WO2022130870A1 - Method for manufacturing rotor - Google Patents

Method for manufacturing rotor Download PDF

Info

Publication number
WO2022130870A1
WO2022130870A1 PCT/JP2021/041890 JP2021041890W WO2022130870A1 WO 2022130870 A1 WO2022130870 A1 WO 2022130870A1 JP 2021041890 W JP2021041890 W JP 2021041890W WO 2022130870 A1 WO2022130870 A1 WO 2022130870A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft body
magnet
shaft
joined
armoring
Prior art date
Application number
PCT/JP2021/041890
Other languages
French (fr)
Japanese (ja)
Inventor
晃司 迫田
秀海 大熊
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2022130870A1 publication Critical patent/WO2022130870A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • This disclosure relates to a method for manufacturing a rotor.
  • a technique for manufacturing a rotor for an electric motor has been proposed.
  • a shaft body having a pre-finished shape is joined to the bottom surfaces of both columnar magnets.
  • the magnets and the two shafts joined to each other by shrink fitting so that the side surfaces of the magnets and the two shafts joined to each other are covered by the armoring while being in contact with the inner peripheral surface of the annular armoring. Armoring is fitted.
  • the accuracy with which the central axes of the magnet and the two shafts are aligned depends on the accuracy of the shape of the magnet and the two shafts and the accuracy of the jig for axis alignment. Further, in the above manufacturing method, the accuracy in which the side surfaces of the magnets joined to each other and the two shaft bodies are aligned is also low. Therefore, it is possible that the magnet and the armoring fitted to the two shafts do not have sufficient tightening allowance. As described above, in the above manufacturing method, the accuracy of the manufactured rotor is low.
  • this disclosure describes a method for manufacturing a rotor that can improve the accuracy of the rotor to be manufactured.
  • One aspect of the present disclosure is to join one bottom surface of a columnar first shaft body to one bottom surface of a columnar magnet, and to join one bottom surface of a columnar second shaft body to the other bottom surface of the magnet.
  • the side of the magnet on the side surface is covered with the armor ring while being in contact with the inner peripheral surface of the annular armor ring.
  • the accuracy of the manufactured rotor can be improved.
  • One aspect of the present disclosure is to join one bottom surface of a columnar first shaft body to one bottom surface of a columnar magnet, and to join one bottom surface of a columnar second shaft body to the other bottom surface of the magnet.
  • the side of the magnet on the side surface is covered with the armor ring while being in contact with the inner peripheral surface of the annular armor ring.
  • the magnets, the magnets already joined to each other in the joining step so that the side surfaces of the magnet, the first shaft body and the second shaft body form the same cylindrical side surface, the first.
  • Each side surface of the shaft body and the second shaft body is processed. Therefore, the accuracy with which the side surfaces of the magnet, the first shaft body, and the second shaft body match after the first processing step does not depend on the precision of the step before the joining step. Therefore, it is possible to improve the accuracy in which the side surfaces of the magnets, the first shaft body and the second shaft body joined to each other are aligned, and it is also possible to improve the accuracy of the tightening allowance of the armoring to be fitted in the subsequent fitting step.
  • the side surfaces of the magnets, the first shaft body and the second shaft body in the first shaft body and the second shaft body that have already been joined to each other in the joining step are based on the outer peripheral surface of the armoring. It will be processed. Therefore, the accuracy with which the magnet, the first axis, and the central axis of the second axis match after the second processing does not depend on the accuracy of the process before the joining process. Therefore, it is possible to improve the accuracy in which the central axes of the magnet, the first shaft body, and the second shaft body are aligned. As described above, according to this configuration, the accuracy of the manufactured rotor can be improved.
  • the other bottom surface of the first shaft body and the other bottom surface of the second shaft body are supported while supporting the side surface of any of the magnet, the first shaft body, and the second shaft body.
  • the side surfaces of the magnet, the first shaft body, and the second shaft body may be machined.
  • any side surface of the magnet, the first shaft body and the second shaft body is supported.
  • the other bottom surface of the first shaft body and the other bottom surface of the second shaft body are not supported, and the side surfaces of the magnet, the first shaft body, and the second shaft body are machined. Therefore, the supporting force required for processing is not applied to the joint portion between the magnet and the first shaft body and the joint portion between the magnet and the second shaft body. Therefore, it is possible to reduce the damage of the joint portion in the first processing step and improve the yield of rotor manufacturing.
  • unevenness provided on one bottom surface of the magnet and one bottom surface of the first axis body so as to limit mutual movement in the direction intersecting the central axis of the magnet and the first axis body.
  • the bottom surface of one of the magnets is joined to the bottom surface of one of the magnets while the portions are fitted to each other, so that the movement of the magnet in the direction intersecting the central axis of the magnet and the second axis is restricted.
  • One bottom surface of the second axis body may be joined to the other bottom surface of the magnet while the uneven portions provided on the other bottom surface and one bottom surface of the second axis body are fitted to each other.
  • the joining step on one bottom surface of the magnet and one bottom surface of the first shaft body so as to limit each other's movement in the direction intersecting the central axis of the magnet and the first shaft body, respectively.
  • the provided uneven portions are fitted to each other, and one bottom surface of the first shaft body is joined to one bottom surface of the magnet.
  • unevenness provided on each of the other bottom surface of the magnet and one bottom surface of the second axis body so as to limit mutual movement in the direction intersecting the central axis of the magnet and the second axis body.
  • the portions are fitted to each other and one bottom surface of the second shaft body is joined to the other bottom surface of the magnet.
  • one bottom surface of the first shaft body is joined to one bottom surface of the magnet using an adhesive
  • one bottom surface of the second shaft body is joined to the other bottom surface of the magnet using an adhesive. You may.
  • one bottom surface of the first shaft body is joined to one bottom surface of the magnet using an adhesive
  • one of the second shaft bodies is joined to the other bottom surface of the magnet using an adhesive.
  • the bottom of the magnet is joined. Therefore, the joining process can be executed by a simple method.
  • a magnet 1A is a columnar permanent magnet.
  • the magnet 1A has one bottom surface 2 and the other bottom surface 3.
  • the magnet 1A includes an uneven portion 4 on one bottom surface 2 and an uneven portion 5 on the other bottom surface 3.
  • the magnet 1A has a side surface 6 between the bottom surface 2 and the bottom surface 3.
  • the first shaft body 11A is a columnar metal member having substantially the same diameter as the magnet 1A.
  • the first shaft body 11A has one bottom surface 12 and the other bottom surface 13.
  • the first shaft body 11A includes an uneven portion 14 on one bottom surface 12.
  • the first shaft body 11A has a side surface 16 between the bottom surface 12 and the bottom surface 13.
  • the second shaft body 21A is a columnar metal member having substantially the same diameter as the magnet 1A, and has the same shape as the first shaft body 11A.
  • the second shaft body 21A has one bottom surface 22 and the other bottom surface 23.
  • the second shaft body 21A includes an uneven portion 24 on one bottom surface 22.
  • the second shaft body 21A has a side surface 26 between the bottom surface 22 and the bottom surface 23.
  • the uneven portion 4 of one bottom surface 2 of the magnet 1A and the uneven portion 14 of one bottom surface 12 of the first shaft body 11A have shapes corresponding to each other, and by fitting each other, the magnet 1A and the first shaft It limits each other's movement in the direction intersecting the central axis A of the body 11A.
  • the uneven portion 5 of the other bottom surface 3 of the magnet 1A and the uneven portion 24 of the other bottom surface 22 of the second shaft body 21A have shapes corresponding to each other, and by fitting each other, the magnet 1A and the second shaft It limits each other's movement in the direction intersecting the central axis A of the body 21A.
  • the shapes of the uneven portions 4, 5, 14, and 24 restrict the movement of the magnet 1A, the first shaft body 11A, and the second shaft body 21A in the direction intersecting the central axis A by fitting each other. Any shape may be used as long as it is used.
  • the uneven portions 4 and 5 of the magnet 1A project in a direction parallel to the central axis A at the central portions of the bottom surfaces 2 and 3, and the central shafts at the peripheral portions of the bottom surfaces 2 and 3. It has a concave shape in the direction parallel to A.
  • the uneven portion 14 of the bottom surface 12 of the first shaft body 11A and the uneven portion 24 of the bottom surface 22 of the second shaft body 21A are recessed in the central portions of the bottom surfaces 12 and 22 in the direction parallel to the central axis A.
  • Each of the peripheral edges of the bottom surfaces 12 and 22 has a shape protruding in a direction parallel to the central axis A.
  • the shapes of the uneven portions 4, 5, 14, and 24 move each other in the direction of rotation around the central axis A of the magnet 1A, the first shaft body 11A, and the second shaft body 21A by fitting each other. May be limited.
  • the joining step S1 is executed for the magnet 1A, the first shaft body 11A, and the second shaft body 21A.
  • one bottom surface 12 of the columnar first shaft body 11A is joined to one bottom surface 2 of the columnar magnet 1A, and the columnar second shaft body 21A is bonded to the other bottom surface 3 of the magnet 1A.
  • the magnet 1A, the first shaft body 11A, and the second shaft body 21A are joined to each other.
  • one bottom surface 2 of the magnet 1A and one bottom surface 12 of the first shaft body 11A are restricted from moving in a direction intersecting the central axis A of the magnet 1A and the first shaft body 11A.
  • One bottom surface 12 of the first shaft body 11A is joined to one bottom surface 2 of the magnet 1A while the uneven portions 4 and 14 provided on the respective surfaces are fitted to each other.
  • the other bottom surface 3 of the magnet 1A and the one bottom surface of the second axis body 21A are restricted so as to limit the mutual movement of the magnet 1A and the second axis body 21A in the direction intersecting the central axis A.
  • One bottom surface 22 of the second shaft body 21A is joined to the other bottom surface 3 of the magnet 1A while the uneven portions 5 and 24 provided on each of the 22 22 are fitted to each other.
  • one bottom surface 12 of the first shaft body 11A is joined to one bottom surface 2 of the magnet 1A using the adhesive 30, and the other bottom surface 3 of the magnet 1A is bonded using the adhesive 30.
  • One bottom surface 22 of the biaxial body 21A is joined.
  • a thermosetting epoxy-based adhesive can be applied to the adhesive 30.
  • the first processing step S2 is executed for the magnets 1A, the first shaft body 11A, and the second shaft body 21A joined to each other in the joining step S1.
  • the magnets joined to each other in the joining step S1 so that the side surfaces 6, 16 and 26 of the magnet 1A, the first shaft body 11A and the second shaft body 21A form the same cylindrical side surface.
  • the side surfaces 6, 16 and 26 of 1A, the first shaft body 11A and the second shaft body 21A are machined. Therefore, after the first processing step S2, the magnets 1A, the first shaft body 11A, and the second shaft body 21A joined to each other in the joining step S1 have the bottom surfaces 13, 23 and the side surfaces 6, 16, 26 that coincide with each other 1. Form two cylinders.
  • the first processing step S2 while the side surfaces 6, 16 and 26 of any of the magnet 1A, the first shaft body 11A and the second shaft body 21A are supported, the other bottom surface 13 and the second shaft of the first shaft body 11A are supported.
  • the side surfaces 6, 16 and 26 of the magnet 1A, the first shaft body 11A and the second shaft body 21A are machined without supporting the other bottom surface 23 of the body 21A. That is, the first processing step S2 is executed by centerless polishing. In centerless polishing, the magnets 1A, the first shaft body 11A, and the second shaft body 21A joined to each other are supported by the support blade 41 from below between the adjusting wheel 42 and the grinding wheel 43.
  • the rotations of the magnet 1A, the first shaft body 11A and the second shaft body 21A joined to each other are adjusted, and the magnet 1A, the first shaft body 11A and the second shaft are adjusted.
  • the sides 6, 16 and 26 of the body 21A are processed.
  • the fitting step S3 is executed for the magnet 1A, the first shaft body 11A, and the second shaft body 21A whose side surfaces 6, 16 and 26 are machined in the first processing step S2. ..
  • the side surface 6 of the magnet 1A, the side of the side surface 16 of the first shaft body 11A 16 and the side of the side surface 26 of the second shaft body 21A 26 are the inner peripheral surface 52 of the annular armoring 51.
  • the side of the side surface 16 of the first shaft body 11A opposite to the side of the magnet 1A and the side of the side surface 26 of the second shaft body 21A opposite to the side of the magnet 1A are exposed from the armoring 51.
  • the armoring 51 is fitted to the magnets 1A, the first shaft body 11A, and the second shaft body 21A whose side surfaces 6, 16 and 26 are machined in the first processing step S2.
  • the armoring 51 is an annular metal member having an inner peripheral surface 52 and an outer peripheral surface 53.
  • the fitting step S3 is executed, for example, by shrink fitting in which the heated and expanded armoring 51 is fitted to the magnet 1A, the first shaft body 11A, and the second shaft body 21A, and is cooled and shrunk after fitting. ..
  • the second processing step S4 is executed for the magnet 1A, the first shaft body 11A, and the second shaft body 21A to which the armoring 51 is fitted in the fitting step S3.
  • the magnet 1A, the first shaft body 11A, and the magnet 1A to which the armoring 51 is fitted in the fitting step S3 are used with the outer peripheral surface 53 of the armoring 51 as a reference (reference surface, datum).
  • the side surfaces 16 and 26 of the first shaft body 11A and the second shaft body 21A exposed from the armoring 51 of the second shaft body 21A are machined.
  • the outer peripheral surfaces 53 are the side surfaces 16 and 26 of the first shaft body 11A and the second shaft body 21A exposed from the armoring 51 with reference to the outer peripheral surface 53 of the armoring 51 by a reference device 60 or the like.
  • the sides 16 and 26 are processed so as to be separated from the surface by a certain distance.
  • each of the side surface 16 of the first shaft body 11A exposed from the armoring 51 and the side surface 26 of the second shaft body 21A form a side surface of a cylinder having a central axis A common to each other.
  • the rotor 100 of the electric motor is manufactured.
  • the joining step S1 has already been performed so that the side surfaces 6, 16 and 26 of the magnet 1A, the first shaft body 11A and the second shaft body 21A form the same cylindrical side surface.
  • the side surfaces 6, 16 and 26 of the magnets 1A, the first shaft body 11A and the second shaft body 21A joined to each other are machined. Therefore, the accuracy with which the magnets 1A, the first shaft body 11A, and the side surfaces 6, 16 and 26 of the second shaft body 21A match after the first processing step S2 does not depend on the accuracy of the steps before the joining step S1.
  • the accuracy of the tightening allowance of 51 can also be improved. That is, in the present embodiment, the tightening allowance can be easily controlled.
  • the side surfaces 6, 16 and 26 of any of the magnet 1A, the first shaft body 11A and the second shaft body 21A are supported.
  • the other bottom surface 13 of the first shaft body 11A and the other bottom surface 23 of the second shaft body 21A are not supported, and the side surfaces 6 and 6 of the magnet 1A, the first shaft body 11A and the second shaft body 21A, respectively. 16 and 26 are processed. Therefore, the joints between the magnet 1A and the first shaft body 11A (bottoms 2 and 12) and the joints between the magnet 1A and the second shaft 21A (bottoms 3 and 22) are for support necessary for processing. No force is applied. Therefore, it is possible to reduce the damage of the jointed portion joined by the adhesive 30 in the first processing step S2 and improve the manufacturing yield of the rotor 100.
  • the joining step S1 one of the bottom surfaces 2 and the first of the magnets 1A so as to limit the mutual movement of the magnet 1A and the first shaft body 11A in the direction intersecting the central axis A.
  • Concavo-convex portions 4, 14 provided on one bottom surface 12 of the shaft body 11A are fitted to each other, and one bottom surface 12 of the first shaft body 11A is joined to one bottom surface 2 of the magnet 1A.
  • the other bottom surface 3 of the magnet 1A and the one bottom surface of the second axis body 21A are restricted so as to limit the mutual movement of the magnet 1A and the second axis body 21A in the direction intersecting the central axis A.
  • each of the magnet 1A, the first shaft body 11A, and the second shaft body 21A is less likely to shift in the direction intersecting the central axis A.
  • the magnet 1A, the first shaft body 11A, and the second shaft body 21A are less likely to be displaced in the direction intersecting the central axis A due to the forces from the side surfaces 6, 16 and 26. Centerless polishing in 1 processing step S2 also becomes easy.
  • the joining step S1 one bottom surface 12 of the first shaft body 11A is joined to the one bottom surface 2 of the magnet 1A using the adhesive 30, and the magnet 1A is bonded using the adhesive 30.
  • One bottom surface 22 of the second shaft body 21A is joined to the other bottom surface 3. Therefore, the joining step S1 can be executed by a simple method.
  • the magnet 1B does not have the uneven portions 4 and 5 on the bottom surfaces 2 and 3, and the bottom surfaces 2 and 3 are uniform flat surfaces.
  • the first shaft body 11B does not have the uneven portion 14 on the bottom surface 12
  • the second shaft body 21B does not have the uneven portion 24 on the bottom surface 22, and the bottom surfaces 12 and 22 have a uniform flat surface.
  • the adhesive 30 is not used.
  • Each of the magnet 1B, the first shaft body 11B, and the second shaft body 21B has bolt holes 7, 17, and 27 extending along the central axis A.
  • the bolt 71 is inserted into each of the bolt holes 7, 17, and 27, and the nut 72 is screwed into one end of the bolt 71.
  • the first processing step S2, the fitting process S3, and the second processing step S4 after the joining step S1 are executed in the same manner as in the first embodiment. After the fitting step S3, the bolt 71 and the nut 72 may be removed from the bolt holes 7, 17, 27.
  • the bottom surfaces 2, 3, 12, and 22 of the magnet 1B, the first shaft body 11B, and the second shaft body 21B are not provided with the uneven portions 4, 5, 14, 24, and are bonded in the joining step S1. Even if the agent 30 is not used, the joining step S1, the first processing step S2, the fitting step S3, and the second processing step S4 can be executed. Further, also in this embodiment, after the joining step S1, the magnet 1B, the first shaft body 11B, and the second shaft body 21B are less likely to be displaced in the direction intersecting the central axis A. Therefore, centerless polishing in the first processing step S2 is also facilitated.
  • the embodiments are not limited to the above embodiments.
  • centerless polishing is performed in which the other bottom surface 13 of the first shaft body 11A and the other bottom surface 23 of the second shaft body 21A are not supported.
  • the other bottom surface 13 of the first shaft body 11A and the other bottom surface 23 of the second shaft body 21A may be supported.
  • the accuracy of the manufactured rotor can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This method for manufacturing a rotor is provided with: a joining step in which a magnet, a first shaft, and a second shaft are joined to each other; a first machining step in which the side surfaces of each of the magnet, the first shaft, and the second shaft are machined so that the side surfaces of the magnet, the first shaft, and the second shaft form the same cylindrical side surface; a fitting step in which armoring is fitted to the magnet, the first shaft, and the second shaft so that the side surface of the magnet, the magnet side of the side surface of the first shaft, and the magnet side of the side surface of the second shaft are covered with armoring and the opposite side of the side surface of the first shaft from the magnet side and the opposite side of the side surface of the second shaft from the magnet side are exposed from the armoring; and a second machining step in which the side surfaces of the first shaft and the second shaft exposed from the armoring are machined using the outer circumferential surface of the armoring as a reference.

Description

ロータの製造方法Rotor manufacturing method
 本開示は、ロータの製造方法に関するものである。 This disclosure relates to a method for manufacturing a rotor.
 電動機のロータを製造する技術が提案されている。例えば、特許文献1に開示されているロータの製造方法では、円柱状の磁石の両方の底面に予め形状が仕上げられた軸体がそれぞれ接合される。互いに接合された磁石及び2つの軸体のそれぞれの側面が円環状のアーマリングの内周面に接しつつアーマリングに被覆されるように、焼嵌めにより互いに接合された磁石及び2つの軸体にアーマリングが嵌合させられる。 A technique for manufacturing a rotor for an electric motor has been proposed. For example, in the method for manufacturing a rotor disclosed in Patent Document 1, a shaft body having a pre-finished shape is joined to the bottom surfaces of both columnar magnets. The magnets and the two shafts joined to each other by shrink fitting so that the side surfaces of the magnets and the two shafts joined to each other are covered by the armoring while being in contact with the inner peripheral surface of the annular armoring. Armoring is fitted.
実開昭62‐119182号公報Jikkai Sho 62-119182
 ところで、上記の製造方法では、磁石及び磁石の両端の2つの軸体のそれぞれの中心軸を合わせるように接合することが困難である。上記の製造方法では、磁石及び2つの軸体のそれぞれの中心軸が一致している精度は、磁石及び2つの軸体の形状の精度と、軸合わせ用の治具の精度とに依存する。また、上記の製造方法では、互いに接合された磁石及び2つの軸体の側面が一致している精度も低い。したがって、磁石及び2つの軸体に嵌合させられたアーマリングが十分な締め代を有していない可能性がある。以上のように、上記の製造方法では、製造されるロータの精度が低い。 By the way, in the above manufacturing method, it is difficult to join the magnet so as to align the central axes of the magnet and the two shaft bodies at both ends of the magnet. In the above manufacturing method, the accuracy with which the central axes of the magnet and the two shafts are aligned depends on the accuracy of the shape of the magnet and the two shafts and the accuracy of the jig for axis alignment. Further, in the above manufacturing method, the accuracy in which the side surfaces of the magnets joined to each other and the two shaft bodies are aligned is also low. Therefore, it is possible that the magnet and the armoring fitted to the two shafts do not have sufficient tightening allowance. As described above, in the above manufacturing method, the accuracy of the manufactured rotor is low.
 そこで本開示は、製造されるロータの精度を向上できるロータの製造方法を説明する。 Therefore, this disclosure describes a method for manufacturing a rotor that can improve the accuracy of the rotor to be manufactured.
 本開示の一側面は、円柱状の磁石の一方の底面に円柱状の第1軸体の一方の底面を接合し、磁石の他方の底面に円柱状の第2軸体の一方の底面を接合することにより、磁石、第1軸体及び第2軸体を互いに接合する接合工程と、磁石、第1軸体及び第2軸体のそれぞれの側面が同一の円柱の側面をなすように、接合工程で互いに接合された磁石、第1軸体及び第2軸体のそれぞれの側面を加工する第1加工工程と、磁石の側面、第1軸体の側面の磁石の側及び第2軸体の側面の磁石の側が円環状のアーマリングの内周面に接しつつアーマリングに被覆され、第1軸体の側面の磁石の側とは反対側及び第2軸体の側面の磁石の側とは反対側がアーマリングから露出するように、第1加工工程でそれぞれの側面を加工された磁石、第1軸体及び第2軸体にアーマリングを嵌合させる嵌合工程と、アーマリングの外周面を基準として、嵌合工程でアーマリングを嵌合させられた磁石、第1軸体及び第2軸体のアーマリングから露出した第1軸体及び第2軸体の側面を加工する第2加工工程とを備えたロータの製造方法である。 One aspect of the present disclosure is to join one bottom surface of a columnar first shaft body to one bottom surface of a columnar magnet, and to join one bottom surface of a columnar second shaft body to the other bottom surface of the magnet. By doing so, the joining step of joining the magnet, the first shaft body and the second shaft body to each other and the joining so that the side surfaces of the magnet, the first shaft body and the second shaft body form the same cylindrical side surface. In the first processing step of processing the side surfaces of the magnet, the first shaft body and the second shaft body, which are joined to each other in the step, and the side surface of the magnet, the side surface of the first shaft body, the side of the magnet and the second shaft body. The side of the magnet on the side surface is covered with the armor ring while being in contact with the inner peripheral surface of the annular armor ring. A fitting process in which the armoring is fitted to the magnet, the first shaft body and the second shaft body whose side surfaces are machined in the first processing step so that the opposite side is exposed from the armoring, and the outer peripheral surface of the armoring. The second processing to process the side surfaces of the magnet, the first shaft body and the second shaft body exposed from the armoring of the first shaft body and the second shaft body to which the armoring is fitted in the fitting process. It is a method for manufacturing a rotor including a process.
 本開示の一側面のロータの製造方法によれば、製造されるロータの精度を向上できる。 According to the rotor manufacturing method of one aspect of the present disclosure, the accuracy of the manufactured rotor can be improved.
第1実施形態に係るロータの製造方法における磁石、第1軸体及び第2軸体を示す縦断面図である。It is a vertical sectional view which shows the magnet, the 1st shaft body and the 2nd shaft body in the method of manufacturing a rotor which concerns on 1st Embodiment. 第1実施形態に係るロータの製造方法における接合工程を示す縦断面図である。It is a vertical sectional view which shows the joining process in the manufacturing method of the rotor which concerns on 1st Embodiment. 第1実施形態に係るロータの製造方法における第1加工工程を示す縦断面図である。It is a vertical sectional view which shows the 1st processing process in the manufacturing method of the rotor which concerns on 1st Embodiment. 第1実施形態に係るロータの製造方法における嵌合工程を示す縦断面図である。It is a vertical sectional view which shows the fitting process in the manufacturing method of the rotor which concerns on 1st Embodiment. 第1実施形態に係るロータの製造方法における第2加工工程を示す縦断面図である。It is a vertical sectional view which shows the 2nd processing process in the manufacturing method of the rotor which concerns on 1st Embodiment. 第2実施形態に係るロータの製造方法における接合工程を示す縦断面図である。It is a vertical sectional view which shows the joining process in the manufacturing method of the rotor which concerns on 2nd Embodiment.
 本開示の一側面は、円柱状の磁石の一方の底面に円柱状の第1軸体の一方の底面を接合し、磁石の他方の底面に円柱状の第2軸体の一方の底面を接合することにより、磁石、第1軸体及び第2軸体を互いに接合する接合工程と、磁石、第1軸体及び第2軸体のそれぞれの側面が同一の円柱の側面をなすように、接合工程で互いに接合された磁石、第1軸体及び第2軸体のそれぞれの側面を加工する第1加工工程と、磁石の側面、第1軸体の側面の磁石の側及び第2軸体の側面の磁石の側が円環状のアーマリングの内周面に接しつつアーマリングに被覆され、第1軸体の側面の磁石の側とは反対側及び第2軸体の側面の磁石の側とは反対側がアーマリングから露出するように、第1加工工程でそれぞれの側面を加工された磁石、第1軸体及び第2軸体にアーマリングを嵌合させる嵌合工程と、アーマリングの外周面を基準として、嵌合工程でアーマリングを嵌合させられた磁石、第1軸体及び第2軸体のアーマリングから露出した第1軸体及び第2軸体の側面を加工する第2加工工程とを備えたロータの製造方法である。 One aspect of the present disclosure is to join one bottom surface of a columnar first shaft body to one bottom surface of a columnar magnet, and to join one bottom surface of a columnar second shaft body to the other bottom surface of the magnet. By doing so, the joining step of joining the magnet, the first shaft body and the second shaft body to each other and the joining so that the side surfaces of the magnet, the first shaft body and the second shaft body form the same cylindrical side surface. In the first processing step of processing the side surfaces of the magnet, the first shaft body and the second shaft body, which are joined to each other in the step, and the side surface of the magnet, the side surface of the first shaft body, the side of the magnet and the second shaft body. The side of the magnet on the side surface is covered with the armor ring while being in contact with the inner peripheral surface of the annular armor ring. A fitting process in which the armoring is fitted to the magnet, the first shaft body and the second shaft body whose side surfaces are machined in the first processing step so that the opposite side is exposed from the armoring, and the outer peripheral surface of the armoring. The second processing to process the side surfaces of the magnet, the first shaft body and the second shaft body exposed from the armoring of the first shaft body and the second shaft body to which the armoring is fitted in the fitting process. It is a method for manufacturing a rotor including a process.
 この構成によれば、第1加工工程では、磁石、第1軸体及び第2軸体のそれぞれの側面が同一の円柱の側面をなすように、既に接合工程で互いに接合された磁石、第1軸体及び第2軸体のそれぞれの側面が加工される。そのため、第1加工工程後に磁石、第1軸体及び第2軸体の側面が一致している精度は、接合工程以前の工程の精度に依存しない。したがって、互いに接合された磁石、第1軸体及び第2軸体の側面が一致している精度を向上でき、その後の嵌合工程で嵌合させられるアーマリングの締め代の精度も向上できる。 According to this configuration, in the first processing step, the magnets, the magnets already joined to each other in the joining step, so that the side surfaces of the magnet, the first shaft body and the second shaft body form the same cylindrical side surface, the first. Each side surface of the shaft body and the second shaft body is processed. Therefore, the accuracy with which the side surfaces of the magnet, the first shaft body, and the second shaft body match after the first processing step does not depend on the precision of the step before the joining step. Therefore, it is possible to improve the accuracy in which the side surfaces of the magnets, the first shaft body and the second shaft body joined to each other are aligned, and it is also possible to improve the accuracy of the tightening allowance of the armoring to be fitted in the subsequent fitting step.
 また、第2加工工程では、既に接合工程で互いに接合された磁石、第1軸体及び第2軸体の中の第1軸体及び第2軸体の側面がアーマリングの外周面を基準として加工される。そのため、第2加工後に磁石、第1軸体及び第2軸体の中心軸が一致している精度は、接合工程以前の工程の精度に依存しない。したがって、磁石、第1軸体及び第2軸体の中心軸が一致している精度を向上できる。以上のように、この構成によれば、製造されるロータの精度を向上できる。 Further, in the second processing step, the side surfaces of the magnets, the first shaft body and the second shaft body in the first shaft body and the second shaft body that have already been joined to each other in the joining step are based on the outer peripheral surface of the armoring. It will be processed. Therefore, the accuracy with which the magnet, the first axis, and the central axis of the second axis match after the second processing does not depend on the accuracy of the process before the joining process. Therefore, it is possible to improve the accuracy in which the central axes of the magnet, the first shaft body, and the second shaft body are aligned. As described above, according to this configuration, the accuracy of the manufactured rotor can be improved.
 この場合、第1加工工程では、磁石、第1軸体及び第2軸体のいずれかの側面を支持しつつ、第1軸体の他方の底面及び第2軸体の他方の底面を支持することなく、磁石、第1軸体及び第2軸体のそれぞれの側面を加工してもよい。 In this case, in the first processing step, the other bottom surface of the first shaft body and the other bottom surface of the second shaft body are supported while supporting the side surface of any of the magnet, the first shaft body, and the second shaft body. Instead, the side surfaces of the magnet, the first shaft body, and the second shaft body may be machined.
 この構成によれば、第1加工工程では、磁石、第1軸体及び第2軸体のいずれかの側面が支持される。しかし、第1軸体の他方の底面及び第2軸体の他方の底面は支持されることなく、磁石、第1軸体及び第2軸体のそれぞれの側面が加工される。そのため、磁石と第1軸体との接合箇所及び磁石と第2軸体との接合箇所には、加工に必要な支持のための力が加わらない。したがって、第1加工工程における接合箇所の破損を低減し、ロータの製造の歩留まりを向上できる。 According to this configuration, in the first processing step, any side surface of the magnet, the first shaft body and the second shaft body is supported. However, the other bottom surface of the first shaft body and the other bottom surface of the second shaft body are not supported, and the side surfaces of the magnet, the first shaft body, and the second shaft body are machined. Therefore, the supporting force required for processing is not applied to the joint portion between the magnet and the first shaft body and the joint portion between the magnet and the second shaft body. Therefore, it is possible to reduce the damage of the joint portion in the first processing step and improve the yield of rotor manufacturing.
 また、接合工程では、磁石及び第1軸体の中心軸に交差する方向への互いの移動を制限するように磁石の一方の底面及び第1軸体の一方の底面のそれぞれに設けられた凹凸部を互いに嵌合させつつ磁石の一方の底面に第1軸体の一方の底面を接合し、磁石及び第2軸体の中心軸に交差する方向への互いの移動を制限するように磁石の他方の底面及び第2軸体の一方の底面のそれぞれに設けられた凹凸部を互いに嵌合させつつ磁石の他方の底面に第2軸体の一方の底面を接合してもよい。 Further, in the joining step, unevenness provided on one bottom surface of the magnet and one bottom surface of the first axis body so as to limit mutual movement in the direction intersecting the central axis of the magnet and the first axis body. The bottom surface of one of the magnets is joined to the bottom surface of one of the magnets while the portions are fitted to each other, so that the movement of the magnet in the direction intersecting the central axis of the magnet and the second axis is restricted. One bottom surface of the second axis body may be joined to the other bottom surface of the magnet while the uneven portions provided on the other bottom surface and one bottom surface of the second axis body are fitted to each other.
 この構成によれば、接合工程では、磁石及び第1軸体の中心軸に交差する方向への互いの移動を制限するように磁石の一方の底面及び第1軸体の一方の底面のそれぞれに設けられた凹凸部が互いに嵌合させられて磁石の一方の底面に第1軸体の一方の底面が接合される。また、接合工程では、磁石及び第2軸体の中心軸に交差する方向への互いの移動を制限するように磁石の他方の底面及び第2軸体の一方の底面のそれぞれに設けられた凹凸部が互いに嵌合させられて磁石の他方の底面に第2軸体の一方の底面が接合される。これにより、接合工程後に、磁石、第1軸体及び第2軸体のそれぞれが中心軸に交差する方向にずれにくくなる。 According to this configuration, in the joining step, on one bottom surface of the magnet and one bottom surface of the first shaft body so as to limit each other's movement in the direction intersecting the central axis of the magnet and the first shaft body, respectively. The provided uneven portions are fitted to each other, and one bottom surface of the first shaft body is joined to one bottom surface of the magnet. Further, in the joining step, unevenness provided on each of the other bottom surface of the magnet and one bottom surface of the second axis body so as to limit mutual movement in the direction intersecting the central axis of the magnet and the second axis body. The portions are fitted to each other and one bottom surface of the second shaft body is joined to the other bottom surface of the magnet. As a result, after the joining step, the magnet, the first shaft body, and the second shaft body are less likely to be displaced in the direction intersecting the central axis.
 また、接合工程では、接着剤を用いて磁石の一方の底面に第1軸体の一方の底面を接合し、接着剤を用いて磁石の他方の底面に第2軸体の一方の底面を接合してもよい。 In the joining step, one bottom surface of the first shaft body is joined to one bottom surface of the magnet using an adhesive, and one bottom surface of the second shaft body is joined to the other bottom surface of the magnet using an adhesive. You may.
 この構成によれば、接合工程では、接着剤を用いて磁石の一方の底面に第1軸体の一方の底面が接合され、接着剤を用いて磁石の他方の底面に第2軸体の一方の底面が接合される。そのため、簡易な方法で接合工程を実行できる。 According to this configuration, in the joining step, one bottom surface of the first shaft body is joined to one bottom surface of the magnet using an adhesive, and one of the second shaft bodies is joined to the other bottom surface of the magnet using an adhesive. The bottom of the magnet is joined. Therefore, the joining process can be executed by a simple method.
 以下、実施形態について図面を参照しながら説明する。図1に示されるように、第1実施形態のロータの製造方法では、磁石1A、第1軸体11A及び第2軸体21Aが用意される。磁石1Aは、円柱状の永久磁石である。磁石1Aは、一方の底面2と他方の底面3とを有する。磁石1Aは、一方の底面2に凹凸部4を含み、他方の底面3に凹凸部5を含む。磁石1Aは、底面2と底面3との間に側面6を有する。 Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, in the method for manufacturing a rotor of the first embodiment, a magnet 1A, a first shaft body 11A, and a second shaft body 21A are prepared. The magnet 1A is a columnar permanent magnet. The magnet 1A has one bottom surface 2 and the other bottom surface 3. The magnet 1A includes an uneven portion 4 on one bottom surface 2 and an uneven portion 5 on the other bottom surface 3. The magnet 1A has a side surface 6 between the bottom surface 2 and the bottom surface 3.
 第1軸体11Aは、磁石1Aと略同一の直径を有する円柱状の金属部材である。第1軸体11Aは、一方の底面12と他方の底面13とを有する。第1軸体11Aは、一方の底面12に凹凸部14を含む。第1軸体11Aは、底面12と底面13との間に側面16を有する。第2軸体21Aは、磁石1Aと略同一の直径を有する円柱状の金属部材であり、第1軸体11Aと同様の形状を有する。第2軸体21Aは、一方の底面22と他方の底面23とを有する。第2軸体21Aは、一方の底面22に凹凸部24を含む。第2軸体21Aは、底面22と底面23との間に側面26を有する。 The first shaft body 11A is a columnar metal member having substantially the same diameter as the magnet 1A. The first shaft body 11A has one bottom surface 12 and the other bottom surface 13. The first shaft body 11A includes an uneven portion 14 on one bottom surface 12. The first shaft body 11A has a side surface 16 between the bottom surface 12 and the bottom surface 13. The second shaft body 21A is a columnar metal member having substantially the same diameter as the magnet 1A, and has the same shape as the first shaft body 11A. The second shaft body 21A has one bottom surface 22 and the other bottom surface 23. The second shaft body 21A includes an uneven portion 24 on one bottom surface 22. The second shaft body 21A has a side surface 26 between the bottom surface 22 and the bottom surface 23.
 磁石1Aの一方の底面2の凹凸部4と、第1軸体11Aの一方の底面12の凹凸部14とは互いに対応した形状を有し、互いに嵌合することにより、磁石1A及び第1軸体11Aの中心軸Aに交差する方向への互いの移動を制限する。磁石1Aの他方の底面3の凹凸部5と、第2軸体21Aの一方の底面22の凹凸部24とは互いに対応した形状を有し、互いに嵌合することにより、磁石1A及び第2軸体21Aの中心軸Aに交差する方向への互いの移動を制限する。 The uneven portion 4 of one bottom surface 2 of the magnet 1A and the uneven portion 14 of one bottom surface 12 of the first shaft body 11A have shapes corresponding to each other, and by fitting each other, the magnet 1A and the first shaft It limits each other's movement in the direction intersecting the central axis A of the body 11A. The uneven portion 5 of the other bottom surface 3 of the magnet 1A and the uneven portion 24 of the other bottom surface 22 of the second shaft body 21A have shapes corresponding to each other, and by fitting each other, the magnet 1A and the second shaft It limits each other's movement in the direction intersecting the central axis A of the body 21A.
 凹凸部4,5,14,24の形状は、互いに嵌合することにより磁石1A、第1軸体11A及び第2軸体21Aの中心軸Aに交差する方向への互いの移動を制限するものであれば、どのような形状でもよい。例えば、図1の例では、磁石1Aの凹凸部4,5は、底面2,3のそれぞれの中央部で中心軸Aに平行な方向に突出し、底面2,3のそれぞれの周縁部で中心軸Aに平行な方向に窪んだ形状を有する。反対に、第1軸体11Aの底面12の凹凸部14及び第2軸体21Aの底面22の凹凸部24は、底面12,22のそれぞれの中央部で中心軸Aに平行な方向に窪み、底面12,22のそれぞれの周縁部で中心軸Aに平行な方向に突出した形状を有する。また、凹凸部4,5,14,24の形状は、互いに嵌合することにより磁石1A、第1軸体11A及び第2軸体21Aの中心軸Aの周りに回転する方向への互いの移動を制限するものであってもよい。 The shapes of the uneven portions 4, 5, 14, and 24 restrict the movement of the magnet 1A, the first shaft body 11A, and the second shaft body 21A in the direction intersecting the central axis A by fitting each other. Any shape may be used as long as it is used. For example, in the example of FIG. 1, the uneven portions 4 and 5 of the magnet 1A project in a direction parallel to the central axis A at the central portions of the bottom surfaces 2 and 3, and the central shafts at the peripheral portions of the bottom surfaces 2 and 3. It has a concave shape in the direction parallel to A. On the contrary, the uneven portion 14 of the bottom surface 12 of the first shaft body 11A and the uneven portion 24 of the bottom surface 22 of the second shaft body 21A are recessed in the central portions of the bottom surfaces 12 and 22 in the direction parallel to the central axis A. Each of the peripheral edges of the bottom surfaces 12 and 22 has a shape protruding in a direction parallel to the central axis A. Further, the shapes of the uneven portions 4, 5, 14, and 24 move each other in the direction of rotation around the central axis A of the magnet 1A, the first shaft body 11A, and the second shaft body 21A by fitting each other. May be limited.
 図2に示されるように、上記の磁石1A、第1軸体11A及び第2軸体21Aについて、接合工程S1が実行される。接合工程S1では、円柱状の磁石1Aの一方の底面2に円柱状の第1軸体11Aの一方の底面12が接合され、磁石1Aの他方の底面3に円柱状の第2軸体21Aの一方の底面22が接合されることにより、磁石1A、第1軸体11A及び第2軸体21Aが互いに接合される。 As shown in FIG. 2, the joining step S1 is executed for the magnet 1A, the first shaft body 11A, and the second shaft body 21A. In the joining step S1, one bottom surface 12 of the columnar first shaft body 11A is joined to one bottom surface 2 of the columnar magnet 1A, and the columnar second shaft body 21A is bonded to the other bottom surface 3 of the magnet 1A. By joining one of the bottom surfaces 22, the magnet 1A, the first shaft body 11A, and the second shaft body 21A are joined to each other.
 接合工程S1では、磁石1A及び第1軸体11Aの中心軸Aに交差する方向への互いの移動を制限するように磁石1Aの一方の底面2及び第1軸体11Aの一方の底面12のそれぞれに設けられた凹凸部4,14が互いに嵌合させられつつ磁石1Aの一方の底面2に第1軸体11Aの一方の底面12が接合される。また、接合工程S1では、磁石1A及び第2軸体21Aの中心軸Aに交差する方向への互いの移動を制限するように磁石1Aの他方の底面3及び第2軸体21Aの一方の底面22のそれぞれに設けられた凹凸部5,24が互いに嵌合させられつつ磁石1Aの他方の底面3に第2軸体21Aの一方の底面22が接合される。 In the joining step S1, one bottom surface 2 of the magnet 1A and one bottom surface 12 of the first shaft body 11A are restricted from moving in a direction intersecting the central axis A of the magnet 1A and the first shaft body 11A. One bottom surface 12 of the first shaft body 11A is joined to one bottom surface 2 of the magnet 1A while the uneven portions 4 and 14 provided on the respective surfaces are fitted to each other. Further, in the joining step S1, the other bottom surface 3 of the magnet 1A and the one bottom surface of the second axis body 21A are restricted so as to limit the mutual movement of the magnet 1A and the second axis body 21A in the direction intersecting the central axis A. One bottom surface 22 of the second shaft body 21A is joined to the other bottom surface 3 of the magnet 1A while the uneven portions 5 and 24 provided on each of the 22 22 are fitted to each other.
 また、接合工程S1では、接着剤30を用いて磁石1Aの一方の底面2に第1軸体11Aの一方の底面12が接合され、接着剤30を用いて磁石1Aの他方の底面3に第2軸体21Aの一方の底面22が接合される。接着剤30には、例えば、熱硬化性のエポキシ系接着剤を適用できる。 Further, in the joining step S1, one bottom surface 12 of the first shaft body 11A is joined to one bottom surface 2 of the magnet 1A using the adhesive 30, and the other bottom surface 3 of the magnet 1A is bonded using the adhesive 30. One bottom surface 22 of the biaxial body 21A is joined. For example, a thermosetting epoxy-based adhesive can be applied to the adhesive 30.
 図3に示されるように、接合工程S1で互いに接合された磁石1A、第1軸体11A及び第2軸体21Aについて、第1加工工程S2が実行される。第1加工工程S2では、磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が同一の円柱の側面をなすように、接合工程S1で互いに接合された磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が加工される。したがって、第1加工工程S2後に、接合工程S1で互いに接合された磁石1A、第1軸体11A及び第2軸体21Aは、底面13,23及び互いに一致する側面6,16,26を有する1つの円柱を形成する。 As shown in FIG. 3, the first processing step S2 is executed for the magnets 1A, the first shaft body 11A, and the second shaft body 21A joined to each other in the joining step S1. In the first processing step S2, the magnets joined to each other in the joining step S1 so that the side surfaces 6, 16 and 26 of the magnet 1A, the first shaft body 11A and the second shaft body 21A form the same cylindrical side surface. The side surfaces 6, 16 and 26 of 1A, the first shaft body 11A and the second shaft body 21A are machined. Therefore, after the first processing step S2, the magnets 1A, the first shaft body 11A, and the second shaft body 21A joined to each other in the joining step S1 have the bottom surfaces 13, 23 and the side surfaces 6, 16, 26 that coincide with each other 1. Form two cylinders.
 第1加工工程S2では、磁石1A、第1軸体11A及び第2軸体21Aのいずれかの側面6,16,26が支持されつつ、第1軸体11Aの他方の底面13及び第2軸体21Aの他方の底面23が支持されることなく、磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が加工される。つまり、第1加工工程S2は、センタレス研磨により実行される。センタレス研磨では、互いに接合された磁石1A、第1軸体11A及び第2軸体21Aは、調整車42及び研削砥石車43の間で下方から支持刃41により支持される。調整車42及び研削砥石車43が回転することにより、互いに接合された磁石1A、第1軸体11A及び第2軸体21Aの回転が調整され、磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が加工される。 In the first processing step S2, while the side surfaces 6, 16 and 26 of any of the magnet 1A, the first shaft body 11A and the second shaft body 21A are supported, the other bottom surface 13 and the second shaft of the first shaft body 11A are supported. The side surfaces 6, 16 and 26 of the magnet 1A, the first shaft body 11A and the second shaft body 21A are machined without supporting the other bottom surface 23 of the body 21A. That is, the first processing step S2 is executed by centerless polishing. In centerless polishing, the magnets 1A, the first shaft body 11A, and the second shaft body 21A joined to each other are supported by the support blade 41 from below between the adjusting wheel 42 and the grinding wheel 43. By rotating the adjusting wheel 42 and the grinding wheel 43, the rotations of the magnet 1A, the first shaft body 11A and the second shaft body 21A joined to each other are adjusted, and the magnet 1A, the first shaft body 11A and the second shaft are adjusted. The sides 6, 16 and 26 of the body 21A are processed.
 図4に示されるように、第1加工工程S2でそれぞれの側面6,16,26を加工された磁石1A、第1軸体11A及び第2軸体21Aについて、嵌合工程S3が実行される。嵌合工程S3では、磁石1Aの側面6、第1軸体11Aの側面16の磁石1Aの側及び第2軸体21Aの側面26の磁石1Aの側が円環状のアーマリング51の内周面52に接しつつアーマリング51に被覆され、第1軸体11Aの側面16の磁石1Aの側とは反対側及び第2軸体21Aの側面26の磁石1Aの側とは反対側がアーマリング51から露出するように、第1加工工程S2でそれぞれの側面6,16,26を加工された磁石1A、第1軸体11A及び第2軸体21Aにアーマリング51が嵌合させられる。 As shown in FIG. 4, the fitting step S3 is executed for the magnet 1A, the first shaft body 11A, and the second shaft body 21A whose side surfaces 6, 16 and 26 are machined in the first processing step S2. .. In the fitting step S3, the side surface 6 of the magnet 1A, the side of the side surface 16 of the first shaft body 11A 16 and the side of the side surface 26 of the second shaft body 21A 26 are the inner peripheral surface 52 of the annular armoring 51. The side of the side surface 16 of the first shaft body 11A opposite to the side of the magnet 1A and the side of the side surface 26 of the second shaft body 21A opposite to the side of the magnet 1A are exposed from the armoring 51. The armoring 51 is fitted to the magnets 1A, the first shaft body 11A, and the second shaft body 21A whose side surfaces 6, 16 and 26 are machined in the first processing step S2.
 アーマリング51は、内周面52及び外周面53を有する円環状の金属部材である。嵌合工程S3は、例えば、加熱膨張させられたアーマリング51が磁石1A、第1軸体11A及び第2軸体21Aに嵌合させられ、嵌合後に冷却収縮させられる焼嵌めにより実行される。 The armoring 51 is an annular metal member having an inner peripheral surface 52 and an outer peripheral surface 53. The fitting step S3 is executed, for example, by shrink fitting in which the heated and expanded armoring 51 is fitted to the magnet 1A, the first shaft body 11A, and the second shaft body 21A, and is cooled and shrunk after fitting. ..
 図5に示されるように、嵌合工程S3でアーマリング51を嵌合させられた磁石1A、第1軸体11A及び第2軸体21Aについて、第2加工工程S4が実行される。第2加工工程S4では、アーマリング51の外周面53を基準(基準面、データム(datum))として、嵌合工程S3でアーマリング51を嵌合させられた磁石1A、第1軸体11A及び第2軸体21Aのアーマリング51から露出した第1軸体11A及び第2軸体21Aの側面16,26が加工される。 As shown in FIG. 5, the second processing step S4 is executed for the magnet 1A, the first shaft body 11A, and the second shaft body 21A to which the armoring 51 is fitted in the fitting step S3. In the second processing step S4, the magnet 1A, the first shaft body 11A, and the magnet 1A to which the armoring 51 is fitted in the fitting step S3 are used with the outer peripheral surface 53 of the armoring 51 as a reference (reference surface, datum). The side surfaces 16 and 26 of the first shaft body 11A and the second shaft body 21A exposed from the armoring 51 of the second shaft body 21A are machined.
 第2加工工程S4では、基準器60等によりアーマリング51の外周面53を基準にして、アーマリング51から露出した第1軸体11A及び第2軸体21Aの側面16,26が外周面53から一定の距離を隔てるように、側面16,26が加工される。第2加工工程S4後に、アーマリング51から露出した第1軸体11Aの側面16及び第2軸体21Aの側面26のそれぞれは、互いに共通の中心軸Aを有する円柱の側面をなす。以上のようにして、電動機のロータ100が製造される。 In the second processing step S4, the outer peripheral surfaces 53 are the side surfaces 16 and 26 of the first shaft body 11A and the second shaft body 21A exposed from the armoring 51 with reference to the outer peripheral surface 53 of the armoring 51 by a reference device 60 or the like. The sides 16 and 26 are processed so as to be separated from the surface by a certain distance. After the second processing step S4, each of the side surface 16 of the first shaft body 11A exposed from the armoring 51 and the side surface 26 of the second shaft body 21A form a side surface of a cylinder having a central axis A common to each other. As described above, the rotor 100 of the electric motor is manufactured.
 本実施形態では、第1加工工程S2では、磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が同一の円柱の側面をなすように、既に接合工程S1で互いに接合された磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が加工される。そのため、第1加工工程S2後に磁石1A、第1軸体11A及び第2軸体21Aの側面6,16,26が一致している精度は、接合工程S1以前の工程の精度に依存しない。したがって、互いに接合された磁石1A、第1軸体11A及び第2軸体21Aの側面6,16,26が一致している精度を向上でき、その後の嵌合工程S3で嵌合させられるアーマリング51の締め代の精度も向上できる。つまり、本実施形態では、締め代の制御が容易となる。 In the present embodiment, in the first processing step S2, the joining step S1 has already been performed so that the side surfaces 6, 16 and 26 of the magnet 1A, the first shaft body 11A and the second shaft body 21A form the same cylindrical side surface. The side surfaces 6, 16 and 26 of the magnets 1A, the first shaft body 11A and the second shaft body 21A joined to each other are machined. Therefore, the accuracy with which the magnets 1A, the first shaft body 11A, and the side surfaces 6, 16 and 26 of the second shaft body 21A match after the first processing step S2 does not depend on the accuracy of the steps before the joining step S1. Therefore, it is possible to improve the accuracy in which the side surfaces 6, 16 and 26 of the magnets 1A, the first shaft body 11A and the second shaft body 21A joined to each other match, and the armoring to be fitted in the subsequent fitting step S3. The accuracy of the tightening allowance of 51 can also be improved. That is, in the present embodiment, the tightening allowance can be easily controlled.
 また、第2加工工程S4では、既に接合工程S1で互いに接合された磁石1A、第1軸体11A及び第2軸体21Aの中の第1軸体11A及び第2軸体21Aの側面16,26がアーマリング51の外周面53を基準として加工される。そのため、第2加工後に磁石1A、第1軸体11A及び第2軸体21Aの中心軸Aが一致している精度は、接合工程S1以前の工程の精度に依存しない。したがって、磁石1A、第1軸体11A及び第2軸体21Aの中心軸Aが一致している精度を向上できる。以上のように、本実施形態によれば、製造されるロータ100の精度を向上できる。また、本実施形態によれば、ロータ100の製造の歩留まりも向上できる。 Further, in the second processing step S4, the side surfaces 16 of the first shaft body 11A and the second shaft body 21A in the magnet 1A, the first shaft body 11A and the second shaft body 21A already joined to each other in the joining step S1. 26 is processed with reference to the outer peripheral surface 53 of the armoring 51. Therefore, the accuracy with which the central axes A of the magnet 1A, the first axis 11A, and the second axis 21A match after the second processing does not depend on the accuracy of the process before the joining process S1. Therefore, it is possible to improve the accuracy in which the central axes A of the magnet 1A, the first shaft body 11A, and the second shaft body 21A are aligned. As described above, according to the present embodiment, the accuracy of the manufactured rotor 100 can be improved. Further, according to the present embodiment, the production yield of the rotor 100 can be improved.
 また、本実施形態によれば、第1加工工程S2では、磁石1A、第1軸体11A及び第2軸体21Aのいずれかの側面6,16,26が支持される。しかし、第1軸体11Aの他方の底面13及び第2軸体21Aの他方の底面23は支持されることなく、磁石1A、第1軸体11A及び第2軸体21Aのそれぞれの側面6,16,26が加工される。そのため、磁石1Aと第1軸体11Aとの接合箇所(底面2,12)及び磁石1Aと第2軸体21Aとの接合箇所(底面3,22)には、加工に必要な支持のための力が加わらない。したがって、第1加工工程S2における接着剤30により接合された接合箇所の破損を低減し、ロータ100の製造の歩留まりを向上できる。 Further, according to the present embodiment, in the first processing step S2, the side surfaces 6, 16 and 26 of any of the magnet 1A, the first shaft body 11A and the second shaft body 21A are supported. However, the other bottom surface 13 of the first shaft body 11A and the other bottom surface 23 of the second shaft body 21A are not supported, and the side surfaces 6 and 6 of the magnet 1A, the first shaft body 11A and the second shaft body 21A, respectively. 16 and 26 are processed. Therefore, the joints between the magnet 1A and the first shaft body 11A (bottoms 2 and 12) and the joints between the magnet 1A and the second shaft 21A (bottoms 3 and 22) are for support necessary for processing. No force is applied. Therefore, it is possible to reduce the damage of the jointed portion joined by the adhesive 30 in the first processing step S2 and improve the manufacturing yield of the rotor 100.
 また、本実施形態によれば、接合工程S1では、磁石1A及び第1軸体11Aの中心軸Aに交差する方向への互いの移動を制限するように磁石1Aの一方の底面2及び第1軸体11Aの一方の底面12のそれぞれに設けられた凹凸部4,14が互いに嵌合させられて磁石1Aの一方の底面2に第1軸体11Aの一方の底面12が接合される。また、接合工程S1では、磁石1A及び第2軸体21Aの中心軸Aに交差する方向への互いの移動を制限するように磁石1Aの他方の底面3及び第2軸体21Aの一方の底面22のそれぞれに設けられた凹凸部5,24が互いに嵌合させられて磁石1Aの他方の底面3に第2軸体21Aの一方の底面22が接合される。これにより、接合工程S1後に、磁石1A、第1軸体11A及び第2軸体21Aのそれぞれが中心軸Aに交差する方向にずれにくくなる。 Further, according to the present embodiment, in the joining step S1, one of the bottom surfaces 2 and the first of the magnets 1A so as to limit the mutual movement of the magnet 1A and the first shaft body 11A in the direction intersecting the central axis A. Concavo- convex portions 4, 14 provided on one bottom surface 12 of the shaft body 11A are fitted to each other, and one bottom surface 12 of the first shaft body 11A is joined to one bottom surface 2 of the magnet 1A. Further, in the joining step S1, the other bottom surface 3 of the magnet 1A and the one bottom surface of the second axis body 21A are restricted so as to limit the mutual movement of the magnet 1A and the second axis body 21A in the direction intersecting the central axis A. The uneven portions 5 and 24 provided on each of the 22 are fitted to each other, and one bottom surface 22 of the second shaft body 21A is joined to the other bottom surface 3 of the magnet 1A. As a result, after the joining step S1, each of the magnet 1A, the first shaft body 11A, and the second shaft body 21A is less likely to shift in the direction intersecting the central axis A.
 また、本実施形態によれば、側面6,16,26からの力により磁石1A、第1軸体11A及び第2軸体21Aのそれぞれが中心軸Aに交差する方向にずれにくくなるため、第1加工工程S2でのセンタレス研磨も容易となる。 Further, according to the present embodiment, the magnet 1A, the first shaft body 11A, and the second shaft body 21A are less likely to be displaced in the direction intersecting the central axis A due to the forces from the side surfaces 6, 16 and 26. Centerless polishing in 1 processing step S2 also becomes easy.
 また、本実施形態によれば、接合工程S1では、接着剤30を用いて磁石1Aの一方の底面2に第1軸体11Aの一方の底面12が接合され、接着剤30を用いて磁石1Aの他方の底面3に第2軸体21Aの一方の底面22が接合される。そのため、簡易な方法で接合工程S1を実行できる。 Further, according to the present embodiment, in the joining step S1, one bottom surface 12 of the first shaft body 11A is joined to the one bottom surface 2 of the magnet 1A using the adhesive 30, and the magnet 1A is bonded using the adhesive 30. One bottom surface 22 of the second shaft body 21A is joined to the other bottom surface 3. Therefore, the joining step S1 can be executed by a simple method.
 以下、第2実施形態について説明する。図6に示されるように、本実施形態では、磁石1Bは底面2,3に凹凸部4,5を有しておらず、底面2,3は一様な平面である。また、第1軸体11Bは底面12に凹凸部14を有しておらず、第2軸体21Bは底面22に凹凸部24を有しておらず、底面12,22は一様な平面である。また、接合工程S1では、接着剤30は用いられない。 Hereinafter, the second embodiment will be described. As shown in FIG. 6, in the present embodiment, the magnet 1B does not have the uneven portions 4 and 5 on the bottom surfaces 2 and 3, and the bottom surfaces 2 and 3 are uniform flat surfaces. Further, the first shaft body 11B does not have the uneven portion 14 on the bottom surface 12, the second shaft body 21B does not have the uneven portion 24 on the bottom surface 22, and the bottom surfaces 12 and 22 have a uniform flat surface. be. Further, in the joining step S1, the adhesive 30 is not used.
 磁石1B、第1軸体11B及び第2軸体21Bのそれぞれは、中心軸Aに沿って延在するボルト孔部7,17,27を有する。接合工程S1では、ボルト孔部7,17,27のそれぞれにボルト71が挿通され、ボルト71の一端にナット72が螺合される。接合工程S1以降の第1加工工程S2、嵌合工程S3及び第2加工工程S4は、上記第1実施形態と同様に実行される。嵌合工程S3後は、ボルト孔部7,17,27からボルト71及びナット72が除去されてもよい。 Each of the magnet 1B, the first shaft body 11B, and the second shaft body 21B has bolt holes 7, 17, and 27 extending along the central axis A. In the joining step S1, the bolt 71 is inserted into each of the bolt holes 7, 17, and 27, and the nut 72 is screwed into one end of the bolt 71. The first processing step S2, the fitting process S3, and the second processing step S4 after the joining step S1 are executed in the same manner as in the first embodiment. After the fitting step S3, the bolt 71 and the nut 72 may be removed from the bolt holes 7, 17, 27.
 本実施形態によれば、磁石1B、第1軸体11B及び第2軸体21Bの底面2,3,12,22に凹凸部4,5,14,24が設けられず、接合工程S1で接着剤30が用いられなくとも、接合工程S1、第1加工工程S2、嵌合工程S3及び第2加工工程S4を実行できる。また、本実施形態によっても、接合工程S1後に、磁石1B、第1軸体11B及び第2軸体21Bのそれぞれが中心軸Aに交差する方向にずれにくくなる。したがって、第1加工工程S2でのセンタレス研磨も容易となる。 According to the present embodiment, the bottom surfaces 2, 3, 12, and 22 of the magnet 1B, the first shaft body 11B, and the second shaft body 21B are not provided with the uneven portions 4, 5, 14, 24, and are bonded in the joining step S1. Even if the agent 30 is not used, the joining step S1, the first processing step S2, the fitting step S3, and the second processing step S4 can be executed. Further, also in this embodiment, after the joining step S1, the magnet 1B, the first shaft body 11B, and the second shaft body 21B are less likely to be displaced in the direction intersecting the central axis A. Therefore, centerless polishing in the first processing step S2 is also facilitated.
 以上、実施形態及び変形例について説明したが、実施形態は、上記実施形態に限定されるものではない。例えば、上記実施形態では、第1加工工程S2で、第1軸体11Aの他方の底面13及び第2軸体21Aの他方の底面23が支持されないセンタレス研磨が実行された。しかし、条件に応じて第1加工工程S2では、第1軸体11Aの他方の底面13及び第2軸体21Aの他方の底面23が支持されてもよい。 Although the embodiments and modifications have been described above, the embodiments are not limited to the above embodiments. For example, in the above embodiment, in the first processing step S2, centerless polishing is performed in which the other bottom surface 13 of the first shaft body 11A and the other bottom surface 23 of the second shaft body 21A are not supported. However, depending on the conditions, in the first processing step S2, the other bottom surface 13 of the first shaft body 11A and the other bottom surface 23 of the second shaft body 21A may be supported.
 本開示の一側面のロータの製造方法によれば、製造されるロータの精度を向上できる。 According to the rotor manufacturing method of one aspect of the present disclosure, the accuracy of the manufactured rotor can be improved.
1A,1B 磁石
2,3 底面
4,5 凹凸部
6 側面
7 ボルト孔部
11A,11B 第1軸体
12,13 底面
14 凹凸部
16 側面
17 ボルト孔部
21A,21B 第2軸体
22,23 底面
24 凹凸部
26 側面
27 ボルト孔部
30 接着剤
41 支持刃
42 調整車
43 研削砥石車
51 アーマリング
52 内周面
53 外周面
60 基準器
71 ボルト
72 ナット
100 ロータ
A 中心軸
S1 接合工程
S2 第1加工工程
S3 嵌合工程
S4 第2加工工程
1A, 1B Magnets 2, 3 Bottom 4, 5 Concavo-convex part 6 Side surface 7 Bolt hole part 11A, 11B First shaft body 12, 13 Bottom surface 14 Concavo-convex part 16 Side surface 17 Bolt hole part 21A, 21B Second shaft body 22, 23 Bottom surface 24 Concavo-convex part 26 Side surface 27 Bolt hole part 30 Adhesive 41 Support blade 42 Adjusting wheel 43 Grinding grind wheel 51 Armoring 52 Inner peripheral surface 53 Outer peripheral surface 60 Reference device 71 Bolt 72 Nut 100 Rotor A Central shaft S1 Joining process S2 1st Machining process S3 Fitting process S4 Second machining process

Claims (4)

  1.  円柱状の磁石の一方の底面に円柱状の第1軸体の一方の底面を接合し、前記磁石の他方の底面に円柱状の第2軸体の一方の底面を接合することにより、前記磁石、前記第1軸体及び前記第2軸体を互いに接合する接合工程と、
     前記磁石、前記第1軸体及び前記第2軸体のそれぞれの側面が同一の円柱の側面をなすように、前記接合工程で互いに接合された前記磁石、前記第1軸体及び前記第2軸体のそれぞれの側面を加工する第1加工工程と、
     前記磁石の側面、前記第1軸体の側面の前記磁石の側及び前記第2軸体の側面の前記磁石の側が円環状のアーマリングの内周面に接しつつ前記アーマリングに被覆され、前記第1軸体の側面の前記磁石の側とは反対側及び前記第2軸体の側面の前記磁石の側とは反対側が前記アーマリングから露出するように、前記第1加工工程でそれぞれの側面を加工された前記磁石、前記第1軸体及び前記第2軸体に前記アーマリングを嵌合させる嵌合工程と、
     前記アーマリングの外周面を基準として、前記嵌合工程で前記アーマリングを嵌合させられた前記磁石、前記第1軸体及び前記第2軸体の前記アーマリングから露出した前記第1軸体及び前記第2軸体の側面を加工する第2加工工程と、
    を備えたロータの製造方法。
    The magnet is formed by joining one bottom surface of the columnar first shaft body to one bottom surface of the columnar magnet and joining one bottom surface of the columnar second shaft body to the other bottom surface of the magnet. , The joining step of joining the first shaft body and the second shaft body to each other,
    The magnet, the first shaft body, and the second shaft joined to each other in the joining step so that the side surfaces of the magnet, the first shaft body, and the second shaft body form the same cylindrical side surface. The first processing process to process each side of the body,
    The side surface of the magnet, the side of the magnet on the side surface of the first shaft body, and the side of the magnet on the side surface of the second shaft body are covered with the armor ring while being in contact with the inner peripheral surface of the annular armor ring. Each side surface in the first processing step so that the side surface of the first shaft body opposite to the side of the magnet and the side surface of the second shaft body opposite to the side of the magnet are exposed from the armoring. The fitting step of fitting the armoring to the magnet, the first shaft body and the second shaft body, which have been machined.
    The first shaft body exposed from the armoring of the magnet, the first shaft body, and the second shaft body to which the armor ring is fitted in the fitting step with reference to the outer peripheral surface of the armor ring. And the second processing step of processing the side surface of the second shaft body,
    How to make a rotor with.
  2.  前記第1加工工程では、前記磁石、前記第1軸体及び前記第2軸体のいずれかの側面を支持しつつ、前記第1軸体の他方の底面及び前記第2軸体の他方の底面を支持することなく、前記磁石、前記第1軸体及び前記第2軸体のそれぞれの側面を加工する、請求項1に記載のロータの製造方法。 In the first processing step, the other bottom surface of the first shaft body and the other bottom surface of the second shaft body are supported while supporting the side surface of the magnet, the first shaft body, or the second shaft body. The method for manufacturing a rotor according to claim 1, wherein the side surfaces of the magnet, the first shaft body, and the second shaft body are machined without supporting the magnet.
  3.  前記接合工程では、
     前記磁石及び前記第1軸体の中心軸に交差する方向への互いの移動を制限するように前記磁石の一方の底面及び前記第1軸体の一方の底面のそれぞれに設けられた凹凸部を互いに嵌合させつつ前記磁石の一方の底面に前記第1軸体の一方の底面を接合し、
     前記磁石及び前記第2軸体の中心軸に交差する方向への互いの移動を制限するように前記磁石の他方の底面及び前記第2軸体の一方の底面のそれぞれに設けられた凹凸部を互いに嵌合させつつ前記磁石の他方の底面に前記第2軸体の一方の底面を接合する、請求項1又は2に記載のロータの製造方法。
    In the joining process,
    Concavo-convex portions provided on one bottom surface of the magnet and one bottom surface of the first axis body so as to limit mutual movement of the magnet and the central axis of the first axis body in a direction intersecting each other. One bottom surface of the first shaft body is joined to one bottom surface of the magnet while being fitted to each other.
    Concavo-convex portions provided on the other bottom surface of the magnet and one bottom surface of the second axis body so as to limit each other's movement in the direction intersecting the central axis of the magnet and the second axis body. The method for manufacturing a rotor according to claim 1 or 2, wherein one bottom surface of the second shaft body is joined to the other bottom surface of the magnet while being fitted to each other.
  4.  前記接合工程では、
     接着剤を用いて前記磁石の一方の底面に前記第1軸体の一方の底面を接合し、
     接着剤を用いて前記磁石の他方の底面に前記第2軸体の一方の底面を接合する、請求項1~3のいずれか1項に記載のロータの製造方法。
    In the joining process,
    One bottom surface of the first shaft body is joined to one bottom surface of the magnet using an adhesive.
    The method for manufacturing a rotor according to any one of claims 1 to 3, wherein one bottom surface of the second shaft body is joined to the other bottom surface of the magnet using an adhesive.
PCT/JP2021/041890 2020-12-17 2021-11-15 Method for manufacturing rotor WO2022130870A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209099A JP2024012730A (en) 2020-12-17 2020-12-17 Manufacturing method of rotor
JP2020-209099 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022130870A1 true WO2022130870A1 (en) 2022-06-23

Family

ID=82059743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041890 WO2022130870A1 (en) 2020-12-17 2021-11-15 Method for manufacturing rotor

Country Status (2)

Country Link
JP (1) JP2024012730A (en)
WO (1) WO2022130870A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234975A (en) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp Assembly for rotor of generator
US7042118B2 (en) * 2003-11-10 2006-05-09 Calnetix Permanent magnet rotor construction wherein relative movement between components is prevented
JP2015070786A (en) * 2013-09-26 2015-04-13 エスカエフ・マニュティック・メシャトロニク Permanent magnet rotor shaft assembly and method
CN105226872A (en) * 2015-11-16 2016-01-06 珠海格力节能环保制冷技术研究中心有限公司 The manufacture method of rotor axis of electric, motor and rotor axis of electric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234975A (en) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp Assembly for rotor of generator
US7042118B2 (en) * 2003-11-10 2006-05-09 Calnetix Permanent magnet rotor construction wherein relative movement between components is prevented
JP2015070786A (en) * 2013-09-26 2015-04-13 エスカエフ・マニュティック・メシャトロニク Permanent magnet rotor shaft assembly and method
CN105226872A (en) * 2015-11-16 2016-01-06 珠海格力节能环保制冷技术研究中心有限公司 The manufacture method of rotor axis of electric, motor and rotor axis of electric

Also Published As

Publication number Publication date
JP2024012730A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
KR100273663B1 (en) Method for processing an axis for hub unit
CN104942549B (en) A kind of manufacturing process of robot RV reducer spline eccentric shaft
WO2022130870A1 (en) Method for manufacturing rotor
KR20180042261A (en) Swing bearing
JP2010190324A (en) Raceway member and method for manufacturing raceway member
JP2006194293A (en) Method for manufacturing bearing unit for wheel
JP4200594B2 (en) Cylinder shaft machining method and cylinder shaft
JP2007098566A (en) Rolling bearing unit for supporting wheel and method of producing the same
JP5747723B2 (en) Trunnion of toroidal type continuously variable transmission and processing method thereof
KR20180131265A (en) Wheel hub and wheel bearing comprising same
JP7035040B2 (en) Thin rotor for magnetic bearing assembly
JP2007514914A (en) Wheel bearing outer race
CN101387318A (en) Machine element for a shaft-to-hub connection and production method for a shaft-to-hub connection
JPS62292919A (en) Cross roller bearing and its process
JP2656824B2 (en) Bearing ring of swivel bearing and method of manufacturing the same
JP5271109B2 (en) Rolling bearing device
CN105102184A (en) Clamping nest having fixing elements
TWI423384B (en) Pivot arm assenbly for semiconductor wafer handling robots and method for making the same
JPS62292920A (en) Swing bearing and its process
CN203712525U (en) Abrasive cutting wheel
JP7034049B2 (en) Manufacturing method of split type sliding ring and ring body for split type sliding ring
JP2018113755A (en) Method for manufacturing rotor
JP2010185538A (en) Ball type constant velocity joint
JPS5931367B2 (en) Manufacturing method of rotating barrel in gas centrifuge
JPH0741943Y2 (en) Split-type slewing bearing bearing ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP