion device 200 according to the second embodiment of the present invention, compared with FIGS. 1-2 in which the heater unit 30 and the second heat transfer fin 40 are in direct contact, A second heat transfer member 11 is further included between the heater unit 30 and the second heat transfer fin 40 .
상기 제1 실시예에 도시된 바와 같이, 히터부(30)와 제2 열전달핀(40)이 직접 접촉할 경우, 히터부(30)와 제2 열전달 핀(40)의 비(非)평판 형상으로 인해 부착이 어려워져 구조적 안정성이 저하되며, 이로 인해 열전환장치의 건조효율 개선 효과를 지속적으로 발휘하기 어려울 수 있다. 이에 비해, 제2 실시예에서 채택한 제2 열전달 부재(10)는 평판 형상의 열전도성 재질로 이루어짐에 따라 히터부(30)와 제2 열전달 핀(40)과의 부착력을 유지시켜 구조적 안정성을 확보하면서, 열전소자(60)와 히터부(30)에서 발생한 열에너지를 제2 열전달 핀(40)으로 원활히 전달할 수 있다.As shown in the first embodiment, when the heater unit 30 and the second heat transfer fin 40 are in direct contact, the non-planar shape of the heater unit 30 and the second heat transfer fin 40 is Due to this, it is difficult to attach and the structural stability is lowered, and this may make it difficult to continuously exhibit the effect of improving the drying efficiency of the heat conversion device. In contrast, the second heat transfer member 10 adopted in the second embodiment is made of a plate-shaped heat conductive material, and thus maintains the adhesive force between the heater unit 30 and the second heat transfer fin 40 to secure structural stability. While doing so, thermal energy generated by the thermoelectric element 60 and the heater unit 30 may be smoothly transferred to the second heat transfer fin 40 .
제2 열전달 부재(11)는 평판 형태일 수 있으며, 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있다. 일례로, 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. 바람직하게는 구리(Cu) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다. 또한 제2 열전달 부재(11)의 크기는 다양하게 조절할 수 있다. 일례로, 열전소자(60)의 평면에 대응되는 크기와 실질적으로 동일한 크기를 가질 수 있다. 그러나 이에 특별히 제한되지 않는다. The second heat transfer member 11 may be in the form of a flat plate, and may be made of a conventional heat conductive material known in the art. For example, at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) may be included. Preferably, it may include at least one of copper (Cu) and aluminum (Al). In addition, the size of the second heat transfer member 11 may be variously adjusted. For example, it may have substantially the same size as the size corresponding to the plane of the thermoelectric element 60 . However, it is not particularly limited thereto.
일 구체예를 들면, 상기 제2 실시예에 따른 열전환장치(200)는, 일면에 제1 영역(A)과 제2 영역(B)을 포함하는 제1 열전달 부재(10); 및 상기 제1 영역(A)에 배치된 제1 열전달 핀(50); 상기 제2 영역(B)에 순차적으로 배치된 열전소자(60), 히터부(30), 제2 열전달 부재(11), 및 제2 열전달 핀(40)을 포함한다. 여기서, 당해 제 제2 영역(B)을 기준으로 순차적으로 적층된 열전소자(60), 히터부(30), 제2 열전달 부재(11), 및 제2 열전달 핀(40)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. 이때 접합방법은 당 분야에 공지된 통상의 방법에 따라 실시될 수 있으며, 일례로 접합재를 사용하여 접합하거나 테이프를 사용할 수도 있다.For example, the heat conversion device 200 according to the second embodiment includes a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; and a first heat transfer fin 50 disposed in the first area A; A thermoelectric element 60 , a heater unit 30 , a second heat transfer member 11 , and a second heat transfer fin 40 are sequentially disposed in the second region B . Here, the thermoelectric element 60 , the heater unit 30 , the second heat transfer member 11 , and the second heat transfer fin 40 sequentially stacked based on the second region B are separate structures. It may be configured by bonding, or may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
그 외, 도 3 및 4의 제2 실시예에 따른 열전환장치(200)에서 각 구성 요소의 재료와 구조 등에 대한 설명은 도 1 및 2의 열전환장치(100)의 설명이 그대로 적용될 수 있다. In addition, the description of the material and structure of each component in the heat conversion device 200 according to the second embodiment of FIGS. 3 and 4 , the description of the heat conversion device 100 of FIGS. 1 and 2 can be applied as it is. .
도 5 및 6은 본 발명의 제3 실시예에 따른 열전환장치(300)의 구조를 간략히 도시한 사시도와 단면도이다. 도 5~6에서 도 1~2와 동일한 참조 부호는 동일한 부재를 나타낸다. 5 and 6 are perspective and cross-sectional views schematically illustrating the structure of the heat conversion device 300 according to the third embodiment of the present invention. In Figs. 5 to 6, the same reference numerals as in Figs. 1 and 2 denote the same members.
이하 도 5~6에 대한 설명에서는 도 1~2와 중복되는 내용은 다시 설명하지 않으며, 차이점에 대해서만 설명한다. 도 5 및 6을 참조하면, 본 발명의 제3 실시예에 따른 열전환장치(300)는, 열전소자(60), 히터부(30) 및 제2 열전달핀(40)이 직접 부착되는 도 1-2와 비교하여, 열전소자(60)와 제2 열전달 핀(40) 사이에, 코일 형상의 히터부(30)가 내장된 히터 커버부(20)를 더 포함한다. Hereinafter, in the description of FIGS. 5 to 6 , content overlapping with FIGS. 1 and 2 will not be described again, and only differences will be described. 5 and 6 , a heat conversion device 300 according to a third embodiment of the present invention is shown in FIG. 1 to which a thermoelectric element 60 , a heater unit 30 and a second heat transfer fin 40 are directly attached. Compared with -2, a heater cover part 20 in which a coil-shaped heater part 30 is embedded is further included between the thermoelectric element 60 and the second heat transfer fin 40 .
상기 제1 실시예에 도시된 바와 같이, 열전소자(60)와 히터부(30)가 직접 접촉할 경우, 히터부(30)의 과열로 인해 열전소자(60)의 성능 저하가 발생되며, 히터부가 오작동할 경우 열전소자를 동반 교체하여야 한다. 또한 히터부(30)와 제2 열전달 핀(40)의 비(非)평판 형상으로 인해 부착이 어려워져 구조적 안정성이 저하되며, 이로 인해 열전환장치의 건조효율 개선 효과를 발휘하기 어렵게 된다. 이에 비해, 제3 실시예에서 채택한 히터 커버부(20)는, 열전소자(60)와 히터부(30)의 직접 접촉을 방지하여 전술한 문제점을 근본적으로 해소할 수 있을 뿐만 아니라 내부에 수용된 히터부(30)의 열에너지를 제2 열전달 핀(40)에 온전히 전달할 수 있으므로, 원하는 효과를 발휘할 수 있다. 또한, 평판 형상의 열전도성 재질로 이루어짐에 따라 히터부(30)와 제2 열전달 핀(40)과의 부착력을 지속적으로 유지할 수 있게 한다.As shown in the first embodiment, when the thermoelectric element 60 and the heater unit 30 are in direct contact, the performance of the thermoelectric element 60 is deteriorated due to overheating of the heater unit 30, and the heater In case of malfunction, the thermoelectric element must be replaced together. In addition, due to the non-planar shape of the heater unit 30 and the second heat transfer fin 40, attachment is difficult, and structural stability is lowered, thereby making it difficult to exhibit the effect of improving the drying efficiency of the heat conversion device. On the other hand, the heater cover unit 20 adopted in the third embodiment prevents direct contact between the thermoelectric element 60 and the heater unit 30 to fundamentally solve the above-described problems, and the heater accommodated therein Since the thermal energy of the part 30 can be completely transferred to the second heat transfer fin 40 , a desired effect can be exhibited. In addition, as it is made of a plate-shaped thermally conductive material, it is possible to continuously maintain the adhesive force between the heater unit 30 and the second heat transfer fin 40 .
히터 커버부(20)는 내부에 히터부(30)를 수용하면서, 상기 히터부(30)의 열에너지를 열전소자(60)와 제2 열전달 핀(40)에 전달할 수 있다면, 그 형상 및 재질에 특별히 제한되지 않는다. 일 구체예를 들면, 상기 히터 커버부(20)는 히터부(30)가 삽입 배치될 수 있는 중공부를 포함할 수 있다. 일례로, 히터 커버부(20)는 상하면이 개방된 사각링 형상이거나, 또는 일 측면이 개방된 사각형 형상일 수 있다. 또한 히터 커버부(20)는 당 분야에 공지된 통상의 열전도성 재질로 구성될 수 있으며, 일례로 구리, 니크롬 및 SUS 중 적어도 1종 이상의 열전도성 재질을 포함할 수 있다. 그리고, 히터 커버부(20)의 크기는 다양하게 조절할 수 있다. 일례로, 열전소자(60)의 평면에 대응되는 크기와 실질적으로 동일한 크기를 가질 수 있다. 그러나 이에 특별히 제한되지 않는다.If the heater cover 20 can transfer the heat energy of the heater 30 to the thermoelectric element 60 and the second heat transfer fin 40 while accommodating the heater 30 therein, the shape and material It is not particularly limited. For example, the heater cover part 20 may include a hollow part into which the heater part 30 can be inserted. For example, the heater cover unit 20 may have a rectangular ring shape with upper and lower surfaces open, or a rectangular shape with one side open. In addition, the heater cover unit 20 may be made of a conventional thermally conductive material known in the art, and may include, for example, at least one thermally conductive material of copper, nichrome, and SUS. In addition, the size of the heater cover part 20 can be adjusted in various ways. For example, it may have substantially the same size as the size corresponding to the plane of the thermoelectric element 60 . However, it is not particularly limited thereto.
일 구체예를 들면, 상기 제3 실시예에 따른 열전환장치(300)는, 일면에 제1 영역(A)과 제2 영역(B)을 포함하는 제1 열전달 부재(10); 상기 제1 영역(A)에 배치된 제1 열전달 핀(50); 상기 제2 영역(B)에 순차적으로 배치된 열전소자(60), 히터부(30)가 내부에 수용된 히터 커버부(20), 및 제2 열전달 핀(40)을 구비한다. 여기서, 당해 제2 영역(B)을 기준으로 순차적으로 적층된 열전소자(60), 히터 커버부(20), 및 제2 열전달 핀(40)은 별개의 구조물을 접합하여 구성될 수 있으며, 또는 일체형 구조로 구현될 수도 있다. 이때 접합방법은 당 분야에 공지된 통상의 방법에 따라 실시될 수 있으며, 일례로 접합재를 사용하여 접합하거나 테이프를 사용할 수도 있다. For example, the heat conversion device 300 according to the third embodiment includes a first heat transfer member 10 including a first area (A) and a second area (B) on one surface; a first heat transfer fin 50 disposed in the first area A; A thermoelectric element 60 sequentially arranged in the second region B, a heater cover 20 in which the heater 30 is accommodated, and a second heat transfer fin 40 are provided. Here, the thermoelectric element 60, the heater cover part 20, and the second heat transfer fin 40 sequentially stacked based on the second region B may be configured by bonding separate structures, or It may be implemented as an integrated structure. In this case, the bonding method may be performed according to a conventional method known in the art, for example, bonding using a bonding material or a tape may be used.
그 외, 도 5 및 6의 제3 실시예에 따른 열전환장치(300)에서 각 구성 요소의 재료와 구조 등에 대한 설명은 도 1 및 2의 열전환장치(100)의 설명이 그대로 적용될 수 있다. In addition, the description of the material and structure of each component in the heat conversion device 300 according to the third embodiment of FIGS. 5 and 6 is the same as the description of the heat conversion device 100 of FIGS. 1 and 2 can be applied. .
한편 도 7 내지 9에서는 히터부(30)의 코일 형상을 구체적으로 예시하고 있다. 그러나 이에 한정되지 않으며, 다양한 형태와 크기를 갖도록 변형 가능하다. 또한 본 발명에서는 제1 열전달 핀(50)과 제2 열전달 핀(40)으로서 핀형 또는 루버형을 구체적으로 예시하고 있으나, 이에 한정되지 않으며 당 분야에 공지된 통상의 방열핀 및/또는 흡열핀의 형상을 모두 적용할 수 있다. Meanwhile, in FIGS. 7 to 9 , the shape of the coil of the heater unit 30 is specifically exemplified. However, the present invention is not limited thereto, and may be modified to have various shapes and sizes. In addition, in the present invention, a fin type or a louver type is specifically exemplified as the first heat transfer fin 50 and the second heat transfer fin 40 , but the present invention is not limited thereto and the shape of a conventional heat dissipation fin and/or a heat absorbing fin known in the art. can all be applied.
도 10은 본 발명의 일 실시예에 따른 열전 소자(60)의 구조를 개략적으로 나타낸 사시도이다. 10 is a perspective view schematically showing the structure of the thermoelectric element 60 according to an embodiment of the present invention.
도 10을 참조하면, 상기 열전 소자(60)는, 제1 기판(61); 상기 제1 기판(61)과 대향 배치된 제2 기판(63); 상기 제1 기판(61)과 제2 기판(63) 사이에 각각 배치된 제1 전극(64a)과 제2 전극(64b); 및 상기 제1 전극(64a)과 상기 제2 전극(64b) 사이에 개재된 복수의 열전 레그(62)를 포함한다.Referring to FIG. 10 , the thermoelectric element 60 includes a first substrate 61 ; a second substrate 63 facing the first substrate 61; a first electrode 64a and a second electrode 64b respectively disposed between the first substrate 61 and the second substrate 63; and a plurality of thermoelectric legs 62 interposed between the first electrode 64a and the second electrode 64b.
제1 기판(61)과 제2 기판(63)은 각각 열전 소자(60)에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것으로, 당 분야에 공지된 통상의 전기 절연성 재질로 구성될 수 있다. 일례를 들면, 제1 기판(61)과 제2 기판(63)은 각각 Al2O3, AlN, SiC 및 ZrO2 중 하나 또는 그 이상의 조성으로 구성되는 세라믹 기판일 수 있다. 또는 고내열성 절연성 수지나 엔지니어링 플라스틱 등으로 구성될 수도 있다. Each of the first substrate 61 and the second substrate 63 generates an exothermic or endothermic reaction when power is applied to the thermoelectric element 60 , and may be made of a conventional electrically insulating material known in the art. For example, each of the first substrate 61 and the second substrate 63 may be a ceramic substrate composed of one or more compositions of Al 2 O 3 , AlN, SiC, and ZrO 2 . Alternatively, it may be composed of a high heat-resistance insulating resin or engineering plastic.
또한 제1 기판(61)과 제2 기판(63)은 당 분야에 공지된 통상의 도전성 금속 재질로 구성된 금속 기판일 수 있다. 일례를 들면, 제1 기판(61)과 제2 기판(63)은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. 이때 도전성 제1 기판(61)과 도전성 제2 기판(63) 상에 전극(미도시)이 직접적으로 배치될 경우 전기적으로 도통하게 되므로, 이들 사이에는 당 분야에 공지된 전기절연성 물질이 개재(介在)되게 된다. 이에 따라, 제1 전극이 배치되는 제1 기판(61)의 일면 상에 제1절연층(미도시)이 형성되고, 제2 전극이 배치되는 제2 기판(63)의 일면 상에 제2절연층(미도시)이 형성되며, 상기 제1절연층과 제2절연층은 서로 마주보도록 대향 배치되는 구조를 가질 수 있다. 상기 제1절연층과 제2절연층은 서로 동일하거나 또는 상이하며, 성막이 용이한 당 분야에 공지된 통상의 전기절연성 물질을 제한 없이 사용할 수 있다. 제1절연층과 제2절연층의 두께는 특별히 제한되지 않으며, 일례로 10 내지 150 ㎛이며, 구체적으로 30 내지 120 ㎛일 수 있다. In addition, the first substrate 61 and the second substrate 63 may be a metal substrate made of a conventional conductive metal material known in the art. For example, each of the first substrate 61 and the second substrate 63 may include at least one metal selected from among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). may include At this time, when an electrode (not shown) is directly disposed on the conductive first substrate 61 and the conductive second substrate 63, electrical conduction occurs, so that an electrically insulating material known in the art is interposed therebetween. ) will be Accordingly, a first insulating layer (not shown) is formed on one surface of the first substrate 61 on which the first electrode is disposed, and a second insulation layer on one surface of the second substrate 63 on which the second electrode is disposed. A layer (not shown) may be formed, and the first insulating layer and the second insulating layer may have a structure in which they are disposed to face each other. The first insulating layer and the second insulating layer are the same as or different from each other, and a conventional electrically insulating material known in the art for easy film formation may be used without limitation. The thickness of the first insulating layer and the second insulating layer is not particularly limited, and may be, for example, 10 to 150 μm, specifically 30 to 120 μm.
상기 제1 기판(61)과 제2 기판(62)은 각각 평판 형상일 수 있으며, 그 크기나 두께 등에 특별히 제한되지 않는다. The first substrate 61 and the second substrate 62 may each have a flat plate shape, and the size or thickness thereof is not particularly limited.
이때 기판의 흡열과 발열의 발생 위치는 전류의 방향에 따라 변경 가능하다. 2개의 기판 중 하나는 흡열반응이 발생하는 흡열부(cold side) 기판이며, 이러한 기판에 방열패드가 적용될 수도 있다. 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성될 수 있으며, 0.5 내지 5.0 W/mk 범위의 열 전도도를 가짐으로써 열 전달 효율을 극대화시킬 수 있다. 또한 절연체 역할을 할 수 있다. 또한 2개의 기판 중 다른 하나는 발열부 기판(hot side)일 수 있다. 일례를 들면, 전술한 제1 열전달 부재(10)와 연결되는 제1 기판(61)이 흡열부 기판이고, 히터부(30)와 연결되는 제2 기판(63)이 발열부 기판일 수 있다. In this case, the positions of the heat absorption and heat generation of the substrate can be changed according to the direction of the current. One of the two substrates is a cold side substrate on which an endothermic reaction occurs, and a heat dissipation pad may be applied to this substrate. The heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and has a thermal conductivity in the range of 0.5 to 5.0 W/mk, thereby maximizing heat transfer efficiency. It can also act as an insulator. In addition, the other one of the two substrates may be a heating part substrate (hot side). For example, the first substrate 61 connected to the above-described first heat transfer member 10 may be a heat absorbing unit substrate, and the second substrate 63 connected to the heater unit 30 may be a heat generating unit substrate.
서로 마주보도록 대향 배치된 제1 기판(61)과 제2 기판(63) 상에 각각 제1 전극(64a)과 제2 전극(64b)이 배치된다. 즉, 제1 전극(64a)과 대향하는 위치에 제2 전극(64b)이 배치된다.A first electrode 64a and a second electrode 64b are respectively disposed on the first substrate 61 and the second substrate 63 that are disposed to face each other. That is, the second electrode 64b is disposed at a position opposite to the first electrode 64a.
제1 전극(64a)과 제2 전극(64b)의 재질은 특별히 제한되지 않으며, 당 분야에서 전극으로 사용되는 재질을 제한 없이 사용할 수 있다. 일례로, 제1 전극 (64a)과 제2 전극(64b)은 서로 동일하거나 또는 상이하며, 각각 독립적으로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 사용할 수 있다. 그 외 니켈, 금, 은, 티타늄 등을 더 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. 바람직하게는 구리(Cu) 전극일 수 있다. 상기 제1 전극(64a)과 제2 전극(64b)은 소정의 형상으로 패턴화될 수 있으며, 그 형상은 특별히 제한되지 않는다. The material of the first electrode 64a and the second electrode 64b is not particularly limited, and a material used as an electrode in the art may be used without limitation. For example, the first electrode 64a and the second electrode 64b are the same as or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt ( Co) at least one metal may be used. In addition, it may further include nickel, gold, silver, titanium, and the like. Its size can also be adjusted in various ways. Preferably, it may be a copper (Cu) electrode. The first electrode 64a and the second electrode 64b may be patterned in a predetermined shape, and the shape is not particularly limited.
상기 제1 전극(64a)과 제2 전극(64b) 사이에 복수의 열전 레그(62)가 개재된다. A plurality of thermoelectric legs 62 are interposed between the first electrode 64a and the second electrode 64b.
상기 열전 레그(62)는 복수의 P형 열전 레그(62a)와 N형 열전 레그(62b)를 각각 포함하며, 이들이 일방향으로 교번하여 배치된다. 이와 같이 일방향으로 이웃하는 P형 열전 레그(62a) 및 N형 열전 레그(62b)는 그 상면 및 하면이 각각 제1 전극(64a) 및 제2 전극(64b)과 전기적으로 직렬 연결된다. 이러한 각각의 열전 레그(62)는 열전반도체 기재를 포함한다.The thermoelectric leg 62 includes a plurality of P-type thermoelectric legs 62a and N-type thermoelectric legs 62b, respectively, which are alternately disposed in one direction. As described above, the P-type thermoelectric leg 62a and the N-type thermoelectric leg 62b adjacent in one direction are electrically connected in series to the first electrode 64a and the second electrode 64b, respectively. Each of these thermoelectric legs 62 includes a thermoelectric semiconductor substrate.
상기 열전 레그(62)에 포함되는 열전반도체는 전기가 인가되면 양단에 온도차가 발생하거나, 또는 그 양단에 온도차가 발생하면 전기가 발생하는 당 업계의 통상적인 재료로 형성될 수 있다. 일례로, 전이금속, 희토류 원소, 13족 원소, 14족 원소, 15족 원소 및 16족 원소로 이루어진 군으로부터 선택되는 적어도 하나의 원소를 포함하는 열전반도체를 하나 이상 사용할 수 있다. 여기서, 희토류 원소의 예로는 Y, Ce, La 등이 있으며, 상기 전이금속의 예로는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, 및 Re 중 하나 이상일 수 있으며, 상기 13족 원소의 예로는 B, Al, Ga, 및 In 중 하나 이상일 수 있으며, 상기 14족 원소의 예로는 C, Si, Ge, Sn, 및 Pb 중 하나 이상일 수 있으며, 상기 15족 원소의 예로는 P, As, Sb, 및 Bi 중 하나 이상일 수 있고, 상기 16족 원소의 예로는 S, Se, 및 Te 중 하나 이상을 사용할 수 있다. The thermoelectric semiconductor included in the thermoelectric leg 62 may be formed of a conventional material in the art that generates electricity when a temperature difference occurs at both ends when electricity is applied, or when a temperature difference occurs at both ends. For example, one or more thermoelectric semiconductors including at least one element selected from the group consisting of a transition metal, a rare earth element, a group 13 element, a group 14 element, a group 15 element, and a group 16 element may be used. Here, examples of the rare earth element include Y, Ce, La, and the like, and examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, It may be at least one of Zn, Ag, and Re, and examples of the group 13 element may include at least one of B, Al, Ga, and In, and examples of the group 14 element include C, Si, Ge, Sn, and Pb. may be one or more of the group 15 elements, and examples of the group 15 elements may be at least one of P, As, Sb, and Bi, and examples of the group 16 elements may include one or more of S, Se, and Te.
사용 가능한 열전 반도체로는 비스무트(Bi), 텔레륨(Te), 코발트(Co), 사마륨(Sb), 인듐(In), 및 세륨(Ce) 중 적어도 2개 이상을 포함하는 조성으로 이루어진 질 수 있으며, 이의 비제한적인 예로는, Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 또는 이들의 조합 등이 있다. 구체적인 일례를 들면, Bi-Te계 열전반도체로는 Sb 및 Se가 도펀트로서 사용된 (Bi,Sb)2(Te,Se)3계 열전반도체를 예시할 수 있으며, Co-Sb계 열전반도체로서는 CoSb3계 열전반도체를 예시할 수 있으며, Sb-Te계 열전반도체로서는 AgSbTe2, CuSbTe2를 예시할 수 있고, Pb-Te계 열전반도체로서는 PbTe, (PbTe)mAgSbTe2 등을 예시할 수 있다. 바람직하게는 Bi-Te계 또는 CoSb계 열전 재료로 구성될 수 있다. 상기 열전 반도체는 소정 크기를 갖는 입자일 수 있으며, 예를 들어 평균 입경이 약 0.01 내지 약 100 ㎛의 범위일 수 있다.Usable thermoelectric semiconductors include bismuth (Bi), tellium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce) having a composition containing at least two or more of them. and non-limiting examples thereof, Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal silicide-based, Scoo Terdite (Skuttrudite)-based, silicide (Silicide)-based, half whistler (Half heusler), or a combination thereof, and the like. As a specific example, as the Bi-Te-based thermoelectric semiconductor, a (Bi,Sb) 2 (Te,Se) 3 thermoelectric semiconductor in which Sb and Se are used as dopants may be exemplified, and as the Co-Sb-based thermoelectric semiconductor, CoSb may be exemplified. Three -type thermoelectric semiconductor can be exemplified, and AgSbTe 2 and CuSbTe 2 can be exemplified as the Sb-Te-based thermoelectric semiconductor, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as the Pb-Te-based thermoelectric semiconductor. Preferably, it may be composed of a Bi-Te-based or CoSb-based thermoelectric material. The thermoelectric semiconductor may be particles having a predetermined size, for example, an average particle diameter may be in the range of about 0.01 to about 100 μm.
이와 같은 열전 반도체는 다양한 방법으로 제조될 수 있으며, 특별히 제한되지 않는다. 일례로, 열전 반도체는 용융방사 회전법(melt-spining)이나 기상원자화법(gas atomization) 등을 수행한 후 가압소결법을 순차적으로 진행하여 제조될 수 있다. 이러한 P형 열전 레그 및 N형 열전 레그를 포함하는 열전 레그(62)는 절단 가공 등의 방법으로 소정의 형상, 일례로 직육면체의 형상으로 형성하여 열전 소자에 적용될 수 있다. Such a thermoelectric semiconductor may be manufactured by various methods, and is not particularly limited. For example, the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method. The thermoelectric leg 62 including the P-type thermoelectric leg and the N-type thermoelectric leg may be formed into a predetermined shape, for example, a rectangular parallelepiped shape by a method such as cutting, and applied to a thermoelectric element.
본 발명에 따른 열전 소자(60)는, 제1 전극(64a)과 열전 레그(62) 사이; 및 상기 열전 레그(62)와 제2 전극(64b) 사이 중 적어도 하나, 바람직하게는 이들 모두의 사이에 배치되는 접합재(미도시)를 포함한다. 이러한 접합재는 당 분야에 공지된 통상의 접합재 성분을 제한 없이 사용할 수 있다. 일례로, 상기 접합재는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 제1 금속을 포함하는 조성; 또는 상기 제1 금속;과 Ni, Co, 및 Ag 중 적어도 하나의 제2 금속을 포함하는 조성으로 이루어질 수 있다. The thermoelectric element 60 according to the present invention includes: between the first electrode 64a and the thermoelectric leg 62 ; and a bonding material (not shown) disposed between at least one, preferably both, of the thermoelectric leg 62 and the second electrode 64b. As the bonding material, conventional bonding material components known in the art may be used without limitation. In one example, the bonding material is Sn; a composition comprising a first metal of at least one of Pb, Al, and Zn; Alternatively, the first metal may have a composition including a second metal of at least one of Ni, Co, and Ag.
선택적으로, 상기 열전 소자(60)는 제1 전극(64a)과 열전 레그(62) 사이; 및 열전 레그(62)와 제2 전극(64b) 사이에 배치되는 확산방지층(미도시)을 더 포함할 수 있다. 이러한 확산방지층은 당 분야에 공지된 통상의 성분을 제한 없이 사용할 수 있으며, 일례로 탄탈늄(Ta), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.Optionally, the thermoelectric element 60 is disposed between the first electrode 64a and the thermoelectric leg 62; and a diffusion barrier layer (not shown) disposed between the thermoelectric leg 62 and the second electrode 64b. Such a diffusion barrier layer can be used without limitation, a conventional component known in the art, for example, includes at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
일례를 들면, 제1 전극 및 제2 전극은 전력 공급원에 전기적으로 연결될 수 있다. 외부에서 DC 전압을 인가했을 때 p-타입 열전 레그의 정공과 n-타입 열전 레그의 전자가 이동함으로써 열전 레그 양단에서 발열과 흡열이 일어날 수 있다. 또한 제1 전극 및 제2 전극 중 적어도 하나는 열 공급원에 노출될 수 있다. 외부 열 공급원에 의하여 열을 공급받으면 전자와 정공이 이동하면서 열전소자에 전류의 흐름이 생겨 발전(發電)을 일으킬 수 있다.For example, the first electrode and the second electrode may be electrically connected to a power source. When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg and the electrons of the n-type thermoelectric leg move, so that heat and endotherm can occur at both ends of the thermoelectric leg. Also, at least one of the first electrode and the second electrode may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move and current flows in the thermoelectric element to generate electricity.
