WO2017209549A1 - Thermoelectric leg and thermoelectric element comprising same - Google Patents

Thermoelectric leg and thermoelectric element comprising same Download PDF

Info

Publication number
WO2017209549A1
WO2017209549A1 PCT/KR2017/005754 KR2017005754W WO2017209549A1 WO 2017209549 A1 WO2017209549 A1 WO 2017209549A1 KR 2017005754 W KR2017005754 W KR 2017005754W WO 2017209549 A1 WO2017209549 A1 WO 2017209549A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermoelectric
thermoelectric material
material layer
content
Prior art date
Application number
PCT/KR2017/005754
Other languages
French (fr)
Korean (ko)
Inventor
토쇼츠요시
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP17807042.1A priority Critical patent/EP3467888B1/en
Priority to JP2018555491A priority patent/JP6987077B2/en
Priority to EP21161352.6A priority patent/EP3852157A3/en
Priority to CN201780033900.8A priority patent/CN109219893B/en
Priority to US16/099,292 priority patent/US11233187B2/en
Priority claimed from KR1020170068656A external-priority patent/KR101931634B1/en
Publication of WO2017209549A1 publication Critical patent/WO2017209549A1/en
Priority to US16/998,412 priority patent/US11342490B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Definitions

  • the present invention relates to a thermoelectric element, and more particularly to a thermoelectric leg included in the thermoelectric element.
  • Thermoelectric phenomenon is a phenomenon caused by the movement of electrons and holes in a material, and means a direct energy conversion between heat and electricity.
  • thermoelectric element is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric leg and an N-type thermoelectric leg are bonded between metal electrodes to form a PN junction pair.
  • Thermoelectric elements may be classified into a device using a temperature change of the electrical resistance, a device using the Seebeck effect, a phenomenon in which electromotive force is generated by the temperature difference, a device using a Peltier effect, a phenomenon in which endothermic or heat generation by current occurs. .
  • thermoelectric devices have been applied to a variety of home appliances, electronic components, communication components and the like.
  • the thermoelectric element may be applied to a cooling device, a heating device, a power generating device, or the like. Accordingly, the demand for thermoelectric performance of thermoelectric elements is increasing.
  • thermoelectric legs in order to stably bond the thermoelectric legs to the electrodes, a metal layer may be formed between the thermoelectric legs and the electrodes.
  • a plating layer may be formed between the thermoelectric leg and the metal layer in order to prevent a phenomenon in which the thermoelectric performance is deteriorated by a reaction between the semiconductor material and the metal layer in the thermoelectric leg and to prevent oxidation of the metal layer.
  • thermoelectric leg in the process of simultaneously sintering the plating layer and the thermoelectric leg, a part of the semiconductor material in the thermoelectric leg may be diffused into the plating layer, which may result in uneven distribution of the semiconductor material at the boundary between the plating layer and the thermoelectric leg.
  • the thermoelectric legs include Bi and Te
  • Te when Te is diffused into the plating layer, a Bi rich layer containing a relatively large amount of Bi may be formed. Within the Bi-rich layer, the proper stoichiometric ratios of Bi and Te are destroyed, resulting in an increase in resistance, which can result in degradation of the thermoelectric device performance.
  • thermoelectric device having excellent thermoelectric performance and a thermoelectric leg included therein.
  • a thermoelectric leg includes a thermoelectric material layer including Bi and Te, a first metal layer and a second metal layer respectively disposed on one side and the other side of the thermoelectric material layer, and the thermoelectric material.
  • a second bonding layer disposed between the material layer and the first metal layer and disposed between the first bonding layer including the Te and the thermoelectric material layer and the second metal layer, and including the Te; and the first A first plating layer disposed between the metal layer and the first bonding layer, and a second plating layer disposed between the second metal layer and the second bonding layer, wherein the thermoelectric material layer includes the first metal layer and the second metal layer.
  • the Te content is disposed between the center surface of the thermoelectric material layer and the interface between the thermoelectric material layer and the first bonding layer is higher than the Bi content, and the heat from the center surface of the thermoelectric material layer to the heat
  • the Te content to the interface between the material layer and the second bonding layer is higher than the Bi content.
  • the Te content at a predetermined point in the interface between the thermoelectric material layer and the first bonding layer from the center surface of the thermoelectric material layer may be 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer.
  • the Te content of the first bonding layer may be 0.8 to 1 times the Te content of the thermoelectric material layer.
  • the Te content from the interface between the thermoelectric material layer and the first bonding layer to the interface between the first bonding layer and the first plating layer may be the same.
  • Te content at a predetermined point within 100 ⁇ m thickness in the direction of the center surface of the thermoelectric material layer from the interface between the thermoelectric material layer and the first bonding layer is 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer. Can be.
  • At least one of the first plating layer and the second plating layer may include at least one metal of Ni, Sn, Ti, Fe, Sb, Cr, and Mo, respectively.
  • At least one of the first bonding layer and the second bonding layer may further include at least one metal selected from the first plating layer and the second plating layer.
  • At least one of the first metal layer and the second metal layer may be selected from copper, a copper alloy, aluminum, and an aluminum alloy.
  • the Te content of at least one of the first bonding layer and the second bonding layer may be 0.9 to 1 times the Te content of the thermoelectric material layer.
  • the Te content of at least one of the first bonding layer and the second bonding layer may be 0.95 to 1 times the Te content of the thermoelectric material layer.
  • the thickness of the first plating layer may be 1 ⁇ m to 20 ⁇ m.
  • thermoelectric material layer and the first bonding layer may directly contact each other, and the thermoelectric material layer and the second bonding layer may directly contact each other.
  • the first bonding layer and the first plating layer may directly contact each other, and the second bonding layer and the second plating layer may directly contact each other.
  • the first plating layer and the first metal layer may directly contact each other, and the second plating layer and the second metal layer may directly contact each other.
  • thermoelectric device includes a first substrate, a plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs disposed alternately on the first substrate, the plurality of P-type thermoelectric legs, and the plurality of A second substrate disposed on an N-type thermoelectric leg, and a plurality of electrodes connecting the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs in series, wherein the plurality of P-type thermoelectric legs and the plurality of electrodes
  • the N-type thermoelectric leg includes a thermoelectric material layer including Bi and Te, a first metal layer and a second metal layer respectively disposed on one side and the other side of the thermoelectric material layer, the thermoelectric material layer and the first layer.
  • thermoelectric material layer is disposed between the metal layer, the first bonding layer containing the Te and the thermoelectric material layer and the second metal layer disposed between, the second bonding layer comprising the Te, and the first metal layer and the first Placed between bonding layers
  • the Te content from the center plane to the interface between the thermoelectric material layer and the first bonding layer is higher than the Bi content, and the Te content from the center plane of the thermoelectric material layer to the interface between the thermoelectric material layer and the second bonding layer. Is higher than the Bi content.
  • a method of manufacturing a thermoelectric leg may include preparing a first metal substrate, forming a first plating layer on the first metal substrate, and including Te on the first plating layer. Forming a bonding layer, disposing a thermoelectric material layer including Bi and Te on an upper surface of the first bonding layer, and forming a second metal substrate having a second bonding layer and a second plating layer on the thermoelectric material layer. Batching, and sintering.
  • the forming of the first bonding layer may include applying a slurry including Te on the first plating layer, and performing a heat treatment.
  • the forming of the first bonding layer may include vacuum depositing a source including Te and a material of the first plating layer on the first plating layer.
  • the forming of the first bonding layer may include adding Te ions in a plating solution for forming the first plating layer.
  • thermoelectric material layer may be disposed between the first bonding layer and the second bonding layer, and the first bonding layer and the second bonding layer may face each other.
  • the sintering step may further include the step of pressing.
  • the metal substrate may be selected from copper, copper alloys, aluminum and aluminum alloys.
  • the first plating layer may include at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo.
  • the first bonding layer may further include at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo.
  • the sintering may include a discharge plasma sintering method.
  • the heat treatment may include a step in which Te is diffused and reacted from the first plating layer surface layer.
  • thermoelectric performance is excellent, and a thin and small thermoelectric element can be obtained.
  • thermoelectric leg that is stably bonded to the electrode and that the distribution of semiconductor material is uniform, thereby providing stable thermoelectric performance.
  • FIG. 1 is a cross-sectional view of a thermoelectric element
  • FIG. 2 is a perspective view of the thermoelectric element.
  • thermoelectric leg 3 is a cross-sectional view of a thermoelectric leg and an electrode according to an embodiment of the present invention.
  • thermoelectric leg of a laminated structure shows a method of manufacturing a thermoelectric leg of a laminated structure.
  • FIG. 5 illustrates a conductive layer formed between unit members in the laminated structure of FIG. 4.
  • thermoelectric leg 6 shows a unit thermoelectric leg of a laminated structure.
  • thermoelectric leg 7 is a cross-sectional view of a thermoelectric leg according to an embodiment of the present invention.
  • FIG. 8A is a schematic diagram of the thermoelectric leg of FIG. 7, and FIG. 8B is a cross-sectional view of the thermoelectric element including the thermoelectric leg of FIG. 8A.
  • thermoelectric leg 10 is a flowchart illustrating a method of manufacturing a thermoelectric leg according to an embodiment of the present invention.
  • FIG. 11 is a view schematically showing a Te content distribution in a thermoelectric leg manufactured according to the method of FIG. 10.
  • FIG. 12 is a graph illustrating composition distribution for each region in a thermoelectric leg manufactured according to the method of FIG. 10.
  • FIG. 13 is a view schematically showing a Te content distribution in a thermoelectric leg manufactured according to a comparative example.
  • thermoelectric leg 14 is a graph analyzing composition distribution for each region in a thermoelectric leg manufactured according to a comparative example.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a cross-sectional view of a thermoelectric element
  • FIG. 2 is a perspective view of the thermoelectric element.
  • the thermoelectric element 100 includes a lower substrate 110, a lower electrode 120, a P-type thermoelectric leg 130, an N-type thermoelectric leg 140, an upper electrode 150, and an upper substrate. 160.
  • the lower electrode 120 is disposed between the lower substrate 110 and the lower bottom surface of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140
  • the upper electrode 150 is the upper substrate 160 and the P-type. Disposed between the thermoelectric leg 130 and the upper bottom surface of the N-type thermoelectric leg 140. Accordingly, the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 are electrically connected by the lower electrode 120 and the upper electrode 150.
  • a pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the lower electrode 120 and the upper electrode 150 and electrically connected to each other may form a unit cell.
  • thermoelectric leg 130 when a voltage is applied to the lower electrode 120 and the upper electrode 150 through the lead wires 181 and 182, a current is transmitted from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect.
  • the flowing substrate absorbs heat to act as a cooling unit, and the substrate flowing current from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated to act as a heat generating unit.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth fluoride (Bi-Te) -based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main materials.
  • P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt%
  • a mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%.
  • the main raw material is Bi-Se-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
  • N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt%
  • a mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001
  • the main raw material is Bi-Sb-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stacked type.
  • the bulk P-type thermoelectric leg 130 or the bulk N-type thermoelectric leg 140 is heat-treated thermoelectric material to produce an ingot (ingot), crushed and ingot to obtain a powder for thermoelectric leg, then Sintering, and can be obtained through the process of cutting the sintered body.
  • the stacked P-type thermoelectric leg 130 or the stacked N-type thermoelectric leg 140 is formed by applying a paste including a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking and cutting the unit members. Can be obtained.
  • the pair of P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may have the same shape and volume, or may have different shapes and volumes.
  • the height or the cross-sectional area of the N-type thermoelectric leg 140 is the height or the cross-sectional area of the P-type thermoelectric leg 130. It can also be formed differently.
  • thermoelectric device The performance of the thermoelectric device according to the exemplary embodiment of the present invention may be represented by Seebeck index.
  • the Seebeck index ZT may be expressed as in Equation 1.
  • is the Seebeck coefficient [V / K]
  • sigma is the electrical conductivity [S / m]
  • ⁇ 2 sigma is the Power Factor [W / mK 2 ].
  • T is the temperature and k is the thermal conductivity [W / mK].
  • k can be represented by a ⁇ c p ⁇ ⁇ , a is thermal diffusivity [cm 2 / S], c p is specific heat [J / gK], and ⁇ is density [g / cm 3 ].
  • the Z value (V / K) may be measured using a Z meter, and the Seebeck index (ZT) may be calculated using the measured Z value.
  • the upper electrode 150 disposed between the thermoelectric legs 140 includes at least one of copper (Cu), silver (Ag), aluminum (Al), and nickel (Ni), and has a thickness of 0.01 mm to 0.3 mm. Can be.
  • the thickness of the lower electrode 120 or the upper electrode 150 is less than 0.01mm, the function as the electrode may be degraded, the electrical conduction performance may be lowered, and if the thickness exceeds 0.3mm, the conduction efficiency may be lowered due to the increase in resistance. .
  • the lower substrate 110 and the upper substrate 160 that face each other may be an insulating substrate or a metal substrate.
  • the insulating substrate may be an alumina substrate or a polymer resin substrate having flexibility.
  • Flexible polymer resin substrates are highly permeable, such as polyimide (PI), polystyrene (PS), polymethyl methacrylate (PMMA), cyclic olefin copoly (COC), polyethylene terephthalate (PET), and resin
  • Various insulating resin materials, such as plastics can be included.
  • the metal substrate may include Cu, Cu alloy, or Cu—Al alloy, and the thickness may be 0.1 mm to 0.5 mm.
  • the dielectric layer 170 is disposed between the lower substrate 110 and the lower electrode 120 and between the upper substrate 160 and the upper electrode 150, respectively. This can be further formed.
  • the dielectric layer 170 includes a material having a thermal conductivity of 5 to 10 W / K, and may be formed to a thickness of 0.01 mm to 0.15 mm. When the thickness of the dielectric layer 170 is less than 0.01 mm, insulation efficiency or withstand voltage characteristics may be lowered, and when the thickness of the dielectric layer 170 is greater than 0.15 mm, thermal conductivity may be lowered to reduce heat radiation efficiency.
  • sizes of the lower substrate 110 and the upper substrate 160 may be formed differently.
  • the volume, thickness, or area of one of the lower substrate 110 and the upper substrate 160 may be greater than the volume, thickness, or area of the other.
  • a heat radiation pattern for example, an uneven pattern may be formed on at least one surface of the lower substrate 110 and the upper substrate 160.
  • the heat dissipation performance of a thermoelectric element can be improved.
  • the uneven pattern is formed on the surface in contact with the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140, the bonding characteristics between the thermoelectric leg and the substrate can also be improved.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal pillar shape, an elliptical pillar shape, or the like.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be formed to have a wide width of the portion to be bonded to the electrode.
  • thermoelectric leg 3 is a cross-sectional view of a thermoelectric leg and an electrode according to an embodiment of the present invention.
  • thermoelectric leg 130 is disposed at a position opposite to the first device portion 132 having a first cross-sectional area and the first device portion 132, and having a second cross-sectional area 136. And a connection part 134 connecting the first device part 132 and the second device part 136 and having a third cross-sectional area.
  • the cross-sectional area in any region in the horizontal direction of the connecting portion 134 may be formed smaller than the first cross-sectional area or the second cross-sectional area.
  • the first element portion 132 and the second element portion 136 are formed larger than the cross-sectional areas of the connection portion 134, the first element portion 132 and the second element are made of the same amount of material.
  • the temperature difference T between the units 136 may be large. Accordingly, since the amount of free electrons moving between the hot side and the cold side increases, the amount of power generation increases, and the exothermic efficiency or cooling efficiency increases.
  • the ratio between C) may be 1: (1.5-4).
  • the first device part 132, the second device part 136, and the connection part 134 may be integrally formed using the same material.
  • thermoelectric leg according to an embodiment of the present invention may have a stacked structure.
  • the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by stacking a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. As a result, it is possible to prevent loss of material and to improve electrical conduction characteristics.
  • thermoelectric leg of a laminated structure shows a method of manufacturing a thermoelectric leg of a laminated structure.
  • a material including a semiconductor material is prepared in the form of a paste, and then coated on a substrate 1110 such as a sheet or a film to form a semiconductor layer 1120. Accordingly, one unit member 1100 may be formed.
  • a plurality of unit members 1100a, 1100b, and 1100c may be stacked to form the stacked structure 1200, and the unit thermoelectric legs 1300 may be obtained by cutting the stacked structures 1200.
  • the unit thermoelectric leg 1300 may be formed by a structure in which a plurality of unit members 1100 having the semiconductor layer 1120 formed on the substrate 1110 are stacked.
  • the process of applying the paste on the substrate 1110 may be performed in various ways.
  • Tape casting method is a slurry by mixing a fine semiconductor material powder with at least one selected from an aqueous or non-aqueous solvent, binder, plasticizer, dispersant, defoamer and surfactant
  • the preparation in the form (slurry) it is a method of molding on a moving blade (blade) or a moving substrate.
  • the substrate 1110 may be a film, a sheet, or the like having a thickness of 10 ⁇ m to 100 ⁇ m, and the P-type thermoelectric material or the N-type thermoelectric material for manufacturing the bulk type device may be applied as it is.
  • the step of arranging the unit members 1100 in a plurality of layers may be performed by pressing at a temperature of 50 to 250 ° C., and the number of unit members 1100 to be stacked may be, for example, 2 to 50. have. Thereafter, it may be cut into a desired shape and size, and a sintering process may be added.
  • the unit thermoelectric leg 1300 manufactured as described above may secure uniformity in thickness, shape, and size, and may be advantageously thinned and may reduce material loss.
  • the unit thermoelectric leg 1300 may have a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like, and may be cut into a shape as illustrated in FIG. 4D.
  • thermoelectric leg having a stacked structure a thermoelectric leg having a stacked structure
  • a conductive layer may be further formed on one surface of the unit member 1100.
  • FIG. 5 illustrates a conductive layer formed between unit members in the laminated structure of FIG. 4.
  • the conductive layer C may be formed on an opposite side of the substrate 1110 on which the semiconductor layer 1120 is formed, and may be patterned to expose a portion of the surface of the substrate 1110.
  • FIGS. 5 shows various modifications of the conductive layer C according to the embodiment of the present invention.
  • a mesh type structure including closed opening patterns c1 and c2, or as shown in FIGS. 5C and 5D, Various modifications may be made to a line type structure including the open opening patterns c3 and c4.
  • the conductive layer (C) can increase the adhesive force between the unit members in the unit thermoelectric leg formed in a laminated structure of the unit member, lower the thermal conductivity between the unit members, it is possible to improve the electrical conductivity.
  • the conductive layer C may be a metal material, for example, Cu, Ag, Ni, or the like.
  • the unit thermoelectric leg 1300 may be cut in the direction as shown in FIG. 6. According to this structure, it is possible to reduce the thermal conductivity in the vertical direction and to improve the electrical conductivity, thereby increasing the cooling efficiency.
  • thermoelectric leg in order to ensure a stable coupling between the thermoelectric leg and the electrode, to form a metal layer on both sides of the thermoelectric leg.
  • FIG. 7 is a cross-sectional view of a thermoelectric leg according to an embodiment of the present invention
  • FIG. 8 (a) is a schematic diagram of the thermoelectric leg of FIG. 7
  • FIG. 8 (b) is a thermoelectric including the thermoelectric leg of FIG. 8 (a).
  • thermoelectric leg 700 is disposed on one side of the thermoelectric material layer 710, the thermoelectric material layer 710
  • the first plating layer 720, the second plating layer 730 disposed on the other surface disposed to face one side of the thermoelectric material layer 710, between the thermoelectric material layer 710 and the first plating layer 720, and the thermoelectric material
  • the first bonding layer 740 and the second bonding layer 750 disposed between the layer 710 and the second plating layer 730, respectively, and disposed on the first plating layer 720 and the second plating layer 730, respectively.
  • a first metal layer 760 and a second metal layer 770 are examples of the first metal layer 740.
  • thermoelectric leg 700 may include a thermoelectric material layer 710, a first metal layer disposed on one surface of the thermoelectric material layer 710 and the other surface opposite to the one surface. 760 and the second metal layer 770, between the thermoelectric material layer 710 and the first metal layer 760, between the first bonding layer 740 and the thermoelectric material layer 710 and the second metal layer 770.
  • the second bonding layer 750 disposed, and the first plating layer 720 and the second metal layer 770 and the second bonding layer 750 disposed between the first metal layer 760 and the first bonding layer 740.
  • the second plating layer 730 is disposed between.
  • thermoelectric material layer 710 and the first bonding layer 740 may directly contact each other, and the thermoelectric material layer 710 and the second bonding layer 750 may directly contact each other.
  • the first bonding layer 740 and the first plating layer 720 may directly contact each other, and the second bonding layer 750 and the second plating layer 730 may directly contact each other.
  • the first plating layer 720 and the first metal layer 760 may directly contact each other, and the second plating layer 730 and the second metal layer 770 may directly contact each other.
  • the thermoelectric material layer 710 may include bismuth (Bi) and tellurium (Te), which are semiconductor materials.
  • the thermoelectric material layer 710 may have the same material or shape as the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 described with reference to FIGS. 1 to 6.
  • the first metal layer 760 and the second metal layer 770 may be selected from copper (Cu), a copper alloy, aluminum (Al), and an aluminum alloy, and may be 0.1 to 0.5 mm, preferably 0.2 to 0.3 mm. It may have a thickness.
  • the thermal expansion coefficients of the first metal layer 760 and the second metal layer 770 are similar to or larger than those of the thermoelectric material layer 710, and thus, the first metal layer 760 and the second metal layer 770 may be different from each other. Since compressive stress is applied at the interface between the thermoelectric material layers 710, cracking or peeling can be prevented. In addition, since the bonding force between the first metal layer 760 and the second metal layer 770 and the electrodes 120 and 150 is high, the thermoelectric leg 700 may be stably coupled with the electrodes 120 and 150.
  • the first plating layer 720 and the second plating layer 730 may each include at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo, 1 to 20 ⁇ m, preferably 1 to It may have a thickness of 10 ⁇ m. Since the first plating layer 720 and the second plating layer 730 prevent a reaction between Bi or Te, which is a semiconductor material in the thermoelectric material layer 710, and the first metal layer 760 and the second metal layer 770, In addition to preventing performance degradation, oxidation of the first metal layer 760 and the second metal layer 770 may be prevented.
  • Bi or Te which is a semiconductor material in the thermoelectric material layer 710
  • the first bonding layer 740 and the second bonding layer 750 may be disposed between the thermoelectric material layer 710 and the first plating layer 720, and between the thermoelectric material layer 710 and the second plating layer 730. Can be.
  • the first bonding layer 740 and the second bonding layer 750 may include Te.
  • the first bonding layer 740 and the second bonding layer 750 are at least one of Ni-Te, Sn-Te, Ti-Te, Fe-Te, Sb-Te, Cr-Te, and Mo-Te. It may include.
  • the thickness of each of the first bonding layer 740 and the second bonding layer 750 may be 0.5 to 100 ⁇ m, preferably 1 to 50 ⁇ m.
  • FIG. 9 which is a graph showing a resistance change rate according to the thickness of the bonding layer, it can be seen that the resistance change rate increases as the thickness of the bonding layer increases.
  • the thickness of the bonding layer exceeds 100 ⁇ m, the rate of change of resistance increases rapidly, and as a result may adversely affect the thermoelectric performance of the thermoelectric element.
  • Te is the first plating layer 720 and the second plating layer 730 including at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo. Easy to spread.
  • Te in the thermoelectric material layer 710 is diffused into the first plating layer 720 and the second plating layer 730, the boundary between the thermoelectric material layer 710, the first plating layer 720, and the second plating layer 730 may be adjusted.
  • a region in which Bi is distributed hereinafter, referred to as Bi rich region
  • Bi rich region a region in which Bi is distributed
  • the Te content from the center plane of the thermoelectric material layer 710 to the interface between the thermoelectric material layer 710 and the first bonding layer 740 is higher than the Bi content, and the thermoelectric material from the center plane of the thermoelectric material layer 710.
  • the Te content to the interface between the layer 710 and the second bonding layer 750 is higher than the Bi content. Then, the Te content or the thermoelectric material layer from the center surface of the thermoelectric material layer 710 at a predetermined point in the interface between the thermoelectric material layer 710 and the first bonding layer 740 from the center surface of the thermoelectric material layer 710.
  • the Te content at a predetermined point in the interface between the 710 and the second bonding layer 750 may be 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer 710.
  • the Te content at a predetermined point within a thickness of 100 ⁇ m in the direction of the center plane of the thermoelectric material layer 710 from the interface between the thermoelectric material layer 710 and the first bonding layer 740 is the thermoelectric material layer 710. It may be 0.8 to 1 times compared to the Te content of the central plane of.
  • the content of Te in the first bonding layer 740 or the second bonding layer 750 may be 0.8 to 1 times the content of Te in the thermoelectric material layer 710.
  • a surface in contact with the first plating layer 720 in the first bonding layer 740 that is, an interface between the first plating layer 720 and the first bonding layer 740 or a second plating layer in the second bonding layer 750 ( The content of Te at the surface in contact with 730, that is, the interface between the second plating layer 730 and the second bonding layer 750, is in contact with the first bonding layer 740 in the thermoelectric material layer 710, that is, the thermoelectric material.
  • thermoelectric material layer 710 At the surface in contact with the second bonding layer 750 in the thermoelectric material layer 710, that is, at the interface between the thermoelectric material layer 710 and the second bonding layer 750. It may be 0.8 to 1 times the content of Te.
  • Te content of the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the interface between the thermoelectric material layer 710 and the second bonding layer 750 is Te in the center plane of the thermoelectric material layer 710. It may be 0.8 to 1 times the content.
  • thermoelectric leg 10 is a flowchart illustrating a method of manufacturing a thermoelectric leg according to an embodiment of the present invention.
  • a metal substrate is prepared (S100).
  • the metal substrate may be the first metal layer 760 and the second metal layer 770 of the thermoelectric leg 700 of FIG. 7. That is, the metal substrate may be selected from copper (Cu), copper alloys, aluminum (Al) and aluminum alloys.
  • a Ni plating layer is formed on one surface of the metal substrate (S110).
  • the plating layer may be formed of not only Ni but also at least one metal of Sn, Ti, Fe, Sb, Cr, and Mo.
  • the plating layer may be formed on both sides of the metal substrate.
  • a layer including at least one metal of Ni, Sn, Ti, Fe, Sb, Cr, and Mo is represented by a plating layer, but this is not only a layer formed by plating, but also a layer deposited by various techniques. It may mean to include.
  • a bonding layer containing Te is formed on the plating layer (S120).
  • the plating layer (S120).
  • the Te coated on the plating layer diffuses toward the plating layer and reacts with Ni to form a bonding layer.
  • Ni-Te bonding layer is formed by the thickness reacted with Te.
  • the bonding layer may be formed by reacting Te with at least one metal of Sn, Ti, Fe, Sb, Cr, and Mo as well as Ni. Thereafter, the Te powder remaining without reacting on the bonding layer is removed by washing.
  • the bonding layer may be formed by vacuum depositing a Te source on the plating layer. That is, the bonding layer may be formed by Te deposited on the plating layer diffused toward the plating layer and reacting with Ni. Alternatively, the bonding layer may be formed by vacuum depositing a Ni-Te source on the plating layer. Alternatively, the bonding layer may omit step S110 of forming a plating layer, and directly form a Ni-Te vacuum deposition layer by directly introducing a Ni-Te source onto the metal substrate.
  • the bonding layer may be formed to a desired thickness by forming a plating layer with a predetermined thickness in step S110 and then adding Te ions into the plating solution.
  • thermoelectric material including Bi and Te is disposed between two metal substrates / plating layers / bonding layers formed through S100 to S120, and then pressed and sintered (S130).
  • the metal substrate / plating layer / bonding layer manufactured through the steps S100 to S120 may be cut according to a predetermined size, disposed on both sides of the thermoelectric material, and then pressed and sintered.
  • the metal substrate / plating layer / bonding layer is manufactured to a predetermined size by repeating steps S100 to S120, and the amount of thermoelectric material After arrange
  • the pressing and sintering may be performed by a hot press process.
  • the hot press process may be a spark plasma sintering (SPS) process that generates joule heat by applying a pulse current from a direct current (DC) power source. Since the discharge plasma sintering process proceeds through a process in which high energy promotes thermal diffusion between particles due to an instantaneous discharge phenomenon, it is easy to control the sintered microstructure having excellent sinter control, that is, less grain growth.
  • the thermoelectric material may be sintered together with the amorphous ribbon. When the powder for thermoelectric legs is sintered together with the amorphous ribbon, the electrical conductivity becomes high, so that high thermoelectric performance can be obtained.
  • the amorphous ribbon may be an Fe-based amorphous ribbon.
  • the amorphous ribbon may be disposed on the side of the thermoelectric leg and then sintered. Accordingly, electrical conductivity may be increased along the side of the thermoelectric leg.
  • the amorphous ribbon can be arranged to surround the wall surface of the mold, followed by filling and sintering the thermoelectric material. At this time, the amorphous ribbon may be disposed on the side of the thermoelectric material layer of the thermoelectric leg.
  • FIG. 11 is a diagram schematically illustrating a Te content distribution in a thermoelectric leg manufactured according to the method of FIG. 10
  • FIG. 12 is a graph analyzing composition distribution for each region in the thermoelectric leg manufactured according to the method of FIG. 10.
  • 13 is a diagram schematically illustrating a Te content distribution in a thermoelectric leg manufactured according to a comparative example
  • FIG. 14 is a graph analyzing composition distribution for each region in the thermoelectric leg manufactured according to the comparative example.
  • the Te layers are formed on the plating layers 720 and 730.
  • the Te layers are formed on the plating layers 720 and 730.
  • the bonding layers 740 and 750 By applying heat treatment to form the bonding layers 740 and 750, and placing a thermoelectric material 710 of about 1.6 mm thickness including Bi and Te between the two aluminum substrates / plating layers / bonding layers, and then pressing and Sintered.
  • Te Te on the plating layer and heat treatment
  • the coated Te diffused toward Ni on the surface of the plating layer to react with Ni, thereby forming a bonding layer including Ni-Te.
  • the thickness of the plating layer was formed to about 1 to 10 ⁇ m
  • the thickness of the bonding layer was formed to about 40 ⁇ m.
  • thermoelectric material containing Bi and Te was placed in, pressed and sintered. Through the pressing and sintering process, Te in the thermoelectric material diffused toward Ni on the surface of the plating layer to react with Ni, thereby forming bonding layers 840 and 850 including Ni-Te. At the edge of the thermoelectric material, Te was diffused toward the plating layer, thereby forming a Bi rich layer having a relatively high Bi content.
  • the content of Te in the first plating layers 720 and 820 or the second plating layers 730 and 830 may include the content of Te in the thermoelectric material layers 710 and 810 and the first bonding layer 740. It can be seen that the content is lower than the content of Te in the 840 or the second bonding layers 750 and 850.
  • the Te content of the center plane C of the thermoelectric material layer 710 is defined as the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 and the first surface. It can be seen that the same or similar to the Te content of the interface between the two bonding layer 750.
  • the center plane C means the center plane C itself of the thermoelectric material layer 710, or the center plane C adjacent to the center plane C and the center plane C within a predetermined distance. It may mean including a peripheral area.
  • the boundary surface may mean the boundary surface itself, or may include a boundary region adjacent to the boundary surface within a predetermined distance from the boundary surface.
  • the Te content of the center plane C of the thermoelectric material layer 710 may be an interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 and the second bonding layer 750. It may be 0.8 to 1 times, preferably 0.85 to 1 times, more preferably 0.9 to 1 times, more preferably 0.95 to 1 times the Te content of the interface between the).
  • the content may be a weight ratio.
  • the Bi content of the center plane C of the thermoelectric material layer 710 is the interface between the thermoelectric material layer 710 and the first bonding layer 740 or between the thermoelectric material layer 710 and the second bonding layer 750. It can be seen that the same or similar to the Bi content of the interface. Accordingly, the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the interface between the thermoelectric material layer 710 and the second bonding layer 750 from the center plane C of the thermoelectric material layer 710.
  • the Bi content of the center plane C of the thermoelectric material layer 710 is an interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 and the second bonding layer 750.
  • the content may be a weight ratio.
  • the interface between the thermoelectric material layer 810 and the first bonding layer 840 or the thermoelectric material layer 810 is lower than the Te content of the center plane C of the thermoelectric material layer 810. It can be seen that the Te content of the interface between the second bonding layer 850 is low. This is because Te, a semiconductor material in the thermoelectric material layer 810, is naturally diffused into the first plating layer 820 and the second plating layer 830 to react with the first plating layer 820 and the second plating layer 830. . Accordingly, the content of Te decreases from the center surface C of the thermoelectric material layer 810 toward the edge, and the thermoelectric material from the point diffused to react with the first plating layer 820 and the second plating layer 830.
  • the Bi rich layer is formed to the boundary between the layer 810, the first plating layer 820, and the second plating layer 830.
  • the Bi-rich layer may be formed to a thickness of 200 ⁇ m or less. That is, although the content of Te is higher than the content of Bi around the center plane C of the thermoelectric material layer 710, the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 ) And a section in which the Bi content reverses the Te content around the interface between the second bonding layer 750 and the second bonding layer 750.
  • the Bi rich layer is a region in which an appropriate stoichiometric ratio between Bi and Te, which are basic constituents of the thermoelectric material, is destroyed, and may be formed to an interface between the thermoelectric material 810 and the bonding layers 840 and 850.
  • the content of Te in the first bonding layer 740 or the second bonding layer 750 is the same as or similar to the content of Te in the thermoelectric material layer 710.
  • the content of Te in the first bonding layer 740 or the second bonding layer 750 is 0.8 to 1 times, preferably 0.85 to 1 times, more preferably, the content of Te in the thermoelectric material layer 710.
  • the content may be a weight ratio.
  • the content of Te in the thermoelectric material layer 710 is 50wt%
  • the content of Te in the first bonding layer 740 or the second bonding layer 750 is 40 to 50wt%, preferably 42.5 to 50 wt%, more preferably 45 to 50 wt%, more preferably 47.5 to 50 wt%.
  • the content of Te in the first bonding layer 740 or the second bonding layer 750 may be greater than that of Ni.
  • the content of Te is uniformly distributed in the first bonding layer 740 or the second bonding layer 750, while the Ni content is the thermoelectric material layer in the first bonding layer 740 or the second bonding layer 750. The closer to the 710 direction, the smaller it may be.
  • a part of the material included in each layer may be detected from within the adjacent layer by diffusing from the interface between each layer and the adjacent layer.
  • a portion of the material included in the metal layer may be detected in the plating layer by being diffused from the interface between the metal layer and the plating layer, and a portion of the material included in the plating layer may be diffused from the interface between the plating layer and the bonding layer and detected in the bonding layer.
  • Some of the materials included in the bonding layer may diffuse from an interface between the bonding layer and the thermoelectric material layer and be detected in the thermoelectric material layer.
  • a part of the material included in the plating layer may be detected in the metal layer by being diffused from the interface between the metal layer and the plating layer
  • a part of the material included in the bonding layer may be detected in the plating layer by being diffused from the interface between the plating layer and the bonding layer.
  • a portion of the material included in the thermoelectric material layer may diffuse from an interface between the bonding layer and the thermoelectric material layer and be detected in the bonding layer.
  • FIGS. 13 to 14 it can be seen that the content of Te in the first bonding layer 840 or the second bonding layer 850 is lower than the content of Te in the thermoelectric material layer 810. 11 to 12, since Te is coated on the first plating layer 720 or the second plating layer 730 to form the first bonding layer 740 or the second bonding layer 750, the content of Te is increased. Although it remains constant, in FIGS. 13 to 14, the Te in the thermoelectric material layer 810 naturally diffuses to react with the first plating layer 820 or the second plating layer 830.
  • the content of Te at the interface between the first plating layer 720 and the first bonding layer 740 or at the interface between the second plating layer 730 and the second bonding layer 750 is a thermoelectric material. It can be seen that the content of Te is equal to or similar to the interface between the layer 710 and the first bonding layer 740 or the interface between the thermoelectric material layer 710 and the second bonding layer 750. For example, the content of Te at the interface between the first plating layer 720 and the first bonding layer 740 or at the interface between the second plating layer 730 and the second bonding layer 750 may correspond to the thermoelectric material layer 710.
  • the content of Te at the interface between the first bonding layer 740 or at the interface between the thermoelectric material layer 710 and the second bonding layer 750 may be a weight ratio.
  • the content of Te at the interface between the first plating layer 820 and the first bonding layer 840 or at the interface between the second plating layer 830 and the second bonding layer 850 is determined by thermoelectric. It can be seen that the content of Te is lower than the interface between the material layer 810 and the first bonding layer 840 or the interface between the thermoelectric material layer 810 and the second bonding layer 850. 11 to 12, since Te is coated on the first plating layer 720 or the second plating layer 730 to form the first bonding layer 740 or the second bonding layer 750, the content of Te is increased. Although it remains constant, in FIGS. 13 to 14, the Te in the thermoelectric material layer 810 naturally diffuses to react with the first plating layer 820 or the second plating layer 830.
  • Table 1 is a table comparing the electrical resistance of the P-type thermoelectric legs according to the Examples and Comparative Examples.
  • thermoelectric legs manufactured according to the embodiment that is, 11 to 12
  • the comparative example that is, the thermoelectric legs manufactured according to FIGS.
  • the rate of decrease in electrical resistance becomes larger. This is because the Te content in the thermoelectric legs is evenly distributed, and the formation of the Bi rich layer is suppressed, so that the decrease in the resistance of the thermoelectric legs can prevent the decrease in the electrical conductivity of the thermoelectric elements, thereby increasing the Seebeck index of the thermoelectric elements. Can be.
  • Table 2 is a table comparing the tensile strength of each thermoelectric leg of the size of 4mm * 4mm * 5mm according to the Examples and Comparative Examples.
  • thermoelectric legs prepared according to the embodiment that is, according to Figures 11 to 12 is greater than the thermoelectric legs prepared according to Figures 13 to 14.
  • Tensile strength refers to the interlayer bonding force in the thermoelectric leg, which artificially bonded the metal wires to the first and second metal layers on both sides of the manufactured thermoelectric leg, respectively, and pulled the joined metal wires in opposite directions. When the maximum load to withstand.
  • thermoelectric element according to the embodiment of the present invention may act on the apparatus for power generation, the apparatus for cooling, the apparatus for heating, and the like.
  • the thermoelectric device according to the embodiment of the present invention mainly includes optical communication modules, sensors, medical devices, measuring devices, aerospace industry, refrigerators, chillers, automobile ventilation sheets, cup holders, washing machines, dryers, and wine cellars. It can be applied to water purifier, sensor power supply, thermopile and the like.
  • PCR equipment is a device for amplifying DNA to determine the DNA sequence, precise temperature control is required, and a thermal cycle (thermal cycle) equipment is required.
  • a Peltier-based thermoelectric device may be applied.
  • thermoelectric device Another example in which a thermoelectric device according to an embodiment of the present invention is applied to a medical device is a photo detector.
  • the photo detector includes an infrared / ultraviolet detector, a charge coupled device (CCD) sensor, an X-ray detector, a thermoelectric thermal reference source (TTRS), and the like.
  • Peltier-based thermoelectric elements may be applied for cooling the photo detector. As a result, it is possible to prevent a change in wavelength, a decrease in power, a decrease in resolution, etc. due to a temperature rise inside the photodetector.
  • thermoelectric device As another example in which the thermoelectric device according to an embodiment of the present invention is applied to a medical device, the field of immunoassay, in vitro diagnostics, general temperature control and cooling systems, Physiotherapy, liquid chiller systems, blood / plasma temperature control. Thus, precise temperature control is possible.
  • thermoelectric device according to an embodiment of the present invention is applied to a medical device.
  • a medical device is an artificial heart.
  • power can be supplied to the artificial heart.
  • thermoelectric device examples include a star tracking system, a thermal imaging camera, an infrared / ultraviolet detector, a CCD sensor, a hubble space telescope, and a TTRS. Accordingly, the temperature of the image sensor can be maintained.
  • thermoelectric device according to the embodiment of the present invention is applied to the aerospace industry includes a cooling device, a heater, a power generation device, and the like.
  • thermoelectric device according to the embodiment of the present invention may be applied for power generation, cooling, and heating in other industrial fields.

Abstract

According to one embodiment of the present invention, a thermoelectric leg comprises: a thermoelectric material layer comprising Bi and Te; a first metal layer and a second metal layer respectively arranged on one surface of the thermoelectric material layer and on a surface different from the one surface; a first adhesive layer arranged between the thermoelectric material layer and the first metal layer and comprising the Te, and a second adhesive layer arranged between the thermoelectric material layer and the second metal layer and comprising the Te; and a first plating layer arranged between the first metal layer and the first adhesive layer, and a second plating layer arranged between the second metal layer and the second adhesive layer, wherein the thermoelectric material layer is arranged between the first metal layer and the second metal layer, the amount of the Te is higher than the amount of the Bi from the central surface of the thermoelectric material layer to the interface between the thermoelectric material layer and the first adhesive layer, and the amount of the Te is higher than the amount of the Bi from the central surface of the thermoelectric material layer to the interface between the thermoelectric material layer and the second adhesive layer.

Description

열전 레그 및 이를 포함하는 열전 소자Thermoelectric Legs and Thermoelectric Devices Comprising the Same
본 발명은 열전 소자에 관한 것으로, 보다 상세하게는 열전 소자에 포함되는 열전 레그에 관한 것이다.The present invention relates to a thermoelectric element, and more particularly to a thermoelectric leg included in the thermoelectric element.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.Thermoelectric phenomenon is a phenomenon caused by the movement of electrons and holes in a material, and means a direct energy conversion between heat and electricity.
열전 소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 레그와 N형 열전 레그를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다. A thermoelectric element is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric leg and an N-type thermoelectric leg are bonded between metal electrodes to form a PN junction pair.
열전 소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.Thermoelectric elements may be classified into a device using a temperature change of the electrical resistance, a device using the Seebeck effect, a phenomenon in which electromotive force is generated by the temperature difference, a device using a Peltier effect, a phenomenon in which endothermic or heat generation by current occurs. .
열전 소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전 소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전 소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.Thermoelectric devices have been applied to a variety of home appliances, electronic components, communication components and the like. For example, the thermoelectric element may be applied to a cooling device, a heating device, a power generating device, or the like. Accordingly, the demand for thermoelectric performance of thermoelectric elements is increasing.
한편, 열전 레그를 전극에 안정적으로 접합하기 위하여, 열전 레그와 전극 사이에 금속층을 형성할 수 있다. 이때, 열전 레그 내 반도체 재료와 금속층 간의 반응에 의하여 열전성능이 저하되는 현상을 방지하고, 금속층의 산화를 방지하기 위하여, 열전 레그와 금속층 사이에는 도금층이 형성될 수 있다. Meanwhile, in order to stably bond the thermoelectric legs to the electrodes, a metal layer may be formed between the thermoelectric legs and the electrodes. In this case, a plating layer may be formed between the thermoelectric leg and the metal layer in order to prevent a phenomenon in which the thermoelectric performance is deteriorated by a reaction between the semiconductor material and the metal layer in the thermoelectric leg and to prevent oxidation of the metal layer.
다만, 도금층과 열전 레그를 동시에 소결하는 과정에서, 열전 레그 내 반도체 재료의 일부가 도금층 내로 확산될 수 있으며, 이로 인해 도금층과 열전 레그 간의 경계에서 반도체 재료가 불균일하게 분포될 수 있다. 예를 들어, 열전 레그가 Bi 및 Te를 포함하는 경우, Te가 도금층으로 확산되면, Bi가 상대적으로 많이 함유된 Bi 리치층이 형성될 수 있다. Bi 리치층 내에서는 Bi와 Te의 적정한 화학양론비가 파괴되어 저항이 증가하게 되며, 이는 결과적으로 열전 소자의 성능 저하를 일으킬 수 있다.However, in the process of simultaneously sintering the plating layer and the thermoelectric leg, a part of the semiconductor material in the thermoelectric leg may be diffused into the plating layer, which may result in uneven distribution of the semiconductor material at the boundary between the plating layer and the thermoelectric leg. For example, when the thermoelectric legs include Bi and Te, when Te is diffused into the plating layer, a Bi rich layer containing a relatively large amount of Bi may be formed. Within the Bi-rich layer, the proper stoichiometric ratios of Bi and Te are destroyed, resulting in an increase in resistance, which can result in degradation of the thermoelectric device performance.
본 발명이 이루고자 하는 기술적 과제는 열전 성능이 우수한 열전 소자 및 이에 포함되는 열전 레그를 제공하는 것이다.It is an object of the present invention to provide a thermoelectric device having excellent thermoelectric performance and a thermoelectric leg included therein.
본 발명의 한 실시예에 따른 열전 레그는 Bi 및 Te를 포함하는 열전 소재층, 상기 열전 소재층의 한 면 및 상기 한 면의 다른 면 상에 각각 배치되는 제1 금속층 및 제2 금속층, 상기 열전 소재층과 상기 제1 금속층 사이에 배치되며, 상기 Te를 포함하는 제1 접합층 및 상기 열전 소재층과 상기 제2 금속층 사이에 배치되며, 상기 Te를 포함하는 제2 접합층, 그리고 상기 제1 금속층과 상기 제 1 접합층 사이에 배치되는 제 1 도금층 및 상기 제2 금속층과 상기 제 2 접합층 사이에 배치되는 제 2 도금층을 포함하고, 상기 열전 소재층은 상기 제1 금속층 및 상기 제2 금속층 사이에 배치되고, 상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제1 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높고, 상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제2 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높다.According to an embodiment of the present invention, a thermoelectric leg includes a thermoelectric material layer including Bi and Te, a first metal layer and a second metal layer respectively disposed on one side and the other side of the thermoelectric material layer, and the thermoelectric material. A second bonding layer disposed between the material layer and the first metal layer and disposed between the first bonding layer including the Te and the thermoelectric material layer and the second metal layer, and including the Te; and the first A first plating layer disposed between the metal layer and the first bonding layer, and a second plating layer disposed between the second metal layer and the second bonding layer, wherein the thermoelectric material layer includes the first metal layer and the second metal layer. The Te content is disposed between the center surface of the thermoelectric material layer and the interface between the thermoelectric material layer and the first bonding layer is higher than the Bi content, and the heat from the center surface of the thermoelectric material layer to the heat The Te content to the interface between the material layer and the second bonding layer is higher than the Bi content.
상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제 1 접합층 간의 경계면 내 소정 지점에서의 상기 Te 함량은 상기 열전 소재층의 중심면의 Te 함량 대비 0.8배 내지 1배일 수 있다. The Te content at a predetermined point in the interface between the thermoelectric material layer and the first bonding layer from the center surface of the thermoelectric material layer may be 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer.
상기 제 1 접합층의 Te 함량은 상기 열전소재층의 Te 함량의 0.8배 내지 1배일 수 있다.The Te content of the first bonding layer may be 0.8 to 1 times the Te content of the thermoelectric material layer.
상기 열전 소재층과 상기 제 1 접합층 간의 경계면으로부터 상기 제 1 접합층과 상기 제 1 도금층 간의 경계면까지의 Te 함량은 동일할 수 있다.The Te content from the interface between the thermoelectric material layer and the first bonding layer to the interface between the first bonding layer and the first plating layer may be the same.
상기 열전 소재층과 상기 제 1 접합층 간의 경계면으로부터 상기 열전 소재층의 중심면의 방향으로 100㎛ 두께 내 소정 지점에서의 Te 함량은 상기 열전 소재층의 중심면의 Te 함량 대비 0.8배 내지 1배일 수 있다.Te content at a predetermined point within 100 μm thickness in the direction of the center surface of the thermoelectric material layer from the interface between the thermoelectric material layer and the first bonding layer is 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer. Can be.
상기 제1 도금층 및 상기 제2 도금층 중 적어도 하나는 각각 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나의 금속을 포함할 수 있다.At least one of the first plating layer and the second plating layer may include at least one metal of Ni, Sn, Ti, Fe, Sb, Cr, and Mo, respectively.
상기 제1 접합층 및 상기 제2 접합층 중 적어도 하나는 상기 제 1 도금층 및 상기 제 2 도금층에서 선택된 적어도 하나의 금속을 더 포함할 수 있다.At least one of the first bonding layer and the second bonding layer may further include at least one metal selected from the first plating layer and the second plating layer.
상기 제1 금속층 및 상기 제2 금속층 중 적어도 하나는 구리, 구리 합금, 알루미늄 및 알루미늄 합금으로부터 선택될 수 있다.At least one of the first metal layer and the second metal layer may be selected from copper, a copper alloy, aluminum, and an aluminum alloy.
상기 제1 접합층 및 상기 제2 접합층 중 적어도 하나의 상기 Te 함량은 상기 열전 소재층의 Te 함량의 0.9 내지 1배일 수 있다.The Te content of at least one of the first bonding layer and the second bonding layer may be 0.9 to 1 times the Te content of the thermoelectric material layer.
상기 제1 접합층 및 상기 제2 접합층 중 적어도 하나의 상기 Te 함량은 상기 열전 소재층의 Te 함량의 0.95 내지 1배일 수 있다.The Te content of at least one of the first bonding layer and the second bonding layer may be 0.95 to 1 times the Te content of the thermoelectric material layer.
상기 제 1 도금층의 두께는 1㎛ 내지 20㎛일 수 있다.The thickness of the first plating layer may be 1 μm to 20 μm.
상기 열전 소재층과 상기 제 1 접합층은 서로 직접 접촉하고, 상기 열전 소재층과 상기 제 2 접합층은 서로 직접 접촉할 수 있다.The thermoelectric material layer and the first bonding layer may directly contact each other, and the thermoelectric material layer and the second bonding layer may directly contact each other.
상기 제 1 접합층과 상기 제 1 도금층은 서로 직접 접촉하고, 상기 제 2 접합층과 상기 제 2 도금층은 서로 직접 접촉할 수 있다.The first bonding layer and the first plating layer may directly contact each other, and the second bonding layer and the second plating layer may directly contact each other.
상기 제 1 도금층과 상기 제 1 금속층은 서로 직접 접촉하고, 상기 제 2 도금층과 상기 제 2 금속층은 서로 직접 접촉할 수 있다.The first plating layer and the first metal layer may directly contact each other, and the second plating layer and the second metal layer may directly contact each other.
본 발명의 한 실시예에 따른 열전소자는 제1 기판, 상기 제1 기판 상에 교대로 배치되는 복수의 P형 열전 레그 및 복수의 N형 열전 레그, 상기 복수의 P형 열전 레그 및 상기 복수의 N형 열전 레그 상에 배치되는 제2 기판, 그리고 상기 복수의 P형 열전 레그 및 상기 복수의 N형 열전 레그를 직렬 연결하는 복수의 전극을 포함하며, 상기 복수의 P형 열전 레그 및 상기 복수의 N형 열전 레그는 각각 Bi 및 Te를 포함하는 열전 소재층, 상기 열전 소재층의 한 면 및 상기 한 면의 다른 면 상에 각각 배치되는 제1 금속층 및 제2 금속층, 상기 열전 소재층과 상기 제1 금속층 사이에 배치되며, 상기 Te를 포함하는 제1 접합층 및 상기 열전 소재층과 상기 제2 금속층 사이에 배치되며, 상기 Te를 포함하는 제2 접합층, 그리고 상기 제1 금속층과 상기 제 1 접합층 사이에 배치되는 제 1 도금층 및 상기 제2 금속층과 상기 제 2 접합층 사이에 배치되는 제 2 도금층을 포함하고, 상기 열전 소재층은 상기 제1 금속층 및 상기 제2 금속층 사이에 배치되고, 상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제1 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높고, 상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제2 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높다.A thermoelectric device according to an embodiment of the present invention includes a first substrate, a plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs disposed alternately on the first substrate, the plurality of P-type thermoelectric legs, and the plurality of A second substrate disposed on an N-type thermoelectric leg, and a plurality of electrodes connecting the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs in series, wherein the plurality of P-type thermoelectric legs and the plurality of electrodes The N-type thermoelectric leg includes a thermoelectric material layer including Bi and Te, a first metal layer and a second metal layer respectively disposed on one side and the other side of the thermoelectric material layer, the thermoelectric material layer and the first layer. 1 is disposed between the metal layer, the first bonding layer containing the Te and the thermoelectric material layer and the second metal layer disposed between, the second bonding layer comprising the Te, and the first metal layer and the first Placed between bonding layers A first plating layer and a second plating layer disposed between the second metal layer and the second bonding layer, wherein the thermoelectric material layer is disposed between the first metal layer and the second metal layer, and The Te content from the center plane to the interface between the thermoelectric material layer and the first bonding layer is higher than the Bi content, and the Te content from the center plane of the thermoelectric material layer to the interface between the thermoelectric material layer and the second bonding layer. Is higher than the Bi content.
본 발명의 한 실시예에 따른 열전 레그를 제조하는 방법은 제 1 금속 기판을 준비하는 단계, 상기 제 1 금속 기판 상에 제 1 도금층을 형성하는 단계, 상기 제 1 도금층 상에 Te를 포함하는 제 1 접합층을 형성하는 단계, 상기 제 1 접합층 상면에 Bi 및 Te를 포함하는 열전 소재층을 배치하는 단계, 상기 열전 소재층 상에 제2 접합층 및 제2 도금층이 형성된 제 2 금속기판을 배치하는 단계, 그리고 소결하는 단계를 포함한다.According to an embodiment of the present invention, a method of manufacturing a thermoelectric leg may include preparing a first metal substrate, forming a first plating layer on the first metal substrate, and including Te on the first plating layer. Forming a bonding layer, disposing a thermoelectric material layer including Bi and Te on an upper surface of the first bonding layer, and forming a second metal substrate having a second bonding layer and a second plating layer on the thermoelectric material layer. Batching, and sintering.
상기 제 1 접합층을 형성하는 단계는, 상기 제 1 도금층 상에 Te를 포함하는 슬러리를 도포하는 단계, 그리고 열처리하는 단계를 포함할 수 있다.The forming of the first bonding layer may include applying a slurry including Te on the first plating layer, and performing a heat treatment.
상기 제 1 접합층을 형성하는 단계는, 상기 제 1 도금층 상에 Te 및 상기 제 1 도금층의 물질을 포함하는 소스를 투입하여 진공증착하는 단계를 포함할 수 있다. The forming of the first bonding layer may include vacuum depositing a source including Te and a material of the first plating layer on the first plating layer.
상기 제 1 접합층을 형성하는 단계는, 상기 제1 도금층을 형성하기 위한 도금 용액 내에 Te 이온을 추가하는 단계를 포함할 수 있다.The forming of the first bonding layer may include adding Te ions in a plating solution for forming the first plating layer.
상기 열전 소재층은 상기 제 1 접합층 및 상기 제 2 접합층 사이에 배치되고, 상기 제 1 접합층 및 상기 제 2 접합층은 서로 대향할 수 있다.The thermoelectric material layer may be disposed between the first bonding layer and the second bonding layer, and the first bonding layer and the second bonding layer may face each other.
상기 소결하는 단계는 가압하는 단계를 더 포함할 수 있다.The sintering step may further include the step of pressing.
상기 금속 기판은 구리, 구리 합금, 알루미늄 및 알루미늄 합금으로부터 선택될 수 있다.The metal substrate may be selected from copper, copper alloys, aluminum and aluminum alloys.
상기 제1 도금층은 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나를 포함할 수 있다.The first plating layer may include at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo.
상기 제1 접합층은 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나를 더 포함할 수 있다.The first bonding layer may further include at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo.
상기 소결하는 단계는 방전 플라즈마 소결법을 포함할 수 있다.The sintering may include a discharge plasma sintering method.
상기 열처리하는 단계는, 상기 제 1 도금층 표면층으로부터 Te이 확산되어 반응하여 형성되는 단계를 포함할 수 있다.The heat treatment may include a step in which Te is diffused and reacted from the first plating layer surface layer.
본 발명의 실시예에 따르면, 열전 성능이 우수하며, 박형 및 소형의 열전 소자를 얻을 수 있다. 특히, 전극에 안정적으로 결합하면서도, 반도체 재료의 분포가 균일하여 안정적인 열전 성능을 제공하는 열전 레그를 얻을 수 있다.According to the embodiment of the present invention, the thermoelectric performance is excellent, and a thin and small thermoelectric element can be obtained. In particular, it is possible to obtain a thermoelectric leg that is stably bonded to the electrode and that the distribution of semiconductor material is uniform, thereby providing stable thermoelectric performance.
도 1은 열전소자의 단면도이고, 도 2는 열전소자의 사시도이다. 1 is a cross-sectional view of a thermoelectric element, and FIG. 2 is a perspective view of the thermoelectric element.
도 3은 본 발명의 한 실시예에 따른 열전 레그 및 전극의 단면도를 나타낸다.3 is a cross-sectional view of a thermoelectric leg and an electrode according to an embodiment of the present invention.
도 4는 적층형 구조의 열전 레그를 제조하는 방법을 나타낸다.4 shows a method of manufacturing a thermoelectric leg of a laminated structure.
도 5는 도 4의 적층 구조물 내 단위 부재 사이에 형성되는 전도성층을 예시한다.5 illustrates a conductive layer formed between unit members in the laminated structure of FIG. 4.
도 6은 적층형 구조의 단위 열전 레그를 나타낸다.6 shows a unit thermoelectric leg of a laminated structure.
도 7은 본 발명의 한 실시예에 따른 열전 레그의 단면도이다.7 is a cross-sectional view of a thermoelectric leg according to an embodiment of the present invention.
도 8(a)는 도 7의 열전 레그의 개략도이며, 도8(b)는 도 8(a)의 열전 레그를 포함하는 열전 소자의 단면도이다.FIG. 8A is a schematic diagram of the thermoelectric leg of FIG. 7, and FIG. 8B is a cross-sectional view of the thermoelectric element including the thermoelectric leg of FIG. 8A.
도 9는 접합층의 두께에 따른 저항 변화율을 나타내는 그래프이다. 9 is a graph showing the change rate of resistance according to the thickness of the bonding layer.
도 10은 본 발명의 한 실시예에 따른 열전 레그의 제조 방법을 나타내는 순서도이다.10 is a flowchart illustrating a method of manufacturing a thermoelectric leg according to an embodiment of the present invention.
도 11은 도 10의 방법에 따라 제조된 열전 레그 내 Te 함량 분포를 개략적으로 나타내는 도면이다. FIG. 11 is a view schematically showing a Te content distribution in a thermoelectric leg manufactured according to the method of FIG. 10.
도 12는 도 10의 방법에 따라 제조된 열전 레그 내 영역 별 조성 분포를 분석한 그래프이다. FIG. 12 is a graph illustrating composition distribution for each region in a thermoelectric leg manufactured according to the method of FIG. 10.
도 13은 비교예에 따라 제조된 열전 레그 내 Te 함량 분포를 개략적으로 나타내는 도면이다. FIG. 13 is a view schematically showing a Te content distribution in a thermoelectric leg manufactured according to a comparative example. FIG.
도 14는 비교예에 따라 제조된 열전 레그 내 영역 별 조성 분포를 분석한 그래프이다.14 is a graph analyzing composition distribution for each region in a thermoelectric leg manufactured according to a comparative example.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in the drawings. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. Terms including ordinal numbers, such as second and first, may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
도 1은 열전소자의 단면도이고, 도 2는 열전소자의 사시도이다.1 is a cross-sectional view of a thermoelectric element, and FIG. 2 is a perspective view of the thermoelectric element.
도 1내지 2를 참조하면, 열전소자(100)는 하부 기판(110), 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부 전극(150) 및 상부 기판(160)을 포함한다.1 to 2, the thermoelectric element 100 includes a lower substrate 110, a lower electrode 120, a P-type thermoelectric leg 130, an N-type thermoelectric leg 140, an upper electrode 150, and an upper substrate. 160.
하부 전극(120)은 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 하부 바닥면 사이에 배치되고, 상부 전극(150)은 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 상부 바닥면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)는 하부 전극(120) 및 상부 전극(150)에 의하여 전기적으로 연결된다. 하부 전극(120)과 상부 전극(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 단위 셀을 형성할 수 있다. The lower electrode 120 is disposed between the lower substrate 110 and the lower bottom surface of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140, and the upper electrode 150 is the upper substrate 160 and the P-type. Disposed between the thermoelectric leg 130 and the upper bottom surface of the N-type thermoelectric leg 140. Accordingly, the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 are electrically connected by the lower electrode 120 and the upper electrode 150. A pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the lower electrode 120 and the upper electrode 150 and electrically connected to each other may form a unit cell.
예를 들어, 리드선(181, 182)을 통하여 하부 전극(120) 및 상부 전극(150)에 전압을 인가하면, 펠티에 효과로 인하여 P형 열전 레그(130)로부터 N형 열전 레그(140)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 열전 레그(140)로부터 P형 열전 레그(130)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다.For example, when a voltage is applied to the lower electrode 120 and the upper electrode 150 through the lead wires 181 and 182, a current is transmitted from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect. The flowing substrate absorbs heat to act as a cooling unit, and the substrate flowing current from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated to act as a heat generating unit.
여기서, P형 열전 레그(130) 및 N형 열전 레그(140)는 비스무스(Bi) 및 텔루륨(Te)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(130)는 전체 중량 100wt%에 대하여 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Se-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다. N형 열전 레그(140)는 전체 중량 100wt%에 대하여 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Sb-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다.The P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth fluoride (Bi-Te) -based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main materials. P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt% A mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%. For example, the main raw material is Bi-Se-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight. N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt% A mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%. For example, the main raw material is Bi-Sb-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
P형 열전 레그(130) 및 N형 열전 레그(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(130) 또는 벌크형 N형 열전 레그(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 적층형 P형 열전 레그(130) 또는 적층형 N형 열전 레그(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.The P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stacked type. In general, the bulk P-type thermoelectric leg 130 or the bulk N-type thermoelectric leg 140 is heat-treated thermoelectric material to produce an ingot (ingot), crushed and ingot to obtain a powder for thermoelectric leg, then Sintering, and can be obtained through the process of cutting the sintered body. The stacked P-type thermoelectric leg 130 or the stacked N-type thermoelectric leg 140 is formed by applying a paste including a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking and cutting the unit members. Can be obtained.
이때, 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(130)와 N형 열전 레그(140)의 전기 전도 특성이 상이하므로, N형 열전 레그(140)의 높이 또는 단면적을 P형 열전 레그(130)의 높이 또는 단면적과 다르게 형성할 수도 있다. In this case, the pair of P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may have the same shape and volume, or may have different shapes and volumes. For example, since the electrical conduction characteristics of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 are different, the height or the cross-sectional area of the N-type thermoelectric leg 140 is the height or the cross-sectional area of the P-type thermoelectric leg 130. It can also be formed differently.
본 발명의 한 실시예에 따른 열전 소자의 성능은 제벡 지수로 나타낼 수 있다. 제백 지수(ZT)는 수학식 1과 같이 나타낼 수 있다. The performance of the thermoelectric device according to the exemplary embodiment of the present invention may be represented by Seebeck index. The Seebeck index ZT may be expressed as in Equation 1.
Figure PCTKR2017005754-appb-M000001
Figure PCTKR2017005754-appb-M000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.Where α is the Seebeck coefficient [V / K], sigma is the electrical conductivity [S / m], and α 2 sigma is the Power Factor [W / mK 2 ]. And T is the temperature and k is the thermal conductivity [W / mK]. k can be represented by a · c p · ρ, a is thermal diffusivity [cm 2 / S], c p is specific heat [J / gK], and ρ is density [g / cm 3 ].
열전 소자의 제백 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 제벡 지수(ZT)를 계산할 수 있다. In order to obtain the Seebeck index of the thermoelectric element, the Z value (V / K) may be measured using a Z meter, and the Seebeck index (ZT) may be calculated using the measured Z value.
여기서, 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 하부 전극(120), 그리고 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 상부 전극(150)은 구리(Cu), 은(Ag), 알루미늄(Al) 및 니켈(Ni) 중 적어도 하나를 포함하며, 0.01mm 내지 0.3mm의 두께를 가질 수 있다. 하부 전극(120) 또는 상부 전극(150)의 두께가 0.01mm 미만인 경우, 전극으로서 기능이 떨어지게 되어 전기 전도 성능이 낮아질 수 있으며, 0.3mm를 초과하는 경우 저항의 증가로 인하여 전도 효율이 낮아질 수 있다.Here, the lower electrode 120 disposed between the lower substrate 110 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140, and the upper substrate 160 and the P-type thermoelectric leg 130 and the N-type The upper electrode 150 disposed between the thermoelectric legs 140 includes at least one of copper (Cu), silver (Ag), aluminum (Al), and nickel (Ni), and has a thickness of 0.01 mm to 0.3 mm. Can be. When the thickness of the lower electrode 120 or the upper electrode 150 is less than 0.01mm, the function as the electrode may be degraded, the electrical conduction performance may be lowered, and if the thickness exceeds 0.3mm, the conduction efficiency may be lowered due to the increase in resistance. .
그리고, 상호 대향하는 하부 기판(110)과 상부 기판(160)은 절연 기판 또는 금속 기판일 수 있다. 절연 기판은 알루미나 기판 또는 유연성을 가지는 고분자 수지 기판일 수 있다. 유연성을 가지는 고분자 수지 기판은 폴리이미드(PI), 폴리스티렌(PS), 폴리메틸 메타크릴레이트(PMMA), 환상 올레핀 코폴리(COC), 폴리에틸렌 테레프탈레이트(PET), 레진(resin)과 같은 고투과성 플라스틱 등의 다양한 절연성 수지재를 포함할 수 있다. 금속 기판은 Cu, Cu 합금 또는 Cu-Al 합금을 포함할 수 있으며, 그 두께는 0.1mm~0.5mm일 수 있다. 금속 기판의 두께가 0.1mm 미만이거나, 0.5mm를 초과하는 경우, 방열 특성 또는 열전도율이 지나치게 높아질 수 있으므로, 열전 소자의 신뢰성이 저하될 수 있다. 또한, 하부 기판(110)과 상부 기판(160)이 금속 기판인 경우, 하부 기판(110)과 하부 전극(120) 사이 및 상부 기판(160)과 상부 전극(150) 사이에는 각각 유전체층(170)이 더 형성될 수 있다. 유전체층(170)은 5~10W/K의 열전도도를 가지는 소재를 포함하며, 0.01mm~0.15mm의 두께로 형성될 수 있다. 유전체층(170)의 두께가 0.01mm 미만인 경우 절연 효율 또는 내전압 특성이 저하될 수 있고, 0.15mm를 초과하는 경우 열전전도도가 낮아져 방열효율이 떨어질 수 있다. The lower substrate 110 and the upper substrate 160 that face each other may be an insulating substrate or a metal substrate. The insulating substrate may be an alumina substrate or a polymer resin substrate having flexibility. Flexible polymer resin substrates are highly permeable, such as polyimide (PI), polystyrene (PS), polymethyl methacrylate (PMMA), cyclic olefin copoly (COC), polyethylene terephthalate (PET), and resin Various insulating resin materials, such as plastics, can be included. The metal substrate may include Cu, Cu alloy, or Cu—Al alloy, and the thickness may be 0.1 mm to 0.5 mm. If the thickness of the metal substrate is less than 0.1 mm or more than 0.5 mm, the heat dissipation characteristics or the thermal conductivity may be too high, so that the reliability of the thermoelectric element may be lowered. In addition, when the lower substrate 110 and the upper substrate 160 are metal substrates, the dielectric layer 170 is disposed between the lower substrate 110 and the lower electrode 120 and between the upper substrate 160 and the upper electrode 150, respectively. This can be further formed. The dielectric layer 170 includes a material having a thermal conductivity of 5 to 10 W / K, and may be formed to a thickness of 0.01 mm to 0.15 mm. When the thickness of the dielectric layer 170 is less than 0.01 mm, insulation efficiency or withstand voltage characteristics may be lowered, and when the thickness of the dielectric layer 170 is greater than 0.15 mm, thermal conductivity may be lowered to reduce heat radiation efficiency.
이때, 하부 기판(110)과 상부 기판(160)의 크기는 다르게 형성될 수도 있다. 예를 들어, 하부 기판(110)과 상부 기판(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전 소자의 흡열 성능 또는 방열 성능을 높일 수 있다. In this case, sizes of the lower substrate 110 and the upper substrate 160 may be formed differently. For example, the volume, thickness, or area of one of the lower substrate 110 and the upper substrate 160 may be greater than the volume, thickness, or area of the other. Thereby, the heat absorbing performance or heat dissipation performance of a thermoelectric element can be improved.
또한, 하부 기판(110)과 상부 기판(160) 중 적어도 하나의 표면에는 방열 패턴, 예를 들어 요철 패턴이 형성될 수도 있다. 이에 따라, 열전 소자의 방열 성능을 높일 수 있다. 요철 패턴이 P형 열전 레그(130) 또는 N형 열전 레그(140)와 접촉하는 면에 형성되는 경우, 열전 레그와 기판 간의 접합 특성도 향상될 수 있다. In addition, a heat radiation pattern, for example, an uneven pattern may be formed on at least one surface of the lower substrate 110 and the upper substrate 160. Thereby, the heat dissipation performance of a thermoelectric element can be improved. When the uneven pattern is formed on the surface in contact with the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140, the bonding characteristics between the thermoelectric leg and the substrate can also be improved.
한편, P형 열전 레그(130) 또는 N형 열전 레그(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다. Meanwhile, the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal pillar shape, an elliptical pillar shape, or the like.
본 발명의 한 실시예에 따르면, P형 열전 레그(130) 또는 N형 열전 레그(140)는 전극과 접합하는 부분의 폭이 넓게 형성될 수도 있다. According to an embodiment of the present invention, the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be formed to have a wide width of the portion to be bonded to the electrode.
도 3은 본 발명의 한 실시예에 따른 열전 레그 및 전극의 단면도를 나타낸다. 3 is a cross-sectional view of a thermoelectric leg and an electrode according to an embodiment of the present invention.
도 3을 참조하면, 열전 레그(130)는 제1단면적을 가지는 제1소자부(132), 제1소자부(132)와 대향하는 위치에 배치되며 제2단면적을 가지는 제2소자부(136), 그리고 제1소자부(132) 및 제2소자부(136)를 연결하며 제3단면적을 가지는 연결부(134)를 포함할 수 있다. 이때, 연결부(134)의 수평방향의 임의의 영역에서의 단면적이 제1단면적 또는 제2단면적보다 작게 형성될 수 있다.Referring to FIG. 3, the thermoelectric leg 130 is disposed at a position opposite to the first device portion 132 having a first cross-sectional area and the first device portion 132, and having a second cross-sectional area 136. And a connection part 134 connecting the first device part 132 and the second device part 136 and having a third cross-sectional area. At this time, the cross-sectional area in any region in the horizontal direction of the connecting portion 134 may be formed smaller than the first cross-sectional area or the second cross-sectional area.
이와 같이, 제1 소자부(132) 및 제2 소자부(136)의 단면적을 연결부(134)의 단면적보다 크게 형성하면, 동일한 양의 재료를 이용하여 제1소자부(132)와 제2소자부(136) 간의 온도차(T)를 크게 형성할 수 있다. 이에 따라, 발열측(Hot side)와 냉각측(Cold side) 사이에 이동하는 자유전자의 양이 많아지므로, 발전량이 증가하게 되며, 발열 효율 또는 냉각 효율이 높아지게 된다. As such, when the cross-sectional areas of the first element portion 132 and the second element portion 136 are formed larger than the cross-sectional areas of the connection portion 134, the first element portion 132 and the second element are made of the same amount of material. The temperature difference T between the units 136 may be large. Accordingly, since the amount of free electrons moving between the hot side and the cold side increases, the amount of power generation increases, and the exothermic efficiency or cooling efficiency increases.
이때, 연결부(134)의 수평 단면 중 가장 긴 폭을 가지는 단면의 폭(B)과, 제1소자부(132) 및 제2소자부(136)의 수평 단면 중 더 큰 단면의 폭(A or C) 간의 비가 1:(1.5~4)일 수 있다. 이에 따라, 발전 효율, 발열 효율 또는 냉각 효율을 높일 수 있다. In this case, the width B of the cross section having the longest width among the horizontal cross sections of the connecting portion 134 and the width A or the larger cross section among the horizontal cross sections of the first device portion 132 and the second device portion 136. The ratio between C) may be 1: (1.5-4). Thereby, power generation efficiency, heat generation efficiency, or cooling efficiency can be improved.
여기서, 제1소자부(132), 제2소자부(136) 및 연결부(134)는 동일한 재료를 이용하여 일체로 형성될 수 있다. The first device part 132, the second device part 136, and the connection part 134 may be integrally formed using the same material.
본 발명의 한 실시예에 따른 열전 레그는 적층형 구조를 가질 수도 있다. 예를 들어, P형 열전 레그 또는 N형 열전 레그는 시트 형상의 기재에 반도체 물질이 도포된 복수의 구조물을 적층한 후, 이를 절단하는 방법으로 형성될 수 있다. 이에 따라, 재료의 손실을 막고 전기 전도 특성을 향상시킬 수 있다.The thermoelectric leg according to an embodiment of the present invention may have a stacked structure. For example, the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by stacking a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. As a result, it is possible to prevent loss of material and to improve electrical conduction characteristics.
도 4는 적층형 구조의 열전 레그를 제조하는 방법을 나타낸다. 4 shows a method of manufacturing a thermoelectric leg of a laminated structure.
도 4를 참조하면, 반도체 물질을 포함하는 재료를 페이스트 형태로 제작한 후, 시트, 필름 등의 기재(1110) 상에 도포하여 반도체층(1120)을 형성한다. 이에 따라, 하나의 단위부재(1100)가 형성될 수 있다. Referring to FIG. 4, a material including a semiconductor material is prepared in the form of a paste, and then coated on a substrate 1110 such as a sheet or a film to form a semiconductor layer 1120. Accordingly, one unit member 1100 may be formed.
복수의 단위부재(1100a, 1100b, 1100c)를 적층하여 적층 구조물(1200)을 형성하고, 이를 절단하면 단위 열전 레그(1300)를 얻을 수 있다. A plurality of unit members 1100a, 1100b, and 1100c may be stacked to form the stacked structure 1200, and the unit thermoelectric legs 1300 may be obtained by cutting the stacked structures 1200.
이와 같이, 단위 열전 레그(1300)는 기재(1110) 상에 반도체층(1120)이 형성된 단위부재(1100)가 복수로 적층된 구조물에 의하여 형성될 수 있다. As such, the unit thermoelectric leg 1300 may be formed by a structure in which a plurality of unit members 1100 having the semiconductor layer 1120 formed on the substrate 1110 are stacked.
여기서, 기재(1110) 상에 페이스트를 도포하는 공정은 다양한 방법으로 행해질 수 있다. 예를 들어, 테이프캐스팅(Tape casting) 방법으로 행해질 수 있다. 테이프캐스팅 방법은 미세한 반도체 물질의 분말을 수계 또는 비수계 용매(solvent), 결합제(binder), 가소제(plasticizer), 분산제(dispersant), 소포제(defoamer) 및 계면활성제 중 선택되는 적어도 하나와 혼합하여 슬러리(slurry) 형태로 제조한 후, 움직이는 칼날(blade) 또는 움직이는 기재 상에서 성형하는 방법이다. 이때, 기재(1110)는 10um~100um 두께의 필름, 시트 등일 수 있으며, 도포되는 반도체 물질로는 상술한 벌크형 소자를 제조하는 P 형 열전 재료 또는 N 형 열전 재료가 그대로 적용될 수 있다.Here, the process of applying the paste on the substrate 1110 may be performed in various ways. For example, it can be done by a tape casting method. Tape casting method is a slurry by mixing a fine semiconductor material powder with at least one selected from an aqueous or non-aqueous solvent, binder, plasticizer, dispersant, defoamer and surfactant After the preparation in the form (slurry), it is a method of molding on a moving blade (blade) or a moving substrate. In this case, the substrate 1110 may be a film, a sheet, or the like having a thickness of 10 μm to 100 μm, and the P-type thermoelectric material or the N-type thermoelectric material for manufacturing the bulk type device may be applied as it is.
단위부재(1100)를 복수의 층으로 어라인하여 적층하는 공정은 50~250℃의 온도에서 압착하는 방법으로 행해질 수 있으며, 적층되는 단위부재(1100)의 수는, 예를 들어 2~50개일 수 있다. 이후, 원하는 형태와 사이즈로 절단될 수 있으며, 소결공정이 추가될 수 있다.The step of arranging the unit members 1100 in a plurality of layers may be performed by pressing at a temperature of 50 to 250 ° C., and the number of unit members 1100 to be stacked may be, for example, 2 to 50. have. Thereafter, it may be cut into a desired shape and size, and a sintering process may be added.
이와 같이 제조되는 단위 열전 레그(1300)는 두께, 형상 및 크기의 균일성을 확보할 수 있으며, 박형화가 유리하고, 재료의 손실을 줄일 수 있다. The unit thermoelectric leg 1300 manufactured as described above may secure uniformity in thickness, shape, and size, and may be advantageously thinned and may reduce material loss.
단위 열전 레그(1300)는 원기둥 형상, 다각 기둥 형상, 타원형 기둥 형상 등일 수 있으며, 도 4(d)에서 예시한 바와 같은 형상으로 절단될 수도 있다. The unit thermoelectric leg 1300 may have a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like, and may be cut into a shape as illustrated in FIG. 4D.
한편, 적층형 구조의 열전 레그를 제조하기 위하여, 단위 부재(1100)의 한 표면에 전도성층을 더 형상할 수도 있다. Meanwhile, in order to manufacture a thermoelectric leg having a stacked structure, a conductive layer may be further formed on one surface of the unit member 1100.
도 5는 도 4의 적층 구조물 내 단위 부재 사이에 형성되는 전도성층을 예시한다. 5 illustrates a conductive layer formed between unit members in the laminated structure of FIG. 4.
도 5를 참조하면, 전도성층(C)은 반도체층(1120)이 형성되는 기재(1110)의 반대 면에 형성될 수 있으며, 기재(1110)의 표면의 일부가 노출되도록 패턴화될 수 있다. Referring to FIG. 5, the conductive layer C may be formed on an opposite side of the substrate 1110 on which the semiconductor layer 1120 is formed, and may be patterned to expose a portion of the surface of the substrate 1110.
도 5는 본 발명의 실시예에 따른 전도성층(C)의 다양한 변형예를 나타낸다. 도 5(a) 및 도 5(b)에 도시된 바와 같이, 폐쇄형 개구패턴(c1, c2)을 포함하는 메쉬타입 구조 또는 도 5(c) 및 도 5(d)에 도시된 바와 같이, 개방형 개구패턴(c3, c4)을 포함하는 라인타입 구조 등으로 다양하게 변형될 수 있다. 5 shows various modifications of the conductive layer C according to the embodiment of the present invention. As shown in FIGS. 5A and 5B, a mesh type structure including closed opening patterns c1 and c2, or as shown in FIGS. 5C and 5D, Various modifications may be made to a line type structure including the open opening patterns c3 and c4.
이러한 전도성층(C)은 단위부재의 적층형 구조로 형성되는 단위 열전 레그 내 단위부재 간의 접착력을 높일 수 있으며, 단위부재간 열전도도를 낮추고, 전기전도도는 향상시킬 수 있다. 전도성층(C)은 금속물질, 예를 들어 Cu, Ag, Ni 등이 적용될 수 있다.The conductive layer (C) can increase the adhesive force between the unit members in the unit thermoelectric leg formed in a laminated structure of the unit member, lower the thermal conductivity between the unit members, it is possible to improve the electrical conductivity. The conductive layer C may be a metal material, for example, Cu, Ag, Ni, or the like.
한편, 단위 열전 레그(1300)는 도 6에 도시한 바와 같은 방향으로 절단될 수도 있다. 이러한 구조에 따르면, 수직방향의 열전도 효율을 낮추는 동시에 전기전도특성을 향상할 수 있어 냉각효율을 높일 수 있다.Meanwhile, the unit thermoelectric leg 1300 may be cut in the direction as shown in FIG. 6. According to this structure, it is possible to reduce the thermal conductivity in the vertical direction and to improve the electrical conductivity, thereby increasing the cooling efficiency.
본 발명의 한 실시예에 따르면, 열전 레그와 전극 간의 안정적인 결합을 위하여, 열전 레그의 양 면에 금속층을 형성하고자 한다. According to one embodiment of the present invention, in order to ensure a stable coupling between the thermoelectric leg and the electrode, to form a metal layer on both sides of the thermoelectric leg.
도 7은 본 발명의 한 실시예에 따른 열전 레그의 단면도이고, 도 8(a)는 도 7의 열전 레그의 개략도이며, 도8(b)는 도 8(a)의 열전 레그를 포함하는 열전 소자의 단면도이다. 7 is a cross-sectional view of a thermoelectric leg according to an embodiment of the present invention, FIG. 8 (a) is a schematic diagram of the thermoelectric leg of FIG. 7, and FIG. 8 (b) is a thermoelectric including the thermoelectric leg of FIG. 8 (a). A cross-sectional view of the device.
도 7, 8(a) 및 8(b)를 참조하면, 본 발명의 한 실시예에 따른 열전 레그(700)는 열전 소재층(710), 열전 소재층(710)의 한 면 상에 배치되는 제1 도금층(720), 열전 소재층(710)의 한 면과 대향하여 배치되는 다른 면에 배치되는 제2 도금층(730), 열전 소재층(710)과 제1 도금층(720) 사이 및 열전 소재층(710)과 제2 도금층(730) 사이에 각각 배치되는 제1 접합층(740) 및 제2 접합층(750), 그리고 제1 도금층(720) 및 제2 도금층(730) 상에 각각 배치되는 제1 금속층(760) 및 제2 금속층(770)을 포함한다. 7, 8 (a) and 8 (b), the thermoelectric leg 700 according to an embodiment of the present invention is disposed on one side of the thermoelectric material layer 710, the thermoelectric material layer 710 The first plating layer 720, the second plating layer 730 disposed on the other surface disposed to face one side of the thermoelectric material layer 710, between the thermoelectric material layer 710 and the first plating layer 720, and the thermoelectric material The first bonding layer 740 and the second bonding layer 750 disposed between the layer 710 and the second plating layer 730, respectively, and disposed on the first plating layer 720 and the second plating layer 730, respectively. And a first metal layer 760 and a second metal layer 770.
즉, 본 발명의 한 실시예에 따른 열전 레그(700)는 열전 소재층(710), 열전 소재층(710)의 한 면 및 상기 한 면에 대향하는 다른 면 상에 각각 배치되는 제1 금속층(760) 및 제2 금속층(770), 열전 소재층(710)과 제1 금속층(760) 사이에 배치되는 제1 접합층(740) 및 열전 소재층(710)과 제2 금속층(770) 사이에 배치되는 제2 접합층(750), 그리고 제1 금속층(760)과 제 1 접합층(740) 사이에 배치되는 제 1 도금층(720) 및 제2 금속층(770)과 제 2 접합층(750) 사이에 배치되는 제 2 도금층(730)을 포함한다. 이때, 열전 소재층(710)과 제1 접합층(740)은 서로 직접 접촉하고, 열전 소재층(710)과 제2 접합층(750)은 서로 직접 접촉할 수 있다. 그리고, 제1 접합층(740)과 제1 도금층(720)은 서로 직접 접촉하고, 제2 접합층(750)과 제2 도금층(730)은 서로 직접 접촉할 수 있다. 그리고, 제1 도금층(720)과 제1 금속층(760)은 서로 직접 접촉하고, 제2 도금층(730)과 제2 금속층(770)은 서로 직접 접촉할 수 있다.That is, the thermoelectric leg 700 according to an embodiment of the present invention may include a thermoelectric material layer 710, a first metal layer disposed on one surface of the thermoelectric material layer 710 and the other surface opposite to the one surface. 760 and the second metal layer 770, between the thermoelectric material layer 710 and the first metal layer 760, between the first bonding layer 740 and the thermoelectric material layer 710 and the second metal layer 770. The second bonding layer 750 disposed, and the first plating layer 720 and the second metal layer 770 and the second bonding layer 750 disposed between the first metal layer 760 and the first bonding layer 740. The second plating layer 730 is disposed between. In this case, the thermoelectric material layer 710 and the first bonding layer 740 may directly contact each other, and the thermoelectric material layer 710 and the second bonding layer 750 may directly contact each other. The first bonding layer 740 and the first plating layer 720 may directly contact each other, and the second bonding layer 750 and the second plating layer 730 may directly contact each other. In addition, the first plating layer 720 and the first metal layer 760 may directly contact each other, and the second plating layer 730 and the second metal layer 770 may directly contact each other.
여기서, 열전 소재층(710)은 반도체 재료인 비스무스(Bi) 및 텔루륨(Te)을 포함할 수 있다. 열전 소재층(710)은 도 1 내지 6에서 설명한 P형 열전 레그(130) 또는 N형 열전 레그(140)와 동일한 소재 또는 형상을 가질 수 있다. The thermoelectric material layer 710 may include bismuth (Bi) and tellurium (Te), which are semiconductor materials. The thermoelectric material layer 710 may have the same material or shape as the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 described with reference to FIGS. 1 to 6.
그리고, 제1 금속층(760) 및 제2 금속층(770)은 구리(Cu), 구리 합금, 알루미늄(Al) 및 알루미늄 합금으로부터 선택될 수 있으며, 0.1 내지 0.5mm, 바람직하게는 0.2 내지 0.3mm의 두께를 가질 수 있다. 제1 금속층(760) 및 제2 금속층(770)의 열팽창 계수는 열전 소재층(710)의 열팽창 계수와 비슷하거나, 더 크므로, 소결 시 제1 금속층(760) 및 제2 금속층(770)과 열전 소재층(710) 간의 경계면에서 압축 응력이 가해지기 때문에, 균열 또는 박리를 방지할 수 있다. 또한, 제1 금속층(760) 및 제2 금속층(770)과 전극(120, 150) 간의 결합력이 높으므로, 열전 레그(700)는 전극(120, 150)과 안정적으로 결합할 수 있다. The first metal layer 760 and the second metal layer 770 may be selected from copper (Cu), a copper alloy, aluminum (Al), and an aluminum alloy, and may be 0.1 to 0.5 mm, preferably 0.2 to 0.3 mm. It may have a thickness. The thermal expansion coefficients of the first metal layer 760 and the second metal layer 770 are similar to or larger than those of the thermoelectric material layer 710, and thus, the first metal layer 760 and the second metal layer 770 may be different from each other. Since compressive stress is applied at the interface between the thermoelectric material layers 710, cracking or peeling can be prevented. In addition, since the bonding force between the first metal layer 760 and the second metal layer 770 and the electrodes 120 and 150 is high, the thermoelectric leg 700 may be stably coupled with the electrodes 120 and 150.
다음으로, 제1 도금층(720) 및 제2 도금층(730)은 각각 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나를 포함할 수 있고, 1 내지 20㎛, 바람직하게는 1 내지 10㎛의 두께를 가질 수 있다. 제1 도금층(720) 및 제2 도금층(730)은 열전 소재층(710) 내 반도체 재료인 Bi 또는 Te와 제1 금속층(760) 및 제2 금속층(770) 간의 반응을 막으므로, 열전 소자의 성능 저하를 방지할 수 있을 뿐만 아니라, 제1 금속층(760) 및 제2 금속층(770)의 산화를 방지할 수 있다. Next, the first plating layer 720 and the second plating layer 730 may each include at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo, 1 to 20㎛, preferably 1 to It may have a thickness of 10 μm. Since the first plating layer 720 and the second plating layer 730 prevent a reaction between Bi or Te, which is a semiconductor material in the thermoelectric material layer 710, and the first metal layer 760 and the second metal layer 770, In addition to preventing performance degradation, oxidation of the first metal layer 760 and the second metal layer 770 may be prevented.
이때, 열전 소재층(710)과 제1 도금층(720) 사이 및 열전 소재층(710)과 제2 도금층(730) 사이에는 제1 접합층(740) 및 제2 접합층(750)이 배치될 수 있다. 이때, 제1 접합층(740) 및 제2 접합층(750)은 Te를 포함할 수 있다. 예를 들어, 제1 접합층(740) 및 제2 접합층(750)은 Ni-Te, Sn-Te, Ti-Te, Fe-Te, Sb-Te, Cr-Te 및 Mo-Te 중 적어도 하나를 포함할 수 있다. 본 발명의 실시예에 따르면, 제1 접합층(740) 및 제2 접합층(750) 각각의 두께는 0.5 내지 100㎛, 바람직하게는 1 내지 50㎛일 수 있다. 접합층의 두께에 따른 저항 변화율을 나타내는 그래프인 도 9를 참조하면, 접합층의 두께가 두꺼워짐에 따라 저항 변화율이 증가함을 알 수 있다. 특히, 접합층의 두께가 100㎛를 초과할 경우, 저항 변화율은 급격하게 증가하며, 결과적으로 열전 소자의 열전 성능에 좋지 않은 영향을 미칠 수 있다. 이에 대하여, 접합층의 두께를 100㎛ 이하로 제어할 경우, 저항 변화율을 2% 이내로 제한하는 것이 가능하다.In this case, the first bonding layer 740 and the second bonding layer 750 may be disposed between the thermoelectric material layer 710 and the first plating layer 720, and between the thermoelectric material layer 710 and the second plating layer 730. Can be. In this case, the first bonding layer 740 and the second bonding layer 750 may include Te. For example, the first bonding layer 740 and the second bonding layer 750 are at least one of Ni-Te, Sn-Te, Ti-Te, Fe-Te, Sb-Te, Cr-Te, and Mo-Te. It may include. According to an embodiment of the present invention, the thickness of each of the first bonding layer 740 and the second bonding layer 750 may be 0.5 to 100 μm, preferably 1 to 50 μm. Referring to FIG. 9, which is a graph showing a resistance change rate according to the thickness of the bonding layer, it can be seen that the resistance change rate increases as the thickness of the bonding layer increases. In particular, when the thickness of the bonding layer exceeds 100㎛, the rate of change of resistance increases rapidly, and as a result may adversely affect the thermoelectric performance of the thermoelectric element. On the other hand, when controlling the thickness of a bonding layer to 100 micrometers or less, it is possible to limit a resistance change rate to 2% or less.
일반적으로, 열전 소재층(710)에 포함되는 반도체 재료 중 Te는 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나를 포함하는 제1 도금층(720) 및 제2 도금층(730)으로 확산되기 쉽다. 열전 소재층(710) 내 Te가 제1 도금층(720) 및 제2 도금층(730) 내로 확산되면, 열전 소재층(710)과 제1 도금층(720) 및 제2 도금층(730) 간의 경계 부근에는 Te에 비하여 Bi가 많이 분포하는 영역(이하, Bi 리치(rich) 영역이라 한다)이 생길 수 있다. Bi 리치 영역으로 인하여 열전 레그(700) 내의 저항이 높아지며, 결과적으로 열전 소자의 성능 저하를 일으킬 수 있다. In general, among the semiconductor materials included in the thermoelectric material layer 710, Te is the first plating layer 720 and the second plating layer 730 including at least one of Ni, Sn, Ti, Fe, Sb, Cr, and Mo. Easy to spread. When Te in the thermoelectric material layer 710 is diffused into the first plating layer 720 and the second plating layer 730, the boundary between the thermoelectric material layer 710, the first plating layer 720, and the second plating layer 730 may be adjusted. Compared with Te, a region in which Bi is distributed (hereinafter, referred to as Bi rich region) may be generated. Due to the Bi rich region, the resistance in the thermoelectric leg 700 is increased, and as a result, performance of the thermoelectric element may be degraded.
그러나, 본 발명의 실시예에 따르면, 열전 소재층(710)과 제1 도금층(720) 및 제2 도금층(730) 사이에 Te를 포함하는 제1 접합층(740) 및 제2 접합층(750)을 미리 배치하여, 열전 소재층(710) 내 Te가 제1 도금층(720) 및 제2 도금층(730)으로 확산되는 것을 방지할 수 있다. 이에 따라, Bi 리치 영역의 발생을 방지할 수 있다.However, according to the embodiment of the present invention, the first bonding layer 740 and the second bonding layer 750 including Te between the thermoelectric material layer 710 and the first plating layer 720 and the second plating layer 730. ) May be disposed in advance to prevent Te in the thermoelectric material layer 710 from being diffused into the first plating layer 720 and the second plating layer 730. As a result, it is possible to prevent the occurrence of the Bi rich region.
이에 따라, 열전 소재층(710)의 중심면으로부터 열전 소재층(710)과 제1 접합층(740) 간의 경계면까지 Te 함량은 Bi 함량보다 높고, 열전 소재층(710)의 중심면으로부터 열전 소재층(710)과 제2 접합층(750) 간의 경계면까지 Te 함량은 Bi 함량보다 높다. 그리고, 열전 소재층(710)의 중심면으로부터 열전 소재층(710)과 제1 접합층(740) 간의 경계면 내 소정 지점에서의 Te 함량 또는 열전 소재층(710)의 중심면으로부터 열전 소재층(710)과 제2 접합층(750) 간의 경계면 내 소정 지점에서의 Te 함량은 열전 소재층(710)의 중심면의 Te 함량 대비 0.8 내지 1배일 수 있다. 예를 들어, 열전 소재층(710)과 제1 접합층(740) 간의 경계면으로부터 열전 소재층(710)의 중심면의 방향으로 100㎛ 두께 내 소정 지점에서의 Te 함량은 열전 소재층(710)의 중심면의 Te 함량 대비 0.8배 내지 1배일 수 있다. Accordingly, the Te content from the center plane of the thermoelectric material layer 710 to the interface between the thermoelectric material layer 710 and the first bonding layer 740 is higher than the Bi content, and the thermoelectric material from the center plane of the thermoelectric material layer 710. The Te content to the interface between the layer 710 and the second bonding layer 750 is higher than the Bi content. Then, the Te content or the thermoelectric material layer from the center surface of the thermoelectric material layer 710 at a predetermined point in the interface between the thermoelectric material layer 710 and the first bonding layer 740 from the center surface of the thermoelectric material layer 710. The Te content at a predetermined point in the interface between the 710 and the second bonding layer 750 may be 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer 710. For example, the Te content at a predetermined point within a thickness of 100 μm in the direction of the center plane of the thermoelectric material layer 710 from the interface between the thermoelectric material layer 710 and the first bonding layer 740 is the thermoelectric material layer 710. It may be 0.8 to 1 times compared to the Te content of the central plane of.
또한, 제1 접합층(740) 또는 제2 접합층(750) 내 Te의 함량은 열전 소재층(710) 내 Te의 함량의 0.8 내지 1배일 수 있다. 그리고, 제1 접합층(740) 내 제1 도금층(720)과 접하는 면, 즉 제1 도금층(720)과 제1 접합층(740) 간의 경계면 또는 제2 접합층(750) 내 제2 도금층(730)과 접하는 면, 즉 제2 도금층(730)과 제2 접합층(750) 간의 경계면에서의 Te의 함량은 열전 소재층(710) 내 제1 접합층(740)과 접하는 면, 즉 열전 소재층(710)과 제1 접합층(740) 간의 경계면 열전 소재층(710) 내 제2 접합층(750)과 접하는 면, 즉 열전 소재층(710)과 제2 접합층(750) 간의 경계면에서의 Te의 함량의 0.8 내지 1배일 수 있다. 그리고, 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면의 Te 함량은 열전 소재층(710)의 중심면의 Te 함량의 0.8 내지 1배일 수 있다.In addition, the content of Te in the first bonding layer 740 or the second bonding layer 750 may be 0.8 to 1 times the content of Te in the thermoelectric material layer 710. In addition, a surface in contact with the first plating layer 720 in the first bonding layer 740, that is, an interface between the first plating layer 720 and the first bonding layer 740 or a second plating layer in the second bonding layer 750 ( The content of Te at the surface in contact with 730, that is, the interface between the second plating layer 730 and the second bonding layer 750, is in contact with the first bonding layer 740 in the thermoelectric material layer 710, that is, the thermoelectric material. Interface between the layer 710 and the first bonding layer 740 At the surface in contact with the second bonding layer 750 in the thermoelectric material layer 710, that is, at the interface between the thermoelectric material layer 710 and the second bonding layer 750. It may be 0.8 to 1 times the content of Te. The Te content of the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the interface between the thermoelectric material layer 710 and the second bonding layer 750 is Te in the center plane of the thermoelectric material layer 710. It may be 0.8 to 1 times the content.
도 10은 본 발명의 한 실시예에 따른 열전 레그의 제조 방법을 나타내는 순서도이다.10 is a flowchart illustrating a method of manufacturing a thermoelectric leg according to an embodiment of the present invention.
도 10을 참조하면, 금속 기판을 준비한다(S100). 여기서, 금속 기판은 도 7의 열전 레그(700)의 제1 금속층(760) 및 제2 금속층(770)이 될 수 있다. 즉, 금속 기판은 구리(Cu), 구리 합금, 알루미늄(Al) 및 알루미늄 합금으로부터 선택될 수 있다.Referring to FIG. 10, a metal substrate is prepared (S100). Here, the metal substrate may be the first metal layer 760 and the second metal layer 770 of the thermoelectric leg 700 of FIG. 7. That is, the metal substrate may be selected from copper (Cu), copper alloys, aluminum (Al) and aluminum alloys.
다음으로, 금속 기판의 일면 상에 Ni 도금층을 형성한다(S110). 여기서, 도금층은 Ni 뿐만아니라 Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나의 금속으로 형성될 수도 있다. 또한, 도금층은 금속 기판의 양면에 형성될 수도 있다. 본 명세서에서, Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나의 금속을 포함하는 층을 도금층으로 표현하고 있으나, 이는 도금에 의하여 형성된 층뿐만 아니라, 다양한 기법으로 증착된 층을 모두 포함하는 것을 의미할 수 있다. Next, a Ni plating layer is formed on one surface of the metal substrate (S110). Here, the plating layer may be formed of not only Ni but also at least one metal of Sn, Ti, Fe, Sb, Cr, and Mo. In addition, the plating layer may be formed on both sides of the metal substrate. In the present specification, a layer including at least one metal of Ni, Sn, Ti, Fe, Sb, Cr, and Mo is represented by a plating layer, but this is not only a layer formed by plating, but also a layer deposited by various techniques. It may mean to include.
다음으로, 도금층 상에 Te를 포함하는 접합층을 형성한다(S120). 이를 위하여, 도금층 상에 Te 분말 및 알코올을 혼합한 슬러리를 도포한 후, 300 내지 400℃의 온도에서 열처리 한다. 이에 따라, 도금층 상에 도포된 Te가 도금층을 향하여 확산하고 Ni와 반응하여 접합층이 형성될 수 있다. 이때, Te와 반응한 두께만큼 Ni-Te 접합층이 형성된다. 여기서, 접합층은 Ni 뿐만 아니라 Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나의 금속이 Te와 반응하여 형성될 수도 있다. 이후, 접합층 상에 반응하지 않고 남은 Te 분말을 세척하여 제거한다. Next, a bonding layer containing Te is formed on the plating layer (S120). To this end, after applying a slurry mixed with Te powder and alcohol on the plating layer, it is heat-treated at a temperature of 300 to 400 ℃. Accordingly, the Te coated on the plating layer diffuses toward the plating layer and reacts with Ni to form a bonding layer. At this time, Ni-Te bonding layer is formed by the thickness reacted with Te. Here, the bonding layer may be formed by reacting Te with at least one metal of Sn, Ti, Fe, Sb, Cr, and Mo as well as Ni. Thereafter, the Te powder remaining without reacting on the bonding layer is removed by washing.
또는, 접합층은 도금층 상에 Te 소스를 진공증착하여 형성될 수도 있다. 즉, 접합층은 도금층 상에 증착된 Te가 도금층을 향하여 확산하고 Ni와 반응하여 형성될 수도 있다. 또는, 접합층은 도금층 상에 Ni-Te 소스를 진공증착하여 형성될 수도 있다. 또는, 접합층은 도금층을 형성하는 단계 S110을 생략하고, 금속 기판 상에 바로 Ni-Te 소스를 투입하여 Ni-Te 진공증착층을 형성할 수도 있다.Alternatively, the bonding layer may be formed by vacuum depositing a Te source on the plating layer. That is, the bonding layer may be formed by Te deposited on the plating layer diffused toward the plating layer and reacting with Ni. Alternatively, the bonding layer may be formed by vacuum depositing a Ni-Te source on the plating layer. Alternatively, the bonding layer may omit step S110 of forming a plating layer, and directly form a Ni-Te vacuum deposition layer by directly introducing a Ni-Te source onto the metal substrate.
또는, 접합층은 단계 S110에서 소정의 두께로 도금층을 형성한 후, 도금 용액 내에 Te 이온을 추가하는 방법으로 원하는 두께로 형성될 수도 있다.Alternatively, the bonding layer may be formed to a desired thickness by forming a plating layer with a predetermined thickness in step S110 and then adding Te ions into the plating solution.
다음으로, S100 내지 S120을 통하여 형성된 두 개의 금속 기판/도금층 /접합층 사이에 Bi 및 Te를 포함하는 열전 소재를 배치한 후, 가압 및 소결한다(S130). 여기서, 단계 S100 내지 S120을 통하여 제조된 금속기판/도금층/접합층을 소정의 크기에 따라 절단하고, 열전 소재의 양 면에 배치한 후, 가압 및 소결할 수 있다. 또는, 단계 S100 내지 S120을 통하여 소정의 크기로 금속기판/도금층/접합층을 제조한 후, 단계 S100 내지 S120을 반복하여 소정의 크기로 금속기판/도금층/접합층을 제조하고, 열전 소재의 양 면에 배치한 후, 가압 및 소결할 수도 있다. Next, a thermoelectric material including Bi and Te is disposed between two metal substrates / plating layers / bonding layers formed through S100 to S120, and then pressed and sintered (S130). Here, the metal substrate / plating layer / bonding layer manufactured through the steps S100 to S120 may be cut according to a predetermined size, disposed on both sides of the thermoelectric material, and then pressed and sintered. Alternatively, after the metal substrate / plating layer / bonding layer is manufactured to a predetermined size through steps S100 to S120, the metal substrate / plating layer / bonding layer is manufactured to a predetermined size by repeating steps S100 to S120, and the amount of thermoelectric material After arrange | positioning to a surface, you may pressurize and sinter.
여기서, 가압 및 소결은 핫 프레스(Hot Press) 공정으로 이루어질 수 있다. 핫 프레스 공정은 DC(Direct Current) 전원으로부터 펄스 전류를 인가하여 줄열을 발생시키는 방전 플라즈마 소결(SPS, Spark Plasma Sintering) 공정일 수 있다. 방전 플라즈마 소결 공정은 순간적으로 발생하는 방전 현상으로 인하여 높은 에너지가 입자 간 열확산을 촉진시키는 과정을 통하여 진행되므로, 우수한 소결 제어성, 즉 입성장이 적은 소결 미세 조직의 제어가 용이하다. 이때, 열전 소재는 비정질 리본과 함께 소결될 수도 있다. 열전 레그용 분말이 비정질 리본과 함께 소결되면 전기 전도도가 높아지므로, 높은 열전 성능을 얻을 수 있다. 이때, 비정질 리본은 Fe 계 비정질 리본일 수 있다.예를 들어, 비정질 리본은 열전 레그의 측면에 배치된 후 소결될 수 있다. 이에 따라, 열전 레그의 측면을 따라 전기 전도도가 높아질 수 있다. 이를 위하여, 비정질 리본이 몰드의 벽면을 둘러싸도록 배치된 후, 열전 소재를 채우고, 소결할 수 있다. 이때, 비정질 리본은 열전 레그 중 열전 소재층의 측면에 배치될 수 있다.In this case, the pressing and sintering may be performed by a hot press process. The hot press process may be a spark plasma sintering (SPS) process that generates joule heat by applying a pulse current from a direct current (DC) power source. Since the discharge plasma sintering process proceeds through a process in which high energy promotes thermal diffusion between particles due to an instantaneous discharge phenomenon, it is easy to control the sintered microstructure having excellent sinter control, that is, less grain growth. In this case, the thermoelectric material may be sintered together with the amorphous ribbon. When the powder for thermoelectric legs is sintered together with the amorphous ribbon, the electrical conductivity becomes high, so that high thermoelectric performance can be obtained. In this case, the amorphous ribbon may be an Fe-based amorphous ribbon. For example, the amorphous ribbon may be disposed on the side of the thermoelectric leg and then sintered. Accordingly, electrical conductivity may be increased along the side of the thermoelectric leg. For this purpose, the amorphous ribbon can be arranged to surround the wall surface of the mold, followed by filling and sintering the thermoelectric material. At this time, the amorphous ribbon may be disposed on the side of the thermoelectric material layer of the thermoelectric leg.
도 11은 도 10의 방법에 따라 제조된 열전 레그 내 Te 함량 분포를 개략적으로 나타내는 도면이고, 도 12는 도 10의 방법에 따라 제조된 열전 레그 내 영역 별 조성 분포를 분석한 그래프이다. 그리고, 도 13은 비교예에 따라 제조된 열전 레그 내 Te 함량 분포를 개략적으로 나타내는 도면이고, 도 14는 비교예에 따라 제조된 열전 레그 내 영역 별 조성 분포를 분석한 그래프이다. FIG. 11 is a diagram schematically illustrating a Te content distribution in a thermoelectric leg manufactured according to the method of FIG. 10, and FIG. 12 is a graph analyzing composition distribution for each region in the thermoelectric leg manufactured according to the method of FIG. 10. 13 is a diagram schematically illustrating a Te content distribution in a thermoelectric leg manufactured according to a comparative example, and FIG. 14 is a graph analyzing composition distribution for each region in the thermoelectric leg manufactured according to the comparative example.
도 11 내지 12를 참조하면, 실시예에서는 약 0.2 내지 0.3mm 두께의 알루미늄(Al) 기판(760, 770) 상에 도금층(720, 730)을 형성한 후, 도금층(720, 730) 상에 Te를 도포하여 열처리함으로써 접합층(740, 750)을 형성하고, 두 개의 알루미늄 기판/도금층/접합층 사이에 Bi 및 Te를 포함하는 약 1.6mm 두께의 열전 소재(710)를 배치한 후, 가압 및 소결하였다. 도금층 상에 Te를 도포하여 열처리하는 과정을 통하여, 도포된 Te는 도금층 표면의 Ni을 향하여 확산되어 Ni와 반응하였으며, 이에 따라 Ni-Te를 포함하는 접합층이 형성되었다. 이때, 도금층의 두께는 약 1 내지 10㎛로 형성되었으며, 접합층의 두께는 약 40㎛로 형성되었다.11 to 12, in the embodiment, after the plating layers 720 and 730 are formed on the aluminum (Al) substrates 760 and 770 having a thickness of about 0.2 to 0.3 mm, the Te layers are formed on the plating layers 720 and 730. By applying heat treatment to form the bonding layers 740 and 750, and placing a thermoelectric material 710 of about 1.6 mm thickness including Bi and Te between the two aluminum substrates / plating layers / bonding layers, and then pressing and Sintered. Through the process of applying Te on the plating layer and heat treatment, the coated Te diffused toward Ni on the surface of the plating layer to react with Ni, thereby forming a bonding layer including Ni-Te. At this time, the thickness of the plating layer was formed to about 1 to 10㎛, the thickness of the bonding layer was formed to about 40㎛.
그리고, 도 13 내지 14를 참조하면, 비교예에서는 약 0.2 내지 0.3mm 두께의 알루미늄(Al) 기판(860, 870) 상에 도금층(820, 830)을 형성한 후, 두 개의 알루미늄 기판/도금층 사이에 Bi 및 Te를 포함하는 약 1.6mm 두께의 열전 소재를 배치하고, 가압 및 소결하였다. 가압 및 소결하는 과정을 통하여, 열전 소재 내의 Te가 도금층 표면의 Ni을 향하여 확산되어 Ni와 반응하였으며, 이에 따라 Ni-Te를 포함하는 접합층(840, 850)이 형성되었다. 그리고, 열전 소재의 가장자리에는 Te가 도금층을 향하여 확산됨으로써 상대적으로 Bi 함량이 높아진 Bi 리치층이 형성되었다. 13 to 14, in the comparative example, after forming the plating layers 820 and 830 on the aluminum (Al) substrates 860 and 870 having a thickness of about 0.2 to 0.3 mm, the two aluminum substrates / plating layers were formed. About 1.6 mm thick thermoelectric material containing Bi and Te was placed in, pressed and sintered. Through the pressing and sintering process, Te in the thermoelectric material diffused toward Ni on the surface of the plating layer to react with Ni, thereby forming bonding layers 840 and 850 including Ni-Te. At the edge of the thermoelectric material, Te was diffused toward the plating layer, thereby forming a Bi rich layer having a relatively high Bi content.
도 11 내지 14를 참조하면, 제1 도금층(720, 820) 또는 제2 도금층(730, 830) 내 Te의 함량은 열전 소재층(710, 810) 내 Te의 함량 및 제1 접합층(740, 840) 또는 제2 접합층(750, 850) 내 Te의 함량보다 낮게 나타남을 알 수 있다.11 to 14, the content of Te in the first plating layers 720 and 820 or the second plating layers 730 and 830 may include the content of Te in the thermoelectric material layers 710 and 810 and the first bonding layer 740. It can be seen that the content is lower than the content of Te in the 840 or the second bonding layers 750 and 850.
이때, 도 11 내지 12에 따르면, 열전 소재층(710)의 중심면(C)의 Te 함량은 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면의 Te 함량과 동일하거나 유사하게 나타남을 알 수 있다. 본 명세서에서, 중심면(C)은 열전 소재층(710)의 중심면(C) 자체를 의미하거나, 또는 중심면(C)과 중심면(C)으로부터 소정 거리 내에 인접하는 중심면(C) 주변 영역을 포함하는 것을 의미할 수 있다. 그리고, 경계면은 경계면 자체를 의미하거나, 또는 경계면과 경계면으로부터 소정 거리 내에 인접하는 경계면 주변 영역을 포함하는 것을 의미할 수 있다. 예를 들어, 열전 소재층(710)의 중심면(C)의 Te 함량은 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면의 Te 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다.11 to 12, the Te content of the center plane C of the thermoelectric material layer 710 is defined as the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 and the first surface. It can be seen that the same or similar to the Te content of the interface between the two bonding layer 750. In the present specification, the center plane C means the center plane C itself of the thermoelectric material layer 710, or the center plane C adjacent to the center plane C and the center plane C within a predetermined distance. It may mean including a peripheral area. The boundary surface may mean the boundary surface itself, or may include a boundary region adjacent to the boundary surface within a predetermined distance from the boundary surface. For example, the Te content of the center plane C of the thermoelectric material layer 710 may be an interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 and the second bonding layer 750. It may be 0.8 to 1 times, preferably 0.85 to 1 times, more preferably 0.9 to 1 times, more preferably 0.95 to 1 times the Te content of the interface between the). Here, the content may be a weight ratio.
또한, 열전 소재층(710)의 중심면(C)의 Bi 함량은 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면의 Bi 함량과 동일하거나 유사하게 나타남을 알 수 있다. 이에 따라, 열전 소재층(710)의 중심면(C)으로부터 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면에 이르기까지 Te의 함량이 Bi의 함량보다 높게 나타나므로, 열전 소재층(710)과 제1 접합층(740) 간의 경계면 주변 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면 주변에서 Bi함량이 Te 함량을 역전하는 구간이 존재하지 않는다. 예를 들어, 열전 소재층(710)의 중심면(C)의 Bi 함량은 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면의 Bi 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다.In addition, the Bi content of the center plane C of the thermoelectric material layer 710 is the interface between the thermoelectric material layer 710 and the first bonding layer 740 or between the thermoelectric material layer 710 and the second bonding layer 750. It can be seen that the same or similar to the Bi content of the interface. Accordingly, the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the interface between the thermoelectric material layer 710 and the second bonding layer 750 from the center plane C of the thermoelectric material layer 710. Since the content of Te is higher than the content of Bi until now, at the periphery of the interface between the thermoelectric material layer 710 and the first bonding layer 740 or at the periphery of the interface between the thermoelectric material layer 710 and the second bonding layer 750. There is no section in which the Bi content reverses the Te content. For example, the Bi content of the center plane C of the thermoelectric material layer 710 is an interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 and the second bonding layer 750. ) May be 0.8 to 1 times, preferably 0.85 to 1 times, more preferably 0.9 to 1 times, more preferably 0.95 to 1 times the Bi content of the interface between. Here, the content may be a weight ratio.
이에 반해, 도 13 내지 14에 따르면, 열전 소재층(810)의 중심면(C)의 Te 함량에 비하여 열전 소재층(810)과 제1 접합층(840) 간의 경계면 또는 열전 소재층(810)과 제2 접합층(850) 간의 경계면의 Te 함량이 낮게 나타남을 알 수 있다. 이는, 열전 소재층(810) 내의 반도체 재료인 Te가 제1 도금층(820) 및 제2 도금층(830)과 반응하기 위하여 제1 도금층(820) 및 제2 도금층(830)으로 자연 확산되기 때문이다. 이에 따라, 열전 소재층(810)의 중심면(C)으로부터 가장자리로 향할수록 Te의 함량이 줄어들게 되며, 제1 도금층(820) 및 제2 도금층(830)과 반응하기 위해 확산한 지점에서부터 열전 소재층(810)과 제1 도금층(820) 및 제2 도금층(830)의 경계까지 Bi 리치층이 형성된다. 상기 Bi리치층은 200㎛ 이하 두께로 형성될 수 있다. 즉, 열전 소재층(710)의 중심면(C) 주변에는 Te의 함량이 Bi의 함량보다 높게 나타나지만, 열전 소재층(710)과 제1 접합층(740) 간의 경계면 주변 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면 주변에서 Bi함량이 Te 함량을 역전하는 구간이 존재하게 된다. Bi 리치층은 열전 소재의 기본 구성물질인 Bi와 Te 간의 적정한 화학양론비가 파괴되는 영역으로, 열전 소재(810)와 접합층(840, 850) 간의 경계면까지 형성될 수 있다. Bi 리치층이 두꺼워질수록 저항변화율이 증가하게 되며, 이는 열전 레그 내부의 저항 증가의 주 요인이 될 수 있다. In contrast, according to FIGS. 13 to 14, the interface between the thermoelectric material layer 810 and the first bonding layer 840 or the thermoelectric material layer 810 is lower than the Te content of the center plane C of the thermoelectric material layer 810. It can be seen that the Te content of the interface between the second bonding layer 850 is low. This is because Te, a semiconductor material in the thermoelectric material layer 810, is naturally diffused into the first plating layer 820 and the second plating layer 830 to react with the first plating layer 820 and the second plating layer 830. . Accordingly, the content of Te decreases from the center surface C of the thermoelectric material layer 810 toward the edge, and the thermoelectric material from the point diffused to react with the first plating layer 820 and the second plating layer 830. The Bi rich layer is formed to the boundary between the layer 810, the first plating layer 820, and the second plating layer 830. The Bi-rich layer may be formed to a thickness of 200㎛ or less. That is, although the content of Te is higher than the content of Bi around the center plane C of the thermoelectric material layer 710, the interface between the thermoelectric material layer 710 and the first bonding layer 740 or the thermoelectric material layer 710 ) And a section in which the Bi content reverses the Te content around the interface between the second bonding layer 750 and the second bonding layer 750. The Bi rich layer is a region in which an appropriate stoichiometric ratio between Bi and Te, which are basic constituents of the thermoelectric material, is destroyed, and may be formed to an interface between the thermoelectric material 810 and the bonding layers 840 and 850. The thicker the bi-rich layer, the higher the resistance change rate, which can be a major factor in increasing the resistance inside the thermoelectric leg.
또한, 도 11 내지 12에 따르면, 제1 접합층(740) 또는 제2 접합층(750) 내 Te의 함량은 열전 소재층(710) 내 Te의 함량과 동일하거나 유사하게 나타남을 알 수 있다. 예를 들어, 제1 접합층(740) 또는 제2 접합층(750) 내 Te의 함량은 열전 소재층(710) 내 Te의 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다. 예를 들어, 열전 소재층(710) 내 Te의 함량이 50wt%로 포함되는 경우, 제1 접합층(740) 또는 제2 접합층(750) 내 Te의 함량은 40 내지 50wt%, 바람직하게는 42.5 내지 50wt%, 더욱 바람직하게는 45 내지 50wt%, 더욱 바람직하게는 47.5 내지 50wt%일 수 있다. 또한, 제1 접합층(740) 또는 제2 접합층(750) 내 Te의 함량은 Ni대비 클 수 있다. 제1 접합층(740) 또는 제2 접합층(750) 내에서 Te의 함량은 일정하게 분포하는 반면, Ni 함량은 제1 접합층(740) 또는 제2 접합층(750) 내에서 열전 소재층(710) 방향에 인접할수록 감소할 수 있다. 11 to 12, it can be seen that the content of Te in the first bonding layer 740 or the second bonding layer 750 is the same as or similar to the content of Te in the thermoelectric material layer 710. For example, the content of Te in the first bonding layer 740 or the second bonding layer 750 is 0.8 to 1 times, preferably 0.85 to 1 times, more preferably, the content of Te in the thermoelectric material layer 710. Preferably 0.9 to 1 times, more preferably 0.95 to 1 times. Here, the content may be a weight ratio. For example, when the content of Te in the thermoelectric material layer 710 is 50wt%, the content of Te in the first bonding layer 740 or the second bonding layer 750 is 40 to 50wt%, preferably 42.5 to 50 wt%, more preferably 45 to 50 wt%, more preferably 47.5 to 50 wt%. In addition, the content of Te in the first bonding layer 740 or the second bonding layer 750 may be greater than that of Ni. The content of Te is uniformly distributed in the first bonding layer 740 or the second bonding layer 750, while the Ni content is the thermoelectric material layer in the first bonding layer 740 or the second bonding layer 750. The closer to the 710 direction, the smaller it may be.
한편, 각 층에 포함되는 물질의 일부는 각 층과 인접하는 층 간의 경계면으로부터 확산되어 인접하는 층 내에서 검출될 수도 있다. 예를 들어, 금속층에 포함되는 물질의 일부는 금속층과 도금층 간의 경계면으로부터 확산되어 도금층 내에서 검출될 수 있고, 도금층에 포함되는 물질의 일부는 도금층과 접합층 간의 경계면으로부터 확산되어 접합층 내에서 검출될 수 있으며, 접합층에 포함되는 물질의 일부는 접합층과 열전 소재층 간의 경계면으로부터 확산되어 열전 소재층 내에서 검출될 수 있다. 그리고, 도금층에 포함되는 물질의 일부는 금속층과 도금층 간의 경계면으로부터 확산되어 금속층 내에서 검출될 수 있고, 접합층에 포함되는 물질의 일부는 도금층과 접합층 간의 경계면으로부터 확산되어 도금층 내에서 검출될 수 있으며, 열전 소재층에 포함되는 물질의 일부는 접합층과 열전 소재층 간의 경계면으로부터 확산되어 접합층 내에서 검출될 수 있다. On the other hand, a part of the material included in each layer may be detected from within the adjacent layer by diffusing from the interface between each layer and the adjacent layer. For example, a portion of the material included in the metal layer may be detected in the plating layer by being diffused from the interface between the metal layer and the plating layer, and a portion of the material included in the plating layer may be diffused from the interface between the plating layer and the bonding layer and detected in the bonding layer. Some of the materials included in the bonding layer may diffuse from an interface between the bonding layer and the thermoelectric material layer and be detected in the thermoelectric material layer. In addition, a part of the material included in the plating layer may be detected in the metal layer by being diffused from the interface between the metal layer and the plating layer, and a part of the material included in the bonding layer may be detected in the plating layer by being diffused from the interface between the plating layer and the bonding layer. A portion of the material included in the thermoelectric material layer may diffuse from an interface between the bonding layer and the thermoelectric material layer and be detected in the bonding layer.
이에 반해, 도 13 내지 14에 따르면, 제1 접합층(840) 또는 제2 접합층(850) 내 Te의 함량은 열전 소재층(810) 내 Te의 함량에 비하여 낮게 나타남을 알 수 있다. 이는, 도 11 내지 12에서는 제1 접합층(740) 또는 제2 접합층(750)을 형성하기 위하여 제1 도금층(720) 또는 제2 도금층(730) 상에 Te를 도포하므로, Te의 함량이 일정하게 유지되지만, 도 13 내지 14에서는 열전 소재층(810) 내 Te가 제1 도금층(820) 또는 제2 도금층(830)과 반응하기 위하여 자연 확산하기 때문이다. On the other hand, according to FIGS. 13 to 14, it can be seen that the content of Te in the first bonding layer 840 or the second bonding layer 850 is lower than the content of Te in the thermoelectric material layer 810. 11 to 12, since Te is coated on the first plating layer 720 or the second plating layer 730 to form the first bonding layer 740 or the second bonding layer 750, the content of Te is increased. Although it remains constant, in FIGS. 13 to 14, the Te in the thermoelectric material layer 810 naturally diffuses to react with the first plating layer 820 or the second plating layer 830.
또한, 도 11 내지 12에 따르면, 제1 도금층(720)과 제1 접합층(740) 간의 경계면 또는 제2 도금층(730)과 제2 접합층(750) 간의 경계면에서의 Te의 함량은 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면에서의 Te의 함량과 동일하거나 유사하게 나타남을 알 수 있다. 예를 들어, 제1 도금층(720)과 제1 접합층(740) 간의 경계면 또는 제2 도금층(730)과 제2 접합층(750) 간의 경계면에서의 Te의 함량은 열전 소재층(710)과 제1 접합층(740) 간의 경계면 또는 열전 소재층(710)과 제2 접합층(750) 간의 경계면에서의 Te의 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다.11 to 12, the content of Te at the interface between the first plating layer 720 and the first bonding layer 740 or at the interface between the second plating layer 730 and the second bonding layer 750 is a thermoelectric material. It can be seen that the content of Te is equal to or similar to the interface between the layer 710 and the first bonding layer 740 or the interface between the thermoelectric material layer 710 and the second bonding layer 750. For example, the content of Te at the interface between the first plating layer 720 and the first bonding layer 740 or at the interface between the second plating layer 730 and the second bonding layer 750 may correspond to the thermoelectric material layer 710. 0.8 to 1 times, preferably 0.85 to 1 times, more preferably 0.9, the content of Te at the interface between the first bonding layer 740 or at the interface between the thermoelectric material layer 710 and the second bonding layer 750. To 1 times, more preferably 0.95 to 1 times. Here, the content may be a weight ratio.
이에 반해, 도 13 내지 14에 따르면, 제1 도금층(820)과 제1 접합층(840) 간의 경계면 또는 제2 도금층(830)과 제2 접합층(850) 간의 경계면에서의 Te의 함량은 열전 소재층(810)과 제1 접합층(840) 간의 경계면 또는 열전 소재층(810)과 제2 접합층(850) 간의 경계면에서의 Te의 함량에 비하여 낮게 나타남을 알 수 있다. 이는, 도 11 내지 12에서는 제1 접합층(740) 또는 제2 접합층(750)을 형성하기 위하여 제1 도금층(720) 또는 제2 도금층(730) 상에 Te를 도포하므로, Te의 함량이 일정하게 유지되지만, 도 13 내지 14에서는 열전 소재층(810) 내 Te가 제1 도금층(820) 또는 제2 도금층(830)과 반응하기 위하여 자연 확산하기 때문이다.In contrast, according to FIGS. 13 to 14, the content of Te at the interface between the first plating layer 820 and the first bonding layer 840 or at the interface between the second plating layer 830 and the second bonding layer 850 is determined by thermoelectric. It can be seen that the content of Te is lower than the interface between the material layer 810 and the first bonding layer 840 or the interface between the thermoelectric material layer 810 and the second bonding layer 850. 11 to 12, since Te is coated on the first plating layer 720 or the second plating layer 730 to form the first bonding layer 740 or the second bonding layer 750, the content of Te is increased. Although it remains constant, in FIGS. 13 to 14, the Te in the thermoelectric material layer 810 naturally diffuses to react with the first plating layer 820 or the second plating layer 830.
표 1은 실시예 및 비교예에 따른 P형 열전 레그의 전기 저항을 비교한 표이다. Table 1 is a table comparing the electrical resistance of the P-type thermoelectric legs according to the Examples and Comparative Examples.
구분division 사이즈size 저항resistance
실시예Example 4mm*4mm*5mm4mm * 4mm * 5mm 3.3*10-3Ω3.3 * 10 -3 Ω
4mm*4mm*1.2mm4mm * 4mm * 1.2mm 0.8*10-3Ω0.8 * 10 -3 Ω
비교예Comparative example 4mm*4mm*5mm4mm * 4mm * 5mm 4.5*10-3Ω4.5 * 10 -3 Ω
4mm*4mm*1.2mm4mm * 4mm * 1.2mm 2.05*10-3Ω2.05 * 10 -3 Ω
표 1을 참조하면, 비교예, 즉 도 13 내지 14에 따라 제조된 열전 레그에 비하여 실시예, 즉 도 11 내지 12에 따라 제조된 열전 레그의 전기 저항에 작게 나타남을 알 수 있다. 특히, 열전 레그의 크기가 소형화되는 경우, 전기 저항 감소율은 더욱 커짐을 알 수 있다. 이는 열전 레그 내 Te 함량이 고르게 분포되며, Bi 리치 층의 형성이 억제되기 때문으로, 열전 레그의 저항 감소는 열전 소자의 전기전도도 감소를 방지 할 수 있으므로 열전 소자의 제벡 지수를 높이는 주 요인이 될 수 있다.Referring to Table 1, it can be seen that the electrical resistance of the thermoelectric legs manufactured according to the embodiment, that is, 11 to 12, compared to the comparative example, that is, the thermoelectric legs manufactured according to FIGS. In particular, when the size of the thermoelectric leg is miniaturized, it can be seen that the rate of decrease in electrical resistance becomes larger. This is because the Te content in the thermoelectric legs is evenly distributed, and the formation of the Bi rich layer is suppressed, so that the decrease in the resistance of the thermoelectric legs can prevent the decrease in the electrical conductivity of the thermoelectric elements, thereby increasing the Seebeck index of the thermoelectric elements. Can be.
표 2는 실시예 및 비교예에 따른 4mm*4mm*5mm크기의 각 열전 레그의 인장강도를 비교한 표이다. Table 2 is a table comparing the tensile strength of each thermoelectric leg of the size of 4mm * 4mm * 5mm according to the Examples and Comparative Examples.
인장강도The tensile strength N 형 (Kgf/mm2)N type (Kgf / mm 2 ) P형 (Kgf/mm2)P type (Kgf / mm 2 )
비교예Comparative example 0.650.65 2.452.45
실시예Example 1.651.65 2.552.55
표 2를 참조하면, 비교예, 즉 도 13 내지 14에 따라 제조된 열전 레그에 비하여 실시예, 즉 도 11 내지 12에 따라 제조된 열전 레그의 인장강도가 더 크게 나타남을 알 수 있다. 인장강도는 열전 레그 내 층간 접합력을 의미하는 것으로서, 제조된 열전 레그의 양측의 제 1 및 제 2 금속층에 인위적으로 금속 와이어를 각각 접합하고, 접합된 양측의 금속와이어를 서로 반대방향으로 끌어당겼을 때 견디는 최대의 하중을 나타낸다. 인장강도가 클수록 열전 레그 내 층간 접합력이 높으므로, 열전 소자의 구동 시 열전 레그 내 금속층, 도금층, 접합층 및 열전 소재층 중 적어도 일부가 인접하여 배치된 층으로부터 탈락하는 문제를 방지할 수 있다. 본 발명의 실시예에 따른 열전 소자는 발전용 장치, 냉각용 장치, 온열용 장치 등에 작용될 수 있다. 구체적으로는, 본 발명의 실시예에 따른 열전 소자는 주로 광통신 모듈, 센서, 의료 기기, 측정 기기, 항공 우주 산업, 냉장고, 칠러(chiller), 자동차 통풍 시트, 컵 홀더, 세탁기, 건조기, 와인셀러, 정수기, 센서용 전원 공급 장치, 서모파일(thermopile) 등에 적용될 수 있다. Referring to Table 2, it can be seen that the comparative example, that is, the tensile strength of the thermoelectric legs prepared according to the embodiment, that is, according to Figures 11 to 12 is greater than the thermoelectric legs prepared according to Figures 13 to 14. Tensile strength refers to the interlayer bonding force in the thermoelectric leg, which artificially bonded the metal wires to the first and second metal layers on both sides of the manufactured thermoelectric leg, respectively, and pulled the joined metal wires in opposite directions. When the maximum load to withstand. Since the greater the tensile strength, the higher the interlayer bonding strength in the thermoelectric leg, it is possible to prevent a problem that at least some of the metal layer, the plating layer, the bonding layer, and the thermoelectric material layer in the thermoelectric leg are dropped from the adjacently disposed layer when the thermoelectric element is driven. The thermoelectric element according to the embodiment of the present invention may act on the apparatus for power generation, the apparatus for cooling, the apparatus for heating, and the like. Specifically, the thermoelectric device according to the embodiment of the present invention mainly includes optical communication modules, sensors, medical devices, measuring devices, aerospace industry, refrigerators, chillers, automobile ventilation sheets, cup holders, washing machines, dryers, and wine cellars. It can be applied to water purifier, sensor power supply, thermopile and the like.
여기서, 본 발명의 실시예에 따른 열전 소자가 의료 기기에 적용되는 예로, PCR(Polymerase Chain Reaction) 기기가 있다. PCR 기기는 DNA를 증폭하여 DNA의 염기 서열을 결정하기 위한 장비이며, 정밀한 온도 제어가 요구되고, 열 순환(thermal cycle)이 필요한 기기이다. 이를 위하여, 펠티어 기반의 열전 소자가 적용될 수 있다. Here, an example in which a thermoelectric device according to an embodiment of the present invention is applied to a medical device includes a polymer chain reaction (PCR) device. PCR equipment is a device for amplifying DNA to determine the DNA sequence, precise temperature control is required, and a thermal cycle (thermal cycle) equipment is required. To this end, a Peltier-based thermoelectric device may be applied.
본 발명의 실시예에 따른 열전 소자가 의료 기기에 적용되는 다른 예로, 광 검출기가 있다. 여기서, 광 검출기는 적외선/자외선 검출기, CCD(Charge Coupled Device) 센서, X-ray 검출기, TTRS(Thermoelectric Thermal Reference Source) 등이 있다. 광 검출기의 냉각(cooling)을 위하여 펠티어 기반의 열전 소자가 적용될 수 있다. 이에 따라, 광 검출기 내부의 온도 상승으로 인한 파장 변화, 출력 저하 및 해상력 저하 등을 방지할 수 있다. Another example in which a thermoelectric device according to an embodiment of the present invention is applied to a medical device is a photo detector. Here, the photo detector includes an infrared / ultraviolet detector, a charge coupled device (CCD) sensor, an X-ray detector, a thermoelectric thermal reference source (TTRS), and the like. Peltier-based thermoelectric elements may be applied for cooling the photo detector. As a result, it is possible to prevent a change in wavelength, a decrease in power, a decrease in resolution, etc. due to a temperature rise inside the photodetector.
본 발명의 실시예에 따른 열전 소자가 의료 기기에 적용되는 또 다른 예로, 면역 분석(immunoassay) 분야, 인비트로 진단(In vitro Diagnostics) 분야, 온도 제어 및 냉각 시스템(general temperature control and cooling systems), 물리 치료 분야, 액상 칠러 시스템, 혈액/플라즈마 온도 제어 분야 등이 있다. 이에 따라, 정밀한 온도 제어가 가능하다. As another example in which the thermoelectric device according to an embodiment of the present invention is applied to a medical device, the field of immunoassay, in vitro diagnostics, general temperature control and cooling systems, Physiotherapy, liquid chiller systems, blood / plasma temperature control. Thus, precise temperature control is possible.
본 발명의 실시예에 따른 열전 소자가 의료 기기에 적용되는 또 다른 예로, 인공 심장이 있다. 이에 따라, 인공 심장으로 전원을 공급할 수 있다. Another example where the thermoelectric device according to an embodiment of the present invention is applied to a medical device is an artificial heart. Thus, power can be supplied to the artificial heart.
본 발명의 실시예에 따른 열전 소자가 항공 우주 산업에 적용되는 예로, 별 추적 시스템, 열 이미징 카메라, 적외선/자외선 검출기, CCD 센서, 허블 우주 망원경, TTRS 등이 있다. 이에 따라, 이미지 센서의 온도를 유지할 수 있다. Examples of applications of the thermoelectric device according to an embodiment of the present invention to the aerospace industry include a star tracking system, a thermal imaging camera, an infrared / ultraviolet detector, a CCD sensor, a hubble space telescope, and a TTRS. Accordingly, the temperature of the image sensor can be maintained.
본 발명의 실시예에 따른 열전 소자가 항공 우주 산업에 적용되는 다른 예로, 냉각 장치, 히터, 발전 장치 등이 있다. Another example where the thermoelectric device according to the embodiment of the present invention is applied to the aerospace industry includes a cooling device, a heater, a power generation device, and the like.
이 외에도 본 발명의 실시예에 따른 열전 소자는 기타 산업 분야에 발전, 냉각 및 온열을 위하여 적용될 수 있다. In addition, the thermoelectric device according to the embodiment of the present invention may be applied for power generation, cooling, and heating in other industrial fields.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed within the scope of the invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.

Claims (10)

  1. Bi 및 Te를 포함하는 열전 소재층, Thermoelectric material layer comprising Bi and Te,
    상기 열전 소재층의 한 면 및 상기 한 면의 다른 면 상에 각각 배치되는 제1 금속층 및 제2 금속층,A first metal layer and a second metal layer respectively disposed on one side and the other side of the thermoelectric material layer;
    상기 열전 소재층과 상기 제1 금속층 사이에 배치되며, 상기 Te를 포함하는 제1 접합층 및 상기 열전 소재층과 상기 제2 금속층 사이에 배치되며, 상기 Te를 포함하는 제2 접합층, 그리고A second bonding layer disposed between the thermoelectric material layer and the first metal layer and disposed between the first bonding layer including the Te and the thermoelectric material layer and the second metal layer, and including the Te;
    상기 제1 금속층과 상기 제 1 접합층 사이에 배치되는 제 1 도금층 및 상기 제2 금속층과 상기 제 2 접합층 사이에 배치되는 제 2 도금층을 포함하고,A first plating layer disposed between the first metal layer and the first bonding layer, and a second plating layer disposed between the second metal layer and the second bonding layer,
    상기 열전 소재층은 상기 제1 금속층 및 상기 제2 금속층 사이에 배치되고, The thermoelectric material layer is disposed between the first metal layer and the second metal layer,
    상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제1 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높고,The Te content is higher than the Bi content from the center surface of the thermoelectric material layer to the interface between the thermoelectric material layer and the first bonding layer,
    상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제2 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높은 열전 레그.And the Te content is higher than the Bi content from the center plane of the thermoelectric material layer to the interface between the thermoelectric material layer and the second bonding layer.
  2. 제1항에 있어서, The method of claim 1,
    상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제 1 접합층 간의 경계면 내 소정 지점에서의 상기 Te 함량은 상기 열전 소재층의 중심면의 Te 함량 대비 0.8배 내지 1배인 열전 레그. And the Te content at a predetermined point in the interface between the thermoelectric material layer and the first bonding layer from the center surface of the thermoelectric material layer is 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer.
  3. 제 2항에 있어서,The method of claim 2,
    상기 열전 소재층과 상기 제 1 접합층 간의 경계면으로부터 상기 열전 소재층의 중심면의 방향으로 100㎛ 두께 내 소정 지점에서의 Te 함량은 상기 열전 소재층의 중심면의 Te 함량 대비 0.8배 내지 1배인 열전 레그.The Te content at a predetermined point within 100 μm thickness in the direction of the center surface of the thermoelectric material layer from the interface between the thermoelectric material layer and the first bonding layer is 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer. Thermoelectric legs.
  4. 제 2항에 있어서, The method of claim 2,
    상기 제1 도금층 및 상기 제2 도금층 중 적어도 하나는 각각 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나의 금속을 포함하는 열전 레그.At least one of the first plating layer and the second plating layer each of the thermoelectric legs including at least one metal of Ni, Sn, Ti, Fe, Sb, Cr and Mo.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 제1 접합층 및 상기 제2 접합층 중 적어도 하나는 상기 제 1 도금층 및 상기 제 2 도금층에서 선택된 적어도 하나의 금속을 더 포함하는 열전 레그.At least one of the first bonding layer and the second bonding layer further comprises at least one metal selected from the first plating layer and the second plating layer.
  6. 제 5항에 있어서, The method of claim 5,
    상기 제1 금속층 및 상기 제2 금속층 중 적어도 하나는 구리, 구리 합금, 알루미늄 및 알루미늄 합금으로부터 선택되는 열전 레그.At least one of the first metal layer and the second metal layer is selected from copper, a copper alloy, aluminum and an aluminum alloy.
  7. 제 2항에 있어서,The method of claim 2,
    상기 제 1 도금층의 두께는 1㎛ 내지 20㎛인 열전레그.The thickness of the first plating layer is a thermoelectric leg of 1㎛ 20㎛.
  8. 제 1항에 있어서, The method of claim 1,
    상기 열전 소재층과 상기 제 1 접합층은 서로 직접 접촉하고, The thermoelectric material layer and the first bonding layer are in direct contact with each other,
    상기 제 1 접합층과 상기 제 1 도금층은 서로 직접 접촉하고, The first bonding layer and the first plating layer are in direct contact with each other,
    상기 제 1 도금층과 상기 제 1 금속층은 서로 직접 접촉하는 열전레그.And the first plating layer and the first metal layer are in direct contact with each other.
  9. 제1 기판,First substrate,
    상기 제1 기판 상에 교대로 배치되는 복수의 P형 열전 레그 및 복수의 N형 열전 레그,A plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs disposed alternately on the first substrate,
    상기 복수의 P형 열전 레그 및 상기 복수의 N형 열전 레그 상에 배치되는 제2 기판, 그리고A second substrate disposed on the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs, and
    상기 복수의 P형 열전 레그 및 상기 복수의 N형 열전 레그를 직렬 연결하는 복수의 전극을 포함하며, A plurality of electrodes connecting the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs in series,
    상기 복수의 P형 열전 레그 및 상기 복수의 N형 열전 레그는 각각 The plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs are respectively
    Bi 및 Te를 포함하는 열전 소재층, Thermoelectric material layer comprising Bi and Te,
    상기 열전 소재층의 한 면 및 상기 한 면의 다른 면 상에 각각 배치되는 제1 금속층 및 제2 금속층,A first metal layer and a second metal layer respectively disposed on one side and the other side of the thermoelectric material layer;
    상기 열전 소재층과 상기 제1 금속층 사이에 배치되며, 상기 Te를 포함하는 제1 접합층 및 상기 열전 소재층과 상기 제2 금속층 사이에 배치되며, 상기 Te를 포함하는 제2 접합층, 그리고A second bonding layer disposed between the thermoelectric material layer and the first metal layer and disposed between the first bonding layer including the Te and the thermoelectric material layer and the second metal layer, and including the Te;
    상기 제1 금속층과 상기 제 1 접합층 사이에 배치되는 제 1 도금층 및 상기 제2 금속층과 상기 제 2 접합층 사이에 배치되는 제 2 도금층을 포함하고,A first plating layer disposed between the first metal layer and the first bonding layer, and a second plating layer disposed between the second metal layer and the second bonding layer,
    상기 열전 소재층은 상기 제1 금속층 및 상기 제2 금속층 사이에 배치되고, The thermoelectric material layer is disposed between the first metal layer and the second metal layer,
    상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제1 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높고,The Te content is higher than the Bi content from the center surface of the thermoelectric material layer to the interface between the thermoelectric material layer and the first bonding layer,
    상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제2 접합층 간의 경계면까지 상기 Te 함량은 상기 Bi 함량보다 높은 열전 소자.The Te content from the center surface of the thermoelectric material layer to the interface between the thermoelectric material layer and the second bonding layer is higher than the Bi content.
  10. 제9항에 있어서, The method of claim 9,
    상기 열전 소재층의 중심면으로부터 상기 열전 소재층과 상기 제 1 접합층 간의 경계면 내 소정 지점에서의 상기 Te 함량은 상기 열전 소재층 중심면의 Te 함량 대비 0.8배 내지 1배인 열전 소자.The Te content at a predetermined point in the interface between the thermoelectric material layer and the first bonding layer from the center surface of the thermoelectric material layer is 0.8 to 1 times the Te content of the center surface of the thermoelectric material layer.
PCT/KR2017/005754 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element comprising same WO2017209549A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17807042.1A EP3467888B1 (en) 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element comprising same
JP2018555491A JP6987077B2 (en) 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element including it
EP21161352.6A EP3852157A3 (en) 2016-06-01 2017-06-01 A method of manufacturing a thermoelectric leg
CN201780033900.8A CN109219893B (en) 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element including the same
US16/099,292 US11233187B2 (en) 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element comprising same
US16/998,412 US11342490B2 (en) 2016-06-01 2020-08-20 Thermoelectric leg and thermoelectric element comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0068345 2016-06-01
KR20160068345 2016-06-01
KR10-2017-0068656 2017-06-01
KR1020170068656A KR101931634B1 (en) 2016-06-01 2017-06-01 Thermo electric leg and thermo electric element comprising the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/099,292 A-371-Of-International US11233187B2 (en) 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element comprising same
US16/998,412 Continuation US11342490B2 (en) 2016-06-01 2020-08-20 Thermoelectric leg and thermoelectric element comprising same

Publications (1)

Publication Number Publication Date
WO2017209549A1 true WO2017209549A1 (en) 2017-12-07

Family

ID=60478827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005754 WO2017209549A1 (en) 2016-06-01 2017-06-01 Thermoelectric leg and thermoelectric element comprising same

Country Status (1)

Country Link
WO (1) WO2017209549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699562A (en) * 2018-02-01 2020-09-22 Lg伊诺特有限公司 Thermoelectric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321919A (en) * 1997-03-18 1998-12-04 Yamaha Corp Thermoelectric material having ni-alloy coating film
JPH11121813A (en) * 1997-10-14 1999-04-30 Kubota Corp Thermoelectric element and its manufacture
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2010182940A (en) * 2009-02-06 2010-08-19 Ube Ind Ltd Thermoelectric conversion element and thermoelectric conversion module using the same
JP2014086623A (en) * 2012-10-25 2014-05-12 Furukawa Co Ltd Thermoelectric conversion module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321919A (en) * 1997-03-18 1998-12-04 Yamaha Corp Thermoelectric material having ni-alloy coating film
JPH11121813A (en) * 1997-10-14 1999-04-30 Kubota Corp Thermoelectric element and its manufacture
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2010182940A (en) * 2009-02-06 2010-08-19 Ube Ind Ltd Thermoelectric conversion element and thermoelectric conversion module using the same
JP2014086623A (en) * 2012-10-25 2014-05-12 Furukawa Co Ltd Thermoelectric conversion module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467888A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699562A (en) * 2018-02-01 2020-09-22 Lg伊诺特有限公司 Thermoelectric device
CN111699562B (en) * 2018-02-01 2023-12-19 Lg伊诺特有限公司 thermoelectric device

Similar Documents

Publication Publication Date Title
US11342490B2 (en) Thermoelectric leg and thermoelectric element comprising same
WO2020159177A1 (en) Thermoelectric device
KR20240046141A (en) Thermo electric element
WO2019146990A1 (en) Thermoelectric element and manufacturing method thereof
WO2017209549A1 (en) Thermoelectric leg and thermoelectric element comprising same
WO2016159591A1 (en) Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
WO2020004827A1 (en) Thermoelectric element
WO2019143140A1 (en) Thermoelectric element
WO2020246749A1 (en) Thermoelectric device
WO2021029590A1 (en) Thermoelectric device
WO2017014567A1 (en) Thermoelement and cooling apparatus comprisng same
WO2020153799A1 (en) Thermoelectric element
WO2020130507A1 (en) Thermoelectric module
KR102621179B1 (en) Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
WO2020096228A1 (en) Thermoelectric module
WO2020256398A1 (en) Thermoelectric element
KR20160002608A (en) Thermoelectric modules consisting of thermal-via electrodes and Fabrication method thereof
WO2018143598A1 (en) Thermoelectric sintered body and thermoelectric element
WO2019022570A1 (en) Cooling/warming device
WO2019151765A1 (en) Thermoelectric device
KR102609889B1 (en) Thermoelectric element
WO2021141302A1 (en) Thermoelectric device
WO2022060165A1 (en) Thermoelectric element
WO2022124674A1 (en) Thermoelectric element
WO2019194539A1 (en) Thermoelectric element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17807042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017807042

Country of ref document: EP

Effective date: 20190102