WO2019194539A1 - Thermoelectric element - Google Patents

Thermoelectric element Download PDF

Info

Publication number
WO2019194539A1
WO2019194539A1 PCT/KR2019/003878 KR2019003878W WO2019194539A1 WO 2019194539 A1 WO2019194539 A1 WO 2019194539A1 KR 2019003878 W KR2019003878 W KR 2019003878W WO 2019194539 A1 WO2019194539 A1 WO 2019194539A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
electrodes
disposed
resin
metal substrate
Prior art date
Application number
PCT/KR2019/003878
Other languages
French (fr)
Korean (ko)
Inventor
노명래
이종민
조용상
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190036097A external-priority patent/KR102095243B1/en
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP19781406.4A priority Critical patent/EP3764410B1/en
Priority to CN201980024692.4A priority patent/CN112041996B/en
Priority to EP23200135.4A priority patent/EP4277454A3/en
Priority to JP2020553583A priority patent/JP7442456B2/en
Priority to CN202311444909.1A priority patent/CN117460386A/en
Priority to US17/041,695 priority patent/US20210050504A1/en
Priority to CN202311444498.6A priority patent/CN117460385A/en
Priority to CN202311446808.8A priority patent/CN117460387A/en
Publication of WO2019194539A1 publication Critical patent/WO2019194539A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a thermoelectric element, and more particularly to a junction structure of a thermoelectric element.
  • Thermoelectric phenomenon is a phenomenon caused by the movement of electrons and holes in a material, and means a direct energy conversion between heat and electricity.
  • thermoelectric device is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric material and an N-type thermoelectric material are bonded between metal electrodes to form a PN junction pair.
  • Thermoelectric elements may be classified into a device using a temperature change of the electrical resistance, a device using the Seebeck effect, a phenomenon in which electromotive force is generated by a temperature difference, a device using a Peltier effect, a phenomenon in which endothermic or heat generation by current occurs. .
  • thermoelectric devices have been applied to a variety of home appliances, electronic components, communication components, and the like.
  • the thermoelectric element may be applied to a cooling device, a heating device, a power generating device, or the like. Accordingly, the demand for thermoelectric performance of thermoelectric elements is increasing.
  • the thermoelectric element includes a substrate, an electrode, and a thermoelectric leg, and a plurality of thermoelectric legs are arranged in an array form between the upper substrate and the lower substrate, and a plurality of upper electrodes are disposed between the plurality of thermoelectric legs and the upper substrate. A plurality of lower electrodes are disposed between the thermoelectric leg and the lower substrate.
  • thermoelectric element may be disposed on a metal support.
  • the upper substrate and the lower substrate included in the thermoelectric element are ceramic substrates, heat loss may occur due to thermal resistance at the interface between the ceramic substrate and the metal support.
  • the technical problem to be achieved by the present invention is to provide a junction structure of a thermoelectric element.
  • thermoelectric device is disposed on a first metal substrate, the first metal substrate, a first resin layer in direct contact with the first metal substrate, and a plurality of thermoelectric elements disposed on the first resin layer.
  • the height of the side surface embedded in the first resin layer may be 0.1 to 1 times the thickness of the plurality of first electrodes.
  • the thickness of the first resin layer between two neighboring first electrodes may decrease from the side of each first electrode toward the center region between the two neighboring first electrodes.
  • the thickness of the first resin layer under the plurality of first electrodes may be smaller than the thickness of the first resin layer in the central region between the two neighboring first electrodes.
  • the distribution of the inorganic filler in the first resin layer under the plurality of first electrodes may be different from the distribution of the inorganic filler in the first resin layer between the two neighboring first electrodes.
  • the particle size D50 of the inorganic filler in the first resin layer under the plurality of first electrodes may be smaller than the particle size D50 of the inorganic filler in the first resin layer between two neighboring first electrodes.
  • the surface facing the first resin layer of the first metal substrate may include a first region and a second region disposed inside the first region, and the surface roughness of the second region may be a surface of the first region. Larger than the roughness, the first resin layer may be disposed on the second region.
  • the display device may further include a sealing part disposed between the first metal substrate and the second metal substrate, and the sealing part may be disposed on the first area.
  • the sealing part may include a sealing case disposed at a predetermined distance from a side surface of the first resin layer and a side surface of the second resin layer, and a sealing material disposed between the sealing case and the first region.
  • the first resin layer may include 20 to 40 wt% of the polymer resin and 60 to 80 wt% of the inorganic filler.
  • the polymer resin may include at least one of an epoxy resin, an acrylic resin, a urethane resin, a polyamide resin, a polyethylene resin, an EVA (Ethylene-Vinyl Acetate copolymer) resin, a polyester resin, and a polyvinyl chloride (PVC) resin.
  • the inorganic filler may include at least one of aluminum oxide, boron nitride and aluminum nitride.
  • the second resin layer may include the same material as the first resin layer.
  • thermoelectric device having excellent thermal conductivity, low heat loss, and high reliability.
  • thermoelectric device according to the embodiment of the present invention has a high bonding strength with the metal support, and the manufacturing process is simple.
  • thermoelectric device 1 is a cross-sectional view of a thermoelectric device according to an exemplary embodiment of the present invention.
  • thermoelectric device 2 is a top view of a metal substrate included in a thermoelectric device according to an exemplary embodiment of the present invention.
  • thermoelectric device 3 is a cross-sectional view of a metal substrate side of a thermoelectric device according to an exemplary embodiment of the present invention.
  • FIG. 4 is an enlarged view of a region of FIG. 3.
  • thermoelectric device 5 is a top view of a metal substrate included in a thermoelectric device according to another exemplary embodiment of the present invention.
  • thermoelectric device 6 is a cross-sectional view of the metal substrate side of the thermoelectric device including the metal substrate of FIG. 5.
  • thermoelectric device 7 is a cross-sectional view of a thermoelectric device according to still another embodiment of the present invention.
  • thermoelectric device 8 is a perspective view of the thermoelectric device of FIG. 7.
  • thermoelectric device of FIG. 7 is an exploded perspective view of the thermoelectric device of FIG. 7.
  • thermoelectric device 10 shows a method of manufacturing a thermoelectric device according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of a water purifier to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
  • thermoelectric element 12 is a block diagram of a refrigerator to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention
  • Figure 2 is a top view of a metal substrate included in the thermoelectric device according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention 4 is a cross-sectional view of the metal substrate side of the thermoelectric device
  • FIG. 4 is an enlarged view of a region of FIG. 5 is a top view of a metal substrate included in a thermoelectric device according to another exemplary embodiment of the present invention
  • FIG. 6 is a cross-sectional view of the metal substrate side of the thermoelectric device including the metal substrate of FIG. 5.
  • the thermoelectric element 100 includes a first resin layer 110, a plurality of first electrodes 120, a plurality of P-type thermoelectric legs 130, a plurality of N-type thermoelectric legs 140, and a plurality of thermoelectric elements 100.
  • the plurality of first electrodes 120 are disposed between the first resin layer 110, the plurality of P-type thermoelectric legs 130, and the lower surfaces of the plurality of N-type thermoelectric legs 140, and the plurality of second electrodes 150.
  • a pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the first electrode 120 and the second electrode 150 and electrically connected to each other may form a unit cell.
  • a pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 may be disposed on each first electrode 120, and each of the first electrodes 120 may be disposed on each of the first electrodes 120.
  • the pair of N-type thermoelectric legs 140 and the P-type thermoelectric legs 130 may be disposed to overlap one of the pair of P-type thermoelectric legs 130 and the N-type thermoelectric legs 140.
  • the substrate flowing current from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect absorbs heat
  • the substrate that acts as a cooling unit and flows current from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated to act as a heat generating unit.
  • electric charges in the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 are moved due to the Seebeck effect, and electricity is generated. It may be.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth fluoride (Bi-Te) -based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main materials.
  • P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt%
  • a mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%.
  • the main raw material is Bi-Se-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
  • N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt%
  • a mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001
  • the main raw material is Bi-Sb-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stacked type.
  • the bulk P-type thermoelectric leg 130 or the bulk N-type thermoelectric leg 140 is heat-treated thermoelectric material to produce an ingot (ingot), crushed and ingot to obtain a powder for thermoelectric leg, then Sintering, and can be obtained through the process of cutting the sintered body.
  • the stacked P-type thermoelectric leg 130 or the stacked N-type thermoelectric leg 140 is formed by applying a paste including a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking and cutting the unit members. Can be obtained.
  • the pair of P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may have the same shape and volume, or may have different shapes and volumes.
  • the height or the cross-sectional area of the N-type thermoelectric leg 140 is the height or the cross-sectional area of the P-type thermoelectric leg 130. It can also be formed differently.
  • thermoelectric performance index ZT
  • Equation 1 The thermoelectric performance index (ZT) can be expressed as in Equation 1.
  • is the Seebeck coefficient [V / K]
  • sigma is the electrical conductivity [S / m]
  • ⁇ 2 sigma is the Power Factor [W / mK 2 ].
  • T is the temperature and k is the thermal conductivity [W / mK].
  • k can be represented by a ⁇ c p ⁇ ⁇ , a is thermal diffusivity [cm 2 / S], c p is specific heat [J / gK], and ⁇ is density [g / cm 3 ].
  • thermoelectric performance index of the thermoelectric device the Z value (V / K) may be measured using a Z meter, and the Seebeck index (ZT) may be calculated using the measured Z value.
  • the plurality of first electrodes 120 disposed between the first resin layer 110, the P-type thermoelectric leg 130, and the N-type thermoelectric leg 140, and the second resin layer 160 and the P-type thermoelectric may include at least one of copper (Cu), silver (Ag), and nickel (Ni).
  • the sizes of the first resin layer 110 and the second resin layer 160 may be formed differently.
  • the volume, thickness, or area of one of the first resin layer 110 and the second resin layer 160 may be greater than the volume, thickness, or area of the other. Accordingly, the heat absorbing performance or heat dissipation performance of the thermoelectric element can be improved.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal pillar shape, an elliptical pillar shape and the like.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a stacked structure.
  • the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by stacking a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. As a result, it is possible to prevent loss of material and to improve electrical conduction characteristics.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be manufactured according to a zone melting method or a powder sintering method.
  • a zone melting method an ingot is manufactured by using a thermoelectric material, and then, by slowly applying heat to the ingot, the particles are rearranged so as to be rearranged in a single direction, and the thermoelectric leg is slowly cooled.
  • the powder sintering method after manufacturing an ingot using a thermoelectric material, the ingot is pulverized and sieved to obtain a thermoelectric leg powder, and the thermoelectric leg is obtained through the sintering process.
  • the first resin layer 110 is disposed on the first metal substrate 170 so as to directly contact the first metal substrate 170, and the second metal substrate 180 is disposed on the second metal substrate 180.
  • the second resin layer 160 may be disposed to directly contact 180.
  • the first metal substrate 170 and the second metal substrate 180 may be made of aluminum, aluminum alloy, copper, copper alloy, aluminum-copper alloy, or the like.
  • the first metal substrate 170 and the second metal substrate 180 may include the first resin layer 110, the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, and the plurality of N-type thermoelectric legs ( 140, the plurality of second electrodes 150, the second resin layer 160, and the like, and at least one of the first metal substrate 170 and the second metal substrate 180 is an embodiment of the present invention.
  • the thermoelectric device 100 according to the present invention may be an area directly attached to an application to which the thermoelectric device 100 is applied. Accordingly, the first metal substrate 170 and the second metal substrate 180 may be mixed with the first metal support and the second metal support, respectively.
  • An area of the first metal substrate 170 may be larger than an area of the first resin layer 110, and an area of the second metal substrate 180 may be larger than an area of the second resin layer 160. That is, the first resin layer 110 may be disposed in an area spaced apart from the edge of the first metal substrate 170 by a predetermined distance, and the second resin layer 160 may be disposed from the edge of the second metal substrate 180. It may be disposed in an area spaced by a predetermined distance.
  • the width of the first metal substrate 170 may be greater than the width of the second metal substrate 180, or the thickness of the second metal substrate 180 may be greater than the thickness of the first metal substrate 170. .
  • the total area of the first metal substrate 170 may be larger than the total area of the second metal substrate 180.
  • the first metal substrate 170 may be a heat dissipation unit for dissipating heat
  • the second metal substrate 180 may be an endothermic unit for absorbing heat.
  • a plurality of protruding patterns may be disposed on at least one of the opposite surfaces. This protruding pattern may be a heat sink.
  • the first resin layer 110 and the second resin layer 160 may be made of a resin composition containing a polymer resin and an inorganic filler.
  • the polymer resin may be any material when the polymer resin includes a polymer material provided with a function of insulation, adhesion or heat dissipation.
  • the polymer resin is epoxy resin, acrylic resin, urethane resin, polyamide resin, polyethylene resin, EVA (Ethylene-Vinyl Acetate copolymer) resin, polyester resin and PVC (PolyVinyl Chloride) resin It may be any one selected.
  • the polymer resin may be an epoxy resin.
  • the epoxy resin may be included in 20 to 40wt%
  • the inorganic filler may be included in 60 to 80wt%.
  • the thermal conductivity may be low
  • the inorganic filler is included in excess of 80wt%, the adhesive force between the resin layer and the metal substrate may be lowered, and the resin layer may be easily broken.
  • the first resin layer 110 and the second resin layer 160 may include the same material, the thickness of the first resin layer 110 and the second resin layer 160 may be 20 to 200 ⁇ m, The thermal conductivity may be at least 1 W / mK, preferably at least 10 W / mK, more preferably at least 20 W / mK.
  • the first resin layer 110 and the second resin layer 160 repeat contraction and expansion according to temperature change.
  • the bonding between the first resin layer 110 and the first metal substrate 170 and the bonding between the second resin layer 160 and the second metal substrate 180 may not be affected.
  • the epoxy resin may comprise an epoxy compound and a curing agent. At this time, it may be included in 1 to 10 volume ratio of the curing agent with respect to 10 volume ratio of the epoxy compound.
  • the epoxy compound may include at least one of a crystalline epoxy compound, an amorphous epoxy compound and a silicon epoxy compound.
  • the crystalline epoxy compound may comprise a mesogen structure. Mesogen is a basic unit of liquid crystal and includes a rigid structure.
  • the amorphous epoxy compound may be a conventional amorphous epoxy compound having two or more epoxy groups in a molecule, and may be, for example, glycidyl etherate derived from bisphenol A or bisphenol F.
  • the curing agent may include at least one of an amine curing agent, a phenol curing agent, an acid anhydride curing agent, a polycapcaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent and a block isocyanate curing agent, and two or more kinds of curing agents. It can also be mixed and used.
  • the inorganic filler may include aluminum oxide or nitride, and the nitride may include 55 to 95 wt% of the inorganic filler, and more preferably, 60 to 80 wt%. When nitride is included in this numerical range, it is possible to increase the thermal conductivity and the bonding strength.
  • the nitride may include at least one of boron nitride and aluminum nitride.
  • the boron nitride may be a plate-like boron nitride, or a plate-like boron nitride agglomerate agglomerated, the surface of the boron nitride may be coated with a polymer resin.
  • any polymer resin can be used as long as it can bind with boron nitride or can coat the surface of boron nitride.
  • the polymer resin may be, for example, acrylic polymer resin, epoxy polymer resin, urethane polymer resin, polyamide polymer resin, polyethylene polymer resin, EVA (ethylene vinyl acetate copolymer) polymer resin, polyester polymer resin and PVC ( polyvinyl chloride) may be selected from the group consisting of polymer resins.
  • the polymer resin may be a polymer resin having the following unit 1.
  • Unit 1 is as follows.
  • R 1 , R 2 , R 3 and R 4 is H, the other is selected from the group consisting of C 1 -C 3 alkyl, C 2 -C 3 alkenes and C 2 -C 3 alkyne, R 5 May be a linear, branched or cyclic divalent organic linker having 1 to 12 carbon atoms.
  • one of R 1 , R 2 , R 3, and R 4 except H is selected from C 2 to C 3 alkenes, and the other and other ones are selected from C 1 to C 3 alkyl.
  • the polymer resin according to the embodiment of the present invention may include the following unit 2.
  • R 1 , R 2 , R 3, and R 4 except H may be selected to be different from each other in a group consisting of C 1 -C 3 alkyl, C 2 -C 3 alkenes, and C 2 -C 3 alkyne. have.
  • the particle size D50 of boron nitride may be larger than the particle size D50 of aluminum oxide.
  • the particle size D50 of boron nitride may be 40 to 200 ⁇ m, and the particle size D50 of aluminum oxide may be 10 to 30 ⁇ m.
  • boron nitride and aluminum oxide may be evenly dispersed in the epoxy resin composition, thereby having a uniform thermal conduction effect and adhesion performance throughout the resin layer. Can be.
  • the first resin layer 110 when the first resin layer 110 is disposed between the first metal substrate 170 and the plurality of first electrodes 120, the first metal substrate 170 and the plurality of first electrodes do not need a separate ceramic substrate. Heat transfer between the 120 is possible, and due to the adhesive performance of the first resin layer 110 itself, no separate adhesive or physical fastening means is required. In particular, since the first resin layer 110 may be implemented with a significantly thinner thickness than the conventional ceramic substrate, the heat transfer performance between the plurality of first electrodes 120 and the first metal substrate 170 may be improved. The overall size of the device 100 may be reduced.
  • the first metal substrate 170 may directly contact the first resin layer 110.
  • surface roughness is formed on a surface on which the first resin layer 110 is disposed, that is, a surface facing the first resin layer 110 of the first metal substrate 170. Can be. According to this, it is possible to prevent the problem that the first resin layer 110 is lifted up during thermocompression bonding between the first metal substrate 170 and the first resin layer 110.
  • the surface roughness means irregularities, and may be mixed with surface roughness.
  • the surface on which the first resin layer 110 is disposed among both surfaces of the first metal substrate 170 that is, the surface facing the first resin layer 110 of the first metal substrate 170.
  • the second region 174 may be disposed inside the first region 172. That is, the first region 172 may be disposed within a predetermined distance from the edge of the first metal substrate 170 toward the center region, and the first region 172 may surround the second region 174.
  • the surface roughness of the second region 174 may be greater than the surface roughness of the first region 172, and the first resin layer 110 may be disposed on the second region 174.
  • the first resin layer 110 may be disposed to be spaced apart from the boundary between the first region 172 and the second region 174 by a predetermined distance. That is, the first resin layer 110 may be disposed on the second region 174, and the edge of the first resin layer 110 may be located inside the second region 174.
  • At least a portion of the groove 400 formed by the surface roughness of the second region 174 includes a part of the first resin layer 110, that is, the epoxy resin 600 included in the first resin layer 110, and A portion 604 of the inorganic filler may be impregnated, and adhesion between the first resin layer 110 and the first metal substrate 170 may be increased.
  • the surface roughness of the second region 174 may be larger than the particle size D50 of some of the inorganic fillers included in the first resin layer 110 and smaller than the particle size D50 of the other portions.
  • the particle size D50 refers to a particle size corresponding to 50% of the weight percentage in the particle size distribution curve, that is, a particle size such that the passage mass percentage is 50%, and may be mixed with the average particle diameter.
  • the first resin layer 110 includes aluminum oxide and boron nitride as an inorganic filler, aluminum oxide does not affect the adhesion performance between the first resin layer 110 and the first metal substrate 170.
  • boron nitride has a smooth surface, it may adversely affect the adhesion performance between the first resin layer 110 and the first metal substrate 170. Accordingly, when the surface roughness of the second region 174 is greater than the particle size D50 of aluminum oxide included in the first resin layer 110, but smaller than the particle size D50 of boron nitride, the second region 174 may be formed. Since only aluminum oxide is disposed in the groove formed by the surface roughness, and boron nitride is hardly disposed, the first resin layer 110 and the first metal substrate 170 can maintain high bonding strength.