전술한 열전소자는 당 분야에 공지된 방법에 따라 제조될 수 있다. 이러한 제조방법의 일례를 들면, 기판으로는 세라믹 기판이나 도전성 기판을 사용하고, 상기 기판의 일면 상에 도전성 전극 패턴을 구성한 후, 열처리하여 고착화시킨다. 이때 금속 기판을 사용할 경우, 전극이 배치되는 금속 기판의 일면, 구체적으로 열전 레그가 배치되는 일면 상에 절연성 물질을 도포하여 통전(通電)을 방지한다. The above-described thermoelectric element may be manufactured according to a method known in the art. As an example of such a manufacturing method, a ceramic substrate or a conductive substrate is used as a substrate, a conductive electrode pattern is formed on one surface of the substrate, and then heat-treated to fix it. In this case, when a metal substrate is used, an insulating material is coated on one surface of the metal substrate on which the electrode is disposed, specifically, on one surface on which the thermoelectric leg is disposed to prevent conduction.
열전 재료를 이용하여 열전레그를 제조하는 방법의 일례를 들면, Bi-Te 또는 CoSb계 열전재료를 목적 두께에 맞게 슬라이싱을 진행하고, 최종 두께에 맞게 랩핑(lapping)을 진행하여 소재의 높이를 1/100 이내로 단차 조절한다. 단차가 제어된 열전 소재의 표면에 Co, Ni, Cr, 및 W 등의 표면 코팅을 진행하여 확산방지막을 형성한 후, 최종적으로 재료의 크기에 맞게 다이싱(dicing), 방전가공, Multi-wire 등의 공정을 통하여 원하는 크기로 절단하여 열전 레그가 제조된다. For an example of a method of manufacturing a thermoelectric leg using a thermoelectric material, slicing a Bi-Te or CoSb-based thermoelectric material to a desired thickness, and lapping to the final thickness, to increase the height of the material to 1 Adjust the step difference within /100. After forming a diffusion barrier film by surface coating of Co, Ni, Cr, and W on the surface of the thermoelectric material whose step is controlled, dicing, electric discharge machining, and multi-wire The thermoelectric leg is manufactured by cutting it to a desired size through a process such as.
이어서, 복수 개의 열전 레그를 한쌍의 전극 사이에 배치한 후 접합한다. 상기 접합 단계의 일례를 들면, 제1 전극의 패턴에 맞게 접합재 페이스트를 일정 두께로 도포하고, 그 위에 n형 및 p형의 열전 레그를 배열한다. 이후 반대쪽인 대향 전극(제2 전극)의 경우 접합재만 도포한 상태에서 기존에 제작되어 있는 n형 및 p형 열전 레그가 배열된 부분에 배치하여 최종 구성을 완료한다. 이어서, 200 내지 500℃로 열처리하여 최종 접합하고 전선을 연결하여 열전 소자의 제작이 완료된다.Next, a plurality of thermoelectric legs are disposed between a pair of electrodes and then bonded. As an example of the bonding step, a bonding material paste is applied to a predetermined thickness according to the pattern of the first electrode, and n-type and p-type thermoelectric legs are arranged thereon. After that, in the case of the opposite electrode (second electrode) on the opposite side, the final configuration is completed by placing the previously manufactured n-type and p-type thermoelectric legs in a state where only the bonding material is applied. Then, heat treatment at 200 to 500° C., final bonding, and connecting wires to complete the manufacture of the thermoelectric element.
본 발명의 일 실시예에 따른 열전환장치는 열전소자를 적용하여 구현되는 발열 및 흡열의 효과를 이용하여 응축 및 건조과정을 거치되, 제한된 공간에서의 습기 제어와 승온 효율을 최적화함으로써 최종적으로 건조효율이 지속적으로 개선되는 효과를 발휘할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 열전환장치를 사용할 경우, 응축 효과를 증대시켜 우수한 제습 효과를 구현할 수 있다.The thermal conversion device according to an embodiment of the present invention is dried by optimizing moisture control and temperature increase efficiency in a limited space through condensation and drying processes using the effects of heat generation and endotherm realized by applying a thermoelectric element. Efficiency can be continuously improved. Accordingly, when using the heat conversion device according to an embodiment of the present invention, it is possible to implement an excellent dehumidifying effect by increasing the condensation effect.
이와 같이, 본 발명의 실시예에 따른 열전환장치는 건조, 제습이 필요한 세탁기, 건조기, 제습기 등을 포함하는 다양한 가전장비, 산업장비 등에 매우 범용적으로 적용할 수 있다.As described above, the heat conversion device according to an embodiment of the present invention can be very universally applied to various home appliances and industrial equipment, including washing machines, dryers, dehumidifiers, etc. requiring drying and dehumidification.
이상, 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징으로 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Above, embodiments of the present invention have been described with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains can practice the present invention in other specific forms without changing its technical spirit or essential features. You can understand that there is Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (23)

  1. 일면에 제1 영역과 제2 영역을 포함하는 제1 열전달 부재;a first heat transfer member including a first area and a second area on one surface;
    상기 제1 영역에 배치되는 제1 열전달 핀;a first heat transfer fin disposed in the first region;
    상기 제2 영역에 일측이 배치되는 열전소자; 및 a thermoelectric element having one side disposed in the second region; and
    상기 열전소자의 타측에 배치되는 제2 열전달 핀;을 포함하고, a second heat transfer fin disposed on the other side of the thermoelectric element; and
    상기 열전소자와 상기 제2 열전달 핀 사이에 배치되고, 상기 열전소자에 열에너지를 부가하는 코일 형상의 히터부;a coil-shaped heater disposed between the thermoelectric element and the second heat transfer fin and configured to apply thermal energy to the thermoelectric element;
    를 포함하는 열전환장치. A heat conversion device comprising a.
  2. 제1항에 있어서, According to claim 1,
    상기 제1 열전달 부재는 상기 열전소자의 흡열부 기판과 연결되고, The first heat transfer member is connected to the heat absorbing part substrate of the thermoelectric element,
    상기 히터부는 상기 열전소자의 발열부 기판과 연결되는, 열전환장치. The heater unit is connected to the heating unit substrate of the thermoelectric element, a thermal conversion device.
  3. 제1항에 있어서, According to claim 1,
    상기 히터부는, 나선형으로 절곡된 원형 형상, 사각형 형상, 또는 코일의 길이방향을 따라가면서 트위스트 형태로 절곡된 형상인, 열전환장치.The heater unit, a circular shape bent in a spiral, a rectangular shape, or a shape bent in a twist shape along the longitudinal direction of the coil, heat conversion device.
  4. 제1항에 있어서,According to claim 1,
    상기 히터부는 구리, 알루미늄, 및 니크롬으로 구성된 군에서 선택된 적어도 1종 이상의 열전도성 재질을 포함하는, 열전환장치. The heater unit includes at least one thermally conductive material selected from the group consisting of copper, aluminum, and nichrome.
  5. 제1항에 있어서,According to claim 1,
    상기 히터부와 상기 제2 열전달 핀 사이에 배치되는 제2 열전달 부재를 더 포함하는 열전환장치.The heat conversion device further comprising a second heat transfer member disposed between the heater unit and the second heat transfer fins.
  6. 제1항에 있어서,According to claim 1,
    상기 열전소자와 상기 제2 열전달 핀 사이에 배치되고, 상기 히터부를 감싸는 히터 커버부를 더 포함하는 열전환장치. The heat conversion device further comprising a heater cover portion disposed between the thermoelectric element and the second heat transfer fin, and surrounding the heater portion.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 히터 커버부는 상기 히터부가 삽입 배치될 수 있는 중공부를 포함하는 열전환장치. The heater cover part heat conversion device including a hollow part into which the heater part can be inserted.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 히터 커버부는 상하면이 개방된 사각링 형상이거나, 또는 일 측면이 개방된 사각형 형상인 열전환장치.The heater cover portion is a rectangular ring shape with an open top and bottom, or a heat conversion device having a rectangular shape with one side open.
  9. 제6항에 있어서,7. The method of claim 6,
    상기 히터 커버부는 구리, 니크롬 및 SUS 중 적어도 1종 이상의 열전도성 재질을 포함하는, 열전환장치. The heater cover portion comprises at least one thermally conductive material of copper, nichrome, and SUS, a heat conversion device.
  10. 제5항 또는 제6항에 있어서,7. The method according to claim 5 or 6,
    상기 열전환장치는, 당해 제1 열전달 부재의 제2 영역을 기준으로, The heat conversion device, based on the second area of the first heat transfer member,
    (i) 열전소자; 히터부; 및 제2 열전달 핀이 순차적으로 배치되거나, (i) thermoelectric elements; heater unit; and the second heat transfer fins are sequentially disposed,
    (ii) 열전소자; 히터부; 제2 열전달 부재; 및 제2 열전달 핀이 순차적으로 배치되거나, 또는 (ii) thermoelectric elements; heater unit; a second heat transfer member; and the second heat transfer fins are sequentially disposed, or
    (ii) 열전소자; 히터부가 내부에 수용된 히터 커버부; 및 제2 열전달 핀이 순차적으로 배치되는 열전환장치.(ii) thermoelectric elements; a heater cover unit accommodated therein; and a heat conversion device in which the second heat transfer fins are sequentially disposed.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 열전소자, 제2 열전달 부재 및 히터 커버부는 평면상에서 실질적으로 동일한 크기를 가지며, The thermoelectric element, the second heat transfer member, and the heater cover have substantially the same size in plan view,
    상기 제2 열전달 핀의 폭방향 길이는 상기 열전소자의 평면에 대응되는 크기보다 작은 것인, 열전환장치. The width direction length of the second heat transfer fin will be smaller than a size corresponding to the plane of the thermoelectric element, the heat conversion device.
  12. 제1항에 있어서,According to claim 1,
    상기 제1 열전달 핀과 상기 열전소자는 이격 배치되고, The first heat transfer fin and the thermoelectric element are spaced apart from each other,
    상기 제1 열전달 핀과 상기 제2 열전달 핀은 이격 배치되며, The first heat transfer fin and the second heat transfer fin are spaced apart from each other,
    상기 제1 열전달 핀과 제2 열전달 핀의 이격 거리(L1)는 상기 열전소자와 상기 제1 열전달 핀의 이격 거리(L2)보다 큰 것인, 열전환장치. The separation distance (L1) between the first heat transfer fin and the second heat transfer fin is greater than the separation distance (L2) between the thermoelectric element and the first heat transfer fin, the heat conversion device.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 제1 열전달 핀과 제2 열전달 핀의 이격 거리(L1)은 5.0 내지 50.0 mm이며,The separation distance (L1) of the first heat transfer fin and the second heat transfer fin is 5.0 to 50.0 mm,
    상기 제1 열전달 핀과 상기 열전소자의 이격 거리(L2)는 3.0 내지 40.0 mm인, 열전환장치.The separation distance (L2) of the first heat transfer fin and the thermoelectric element is 3.0 to 40.0 mm, the heat conversion device.
  14. 제1항에 있어서, According to claim 1,
    상기 제1 열전달 핀과 상기 제2 열전달 핀은 각각 중공형, 핀형 또는 루버(Louver) 형상을 갖는 다수의 구조물을 포함하는 열전환장치. The first heat transfer fin and the second heat transfer fin each include a plurality of structures having a hollow, fin, or louver shape.
  15. 제1항에 있어서, According to claim 1,
    상기 제1 열전달 핀의 높이(H1)와 상기 제2 열전달 핀의 높이(H2)는 서로 다른 것인, 열전환장치. The height H1 of the first heat transfer fin and the height H2 of the second heat transfer fin are different from each other.
  16. 제1항에 있어서,According to claim 1,
    상기 제1 열전달 핀의 높이(H1)는 상기 제2 열전달 핀의 높이(H2)보다 더 큰 것인, 열전환장치.The height H1 of the first heat transfer fin is greater than the height H2 of the second heat transfer fin, the heat conversion device.
  17. 제1항에 있어서,According to claim 1,
    상기 제1 열전달 핀과 제2 열전달 핀은, 당해 제1 열전달 부재를 기준으로 끝단의 길이가 같은 것인, 열전환장치. The first heat transfer fin and the second heat transfer fin, the length of the end with respect to the first heat transfer member is the same, the heat conversion device.
  18. 제5항에 있어서, 6. The method of claim 5,
    상기 제1 열전달 부재, 제2 열전달 부재, 제1 열전달 핀과 제2 열전달 핀은 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속 재질을 포함하는 열전환장치.The first heat transfer member, the second heat transfer member, the first heat transfer fin, and the second heat transfer fin each include at least one of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). A heat conversion device comprising a metal material of the species.
  19. 제1항에 있어서, According to claim 1,
    상기 열전소자는, The thermoelectric element is
    제1 기판; a first substrate;
    상기 제1 기판과 대향 배치된 제2 기판;a second substrate facing the first substrate;
    상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및a first electrode and a second electrode respectively disposed between the first substrate and the second substrate; and
    상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그를 포함하는, 열전환장치.and a plurality of thermoelectric legs interposed between the first electrode and the second electrode.
  20. 제19항에 있어서, 20. The method of claim 19,
    제1 기판과 제2 기판은 서로 동일하거나 또는 상이하며, 각각 독립적으로 세라믹 기판 또는 도전성 기판인 열전환장치. The first substrate and the second substrate are the same as or different from each other, and each independently a ceramic substrate or a conductive substrate.
  21. 제20항에 있어서, 21. The method of claim 20,
    상기 도전성 기판은, 금속 기판; 및 이의 일면에 형성된 절연층을 포함하는 열전환장치. The conductive substrate may include a metal substrate; and an insulating layer formed on one surface thereof.
  22. 제19항에 있어서, 20. The method of claim 19,
    상기 제1 기판, 제2 기판, 제1 전극, 또는 제2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함하는 열전환장치. The first substrate, the second substrate, the first electrode, or the second electrode are the same as or different from each other, and each of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co) ) of a heat conversion device comprising at least one metal.
  23. 제1항에 있어서,According to claim 1,
    세탁기, 건조기 또는 제습기에 구비되는 열전환장치.A heat conversion device provided in a washing machine, dryer or dehumidifier.
PCT/KR2020/014960 2020-10-29 2020-10-29 Heat conversion device comprising thermoelectric element WO2022092357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200142086 2020-10-29
KR10-2020-0142086 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092357A1 true WO2022092357A1 (en) 2022-05-05

Family

ID=81384011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014960 WO2022092357A1 (en) 2020-10-29 2020-10-29 Heat conversion device comprising thermoelectric element

Country Status (1)

Country Link
WO (1) WO2022092357A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101602A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Drum washing machine and clothes dryer using thermoelectric module
KR20090118353A (en) * 2008-05-13 2009-11-18 주식회사 에이엠오 Heater assembly and heating unit for drying laundry using the same
KR20100037675A (en) * 2008-10-02 2010-04-12 이상열 Radiator assembly
KR20150096180A (en) * 2014-02-14 2015-08-24 엘지이노텍 주식회사 Device using thermoelectric moudule
KR20160116776A (en) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 Dehumidifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101602A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Drum washing machine and clothes dryer using thermoelectric module
KR20090118353A (en) * 2008-05-13 2009-11-18 주식회사 에이엠오 Heater assembly and heating unit for drying laundry using the same
KR20100037675A (en) * 2008-10-02 2010-04-12 이상열 Radiator assembly
KR20150096180A (en) * 2014-02-14 2015-08-24 엘지이노텍 주식회사 Device using thermoelectric moudule
KR20160116776A (en) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 Dehumidifier

Similar Documents

Publication Publication Date Title
RU2248647C2 (en) Thermal cell
WO2020085681A1 (en) Thermoelectric element and manufacturing method therefor
WO2016159649A1 (en) Dehumidification apparatus
JP2006507690A (en) Transformer thermoelectric device
JP2010251692A (en) Thermoelectric element
WO2017039363A1 (en) Vehicle lamp
Li et al. Top-down silicon nanowire-based thermoelectric generator: design and characterization
JP2000068564A (en) Peltier element
WO2022092357A1 (en) Heat conversion device comprising thermoelectric element
JPH10303469A (en) Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor
WO2017026856A1 (en) Vehicle lamp
WO2021145621A1 (en) Power generation apparatus
WO2022102800A1 (en) Thermoelectric conversion module
WO2022131395A1 (en) Thermoelectric conversion module
WO2019143140A1 (en) Thermoelectric element
WO2020040479A1 (en) Thermoelectric module
WO2016159591A1 (en) Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
US10347811B2 (en) Thermoelectric conversion module
WO2020153799A1 (en) Thermoelectric element
JP3188070B2 (en) Thermoelectric generation module
WO2021029590A1 (en) Thermoelectric device
WO2017014589A1 (en) Heat-exchanging module and laundry treating apparatus including the same
WO2017209549A1 (en) Thermoelectric leg and thermoelectric element comprising same
WO2020130507A1 (en) Thermoelectric module
WO2024096168A1 (en) Thermally conductive filler, and heat management thermoelectric cooler using same and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959974

Country of ref document: EP

Kind code of ref document: A1