WO2022130827A1 - 電圧制御型半導体素子の温度検出方法および駆動装置 - Google Patents

電圧制御型半導体素子の温度検出方法および駆動装置 Download PDF

Info

Publication number
WO2022130827A1
WO2022130827A1 PCT/JP2021/040996 JP2021040996W WO2022130827A1 WO 2022130827 A1 WO2022130827 A1 WO 2022130827A1 JP 2021040996 W JP2021040996 W JP 2021040996W WO 2022130827 A1 WO2022130827 A1 WO 2022130827A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
gate
semiconductor element
controlled semiconductor
Prior art date
Application number
PCT/JP2021/040996
Other languages
English (en)
French (fr)
Inventor
裕章 市川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202180038235.8A priority Critical patent/CN115698732A/zh
Priority to JP2022569765A priority patent/JPWO2022130827A1/ja
Priority to DE112021001992.9T priority patent/DE112021001992T5/de
Publication of WO2022130827A1 publication Critical patent/WO2022130827A1/ja
Priority to US17/994,131 priority patent/US20230088396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • G01R31/2628Circuits therefor for testing field effect transistors, i.e. FET's for measuring thermal properties thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • H03K17/284Modifications for introducing a time delay before switching in field effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present invention relates to a method for detecting the chip temperature of a voltage-controlled semiconductor element for detecting the chip temperature of the voltage-controlled semiconductor element and a drive device for the voltage-controlled semiconductor element having a function of outputting the detected chip temperature to the outside.
  • semiconductor devices that switch and control inductive loads and perform power conversion.
  • Some such semiconductor devices include a semiconductor switching element and a drive device for driving the semiconductor switching element.
  • a voltage control type semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used.
  • the allowable temperature is defined by the absolute maximum rating.
  • the semiconductor chip may be thermally destroyed.
  • monitor the chip temperature and if the chip temperature is expected to be high, operate or stop the voltage-controlled semiconductor element below the rated value. I'm letting you.
  • a thermistor is provided in the semiconductor device, the temperature inside the case is detected, and the chip temperature is predicted from the operating conditions. Further, a temperature detection diode is integrally formed on a chip of a voltage control type semiconductor element, and the chip temperature is directly measured from the temperature characteristics of the temperature detection diode.
  • the method of predicting the chip temperature by the thermistor has the characteristic that since the thermistor is mounted at a position away from the semiconductor chip, it cannot follow the sudden temperature rise due to the overcurrent flowing due to the load fluctuation.
  • the active area is reduced because the temperature detection diode is built on the semiconductor chip, and the active area is further increased because the diode-dedicated electrode is provided on the semiconductor chip. Decrease. Therefore, when the temperature detection diode is mounted on the chip of the semiconductor switching element having a small current rating, the chip size becomes large.
  • Patent Document 1 a method of detecting the temperature of a chip of a voltage-controlled semiconductor element without using a thermistor or a diode for temperature detection has been proposed (see, for example, Patent Document 1 and Patent Document 2).
  • the duration of the mirror plateau is detected when the IGBT is turned off, and the temperature is detected by converting the length of the duration of the mirror plateau into the temperature. That is, in the technique of Patent Document 1, the time delay of the mirror plateau is interdependent with the junction temperature of the IGBT, and the junction temperature of the IGBT is determined from the time delay of the mirror plateau.
  • the time change of the gate voltage during the switching operation of the semiconductor device is measured, and the time change of the gate voltage is measured by utilizing the fact that the time change of the gate voltage is temperature-dependent with the temperature of the semiconductor device.
  • the temperature of the semiconductor device is estimated from the change.
  • Patent Document 1 has a problem that it is difficult to accurately detect the Miller effect period, which is the time delay of the mirror plateau.
  • the technique of Patent Document 2 has a configuration in which the gate voltage rise time is measured and the temperature of the semiconductor device corresponding to the gate voltage rise time is calculated by a microcomputer with reference to the temperature dependence information. There is a problem that the device becomes large.
  • the present invention has been made in view of such a point, and the temperature of the semiconductor chip can be monitored with high accuracy, and the voltage control does not increase the size of the configuration for detecting the temperature of the semiconductor chip. It is an object of the present invention to provide a temperature detection method and a driving device for a type semiconductor element.
  • one proposal provides a temperature detection method for a voltage-controlled semiconductor device.
  • the gate voltage that drives the gate of the voltage-controlled semiconductor element is monitored, and the gate voltage changes transiently when the voltage-controlled semiconductor element is turned on or off.
  • the voltage during the mirror effect period generated in the above is detected, and the gate voltage during the mirror effect period is output as a signal that is temperature-dependent with the chip temperature of the voltage-controlled semiconductor element.
  • the present invention provides a drive device for a voltage-controlled semiconductor element.
  • the drive device that drives this voltage-controlled semiconductor element is a drive circuit that drives the gate of the voltage-controlled semiconductor element, a gate resistor installed between the drive circuit and the gate of the voltage-controlled semiconductor element, and a drive circuit.
  • a delay circuit that delays the drive signal output by the device by a predetermined time until it reaches the mirror effect period that occurs during the period when the gate voltage changes transiently, and the rising edge or standing edge of the delay signal output by the delay circuit.
  • a one-shot circuit that outputs a pulse signal with a pulse width shorter than the mirror effect period from the trailing edge, and a gate voltage that is temperature-dependent with the chip temperature of the voltage-controlled semiconductor element as a reference voltage corresponding to the overheat detection threshold voltage. It is equipped with a comparer for comparison, and an AND circuit that inputs a pulse signal output by a one-shot circuit and an output signal of the comparer and outputs an overheat detection signal when the gate voltage exceeds a reference voltage.
  • the present invention provides yet another drive device for a voltage-controlled semiconductor element.
  • the drive device for driving this voltage-controlled semiconductor element is a drive circuit for driving the gate of the voltage-controlled semiconductor element, a gate resistor installed between the drive circuit and the gate of the voltage-controlled semiconductor element, and a drive circuit.
  • a delay circuit that delays the drive signal output by the circuit by a predetermined time until it reaches the mirror effect period that occurs during the period when the gate voltage changes transiently, and the rising edge or standing edge of the delay signal output by the delay circuit.
  • a one-shot circuit that outputs a pulse signal with a pulse width shorter than the mirror effect period from the trailing edge, and a gate voltage that is temperature-dependent with the chip temperature of the voltage-controlled semiconductor element are captured during the period when the pulse signal is input. , It is equipped with a sample hold circuit that holds and outputs the gate voltage when the input of the pulse signal is lost.
  • the present invention provides yet another drive device for a voltage-controlled semiconductor element.
  • the drive device that drives this voltage-controlled semiconductor element is a drive circuit that drives the gate of the voltage-controlled semiconductor element, a gate resistor installed between the drive circuit and the gate of the voltage-controlled semiconductor element, and a drive circuit.
  • a delay circuit that delays the drive signal output by the device by a predetermined time until it reaches the mirror effect period that occurs during the period when the gate voltage changes transiently, and the rising edge or standing edge of the delay signal output by the delay circuit.
  • a one-shot circuit that outputs a pulse signal with a pulse width shorter than the mirror effect period from the trailing edge, and a gate voltage that is temperature-dependent with the chip temperature of the voltage-controlled semiconductor element as a reference voltage corresponding to the overheat detection threshold voltage.
  • An AND circuit that inputs the comparer to be compared, the pulse signal output by the one-shot circuit and the output signal of the comparer, and outputs an overheat detection signal when the gate voltage exceeds the reference voltage, and the chip of the voltage control type semiconductor element. It is equipped with a sample hold circuit that captures the gate voltage, which is temperature-dependent and has a temperature, during the period when the pulse signal is input, and holds and outputs the gate voltage when the pulse signal is no longer input.
  • the temperature detection method and drive device for the voltage-controlled semiconductor element having the above configuration can directly and in real time monitor the chip temperature of the voltage-controlled semiconductor element, the chip temperature can be monitored with high accuracy.
  • a configuration for detecting the chip temperature can be realized with a small-scale circuit configuration.
  • FIG. 1 is a circuit diagram showing a configuration example of an IGBT drive device according to the first embodiment
  • FIG. 2 is a diagram showing the relationship between the gate voltage and the chip temperature during the Miller effect period
  • FIG. 3 is a diagram showing the relationship between the chip temperature and the first embodiment. It is a time chart explaining the operation of the driving device of the IGBT which concerns on a form.
  • FIG. 1 shows an IGBT 10 which is a semiconductor switching element and a drive device 20 which drives the IGBT 10.
  • the IGBT 10 and the drive device 20 form, for example, a semiconductor device incorporated in one package and called an intelligent power module.
  • the IGBT 10 is connected in anti-parallel to the FWD (Free Wheeling Diode) 12 that functions to return the energy stored in the inductive load to the power supply side when the IGBT 10 is turned off. That is, the anode of the FWD 12 is connected to the emitter of the IGBT 10, and the cathode of the FWD 12 is connected to the collector of the IGBT 10.
  • FWD Free Wheeling Diode
  • the drive device 20 includes a pre-driver 22, a drive circuit 24, and a gate resistor 26.
  • the pre-driver 22 has a terminal IN to which a PWM (Pulse Width Modulation) signal is input from an external host device, and the output terminal of the pre-driver 22 is connected to an input terminal of the drive circuit 24.
  • the output terminal of the drive circuit 24 is connected to one terminal of the gate resistor 26, and the other terminal of the gate resistor 26 is connected to the terminal G connected to the gate of the IGBT 10.
  • the drive circuit 24 is also connected to a terminal E connected to the emitter of the IGBT 10.
  • the PWM signal input to the terminal IN is converted into a drive signal SDRV via the predriver 22 and the drive circuit 24, and the drive signal SDRV becomes a gate voltage VGE via the gate resistor 26 and is supplied to the terminal G.
  • the drive device 20 also includes a delay circuit 28, a one-shot circuit 30, resistors 32 and 34, a comparator 36, and an AND circuit 38.
  • the input terminal of the delay circuit 28 is connected to the connection portion between the output terminal of the drive circuit 24 and one terminal of the gate resistor 26, and the output terminal of the delay circuit 28 is connected to the input terminal of the one-shot circuit 30. ..
  • One terminal of the resistor 32 is connected to the power line, the other terminal of the resistor 32 is connected to one terminal of the resistor 34, and the other terminal of the resistor 34 is connected to the ground.
  • the resistors 32 and 34 form a voltage divider circuit and output a reference voltage Vref.
  • the reference voltage Vref corresponds to the overheat detection threshold voltage, and is, for example, a voltage corresponding to 175 ° C., which is the upper limit of the guaranteed operating temperature of the IGBT 10.
  • the non-inverting input terminal is connected to the connection between the other terminal of the gate resistor 26 and the terminal G, and the inverting input terminal is connected to the connection between the other terminal of the resistor 32 and one terminal of the resistor 34. It is connected.
  • the output terminal of the one-shot circuit 30 is connected to the first input terminal of the AND circuit 38, and the output terminal of the comparator 36 is connected to the second input terminal of the AND circuit 38.
  • the output terminal of the AND circuit 38 is connected to an alarm output terminal ALM that notifies an external higher-level device of an overheat detection signal.
  • the gate voltage VGE in the Miller effect period at the time of turn-on has a temperature dependence with the chip temperature Tvj of the IGBT 10.
  • the temperature dependence is a characteristic that the gate voltage VGE changes linearly with respect to the chip temperature Tvj, so that the chip temperature Tvj can be detected from the gate voltage VGE.
  • the drive signal SDRV output by the drive circuit 24 the gate voltage VGE between the terminals G and E, the delay signal output by the delay circuit 28, and the one-shot circuit 30 are output.
  • the pulse signal to be used and the overheat detection signal of the alarm output terminal ALM are shown.
  • the drive signal SDRV rises from the low (L) level to the high (H) level
  • the voltage at the H level charges the gate-emitter capacitance of the IGBT 10 via the gate resistor 26.
  • the charge voltage of the gate-emitter capacitance exceeds the on-threshold voltage of the IGBT 10
  • the IGBT 10 turns on and the collector-emitter of the IGBT 10 is almost short-circuited.
  • the gate-emitter capacitance and the gate-collector capacitance are connected to the gate of the IGBT 10, and the IGBT 10 operates as a mirror integrator.
  • the gate voltage VGE maintains a constant state.
  • the gate of the IGBT 10 is further charged, so that the gate voltage VGE rises until it reaches the H level of the drive signal SDRV.
  • the drive signal SDRV After the drive signal SDRV reaches the L level, it follows a change opposite to the change in the gate voltage VGE when the IGBT 10 turns on, and the gate voltage VGE drops until it reaches the potential of the L level of the drive signal SDRV.
  • the drive signal SDRV is also input to the delay circuit 28.
  • the delay circuit 28 outputs a delay signal whose drive signal SDRV is delayed by the delay time Td.
  • This delay time Td is the time from the time of the rising leading edge of the drive signal SDRV to an arbitrary time point during the Miller effect period Tm of the gate voltage VGE, and is determined based on the switching characteristics of the IGBT 10.
  • the delay signal is input to the one-shot circuit 30, and outputs a pulse signal having a constant width from the time of the rising leading edge of the delay signal.
  • the pulse signal output by the one-shot circuit 30 has a pulse width shorter than the Miller effect period Tm, and is a signal for acquiring the gate voltage VGE in the Miller effect period Tm.
  • the gate voltage VGE is also supplied to the non-inverting input terminal of the comparator 36. Since the comparator 36 receives the reference voltage Vref corresponding to the overheat detection threshold voltage at its inverting input terminal, it constitutes a binarization circuit for determining whether or not the gate voltage VGE has reached the overheat detection threshold voltage. There is. The comparator 36 outputs an L level signal when the gate voltage VGE is less than the reference voltage Vref corresponding to the overheat detection threshold voltage, and outputs an H level signal when the gate voltage VGE is equal to or higher than the reference voltage Vref.
  • the AND circuit 38 receives the pulse signal output by the one-shot circuit 30 at the first input terminal, and receives the output signal of the comparator 36 at the second input terminal. As a result, the AND circuit 38 allows the output signal of the comparator 36 to pass only during the period of receiving the pulse signal.
  • the gate voltage VGE of the Miller effect period Tm is less than the reference voltage Vref, so that the comparator 36 outputs an L level signal. Therefore, the AND circuit 38 outputs an L level signal.
  • the gate voltage VGE of the Miller effect period Tm becomes equal to or higher than the reference voltage Vref, so that the comparator 36 outputs an H level signal and an AND circuit. 38 outputs an H level signal.
  • This H level signal is notified from the alarm output terminal ALM to an external higher-level device as an overheat detection signal.
  • the overheat detection signal is output from the alarm output terminal ALM to the outside, but the IGBT 10 may be forcibly turned off by inputting it to an overheat detection protection circuit (not shown).
  • FIG. 4 is a circuit diagram showing a configuration example of the IGBT drive device according to the second embodiment.
  • the drive device 20a of the IGBT 10 according to the second embodiment detects the chip temperature in real time while the drive device 20 of the first embodiment detects the overheating of the IGBT 10 and outputs an alarm. It is configured to output.
  • the drive device 20a includes a pre-driver 22, a drive circuit 24, a gate resistor 26, a delay circuit 28, and a one-shot circuit 30, which are included in the drive device 20 of the first embodiment. Since it is the same as the one, detailed description is omitted here.
  • the drive device 20a also includes a sample hold circuit 40.
  • the sample hold circuit 40 includes an operational amplifier 42, a switch element 44, a capacitor 46, and an operational amplifier 48.
  • the operational amplifier 42 connects an inverting input terminal to its own output terminal to form a voltage follower circuit, and the non-inverting input terminal is connected to a terminal G connected to the gate of the IGBT 10.
  • the output terminal of the operational amplifier 42 is connected to one terminal of the switch element 44, and the other terminal of the switch element 44 is connected to one terminal of the capacitor 46 and the non-inverting input terminal of the operational amplifier 48.
  • the other terminal of the capacitor 46 is connected to ground.
  • the control terminal of the switch element 44 is connected to the output terminal of the one-shot circuit 30.
  • the operational amplifier 48 constitutes a voltage follower circuit by connecting an inverting input terminal to its own output terminal.
  • the output terminal of the operational amplifier 48 is connected to the chip temperature output terminal TMP.
  • the influence of connecting the sample hold circuit 40 to the terminal G is minimized by configuring the operational amplifier 42 having a high input impedance to receive the gate voltage VGE. Since the operational amplifier 42 constitutes a voltage follower circuit, the gate voltage VGE input to the non-inverting input terminal is output as it is.
  • the switch element 44 receives the H level pulse signal output by the one-shot circuit 30 to the control terminal, it is turned on (conducting) only during the period in which the pulse signal is received, and the voltage output by the operational amplifier 42 ( ⁇ gate voltage VGE). Is applied to the capacitor 46. At this time, the terminal voltage of the capacitor 46 becomes a voltage that follows the voltage output by the operational amplifier 42.
  • the switch element 44 When the pulse signal output by the one-shot circuit 30 reaches the L level, the switch element 44 is turned off (non-conducting), and the terminal voltage of the capacitor 46 is held at the voltage when the switch element 44 is turned off.
  • the voltage held in the capacitor 46 is directly output as a chip temperature detection signal by the operational amplifier 48 constituting the voltage follower circuit, and is notified from the chip temperature output terminal TMP to an external higher-level device.
  • the chip temperature detection signal when the chip temperature detection signal is received from the drive device 20a, the chip temperature is obtained from the chip temperature detection signal. That is, the host device has data showing the relationship between the gate voltage VGE and the chip temperature Tvj during the Miller effect period shown in FIG. 2, and the gate voltage VGE indicated by the chip temperature detection signal is set to the corresponding chip temperature Tvj. Convert.
  • the drive device 20a can directly and in real time monitor the chip temperature of the IGBT 10, so that the chip temperature can be monitored with high accuracy, and the chip temperature can be detected. It can be realized with a small circuit configuration.
  • FIG. 5 is a circuit diagram showing a configuration example of an IGBT drive device according to a third embodiment.
  • the drive device 20b of the IGBT 10 according to the third embodiment has the overheat detection function of the IGBT 10 included in the drive device 20 of the first embodiment and the chip temperature of the IGBT 10 included in the drive device 20a of the second embodiment. It has a detection function.
  • the drive device 20b includes a predriver 22, a drive circuit 24, a gate resistor 26, a delay circuit 28, a one-shot circuit 30, resistors 32 and 34, a comparator 36, an AND circuit 38, and a sample hold circuit. It has 40 and.
  • the components of the drive device 20b described above are the same as those included in the drive device 20 of the first embodiment and the drive device 20a of the second embodiment. However, the gate voltage VGE input to the non-inverting input terminal of the comparator 36 is acquired from the output terminal of the operational amplifier 42 of the sample hold circuit 40.
  • the drive device 20b is the same as that provided in the drive device 20 of the first embodiment and the drive device 20a of the second embodiment, and the operation is also the same as the operation of the drive devices 20 and 20a. Therefore, a detailed description will be omitted here. According to this drive device 20b, both overheat detection and temperature detection can be realized.
  • the gate voltage VGE during the Miller effect period when the IGBT 10 is turned on is detected, and the chip temperature corresponding to the gate voltage VGE is obtained.
  • the gate voltage VGE may be modified to detect the Miller effect period when the IGBT 10 is turned off or both the Miller effect period when the IGBT 10 is turned on and off to determine the chip temperature.
  • the delay circuit 28 outputs a delay signal delayed by a time from the point of the trailing edge of the drive signal SDRV to an arbitrary time point during the Miller effect period Tm of the gate voltage VGE.
  • the drive devices 20 and 20a may be devices for driving the MOSFET instead of the IGBT 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

電圧制御型半導体素子の半導体チップの温度監視を高精度で行う。 ドライブ回路(24)が出力した駆動信号SDRVを遅延回路(28)で遅延し、遅延回路(28)で遅延された遅延信号の立ち上がり前縁がIGBT(10)のターンオン時のミラー効果期間に達するようにし、ワンショット回路(30)が遅延信号を受けてミラー効果期間より短いパルス幅のパルス信号を出力する。比較器(36)は、ゲート電圧VGEを過熱検出閾値電圧に相当する基準電圧Vrefと比較し、ゲート電圧VGEが過熱検出閾値電圧以上になると、過熱検出信号を出力する。IGBT(10)のチップ温度と温度依存性があるゲート電圧VGEを監視することで、IGBT(10)のチップ温度を直接的に監視していることになる。

Description

電圧制御型半導体素子の温度検出方法および駆動装置
 本発明は、電圧制御型半導体素子のチップ温度を検出する電圧制御型半導体素子のチップ温度検出方法および検出したチップ温度を外部に出力する機能を備えた電圧制御型半導体素子の駆動装置に関する。
 誘導負荷をスイッチング制御したり電力変換を行ったりする半導体装置がある。このような半導体装置は、半導体スイッチング素子およびこの半導体スイッチング素子を駆動する駆動装置を備えているものがある。半導体スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のような電圧制御型半導体素子が用いられる。
 電圧制御型半導体素子には、絶対最大定格によって許容温度が定義されている。電圧制御型半導体素子は、最大許容温度を超えて動作すると、半導体チップが熱破壊を起こすことがある。この半導体チップの熱破壊を予防または防止するには、チップ温度をモニタし、チップ温度が高温になっていると想定される場合には、電圧制御型半導体素子を定格値以下で動作させたり停止させたりしている。
 電圧制御型半導体素子のチップ温度を検出する方法として、半導体装置の中にサーミスタを備え、ケース内温度を検出して、動作条件からチップ温度を予測することが知られている。また、電圧制御型半導体素子のチップ上に温度検出用ダイオードを一体に形成し、その温度検出用ダイオードの温度特性からチップ温度を直接的に測定することも行われている。
 サーミスタによるチップ温度の予測方法は、サーミスタが半導体チップから離れた位置に搭載されているため、負荷変動で過電流が流れることによる急激な温度上昇に追従することができないという特性がある。一方、温度検出用ダイオードによるチップ温度の測定方法では、温度検出用ダイオードを半導体チップ上に作り込むため、活性面積が減少し、さらに、ダイオード専用電極を半導体チップ上に設けるため、活性面積がさらに減少する。このため、電流定格の小さい半導体スイッチング素子のチップ上に温度検出用ダイオードを搭載する場合、チップサイズが肥大化することになる。
 そこで、サーミスタまたは温度検出用ダイオードを用いることなしに電圧制御型半導体素子のチップの温度を検出する方法が提案されている(たとえば、特許文献1および特許文献2参照)。
 特許文献1に記載の技術によれば、IGBTをターンオフするときにミラープラトーの持続時間を検出し、このミラープラトーの持続時間の長さを温度に換算することで、温度を検出している。すなわち、特許文献1の技術では、ミラープラトーの時間遅延がIGBTの接合部温度と相互依存性があることを利用し、ミラープラトーの時間遅延からIGBTの接合部温度を決定している。
 特許文献2の技術では、半導体デバイスのスイッチング動作時におけるゲート電圧の時間変化を測定し、ゲート電圧の時間変化が半導体デバイスの温度と温度依存性があることを利用し、測定したゲート電圧の時間変化から半導体デバイスの温度を推定している。
特開2013-142704号公報 特開2020-072569号公報
 しかしながら、特許文献1の技術は、ミラープラトーの時間遅延であるミラー効果期間を正確に検出することが困難という問題がある。また、特許文献2の技術は、ゲート電圧上昇時間を測定し、温度依存性情報を参照してゲート電圧上昇時間に対応する半導体デバイスの温度をマイコンで算出する構成を有しているので、駆動装置が大型化してしまうという問題点がある。
 本発明はこのような点に鑑みてなされたものであり、半導体チップの温度監視を高精度で行うことができ、また、半導体チップの温度検出のための構成を大型化することのない電圧制御型半導体素子の温度検出方法および駆動装置を提供することを目的とする。
 本発明では、上記の課題を解決するために、1つの案では、電圧制御型半導体素子の温度検出方法が提供される。電圧制御型半導体素子の温度検出方法では、電圧制御型半導体素子のゲートを駆動するゲート電圧を監視し、電圧制御型半導体素子をターンオンまたはターンオフするときにゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間の電圧を検出し、ミラー効果期間のゲート電圧を電圧制御型半導体素子のチップ温度と温度依存性のある信号として出力する。
 また、本発明は、電圧制御型半導体素子の駆動装置が提供される。この電圧制御型半導体素子を駆動する駆動装置は、電圧制御型半導体素子のゲートを駆動するドライブ回路と、ドライブ回路と電圧制御型半導体素子のゲートとの間に設置されたゲート抵抗と、ドライブ回路が出力する駆動信号をゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間内に達するまでの所定の時間だけ遅延する遅延回路と、遅延回路が出力した遅延信号の立ち上がり前縁または立ち下がり後縁からミラー効果期間より短いパルス幅を有するパルス信号を出力するワンショット回路と、電圧制御型半導体素子のチップ温度と温度依存性があるゲート電圧を過熱検出閾値電圧に相当する基準電圧と比較する比較器と、ワンショット回路が出力するパルス信号と比較器の出力信号とを入力し、ゲート電圧が基準電圧を超えると過熱検出信号を出力するアンド回路とを備えている。
 本発明は、さらに別の電圧制御型半導体素子の駆動装置が提供される。この電圧制御型半導体素子を駆動する駆動装置は、電圧制御型半導体素子のゲートを駆動するドライブ回路と、ドライブ回路と電圧制御型半導体素子のゲートとの間に設置されたゲート抵抗と、ドライブ回路が出力する駆動信号をゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間内に達するまでの所定の時間だけ遅延する遅延回路と、遅延回路が出力した遅延信号の立ち上がり前縁または立ち下がり後縁からミラー効果期間より短いパルス幅を有するパルス信号を出力するワンショット回路と、電圧制御型半導体素子のチップ温度と温度依存性があるゲート電圧をパルス信号が入力されている期間に取り込み、パルス信号の入力がなくなったときのゲート電圧を保持して出力するサンプルホールド回路とを備えている。
 また、本発明は、さらに別の電圧制御型半導体素子の駆動装置が提供される。この電圧制御型半導体素子を駆動する駆動装置は、電圧制御型半導体素子のゲートを駆動するドライブ回路と、ドライブ回路と電圧制御型半導体素子のゲートとの間に設置されたゲート抵抗と、ドライブ回路が出力する駆動信号をゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間内に達するまでの所定の時間だけ遅延する遅延回路と、遅延回路が出力した遅延信号の立ち上がり前縁または立ち下がり後縁からミラー効果期間より短いパルス幅を有するパルス信号を出力するワンショット回路と、電圧制御型半導体素子のチップ温度と温度依存性があるゲート電圧を過熱検出閾値電圧に相当する基準電圧と比較する比較器と、ワンショット回路が出力するパルス信号と比較器の出力信号とを入力し、ゲート電圧が基準電圧を超えると過熱検出信号を出力するアンド回路と、電圧制御型半導体素子のチップ温度と温度依存性があるゲート電圧をパルス信号が入力されている期間に取り込み、パルス信号の入力がなくなったときのゲート電圧を保持して出力するサンプルホールド回路と、を備えている。
 上記構成の電圧制御型半導体素子の温度検出方法および駆動装置は、電圧制御型半導体素子のチップ温度を直接的かつリアルタイムに監視することができるので、チップ温度の監視を高精度で行うことができ、また、チップ温度を検出するための構成を小規模の回路構成で実現することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態に係るIGBTの駆動装置の構成例を示す回路図である。 ミラー効果期間のゲート電圧とチップ温度との関係を示す図である。 第1の実施の形態に係るIGBTの駆動装置の動作を説明するタイムチャートである。 第2の実施の形態に係るIGBTの駆動装置の構成例を示す回路図である。 第3の実施の形態に係るIGBTの駆動装置の構成例を示す回路図である。
 以下、本発明の実施の形態について、電圧制御型半導体素子にIGBTを用い、そのIGBTを駆動する駆動装置に適用した場合を例に図面を参照して詳細に説明する。なお、図中、同一の符号で示される部分は、同一の構成要素を示している。
 図1は第1の実施の形態に係るIGBTの駆動装置の構成例を示す回路図、図2はミラー効果期間のゲート電圧とチップ温度との関係を示す図、図3は第1の実施の形態に係るIGBTの駆動装置の動作を説明するタイムチャートである。
 図1には、半導体スイッチング素子であるIGBT10と、このIGBT10を駆動する駆動装置20とが示されている。IGBT10および駆動装置20は、たとえば、一つのパッケージに内蔵されてインテリジェント・パワー・モジュールと呼ばれる半導体装置を構成する。
 IGBT10は、IGBT10をターンオフした際に誘導負荷に蓄えられたエネルギを電源側へ還流させる働きをするFWD(Free Wheeling Diode)12が逆並列に接続されている。すなわち、FWD12のアノードは、IGBT10のエミッタに接続され、FWD12のカソードは、IGBT10のコレクタに接続されている。
 駆動装置20は、プリドライバ22と、ドライブ回路24と、ゲート抵抗26とを備えている。プリドライバ22は、外部の上位装置からPWM(Pulse Width Modulation)信号が入力される端子INを有し、プリドライバ22の出力端子は、ドライブ回路24の入力端子に接続される。ドライブ回路24の出力端子は、ゲート抵抗26の一方の端子に接続され、ゲート抵抗26の他方の端子は、IGBT10のゲートに接続される端子Gに接続されている。ドライブ回路24は、また、IGBT10のエミッタに接続される端子Eに接続されている。端子INに入力されたPWM信号は、プリドライバ22およびドライブ回路24を介して駆動信号SDRVに変換され、駆動信号SDRVは、ゲート抵抗26を介してゲート電圧VGEとなり、端子Gに供給される。
 駆動装置20は、また、遅延回路28と、ワンショット回路30と、抵抗32,34と、比較器36と、アンド回路38とを備えている。遅延回路28の入力端子は、ドライブ回路24の出力端子とゲート抵抗26の一方の端子との接続部に接続され、遅延回路28の出力端子は、ワンショット回路30の入力端子に接続されている。抵抗32の一方の端子は、電源のラインに接続され、抵抗32の他方の端子は、抵抗34の一方の端子に接続され、抵抗34の他方の端子は、グランドに接続されている。抵抗32,34は、分圧回路を構成し、基準電圧Vrefを出力する。基準電圧Vrefは、過熱検出閾値電圧に相当するものであって、たとえば、IGBT10の動作保証温度の上限である175℃に相当する電圧である。
 比較器36は、非反転入力端子がゲート抵抗26の他方の端子と端子Gとの接続部に接続され、反転入力端子が抵抗32の他方の端子と抵抗34の一方の端子との接続部に接続されている。ワンショット回路30の出力端子は、アンド回路38の第1の入力端子に接続され、比較器36の出力端子は、アンド回路38の第2の入力端子に接続されている。アンド回路38の出力端子は、外部の上位装置に過熱検出信号を通知するアラーム出力端子ALMに接続されている。
 ここで、IGBT10は、ターンオン時のミラー効果期間におけるゲート電圧VGEがIGBT10のチップ温度Tvjと温度依存性を有している。その温度依存性は、図2に示したように、チップ温度Tvjに対してゲート電圧VGEがリニアに変化する特性であるため、ゲート電圧VGEからチップ温度Tvjを検出することができる。
 次に、以上の構成の駆動装置20の動作を図3のタイムチャートを参照しながら説明する。なお、図3のタイムチャートでは、上から、ドライブ回路24が出力する駆動信号SDRV、端子Gと端子Eとの間のゲート電圧VGE、遅延回路28が出力する遅延信号、ワンショット回路30が出力するパルス信号、および、アラーム出力端子ALMの過熱検出信号を示している。
 駆動装置20の端子INにPWM信号が入力されると、そのPWM信号は、プリドライバ22を介してドライブ回路24に入力され、ドライブ回路24から駆動信号SDRVとして出力される。この駆動信号SDRVは、ゲート抵抗26を介してIGBT10のゲートに印加されると、ゲート電圧VGEは、図3に示したように変化する。
 駆動信号SDRVがロー(L)レベルからハイ(H)レベルに立ち上がると、そのHレベルの電圧がゲート抵抗26を介してIGBT10のゲート・エミッタ間容量を充電する。ゲート・エミッタ間容量の充電電圧が、IGBT10のオン閾値電圧を超えると、IGBT10がターンオンし、IGBT10のコレクタ・エミッタがほぼ短絡状態になる。これにより、IGBT10のゲートには、ゲート・エミッタ間容量とゲート・コレクタ間容量(ミラー容量)とが接続され、IGBT10はミラー積分器として動作する。その動作期間であるミラー効果期間Tmでは、ゲート電圧VGEは、一定の状態を維持する。ミラー効果期間Tmが終了すると、IGBT10のゲートへさらなる充電が継続されているので、ゲート電圧VGEは、駆動信号SDRVのHレベルになるまで上昇する。
 駆動信号SDRVがLレベルになった後は、IGBT10がターンオンするときのゲート電圧VGEの変化と逆の変化を辿り、ゲート電圧VGEは、駆動信号SDRVのLレベルの電位になるまで低下する。
 駆動信号SDRVは、また、遅延回路28にも入力される。遅延回路28は、駆動信号SDRVを遅延時間Tdだけ遅れた遅延信号を出力する。この遅延時間Tdは、駆動信号SDRVの立ち上がり前縁の時点からゲート電圧VGEがミラー効果期間Tm中の任意の時点までの時間であり、IGBT10のスイッチング特性を基に決定される。遅延信号は、ワンショット回路30に入力され、遅延信号の立ち上がり前縁の時点から一定の幅を有するパルス信号を出力する。ワンショット回路30が出力するパルス信号は、ミラー効果期間Tmより短いパルス幅を有し、ミラー効果期間Tmにおけるゲート電圧VGEを取得する信号となる。
 ゲート電圧VGEは、また、比較器36の非反転入力端子にも供給される。比較器36は、その反転入力端子に過熱検出閾値電圧に相当する基準電圧Vrefを受けているので、ゲート電圧VGEが過熱検出閾値電圧に達しているかどうかを判断する二値化回路を構成している。比較器36は、ゲート電圧VGEが過熱検出閾値電圧に相当する基準電圧Vref未満のとき、Lレベルの信号を出力し、ゲート電圧VGEが基準電圧Vref以上のとき、Hレベルの信号を出力する。
 アンド回路38は、第1の入力端子にワンショット回路30が出力するパルス信号を受け、第2の入力端子に比較器36の出力信号を受けている。これにより、アンド回路38は、パルス信号を受けている期間だけ、比較器36の出力信号の通過を許可する。
 IGBT10のチップ温度が動作保証温度の範囲内の常温のとき、ミラー効果期間Tmのゲート電圧VGEは、基準電圧Vref未満であるので、比較器36は、Lレベルの信号を出力しており、このため、アンド回路38は、Lレベルの信号を出力する。
 IGBT10のチップ温度が動作保証温度の範囲を超えた高温のとき、ミラー効果期間Tmのゲート電圧VGEは、基準電圧Vref以上になるので、比較器36は、Hレベルの信号を出力し、アンド回路38は、Hレベルの信号を出力する。このHレベルの信号は、過熱検出信号としてアラーム出力端子ALMから外部の上位装置に通知される。
 なお、この実施の形態では、過熱検出信号をアラーム出力端子ALMから外部へ出力するようにしたが、図示しない過熱検出保護回路へ入力してIGBT10を強制的にターンオフするようにしてもよい。
 図4は第2の実施の形態に係るIGBTの駆動装置の構成例を示す回路図である。
 第2の実施の形態に係るIGBT10の駆動装置20aは、第1の実施の形態の駆動装置20がIGBT10の過熱を検出してアラーム出力しているのに対し、チップ温度をリアルタイムに検出して出力する構成にしている。
 駆動装置20aは、プリドライバ22と、ドライブ回路24と、ゲート抵抗26と、遅延回路28と、ワンショット回路30とを備えており、これらは、第1の実施の形態の駆動装置20が備えるものと同じであるので、ここでは詳細な説明は省略する。
 駆動装置20aは、また、サンプルホールド回路40を備えている。サンプルホールド回路40は、オペアンプ42と、スイッチ素子44と、コンデンサ46と、オペアンプ48とを有している。オペアンプ42は、反転入力端子を自身の出力端子に接続してボルテージフォロワ回路を構成し、非反転入力端子は、IGBT10のゲートに接続される端子Gに接続されている。オペアンプ42の出力端子は、スイッチ素子44の一方の端子に接続され、スイッチ素子44の他方の端子は、コンデンサ46の一方の端子とオペアンプ48の非反転入力端子とに接続されている。コンデンサ46の他方の端子は、グランドに接続されている。スイッチ素子44の制御端子は、ワンショット回路30の出力端子に接続されている。オペアンプ48は、反転入力端子を自身の出力端子に接続してボルテージフォロワ回路を構成している。オペアンプ48の出力端子は、チップ温度出力端子TMPに接続されている。
 この駆動装置20aのサンプルホールド回路40によれば、入力インピーダンスの高いオペアンプ42によってゲート電圧VGEを受けるよう構成したことによりサンプルホールド回路40を端子Gに接続したことによる影響を最小にしている。オペアンプ42は、ボルテージフォロワ回路を構成しているので、非反転入力端子に入力されたゲート電圧VGEをそのまま出力する。スイッチ素子44は、制御端子にワンショット回路30が出力するHレベルのパルス信号を受けると、パルス信号を受けている期間だけオン(導通)し、オペアンプ42が出力した電圧(≒ゲート電圧VGE)をコンデンサ46に印加する。このとき、コンデンサ46の端子電圧は、オペアンプ42が出力した電圧に追従した電圧となる。
 ワンショット回路30が出力するパルス信号がLレベルになると、スイッチ素子44は、オフ(非導通)し、コンデンサ46の端子電圧は、スイッチ素子44がオフになったときの電圧に保持される。コンデンサ46に保持された電圧は、ボルテージフォロワ回路を構成するオペアンプ48によってそのままチップ温度検出信号として出力され、チップ温度出力端子TMPから外部の上位装置に通知される。
 なお、外部の上位装置では、駆動装置20aからチップ温度検出信号を受けると、そのチップ温度検出信号からチップ温度を求めることになる。すなわち、上位装置は、図2に示したミラー効果期間のゲート電圧VGEとチップ温度Tvjとの関係を表すデータを有していて、チップ温度検出信号が示すゲート電圧VGEを対応するチップ温度Tvjに換算する。
 これにより、この駆動装置20aは、IGBT10のチップ温度を直接的かつリアルタイムに監視することができるので、チップ温度の監視を高精度で行うことができ、また、チップ温度を検出するための構成を小規模の回路構成で実現することができる。
 図5は第3の実施の形態に係るIGBTの駆動装置の構成例を示す回路図である。
 第3の実施の形態に係るIGBT10の駆動装置20bは、第1の実施の形態の駆動装置20が有するIGBT10の過熱検出機能と、第2の実施の形態の駆動装置20aが有するIGBT10のチップ温度検出機能とを有している。
 駆動装置20bは、プリドライバ22と、ドライブ回路24と、ゲート抵抗26と、遅延回路28と、ワンショット回路30と、抵抗32,34と、比較器36と、アンド回路38と、サンプルホールド回路40とを備えている。以上の駆動装置20bの構成要素は、第1の実施の形態の駆動装置20および第2の実施の形態の駆動装置20aが備えるものと同じである。ただ、比較器36の非反転入力端子に入力されるゲート電圧VGEは、サンプルホールド回路40のオペアンプ42の出力端子から取得している。
 このように、この駆動装置20bは、第1の実施の形態の駆動装置20および第2の実施の形態の駆動装置20aが備えるものと同じであり、動作も駆動装置20,20aの動作と同じであるので、ここでは詳細な説明は省略する。この駆動装置20bによれば、過熱検出と温度検出との両方を実現することができる。
 なお、上記の実施の形態では、IGBT10をターンオンするときのミラー効果期間のゲート電圧VGEを検出し、そのゲート電圧VGEに対応するチップ温度を求めるようにした。しかし、IGBT10をターンオフするときのミラー効果期間またはIGBT10をターンオンおよびターンオフするときの両方のミラー効果期間のゲート電圧VGEを検出してチップ温度を求めるように変更してもよい。この場合、遅延回路28は、駆動信号SDRVの立ち下がり後縁の時点からゲート電圧VGEがミラー効果期間Tm中の任意の時点までの時間だけ遅れた遅延信号を出力することになる。また、駆動装置20,20aは、IGBT10に代えてMOSFETを駆動する装置としてもよい。
 以上、実施の形態に基づき、本発明の電圧制御型半導体素子の温度検出方法および駆動装置の一観点について説明してきたが、これらは一例にすぎず、上記の記載に限定されるものではない。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 10 IGBT
 12 FWD
 20,20a,20b 駆動装置
 22 プリドライバ
 24 ドライブ回路
 26 ゲート抵抗
 28 遅延回路
 30 ワンショット回路
 32,34 抵抗
 36 比較器
 38 アンド回路
 40 サンプルホールド回路
 42 オペアンプ
 44 スイッチ素子
 46 コンデンサ
 48 オペアンプ

Claims (7)

  1.  電圧制御型半導体素子のゲートを駆動するゲート電圧を監視し、
     前記電圧制御型半導体素子をターンオンまたはターンオフするときに前記ゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間の電圧を検出し、
     前記ミラー効果期間の前記ゲート電圧を前記電圧制御型半導体素子のチップ温度と温度依存性のある信号として出力する、
     電圧制御型半導体素子の温度検出方法。
  2.  電圧制御型半導体素子を駆動する駆動装置であって、
     前記電圧制御型半導体素子のゲートを駆動するドライブ回路と、
     前記ドライブ回路と前記電圧制御型半導体素子のゲートとの間に設置されたゲート抵抗と、
     前記ドライブ回路が出力する駆動信号をゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間内に達するまでの所定の時間だけ遅延する遅延回路と、
     前記遅延回路が出力した遅延信号の立ち上がり前縁または立ち下がり後縁から前記ミラー効果期間より短いパルス幅を有するパルス信号を出力するワンショット回路と、
     前記電圧制御型半導体素子のチップ温度と温度依存性がある前記ゲート電圧を過熱検出閾値電圧に相当する基準電圧と比較する比較器と、
     前記ワンショット回路が出力する前記パルス信号と前記比較器の出力信号とを入力し、前記ゲート電圧が前記基準電圧を超えると過熱検出信号を出力するアンド回路と、
     を備えた、電圧制御型半導体素子の駆動装置。
  3.  前記アンド回路が出力する前記過熱検出信号を外部に通知するアラーム出力端子を備えている、請求項2記載の電圧制御型半導体素子の駆動装置。
  4.  電圧制御型半導体素子を駆動する駆動装置であって、
     前記電圧制御型半導体素子のゲートを駆動するドライブ回路と、
     前記ドライブ回路と前記電圧制御型半導体素子のゲートとの間に設置されたゲート抵抗と、
     前記ドライブ回路が出力する駆動信号をゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間内に達するまでの所定の時間だけ遅延する遅延回路と、
     前記遅延回路が出力した遅延信号の立ち上がり前縁または立ち下がり後縁から前記ミラー効果期間より短いパルス幅を有するパルス信号を出力するワンショット回路と、
     前記電圧制御型半導体素子のチップ温度と温度依存性がある前記ゲート電圧を前記パルス信号が入力されている期間に取り込み、前記パルス信号の入力がなくなったときの前記ゲート電圧を保持して出力するサンプルホールド回路と、
     を備えた、電圧制御型半導体素子の駆動装置。
  5.  前記サンプルホールド回路が出力する信号をチップ温度検出信号として外部に通知するチップ温度出力端子を備えている、請求項4記載の電圧制御型半導体素子の駆動装置。
  6.  電圧制御型半導体素子を駆動する駆動装置であって、
     前記電圧制御型半導体素子のゲートを駆動するドライブ回路と、
     前記ドライブ回路と前記電圧制御型半導体素子のゲートとの間に設置されたゲート抵抗と、
     前記ドライブ回路が出力する駆動信号をゲート電圧が過渡的に変化する期間の中で生じるミラー効果期間内に達するまでの所定の時間だけ遅延する遅延回路と、
     前記遅延回路が出力した遅延信号の立ち上がり前縁または立ち下がり後縁から前記ミラー効果期間より短いパルス幅を有するパルス信号を出力するワンショット回路と、
     前記電圧制御型半導体素子のチップ温度と温度依存性がある前記ゲート電圧を過熱検出閾値電圧に相当する基準電圧と比較する比較器と、
     前記ワンショット回路が出力する前記パルス信号と前記比較器の出力信号とを入力し、前記ゲート電圧が前記基準電圧を超えると過熱検出信号を出力するアンド回路と、
     前記電圧制御型半導体素子のチップ温度と温度依存性がある前記ゲート電圧を前記パルス信号が入力されている期間に取り込み、前記パルス信号の入力がなくなったときの前記ゲート電圧を保持して出力するサンプルホールド回路と、
     を備えた、電圧制御型半導体素子の駆動装置。
  7.  前記アンド回路が出力する前記過熱検出信号を外部に通知するアラーム出力端子と、前記サンプルホールド回路が出力する信号をチップ温度検出信号として外部に通知するチップ温度出力端子とを備えている、請求項6記載の電圧制御型半導体素子の駆動装置。
PCT/JP2021/040996 2020-12-17 2021-11-08 電圧制御型半導体素子の温度検出方法および駆動装置 WO2022130827A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180038235.8A CN115698732A (zh) 2020-12-17 2021-11-08 电压控制型半导体元件的温度检测方法及驱动装置
JP2022569765A JPWO2022130827A1 (ja) 2020-12-17 2021-11-08
DE112021001992.9T DE112021001992T5 (de) 2020-12-17 2021-11-08 Temperaturmessverfahren und treibervorrichtung für spannungsgesteuertes halbleiterelement
US17/994,131 US20230088396A1 (en) 2020-12-17 2022-11-25 Drive device for voltage-controlled semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209306 2020-12-17
JP2020-209306 2020-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,131 Continuation US20230088396A1 (en) 2020-12-17 2022-11-25 Drive device for voltage-controlled semiconductor element

Publications (1)

Publication Number Publication Date
WO2022130827A1 true WO2022130827A1 (ja) 2022-06-23

Family

ID=82059700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040996 WO2022130827A1 (ja) 2020-12-17 2021-11-08 電圧制御型半導体素子の温度検出方法および駆動装置

Country Status (5)

Country Link
US (1) US20230088396A1 (ja)
JP (1) JPWO2022130827A1 (ja)
CN (1) CN115698732A (ja)
DE (1) DE112021001992T5 (ja)
WO (1) WO2022130827A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372678A1 (en) * 2014-06-18 2015-12-24 Texas Instruments Incorporated Adaptive blanking timer for short circuit detection
US20180013416A1 (en) * 2016-07-11 2018-01-11 Nxp Usa, Inc. Igbt gate current slope measure to estimate miller plateau
US20180234088A1 (en) * 2017-02-16 2018-08-16 Texas Instruments Incorporated Gate driver including gate sense circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615467B1 (en) 2012-01-11 2014-06-18 ABB Research Ltd. System and method for monitoring in real time the operating state of an IGBT device
JP7140635B2 (ja) 2018-10-31 2022-09-21 株式会社日立製作所 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372678A1 (en) * 2014-06-18 2015-12-24 Texas Instruments Incorporated Adaptive blanking timer for short circuit detection
US20180013416A1 (en) * 2016-07-11 2018-01-11 Nxp Usa, Inc. Igbt gate current slope measure to estimate miller plateau
US20180234088A1 (en) * 2017-02-16 2018-08-16 Texas Instruments Incorporated Gate driver including gate sense circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HILLER SEBASTIAN, ZHANG JIANJIE, LUTZ JOSEF: "Estimating the chip temperature in an inverter by measuring the temperature sensitive Miller plateau during turn-off", PCIM EUROPE 2019, 7 May 2019 (2019-05-07) - 9 May 2019 (2019-05-09), pages 1091 - 1096, XP055942380, ISBN: 978-3-8007-4938-6 *

Also Published As

Publication number Publication date
US20230088396A1 (en) 2023-03-23
DE112021001992T5 (de) 2023-01-12
JPWO2022130827A1 (ja) 2022-06-23
CN115698732A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP6924207B2 (ja) 結合部の温度と電流の検知
US8044674B2 (en) Semiconductor device with thermal fault detection
US20150155700A1 (en) Method and apparatus for short circuit protection of power semiconductor switch
US6788128B2 (en) Overcurrent protection structure of load driving circuit
US9337719B2 (en) Power converter control device
JP5423951B2 (ja) 半導体装置
US7907379B2 (en) Overload protection for a circuit arrangement having a transistor
US20150346038A1 (en) Semiconductor apparatus
US6288597B1 (en) Temperature sensing circuit for voltage drive type semiconductor device and temperature sensing method therefore, and drive-device and voltage drive type semiconductor device using the same
CN105281729B (zh) 用于控制功率半导体开关的方法和电路
US9692406B2 (en) Power device drive circuit
JP2011130564A (ja) パワー半導体スイッチ素子の保護装置および保護方法
CN116345867A (zh) 用于功率器件栅极驱动器的负负载电流的过电流保护
JP2011024382A (ja) ゲート駆動回路
Lizama et al. A new method for fast short circuit protection of IGBTs
CN109088531B (zh) 电力变换单元的驱动电路及驱动方法、电力变换单元以及电力变换装置
WO2022130827A1 (ja) 電圧制御型半導体素子の温度検出方法および駆動装置
US20230198516A1 (en) Intelligent power module and power module
KR101531018B1 (ko) 전력반도체소자의 불량 예측 방법
US20220224323A1 (en) Device including power transistor and overcurrent detection logic and method for operating a power transistor
US9000830B2 (en) Method and apparatus for protecting transistors
JP2001160746A (ja) 半導体スイッチング装置
US20230126872A1 (en) Short circuit detection apparatus
JP7444307B2 (ja) スイッチング回路とゲート駆動回路
CN219739944U (zh) 过流保护电路、控制开关及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569765

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21906191

Country of ref document: EP

Kind code of ref document: A1