  • the surface roughness of the second region 174 is 1.05 to 1.3 of the particle size D50 of the inorganic filler 604 having a relatively small size among the inorganic fillers included in the first resin layer 110, for example, aluminum oxide.
  • the inorganic filler 602 of the inorganic filler included in the first resin layer 110 is relatively large in size, for example, may be smaller than the particle size D50 of boron nitride.
  • the surface roughness of the second region 174 may be less than 40 ⁇ m, preferably 10.5 to 39 ⁇ m. Accordingly, boron nitride disposed in the groove formed by the surface roughness of the second region 174 may be minimized.
  • Such surface roughness may be measured using a surface roughness meter.
  • the surface roughness measuring instrument measures the cross-sectional curve by using a probe, and can calculate the surface roughness using the peak line, the valley line, the average line and the reference length of the cross-sectional curve.
  • the surface roughness may mean arithmetic mean roughness Ra by the center line average calculation method. Arithmetic mean roughness Ra may be obtained through Equation 2 below.
  • a surface on which the first resin layer 110 is disposed among both surfaces of the first metal substrate 170 that is, the first of the first metal substrate 170.
  • the surface facing the resin layer 110 may include a second region 174 surrounded by the first region 172 and the first region 172, and having a larger surface roughness than the first region 172. It may further include a third region 176.
  • the third region 176 may be disposed inside the second region 174. That is, the third region 176 may be disposed to be surrounded by the second region 174.
  • the surface roughness of the second region 174 may be larger than the surface roughness of the third region 176.
  • the first resin layer 110 is disposed to be spaced apart from the boundary between the first region 172 and the second region 174 by a predetermined distance, and the first resin layer 110 is a part of the second region 174 and It may be arranged to cover the third region 176.
  • the height H1 of the side surfaces 121 of the plurality of first electrodes 120 embedded in the first resin layer 110 is 0.1 to 1 times the thickness H of the plurality of first electrodes 120, Preferably 0.2 to 0.9 times, more preferably 0.3 to 0.8 times.
  • the contact area between the plurality of first electrodes 120 and the first resin layer 110 is provided.
  • the heat transfer performance and the bonding strength between the plurality of first electrodes 120 and the first resin layer 110 may be further increased.
  • the height H1 of the side surfaces 121 of the plurality of first electrodes 120 embedded in the first resin layer 110 is less than 0.1 times the thickness H of the plurality of first electrodes 120, the plurality of It may be difficult to sufficiently obtain the heat transfer performance and the bonding strength between the first electrode 120 and the first resin layer 110, the side surface 121 of the plurality of first electrodes 120 embedded in the first resin layer 110.
  • the height H1 exceeds 1 times the thickness H of the plurality of first electrodes 120, the first resin layer 110 may rise on the plurality of first electrodes 120. There is a possibility of an electrical short.
  • the thickness of the first resin layer 110 between two neighboring first electrodes 120 may decrease from the side of each electrode toward the center region.
  • the center area may mean a predetermined area including a center point between two first electrodes 120. That is, the thickness of the first resin layer 110 may decrease gradually as the distance from one side of the first electrode 120 decreases, and increases as the thickness of the first resin layer 110 approaches the side of the neighboring first electrode 120. In this case, the thickness of the first resin layer 110 may be gradually reduced between two neighboring first electrodes 120, and may increase. Accordingly, the upper surface of the first resin layer 110 may have a 'V' shape having a smooth vertex between two neighboring first electrodes 120.
  • the first resin layer 110 between two neighboring first electrodes 120 may have a thickness variation.
  • the height T2 of the first resin layer 110 in the region in direct contact with the side surface 121 of the first electrode 120 is the highest, and the height of the first resin layer 110 in the center region is highest.
  • the height T3 may be lower than the height T2 of the first resin layer 110 in a region in direct contact with the side surface 121 of the first electrode 120. That is, the height T3 of the central region of the first resin layer 110 between the two neighboring first electrodes 120 is within the first resin layer 110 between the two neighboring first electrodes 120. Can be the lowest.
  • the height T1 of the first resin layer 110 under each first electrode 120 is the height T3 of the central region of the first resin layer 110 between two neighboring first electrodes 120. Can be lower than). That is, the height T2 of the first resin layer 110 in the region in direct contact with the side surface of the first electrode 120, the first resin layer in the central region between two neighboring first electrodes 120.
  • a height deviation may occur in the order of T2> T3> T1. have.
  • the height difference is such that the composition forming the first resin layer 110 is cured after placing and pressing the plurality of first electrodes 120 on the composition forming the first resin layer 110 in an uncured or semi-cured state.
  • the side surfaces of the plurality of first electrodes 120 may be a channel through which air in the composition forming the first resin layer 110 is discharged.
  • the composition forming the first resin layer 110 may be a plurality of compositions. It may be cured in the form of falling in the direction of gravity along the side of the first electrode 120 of.
  • the thickness T1 of the first resin layer 110 under the plurality of first electrodes 120 is 20 to 80 ⁇ m, and is formed in a region in direct contact with the side surface 121 of the first electrode 120.
  • the thickness T2 of the first resin layer 110 is 1.5 to 4 times, preferably 2 to 4 times, more preferably the thickness T1 of the first resin layer 110 disposed below each first electrode 120. Preferably 3 to 4 times.
  • the thickness T3 of the first resin layer 110 disposed in the center region between two neighboring first electrodes 120 may correspond to the first resin layer 110 disposed below each first electrode 120. It may be 1.1 to 3 times, preferably 1.1 to 2.5 times, and more preferably 1.1 to 2 times the thickness T1 of.
  • the thickness T2 of the first resin layer 110 in a region in direct contact with the side surface 121 of the first electrode 120 may be disposed in a center region between two neighboring first electrodes 120.
  • the first resin layer 110 may be 1.5 to 3.5 times, preferably 2 to 3 times, and more preferably 2.2 to 2.7 times the thickness T3 of the first resin layer 110.
  • the plurality of first electrodes 120 Distribution of the inorganic filler in the first resin layer 110 may be different from the distribution of the inorganic filler in the first resin layer 110 between the plurality of first electrodes 120.
  • the first resin layer 110 includes boron nitride having D50 of 40 to 200 ⁇ m and aluminum oxide having D50 of 10 to 30 ⁇ m
  • boron nitride and aluminum oxide may be contained in the first resin layer 110. Evenly distributed throughout, the distribution may differ in part.
  • the density of boron nitride having a D50 of 40 to 200 ⁇ m is about 2.1 g / cm 3
  • the density of aluminum oxide having a D50 of 10 to 30 ⁇ m is about 3,95 to 4.1 g / cm 3 . Accordingly, high density and small size aluminum oxides tend to sink downwards as compared to relatively low density and large size boron nitride.
  • an inorganic filler having a larger particle size than that of T1 is disposed between the plurality of first electrodes 120.
  • the distribution of the inorganic filler in the first resin layer 110 under the plurality of first electrodes 120 may be different from the distribution of the inorganic filler in the first resin layer 110 between the plurality of first electrodes 120.
  • the content ratio (eg, weight ratio) of boron nitride with respect to the entire inorganic filler in the first resin layer 110 under the plurality of first electrodes 120 may include a first ratio between the plurality of first electrodes 120. It may be smaller than the content ratio (eg, weight ratio) of boron nitride to the total inorganic filler in the resin layer 110.
  • the particle size D50 of the inorganic filler in the first resin layer 110 under the plurality of first electrodes 120 is the particle of the inorganic filler in the first resin layer 110 between the plurality of first electrodes 120. It may be smaller than size D50.
  • Aluminum oxide does not affect the adhesion performance between the first resin layer 110 and the plurality of first electrodes 120, but since the surface of the boron nitride is smooth, the first resin layer 110 and the plurality of first electrodes ( 120) may adversely affect the adhesion performance between.
  • the plurality of first electrodes 120 is embedded in the first resin layer 110 as in the embodiment of the present invention, the content of boron nitride in the first resin layer 110 disposed under the plurality of first electrodes 120. As a result, the bonding strength between the plurality of first electrodes 120 and the first resin layer 110 may be increased as compared with the case where the plurality of first electrodes 120 are not embedded in the first resin layer 110. Can be.
  • FIG. 7 is a cross-sectional view of a thermoelectric device according to still another embodiment of the present invention
  • FIG. 8 is a perspective view of the thermoelectric device according to FIG. 7
  • FIG. 9 is an exploded perspective view of the thermoelectric device according to FIG. 7. Descriptions identical to those described with reference to FIGS. 1 to 6 will not be repeated here.
  • thermoelectric device 100 includes a sealing unit 190.
  • the sealing unit 190 may be disposed on the side of the first resin layer 110 and the side of the second resin layer 160 on the first metal substrate 170. That is, the sealing unit 190 may be formed of the first metal.
  • the outermost portion of the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, and the plurality of N-type thermoelectric legs 140 are disposed between the substrate 170 and the second metal substrate 180. It may be disposed to surround the outer side, the outermost side of the plurality of second electrodes 150 and side surfaces of the second resin layer 160.
  • the resin layer can be sealed from external moisture, heat, contamination and the like.
  • the sealing unit 190 may be disposed on the first region 172.
  • the sealing effect between the sealing unit 190 and the first metal substrate 170 may be enhanced.
  • the sealing part 190 may include a side surface of the first resin layer 110, an outermost portion of the plurality of first electrodes 120, a plurality of P-type thermoelectric legs 130, and a plurality of N-type thermoelectric legs 140.
  • the outermost part, the sealing case 192, the sealing case 192, and the first metal substrate 170 which are spaced apart from the outermost part of the plurality of second electrodes 150 and the side surfaces of the second resin layer 160 by a predetermined distance.
  • the sealing member 194 may be disposed between the first region 172, and the sealing member 196 may be disposed between the side surfaces of the sealing case 192 and the second metal substrate 180.
  • the sealing case 192 may contact the first metal substrate 170 and the second metal substrate 180 through the sealing materials 194 and 196. Accordingly, when the sealing case 192 is in direct contact with the first metal substrate 170 and the second metal substrate 180, thermal conduction occurs through the sealing case 192, and as a result, ⁇ T is lowered. You can prevent it.
  • a portion of the inner wall of the sealing case 192 is formed to be inclined, the sealing material 196 is the second metal substrate 180 and the sealing case at the side of the second metal substrate 180. Disposed between 192. As a result, the contact area between the sealing case 192 and the second metal substrate 180 may be minimized, and the volume between the first metal substrate 170 and the second metal substrate 180 may be increased. Since it becomes active, higher ⁇ T can be obtained.
  • the sealing materials 194 and 196 may include at least one of an epoxy resin and a silicone resin, or at least one of an epoxy resin and a silicone resin may include a tape coated on both surfaces.
  • the sealing materials 194 and 196 serve to seal between the sealing case 192 and the first metal substrate 170 and between the sealing case 192 and the second metal substrate 180, and the first resin layer 110.
  • sealing effects of the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, the plurality of N-type thermoelectric legs 140, the plurality of second electrodes 150, and the second resin layer 160 It can increase, and can be mixed with a finish, a finish layer, a waterproof material, a waterproof layer and the like.
  • the sealing case 192 may be formed with a guide groove (G) for drawing out the wires 200 and 202 connected to the electrode.
  • the sealing case 192 may be an injection molded product made of plastic or the like, and may be mixed with the sealing cover.
  • the first metal substrate 170 may be a heat radiating part or a heat generating part for emitting heat
  • the second metal substrate 180 may be an endothermic part or cooling part for absorbing heat.
  • the width of the first metal substrate 170 may be greater than the width of the second metal substrate 180, or the thickness of the first metal substrate 170 may be thinner than the thickness of the second metal substrate 180.
  • the first metal substrate 170 which is a heat radiating part or a heat generating part, may be implemented to have a low thermal resistance, and the sealing part 190 may be stably disposed.
  • the first metal substrate 170 may be formed larger than the second metal substrate 180 by an area corresponding to the first region 172 in order to stably arrange the sealing unit 190. Since the second metal substrate 180, which is the heat absorbing part or the cooling part, may contact the object to be contacted with the minimum area, the heat loss may be minimized.
  • the thickness of the second metal substrate 180 may vary depending on a required heat capacity of the cooling system.
  • first metal substrate 170 as well as the embodiment of FIGS. 1 to 4 where the first metal substrate 170 includes the first region 172 and the second region 174.
  • first metal substrate 170 includes the first region 172 and the second region 174.
  • thermoelectric device 10 shows a method of manufacturing a thermoelectric device according to an embodiment of the present invention.
  • surface roughness is formed on one surface of both surfaces of the metal substrate (S1000).
  • Surface roughening may be performed by various methods such as sandblasting, sawing, casting, forging, turning, milling, boring, drilling, and electric discharge machining, but is not limited thereto.
  • the surface roughening may be performed only on a part of one side of both surfaces of the metal substrate.
  • the surface roughness is performed on the remaining area including the center of the metal substrate, that is, the second region, except for the first region, except for the first region, as in the embodiment of FIGS. 1 to 4. Can be.
  • the surface roughness may be a partial region including an edge between metals, that is, a partial region including the center of the first region and the metal substrate, that is, the third region, as in the embodiment of FIGS. It may also be performed in the second area.
  • a resin composition constituting a resin layer for example, an epoxy resin composition is applied onto the metal substrate (S1010).
  • the epoxy resin composition may be applied to a thickness of 80 to 180 ⁇ m.
  • a plurality of electrodes are disposed on the resin layer (S1020).
  • the plurality of electrodes may be arranged after being arranged in an array form.
  • the plurality of electrodes may include a Cu layer, and further include a Ni layer and Au layer sequentially plated on the Cu layer, or may further include a Ni layer and Sn layer sequentially plated on the Cu layer. have.
  • thermocompression bonding is performed under the metal substrate and on the plurality of electrodes (S1030).
  • a plurality of electrodes arranged in an array form on the film may be disposed to face the resin layer in an uncured or semi-cured state, and then thermal compression may be performed to remove the film. Accordingly, the resin layer can be cured in a state where a part of the side surfaces of the plurality of electrodes is embedded in the resin layer.
  • thermoelectric device according to an exemplary embodiment of the present invention is applied to a water purifier
  • FIG. 11 is a block diagram of a water purifier to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
  • the water purifier 1 to which the thermoelectric element is applied includes a raw water supply pipe 12a, a water purification tank inlet pipe 12b, a water purification tank 12, a filter assembly 13, a cooling fan 14, and a heat storage tank ( 15), a cold water supply pipe 15a, and a thermoelectric device 1000.
  • the raw water supply pipe 12a is a supply pipe for introducing purified water from the water source into the filter assembly 13, and the purified water tank inflow pipe 12b is an inflow for introducing purified water from the filter assembly 13 into the purified water tank 12.
  • the cold water supply pipe 15a is a supply pipe through which the cold water cooled to the predetermined temperature by the thermoelectric device 1000 in the purified water tank 12 is finally supplied to the user.
  • the purified water tank 12 temporarily receives the purified water through the filter assembly 13 to store and supply the purified water introduced through the purified water tank inlet 12b to the outside.
  • the filter assembly 13 is composed of a precipitation filter 13a, a pre carbon filter 13b, a membrane filter 13c, and a post carbon filter 13d.
  • the water flowing into the raw water supply pipe 12a may be purified through the filter assembly 13.
  • the heat storage tank 15 is disposed between the purified water tank 12 and the thermoelectric device 1000 to store cold air formed in the thermoelectric device 1000.
  • the cold air stored in the heat storage tank 15 is applied to the purified water tank 12 to cool the water contained in the purified water tank 120.
  • the heat storage tank 15 may be in surface contact with the purified water tank 12 so that the cold air may be smoothly transferred.
  • thermoelectric device 1000 includes a heat absorbing surface and a heat generating surface, and one side is cooled and the other side is heated by electron movement on the P-type semiconductor and the N-type semiconductor.
  • one side may be the purified water tank 12 side, the other side may be the opposite side of the purified water tank 12.
  • thermoelectric device 1000 may have excellent waterproof and dustproof performance, and thermal flow performance may be improved to efficiently cool the purified water tank 12 in the water purifier.
  • thermoelectric device according to an exemplary embodiment of the present invention is applied to a refrigerator
  • thermoelectric element 12 is a block diagram of a refrigerator to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
  • the refrigerator includes a deep evaporation chamber cover 23, an evaporation chamber partition wall 24, a main evaporator 25, a cooling fan 26, and a thermoelectric device 1000 in the deep evaporation chamber.
  • the inside of the refrigerator is partitioned into a deep storage compartment and a deep evaporation chamber by a deep evaporation chamber cover 23.
  • an inner space corresponding to the front of the deep evaporation chamber cover 23 may be defined as a deep storage chamber, and an inner space corresponding to the rear of the deep evaporation chamber cover 23 may be defined as a deep temperature evaporation chamber.
  • Discharge grille 23a and suction grille 23b may be respectively formed on the front surface of the deep-temperature evaporation chamber cover 23.
  • the evaporation compartment partition wall 24 is installed at a point spaced forward from the rear wall of the inner cabinet to partition the space in which the depth chamber storage system is placed and the space in which the main evaporator 25 is placed.
  • the cold air cooled by the main evaporator 25 is supplied to the freezer compartment and then returned to the main evaporator again.
  • thermoelectric device 1000 is accommodated in the deep temperature evaporation chamber, and the heat absorbing surface faces the drawer assembly side of the deep storage chamber, and the heat generating surface faces the evaporator side. Therefore, it may be used to rapidly cool the food stored in the drawer assembly to an ultra low temperature of minus 50 degrees Celsius or less by using an endothermic phenomenon generated in the thermoelectric device 1000.
  • thermoelectric device 1000 may have excellent waterproof and dustproof performance, and thermal flow performance may be improved to efficiently cool the drawer assembly in the refrigerator.
  • thermoelectric element may act on the apparatus for power generation, the apparatus for cooling, the apparatus for heating, and the like.
  • the thermoelectric device according to the embodiment of the present invention mainly includes an optical communication module, a sensor, a medical device, a measuring device, an aerospace industry, a refrigerator, a chiller, a car ventilation sheet, a cup holder, a washing machine, a dryer, and a wine cellar. It can be applied to water purifier, sensor power supply, thermopile and the like.
  • PCR equipment is a device for amplifying DNA to determine the DNA sequence, precise temperature control is required, and a thermal cycle (thermal cycle) equipment is required.
  • a Peltier-based thermoelectric device may be applied.
  • thermoelectric device Another example in which a thermoelectric device according to an exemplary embodiment of the present invention is applied to a medical device is a photo detector.
  • the photo detector includes an infrared / ultraviolet detector, a charge coupled device (CCD) sensor, an X-ray detector, a thermoelectric thermal reference source (TTRS), and the like.
  • a Peltier-based thermoelectric device may be applied to cool the photo detector. As a result, it is possible to prevent a change in wavelength, a decrease in power, a decrease in resolution, etc. due to a temperature rise inside the photodetector.
  • thermoelectric device As another example in which a thermoelectric device according to an embodiment of the present invention is applied to a medical device, an immunoassay field, an in vitro diagnostic field, a general temperature control and cooling system, Physiotherapy, liquid chiller systems, blood / plasma temperature control. Thus, precise temperature control is possible.
  • thermoelectric device according to the embodiment of the present invention is applied to a medical device.
  • a medical device is an artificial heart.
  • power can be supplied to the artificial heart.
  • thermoelectric device examples include a star tracking system, a thermal imaging camera, an infrared / ultraviolet detector, a CCD sensor, a hubble space telescope, and a TTRS. Accordingly, the temperature of the image sensor can be maintained.
  • thermoelectric device according to the embodiment of the present invention is applied to the aerospace industry includes a cooling device, a heater, a power generation device, and the like.
  • thermoelectric device according to the embodiment of the present invention may be applied for power generation, cooling, and heating in other industrial fields.

Abstract

A thermoelectric element according to an embodiment of the present invention comprises: a first metal substrate; a first resin layer disposed on the first metal substrate and in direct contact with the first metal substrate; a plurality of first electrodes disposed on the first resin layer; a plurality of thermoelectric legs disposed on the plurality of first electrodes; a plurality of second electrodes disposed on the plurality of thermoelectric legs; a second resin layer disposed on the plurality of second electrodes; and a second metal substrate disposed on the second resin layer, wherein the first resin layer comprises a polymeric resin and an inorganic filler and at least a part of side surfaces of the plurality of first electrodes are buried in the first resin layer.

Description

열전소자Thermoelectric element
본 발명은 열전소자에 관한 것으로, 보다 상세하게는 열전소자의 접합 구조에 관한 것이다.The present invention relates to a thermoelectric element, and more particularly to a junction structure of a thermoelectric element.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.Thermoelectric phenomenon is a phenomenon caused by the movement of electrons and holes in a material, and means a direct energy conversion between heat and electricity.
열전소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다. The thermoelectric device is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric material and an N-type thermoelectric material are bonded between metal electrodes to form a PN junction pair.
열전소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.Thermoelectric elements may be classified into a device using a temperature change of the electrical resistance, a device using the Seebeck effect, a phenomenon in which electromotive force is generated by a temperature difference, a device using a Peltier effect, a phenomenon in which endothermic or heat generation by current occurs. .
열전소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.Thermoelectric devices have been applied to a variety of home appliances, electronic components, communication components, and the like. For example, the thermoelectric element may be applied to a cooling device, a heating device, a power generating device, or the like. Accordingly, the demand for thermoelectric performance of thermoelectric elements is increasing.
열전소자는 기판, 전극 및 열전 레그를 포함하며, 상부기판과 하부기판 사이에 복수의 열전 레그가 어레이 형태로 배치되며, 복수의 열전 레그와 상부기판 사이에 복수의 상부 전극이 배치되고, 복수의 열전 레그와 및 하부기판 사이에 복수의 하부전극이 배치된다. The thermoelectric element includes a substrate, an electrode, and a thermoelectric leg, and a plurality of thermoelectric legs are arranged in an array form between the upper substrate and the lower substrate, and a plurality of upper electrodes are disposed between the plurality of thermoelectric legs and the upper substrate. A plurality of lower electrodes are disposed between the thermoelectric leg and the lower substrate.
일반적으로, 열전소자는 금속 지지체 상에 배치될 수 있다. 열전소자에 포함되는 상부기판 및 하부기판이 세라믹 기판인 경우, 세라믹 기판과 금속 지지체의 계면에서의 열저항으로 인하여 열손실이 발생할 수 있다.In general, the thermoelectric element may be disposed on a metal support. When the upper substrate and the lower substrate included in the thermoelectric element are ceramic substrates, heat loss may occur due to thermal resistance at the interface between the ceramic substrate and the metal support.
본 발명이 이루고자 하는 기술적 과제는 열전소자의 접합 구조를 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a junction structure of a thermoelectric element.
본 발명의 한 실시예에 따른 열전소자는 제1 금속기판, 상기 제1 금속기판 상에 배치되며, 상기 제1 금속기판과 직접 접촉하는 제1 수지층, 상기 제1 수지층 상에 배치된 복수의 제1 전극, 상기 복수의 제1 전극 상에 배치된 복수의 열전 레그, 상기 복수의 열전 레그 상에 배치된 복수의 제2 전극, 상기 복수의 제2 전극 상에 배치되는 제2 수지층, 그리고 상기 제2 수지층 상에 배치된 제2 금속기판을 포함하고, 상기 제1 수지층은 고분자 수지 및 무기충전재를 포함하고, 상기 복수의 제1 전극의 측면의 적어도 일부는 상기 제1 수지층 내에 매립된다.A thermoelectric device according to an embodiment of the present invention is disposed on a first metal substrate, the first metal substrate, a first resin layer in direct contact with the first metal substrate, and a plurality of thermoelectric elements disposed on the first resin layer. A first electrode, a plurality of thermoelectric legs disposed on the plurality of first electrodes, a plurality of second electrodes disposed on the plurality of thermoelectric legs, a second resin layer disposed on the plurality of second electrodes, And a second metal substrate disposed on the second resin layer, wherein the first resin layer includes a polymer resin and an inorganic filler, and at least a part of the side surfaces of the plurality of first electrodes is the first resin layer. Buried within.
상기 제1 수지층 내에 매립된 상기 측면의 높이는 상기 복수의 제1 전극의 두께의 0.1 내지 1배일 수 있다.The height of the side surface embedded in the first resin layer may be 0.1 to 1 times the thickness of the plurality of first electrodes.
이웃하는 두 개의 제1 전극 사이에서 상기 제1 수지층의 두께는 각 제1 전극의 측면으로부터 상기 이웃하는 두 개의 제1 전극 사이의 중심 영역으로 갈수록 감소할 수 있다.The thickness of the first resin layer between two neighboring first electrodes may decrease from the side of each first electrode toward the center region between the two neighboring first electrodes.
상기 복수의 제1 전극 아래의 상기 제1 수지층의 두께는 상기 이웃하는 두 개의 제1 전극 사이의 중심 영역에서의 상기 제1 수지층의 두께보다 작을 수 있다.The thickness of the first resin layer under the plurality of first electrodes may be smaller than the thickness of the first resin layer in the central region between the two neighboring first electrodes.
상기 복수의 제1 전극 아래의 상기 제1 수지층 내 상기 무기충전재의 분포는 상기 이웃하는 두 개의 제1 전극 사이의 상기 제1 수지층 내 상기 무기충전재의 분포와 상이할 수 있다.The distribution of the inorganic filler in the first resin layer under the plurality of first electrodes may be different from the distribution of the inorganic filler in the first resin layer between the two neighboring first electrodes.
상기 복수의 제1 전극 아래의 상기 제1 수지층 내 상기 무기충전재의 입자크기 D50은 상기 이웃하는 두 개의 제1 전극 사이의 상기 제1 수지층 내 상기 무기충전재의 입자크기 D50보다 작을 수 있다.The particle size D50 of the inorganic filler in the first resin layer under the plurality of first electrodes may be smaller than the particle size D50 of the inorganic filler in the first resin layer between two neighboring first electrodes.
상기 제1 금속기판의 상기 제1 수지층과 마주보는 면은 제1 영역 및 상기 제1 영역의 내부에 배치되는 제2 영역을 포함하며, 상기 제2 영역의 표면거칠기는 상기 제1 영역의 표면거칠기보다 크고, 상기 제1 수지층은 상기 제2 영역 상에 배치될 수 있다.The surface facing the first resin layer of the first metal substrate may include a first region and a second region disposed inside the first region, and the surface roughness of the second region may be a surface of the first region. Larger than the roughness, the first resin layer may be disposed on the second region.
상기 제1 금속기판과 상기 제2 금속기판 사이에 배치되는 실링부를 더 포함하고, 상기 실링부는 상기 제1 영역 상에 배치될 수 있다.The display device may further include a sealing part disposed between the first metal substrate and the second metal substrate, and the sealing part may be disposed on the first area.
상기 실링부는, 상기 제1 수지층의 측면 및 상기 제2 수지층의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스, 그리고 상기 실링 케이스와 상기 제1 영역 사이에 배치되는 실링재를 포함할 수 있다.The sealing part may include a sealing case disposed at a predetermined distance from a side surface of the first resin layer and a side surface of the second resin layer, and a sealing material disposed between the sealing case and the first region.
상기 제1 수지층은 상기 고분자 수지 20 내지 40wt% 및 상기 무기충전재 60 내지 80wt%를 포함할 수 있다.The first resin layer may include 20 to 40 wt% of the polymer resin and 60 to 80 wt% of the inorganic filler.
상기 고분자 수지는 에폭시계 수지, 아크릴계 수지, 우레탄계 수지, 폴리아미드계 수지, 폴리에틸렌계 수지, EVA(Ethylene-Vinyl Acetate copolymer)계 수지, 폴리에스테르계 수지 및 PVC(PolyVinyl Chloride)계 수지 중 적어도 하나를 포함하고, 상기 무기충전재는 산화알루미늄, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함할 수 있다.The polymer resin may include at least one of an epoxy resin, an acrylic resin, a urethane resin, a polyamide resin, a polyethylene resin, an EVA (Ethylene-Vinyl Acetate copolymer) resin, a polyester resin, and a polyvinyl chloride (PVC) resin. It includes, the inorganic filler may include at least one of aluminum oxide, boron nitride and aluminum nitride.
상기 제2 수지층은 상기 제1 수지층과 동일한 물질을 포함할 수 있다.The second resin layer may include the same material as the first resin layer.
본 발명의 실시예에 따르면, 열전도도가 우수하고, 열손실이 낮으며, 신뢰성이 높은 열전소자를 얻을 수 있다. 특히, 본 발명의 실시예에 따른 열전소자는 금속 지지체와의 접합 강도가 높고, 제작 공정이 간단하다. According to the embodiment of the present invention, it is possible to obtain a thermoelectric device having excellent thermal conductivity, low heat loss, and high reliability. In particular, the thermoelectric device according to the embodiment of the present invention has a high bonding strength with the metal support, and the manufacturing process is simple.
도 1은 본 발명의 한 실시예에 따른 열전소자의 단면도이다. 1 is a cross-sectional view of a thermoelectric device according to an exemplary embodiment of the present invention.
도 2는 본 발명의 한 실시예에 따른 열전소자에 포함되는 금속기판의 상면도이다. 2 is a top view of a metal substrate included in a thermoelectric device according to an exemplary embodiment of the present invention.
도 3은 본 발명의 한 실시예에 따른 열전소자의 금속기판 측의 단면도이다.3 is a cross-sectional view of a metal substrate side of a thermoelectric device according to an exemplary embodiment of the present invention.
도 4는 도 3의 한 영역의 확대도이다. 4 is an enlarged view of a region of FIG. 3.
도 5는 본 발명의 다른 실시예에 따른 열전소자에 포함되는 금속기판의 상면도이다. 5 is a top view of a metal substrate included in a thermoelectric device according to another exemplary embodiment of the present invention.
도 6은 도 5의 금속기판을 포함하는 열전소자의 금속기판 측의 단면도이다.6 is a cross-sectional view of the metal substrate side of the thermoelectric device including the metal substrate of FIG. 5.
도 7은 본 발명의 또 다른 실시예에 따른 열전소자의 단면도이다.7 is a cross-sectional view of a thermoelectric device according to still another embodiment of the present invention.
도 8은 도 7에 따른 열전소자의 사시도이다.8 is a perspective view of the thermoelectric device of FIG. 7.
도 9는 도 7에 따른 열전소자의 분해사시도이다.9 is an exploded perspective view of the thermoelectric device of FIG. 7.
도 10은 본 발명의 한 실시예에 따른 열전소자의 제작 방법을 나타낸다.10 shows a method of manufacturing a thermoelectric device according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 열전소자가 적용된 정수기의 블록도이다.11 is a block diagram of a water purifier to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
도 12는 본 발명의 실시예에 따른 열전소자가 적용된 냉장고의 블록도이다.12 is a block diagram of a refrigerator to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in the drawings. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. Terms including ordinal numbers, such as second and first, may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
도 1은 본 발명의 한 실시예에 따른 열전소자의 단면도이고, 도 2는 본 발명의 한 실시예에 따른 열전소자에 포함되는 금속기판의 상면도이며, 도 3은 본 발명의 한 실시예에 따른 열전소자의 금속기판 측의 단면도이고, 도 4는 도 3의 한 영역의 확대도이다. 도 5는 본 발명의 다른 실시예에 따른 열전소자에 포함되는 금속기판의 상면도이고, 도 6은 도 5의 금속기판을 포함하는 열전소자의 금속기판 측의 단면도이다.1 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention, Figure 2 is a top view of a metal substrate included in the thermoelectric device according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention 4 is a cross-sectional view of the metal substrate side of the thermoelectric device, and FIG. 4 is an enlarged view of a region of FIG. 5 is a top view of a metal substrate included in a thermoelectric device according to another exemplary embodiment of the present invention, and FIG. 6 is a cross-sectional view of the metal substrate side of the thermoelectric device including the metal substrate of FIG. 5.
도 1을 참조하면, 열전소자(100)는 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130), 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층(160)을 포함한다.Referring to FIG. 1, the thermoelectric element 100 includes a first resin layer 110, a plurality of first electrodes 120, a plurality of P-type thermoelectric legs 130, a plurality of N-type thermoelectric legs 140, and a plurality of thermoelectric elements 100. The second electrode 150 and the second resin layer 160.
복수의 제1 전극(120)은 제1 수지층(110)과 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 하면 사이에 배치되고, 복수의 제2 전극(150)은 제2 수지층(160)과 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 상면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)는 복수의 제1 전극(120) 및 복수의 제2 전극(150)에 의하여 전기적으로 연결된다. 제1 전극(120)과 제2 전극(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 단위 셀을 형성할 수 있다. The plurality of first electrodes 120 are disposed between the first resin layer 110, the plurality of P-type thermoelectric legs 130, and the lower surfaces of the plurality of N-type thermoelectric legs 140, and the plurality of second electrodes 150. ) Is disposed between the second resin layer 160 and the top surfaces of the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140. Accordingly, the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 are electrically connected by the plurality of first electrodes 120 and the plurality of second electrodes 150. A pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the first electrode 120 and the second electrode 150 and electrically connected to each other may form a unit cell.
각 제1 전극(120)에는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)가 배치될 수 있으며, 각 제2 전극(150) 상에는 각 제1 전극(120)에 배치된 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140) 중 하나가 겹쳐지도록 한 쌍의 N형 열전 레그(140) 및 P형 열전 레그(130)가 배치될 수 있다.A pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 may be disposed on each first electrode 120, and each of the first electrodes 120 may be disposed on each of the first electrodes 120. The pair of N-type thermoelectric legs 140 and the P-type thermoelectric legs 130 may be disposed to overlap one of the pair of P-type thermoelectric legs 130 and the N-type thermoelectric legs 140.
여기서, 제1 전극(120) 및 제2 전극(150)에 전압을 인가하면, 펠티에 효과로 인하여 P형 열전 레그(130)로부터 N형 열전 레그(140)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 열전 레그(140)로부터 P형 열전 레그(130)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다. 또는, 제1 전극(120) 및 제2 전극(150) 간 온도 차를 가해주면, 제백 효과로 인하여 P형 열전 레그(130) 및 N형 열전 레그(140) 내 전하가 이동하며, 전기가 발생할 수도 있다.Here, when a voltage is applied to the first electrode 120 and the second electrode 150, the substrate flowing current from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect absorbs heat The substrate that acts as a cooling unit and flows current from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated to act as a heat generating unit. Alternatively, when a temperature difference between the first electrode 120 and the second electrode 150 is applied, electric charges in the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 are moved due to the Seebeck effect, and electricity is generated. It may be.
여기서, P형 열전 레그(130) 및 N형 열전 레그(140)는 비스무스(Bi) 및 텔루륨(Te)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(130)는 전체 중량 100wt%에 대하여 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Se-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다. N형 열전 레그(140)는 전체 중량 100wt%에 대하여 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Sb-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다.The P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth fluoride (Bi-Te) -based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main materials. P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt% A mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%. For example, the main raw material is Bi-Se-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight. N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt% A mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%. For example, the main raw material is Bi-Sb-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
P형 열전 레그(130) 및 N형 열전 레그(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(130) 또는 벌크형 N형 열전 레그(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 적층형 P형 열전 레그(130) 또는 적층형 N형 열전 레그(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.The P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stacked type. In general, the bulk P-type thermoelectric leg 130 or the bulk N-type thermoelectric leg 140 is heat-treated thermoelectric material to produce an ingot (ingot), crushed and ingot to obtain a powder for thermoelectric leg, then Sintering, and can be obtained through the process of cutting the sintered body. The stacked P-type thermoelectric leg 130 or the stacked N-type thermoelectric leg 140 is formed by applying a paste including a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking and cutting the unit members. Can be obtained.
이때, 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(130)와 N형 열전 레그(140)의 전기 전도 특성이 상이하므로, N형 열전 레그(140)의 높이 또는 단면적을 P형 열전 레그(130)의 높이 또는 단면적과 다르게 형성할 수도 있다. In this case, the pair of P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may have the same shape and volume, or may have different shapes and volumes. For example, since the electrical conduction characteristics of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 are different, the height or the cross-sectional area of the N-type thermoelectric leg 140 is the height or the cross-sectional area of the P-type thermoelectric leg 130. It can also be formed differently.
본 발명의 한 실시예에 따른 열전소자의 성능은 열전성능 지수로 나타낼 수 있다. 열전성능 지수(ZT)는 수학식 1과 같이 나타낼 수 있다. The performance of a thermoelectric device according to an embodiment of the present invention may be represented by a thermoelectric performance index. The thermoelectric performance index (ZT) can be expressed as in Equation 1.
Figure PCTKR2019003878-appb-M000001
Figure PCTKR2019003878-appb-M000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.Where α is the Seebeck coefficient [V / K], sigma is the electrical conductivity [S / m], and α 2 sigma is the Power Factor [W / mK 2 ]. And T is the temperature and k is the thermal conductivity [W / mK]. k can be represented by a · c p · ρ, a is thermal diffusivity [cm 2 / S], c p is specific heat [J / gK], and ρ is density [g / cm 3 ].
열전소자의 열전성능 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 제벡 지수(ZT)를 계산할 수 있다. In order to obtain a thermoelectric performance index of the thermoelectric device, the Z value (V / K) may be measured using a Z meter, and the Seebeck index (ZT) may be calculated using the measured Z value.
여기서, 제1 수지층(110)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 복수의 제1 전극(120), 그리고 제2 수지층(160)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 복수의 제2 전극(150)은 구리(Cu), 은(Ag) 및 니켈(Ni) 중 적어도 하나를 포함할 수 있다. Here, the plurality of first electrodes 120 disposed between the first resin layer 110, the P-type thermoelectric leg 130, and the N-type thermoelectric leg 140, and the second resin layer 160 and the P-type thermoelectric The plurality of second electrodes 150 disposed between the leg 130 and the N-type thermoelectric leg 140 may include at least one of copper (Cu), silver (Ag), and nickel (Ni).
그리고, 제1 수지층(110)과 제2 수지층(160)의 크기는 다르게 형성될 수도 있다. 예를 들어, 제1 수지층(110)과 제2 수지층(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전소자의 흡열 성능 또는 방열 성능을 높일 수 있다. In addition, the sizes of the first resin layer 110 and the second resin layer 160 may be formed differently. For example, the volume, thickness, or area of one of the first resin layer 110 and the second resin layer 160 may be greater than the volume, thickness, or area of the other. Accordingly, the heat absorbing performance or heat dissipation performance of the thermoelectric element can be improved.
이때, P형 열전 레그(130) 또는 N형 열전 레그(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다. In this case, the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal pillar shape, an elliptical pillar shape and the like.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 적층형 구조를 가질 수도 있다. 예를 들어, P형 열전 레그 또는 N형 열전 레그는 시트 형상의 기재에 반도체 물질이 도포된 복수의 구조물을 적층한 후, 이를 절단하는 방법으로 형성될 수 있다. 이에 따라, 재료의 손실을 막고 전기 전도 특성을 향상시킬 수 있다.Alternatively, the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a stacked structure. For example, the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by stacking a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. As a result, it is possible to prevent loss of material and to improve electrical conduction characteristics.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 존 멜팅(zone melting) 방식 또는 분말 소결 방식에 따라 제작될 수 있다. 존 멜팅 방식에 따르면, 열전 소재를 이용하여 잉곳(ingot)을 제조한 후, 잉곳에 천천히 열을 가하여 단일의 방향으로 입자가 재배열되도록 리파이닝하고, 천천히 냉각시키는 방법으로 열전 레그를 얻는다. 분말 소결 방식에 따르면, 열전 소재를 이용하여 잉곳을 제조한 후, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득하고, 이를 소결하는 과정을 통하여 열전 레그를 얻는다.Alternatively, the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be manufactured according to a zone melting method or a powder sintering method. According to the zone melting method, an ingot is manufactured by using a thermoelectric material, and then, by slowly applying heat to the ingot, the particles are rearranged so as to be rearranged in a single direction, and the thermoelectric leg is slowly cooled. According to the powder sintering method, after manufacturing an ingot using a thermoelectric material, the ingot is pulverized and sieved to obtain a thermoelectric leg powder, and the thermoelectric leg is obtained through the sintering process.
본 발명의 실시예에 따르면, 제1 금속기판(170)에 제1 금속기판(170)과 직접 접촉하도록 제1 수지층(110)이 배치되고, 제2 금속기판(180)에 제2 금속기판(180)과 직접 접촉하도록 제2 수지층(160)이 배치될 수 있다.According to the exemplary embodiment of the present invention, the first resin layer 110 is disposed on the first metal substrate 170 so as to directly contact the first metal substrate 170, and the second metal substrate 180 is disposed on the second metal substrate 180. The second resin layer 160 may be disposed to directly contact 180.
제1 금속기판(170) 및 제2 금속기판(180)은 알루미늄, 알루미늄 합금, 구리, 구리 합금, 알루미늄-구리 합금 등으로 이루어질 수 있다. 제1 금속기판(170) 및 제2 금속기판(180)은 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140), 복수의 제2 전극(150), 제2 수지층(160) 등을 지지할 수 있으며, 제1 금속기판(170) 및 제2 금속기판(180) 중 적어도 하나는 본 발명의 실시예에 따른 열전소자(100)가 적용되는 애플리케이션에 직접 부착되는 영역일 수 있다. 이에 따라, 제1 금속기판(170) 및 제2 금속기판(180)은 각각 제1 금속지지체 및 제2 금속지지체와 혼용될 수 있다. The first metal substrate 170 and the second metal substrate 180 may be made of aluminum, aluminum alloy, copper, copper alloy, aluminum-copper alloy, or the like. The first metal substrate 170 and the second metal substrate 180 may include the first resin layer 110, the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, and the plurality of N-type thermoelectric legs ( 140, the plurality of second electrodes 150, the second resin layer 160, and the like, and at least one of the first metal substrate 170 and the second metal substrate 180 is an embodiment of the present invention. The thermoelectric device 100 according to the present invention may be an area directly attached to an application to which the thermoelectric device 100 is applied. Accordingly, the first metal substrate 170 and the second metal substrate 180 may be mixed with the first metal support and the second metal support, respectively.
제1 금속기판(170)의 면적은 제1 수지층(110)의 면적보다 클 수 있으며, 제2 금속기판(180)의 면적은 제2 수지층(160)의 면적보다 클 수 있다. 즉, 제1 수지층(110)은 제1 금속기판(170)의 가장자리로부터 소정 거리만큼 이격된 영역 내에 배치될 수 있고, 제2 수지층(160)은 제2 금속기판(180)의 가장자리로부터 소정 거리만큼 이격된 영역 내에 배치될 수 있다. An area of the first metal substrate 170 may be larger than an area of the first resin layer 110, and an area of the second metal substrate 180 may be larger than an area of the second resin layer 160. That is, the first resin layer 110 may be disposed in an area spaced apart from the edge of the first metal substrate 170 by a predetermined distance, and the second resin layer 160 may be disposed from the edge of the second metal substrate 180. It may be disposed in an area spaced by a predetermined distance.
이때, 제1 금속기판(170)의 폭 길이는 제2 금속기판(180)의 폭 길이보다 크거나, 제2 금속기판(180)의 두께는 제1 금속기판(170)의 두께보다 클 수 있다. 또는, 제1 금속기판(170)의 총 면적은 제2 금속기판(180)의 총 면적보다 클 수 있다. 제1 금속기판(170)은 열을 방출하는 방열부이고, 제2 금속기판(180)은 열을 흡수하는 흡열부일 수 있다. 이를 위하여, 제1 금속기판(170)의 양면 중 제1 수지층(110)이 배치되는 면의 반대 면 및 제2 금속기판(180)의 양면 중 제2 수지층(160)이 배치되는 면의 반대 면 중 적어도 한 면에는 복수의 돌출패턴이 배치될 수 있다. 이러한 돌출 패턴은 히트싱크가 될 수 있다. In this case, the width of the first metal substrate 170 may be greater than the width of the second metal substrate 180, or the thickness of the second metal substrate 180 may be greater than the thickness of the first metal substrate 170. . Alternatively, the total area of the first metal substrate 170 may be larger than the total area of the second metal substrate 180. The first metal substrate 170 may be a heat dissipation unit for dissipating heat, and the second metal substrate 180 may be an endothermic unit for absorbing heat. To this end, an opposite surface of the surface on which the first resin layer 110 is disposed among the both surfaces of the first metal substrate 170 and a surface on which the second resin layer 160 is disposed on both surfaces of the second metal substrate 180. A plurality of protruding patterns may be disposed on at least one of the opposite surfaces. This protruding pattern may be a heat sink.
제1 수지층(110) 및 제2 수지층(160)은 고분자 수지 및 무기충전재를 포함하는 수지 조성물로 이루어질 수 있다. 여기서, 고분자 수지는 절연, 접착 또는 방열의 기능이 부여된 고분자 물질을 포함하는 경우 어떠한 물질도 가능하다. 예를 들어, 고분자 수지는 에폭시계 수지, 아크릴계 수지, 우레탄계 수지, 폴리아미드계 수지, 폴리에틸렌계 수지, EVA(Ethylene-Vinyl Acetate copolymer)계 수지, 폴리에스테르계 수지 및 PVC(PolyVinyl Chloride)계 수지 중에서 선택된 어느 하나일 수 있다. 바람직하게는, 고분자 수지는 에폭시 수지일 수 있다. 여기서, 에폭시 수지는 20 내지 40wt%로 포함되고, 무기충전재는 60 내지 80wt%로 포함될 수 있다. 무기충전재가 60wt%미만으로 포함되면, 열전도 효과가 낮을 수 있으며, 무기충전재가 80wt%를 초과하여 포함되면 수지층과 금속기판 간의 접착력이 낮아질 수 있으며, 수지층이 쉽게 깨질 수 있다.The first resin layer 110 and the second resin layer 160 may be made of a resin composition containing a polymer resin and an inorganic filler. Here, the polymer resin may be any material when the polymer resin includes a polymer material provided with a function of insulation, adhesion or heat dissipation. For example, the polymer resin is epoxy resin, acrylic resin, urethane resin, polyamide resin, polyethylene resin, EVA (Ethylene-Vinyl Acetate copolymer) resin, polyester resin and PVC (PolyVinyl Chloride) resin It may be any one selected. Preferably, the polymer resin may be an epoxy resin. Here, the epoxy resin may be included in 20 to 40wt%, the inorganic filler may be included in 60 to 80wt%. When the inorganic filler is included in less than 60wt%, the thermal conductivity may be low, and when the inorganic filler is included in excess of 80wt%, the adhesive force between the resin layer and the metal substrate may be lowered, and the resin layer may be easily broken.
제1 수지층(110) 및 제2 수지층(160)은 동일한 물질을 포함할 수 있고, 제1 수지층(110) 및 제2 수지층(160)의 두께는 20 내지 200㎛일 수 있으며, 열전도도는 1W/mK이상, 바람직하게는 10W/mK이상, 더욱 바람직하게는 20W/mK 이상일 수 있다. 제1 수지층(110)과 제2 수지층(160)의 두께가 이러한 수치범위를 만족할 경우, 제1 수지층(110) 및 제2 수지층(160)이 온도 변화에 따라 수축 및 팽창을 반복하더라도, 제1 수지층(110)과 제1 금속기판(170) 간의 접합 및 제2 수지층(160)과 제2 금속기판(180) 간의 접합에는 영향을 미치지 않을 수 있다.The first resin layer 110 and the second resin layer 160 may include the same material, the thickness of the first resin layer 110 and the second resin layer 160 may be 20 to 200㎛, The thermal conductivity may be at least 1 W / mK, preferably at least 10 W / mK, more preferably at least 20 W / mK. When the thickness of the first resin layer 110 and the second resin layer 160 satisfies this numerical range, the first resin layer 110 and the second resin layer 160 repeat contraction and expansion according to temperature change. However, the bonding between the first resin layer 110 and the first metal substrate 170 and the bonding between the second resin layer 160 and the second metal substrate 180 may not be affected.
이를 위하여, 에폭시 수지는 에폭시 화합물 및 경화제를 포함할 수 있다. 이때, 에폭시 화합물 10 부피비에 대하여 경화제 1 내지 10 부피비로 포함될 수 있다. 여기서, 에폭시 화합물은 결정성 에폭시 화합물, 비결정성 에폭시 화합물 및 실리콘 에폭시 화합물 중 적어도 하나를 포함할 수 있다. 결정성 에폭시 화합물은 메조겐(mesogen) 구조를 포함할 수 있다. 메조겐(mesogen)은 액정(liquid crystal)의 기본 단위이며, 강성(rigid) 구조를 포함한다. 그리고, 비결정성 에폭시 화합물은 분자 중 에폭시기를 2개 이상 가지는 통상의 비결정성 에폭시 화합물일 수 있으며, 예를 들면 비스페놀 A 또는 비스페놀 F로부터 유도되는 글리시딜에테르화물일 수 있다. 여기서, 경화제는 아민계 경화제, 페놀계 경화제, 산무수물계 경화제, 폴리메르캅탄계 경화제, 폴리아미노아미드계 경화제, 이소시아네이트계 경화제 및 블록 이소시아네이트계 경화제 중 적어도 하나를 포함할 수 있으며, 2 종류 이상의 경화제를 혼합하여 사용할 수도 있다.For this purpose, the epoxy resin may comprise an epoxy compound and a curing agent. At this time, it may be included in 1 to 10 volume ratio of the curing agent with respect to 10 volume ratio of the epoxy compound. Here, the epoxy compound may include at least one of a crystalline epoxy compound, an amorphous epoxy compound and a silicon epoxy compound. The crystalline epoxy compound may comprise a mesogen structure. Mesogen is a basic unit of liquid crystal and includes a rigid structure. The amorphous epoxy compound may be a conventional amorphous epoxy compound having two or more epoxy groups in a molecule, and may be, for example, glycidyl etherate derived from bisphenol A or bisphenol F. Here, the curing agent may include at least one of an amine curing agent, a phenol curing agent, an acid anhydride curing agent, a polycapcaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent and a block isocyanate curing agent, and two or more kinds of curing agents. It can also be mixed and used.
무기충전재는 산화알루미늄 또는 질화물을 포함할 수 있으며, 질화물은 무기충전재의 55 내지 95wt%로 포함될 수 있으며, 더 좋게는 60~80wt% 일 수 있다. 질화물이 이러한 수치범위로 포함될 경우, 열전도도 및 접합 강도를 높일 수 있다. 여기서, 질화물은, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함할 수 있다. 여기서, 질화붕소는 판상 질화붕소이거나, 판상 질화붕소가 뭉쳐진 질화붕소 응집체일 수 있으며, 질화붕소의 표면은 고분자 수지로 코팅될 수 있다. 여기서, 질화붕소와 결합할 수 있거나, 질화붕소의 표면을 코팅할 수 있다면, 어떠한 고분자 수지도 이용될 수 있다. 고분자 수지는, 예를 들어 아크릴계 고분자 수지, 에폭시계 고분자 수지, 우레탄계 고분자 수지, 폴리아미드계 고분자 수지, 폴리에틸렌계 고분자 수지, EVA(ethylene vinyl acetate copolymer)계 고분자 수지, 폴리에스테르계 고분자 수지 및 PVC(polyvinyl chloride)계 고분자 수지로 이루어진 그룹에서 선택될 수 있다. 그리고, 고분자 수지는 하기 단위체 1을 가지는 고분자 수지일 수도 있다.The inorganic filler may include aluminum oxide or nitride, and the nitride may include 55 to 95 wt% of the inorganic filler, and more preferably, 60 to 80 wt%. When nitride is included in this numerical range, it is possible to increase the thermal conductivity and the bonding strength. Here, the nitride may include at least one of boron nitride and aluminum nitride. Here, the boron nitride may be a plate-like boron nitride, or a plate-like boron nitride agglomerate agglomerated, the surface of the boron nitride may be coated with a polymer resin. Here, any polymer resin can be used as long as it can bind with boron nitride or can coat the surface of boron nitride. The polymer resin may be, for example, acrylic polymer resin, epoxy polymer resin, urethane polymer resin, polyamide polymer resin, polyethylene polymer resin, EVA (ethylene vinyl acetate copolymer) polymer resin, polyester polymer resin and PVC ( polyvinyl chloride) may be selected from the group consisting of polymer resins. The polymer resin may be a polymer resin having the following unit 1.
단위체 1은 다음과 같다. Unit 1 is as follows.
[단위체 1][Unit 1]
Figure PCTKR2019003878-appb-I000001
Figure PCTKR2019003878-appb-I000001
여기서, R1, R2, R3 및 R4 중 하나는 H이고, 나머지는 C1~C3 알킬, C2~C3 알켄 및 C2~C3 알킨으로 구성된 그룹에서 선택되고, R5는 선형, 분지형 또는 고리형의 탄소수 1 내지 12인 2가의 유기 링커일 수 있다. Wherein one of R 1 , R 2 , R 3 and R 4 is H, the other is selected from the group consisting of C 1 -C 3 alkyl, C 2 -C 3 alkenes and C 2 -C 3 alkyne, R 5 May be a linear, branched or cyclic divalent organic linker having 1 to 12 carbon atoms.
한 실시예로, R1, R2, R3 및 R4 중 H를 제외한 나머지 중 하나는 C2~C3 알켄에서 선택되며, 나머지 중 다른 하나 및 또 다른 하나는 C1~C3 알킬에서 선택될 수 있다. 예를 들어, 본 발명의 실시예에 따른 고분자 수지는 하기 단위체 2를 포함할 수 있다. In one embodiment, one of R 1 , R 2 , R 3, and R 4 except H is selected from C 2 to C 3 alkenes, and the other and other ones are selected from C 1 to C 3 alkyl. Can be selected. For example, the polymer resin according to the embodiment of the present invention may include the following unit 2.
[단위체 2][Unit 2]
Figure PCTKR2019003878-appb-I000002
Figure PCTKR2019003878-appb-I000002
또는, 상기 R1, R2, R3 및 R4 중 H를 제외한 나머지는 C1~C3 알킬, C2~C3 알켄 및 C2~C3 알킨으로 구성된 그룹에서 서로 상이하도록 선택될 수도 있다.Alternatively, the rest of R 1 , R 2 , R 3, and R 4 except H may be selected to be different from each other in a group consisting of C 1 -C 3 alkyl, C 2 -C 3 alkenes, and C 2 -C 3 alkyne. have.
이와 같이, 단위체 1 또는 단위체 2에 따른 고분자 수지가 질화붕소에 코팅되면 작용기를 형성하기 용이해지며, 질화붕소 상에 작용기가 형성되면, 수지와의 친화도가 높아질 수 있다.As such, when the polymer resin according to Unit 1 or Unit 2 is coated on boron nitride, functional groups are easily formed, and when functional groups are formed on boron nitride, affinity with the resin may be increased.
이때, 질화붕소의 입자크기 D50은 산화알루미늄의 입자크기 D50보다 클 수 있다. 예를 들어, 질화붕소의 입자크기 D50은 40 내지 200㎛이고, 산화알루미늄의 입자크기 D50은 10 내지 30㎛일 수 있다. 질화붕소의 입자크기 D50과 산화알루미늄의 입자크기 D50이 이러한 수치 범위를 만족할 경우, 질화붕소와 산화알루미늄이 에폭시 수지 조성물 내에 고르게 분산될 수 있으며, 이에 따라 수지층 전체적으로 고른 열전도 효과 및 접착 성능을 가질 수 있다.At this time, the particle size D50 of boron nitride may be larger than the particle size D50 of aluminum oxide. For example, the particle size D50 of boron nitride may be 40 to 200 μm, and the particle size D50 of aluminum oxide may be 10 to 30 μm. When the particle size D50 of boron nitride and the particle size D50 of aluminum oxide satisfy these numerical ranges, boron nitride and aluminum oxide may be evenly dispersed in the epoxy resin composition, thereby having a uniform thermal conduction effect and adhesion performance throughout the resin layer. Can be.
이와 같이, 제1 금속기판(170)과 복수의 제1 전극(120) 사이에 제1 수지층(110)이 배치되면, 별도의 세라믹 기판 없이도 제1 금속기판(170)과 복수의 제1 전극(120) 사이의 열전달이 가능하며, 제1 수지층(110) 자체의 접착 성능으로 인하여 별도의 접착제 또는 물리적인 체결 수단이 필요하지 않다. 특히, 제1 수지층(110)은 기존 세라믹 기판에 비하여 현저하게 얇은 두께로 구현할 수 있으므로, 복수의 제1 전극(120)과 제1 금속기판(170) 간의 열전달 성능을 개선할 수 있으며, 열전소자(100)의 전체적인 사이즈를 줄일 수도 있다.As such, when the first resin layer 110 is disposed between the first metal substrate 170 and the plurality of first electrodes 120, the first metal substrate 170 and the plurality of first electrodes do not need a separate ceramic substrate. Heat transfer between the 120 is possible, and due to the adhesive performance of the first resin layer 110 itself, no separate adhesive or physical fastening means is required. In particular, since the first resin layer 110 may be implemented with a significantly thinner thickness than the conventional ceramic substrate, the heat transfer performance between the plurality of first electrodes 120 and the first metal substrate 170 may be improved. The overall size of the device 100 may be reduced.
여기서, 제1 금속기판(170)은 제1 수지층(110)과 직접 접촉할 수 있다. 이를 위하여, 제1 금속기판(170)의 양면 중 제1 수지층(110)이 배치되는 면, 즉 제1 금속기판(170)의 제1 수지층(110)과 마주보는 면에는 표면거칠기가 형성될 수 있다. 이에 따르면, 제1 금속기판(170)과 제1 수지층(110) 간의 열압착 시 제1 수지층(110)이 들뜨는 문제를 방지할 수 있다. 본 명세서에서, 표면거칠기는 요철을 의미하며, 표면 조도와 혼용될 수도 있다.Here, the first metal substrate 170 may directly contact the first resin layer 110. To this end, surface roughness is formed on a surface on which the first resin layer 110 is disposed, that is, a surface facing the first resin layer 110 of the first metal substrate 170. Can be. According to this, it is possible to prevent the problem that the first resin layer 110 is lifted up during thermocompression bonding between the first metal substrate 170 and the first resin layer 110. In the present specification, the surface roughness means irregularities, and may be mixed with surface roughness.
도 2 내지 4를 참조하면, 제1 금속기판(170)의 양면 중 제1 수지층(110)이 배치되는 면, 즉 제1 금속기판(170)의 제1 수지층(110)과 마주보는 면은 제1 영역(172) 및 제2 영역(174)을 포함하며, 제2 영역(174)은 제1 영역(172)의 내부에 배치될 수 있다. 즉, 제1 영역(172)은 제1 금속기판(170)의 가장자리로부터 가운데 영역을 향하여 소정 거리 내에 배치될 수 있으며, 제1 영역(172)은 제2 영역(174)을 둘러쌀 수 있다. 2 to 4, the surface on which the first resin layer 110 is disposed among both surfaces of the first metal substrate 170, that is, the surface facing the first resin layer 110 of the first metal substrate 170. Includes a first region 172 and a second region 174, and the second region 174 may be disposed inside the first region 172. That is, the first region 172 may be disposed within a predetermined distance from the edge of the first metal substrate 170 toward the center region, and the first region 172 may surround the second region 174.
이때, 제2 영역(174)의 표면거칠기는 제1 영역(172)의 표면거칠기보다 크고, 제1 수지층(110)은 제2 영역(174) 상에 배치될 수 있다. 여기서, 제1 수지층(110)은 제1 영역(172)과 제2 영역(174) 간의 경계로부터 소정 거리만큼 이격되도록 배치될 수 있다. 즉, 제1 수지층(110)은 제2 영역(174) 상에 배치되되, 제1 수지층(110)의 가장자리는 제2 영역(174) 내부에 위치할 수 있다. 이에 따라, 제2 영역(174)의 표면거칠기에 의하여 형성된 홈(400)의 적어도 일부에는 제1 수지층(110)의 일부, 즉 제1 수지층(110)에 포함되는 에폭시 수지(600) 및 무기충전재의 일부(604)가 스며들 수 있으며, 제1 수지층(110)과 제1 금속기판(170) 간의 접착력이 높아질 수 있다.In this case, the surface roughness of the second region 174 may be greater than the surface roughness of the first region 172, and the first resin layer 110 may be disposed on the second region 174. Here, the first resin layer 110 may be disposed to be spaced apart from the boundary between the first region 172 and the second region 174 by a predetermined distance. That is, the first resin layer 110 may be disposed on the second region 174, and the edge of the first resin layer 110 may be located inside the second region 174. Accordingly, at least a portion of the groove 400 formed by the surface roughness of the second region 174 includes a part of the first resin layer 110, that is, the epoxy resin 600 included in the first resin layer 110, and A portion 604 of the inorganic filler may be impregnated, and adhesion between the first resin layer 110 and the first metal substrate 170 may be increased.
다만, 제2 영역(174)의 표면거칠기는 제1 수지층(110)에 포함되는 무기충전재 중 일부의 입자크기 D50보다는 크고, 다른 일부의 입자크기 D50보다는 작게 형성될 수 있다. 여기서, 입자크기 D50은 입도분포곡선에서 중량 백분율의 50%에 해당하는 입경, 즉 통과질량 백분율이 50%가 되는 입경을 의미하며, 평균 입경과 혼용될 수 있다. 제1 수지층(110)이 무기충전재로 산화알루미늄과 질화붕소를 포함할 경우를 예로 들면, 산화알루미늄은 제1 수지층(110)과 제1 금속기판(170) 간의 접착 성능에 영향을 미치지 않지만, 질화붕소는 표면이 매끄러우므로 제1 수지층(110)과 제1 금속기판(170) 간의 접착 성능에 좋지 않은 영향을 미칠 수 있다. 이에 따라, 제2 영역(174)의 표면거칠기를 제1 수지층(110)에 포함되는 산화알루미늄의 입자크기 D50보다는 크되, 질화붕소의 입자크기 D50보다는 작게 형성하면, 제2 영역(174)의 표면거칠기에 의하여 형성된 홈 내에는 산화알루미늄만이 배치되며, 질화붕소는 배치되기 어려우므로, 제1 수지층(110)과 제1 금속기판(170)은 높은 접합 강도를 유지할 수 있다.However, the surface roughness of the second region 174 may be larger than the particle size D50 of some of the inorganic fillers included in the first resin layer 110 and smaller than the particle size D50 of the other portions. Here, the particle size D50 refers to a particle size corresponding to 50% of the weight percentage in the particle size distribution curve, that is, a particle size such that the passage mass percentage is 50%, and may be mixed with the average particle diameter. For example, when the first resin layer 110 includes aluminum oxide and boron nitride as an inorganic filler, aluminum oxide does not affect the adhesion performance between the first resin layer 110 and the first metal substrate 170. Since boron nitride has a smooth surface, it may adversely affect the adhesion performance between the first resin layer 110 and the first metal substrate 170. Accordingly, when the surface roughness of the second region 174 is greater than the particle size D50 of aluminum oxide included in the first resin layer 110, but smaller than the particle size D50 of boron nitride, the second region 174 may be formed. Since only aluminum oxide is disposed in the groove formed by the surface roughness, and boron nitride is hardly disposed, the first resin layer 110 and the first metal substrate 170 can maintain high bonding strength.
이에 따라, 제2 영역(174)의 표면거칠기는 제1 수지층(110) 내에 포함된 무기충전재 중 크기가 상대적으로 작은 무기충전재(604), 예를 들어 산화알루미늄의 입자크기 D50의 1.05 내지 1.3배이고, 제1 수지층(110) 내에 포함된 무기충전재 중 크기가 상대적으로 큰 무기충전재(602), 예를 들어 질화붕소의 입자크기 D50보다 작을 수 있다. 예를 들어, 제2 영역(174)의 표면거칠기는 40㎛ 미만, 바람직하게는 10.5 내지 39㎛일 수 있다. 이에 따르면, 제2 영역(174)의 표면거칠기에 의하여 형성된 홈 내에 배치되는 질화붕소를 최소화할 수 있다.Accordingly, the surface roughness of the second region 174 is 1.05 to 1.3 of the particle size D50 of the inorganic filler 604 having a relatively small size among the inorganic fillers included in the first resin layer 110, for example, aluminum oxide. Double, the inorganic filler 602 of the inorganic filler included in the first resin layer 110 is relatively large in size, for example, may be smaller than the particle size D50 of boron nitride. For example, the surface roughness of the second region 174 may be less than 40 μm, preferably 10.5 to 39 μm. Accordingly, boron nitride disposed in the groove formed by the surface roughness of the second region 174 may be minimized.
이러한 표면거칠기는 표면거칠기 측정기를 이용하여 측정될 수 있다. 표면거칠기 측정기는 탐침을 이용하여 단면 곡선을 측정하며, 단면 곡선의 산봉우리선, 골바닥선, 평균선 및 기준길이를 이용하여 표면거칠기를 산출할 수 있다. 본 명세서에서, 표면거칠기는 중심선 평균 산출법에 의한 산술평균 거칠기(Ra)를 의미할 수 있다. 산술평균 거칠기(Ra)는 아래 수학식 2를 통하여 얻어질 수 있다. Such surface roughness may be measured using a surface roughness meter. The surface roughness measuring instrument measures the cross-sectional curve by using a probe, and can calculate the surface roughness using the peak line, the valley line, the average line and the reference length of the cross-sectional curve. In the present specification, the surface roughness may mean arithmetic mean roughness Ra by the center line average calculation method. Arithmetic mean roughness Ra may be obtained through Equation 2 below.
Figure PCTKR2019003878-appb-M000002
Figure PCTKR2019003878-appb-M000002
즉, 표면거칠기 측정기의 탐침을 얻은 단면 곡선을 기준길이 L만큼 뽑아내어 평균선 방향을 x축으로 하고, 높이 방향을 y축으로 하여 함수(f(x))로 표현하였을 때, 수학식 2에 의하여 구해지는 값을 ㎛미터로 나타낼 수 있다.That is, when the cross-sectional curve obtained by the surface roughness measuring instrument is extracted by the reference length L, and the average line direction is the x-axis, and the height direction is the y-axis, it is expressed as a function (f (x)) by Equation 2 The calculated value can be expressed in 占 퐉.
본 발명의 다른 실시예에 따르면, 도 5 내지 6을 참조하면, 제1 금속기판(170)의 양면 중 제1 수지층(110)이 배치되는 면, 즉 제1 금속기판(170)의 제1 수지층(110)과 마주보는 면은 제1 영역(172) 및 제1 영역(172)에 의하여 둘러싸이고, 제1 영역(172)보다 표면거칠기가 크게 형성된 제2 영역(174)을 포함하되, 제3 영역(176)을 더 포함할 수 있다. According to another embodiment of the present invention, referring to FIGS. 5 to 6, a surface on which the first resin layer 110 is disposed among both surfaces of the first metal substrate 170, that is, the first of the first metal substrate 170. The surface facing the resin layer 110 may include a second region 174 surrounded by the first region 172 and the first region 172, and having a larger surface roughness than the first region 172. It may further include a third region 176.
여기서, 제3 영역(176)은 제2 영역(174)의 내부에 배치될 수 있다. 즉, 제3 영역(176)은 제2 영역(174)에 의하여 둘러싸이도록 배치될 수 있다. 그리고, 제2 영역(174)의 표면거칠기는 제3 영역(176)의 표면거칠기보다 크게 형성될 수 있다. Here, the third region 176 may be disposed inside the second region 174. That is, the third region 176 may be disposed to be surrounded by the second region 174. The surface roughness of the second region 174 may be larger than the surface roughness of the third region 176.
이때, 제1 수지층(110)은 제1 영역(172)과 제2 영역(174) 간 경계로부터 소정 거리 이격되도록 배치되되, 제1 수지층(110)은 제2 영역(174)의 일부 및 제3 영역(176)를 커버하도록 배치될 수 있다.In this case, the first resin layer 110 is disposed to be spaced apart from the boundary between the first region 172 and the second region 174 by a predetermined distance, and the first resin layer 110 is a part of the second region 174 and It may be arranged to cover the third region 176.
한편, 다시 도 1을 참조하면, 복수의 제1 전극(120)의 측면(121)의 적어도 일부는 제1 수지층(110) 내에 매립된다. 이때, 제1 수지층(110) 내에 매립된 복수의 제1 전극(120)의 측면(121)의 높이(H1)는 복수의 제1 전극(120)의 두께(H)의 0.1 내지 1배, 바람직하게는 0.2 내지 0.9배, 더욱 바람직하게는 0.3 내지 0.8배일 수 있다. 이와 같이, 복수의 제1 전극(120)의 측면(121)의 적어도 일부가 제1 수지층(110) 내에 매립되면, 복수의 제1 전극(120)과 제1 수지층(110) 간의 접촉 면적이 넓어지게 되며, 이에 따라 복수의 제1 전극(120)과 제1 수지층(110) 간의 열전달 성능 및 접합 강도가 더욱 높아질 수 있다. 제1 수지층(110) 내에 매립된 복수의 제1 전극(120)의 측면(121)의 높이(H1)가 복수의 제1 전극(120)의 두께(H)의 0.1배 미만일 경우, 복수의 제1 전극(120)과 제1 수지층(110) 간의 열전달 성능 및 접합 강도를 충분히 얻기 어려울 수 있고, 제1 수지층(110) 내에 매립된 복수의 제1 전극(120)의 측면(121)의 높이(H1)가 복수의 제1 전극(120)의 두께(H)의 1배를 초과할 경우 제1 수지층(110)이 복수의 제1 전극(120) 상으로 올라올 수 있으며, 이에 따라 전기적으로 단락될 가능성이 있다. Meanwhile, referring back to FIG. 1, at least a part of the side surfaces 121 of the plurality of first electrodes 120 may be embedded in the first resin layer 110. In this case, the height H1 of the side surfaces 121 of the plurality of first electrodes 120 embedded in the first resin layer 110 is 0.1 to 1 times the thickness H of the plurality of first electrodes 120, Preferably 0.2 to 0.9 times, more preferably 0.3 to 0.8 times. As described above, when at least a part of the side surfaces 121 of the plurality of first electrodes 120 are embedded in the first resin layer 110, the contact area between the plurality of first electrodes 120 and the first resin layer 110 is provided. As a result, the heat transfer performance and the bonding strength between the plurality of first electrodes 120 and the first resin layer 110 may be further increased. When the height H1 of the side surfaces 121 of the plurality of first electrodes 120 embedded in the first resin layer 110 is less than 0.1 times the thickness H of the plurality of first electrodes 120, the plurality of It may be difficult to sufficiently obtain the heat transfer performance and the bonding strength between the first electrode 120 and the first resin layer 110, the side surface 121 of the plurality of first electrodes 120 embedded in the first resin layer 110. When the height H1 exceeds 1 times the thickness H of the plurality of first electrodes 120, the first resin layer 110 may rise on the plurality of first electrodes 120. There is a possibility of an electrical short.
더욱 자세하게는, 이웃하는 두 개의 제1 전극(120) 사이에서 제1 수지층(110)의 두께는 각 전극의 측면으로부터 중심영역으로 갈수록 감소할 수 있다. 여기서, 중심영역은 두 개의 제1 전극(120) 사이의 가운데 지점을 포함하는 소정의 영역을 의미할 수 있다. 즉, 제1 수지층(110)의 두께는 하나의 제1 전극(120)의 측면으로부터 멀어질수록 점점 줄어들다가 이웃하는 다른 제1 전극(120)의 측면에 가까워질수록 점점 커질 수 있다. 이때, 이웃하는 두 개의 제1 전극(120) 사이에서 제1 수지층(110)의 두께는 완만하게 줄어들다가 커질 수 있다. 이에 따라, 이웃하는 두 개의 제1 전극(120) 사이에서 제1 수지층(110)의 상면은 꼭지점이 완만한 'V'자 형상을 가질 수 있다. 따라서, 이웃하는 두 개의 제1 전극(120) 사이의 제1 수지층(110)은 두께의 편차를 가질 수 있다. 예를 들어, 제1 전극(120)의 측면(121)과 직접 접촉하는 영역에서의 제1 수지층(110)의 높이(T2)가 가장 높으며, 중심영역에서의 제1 수지층(110)의 높이(T3)는 제1 전극(120)의 측면(121)과 직접 접촉하는 영역에서의 제1 수지층(110)의 높이(T2)보다 낮을 수 있다. 즉, 이웃하는 두 개의 제1 전극(120) 사이의 제1 수지층(110)의 중심영역 높이(T3)는 이웃하는 두 개의 제1 전극(120) 사이의 제1 수지층(110) 내에서 가장 낮을 수 있다. More specifically, the thickness of the first resin layer 110 between two neighboring first electrodes 120 may decrease from the side of each electrode toward the center region. Here, the center area may mean a predetermined area including a center point between two first electrodes 120. That is, the thickness of the first resin layer 110 may decrease gradually as the distance from one side of the first electrode 120 decreases, and increases as the thickness of the first resin layer 110 approaches the side of the neighboring first electrode 120. In this case, the thickness of the first resin layer 110 may be gradually reduced between two neighboring first electrodes 120, and may increase. Accordingly, the upper surface of the first resin layer 110 may have a 'V' shape having a smooth vertex between two neighboring first electrodes 120. Therefore, the first resin layer 110 between two neighboring first electrodes 120 may have a thickness variation. For example, the height T2 of the first resin layer 110 in the region in direct contact with the side surface 121 of the first electrode 120 is the highest, and the height of the first resin layer 110 in the center region is highest. The height T3 may be lower than the height T2 of the first resin layer 110 in a region in direct contact with the side surface 121 of the first electrode 120. That is, the height T3 of the central region of the first resin layer 110 between the two neighboring first electrodes 120 is within the first resin layer 110 between the two neighboring first electrodes 120. Can be the lowest.
다만, 각 제1 전극(120) 아래의 제1 수지층(110)의 높이(T1)는 이웃하는 두 개의 제1 전극(120) 사이의 제1 수지층(110)의 중심영역의 높이(T3)보다 더 낮을 수 있다. 즉, 제1 전극(120)의 측면과 직접 접촉하는 영역에서의 제1 수지층(110)의 높이(T2), 이웃하는 두 개의 제1 전극(120) 사이의 중심영역에서의 제1 수지층(110)의 높이(T3) 및 각 제1 전극(120) 아래에 배치된 제1 수지층(110)의 높이(T1)를 비교할 때, T2>T3>T1의 순으로 높이의 편차가 발생할 수 있다.However, the height T1 of the first resin layer 110 under each first electrode 120 is the height T3 of the central region of the first resin layer 110 between two neighboring first electrodes 120. Can be lower than). That is, the height T2 of the first resin layer 110 in the region in direct contact with the side surface of the first electrode 120, the first resin layer in the central region between two neighboring first electrodes 120. When comparing the height T3 of 110 and the height T1 of the first resin layer 110 disposed below each first electrode 120, a height deviation may occur in the order of T2> T3> T1. have.
이러한 높이의 편차는 미경화 또는 반경화 상태의 제1 수지층(110)을 이루는 조성물 상에 복수의 제1 전극(120)을 배치하여 가압한 후 제1 수지층(110)을 이루는 조성물이 경화되는 과정에서 조성물 내부의 공기가 열에너지에 의하여 배출되는 것에 의하여 형성될 수 있다. 즉, 복수의 제1 전극(120)의 측면은 제1 수지층(110)을 이루는 조성물 내부의 공기가 배출되는 채널이 될 수 있으며, 이에 따라, 제1 수지층(110)을 이루는 조성물은 복수의 제1 전극(120)의 측면을 따라 중력 방향으로 하강하는 형태로 경화될 수 있다.The height difference is such that the composition forming the first resin layer 110 is cured after placing and pressing the plurality of first electrodes 120 on the composition forming the first resin layer 110 in an uncured or semi-cured state. In the process it can be formed by the air inside the composition is discharged by the thermal energy. That is, the side surfaces of the plurality of first electrodes 120 may be a channel through which air in the composition forming the first resin layer 110 is discharged. Accordingly, the composition forming the first resin layer 110 may be a plurality of compositions. It may be cured in the form of falling in the direction of gravity along the side of the first electrode 120 of.
이때, 복수의 제1 전극(120) 아래의 제1 수지층(110)의 두께(T1)는 20 내지 80㎛이고, 제1 전극(120)의 측면(121)과 직접 접촉하는 영역에서의 제1 수지층(110)의 두께(T2)는 각 제1 전극(120) 아래에 배치된 제1 수지층(110)의 두께(T1)의 1.5 내지 4배, 바람직하게는 2 내지 4배, 더욱 바람직하게는 3 내지 4배일 수 있다. 그리고, 이웃하는 두 개의 제1 전극(120) 사이의 중심영역에 배치된 제1 수지층(110)의 두께(T3)는 각 제1 전극(120) 아래에 배치된 제1 수지층(110)의 두께(T1)의 1.1 내지 3배, 바람직하게는 1.1 내지 2.5배, 더욱 바람직하게는 1.1 내지 2배일 수 있다. 또한, 제1 전극(120)의 측면(121)과 직접 접촉하는 영역에서의 제1 수지층(110)의 두께(T2)는 이웃하는 두 개의 제1 전극(120) 사이의 중심영역에 배치된 제1 수지층(110)의 두께(T3)의 1.5 내지 3.5배, 바람직하게는 2 내지 3배, 더욱 바람직하게는 2.2 내지 2.7배일 수 있다. 이와 같이, 복수의 제1 전극(120) 아래의 제1 수지층(110)의 두께(T1), 제1 전극(120)의 측면(121)과 직접 접촉하는 영역에서의 제1 수지층(110)의 두께(T2) 및 이웃하는 두 개의 제1 전극(120) 사이의 중심영역에 배치된 제1 수지층(110)의 두께(T3)가 서로 상이할 경우, 복수의 제1 전극(120) 아래의 제1 수지층(110) 내 무기충전재의 분포는 복수의 제1 전극(120) 사이의 제1 수지층(110) 내 무기충전재의 분포와 상이할 수 있다. 예를 들어, 제1 수지층(110)이 D50이 40 내지 200㎛인 질화붕소 및 D50이 10 내지 30㎛인 산화알루미늄을 포함하는 경우, 질화붕소 및 산화알루미늄이 제1 수지층(110) 내에 전체적으로 고르게 분산되더라도, 부분적으로는 그 분포가 상이할 수 있다. 예를 들어, D50이 40 내지 200㎛인 질화붕소의 밀도는 약 2.1g/cm3이고, D50이 10 내지 30㎛인 산화알루미늄의 밀도는 약 3,95 내지 4.1g/cm3이다. 이에 따라, 밀도가 높고 크기가 작은 산화알루미늄은 상대적으로 밀도가 낮고 크기가 큰 질화붕소에 비하여 밑으로 가라앉는 경향이 있다. 특히, 제1 수지층(110) 내 복수의 제1 전극(120) 아래에 배치되는 영역, 즉 두께가 T1인 영역에서는 T1에 비하여 입자 크기가 큰 무기충전재는 복수의 제1 전극(120) 사이의 영역, 즉 두께가 T2 내지 T3인 영역으로 밀려날 수 있다. 이에 따라, 복수의 제1 전극(120) 아래의 제1 수지층(110) 내 무기충전재의 분포는 복수의 제1 전극(120) 사이의 제1 수지층(110) 내 무기충전재 분포와 상이할 수 있다. 예를 들어, 복수의 제1 전극(120) 아래의 제1 수지층(110) 내 전체 무기충전재에 대한 질화붕소의 함량 비(예, 중량비)는 복수의 제1 전극(120) 사이의 제1 수지층(110) 내 전체 무기충전재에 대한 질화붕소의 함량 비(예, 중량비)보다 작을 수 있다. 이에 따라, 복수의 제1 전극(120) 아래의 제1 수지층(110) 내 무기충전재의 입자 크기 D50은 복수의 제1 전극(120) 사이의 제1 수지층(110) 내 무기충전재의 입자 크기 D50보다 작을 수 있다. 산화알루미늄은 제1 수지층(110)과 복수의 제1 전극(120) 간의 접착 성능에 영향을 미치지 않지만, 질화붕소는 표면이 매끄러우므로 제1 수지층(110)과 복수의 제1 전극(120) 간의 접착 성능에 좋지 않은 영향을 미칠 수 있다. 본 발명의 실시예와 같이 복수의 제1 전극(120)이 제1 수지층(110) 내에 매립되면 복수의 제1 전극(120) 아래에 배치되는 제1 수지층(110) 내 질화붕소의 함량이 줄어들게 되며, 이에 따라 복수의 제1 전극(120)이 제1 수지층(110) 내에 매립되지 않는 경우에 비하여 복수의 제1 전극(120)과 제1 수지층(110) 간의 접합 강도를 높일 수 있다.In this case, the thickness T1 of the first resin layer 110 under the plurality of first electrodes 120 is 20 to 80 μm, and is formed in a region in direct contact with the side surface 121 of the first electrode 120. The thickness T2 of the first resin layer 110 is 1.5 to 4 times, preferably 2 to 4 times, more preferably the thickness T1 of the first resin layer 110 disposed below each first electrode 120. Preferably 3 to 4 times. In addition, the thickness T3 of the first resin layer 110 disposed in the center region between two neighboring first electrodes 120 may correspond to the first resin layer 110 disposed below each first electrode 120. It may be 1.1 to 3 times, preferably 1.1 to 2.5 times, and more preferably 1.1 to 2 times the thickness T1 of. In addition, the thickness T2 of the first resin layer 110 in a region in direct contact with the side surface 121 of the first electrode 120 may be disposed in a center region between two neighboring first electrodes 120. The first resin layer 110 may be 1.5 to 3.5 times, preferably 2 to 3 times, and more preferably 2.2 to 2.7 times the thickness T3 of the first resin layer 110. As such, the first resin layer 110 in the region in direct contact with the thickness T1 of the first resin layer 110 under the plurality of first electrodes 120 and the side surface 121 of the first electrode 120. When the thickness T2 of the? And the thickness T3 of the first resin layer 110 disposed in the center region between two neighboring first electrodes 120 are different from each other, the plurality of first electrodes 120 Distribution of the inorganic filler in the first resin layer 110 may be different from the distribution of the inorganic filler in the first resin layer 110 between the plurality of first electrodes 120. For example, when the first resin layer 110 includes boron nitride having D50 of 40 to 200 μm and aluminum oxide having D50 of 10 to 30 μm, boron nitride and aluminum oxide may be contained in the first resin layer 110. Evenly distributed throughout, the distribution may differ in part. For example, the density of boron nitride having a D50 of 40 to 200 µm is about 2.1 g / cm 3, and the density of aluminum oxide having a D50 of 10 to 30 µm is about 3,95 to 4.1 g / cm 3 . Accordingly, high density and small size aluminum oxides tend to sink downwards as compared to relatively low density and large size boron nitride. In particular, in the region disposed below the plurality of first electrodes 120 in the first resin layer 110, that is, in the region having a thickness of T1, an inorganic filler having a larger particle size than that of T1 is disposed between the plurality of first electrodes 120. It can be pushed out to the area | region of ie, the area | region whose thickness is T2-T3. Accordingly, the distribution of the inorganic filler in the first resin layer 110 under the plurality of first electrodes 120 may be different from the distribution of the inorganic filler in the first resin layer 110 between the plurality of first electrodes 120. Can be. For example, the content ratio (eg, weight ratio) of boron nitride with respect to the entire inorganic filler in the first resin layer 110 under the plurality of first electrodes 120 may include a first ratio between the plurality of first electrodes 120. It may be smaller than the content ratio (eg, weight ratio) of boron nitride to the total inorganic filler in the resin layer 110. Accordingly, the particle size D50 of the inorganic filler in the first resin layer 110 under the plurality of first electrodes 120 is the particle of the inorganic filler in the first resin layer 110 between the plurality of first electrodes 120. It may be smaller than size D50. Aluminum oxide does not affect the adhesion performance between the first resin layer 110 and the plurality of first electrodes 120, but since the surface of the boron nitride is smooth, the first resin layer 110 and the plurality of first electrodes ( 120) may adversely affect the adhesion performance between. When the plurality of first electrodes 120 is embedded in the first resin layer 110 as in the embodiment of the present invention, the content of boron nitride in the first resin layer 110 disposed under the plurality of first electrodes 120. As a result, the bonding strength between the plurality of first electrodes 120 and the first resin layer 110 may be increased as compared with the case where the plurality of first electrodes 120 are not embedded in the first resin layer 110. Can be.
도 7은 본 발명의 또 다른 실시예에 따른 열전소자의 단면도이고, 도 8은 도 7에 따른 열전소자의 사시도이며, 도 9는 도 7에 따른 열전소자의 분해사시도이다. 도 1 내지 6에서 설명한 내용과 동일한 내용은 중복된 설명을 생략한다. 7 is a cross-sectional view of a thermoelectric device according to still another embodiment of the present invention, FIG. 8 is a perspective view of the thermoelectric device according to FIG. 7, and FIG. 9 is an exploded perspective view of the thermoelectric device according to FIG. 7. Descriptions identical to those described with reference to FIGS. 1 to 6 will not be repeated here.
도 7 내지 9를 참조하면, 본 발명의 실시예에 따른 열전소자(100)는 실링부(190)를 포함한다. 7 to 9, the thermoelectric device 100 according to the exemplary embodiment of the present invention includes a sealing unit 190.
실링부(190)는 제1 금속기판(170) 상에서 제1 수지층(110)의 측면과 제 2수지층(160)의 측면에 배치될 수 있다, 즉, 실링부(190)는 제 1금속기판(170)과 제 2금속기판(180) 사이에 배치되며, 복수의 제1 전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽, 복수의 제2 전극(150)의 최외곽 및 제2 수지층(160)의 측면을 둘러싸도록 배치될 수 있다. 이에 따라, 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130), 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층은 외부의 습기, 열, 오염 등으로부터 실링될 수 있다. The sealing unit 190 may be disposed on the side of the first resin layer 110 and the side of the second resin layer 160 on the first metal substrate 170. That is, the sealing unit 190 may be formed of the first metal. The outermost portion of the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, and the plurality of N-type thermoelectric legs 140 are disposed between the substrate 170 and the second metal substrate 180. It may be disposed to surround the outer side, the outermost side of the plurality of second electrodes 150 and side surfaces of the second resin layer 160. Accordingly, the first resin layer 110, the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, the plurality of N-type thermoelectric legs 140, the plurality of second electrodes 150 and the first 2 The resin layer can be sealed from external moisture, heat, contamination and the like.
이때, 실링부(190)는 제1 영역(172) 상에 배치될 수 있다. 이와 같이, 표면거칠기가 작은 제1 영역(172) 상에 실링부(190)가 배치되면, 실링부(190) 와 제1 금속기판(170) 간의 실링 효과를 높일 수 있다.In this case, the sealing unit 190 may be disposed on the first region 172. As such, when the sealing unit 190 is disposed on the first region 172 having a small surface roughness, the sealing effect between the sealing unit 190 and the first metal substrate 170 may be enhanced.
여기서, 실링부(190)는 제1 수지층(110)의 측면, 복수의 제1 전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽, 복수의 제2 전극(150)의 최외곽 및 제2 수지층(160)의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스(192), 실링 케이스(192)와 제1 금속기판(170)의 제1 영역(172) 사이에 배치되는 실링재(194), 실링케이스(192)와 제2 금속기판(180)의 측면 사이에 배치되는 실링재(196)를 포함할 수 있다. 이와 같이, 실링케이스(192)는 실링재(194, 196)를 매개로 하여 제1 금속기판(170) 및 제2 금속기판(180)과 접촉할 수 있다. 이에 따라, 실링케이스(192)가 제1 금속기판(170) 및 제2 금속기판(180)과 직접 접촉할 경우 실링케이스(192)를 통해 열전도가 일어나게 되고, 결과적으로 △T가 낮아지는 문제를 방지할 수 있다. 특히, 본 발명의 실시예에 따르면, 실링케이스(192)의 내벽의 일부는 경사지도록 형성되며, 실링재(196)는 제2 금속기판(180)의 측면에서 제2 금속기판(180)과 실링케이스(192) 사이에 배치된다. 이에 따라, 실링케이스(192)와 제2 금속기판(180) 간의 접촉 면적을 최소화할 수 있으며, 제1 금속기판(170)과 제2 금속기판(180) 사이의 부피가 커지게 되어, 열교환이 활발해지므로, 보다 높은 △T를 얻을 수 있다. Here, the sealing part 190 may include a side surface of the first resin layer 110, an outermost portion of the plurality of first electrodes 120, a plurality of P-type thermoelectric legs 130, and a plurality of N-type thermoelectric legs 140. The outermost part, the sealing case 192, the sealing case 192, and the first metal substrate 170 which are spaced apart from the outermost part of the plurality of second electrodes 150 and the side surfaces of the second resin layer 160 by a predetermined distance. The sealing member 194 may be disposed between the first region 172, and the sealing member 196 may be disposed between the side surfaces of the sealing case 192 and the second metal substrate 180. As such, the sealing case 192 may contact the first metal substrate 170 and the second metal substrate 180 through the sealing materials 194 and 196. Accordingly, when the sealing case 192 is in direct contact with the first metal substrate 170 and the second metal substrate 180, thermal conduction occurs through the sealing case 192, and as a result, ΔT is lowered. You can prevent it. In particular, according to an embodiment of the present invention, a portion of the inner wall of the sealing case 192 is formed to be inclined, the sealing material 196 is the second metal substrate 180 and the sealing case at the side of the second metal substrate 180. Disposed between 192. As a result, the contact area between the sealing case 192 and the second metal substrate 180 may be minimized, and the volume between the first metal substrate 170 and the second metal substrate 180 may be increased. Since it becomes active, higher ΔT can be obtained.
여기서, 실링재(194, 196)는 에폭시 수지 및 실리콘 수지 중 적어도 하나를 포함하거나, 에폭시 수지 및 실리콘 수지 중 적어도 하나가 양면에 도포된 테이프를 포함할 수 있다. 실링재(194, 196)는 실링케이스(192)와 제1 금속기판(170) 사이 및 실링케이스(192)와 제2 금속기판(180) 사이를 기밀하는 역할을 하며, 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130), 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층(160)의 실링 효과를 높일 수 있고, 마감재, 마감층, 방수재, 방수층 등과 혼용될 수 있다. Here, the sealing materials 194 and 196 may include at least one of an epoxy resin and a silicone resin, or at least one of an epoxy resin and a silicone resin may include a tape coated on both surfaces. The sealing materials 194 and 196 serve to seal between the sealing case 192 and the first metal substrate 170 and between the sealing case 192 and the second metal substrate 180, and the first resin layer 110. And sealing effects of the plurality of first electrodes 120, the plurality of P-type thermoelectric legs 130, the plurality of N-type thermoelectric legs 140, the plurality of second electrodes 150, and the second resin layer 160. It can increase, and can be mixed with a finish, a finish layer, a waterproof material, a waterproof layer and the like.
한편, 실링 케이스(192)에는 전극에 연결된 와이어(200, 202)를 인출하기 위한 가이드 홈(G)이 형성될 수 있다. 이를 위하여, 실링 케이스(192)는 플라스틱 등으로 이루어진 사출 성형물일 수 있으며, 실링 커버와 혼용될 수 있다. On the other hand, the sealing case 192 may be formed with a guide groove (G) for drawing out the wires 200 and 202 connected to the electrode. To this end, the sealing case 192 may be an injection molded product made of plastic or the like, and may be mixed with the sealing cover.
여기서, 제1 금속기판(170)은 열을 방출하는 방열부 또는 발열부이고, 제2 금속기판(180)은 열을 흡수하는 흡열부 또는 냉각부일 수 있다. 이를 위하여, 제1 금속기판(170)의 폭 길이는 제2 금속기판(180)의 폭 길이보다 크거나, 제1 금속기판(170)의 두께는 제2 금속기판(180)의 두께보다 얇을 수 있다. 이에 따라, 방열부 또는 발열부인 제1 금속기판(170)은 열저항이 작도록 구현될 수 있으며, 실링부(190)가 안정적으로 배치될 수 있다. 특히, 제1 금속기판(170)은 실링부(190)를 안정적으로 배치하기 위하여, 제1 영역(172)에 해당하는 면적만큼 제2 금속기판(180)보다 크게 형성될 수 있다. 흡열부 또는 냉각부인 제2 금속기판(180)은 접촉하는 대상물과 최소한의 면적으로 접촉할 수 있으므로, 열손실을 최소화할 수 있다. 본 발명의 실시예에 따른 열전소자가 냉각을 위한 애플리케이션에 적용되는 경우, 제2 금속기판(180)의 두께는 요구되는 냉각 시스템의 열용량에 따라 달라질 수 있다. Here, the first metal substrate 170 may be a heat radiating part or a heat generating part for emitting heat, and the second metal substrate 180 may be an endothermic part or cooling part for absorbing heat. To this end, the width of the first metal substrate 170 may be greater than the width of the second metal substrate 180, or the thickness of the first metal substrate 170 may be thinner than the thickness of the second metal substrate 180. have. Accordingly, the first metal substrate 170, which is a heat radiating part or a heat generating part, may be implemented to have a low thermal resistance, and the sealing part 190 may be stably disposed. In particular, the first metal substrate 170 may be formed larger than the second metal substrate 180 by an area corresponding to the first region 172 in order to stably arrange the sealing unit 190. Since the second metal substrate 180, which is the heat absorbing part or the cooling part, may contact the object to be contacted with the minimum area, the heat loss may be minimized. When the thermoelectric device according to the exemplary embodiment of the present invention is applied to an application for cooling, the thickness of the second metal substrate 180 may vary depending on a required heat capacity of the cooling system.
도 7 내지 9에서 설명한 실시예는, 제1 금속기판(170)이 제1 영역(172)과 제2 영역(174)을 포함하는 도 1 내지 4의 실시예뿐만 아니라, 제1 금속기판(170)이 제1 영역(172), 제2 영역(174) 및 제3 영역(176)을 포함하는 도 5 내지 6의 실시예에도 적용될 수 있다.7 to 9 include the first metal substrate 170 as well as the embodiment of FIGS. 1 to 4 where the first metal substrate 170 includes the first region 172 and the second region 174. ) May also be applied to the embodiments of FIGS. 5-6 that include first region 172, second region 174, and third region 176.
도 10은 본 발명의 한 실시예에 따른 열전소자의 제작 방법을 나타낸다. 10 shows a method of manufacturing a thermoelectric device according to an embodiment of the present invention.
도 10을 참조하면, 금속기판의 양면 중 한 면에 표면 거칠기를 형성한다(S1000). 표면거칠기는 샌드블라스팅, 소잉(sawing), 캐스팅(casting), 포깅(forging), 선삭, 밀링, 보링, 드릴링, 방전가공 등의 다양한 방법으로 수행될 수 있으며, 이로 제한되는 것은 아니다. 전술한 바와 같이, 표면거칠기는 금속기판의 양면 중 한 면 내 일부 영역에만 수행될 수 있다. 예를 들어, 표면거칠기는 도 1 내지 4의 실시예와 같이 금속기판의 가장자리를 포함하는 일부 영역, 즉 제1 영역을 제외하고, 금속기판의 가운데를 포함하는 나머지 영역, 즉 제2 영역에 수행될 수 있다. 또는, 표면거칠기는 도 5 내지 6의 실시예와 같이 금속간의 가장자리를 포함하는 일부 영역, 즉 제1 영역 및 금속기판의 가운데를 포함하는 일부 영역, 즉 제3 영역을 제외하고, 나머지 영역, 즉 제2 영역에 수행될 수도 있다.Referring to FIG. 10, surface roughness is formed on one surface of both surfaces of the metal substrate (S1000). Surface roughening may be performed by various methods such as sandblasting, sawing, casting, forging, turning, milling, boring, drilling, and electric discharge machining, but is not limited thereto. As described above, the surface roughening may be performed only on a part of one side of both surfaces of the metal substrate. For example, the surface roughness is performed on the remaining area including the center of the metal substrate, that is, the second region, except for the first region, except for the first region, as in the embodiment of FIGS. 1 to 4. Can be. Alternatively, the surface roughness may be a partial region including an edge between metals, that is, a partial region including the center of the first region and the metal substrate, that is, the third region, as in the embodiment of FIGS. It may also be performed in the second area.
그리고, 금속기판 상에 수지층을 이루는 수지 조성물, 예를 들어 에폭시 수지 조성물을 도포한다(S1010). 이때, 에폭시 수지 조성물은 80 내지 180㎛의 두께로 도포될 수 있다. 수지층이 미경화 또는 반경화인 상태에서, 수지층 상에 복수의 전극을 배치한다(S1020). 복수의 전극은 어레이 형태로 정렬된 후 배치될 수 있다. 이때, 복수의 전극은 Cu층을 포함할 수 있으며, Cu층 상에 순차적으로 도금된 Ni층 및 Au층을 더 포함하거나, Cu층 상에 순차적으로 도금된 Ni층 및 Sn층을 더 포함할 수도 있다. Then, a resin composition constituting a resin layer, for example, an epoxy resin composition is applied onto the metal substrate (S1010). At this time, the epoxy resin composition may be applied to a thickness of 80 to 180㎛. In a state where the resin layer is uncured or semi-cured, a plurality of electrodes are disposed on the resin layer (S1020). The plurality of electrodes may be arranged after being arranged in an array form. In this case, the plurality of electrodes may include a Cu layer, and further include a Ni layer and Au layer sequentially plated on the Cu layer, or may further include a Ni layer and Sn layer sequentially plated on the Cu layer. have.
그리고, 금속기판의 아래 및 복수의 전극의 위에서 열 압착을 한다(S1030). 이를 위하여, 필름 상에 어레이 형태로 배치된 복수의 전극이 미경화 또는 반경화 상태의 수지층을 향하도록 배치된 후, 열 압착을 수행하고, 필름을 제거할 수 있다. 이에 따라, 복수의 전극의 측면의 일부가 수지층 내에 매립된 상태에서 수지층이 경화될 수 있다. Then, thermocompression bonding is performed under the metal substrate and on the plurality of electrodes (S1030). To this end, a plurality of electrodes arranged in an array form on the film may be disposed to face the resin layer in an uncured or semi-cured state, and then thermal compression may be performed to remove the film. Accordingly, the resin layer can be cured in a state where a part of the side surfaces of the plurality of electrodes is embedded in the resin layer.
이하에서는 도 11을 참조하여, 본 발명의 실시예에 따른 열전소자가 정수기에 적용된 예를 설명한다.Hereinafter, an example in which a thermoelectric device according to an exemplary embodiment of the present invention is applied to a water purifier will be described with reference to FIG. 11.
도 11은 본 발명의 실시예에 따른 열전소자가 적용된 정수기의 블록도이다.11 is a block diagram of a water purifier to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
본 발명의 실시예에 따른 열전소자가 적용된 정수기(1)는 원수 공급관(12a), 정수 탱크 유입관(12b), 정수탱크(12), 필터 어셈블리(13), 냉각 팬(14), 축열조(15), 냉수 공급관(15a), 및 열전장치(1000)을 포함한다.The water purifier 1 to which the thermoelectric element is applied according to an embodiment of the present invention includes a raw water supply pipe 12a, a water purification tank inlet pipe 12b, a water purification tank 12, a filter assembly 13, a cooling fan 14, and a heat storage tank ( 15), a cold water supply pipe 15a, and a thermoelectric device 1000.
원수 공급관(12a)은 수원으로부터 정수 대상인 물을 필터 어셈블리(13)로 유입시키는 공급관이고, 정수 탱크 유입관(12b)은 필터 어셈블리(13)에서 정수된 물을 정수 탱크(12)로 유입시키는 유입관이고, 냉수 공급관(15a)은 정수 탱크(12)에서 열전장치(1000)에 의해 소정 온도로 냉각된 냉수가 최종적으로 사용자에게 공급되는 공급관이다.The raw water supply pipe 12a is a supply pipe for introducing purified water from the water source into the filter assembly 13, and the purified water tank inflow pipe 12b is an inflow for introducing purified water from the filter assembly 13 into the purified water tank 12. The cold water supply pipe 15a is a supply pipe through which the cold water cooled to the predetermined temperature by the thermoelectric device 1000 in the purified water tank 12 is finally supplied to the user.
정수 탱크(12)는 필터 어셈블리(13)를 경유하며 정수되고 정수 탱크 유입관(12b)을 통해 유입된 물을 저장 및 외부로 공급하도록 정수된 물을 잠시 수용한다.The purified water tank 12 temporarily receives the purified water through the filter assembly 13 to store and supply the purified water introduced through the purified water tank inlet 12b to the outside.
필터 어셈블리(13)는 침전 필터(13a)와, 프리 카본 필터(13b)와, 멤브레인 필터(13c)와, 포스트 카본 필터(13d)로 구성된다.The filter assembly 13 is composed of a precipitation filter 13a, a pre carbon filter 13b, a membrane filter 13c, and a post carbon filter 13d.
즉, 원수 공급관(12a)으로 유입되는 물은 필터 어셈블리(13)를 경유하며 정수될 수 있다.That is, the water flowing into the raw water supply pipe 12a may be purified through the filter assembly 13.
축열조(15)가 정수 탱크(12)와, 열전장치(1000)의 사이에 배치되어, 열전장치(1000)에서 형성된 냉기가 저장된다. 축열조(15)에 저장된 냉기는 정수 탱크(12)로 인가되어, 정수 탱크(120)에 수용된 물을 냉각시킨다.The heat storage tank 15 is disposed between the purified water tank 12 and the thermoelectric device 1000 to store cold air formed in the thermoelectric device 1000. The cold air stored in the heat storage tank 15 is applied to the purified water tank 12 to cool the water contained in the purified water tank 120.
냉기 전달이 원활하게 이루어질 수 있도록, 축열조(15)는 정수 탱크(12)와 면접촉될 수 있다.The heat storage tank 15 may be in surface contact with the purified water tank 12 so that the cold air may be smoothly transferred.
열전장치(1000)은 상술한 바와 같이, 흡열면과 발열면을 구비하며, P 형 반도체 및 N형 반도체 상의 전자 이동에 의해, 일측은 냉각되고, 타측은 가열된다.As described above, the thermoelectric device 1000 includes a heat absorbing surface and a heat generating surface, and one side is cooled and the other side is heated by electron movement on the P-type semiconductor and the N-type semiconductor.
여기서, 일측은 정수 탱크(12) 측이며, 타측은 정수 탱크(12)의 반대측일 수 있다.Here, one side may be the purified water tank 12 side, the other side may be the opposite side of the purified water tank 12.
또한, 상술한 바와 같이 열전장치(1000)은 방수 및 방진 성능이 우수하며, 열 유동 성능이 개선되어, 정수기 내에서 정수 탱크(12)를 효율적으로 냉각할 수 있다.In addition, as described above, the thermoelectric device 1000 may have excellent waterproof and dustproof performance, and thermal flow performance may be improved to efficiently cool the purified water tank 12 in the water purifier.
이하에서는 도 12를 참조하여, 본 발명의 실시예에 따른 열전소자가 냉장고에 적용된 예를 설명한다.Hereinafter, an example in which a thermoelectric device according to an exemplary embodiment of the present invention is applied to a refrigerator will be described with reference to FIG. 12.
도 12는 본 발명의 실시예에 따른 열전소자가 적용된 냉장고의 블록도이다.12 is a block diagram of a refrigerator to which a thermoelectric element according to an exemplary embodiment of the present invention is applied.
냉장고는 심온 증발실내에 심온 증발실 커버(23), 증발실 구획벽(24), 메인 증발기(25), 냉각팬(26) 및 열전장치(1000)을 포함한다.The refrigerator includes a deep evaporation chamber cover 23, an evaporation chamber partition wall 24, a main evaporator 25, a cooling fan 26, and a thermoelectric device 1000 in the deep evaporation chamber.
냉장고 내는 심온 증발실 커버(23)에 의하여 심온 저장실과 심온 증발실로 구획된다.The inside of the refrigerator is partitioned into a deep storage compartment and a deep evaporation chamber by a deep evaporation chamber cover 23.
상세히, 상기 심온 증발실 커버(23)의 전방에 해당하는 내부 공간이 심온 저장실로 정의되고, 심온 증발실 커버(23)의 후방에 해당하는 내부 공간이 심온 증발실로 정의될 수 있다.In detail, an inner space corresponding to the front of the deep evaporation chamber cover 23 may be defined as a deep storage chamber, and an inner space corresponding to the rear of the deep evaporation chamber cover 23 may be defined as a deep temperature evaporation chamber.
심온 증발실 커버(23)의 전면에는 토출 그릴(23a)과 흡입 그릴(23b) 이 각각 형성될 수 있다. Discharge grille 23a and suction grille 23b may be respectively formed on the front surface of the deep-temperature evaporation chamber cover 23.
증발실 구획벽(24)은 인너 캐비닛의 후벽으로부터 전방으로 이격되는 지점에 설치되어, 심온실 저장 시스템이 놓이는 공간과 메인 증발기(25)가 놓이는 공간을 구획한다.The evaporation compartment partition wall 24 is installed at a point spaced forward from the rear wall of the inner cabinet to partition the space in which the depth chamber storage system is placed and the space in which the main evaporator 25 is placed.
메인 증발기(25)에 의하여 냉각되는 냉기는 냉동실로 공급된 뒤 다시 메인 증발기 쪽으로 되돌아간다.The cold air cooled by the main evaporator 25 is supplied to the freezer compartment and then returned to the main evaporator again.
열전장치(1000)은 심온 증발실에 수용되며, 흡열면이 심온 저장실의 서랍 어셈블리 쪽을 향하고, 발열면이 증발기 쪽을 향하는 구조를 이룬다. 따라서, 열전장치(1000)서 발생되는 흡열 현상을 이용하여 서랍 어셈블리에 저장된 음식물을 섭씨 영하 50도 이하의 초저온 상태로 신속하게 냉각시키는데 사용될 수 있다.The thermoelectric device 1000 is accommodated in the deep temperature evaporation chamber, and the heat absorbing surface faces the drawer assembly side of the deep storage chamber, and the heat generating surface faces the evaporator side. Therefore, it may be used to rapidly cool the food stored in the drawer assembly to an ultra low temperature of minus 50 degrees Celsius or less by using an endothermic phenomenon generated in the thermoelectric device 1000.
또한, 상술한 바와 같이 열전장치(1000)은 방수 및 방진 성능이 우수하며, 열 유동 성능이 개선되어, 냉장고 내에서 서랍 어셈블리를 효율적으로 냉각할 수 있다.In addition, as described above, the thermoelectric device 1000 may have excellent waterproof and dustproof performance, and thermal flow performance may be improved to efficiently cool the drawer assembly in the refrigerator.
본 발명의 실시예에 따른 열전소자는 발전용 장치, 냉각용 장치, 온열용 장치 등에 작용될 수 있다. 구체적으로는, 본 발명의 실시예에 따른 열전소자는 주로 광통신 모듈, 센서, 의료 기기, 측정 기기, 항공 우주 산업, 냉장고, 칠러(chiller), 자동차 통풍 시트, 컵 홀더, 세탁기, 건조기, 와인셀러, 정수기, 센서용 전원 공급 장치, 서모파일(thermopile) 등에 적용될 수 있다. The thermoelectric element according to the embodiment of the present invention may act on the apparatus for power generation, the apparatus for cooling, the apparatus for heating, and the like. Specifically, the thermoelectric device according to the embodiment of the present invention mainly includes an optical communication module, a sensor, a medical device, a measuring device, an aerospace industry, a refrigerator, a chiller, a car ventilation sheet, a cup holder, a washing machine, a dryer, and a wine cellar. It can be applied to water purifier, sensor power supply, thermopile and the like.
여기서, 본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 예로, PCR(Polymerase Chain Reaction) 기기가 있다. PCR 기기는 DNA를 증폭하여 DNA의 염기 서열을 결정하기 위한 장비이며, 정밀한 온도 제어가 요구되고, 열 순환(thermal cycle)이 필요한 기기이다. 이를 위하여, 펠티어 기반의 열전소자가 적용될 수 있다. Here, an example in which the thermoelectric device according to an embodiment of the present invention is applied to a medical device includes a polymer chain reaction (PCR) device. PCR equipment is a device for amplifying DNA to determine the DNA sequence, precise temperature control is required, and a thermal cycle (thermal cycle) equipment is required. To this end, a Peltier-based thermoelectric device may be applied.
본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 다른 예로, 광 검출기가 있다. 여기서, 광 검출기는 적외선/자외선 검출기, CCD(Charge Coupled Device) 센서, X-ray 검출기, TTRS(Thermoelectric Thermal Reference Source) 등이 있다. 광 검출기의 냉각(cooling)을 위하여 펠티어 기반의 열전소자가 적용될 수 있다. 이에 따라, 광 검출기 내부의 온도 상승으로 인한 파장 변화, 출력 저하 및 해상력 저하 등을 방지할 수 있다. Another example in which a thermoelectric device according to an exemplary embodiment of the present invention is applied to a medical device is a photo detector. Here, the photo detector includes an infrared / ultraviolet detector, a charge coupled device (CCD) sensor, an X-ray detector, a thermoelectric thermal reference source (TTRS), and the like. A Peltier-based thermoelectric device may be applied to cool the photo detector. As a result, it is possible to prevent a change in wavelength, a decrease in power, a decrease in resolution, etc. due to a temperature rise inside the photodetector.
본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 또 다른 예로, 면역 분석(immunoassay) 분야, 인비트로 진단(In vitro Diagnostics) 분야, 온도 제어 및 냉각 시스템(general temperature control and cooling systems), 물리 치료 분야, 액상 칠러 시스템, 혈액/플라즈마 온도 제어 분야 등이 있다. 이에 따라, 정밀한 온도 제어가 가능하다. As another example in which a thermoelectric device according to an embodiment of the present invention is applied to a medical device, an immunoassay field, an in vitro diagnostic field, a general temperature control and cooling system, Physiotherapy, liquid chiller systems, blood / plasma temperature control. Thus, precise temperature control is possible.
본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 또 다른 예로, 인공 심장이 있다. 이에 따라, 인공 심장으로 전원을 공급할 수 있다. Another example in which the thermoelectric device according to the embodiment of the present invention is applied to a medical device is an artificial heart. Thus, power can be supplied to the artificial heart.
본 발명의 실시예에 따른 열전소자가 항공 우주 산업에 적용되는 예로, 별 추적 시스템, 열 이미징 카메라, 적외선/자외선 검출기, CCD 센서, 허블 우주 망원경, TTRS 등이 있다. 이에 따라, 이미지 센서의 온도를 유지할 수 있다. Examples of the thermoelectric device according to an exemplary embodiment of the present invention applied to the aerospace industry include a star tracking system, a thermal imaging camera, an infrared / ultraviolet detector, a CCD sensor, a hubble space telescope, and a TTRS. Accordingly, the temperature of the image sensor can be maintained.
본 발명의 실시예에 따른 열전소자가 항공 우주 산업에 적용되는 다른 예로, 냉각 장치, 히터, 발전 장치 등이 있다. Another example in which the thermoelectric device according to the embodiment of the present invention is applied to the aerospace industry includes a cooling device, a heater, a power generation device, and the like.
이 외에도 본 발명의 실시예에 따른 열전소자는 기타 산업 분야에 발전, 냉각 및 온열을 위하여 적용될 수 있다.In addition, the thermoelectric device according to the embodiment of the present invention may be applied for power generation, cooling, and heating in other industrial fields.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed within the scope of the invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.

Claims (12)

  1. 제1 금속기판,First metal substrate,
    상기 제1 금속기판 상에 배치되며, 상기 제1 금속기판과 직접 접촉하는 제1 수지층,A first resin layer disposed on the first metal substrate and in direct contact with the first metal substrate;
    상기 제1 수지층 상에 배치된 복수의 제1 전극,A plurality of first electrodes disposed on the first resin layer,
    상기 복수의 제1 전극 상에 배치된 복수의 열전 레그,A plurality of thermoelectric legs disposed on the plurality of first electrodes,
    상기 복수의 열전 레그 상에 배치된 복수의 제2 전극,A plurality of second electrodes disposed on the plurality of thermoelectric legs,
    상기 복수의 제2 전극 상에 배치되는 제2 수지층, 그리고A second resin layer disposed on the plurality of second electrodes, and
    상기 제2 수지층 상에 배치된 제2 금속기판을 포함하고,A second metal substrate disposed on the second resin layer,
    상기 제1 수지층은 고분자 수지 및 무기충전재를 포함하고,The first resin layer includes a polymer resin and an inorganic filler,
    상기 복수의 제1 전극의 측면의 적어도 일부는 상기 제1 수지층 내에 매립되는 열전소자. At least a portion of the side surfaces of the plurality of first electrodes are embedded in the first resin layer.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 수지층 내에 매립된 상기 측면의 높이는 상기 복수의 제1 전극의 두께의 0.1 내지 1배인 열전소자. And a height of the side surface embedded in the first resin layer is 0.1 to 1 times the thickness of the plurality of first electrodes.
  3. 제1항에 있어서, The method of claim 1,
    이웃하는 두 개의 제1 전극 사이에서 상기 제1 수지층의 두께는 각 제1 전극의 측면으로부터 상기 이웃하는 두 개의 제1 전극 사이의 중심 영역으로 갈수록 감소하는 열전소자.The thickness of the first resin layer between two neighboring first electrodes decreases from the side of each first electrode toward the center region between the two neighboring first electrodes.
  4. 제3항에 있어서, The method of claim 3,
    상기 복수의 제1 전극 아래의 상기 제1 수지층의 두께는 상기 이웃하는 두 개의 제1 전극 사이의 중심 영역에서의 상기 제1 수지층의 두께보다 작은 열전소자.And a thickness of the first resin layer under the plurality of first electrodes is smaller than a thickness of the first resin layer in a central region between the two neighboring first electrodes.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 복수의 제1 전극 아래의 상기 제1 수지층 내 상기 무기충전재의 분포는 상기 이웃하는 두 개의 제1 전극 사이의 상기 제1 수지층 내 상기 무기충전재의 분포와 상이한 열전소자.And the distribution of the inorganic filler in the first resin layer under the plurality of first electrodes is different from the distribution of the inorganic filler in the first resin layer between the two neighboring first electrodes.
  6. 제5항에 있어서,The method of claim 5,
    상기 복수의 제1 전극 아래의 상기 제1 수지층 내 상기 무기충전재의 입자크기 D50은 상기 이웃하는 두 개의 제1 전극 사이의 상기 제1 수지층 내 상기 무기충전재의 입자크기 D50보다 작은 열전소자.The particle size D50 of the inorganic filler in the first resin layer under the plurality of first electrodes is smaller than the particle size D50 of the inorganic filler in the first resin layer between two neighboring first electrodes.
  7. 제1항에 있어서, The method of claim 1,
    상기 제1 금속기판의 상기 제1 수지층과 마주보는 면은 제1 영역 및 상기 제1 영역의 내부에 배치되는 제2 영역을 포함하며,The surface facing the first resin layer of the first metal substrate includes a first region and a second region disposed inside the first region,
    상기 제2 영역의 표면거칠기는 상기 제1 영역의 표면거칠기보다 크고, The surface roughness of the second region is greater than the surface roughness of the first region,
    상기 제1 수지층은 상기 제2 영역 상에 배치되는 열전소자.And the first resin layer is disposed on the second region.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 제1 금속기판과 상기 제2 금속기판 사이에 배치되는 실링부를 더 포함하고, Further comprising a sealing portion disposed between the first metal substrate and the second metal substrate,
    상기 실링부는 상기 제1 영역 상에 배치되는 열전소자. And the sealing part is disposed on the first region.
  9. 제8항에 있어서, The method of claim 8,
    상기 실링부는,The sealing unit,
    상기 제1 수지층의 측면 및 상기 제2 수지층의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스, 그리고 A sealing case disposed at a predetermined distance from a side surface of the first resin layer and a side surface of the second resin layer, and
    상기 실링 케이스와 상기 제1 영역 사이에 배치되는 실링재를 포함하는 열전소자.And a sealing material disposed between the sealing case and the first region.
  10. 제 1항에 있어서, The method of claim 1,
    상기 제1 수지층은 상기 고분자 수지 20 내지 40wt% 및 상기 무기충전재 60 내지 80wt%를 포함하는 열전소자.The first resin layer is a thermoelectric element comprising 20 to 40wt% of the polymer resin and 60 to 80wt% of the inorganic filler.
  11. 제 10항에 있어서, The method of claim 10,
    상기 고분자 수지는 에폭시계 수지, 아크릴계 수지, 우레탄계 수지, 폴리아미드계 수지, 폴리에틸렌계 수지, EVA(Ethylene-Vinyl Acetate copolymer)계 수지, 폴리에스테르계 수지 및 PVC(PolyVinyl Chloride)계 수지 중 적어도 하나를 포함하고,The polymer resin may include at least one of an epoxy resin, an acrylic resin, a urethane resin, a polyamide resin, a polyethylene resin, an EVA (Ethylene-Vinyl Acetate copolymer) resin, a polyester resin, and a polyvinyl chloride (PVC) resin. Including,
    상기 무기충전재는 산화알루미늄, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함하는 열전소자.The inorganic filler is a thermoelectric element comprising at least one of aluminum oxide, boron nitride and aluminum nitride.
  12. 제 1항에 있어서, The method of claim 1,
    상기 제2 수지층은 상기 제1 수지층과 동일한 물질을 포함하는 열전소자.The second resin layer is a thermoelectric element comprising the same material as the first resin layer.
PCT/KR2019/003878 2018-04-04 2019-04-02 Thermoelectric element WO2019194539A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19781406.4A EP3764410B1 (en) 2018-04-04 2019-04-02 Thermoelectric element
CN201980024692.4A CN112041996B (en) 2018-04-04 2019-04-02 thermoelectric element
EP23200135.4A EP4277454A3 (en) 2018-04-04 2019-04-02 Thermoelectric element
JP2020553583A JP7442456B2 (en) 2018-04-04 2019-04-02 thermoelectric element
CN202311444909.1A CN117460386A (en) 2018-04-04 2019-04-02 Thermoelectric element
US17/041,695 US20210050504A1 (en) 2018-04-04 2019-04-02 Thermoelectric element
CN202311444498.6A CN117460385A (en) 2018-04-04 2019-04-02 Thermoelectric element
CN202311446808.8A CN117460387A (en) 2018-04-04 2019-04-02 Thermoelectric element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0039307 2018-04-04
KR20180039307 2018-04-04
KR1020190036097A KR102095243B1 (en) 2018-04-04 2019-03-28 Thermoelectric element
KR10-2019-0036097 2019-03-28

Publications (1)

Publication Number Publication Date
WO2019194539A1 true WO2019194539A1 (en) 2019-10-10

Family

ID=68100886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003878 WO2019194539A1 (en) 2018-04-04 2019-04-02 Thermoelectric element

Country Status (1)

Country Link
WO (1) WO2019194539A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030127725A1 (en) * 2001-12-13 2003-07-10 Matsushita Electric Industrial Co., Ltd. Metal wiring board, semiconductor device, and method for manufacturing the same
US20050001331A1 (en) * 2003-07-03 2005-01-06 Toshiyuki Kojima Module with a built-in semiconductor and method for producing the same
US20130081663A1 (en) * 2011-09-29 2013-04-04 Samsung Electro-Mechanics Co., Ltd. Thermoelectric module
US20160005948A1 (en) * 2013-03-29 2016-01-07 Fujifilm Corporation Thermoelectric generation module
US20160284963A1 (en) * 2013-03-21 2016-09-29 National University Corporation Nagaoka University Of Technology Thermoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030127725A1 (en) * 2001-12-13 2003-07-10 Matsushita Electric Industrial Co., Ltd. Metal wiring board, semiconductor device, and method for manufacturing the same
US20050001331A1 (en) * 2003-07-03 2005-01-06 Toshiyuki Kojima Module with a built-in semiconductor and method for producing the same
US20130081663A1 (en) * 2011-09-29 2013-04-04 Samsung Electro-Mechanics Co., Ltd. Thermoelectric module
US20160284963A1 (en) * 2013-03-21 2016-09-29 National University Corporation Nagaoka University Of Technology Thermoelectric conversion element
US20160005948A1 (en) * 2013-03-29 2016-01-07 Fujifilm Corporation Thermoelectric generation module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764410A4 *

Similar Documents

Publication Publication Date Title
KR102095243B1 (en) Thermoelectric element
CN111699562B (en) thermoelectric device
WO2019146991A1 (en) Thermoelectric module
WO2019146990A1 (en) Thermoelectric element and manufacturing method thereof
WO2020159177A1 (en) Thermoelectric device
WO2020004827A1 (en) Thermoelectric element
KR20190090523A (en) Thermoelectric element
WO2019194539A1 (en) Thermoelectric element
KR20190139174A (en) Thermo electric element
WO2020055100A1 (en) Thermoelectric module
WO2021029590A1 (en) Thermoelectric device
WO2020096228A1 (en) Thermoelectric module
WO2020246749A1 (en) Thermoelectric device
WO2019151765A1 (en) Thermoelectric device
CN113330589B (en) Thermoelectric element
WO2017209549A1 (en) Thermoelectric leg and thermoelectric element comprising same
WO2018226044A1 (en) Heat conversion device
KR102055428B1 (en) Thermo electric element
WO2019022570A1 (en) Cooling/warming device
JP2024056966A (en) Thermoelectric elements
WO2021141284A1 (en) Thermoelectric module
WO2020013526A1 (en) Heat conversion device
WO2020055101A1 (en) Thermoelectric element
KR20190096620A (en) Thermo electric element
KR20190141424A (en) Thermoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781406

Country of ref document: EP

Effective date: 20201006