JP4200594B2 - Cylinder shaft machining method and cylinder shaft - Google Patents

Cylinder shaft machining method and cylinder shaft Download PDF

Info

Publication number
JP4200594B2
JP4200594B2 JP17972399A JP17972399A JP4200594B2 JP 4200594 B2 JP4200594 B2 JP 4200594B2 JP 17972399 A JP17972399 A JP 17972399A JP 17972399 A JP17972399 A JP 17972399A JP 4200594 B2 JP4200594 B2 JP 4200594B2
Authority
JP
Japan
Prior art keywords
shaft
cylindrical shaft
spline
female spline
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17972399A
Other languages
Japanese (ja)
Other versions
JP2001011535A (en
Inventor
肇 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP17972399A priority Critical patent/JP4200594B2/en
Publication of JP2001011535A publication Critical patent/JP2001011535A/en
Application granted granted Critical
Publication of JP4200594B2 publication Critical patent/JP4200594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凸軸とスプライン嵌合されて使用される筒軸を加工する方法ならびにその筒軸に関する。この筒軸は、例えば伸縮軸を構成する一方軸体の軸端部分、自在継手のヨークの軸端部分、あるいは、トラクタの駆動軸とトラクタで牽引される各種作業機の入力軸との一方の軸端部分に設けられる。
【0002】
【従来の技術】
一般的に、例えば2つの軸体を自在継手を介して連結するような場合、自在継手のヨークと各軸体とをスプライン嵌合とすることがあり、その場合、例えば、ヨークの軸端部分を、内周面にメススプライン部を有する筒軸とし、また軸体の軸端部分をオススプライン部が形成された凸軸とする。
【0003】
【発明が解決しようとする課題】
このようなヨークにおいては、筒軸と凸軸それぞれをスプライン嵌合する過程で、筒軸のメススプライン部が凸軸のオススプライン部に衝突すると、メススプライン部の端縁が変形させられる可能性がある。このような変形は、好ましくないので、本発明者らが、筒軸のメススプライン部に対して各種条件で熱硬化処理を施し、前記変形に抗する強度を向上させることを試みたところ、この熱硬化処理はメススプライン部の強度向上には効果があった。しかしながら、その熱硬化処理をするとメススプライン部に形状歪みが発生し、これによってその寸法精度が確保されず、前記オススプライン部との嵌合性が低下することが判明した。
【0004】
そこで、本発明者らは、さらに鋭意研究を進めた。その結果、各種形状の筒軸のうち、筒軸の肉厚がほぼ均一な場合は、熱硬化処理をしてもメススプライン部の形状歪み量が、各部ではほぼ均等になるので、寸法公差の範囲内に収めるように管理すれば問題ない。しかし、筒軸が異形外周の場合、つまり、肉厚が軸方向の所要領域で大小異なる場合では、形状歪み量が軸方向に不均一となるために、メススプライン部の寸法精度が確保できなくなり、前記スプライン嵌合性が低下するなど、後加工が必要になることを見いだした。
【0005】
したがって、本発明は、異形外周の筒軸の熱硬化処理を含む筒軸加工方法において、スプライン嵌合部の形状歪み量を軸方向に一様にでき、メススプライン部の寸法精度が確保できるように筒軸を加工する筒軸加工方法およびこれによる筒軸を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の筒軸加工方法においては、凸軸がスプライン嵌合される筒軸を加工する方法において、軸方向所要領域の外径が他の領域に対して異径となっている筒軸に対し、メススプライン部を形成する工程と、前記筒軸のメススプライン部に対して高温加熱工程と急冷工程とからなる熱硬化処理を施す工程とを含み、前記熱硬化の処理過程において、前記筒軸においての外径が小径である領域に対して、前記メススプライン部の軸方向各部の放熱を均等化ないしはほぼ均等化する放熱均等化用治具をあてがうことにより、前記急冷工程での形状歪み量を軸方向各部で均等化することを特徴としている。
【0007】
前記筒軸加工方法においては、好ましくは、前記熱硬化処理の工程が、高周波焼き入れである。
【0008】
【発明の実施の形態】
本発明の詳細を図面に示す実施形態に基づいて説明する。
【0009】
本実施の形態の筒軸加工方法は、詳しくは後述するが、要するに、凸軸がスプライン嵌合される筒軸を加工する方法において、外周の軸方向所要領域が他の領域に対して異径となっている筒軸に対し、メススプライン部を形成する工程と、前記筒軸のメススプライン部に対して熱硬化処理を施す工程とを含み、前記熱硬化の処理過程において、前記筒軸においての外径が小径である領域に対して、前記メススプライン部の軸方向各部の放熱を均等化ないしはほぼ均等化する放熱治具をあてがうようにしている。この熱硬化処理の工程においては、特に、前記軸方向所要領域は、筒軸の外周において他の部材(例えば、後述する図5および図6の支持ユニットCに相当する)が取り付けられる嵌合面となる。なお、ここに言う放熱治具の用語は、軸方向各部の熱容量の差異を均等化するものでもあるから、熱容量均等化用治具とも換言できるし、放熱を均等化するから放熱均等化用治具とも換言できるし、材料が同じの場合は軸方向各部の肉厚を均等化するための肉厚均等化用治具とも換言できるし、また、熱硬化処理における急冷工程での形状歪み量を軸方向各部で均等化するために形状歪み量均等化用治具とも換言できるし、その名称に限定されるものではなく、結果として、メススプライン部の軸方向各部の放熱を均等化できるものであればそのすべてが含まれる。
【0010】
図1は、上述した実施の形態の筒軸加工方法により加工された円筒形の筒軸10と、これにスプライン嵌合する円柱形の凸軸20とを示している。
【0011】
筒軸10は、外周が前記軸方向所要領域が薄肉とされた小径部11と、小径部11より厚肉の大径部12との段差形状となった異形外周を有し、かつ内周軸方向に高周波焼き入れなどで熱硬化処理が施されたメススプライン部13を有している。
【0012】
凸軸20は、外周にオススプライン部21を有しており、筒軸10にスプライン嵌合されることで、筒軸10に対して、両スプライン部13,21どうしの嵌合(スプライン嵌合)により、軸方向に摺動可能にかつ周方向に同期回転する状態に連結されるようになっている。
【0013】
筒軸10は、熱硬化処理が施されているので、両スプライン部13,21がスプライン嵌合する過程で、筒軸10のメススプライン部13が凸軸20のオススプライン部21に衝突しても、一方側開口端縁が変形させられることがない。
【0014】
また、その熱硬化処理により発生するメススプライン部13の歪み量が軸方向でほぼ一定となりスプライン嵌合上の寸法精度を確保できたものとなっている。
【0015】
以下、このような筒軸10に加工する本実施の形態の筒軸加工方法について詳しく説明する。
【0016】
筒軸10は、外周に小径部11と大径部12とを有しているが、小径部11は、薄肉であるために、熱容量が小さい。大径部12は、厚肉であるために、熱容量が大きい。したがって、かかる外周を備えた筒軸10の場合、軸方向各部の熱容量に差、つまり、放熱に差を有するから、メススプライン部13を形成して直ちに熱硬化処理を施したのでは、その熱硬化処理によるメススプライン部13の軸方向各部の形状歪み量が不均一となりその寸法精度の確保が困難となる。そこで、実施の形態では、メススプライン部13を形成した後、前記両熱容量の差をなくして放熱を均等化ないしはほぼ均等化するために、小径部11に放熱治具30をあてがうことで、この放熱治具30を含めた全体の軸方向各部の放熱を均等化ないしはほぼ均等化している。
【0017】
そして、この状態で、メススプライン部13の熱硬化処理を施すようになっている。これによって、放熱治具30を取り去った後の筒軸10においては、メススプライン部13における歪み量は軸方向どこでも一様となり、これによって、メススプライン部13の寸法精度を確保することが可能となっている。
【0018】
以下、このことをさらに図2を参照して具体的に説明する。
【0019】
図2(a)で示すように、断面が円形で、かつ、外周が、軸方向において異径、つまり、小径部11と大径部12とを有する鍛造筒軸10を用意する。この筒軸10は、その貫通孔内周面と当該筒軸10外周面との間の肉厚が、小径部11では薄肉であり、大径部12では厚肉となっている。
【0020】
次に、図2(b)で示すように、筒軸10の貫通孔の内周面にブローチ加工を施すことにより、メススプライン部13を形成する。
【0021】
メススプライン部13を形成したあと、図2(c)で示すように、環状の放熱治具30を小径部11にあてがって、全体としての軸方向各部における熱容量を均等化する。この熱容量の均等化について説明する。放熱治具30の材料が、筒軸10のそれと同じであれば、放熱治具30は、小径部11の軸方向長と一致する軸方向長と、大径部12と小径部11との差に対応した肉厚とを有する。したがって、図2(c)の状態では、筒軸10のメススプライン部13の軸方向各部における熱容量は均等化される。
【0022】
なお、放熱治具30の材料は、筒軸10のそれと異なっても構わない。この場合は、放熱治具30の肉厚は、大径部12と小径部11との肉厚差に限定されず、要するに、全体としての熱容量が均等となればよい。
【0023】
このようにして放熱治具30を小径部11の外周面にあてがった状態で、メススプライン部13に対して高周波焼き入れ等による熱硬化処理を施す。この熱硬化処理によりメススプライン部13の強度が向上し、前記衝突による一方側開口端縁の変形が防止可能とされる。
【0024】
このメススプライン部13に対する熱硬化処理には、高温加熱工程と急冷工程とがあり、この急冷工程において、メススプライン部13に形状歪みが発生する。この場合、上述したように、筒軸10の軸方向各部の熱容量がほぼ均等であるので、この形状歪みの量は、熱硬化処理時点の放熱治具30を含む筒軸10の全体の肉厚が軸方向各部で一様となった。具体的には、従来の加工方法では、公差幅0.06mm(直径当たり)に対し、小径部11での形状歪み量と、大径部12での形状歪み量との差(歪量差)は、0.10mmであったが、実施の形態では、前記歪量差は、公差幅以下となり、筒軸10のメススプライン部13の所要の寸法精度の確保が可能となった。メススプライン部13の形成時に、この歯と溝との形状寸法について、歪みが発生した状態で、製品として要求される寸法公差となるように管理している。
【0025】
次いで、図2(d)で示すように、放熱治具30を取り去ることで、図1で示される小径部11と大径部12とを有する異形外周の筒軸10が得られる。
【0026】
本実施の形態の筒軸加工方法は、次に図3および図4を参照して述べるような構造を備えた筒軸の加工には特に有用である。
【0027】
10aは、筒軸であり、20は、凸軸である。
【0028】
筒軸10aは、その内周面の一方開口端に拡径テーパ面14、メススプライン部13の各スプライン歯の先端部分の周方向両側には、それぞれ斜めに湾曲した斜面15が形成されていて、当該スプライン歯の先端部分の形状が平面視ほぼV字形に形成されている。なお、斜面15において、それぞれスプライン溝側に位置する2つの斜面15が一対となって、すり鉢状に湾曲した形状になっている。拡径テーパ面14においてメススプライン部13の各スプライン溝の先端側の領域には、前述したスプライン溝側に位置する2つ一対の斜面15に対して連接する扇形の陥没部16が形成されている。各スプライン歯のV字形歯先は、先鋭に尖っておらずに、周方向に沿って平坦に形成されている。この平坦部分を平坦部17とする。この平坦部17の周方向幅Bは、0.5〜3mmの範囲内、好ましくは1mmに設定される。なお、この平坦部17は、丸いR面としてもよい。なお、スプライン溝の先端部分に形成される2つ一対の斜面15,15と陥没部16とは凸軸20を連結するときの位相ずれを補正する案内面となる。
【0029】
そして、この筒軸10aは、その外周面が小径部11と大径部12とを有した異形外周となっているが、その製作は、上述した筒軸10の場合と同様であるので、その説明を省略する。また、凸軸20は、スプライン部21の各スプライン歯の先端に、テーパ面22を有している。
【0030】
上述した筒軸10aの場合、凸軸20との連結過程において、両軸10a,20の軸心がずれていたり、あるいは両軸10a,20のスプライン部13,21どうしの位相がずれていたりしても、芯ずれや位相ずれが、人手を煩わせることなく自動的に円滑に補正される。また、両軸10a,20の軸心がずれている場合、両軸10a,20を突き合わせる動作に伴い、筒軸10aのテーパ面14と、凸軸2のスプライン歯のテーパ面22とが当接したときに、筒軸10aのテーパ面14が、凸軸20の軸方向推進力を径方向へ変位させる力に変換させるように作用し、筒軸10aの軸心と凸軸20の軸心とが合致するようになる。
【0031】
この筒軸10aは、例えば図5に示されるトラクタ2の駆動軸2aに対して作業機3の凸軸形状の入力軸3aを連結するためのカップリングとして利用することができる。具体的には、トラクタ2の駆動軸2aの自由端に取り付けられてある十字軸継手2bのヨーク2cの軸端に、筒軸10aが一体に設けられる。
【0032】
図4に示した例では、トラクタ2の駆動軸2aと作業機3の入力軸3aとを人手を介入せずに自動的に連結できるようにするために、トラクタ2側に配設されて作業機3を引き寄せるアームユニットAと、作業機3側に配設されてアームユニットAに係止される係止ユニットBと、トラクタ2のアームユニットAに配設されて十字軸継手2bの一方ヨーク2cをほぼ水平姿勢で回動可能な状態で傾動可能かつ径方向変位可能に支持する支持ユニットCとを装備している。
【0033】
支持ユニットCは、例えば図5に示すように、トラクタ2のアームユニットAに固定される環状枠体4と、この環状枠体4に取り付けられる自動調心玉軸受5と、この自動調心玉軸受5を環状枠体4のほぼ中心位置に宙づり保持する3つのコイルばね6とで構成されている。環状枠体4は、2枚一対の環状板4a,4bと、環状板4a,4bの間に挟まれて径方向内外に配設される内筒4cおよび外筒4dとからなる。内筒4cは、径方向に摺動可能になっている。外筒4dの円周3カ所には、コイルばね6の圧縮量を調節する3つの中空ボルト4eが螺着されている。
【0034】
このようなトラクタ2と作業機3との連結用のカップリングとして、筒軸10aを利用すれば、筒軸10aによる位相ずれ補正機能がきわめて有効になり、トラクタ2の駆動軸2aと作業機3の入力軸3aとの連結動作の一層の円滑化に大きく貢献できるようになる。
【0035】
【発明の効果】
本発明の筒軸加工方法においては、まず、熱硬化処理の工程ではメススプライン部の軸方向熱容量が均等化されているので、熱硬化処理によるメススプライン部の形状歪み量は、軸方向どこでも一様となる。その結果、筒軸のメススプライン部は、凸軸のオススプライン部との嵌合に際しての開口端縁の変形が防止されるとともに、メススプライン部における歪み量を軸方向どこでも一様なため、メススプライン部の寸法精度を確保して、凸軸とのスプライン嵌合性を向上させることができる。
【0036】
前記筒軸加工方法においては、前記熱硬化処理の工程が、高周波焼き入れである場合は、筒軸の外周面を熱硬化処理しないので、通常の旋削により、軸方向所要領域を例えば薄肉などの異径加工ができて好ましい。
【図面の簡単な説明】
【図1】本発明の実施形態の筒軸加工方法で加工された筒軸とそれにスプライン嵌合する凸軸との斜視図
【図2】図1の筒軸の加工方法の説明に供する断面図
【図3】実施の形態の加工方法が適用される他の筒軸の断面図
【図4】図3の筒軸とそれにスプライン嵌合する凸軸との斜視図
【図5】図3の筒軸をトラクタと作業機との連結用カップリングとした例を示す側面図
【図6】図5中の支持ユニットを示す縦断側面図
【符号の説明】
10 筒軸
11 筒軸の小径部
12 筒軸の大径部
13 筒軸のメススプライン部
20 凸軸
21 凸軸のオススプライン部
30 放熱治具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of machining a cylindrical shaft that is used by being spline-fitted with a convex shaft, and to the cylindrical shaft. This cylindrical shaft is, for example, one of the shaft end portion of one shaft body constituting the telescopic shaft, the shaft end portion of the universal joint yoke, or the drive shaft of the tractor and the input shaft of various working machines pulled by the tractor. Provided at the shaft end portion.
[0002]
[Prior art]
In general, for example, when two shaft bodies are connected via a universal joint, the universal joint yoke and each shaft body may be spline-fitted, and in this case, for example, the shaft end portion of the yoke Is a cylindrical shaft having a female spline portion on the inner peripheral surface, and a shaft end portion of the shaft body is a convex shaft on which a male spline portion is formed.
[0003]
[Problems to be solved by the invention]
In such a yoke, if the female spline part of the cylindrical shaft collides with the male spline part of the convex shaft in the process of spline fitting the cylindrical shaft and the convex shaft, the edge of the female spline part may be deformed. There is. Since such deformation is not preferable, the present inventors tried to improve the strength against the deformation by subjecting the female spline portion of the cylindrical shaft to thermosetting treatment under various conditions. The thermosetting treatment was effective in improving the strength of the female spline part. However, it has been found that when the thermosetting treatment is performed, a shape distortion occurs in the female spline portion, so that the dimensional accuracy is not ensured and the fitting property with the male spline portion is lowered.
[0004]
Therefore, the present inventors have further advanced research. As a result, when the thickness of the cylindrical shaft is almost uniform among the cylindrical shafts of various shapes, the shape distortion amount of the female spline part is almost uniform in each part even if the thermosetting process is performed. There is no problem if it is managed so as to be within the range. However, when the cylindrical shaft has a deformed outer periphery, that is, when the wall thickness varies in the required area in the axial direction, the dimensional accuracy of the female spline cannot be secured because the amount of geometric distortion is not uniform in the axial direction. It has been found that post-processing is required, for example, the spline fitting property is lowered.
[0005]
Therefore, according to the present invention, in the cylindrical shaft machining method including the thermosetting treatment of the outer peripheral cylindrical shaft, the shape distortion amount of the spline fitting portion can be made uniform in the axial direction, and the dimensional accuracy of the female spline portion can be secured. It is an object of the present invention to provide a cylindrical shaft processing method for processing a cylindrical shaft and a cylindrical shaft using the cylindrical shaft processing method.
[0006]
[Means for Solving the Problems]
In the cylindrical shaft machining method of the present invention, in the method of machining a cylindrical shaft on which the convex shaft is spline-fitted, the cylindrical axis has a different outer diameter in the axial direction region than the other region. A step of forming a female spline portion, and a step of performing a thermosetting process comprising a high-temperature heating step and a rapid cooling step on the female spline portion of the cylindrical shaft, and in the process of thermosetting, the cylindrical shaft The amount of geometric distortion in the rapid cooling process by applying a heat equalization jig for equalizing or almost equalizing the heat radiation of each axial part of the female spline part to the region where the outer diameter of the female spline part is small Is equalized in each part in the axial direction .
[0007]
In the cylindrical shaft machining method, preferably, the thermosetting process is induction hardening.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described based on embodiments shown in the drawings.
[0009]
Although the cylinder shaft machining method of the present embodiment will be described in detail later, in short, in the method of machining a cylinder shaft on which the convex shaft is spline-fitted, the outer peripheral axial required region is different in diameter from other regions. A step of forming a female spline portion on the cylindrical shaft, and a step of performing a thermosetting process on the female spline portion of the cylindrical shaft. For the region where the outer diameter of the female spline is small, a heat dissipating jig for equalizing or substantially equalizing heat dissipating in each axial part of the female spline part is applied. In this thermosetting process, in particular, the required area in the axial direction is a fitting surface on which another member (for example, corresponding to a support unit C in FIGS. 5 and 6 described later) is attached on the outer periphery of the cylindrical shaft. It becomes. Note that the term radiating jig used here also equalizes the difference in heat capacity of each part in the axial direction, so it can also be referred to as a heat capacity equalizing jig. In other words, if the materials are the same, it can also be said that it is a thickness equalization jig for equalizing the thickness of each part in the axial direction. In order to equalize each part in the axial direction, it can be rephrased as a jig for equalizing the amount of shape distortion, and it is not limited to its name, and as a result, the heat radiation of each part in the axial direction of the female spline part can be equalized. All of them are included, if any.
[0010]
FIG. 1 shows a cylindrical tube shaft 10 processed by the tube shaft processing method of the above-described embodiment, and a columnar convex shaft 20 that is spline-fitted thereto.
[0011]
The cylindrical shaft 10 has a deformed outer periphery in which the outer periphery has a stepped shape between a small-diameter portion 11 in which the axial required region is thin, and a large-diameter portion 12 that is thicker than the small-diameter portion 11. It has the female spline part 13 to which the thermosetting process was performed by induction hardening etc. in the direction.
[0012]
The convex shaft 20 has a male spline portion 21 on the outer periphery, and is fitted to the cylindrical shaft 10 by spline fitting so that both the spline portions 13 and 21 are fitted to the cylindrical shaft 10 (spline fitting). ) So as to be slidable in the axial direction and connected in a synchronously rotating manner in the circumferential direction.
[0013]
Since the tube shaft 10 is subjected to thermosetting treatment, the female spline portion 13 of the tube shaft 10 collides with the male spline portion 21 of the convex shaft 20 in the process in which both the spline portions 13 and 21 are spline-fitted. However, the one-side opening edge is not deformed.
[0014]
Further, the strain amount of the female spline portion 13 generated by the thermosetting process is almost constant in the axial direction, and the dimensional accuracy in spline fitting can be secured.
[0015]
Hereinafter, the cylindrical shaft machining method of the present embodiment for machining into such a cylindrical shaft 10 will be described in detail.
[0016]
Although the cylindrical shaft 10 has a small diameter portion 11 and a large diameter portion 12 on the outer periphery, the small diameter portion 11 has a small heat capacity because it is thin. Since the large diameter part 12 is thick, its heat capacity is large. Therefore, in the case of the cylindrical shaft 10 having such an outer periphery, there is a difference in the heat capacity of each part in the axial direction, that is, there is a difference in heat dissipation. Therefore, if the female spline part 13 is formed and immediately subjected to the thermosetting treatment, The amount of geometric distortion of each part in the axial direction of the female spline portion 13 due to the curing process becomes non-uniform, and it is difficult to ensure the dimensional accuracy. Therefore, in the embodiment, after the female spline portion 13 is formed, the heat dissipation jig 30 is applied to the small diameter portion 11 in order to eliminate the difference between the two heat capacities and equalize or almost equalize the heat dissipation. The heat dissipation of the respective parts in the entire axial direction including the heat dissipation jig 30 is equalized or substantially equalized.
[0017]
And in this state, the thermosetting process of the female spline part 13 is performed. As a result, in the cylindrical shaft 10 after the heat radiation jig 30 is removed, the amount of distortion in the female spline portion 13 is uniform everywhere in the axial direction, and thereby it is possible to ensure the dimensional accuracy of the female spline portion 13. It has become.
[0018]
Hereinafter, this will be described in detail with reference to FIG.
[0019]
As shown in FIG. 2A, a forged cylinder shaft 10 having a circular cross section and an outer periphery having a different diameter in the axial direction, that is, a small diameter portion 11 and a large diameter portion 12 is prepared. In the cylindrical shaft 10, the thickness between the inner peripheral surface of the through hole and the outer peripheral surface of the cylindrical shaft 10 is thin at the small diameter portion 11 and thick at the large diameter portion 12.
[0020]
Next, as shown in FIG. 2B, the female spline portion 13 is formed by performing broaching on the inner peripheral surface of the through hole of the cylindrical shaft 10.
[0021]
After forming the female spline portion 13, as shown in FIG. 2C, an annular heat radiating jig 30 is applied to the small diameter portion 11 to equalize the heat capacity in each axial portion as a whole. The equalization of the heat capacity will be described. If the material of the heat radiating jig 30 is the same as that of the cylindrical shaft 10, the heat radiating jig 30 has an axial length that matches the axial length of the small diameter portion 11 and the difference between the large diameter portion 12 and the small diameter portion 11. And a thickness corresponding to. Therefore, in the state of FIG. 2C, the heat capacities in the respective axial portions of the female spline portion 13 of the cylindrical shaft 10 are equalized.
[0022]
Note that the material of the heat dissipation jig 30 may be different from that of the cylindrical shaft 10. In this case, the thickness of the heat radiating jig 30 is not limited to the difference in thickness between the large diameter portion 12 and the small diameter portion 11. In short, the heat capacity as a whole may be uniform.
[0023]
In this manner, with the heat radiation jig 30 applied to the outer peripheral surface of the small-diameter portion 11, the female spline portion 13 is subjected to thermosetting treatment by induction hardening or the like. By this thermosetting treatment, the strength of the female spline portion 13 is improved, and deformation of the one side opening edge due to the collision can be prevented.
[0024]
The thermosetting process for the female spline part 13 includes a high-temperature heating process and a rapid cooling process. In this rapid cooling process, a shape distortion occurs in the female spline part 13. In this case, as described above, since the heat capacity of each part in the axial direction of the cylindrical shaft 10 is substantially equal, the amount of this geometric distortion is the total thickness of the cylindrical shaft 10 including the heat radiation jig 30 at the time of the thermosetting process. Became uniform in each part in the axial direction. Specifically, in the conventional processing method, the difference between the geometric distortion amount at the small diameter portion 11 and the geometric distortion amount at the large diameter portion 12 (strain amount difference) with respect to a tolerance width of 0.06 mm (per diameter). However, in the embodiment, the difference in distortion amount is equal to or less than the tolerance width, and the required dimensional accuracy of the female spline portion 13 of the cylindrical shaft 10 can be ensured. When the female spline portion 13 is formed, the shape and dimensions of the teeth and grooves are managed so as to have a dimensional tolerance required as a product in a state where distortion occurs.
[0025]
Next, as shown in FIG. 2D, by removing the heat radiating jig 30, the deformed outer peripheral cylindrical shaft 10 having the small diameter portion 11 and the large diameter portion 12 shown in FIG. 1 is obtained.
[0026]
The cylindrical shaft machining method of the present embodiment is particularly useful for machining a cylindrical shaft having a structure as will be described next with reference to FIGS.
[0027]
10a is a cylinder axis and 20 is a convex axis.
[0028]
The cylindrical shaft 10a is formed with an enlarged tapered surface 14 at one open end of the inner peripheral surface thereof, and slopes 15 that are obliquely curved on both circumferential sides of the tip end portion of each spline tooth of the female spline portion 13. The shape of the tip portion of the spline teeth is formed in a substantially V shape in plan view. In addition, in the inclined surface 15, the two inclined surfaces 15 each located in the spline groove side become a pair, and it has the shape curved in the shape of a mortar. A fan-shaped depression 16 connected to the pair of inclined surfaces 15 located on the spline groove side is formed in a region on the tip side of each spline groove of the female spline portion 13 on the diameter-expanded tapered surface 14. Yes. The V-shaped tooth tip of each spline tooth is not sharply pointed, but is formed flat along the circumferential direction. This flat portion is referred to as a flat portion 17. The circumferential width B of the flat portion 17 is set within a range of 0.5 to 3 mm, preferably 1 mm. The flat portion 17 may be a rounded R surface. Note that the two pairs of inclined surfaces 15 and 15 and the depressed portion 16 formed at the tip portion of the spline groove serve as a guide surface for correcting a phase shift when the convex shaft 20 is connected.
[0029]
And this cylindrical shaft 10a has a deformed outer periphery whose outer peripheral surface has a small-diameter portion 11 and a large-diameter portion 12, but its production is the same as the case of the cylindrical shaft 10 described above. Description is omitted. The convex shaft 20 has a tapered surface 22 at the tip of each spline tooth of the spline portion 21.
[0030]
In the case of the cylindrical shaft 10a described above, the shaft centers of both the shafts 10a and 20 are shifted in the connection process with the convex shaft 20, or the phases of the spline portions 13 and 21 of both the shafts 10a and 20 are shifted. However, misalignment and phase shift are automatically and smoothly corrected without bothering humans. When the shaft centers of both shafts 10a and 20 are shifted, the tapered surface 14 of the cylindrical shaft 10a and the tapered surface 22 of the spline teeth of the convex shaft 2 are brought into contact with the operation of abutting the shafts 10a and 20. When in contact with each other, the tapered surface 14 of the cylindrical shaft 10a acts so as to convert the axial driving force of the convex shaft 20 into a force that radially displaces the axial center of the cylindrical shaft 10a and the axial center of the convex shaft 20. Will match.
[0031]
The cylindrical shaft 10a can be used as a coupling for connecting the convex input shaft 3a of the work machine 3 to the drive shaft 2a of the tractor 2 shown in FIG. 5, for example. Specifically, the cylindrical shaft 10a is integrally provided at the shaft end of the yoke 2c of the cross joint 2b attached to the free end of the drive shaft 2a of the tractor 2.
[0032]
In the example shown in FIG. 4, in order to be able to automatically connect the drive shaft 2a of the tractor 2 and the input shaft 3a of the work implement 3 without manual intervention, the work shaft 2 is provided on the tractor 2 side. An arm unit A that draws the machine 3, a locking unit B that is provided on the work machine 3 side and is locked to the arm unit A, and one yoke of the cross joint 2b that is provided on the arm unit A of the tractor 2. And a support unit C which supports the 2c so as to be tiltable and radially displaceable while being rotatable in a substantially horizontal posture.
[0033]
For example, as shown in FIG. 5, the support unit C includes an annular frame 4 fixed to the arm unit A of the tractor 2, a self-aligning ball bearing 5 attached to the annular frame 4, and the self-aligning ball. The bearing 5 is composed of three coil springs 6 that hold the bearing 5 in a substantially central position of the annular frame 4. The annular frame 4 includes a pair of annular plates 4a and 4b, and an inner cylinder 4c and an outer cylinder 4d that are sandwiched between the annular plates 4a and 4b and arranged radially inward and outward. The inner cylinder 4c is slidable in the radial direction. Three hollow bolts 4e for adjusting the compression amount of the coil spring 6 are screwed at three places on the circumference of the outer cylinder 4d.
[0034]
If the cylindrical shaft 10a is used as a coupling for coupling the tractor 2 and the work machine 3, the phase shift correction function by the cylindrical shaft 10a becomes extremely effective, and the drive shaft 2a of the tractor 2 and the work machine 3 are effective. It is possible to greatly contribute to further smoothing the connecting operation with the input shaft 3a.
[0035]
【The invention's effect】
In the cylindrical shaft machining method of the present invention, or not a so axial thermal capacity of the female spline portion is a step of heat curing treatment is equalized, the shape distortion of the female spline portion by heat curing treatment, axially everywhere It becomes uniform. As a result, the female spline portion of the cylindrical shaft is prevented from being deformed at the opening edge when fitted with the male spline portion of the convex shaft, and the amount of distortion in the female spline portion is uniform everywhere in the axial direction. It is possible to secure the dimensional accuracy of the spline part and improve the spline fitting property with the convex shaft.
[0036]
In the cylindrical shaft processing method, when the thermosetting process is induction hardening, the outer peripheral surface of the cylindrical shaft is not thermoset. Different diameter processing is possible and preferable.
[Brief description of the drawings]
1 is a perspective view of a cylindrical shaft processed by a cylindrical shaft processing method according to an embodiment of the present invention and a convex shaft that is spline-fitted thereto; FIG. 2 is a cross-sectional view for explaining the cylindrical shaft processing method of FIG. 3 is a cross-sectional view of another cylindrical shaft to which the processing method of the embodiment is applied. FIG. 4 is a perspective view of the cylindrical shaft of FIG. 3 and a convex shaft that is spline-fitted thereto. Side view showing an example in which the shaft is a coupling for connecting the tractor and the work machine. FIG. 6 is a vertical side view showing the support unit in FIG.
DESCRIPTION OF SYMBOLS 10 Cylinder shaft 11 Small diameter part 12 of a cylinder axis Large diameter part 13 of a cylinder axis Female spline part 20 of a cylinder axis Convex axis 21 Male spline part 30 of a convex axis

Claims (4)

凸軸がスプライン嵌合される筒軸を加工する方法において、
軸方向所要領域の外径が他の領域に対して異径となっている筒軸に対し、メススプライン部を形成する工程と、
前記筒軸のメススプライン部に対して高温加熱工程と急冷工程とからなる熱硬化処理を施す工程と、
を含み、
前記熱硬化の処理過程において、前記筒軸においての外径が小径である領域に対して、前記メススプライン部の軸方向各部の放熱を均等化ないしはほぼ均等化する放熱均等化用治具をあてがうことにより、前記急冷工程での形状歪み量を軸方向各部で均等化する、
ことを特徴とする筒軸加工方法。
In a method of processing a cylindrical shaft in which a convex shaft is spline-fitted,
A step of forming a female spline portion for a cylindrical shaft whose outer diameter in the axial direction required region is different from that of the other region;
Performing a thermosetting treatment comprising a high-temperature heating step and a rapid cooling step on the female spline portion of the cylindrical shaft;
Including
In the heat curing process, a heat equalizing jig for equalizing or substantially equalizing heat dissipation in each axial part of the female spline portion is applied to a region where the outer diameter of the cylindrical shaft is small. By equalizing the amount of geometric distortion in the rapid cooling step in each part in the axial direction,
A cylindrical shaft machining method.
請求項1に記載の筒軸加工方法において、
前記熱硬化処理の工程が、高周波焼き入れである、ことを特徴とする筒軸加工方法。
The cylindrical shaft machining method according to claim 1,
A cylindrical shaft machining method, wherein the thermosetting process is induction hardening.
凸軸がスプライン嵌合される筒軸において、
請求項1または2に記載の筒軸加工方法により加工されている、
ことを特徴とする筒軸。
In the cylindrical shaft where the convex shaft is spline-fitted,
Processed by the cylindrical shaft processing method according to claim 1 or 2,
A cylinder shaft characterized by that.
請求項3に記載の筒軸において、
一方開口端に、前記凸軸との連結時の位相ずれを補正するための案内面が設けられている、
ことを特徴とする筒軸。
The cylindrical shaft according to claim 3,
On the other hand, at the opening end, a guide surface for correcting a phase shift at the time of connection with the convex shaft is provided.
A cylinder shaft characterized by that.
JP17972399A 1999-06-25 1999-06-25 Cylinder shaft machining method and cylinder shaft Expired - Fee Related JP4200594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17972399A JP4200594B2 (en) 1999-06-25 1999-06-25 Cylinder shaft machining method and cylinder shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17972399A JP4200594B2 (en) 1999-06-25 1999-06-25 Cylinder shaft machining method and cylinder shaft

Publications (2)

Publication Number Publication Date
JP2001011535A JP2001011535A (en) 2001-01-16
JP4200594B2 true JP4200594B2 (en) 2008-12-24

Family

ID=16070755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17972399A Expired - Fee Related JP4200594B2 (en) 1999-06-25 1999-06-25 Cylinder shaft machining method and cylinder shaft

Country Status (1)

Country Link
JP (1) JP4200594B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE507091T1 (en) * 2001-03-29 2011-05-15 Ntn Toyo Bearing Co Ltd BEARING DEVICE FOR DRIVE WHEEL
US7877043B2 (en) 2004-09-22 2011-01-25 Ntn Corporation Constant-velocity joint and image-forming device
JP4584089B2 (en) * 2004-09-22 2010-11-17 Ntn株式会社 Constant velocity joint
JP2007170423A (en) * 2005-12-19 2007-07-05 Ntn Corp Constant velocity universal joint and its inner member
JP2007162874A (en) * 2005-12-15 2007-06-28 Ntn Corp Constant velocity universal joint and its internal member
JP6301125B2 (en) 2013-12-17 2018-03-28 Ntn株式会社 In-wheel motor drive device
JP6409804B2 (en) * 2016-03-18 2018-10-24 トヨタ自動車株式会社 Cam piece heat treatment method
JP2018002149A (en) * 2017-09-22 2018-01-11 Ntn株式会社 In-wheel motor drive device

Also Published As

Publication number Publication date
JP2001011535A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3942366B2 (en) Wheel bearing device and manufacturing method thereof
JP4801087B2 (en) Method for manufacturing a segmented tubular stabilizer with a pivot motor and segmented tubular stabilizer with a pivot motor
US8845438B2 (en) Yoke for a cross type universal joint and manufacturing method thereof
JP2007271045A (en) Wheel rolling bearing device manufacturing method
US7707724B2 (en) Manufacturing method for a drive wheel rolling bearing unit and manufacturing apparatus therefor
JP4200594B2 (en) Cylinder shaft machining method and cylinder shaft
WO2006035836A1 (en) Hub unit, rolling bearing device, producing method for rolling bearing device, and assembling device and assembling method for rolling bearing device
EP2937587B1 (en) Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
JP3719739B2 (en) Method for manufacturing elastic universal joint yoke
JP6684154B2 (en) Ball screw device, steering device using ball screw device, and method for manufacturing retainer of ball screw device
JP3795260B2 (en) Modified cylindrical shaft machining method and modified cylindrical shaft
JP3670714B2 (en) Joint structure of constant velocity joint outer ring and shaft
JP4223145B2 (en) Cylinder
JP3985392B2 (en) Cylinder shaft spline machining method
JP6372627B2 (en) Manufacturing method and manufacturing apparatus for wheel support bearing unit, and manufacturing method of vehicle
JP2018090837A (en) Heat treatment apparatus of workpiece
JP4466045B2 (en) Manufacturing method of wheel supporting hub unit
JP3646298B2 (en) Coupling method of outer ring member and shaft member of constant velocity universal shaft joint
JPS637900B2 (en)
JP6471803B2 (en) Telescopic rotation transmission shaft and manufacturing method thereof
JP2017137895A (en) Yoke for universal joint
JP2009012517A (en) Rolling bearing unit for wheel
JP6945943B2 (en) Rotating machine
JPH0510319A (en) Drive shaft and manufacture thereof
JP6608765B2 (en) Ball screw device, steering device using ball screw device, and method of manufacturing retainer of ball screw device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees