WO2022130727A1 - 準不燃羽目板とその製造方法 - Google Patents

準不燃羽目板とその製造方法 Download PDF

Info

Publication number
WO2022130727A1
WO2022130727A1 PCT/JP2021/035316 JP2021035316W WO2022130727A1 WO 2022130727 A1 WO2022130727 A1 WO 2022130727A1 JP 2021035316 W JP2021035316 W JP 2021035316W WO 2022130727 A1 WO2022130727 A1 WO 2022130727A1
Authority
WO
WIPO (PCT)
Prior art keywords
veneer
siding
incombustible
core
thickness
Prior art date
Application number
PCT/JP2021/035316
Other languages
English (en)
French (fr)
Inventor
國治 横尾
Original Assignee
株式会社ユニウッドコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニウッドコーポレーション filed Critical 株式会社ユニウッドコーポレーション
Priority to JP2022569720A priority Critical patent/JPWO2022130727A1/ja
Priority to CN202180042844.0A priority patent/CN115803166A/zh
Priority to US18/267,360 priority patent/US20240091978A1/en
Priority to EP21906092.8A priority patent/EP4265385A1/en
Publication of WO2022130727A1 publication Critical patent/WO2022130727A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D1/00Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
    • B27D1/04Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D5/00Other working of veneer or plywood specially adapted to veneer or plywood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/34Organic impregnating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • B27N7/005Coating boards, e.g. with a finishing or decorating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N9/00Arrangements for fireproofing

Definitions

  • the present invention relates to a siding board having semi-incombustible performance and a method for manufacturing the same.
  • the technical basic knowledge of the present invention is as follows. -Knowledge about the fact that liquid water or aqueous solution hardly moves in wood except for sapwood. -Knowledge about the fact that the movement of liquid water or aqueous solution in wood is mainly in the fiber direction, and the movement in the direction orthogonal to the fiber is extremely slow. -In the case of single plate laminated lumber, the aqueous solution does not move across the fiber in the direction orthogonal to the fiber, but due to the manufacturing process by rotary lace, the back crack of the single plate is caused along the fiber slightly inclined from the length direction. Finer cracks are generated than this, and the aqueous solution infiltrates through these cracks.
  • Patent Documents 1 to 5 As prior art documents relating to such refractory modified wood materials, Patent Documents 1 to 5 can be mentioned, but a proposal has been made to accurately grasp the mobility of the liquid in the fiber direction and utilize this mobility. I wasn't.
  • the time for performing the dipping treatment is set to a wide range of 6 to 72 hours, and the reason is that the thickness and arrangement of the conduits are made of wood.
  • the sapwood part has a thick conduit and a coarse density as a specific example.
  • the cedar board and the paulownia board are used as the raw wood, and the conduit itself is present in the cedar described as if the conduit exists.
  • Patent Document 1 does not disclose a veneer laminated structure of siding that is suitable for considering the movement of water-soluble chemicals in the fiber direction.
  • Patent Document 2 it is shown in paragraph 0011 of the specification that the conduit and its peripheral portion are impregnated with a sufficient fireproofing agent, but in the examples below paragraph 0017 of the specification, the raw material wood is used. Only the paulownia board is used, and the heartwood part and the sapwood part are not used separately. As described above, in Patent Document 2, in other words, even if the core part and the sapwood part are not used separately, the explosive-resistant liquid impregnated in the paulownia wood and the tannin potentially impregnated in the paulownia wood undergo a cross-linking reaction by heat. It is acknowledged that it discloses the technical idea that the nonflammable properties can be further improved by the formation of the glass-like film presumed to have been formed.
  • Patent Document 2 does not disclose the veneer laminated structure of the siding in consideration of the movement of the water-soluble agent in the fiber direction.
  • Patent Document 3 the chemical solution is adhered only to the portions of the plurality of recess-forming protrusions, and the protrusions are pressed against the dried veneer, whereby the veneer is further compressed to the thickness or less and the chemical solution is simply applied.
  • the present invention proposes a method for injecting a chemical solution into a veneer, which comprises contacting the veneer with the protrusions and then separating the protrusions from the veneer to allow the chemical solution to permeate into the tissue of the veneer.
  • Patent Document 3 it is unlikely that the chemical solution enters the inside of the wood, and even if the chemical solution is adhered only to the portion of the protrusion for forming the recess, the chemical solution hardly moves in the core material portion.
  • Patent Document 3 does not disclose the veneer laminated structure of the siding in consideration of the movement of the water-soluble agent in the fiber direction.
  • Patent Document 4 a hollow portion and a groove portion continuous or intermittent with respect to the length direction of the square lumber are formed in the laminated portion made of the plate material excluding the front side portion and the rear side portion of the square lumber, and these cavities are formed. After injecting a filler into a part of a portion or a groove to form a large number of wall constituents, stacking these wall constituents in the vertical direction and connecting them by a joining means, the filler in the cavity or the groove is not yet formed. It is proposed to inject a filler into the injection part to close the joint gap of each wall constituent material and construct an integrated wall.
  • Patent Document 4 the chemical solution can be injected into the cavity or groove formed between the plate materials, but the chemical solution cannot be injected into the inside of each plate material, and the chemical solution cannot be injected into each plate material. The movement of the drug solution inside cannot be expected. As described above, Patent Document 4 does not disclose the veneer laminated structure of the siding in consideration of the movement of the water-soluble agent in the fiber direction.
  • Patent Document 5 a chemical solution is dropped into a groove in which each of the four sides of the wood is split into a back by a saw, and the chemical solution is poured into the wood. Holes are made from each of the four sides of the wood at right angles to the back split, and the resin that has flowed inside the wood enters the horizontal holes and becomes a force bone.
  • the core material portion and the sapwood portion are not used separately, and it is difficult to move the chemical solution in the core material portion.
  • Patent Document 5 does not disclose the veneer laminated structure of the siding in consideration of the movement of the water-soluble agent in the fiber direction.
  • Sugi (Usage of Sugi resources in Japan today) Looking back at Sugi, which is a representative resource of coniferous trees in Japan, Sugi has a large amount of resources in Japan.
  • the main products of Sugi in Japan are pillars and beams obtained by sawing the central part of Sugi logs into a form called “heart-holding” or “heart-sari”.
  • the sapwood part used to be made of plywood but since the demand for it is made of plywood, it is no longer used.
  • the heartwood of coniferous trees such as Sugi is a biological material, it has a cell structure that prevents foreign substances from entering from the outside.
  • the sapwood part which is the life activity of the tree, has a structure suitable for moving water from the ground to the leaves, and in the wood of the sapwood part, the chemical aqueous solution easily moves in the fiber direction.
  • the aqueous solution chemical infiltrates only about 50 mm in the fiber direction and infiltrates only about 5 mm in the fiber orthogonal direction in the normal vacuum pressure injection.
  • the sapwood part of Sugi it was confirmed in the preliminary test of the present inventor that the aqueous solution drug infiltrates 100 mm or more in the fiber direction and 5 mm or more infiltrates in the fiber orthogonal direction by normal vacuum pressure injection. Has been done.
  • Patent Document 6 is an object of the present invention to provide semi-incombustible or flame-retardant wood capable of exhibiting uniform fire resistance and a method for producing the same, and is used for coniferous trees such as sugi and hardwoods with perforated holes.
  • the purpose is to provide semi-incombustible or flame-retardant wood using only sapwood as a raw material.
  • injection holes having a predetermined depth are formed in the wood at appropriate intervals, and the woods are laminated with an adhesive with the overlapping surface inside.
  • the semi-incombustible or flame-retardant wood of the invention according to Patent Document 6 is a laminated lumber of sugi plank sapwood having a thickness of 20 mm, and the surface is composed of a plain lumber, so that the appearance is very good and the laminated lumber.
  • the injection holes having a width of 3 mm and a depth of 5 mm on both sides of the surface have no problem in appearance. Then, when a quasi-incombustible combustion test was conducted on a non-combustible agent injected at a concentration of 25% and an amount required for quasi-incombustible at 140 to 150 kg / m 3 , the calorific value and the presence or absence of cracks up to the back surface were eventually determined. Was also passed.
  • An object of the present invention is to improve the reliability of fire resistance of a siding containing a non-combustible treatment agent, and to improve the ease of procurement of raw materials and the mass productivity.
  • the present invention has been completed based on the following findings.
  • the aqueous solution moves in the canal where no filler is present.
  • the membrane pores are closed in the coniferous tree, the intracellular filling substance is present in the broad-leaved tree, so that the aqueous solution cannot move through the cell lumen.
  • the veneer laminated lumber made from rotary veneer manufactured by rotary lace there is no distinction between tree species and sapwood / heartwood, and in either case, the veneer goes through the back cracks and cracks.
  • the aqueous solution pressurized under reduced pressure could be infiltrated in the fiber direction by about 100 mm to 250 mm.
  • the aqueous solution does not move across the fiber direction, but moves through the single plate back crack generated along the fiber slightly inclined from the length direction. As a result, it was found that the aqueous solution seemed to move in the lateral direction as well.
  • the siding plank of the present invention includes a front and back veneer constituting the front and back surfaces, and a core veneer layer laminated between the front and back veneers.
  • the veneer fiber direction of the front and back veneer is substantially parallel to the length direction of the veneer.
  • the core veneer layer is a layer in which a plurality of core veneers are stacked in the thickness direction, and in all of these core veneers, the veneer fiber direction thereof is abbreviated as the length direction of the siding planks. It is orthogonal.
  • the front and back veneers have a thickness of 1.5 mm to 4.0 mm, and the thickness of the core veneer layer is equal to or greater than the total thickness of the front and back veneers. And in all the front and back veneers, there is a non-combustible agent infiltrated from the veneer surface of the veneer with an aqueous solution through back cracks and cracks. On the other hand, in all core veneers, there is a non-combustible treatment agent infiltrated with an aqueous solution via back cracks and cracks generated along the veneer fiber direction.
  • the present invention it is obtained by preparing a siding raw material having the above-mentioned predetermined dimensions in which veneers are laminated with a water-soluble adhesive, and then injecting a non-combustible treatment agent into the siding raw material.
  • a non-combustible agent such as water-soluble is decompressed and pressure-injected into the siding raw material obtained by laminating veneer as described above.
  • the agent infiltrates the front and back veneer from the front and back surface of the veneer, which is the front and back surface of the siding material, to the front and back first layer adhesive layer (depth 4 mm or less).
  • the front and back veneers have a large number of fine cracks due to the impact applied during the rotary race processing. Therefore, when laminating, the veneer surface on the back side of the front and back veneer (the surface having cracks on the back of the veneer) may be on the outside, or the veneer surface on the back side of the veneer on the front and back (the back of the veneer) may be used.
  • the non-combustible agent infiltrates from the back cracks and cracks over the entire thickness. Can be made to.
  • the core veneers constituting the core veneer layer have their veneer fiber directions substantially orthogonal to the length direction of the siding planks. Therefore, in all the core veneers, all the wood ends are exposed on the left and right side surfaces (edge surfaces) of the semi-incombustible siding, and the drug infiltrates from the exposed left and right side surface surfaces (edge surfaces). The infiltrated agent is injected into the whole by the fluid movement of the non-combustible agent along the back crack of the veneer generated along the fiber. Therefore, the semi-incombustible wood according to the present invention includes the core veneer layer in which the non-combustible treatment agent fluidly transferred via the veneer back cracks generated along the vessel and the temporary vessel, and the core veneer layer. It is equipped with front and back veneers that are located above and below the plate layer and in which non-combustible treatment agents that have infiltrated from the grain surfaces on both the upper and lower sides are present.
  • the apparent movement in the fiber orthogonal direction is 1/10 to 1/20 of the fiber direction. Stop at a distance. However, it is possible to move a relatively long distance in the fiber direction, and the following infiltration state has been confirmed in the preliminary experiment conducted by the present inventor.
  • Sugi sapwood LVL a drug infiltrates with a length of 150 mm or more in the fiber direction.
  • LVL in which a veneer made of sugi sapwood and a veneer made of sugi heartwood are mixed a drug having a length of 150 mm to 200 mm infiltrates in the fiber direction.
  • the fiber direction of the front and back veneer is larger than the length in which the above-mentioned chemicals infiltrate. The length is longer.
  • the front and back veneers have cracks and cracks on the front and back of the veneer that occur along the inclined fibers. Therefore, the drug infiltrates from these at a depth of about 5 mm.
  • the following production method can be adopted.
  • Other production processes are substantially the same as the conventional method, and unlike the case of raw materials derived from sawn timber, special processes such as boring and slit cutting can be omitted, making them suitable for mass production. The cost can be significantly reduced.
  • the present invention has been able to provide a method for manufacturing a quasi-incombustible siding, which can dramatically shorten the delivery time by carrying out by the following method in the method for manufacturing the quasi-incombustible siding. ..
  • a semi-incombustible siding for inventory is manufactured.
  • the quasi-incombustible siding for inventory is obtained by injecting a non-combustible treatment agent into the siding raw material for inventory having the same laminated structure and thickness as the above-mentioned quasi-incombustible siding to be delivered, and drying and curing it.
  • at least one of the width dimension and the length dimension of the quasi-incombustible siding for inventory is larger than that of the quasi-incombustible siding.
  • the quasi-incombustible siding for inventory has a thickness of 30 mm or less and a width of 310 mm or less, and the front and back veneers constituting the front and back of the quasi-incombustible siding for inventory have a thickness of 1.5 mm to 4.0 mm. Appropriate.
  • the drug can be uniformly injected in any direction of its thickness, length and width. Therefore, a semi-incombustible siding for inventory is produced in advance by injecting a chemical into a siding raw material for inventory of a predetermined size (for example, a size of 12 to 30 mm in thickness, 310 mm in width, and 4100 mm in length) and drying it. It is possible to store the inventory and cut the semi-incombustible siding for inventory to the order size and deliver it when the customer places an order.
  • a predetermined size for example, a size of 12 to 30 mm in thickness, 310 mm in width, and 4100 mm in length
  • the delivery time for semi-incombustible siding which used to take six months to one year from the conclusion of a business negotiation to delivery, is now sufficient for cutting and packing, and delivery is carried out in about 10 days after receiving an order. It is possible to develop a new business model that makes it possible.
  • the present invention is a quasi-incombustible siding and its manufacture capable of achieving both improvement in reliability of fire resistance of siding containing a non-combustible treatment agent such as quasi-incombustible wood, ease of procurement of raw materials, and improvement in mass productivity. We were able to provide a method.
  • A Explanatory drawing of the cross-sectional structure of the raw wood for obtaining wood for semi-incombustible wood according to the embodiment of the present invention
  • B For obtaining wood for semi-incombustible wood according to another embodiment. Explanatory drawing of the cross-sectional structure of raw wood.
  • the quasi-incombustible siding 11 includes front and back surfaces 12, front and rear end surfaces 13, and left and right side surfaces 14 as shown in FIGS. 1 and 2.
  • the front and back surfaces 12 of the siding plate 11 are composed of front and back veneers 21.
  • a core veneer layer 31 is arranged between the front and back veneers 21 and a plurality of core veneers 32 are laminated.
  • the front and back veneers 21 and the core veneer 32 are bonded to each other by an adhesive such as water resistance according to a conventional method.
  • the front and back single plates 21 have a single plate fiber direction (arrow S shown in FIG. 2) substantially parallel to the length direction of the siding plate 11, and have a wood end surface (abbreviated as a wood fiber direction) like a normal LVL siding plate. (Orthogonal end faces) are arranged on the front and rear end faces 13 of the siding plate 11.
  • the thickness of the front and back veneers 21 is 1.5 mm to 4.0 mm.
  • the front and back veneer 21 contains an aqueous solution of the non-combustible agent infiltrated from the back cracks and cracks on the surface of the plate exposed on the front and back surfaces.
  • an aqueous solution of a non-combustible, semi-non-combustible, flame-retardant treatment agent or the like is injected into the siding plate 11 finished to a predetermined size by using a vacuum pressure injection can.
  • the front and back veneers 21 are exposed on one surface of the front and back surfaces 12 of the siding plate 11, as well as four surfaces of the front and rear end surfaces 13 and the left and right side surfaces 14.
  • the moving distance of the aqueous solution of the drug from the four surfaces of the front-rear end surface (that is, the wood end surface) 13 and the left and right side surfaces (that is, the edge surface) 14 is from the total length of the siding plate 11. Is also short. However, since one surface of the front and back surfaces (that is, the grain surface) 12 of the siding plate 11 is exposed on the entire surface, the aqueous solution of the chemical agent from the front and back surfaces 12 passes through the back cracks and cracks of the wood from the entire surface. Infiltrate inside.
  • the veneer fiber direction (arrow T shown in FIG. 2) is substantially orthogonal to the length direction of the veneer 11.
  • its end face (end face substantially orthogonal to the fiber direction of wood) is exposed on the left and right side surfaces 14 of the siding 11.
  • the thickness of the core veneer layer 31 is equal to or greater than the total thickness of the two front and back veneers 21.
  • Non-combustible agent of core veneer layer 31 In all core veneer 32, the non-combustible treatment agent fluid-moved through the veneer back crack generated along the temporary vessel or conduit is present in the whole. Specifically, an aqueous solution of a non-combustible, semi-non-combustible, flame-retardant treatment agent or the like is injected into the siding plate 11 finished to a predetermined size by using a vacuum pressure injection can. At that time, the core veneer 32 is exposed on the four front and rear end surfaces 13 and the left and right side surfaces 14.
  • the aqueous solution of the drug is injected from these surfaces, since the single plate fiber direction (arrow T) is arranged in the width direction of the siding plate 11, the aqueous solution of the drug moves from the two front and rear end faces 13. The distance is shorter than the moving distance from the two left and right side surfaces 14.
  • the aqueous solution of the non-combustible / semi-non-combustible / flame-retardant treatment agent injected from the two surfaces of the left and right side surfaces 14 can move a certain distance along the veneer fiber direction (arrow T).
  • the veneer is made of veneer
  • the chemical infiltrates in the veneer fiber direction (arrow T) and the length is 150 mm to 200 mm.
  • the left and right side surfaces 14 of the siding plate 11 The aqueous solution of the drug injected from the left and right grain surfaces of the core veneer 32 exposed to the siding can reach the full width. Therefore, the aqueous solution of the drug can be reliably and uniformly present in the entire core veneer 32.
  • wood is often roughly divided into a sapwood part and a heartwood part. It is said that it refers to the reddish part of the color of, but more specifically, the heartwood part can be divided into two areas, the immature part and the mature part in the central part, and the sapwood part and the heartwood part. There may be a white line band in the boundary area of. Therefore, as shown in FIG. 3, it can be divided into four regions from the outside, the sapwood portion A, the white line band B, the core material matured portion C, and the core material unripened portion D, but in the present invention, it is simply divided into four regions.
  • the term "heartwood portion” refers to a portion including a white line band B, a heartwood aged portion C, and a heartwood unripened portion D.
  • the sapwood portion A having good fluid movement but also the core material portion having relatively poor fluid movement has a drug of 80 mm to 200 mm or more as described above. Infiltrates. Therefore, by selecting and using the optimum tree species and parts to be used according to the widths of the veneers 21 and 32 of the siding plate 11, the nonflammable, semi-incombustible, and flame-retardant treatment agents are satisfactorily present in the entire siding plate 11.
  • the siding plate 11 can be manufactured.
  • FIG. 3B it is also possible to use only the sapwood portion A in which the liquid moves well in the direction of fiber elongation inside the wood, and these may not be distinguished. It can also be used.
  • the sapwood of poplar is used.
  • the veneer is a rotary veneer
  • the thickness of the entire siding plate 11 is irrelevant to the distinction between tree species, sapwood, and heartwood, such as when a veneer made of wood and a veneer made of lumber are used together without distinction. Is 12 mm to 30 mm, the width is 100 mm to 310 mm, and the length is 2000 mm to 4500 mm.
  • the chemical injection process is a step of preparing a siding raw material having a predetermined size in which veneers are laminated with a water-soluble adhesive or the like as described above, and injecting a non-combustible treatment chemical into the siding raw material.
  • semi-incombustible wood is completed by injecting an aqueous solution of non-combustible, semi-non-combustible, flame-retardant treatment agent, etc. into the siding raw material using a vacuum pressure injection can.
  • the amount of chemicals to be injected may be set according to the dimensions of the front and back veneer 21 and the core veneer layer 31, the type of tree, and the regional differences in which they have grown. In 11, it is appropriate to set it to about 150 kg / m 3 .
  • the depressurization condition and time, the pressurization condition and time, and the number of repetitions should be confirmed by a preliminary experiment using a water-soluble colorant. Is preferable. Further, it is preferable to measure the weight before and after the injection as the injection amount in the process control, and control the difference as the average injection amount of the lot.
  • Curing It is preferable to perform curing including drying for leveling the inside of the wood of the injected chemicals, and the curing period is determined by preliminary experiments. Drying: The moisture content is controlled in order to satisfy the quality of the product determined by making arrangements with the sales destination. From the viewpoint of improving quality, it is preferable to perform artificial drying.
  • Finishing process In order to meet the specified conditions as a product, the board width is finished with a lip saw, the length is cross-cut and the surface is finished with a sander or a moulder. Inspection: Perform inspection necessary to satisfy the quality of the product. For example, the thickness and width are measured with a caliper, the length is measured with a steel tape measure, and the appearance and surface are visually and touched. Packing: Semi-incombustible wood products are bundled in small bundles and covered on 6 sides to block the moisture of the outside air, or covered with a plastic sheet and fixed with tape so as not to damage the load. Make the necessary packaging.
  • the semi-incombustible wood according to this embodiment is substantially uniform as a whole of the fire-resistant modified wood-based material and can exhibit good fire resistance.
  • wood-based materials with insufficient chemical injection are heated, flammable gas is generated from the wood structure of the insufficient part by reaching a high temperature range of around 200 ° C or higher, and the gas ignites. ..
  • the fire resistance is greatly impaired, but the siding plate 11 of the present invention is impregnated with a sufficient amount of the fire resistant chemicals substantially entirely, so that the generation of flammable gas from the wood structure is suppressed. And can show stable fire resistance.
  • process control is important in order for all the siding plates 11 produced to exhibit stable fire resistance.
  • -Confirmation of infiltration length After pre-drying, 4 to 6 samples are collected for each production lot, and a stain injection test is performed to confirm the infiltration length of the drug.
  • the test method is to inject the stain solution under reduced pressure and pressurize, and then cut every 10 cm in length to confirm the infiltration property of the stain solution on the cut surface.
  • Measurement of drug injection amount By measuring the weight of the injection lot before and after the depressurization / pressurization process for each injection lot and managing the difference as the average drug injection amount of that lot, a sufficient amount of drug is injected. Check if it is.
  • ⁇ Combustion test Conducted in accordance with the Ordinance of the Ministry of Land, Infrastructure, Transport and Tourism. Specifically, the number of corn calorimeters is measured according to the required population parameter under predetermined conditions. By creating a relative relationship record between the cone calorimeter test result and the injection amount for each injection lot, the accuracy of process control can be improved.
  • the core veneer 32 according to this embodiment can be implemented as a single plate material, or can be implemented as a plurality of pieces of wood arranged in the longitudinal direction of the siding plate 11.
  • the injection amount varies depending on the tree species, the thickness of the single plate, etc., and can be changed by adjusting the drug concentration in practice. After injecting the drug into No. 11 using a vacuum pressure injection can under the following conditions, dry curing was performed to complete Sample 1 and Sample 2.
  • Injection drug Phosphorus-Chisso compound flame retardant W2-50 manufactured by Maruhishi Yuka Co., Ltd., concentration 20% Decompression: 0.1 atm, 1 hour Pressurization: 8.0 atm, 1 hour
  • the unit is kg / m 3 .
  • the whole sample 1 (30 sheets) shows the variation of the whole (parameter 30) with respect to the 30 sheets of the document 1.
  • the entire sample 2 (30 sheets) shows the variation of the entire sample 2 for the 30 sheets.
  • the left and right side portions (30 sheets ⁇ 2) of the sample 2 are divided into three at equal intervals in the width direction of all the samples 2 to show the variation of the left and right side portions (parameter 60).
  • the central portion (30 sheets ⁇ 1) of the sample 2 shows the variation in the central portion (parameter 30) by dividing all the samples 1 into 10 at equal intervals in the longitudinal direction.
  • the average -3 ⁇ is a numerical value that 99.7% or more of the samples are equal to or higher than the relevant numerical value, and is generally a substantially minimum guaranteed value. Therefore, as an evaluation of Sample 1, it was confirmed that 99.7% was within the range of ⁇ about 11% in the whole and the longitudinal direction of the veneer. Further, as an evaluation of Sample 2, it was confirmed that there was no significant difference in all of the mean value, standard deviation, and minimum guaranteed value in the whole and the width direction of the veneer.
  • the drug injection amount can be arbitrarily set by adjusting the injection drug concentration according to the tree species and veneer thickness, and the thickness, length, and width direction are the same. It was confirmed by the examples that the performance was guaranteed. Therefore, for example, a dry ready-made product with a thickness of 12 mm to 30 mm, a width of 310 mm, and a length of 4100 mm is produced and kept in stock, and cut to the order size when a customer places an order. It was confirmed that even if the business model of delivery is executed, the chemicals are uniformly injected into the entire siding planks that have been delivered, and it is possible to guarantee the same performance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

準不燃木材などの不燃処理薬剤を含有する木材に関する耐火性能の信頼性の向上と、原料の調達容易性並びに量産性の改善との両立を図る。羽目板11は、その表裏を構成する表裏単板21と、表裏単板21の間に積層されたコア単板層31とを備える。表裏単板21は、その単板繊維方向が前記羽目板の長さ方向と略平行である。コア単板層31は、複数枚のコア単板32が厚み方向に重ねられた層であり、これらの全てのコア単板32は、その単板繊維方向が羽目板11の長さ方向と略直交している。表裏単板21は、厚さ1.5mm~4.0mmであり、コア単板層31の厚さは、表裏単板21の厚さ合計以上である。全ての表裏単板21の板目面には、裏割れや割れ目が露出しており、これらから不燃薬剤水溶液が浸潤している。

Description

準不燃羽目板とその製造方法
本発明は準不燃性能を備えた羽目板と、その製造方法に関するものである。
(準不燃又は難燃木材の現状)
今日流通している薬剤注入木材の多くは、防腐、防虫、難燃、準不燃の処理を行うための薬剤を木質材料に対して含浸することによって製造されている。例えば製材品や集成材用ラミナに薬剤を注入する方法を採用することでは、インサイジング加工をして薬剤注入部分を少し増やすことも行われているが、心材部と辺材部では薬剤浸透の程度が大きく異なる。その結果、薬剤注入木材の性能、及び木質製品の性能に大きなバラツキがあり、薬剤処理木材基準値を満たさないものも散見された。薬剤注入が不十分な部分が存在する難燃準不燃処理木質材料が加熱されると、200℃前後以上の高温域に達することによって、不十分な部分の木材組織から可燃性ガスが発生し、当該ガスが発火することによって、その耐火性能は大きく損なわれてしまう。
(今日の日本国における木材の市場の変化)
今日の日本国における木材の市場を、概観すると次のような変化が見られる。
木材の最大の市場である一戸建て木造住宅の市場が、少子高齢化の影響で縮小方向にある。
その反面、公共施設・店舗・事務所・宿泊施設など不特定多数の人が集まる中大規模建築物では、『居心地の良さ』『お洒落なイメージ』を創り出すことができると共に、ウイルス等の微生物に強い健康的な50%~60%の湿度を維持できる空間が求められ、木材の内装・外装の市場が拡大傾向にある。このような、不特定多数の人が集まる中大規模建築物では、火災発生時の安全性が重要な要素であるため、『難燃・準不燃』の安定的な性能を満たす木材の需要が増加している。
(従来製品・技術の問題点とその影響)
次に今日まで提供されていた従来製品の技術の問題点とその影響をまとめると、下記の状況にあることが分かる。
・従来製品における難燃・準不燃木材にあっては、不燃処理薬剤の注入量が不充分な部分が存在する。その結果、性能不足の製品も散見され、難燃・準不燃木材の性能に対する信頼性が損なわれている。
・注入量の最低値を基準値にするために、不燃薬剤の過剰注入が行われ、その結果コストアップと製品表面における白華現象が生じている。
(技術的基礎知識)
本件発明の技術的な基礎知識は以下の通りである。
・辺材を除いて木材中を液体の水又は水溶液は殆ど移動しないという事実に関する知識。
・液体の水又は水溶液の木材中の移動は繊維方向が主で、繊維直交方向の移動は極めて遅いという事実に関する知識。
・単板積層材の場合は、繊維直交方向へは、水溶液が繊維を横切って移動するのではなく、ロータリーレースによる製造加工によって、長さ方向から少し傾斜した繊維に沿って単板裏割れやこれより細かい割れ目が発生しており、これらを経由して水溶液が浸潤する。その結果として、横方向にも水溶液が移動したように見えることが見出された。
・薬剤処理の目的によって3種類の薬剤注入処理があるが、防虫処理(デンプン等の虫の栄養分が多い辺材部に対する薬剤注入)と、防腐処理(木材の周辺部だけの薬剤処理)と、準不燃・難燃薬剤処理(木材に均一な薬剤注入処理)との3種を明確に区別し、準不燃・難燃薬剤処理(木材に均一な薬剤注入処理)に適する処理を行うべきであること。
・難燃・準不燃処理木材注入薬剤には接着阻害要因があることが多く、注入後に接着すると用途上十分な接着力を得られない場合が多いということ。
(先行技術文献とその課題)
このような耐火改質木質材料に関する先行技術文献としては、特許文献1~5を挙げることができるが、繊維方向への液体の移動性を的確に把握し、この移動性を利用した提案はなされていなかった。
具体的には、特許文献1の明細書段落0014では、浸漬処理を施す時間について6~72時間という大きな幅を持たせた範囲を設定しており、その理由として導管の太さや並び方が木の種類によって異なることを挙げるとともに、その具体例として辺材部は導管が太く密度が粗い点を指摘している。ところが、明細書段落0022以下の実施例では、原料の木材としはいて杉板や桐板を用いているに止まり、導管が存在するかのように記載されている杉には導管自体が存在せず、また桐については散孔広葉樹で辺材部導管周囲には水溶液が注入可能であり、辺材部が杉や桐にあっては導管が太く密度が低いものであるとの認識自体に疑義が存するものである。このように特許文献1では繊維方向における、水溶性薬剤の移動を考慮し上に適した羽目板の単板積層構造を開示するものではない。
特許文献2にあっても、明細書段落0011で、導管及びその周辺部に十分な耐火剤が含浸されていることが示されているが、明細書段落0017以下の実施例では、原料の木材として桐板を用いているに止まり、心材部と辺材部とを区別して用いていない。このように特許文献2では、言い換えれば心材部と辺材部とを区別して用いずとも、桐材に含浸した耐火薬液と桐材に潜在的に含浸されているタンニンが熱によって架橋反応して形成されたものと推測されるガラス様膜の形成によって不燃特性が各段と向上させることができると言う技術思想を開示したものであると、認められる。
また、本件発明者においては桐材にだけ特有のタンニンがあるという話は聞いたことがなく、架橋反応しても有機物であることには変わりがなく、燃え難さは関係がないと考える次第である。
このように特許文献2でも繊維方向における、水溶性薬剤の移動を考慮した羽目板の単板積層構造を開示するものではない。
特許文献3にあっては、複数の凹部形成用突起の部分だけに薬液を付着させ、乾燥した単板に前記突起を押し付けることに、より単板をその厚さ以下に圧縮するとともに薬液を単板に接触させたのち、突起を単板から離脱させて単板の組織内に薬液を浸透させることを特徴とする単板への薬液注入方法を提案するものである。ところがこの特許文献3の方法では木材内部に薬剤が入るとは考え難く、凹部形成用突起の部分だけに薬液を付着させても、心材部にあっては薬液の移動がほとんど生じない。
このように特許文献3でも繊維方向における、水溶性薬剤の移動を考慮した羽目板の単板積層構造を開示するものではない。
特許文献4にあっては、角材の前側部および後側部を除いた板材による積層部に、この角材の長さ方向に対して連続するまたは断続する空洞部と溝部を形成して、これら空洞部または溝部の一部へ、充填材を注入して多数の壁構成材を形成し、これら壁構成材をその上下方向に積み重ねて結合手段により連結した後、空洞部または溝部の充填材の未注入部へ充填材を注入して、それぞれの壁構成材の接合隙間を閉塞し一体的な壁を構築させることを提案している。ところが特許文献4にあっては、板材同士の間に形成された空洞部または溝部には薬液が注入できるが、それぞれの板材の内部には、薬液を注入することができず、それぞれの板材の内部での薬液の移動も期待することができない。
このように特許文献4でも繊維方向における、水溶性薬剤の移動を考慮した羽目板の単板積層構造を開示するものではない。
特許文献5にあっては、木材各4面を鋸目により背割加工した溝に薬液を垂らし込み、木材内部に流し込む。尚背割と直角に木材各4面より穴を明け、木材の内部で流れ込んだ樹脂が横穴に入り力骨となる。合成樹脂液が硬化した時点で表面も薬液にて処理した木材及び木材加工製品を提案している。ところがこの特許文献5にあっても心材部と辺材部とを区別して用いておらず、心材部にあっては薬液の移動が困難である。しかも鋸目により背割加工した溝は、木材の繊維の伸びる方向に沿って設けられているものであり、溝同士の間への薬液の移動はほとんど期待することができない。
このように特許文献5でも繊維方向における、水溶性薬剤の移動を考慮した羽目板の単板積層構造を開示するものではない。
(今日の日本国におけるスギ資源の活用状況)
翻って日本国の針葉樹の代表的資源であるスギについてみると、スギは日本国内に大量の資源がある。現在日本国のスギの主製品は、スギ原木の中心部分を、「心持ち」や「心サリ」と呼ばれる形態に製材して得られた柱材や梁材である。他方、辺材の部分は、従来は野地板を取っていたが、その需要は合板に取られているために、現在は用途がない。
前述のように、スギを始めとする針葉樹の心材部は生物材料であるため、外部からの異物浸入を防ぐ細胞構造になっている。樹木の生命活動をしている辺材部は地中からの水を葉に移動するのに適した構造になっており、辺材部の木材では薬剤水溶液が繊維方向に容易に移動する。
具体的には、スギは辺材部を除いて通常の減圧加圧注入では水溶液薬剤が繊維方向には50mm程度しか浸潤しないし、繊維直行方向には5mm程度しか浸潤しない。
他方、スギの辺材部にあっては、通常の減圧加圧注入で水溶液薬剤が繊維方向に100mm以上も浸潤し、繊維直行方向には5mm以上浸潤することが本発明者の予備試験で確認されている。
(先の発明と特許出願)
この知見に基づき、本発明者は準不燃又は難燃木材の発明を完成させて、日本国特願2018ー226298号に係る特許出願を2018年12月3日に行ない、この出願は特許文献6として公開された。
この特許文献6に係る発明は、均質な耐火性能を発揮し得る準不燃又は難燃木材とその製造方法の提供を図ることを課題とするものであり、スギなどの針葉樹や散孔広葉樹材の辺材だけを原料とした準不燃又は難燃木材の提供を図るものである。その際、木材には適当な間隔で、所定深さの注入孔を形成し、重ね合わせ面を内側にして木材同士を接着剤で積層するものである。この様に加工された積層材に対して水溶性などの不燃薬剤を減圧・加圧注入することによって、全体にほぼ均一で安定した不燃性を備えた準不燃又は難燃木材を提供するものであった。
この特許文献6に係る発明の準不燃又は難燃木材は、厚さ20mmのスギ板目辺材の積層材であり無地板目材で表面が構成されるため、見栄えは非常に良いし、積層面の両側の巾3mm、深さ5mmの注入孔は外観上も問題がない。そして、不燃薬剤注入量について濃度25%、140~150kg/m3で準不燃に必要な量を注入したものについて準不燃燃焼試験を行なったところ、発熱量及び裏面までの亀裂の有無についてはいずれも合格であった。
ところが、この発明にあっては、辺材のみを用いるため、1本の樹木から採取できる原料木材に限りがあるという課題があった。
また、LVLの中に有効な薬剤量を均一に注入する手段として穿孔を施す場合、断面欠損による曲げヤング係数低下の影響を避けることができず、特に、構造材として実施する場合、この影響を無視することができないが、何の先行技術文献にあっても、この点に関する開示や示唆がなされていなかった。
(納期)
また従来の準不燃木材内装材は、木材の部位(辺材・心材)の相違で薬剤注入量のバラツキが大きく既製品生産が不可能なために、引合―商談成立―材料手配―材料選別―薬剤注入―注入製品選別―製品乾燥―仕上げ加工の工程を必要とし、商談成立から納品までに半年から1年の日数が必要とされていた。また材料によっては必要量の薬剤注入が困難で廃棄しなければならないこともあり、歩留が悪くてコストが高くなるという問題点があった。このように納期が非常に長く、コストが異常に高いことが準不燃木材の普及の障害要因になっていた。
日本国特許第4221599号公報 日本国特開2007ー63749号公報 日本国特許第3344703号公報 日本国特開平11ー131635号公報 日本国特開平8ー281203号公報 日本国特開2020-89978公報
本発明は、不燃処理薬剤を含有する羽目板に関する耐火性能の信頼性の向上と、原料の調達容易性並びに量産性の改善との両立を課題とする。
本発明は、次の知見に基づき完成された。
まず、木材の辺材部にあっては、針葉樹では細胞壁の膜孔を経由して水溶液が移動し、広葉樹では充填物が存在しない道管内を水溶液が移動する。一方、木材の心材部にあっては、針葉樹では膜孔が閉じているため、広葉樹では細胞内充填物質が存在するため、細胞内腔経由の水溶液の移動は不可能である。ところが、ロータリーレースで製造されたロータリー単板を原料とする単板積層材では、樹種と辺材・心材の区別が無く、いずれの場合にも、単板の裏割れや割れ目を経由することによって、減圧加圧された水溶液を繊維方向に100mm~250mm程度、浸潤させ得ることが見出された。
また、繊維直交方向の水溶液の浸潤では、水溶液が繊維方向を横切って移動するのではなく、長さ方向から少し傾斜した繊維に沿って発生した単板裏割れ経由で水溶液が移動することで、結果として横方向にも水溶液が移動したように見えることが見出された。
具体的には、本発明は下記の手段を備えた準不燃羽目板を提供することにより上記の課題を解決する。
本発明の羽目板は、その表裏を構成する表裏単板と、前記表裏単板の間に積層されたコア単板層とを備える。
前記表裏単板は、その単板繊維方向が前記羽目板の長さ方向と略平行である。
他方、前記コア単板層は、複数枚のコア単板が厚み方向に重ねられた層であり、これらの全ての前記コア単板は、その単板繊維方向が前記羽目板の長さ方向と略直交している。
前記表裏単板は、厚さ1.5mm~4.0mmであり、前記コア単板層の厚さは、前記表裏単板の厚さ合計以上である。
そして全ての前記表裏単板には、水溶液で単板板目面から裏割れや割れ目経由して浸潤した不燃薬剤が存在する。他方、全てのコア単板には単板繊維方向に沿って発生した裏割れやひび割れを経由して水溶液で浸潤した不燃処理薬剤が存在する。
本発明にあっては、単板が水溶性接着剤により積層された上記所定の寸法の羽目板原材を作成した後で、この羽目板原材に対して不燃処理薬剤を注入することによって得られる。
上記のように単板を積層して得られた羽目板原材に対して、水溶性などの不燃薬剤を減圧・加圧注入する。
これにより、前記表裏単板には、前記羽目板現材の表裏面になっている単板板目面から表裏1層目接着剤層(深さ4mm以下)まで薬剤が表裏面から浸潤する。
また、前記表裏単板にはロータリーレース加工時加わる衝撃などによって、微細なひび割れが多数存在する。
したがって、積層に際しては、前記表裏単板の裏側の板目面(単板裏割れが有る面)を外側にして積層しても構わないし、前記表裏単板の裏側の板目面(単板裏割れが無い面)を外側にして積層しても構わない。いずれの板目面を外側にしても、前記表裏単板の板厚を1.5mm~4.0mmに制限することによって、上記裏割れやひび割れから、不燃薬剤をその全厚さに渡って浸潤させることができる。
また前記コア単板層を構成している全ての前記コア単板は、その単板繊維方向が前記羽目板の長さ方向と略直交しているものである。従って、全ての前記コア単板は、その全ての木口が、準不燃羽目板の左右の側面(コバ面)に露出しており、この露出した左右側面の側面(コバ面)から、薬剤が浸入し、浸入した薬剤は、前記繊維に沿って発生した単板裏割れに沿って、前記不燃処理薬剤が良好に流体移動することで、全体に薬剤が注入される。
従って本発明に係わる準不燃木材は、前記道管と仮道管に沿って発生した単板裏割れ等を経由して流体移動した不燃処理薬剤が存在する前記コア単板層と、前記コア単板層を挟んで上下に位置すると共に上下両面の板目面等から浸潤した不燃処理薬剤が存在している表裏単板とを備えたものである。
不燃薬剤の水溶液の注入は、主に傾斜した繊維方向に沿って発生した単板裏割れ経由で移動するために、見かけの繊維直交方向への移動は繊維方向の1/10~1/20の距離に止まる。ところが、繊維方向には比較的長い距離を移動することができることができ、本発明者が行った予備実験では以下の浸潤状態が確認されている。
例えば、スギ辺材LVLでは繊維方向に長さ150mm以上薬剤が浸潤する。スギの辺材からなる単板及びスギの心材からなる単板が混在したLVLでは、繊維方向に長さ150mm~200mm薬剤が浸潤する。ポプラの辺材からなる単板及びポプラの心材からなる単板が混在したLVLでも、繊維方向に長さ150mm~200mm薬剤が浸潤する。従って、前記コア単板層にあっては、準不燃羽目板の左右の側面に露出している各コア単板の左右側面の木口から、薬剤が浸入するため、スギやポプラなどの樹種の相違や辺材・心材の区別に関わりなく、ロータリー単板を用いる場合には、左右方向の巾寸法を100mm~310mmとすれば、左右の側面から巾方向の中央に至るまで万遍なく薬剤を浸潤させることができる。
羽目板の表裏を構成する表裏単板にあっては、その単板繊維方向が前記羽目板の長さ方向と略平行であるため、上記の薬剤が浸潤する長さよりも、表裏単板の繊維方向の長さがの方が長くなってしまう。ところが、前述のように、前記表裏単板には、その表裏それぞれに傾斜した繊維に沿って発生した単板裏割れや割れ目が存在する。そのため、これらから薬剤が約5mm程度の深さで浸潤する。
準不燃羽目板の製造方法にあっては、例えば次の生産方法を取ることはできる。まず生産工場の都合が良い巾で、表裏単板とコア単板層とを積層して積層材を生産し、この生産された積層材を、薬剤注入前に羽目板用の指定巾にカットする。この巾カットされた所定寸法の羽目板原材に薬剤注入する。その他の生産工程は従来の方法と実質的に同一であり、製材品由来の原料の場合と異なりボーリングやスリットカットを含む特別な積層接着などの工程を省くことができるため、量産に適しており大幅にコストを下げることができる。
特に、厚さ12mm以上でも準不燃性能の木材が可能との実験結果が出ているため、製材品で12mm~30mm(2回)厚さの4面加工製品を生産するより、単板積層材で12mm~15mm厚さの単板積層材製品を生産する方が、プレーナー加工による歩留まりの低下を抑制することができるため、コスト競争力が向上する。
さらに、巾広のボードの状態で表面に化粧単板を貼って羽目板寸法の小巾板にカットしてから薬剤注入する工程にすれば、低コストで準不燃化粧羽目板を生産することもできる。
また本発明は、準不燃羽目板を製造する方法において、次の方法で実施することにより、その納期を飛躍的に短縮することができる準不燃羽目板の製造方法を提供することができたものである。
まず、在庫用準不燃羽目板を製造する。在庫用準不燃羽目板は、納品の対象となる前述の準不燃羽目板と積層構造及び厚みが同一である在庫用羽目板原材に対して不燃処理薬剤を注入して、乾燥養生させたものである。但し、この在庫用準不燃羽目板は、巾寸法と長さ寸法との少なくともいずれか一方が前記準不燃羽目板よりも大きい。
そして、あらかじめ在庫してある前記在庫用準不燃羽目板の巾寸法と長さ寸法とのいずれか一方を切断して納品の対象となる前記準不燃羽目板を製造するものである。
前記在庫用準不燃羽目板は厚さが30mm以内、巾が310mm以内であり、前記在庫用準不燃羽目板の表裏を構成する前記表裏単板の厚さが1.5mm~4.0mmであることが適当である。
本発明に係る準不燃羽目板にあっては、その厚さ・長さ・巾方向のどの方向にあっても薬剤を均一に注入することができる。よって、所定サイズ(例えば、厚さ:12~30mm、巾:310mm、長さ:4100mmのサイズ)の在庫用羽目板原材に対して薬剤を注入し乾燥させた在庫用準不燃羽目板を予め生産して在庫を保管しておき、顧客から注文があった時点で在庫用準不燃羽目板を、注文サイズにカットして納入することが可能になる。その結果、従来商談成立から納品までに半年から1年の日数が必要とされていた準不燃羽目板の納期が、切断梱包等に要する日数で足りるようになり、受注後約10日で納品を行うことが可能になるという新たなビジネスモデルを展開することができる。
本発明は、準不燃木材などの不燃処理薬剤を含有する羽目板に関する耐火性能の信頼性の向上と、原料の調達容易性並びに量産性の改善との両立を図ることができる準不燃羽目板とその製造方法を提供することができたものである。
本発明の実施の形態に係る準不燃羽目板の斜視図。 同準不燃羽目板の各層の平面図。 (A)本発明の実施の形態に係る準不燃木材用の木材を得るための原木の横断面構造の説明図、(B)他の実施の形態に係る準不燃木材用の木材を得るための原木の横断面構造の説明図。
以下、図面を参照して本発明の実施の形態を説明する。
この実施の形態に係る準不燃の羽目板11は、図1、図2に示すように表裏面12と前後端面13と左右側面14とを備えている。
羽目板11の表裏面12は、表裏単板21によって構成されている。
表裏の両表裏単板21の間にはコア単板層31が配置されており、複数枚のコア単板32が積層されている。
これらの表裏単板21とコア単板32は、定法に従って、耐水性等の接着剤によって互いに接着されている。
(表裏単板21について)
表裏単板21は、その単板繊維方向(図2に示す矢印S)が羽目板11の長さ方向と略平行であり、通常のLVLの羽目板と同様、その木口面(木材の繊維方向と略直交する端面)は、羽目板11の前後端面13に配置されている。表裏単板21の厚さは1.5mm~4.0mmである。
(表裏単板21の不燃薬剤)
表裏単板21には、不燃処理薬剤が、表裏面に露出している板目面の裏割れや割れ目から浸潤した不燃薬剤の水溶液が存在している。
具体的には、所定寸法に仕上げられた羽目板11に対して、減圧加圧注入缶を使って、不燃・準不燃・難燃処理薬剤などの水溶液が注入される。
その際、表裏単板21は、羽目板11の表裏面12の1面の他、前後端面13及び左右側面14の4面に露出している。そのため薬剤の水溶液は、これらの面から注入されるものの、前後端面(即ち木口面)13及び左右側面(即ちコバ面)14の4面からの薬剤の水溶液の移動距離は、羽目板11の全長よりも短い。ところが、羽目板11の表裏面(即ち板目面)12の一つの面は、全面に露出しているため、表裏面12からの薬剤の水溶液は、その全面から、木材の裏割れや割れ目を経て内部に浸潤する。
(コア単板層31について)
コア単板層31を構成する全てのコア単板32は、単板繊維方向(図2に示す矢印T)が羽目板11の長さ方向と略直交している。
通常のLVLの羽目板とは異なり、その木口面(木材の繊維方向と略直交する端面)は、羽目板11の左右側面14に露出している。コア単板層31の厚さは、表裏2枚の表裏単板21の厚さ合計以上である。
(コア単板層31の不燃薬剤)
全てのコア単板32には、仮道管又は導管に沿って発生した単板裏割れ経由で流体移動した不燃処理薬剤が、その全体に存在する。
具体的には、所定寸法に仕上げられた羽目板11に対して、減圧加圧注入缶を使って、不燃・準不燃・難燃処理薬剤などの水溶液が注入される。
その際、コア単板32は、前後端面13及び左右側面14の4面に露出している。そのため薬剤の水溶液は、これらの面から注入されるものの、その単板繊維方向(矢印T)が羽目板11の巾方向に配置されているため、前後端面13の2面からの薬剤の水溶液の移動距離は、左右側面14の2面からの移動距離よりも短い。ところが、左右側面14の2面から注入された不燃・準不燃・難燃処理薬剤などの水溶液は、単板繊維方向(矢印T)に沿ってある程度の距離が移動できる。具体的には、コア単板32がスギ辺心材からなる単板であれば単板繊維方向(矢印T)に長さ150mm以上薬剤が浸潤し、スギの辺材からなる単板及び材芯からなる単板であれば単板繊維方向(矢印T)に長さ150mm~200mm薬剤が浸潤し、ポプラの辺材からなる単板及び材芯からなる単板であれば単板繊維方向(矢印T)に長さ80mm~200mm薬剤が浸潤することが、本発明者の予備試験で確認されている。
このように、コア単板32における単板繊維方向(矢印T)への薬剤の水溶液の移動可能距離の2倍以内に、羽目板11の巾を制限することにより、羽目板11の左右の左右側面14に露出しているコア単板32の左右の木口面から注入された薬剤の水溶液は、全巾に達することができる。
従って、確実に均一に薬剤の水溶液をコア単板32の全体に存在させることができる。
(木材11の製造)
一般に、木材は辺材部と心材部に大別されることが多く、辺材部とは丸太の横断面で外周部の色の白っぽい部分を指し、心材部とは丸太の横断面で中心部の色の赤っぽい部分を指すと言われるが、さらに詳しくは、心材部は中央部の未成熟部と成熟部との2つの領域に区別することができ、また辺材部と心材部との境界領域の白線帯が存在する場合もある。従って、図3に示すように外側から辺材部A、白線帯B、心材熟成部C及び心材未熟成部Dとの4つの領域に区分することができるが、本発明にあっては、単に心材部と言う場合には、白線帯B、心材熟成部C及び心材未熟成部Dを含む部位を示すものとする。
本発明においては、図3(A)に示すように、流体移動が良好な辺材部Aのみならず、流体移動が比較的悪い心材部であっても、前述のように80mm~200mm以上薬剤が浸潤する。
従って、求められる羽目板11の単板21、32の巾に応じて、最適な樹種や使用部位を選定して用いることによって、羽目板11の全体に不燃・準不燃・難燃処理薬剤が良好に存在する羽目板11を製造することができる。
もちろん、図3(B)に示すように、液体が木材内部で繊維の伸びる方向に流体移動が良好に行われる辺材部Aだけを使うものであっても構わないし、これらを区別せずに用いることもできる。
例えばコア単板32に、スギ辺材からなる単板を用いた場合、スギの辺材からなる単板及び芯材からなる単板を区別せずに混在して用いた場合、ポプラの辺材からなる単板及び材芯からなる単板を区別せずに混在して用いた場合等々、樹種や辺材・心材の区別とは関わりなく、ロータリー単板であれば、羽目板11全体の厚さが12mm~30mm、巾が100mm~310mm、長さが2000mm~4500mmとすることが適当である。
(薬剤の注入)
薬剤の注入加工は、上記のように単板が水溶性接着剤等により積層された所定寸法の羽目板原材を作成し、羽目板原材に対して、不燃化処理薬剤を注入する工程である。具体的には羽目板原材に対して、減圧加圧注入缶を使って、不燃・準不燃・難燃処理薬剤などの水溶液を注入した準不燃木材を完成させる。
薬剤の注入量は、表裏単板21及びコア単板層31の寸法や樹木の種類や生育した地域差に応じて設定すれば良いが、日本産のスギの場合の目安は、厚み18mmの木材11では約150kg/m3とすることが適当である。
なお、木材の種類と生育状態によって、薬液の含浸状態は変化するため、減圧条件と時間、加圧条件と時間、及び繰り返し回数は水溶性の着色剤を用いた予備実験で確認して実施することが好ましい。
また、工程管理上の注入量は注入前後の重量を測定し、その差をロットの平均注入量として管理することが好ましい。
(注入後の工程)
養生:注入薬剤の木材内部の平準化のために乾燥を含む養生をすることが好ましく、養生期間は予備実験で決定する。
乾燥:販売先と取り決めるなどして決定された商品としての品質を満たすために、含水率を管理する。品質の向上からは人工乾燥を行うことが好ましい。
仕上げ加工:商品としての所定の条件を満たすために、板巾はリップソー、長さはクロスカットソー、表面はサンダーやモルダーで仕上げるなどの仕上げ加工を施す。
検品:商品としての品質を満たすために必要な検品を行う。例えば、厚さと巾はノギスで、長さは鋼製巻尺で測定し、外観と表面性は目視と手触りで確認する。
梱包:準不燃木材の製品は小結束して6面被覆して外気の水分を遮断したり、荷傷みをしたりすることがないように、プラスチックシートで被覆してテープで固定したりするなどの必要な梱包を施す。
この実施の形態に係る準不燃木材は耐火改質木質材料全体としてほぼ均一で良好な耐火性能を発揮することができる。薬剤注入が不十分な部分が存在する木質材料が加熱されると、200℃前後以上の高温域に達することによって、不十分な部分の木材組織から可燃性ガスが発生し、当該ガスが発火する。その結果、その耐火性能は大きく損なわれてしまうが、本発明の羽目板11は、十分な量の耐火用薬剤が略全体に含浸されているため、木材組織から可燃性ガスが発生することを抑制することができ、安定した耐火性能を示すことができる。
(工程管理)
本発明の実施に際して、生産された全ての羽目板11が安定した耐火性能を示すものとするには、工程管理が重要である。
・浸潤長さの確認
予備乾燥後に生産ロット毎に4~6個の試料を採取し、染色液注入試験を行い、薬剤の浸潤長さを確認する。試験方法は、染色液を減圧加圧注入した後に、長さ10cm毎に切断をして、切断面の染色液浸潤性を確認する。
・注入前含水率測定
注入前含水率は、薬剤の含浸に影響を及ぼすため、高周波含水率計で含水率を測定することは重要である。望ましくは、生産ロット毎に無作為に6個の試験片を採取し、全乾法でも測定する。
・薬剤注入量測定
注入ロット毎に減圧・加圧工程の前後の注入ロットの重量を測定し、その差をそのロットの平均薬剤注入量として管理を行うことによって、十分な量の薬剤が注入されているか否かを確認する。
・乾燥後の含水率測定
生産ロット毎に6個の試料を採取し全乾法で重量を測定し、測定された重量から平均薬剤量を差し引いて水分量を推計する。この数値と高周波含水率計の数値の相関表を作成して、製品の小ロットの含水率測定を行う。
・寸法精度の確認
羽目板11の厚さ・巾=ノギスで測定する。精度は顧客との取り決めによる。
羽目板11の長さ=鋼製巻尺で測定する。精度は顧客との取り決めによる。
・製品検査
全ての製品の外観検査を目視で行う。内容は顧客との取り決めによる。
・梱包の確認
製品は結束後に6面全てをプラスチックシートで被覆し、外気に触れないようにする。
荷扱いによる傷を防止するために必要なパレット、クラフト紙で包装する。
・表示の確認
梱包外部の側面と前後端面には以下の内容を記入した紙を貼りつける。
商品名、商品のグレード、原料樹種、処理薬剤種類、製品寸法、製品数量(入数)、生産者名、生産場所、生産ロット番号及びバンドル番号。
(品質管理)
上述の工程管理とともに、品質管理を徹底して行い、安定した耐火性能を示す製品のみを出荷する。
・燃焼試験=国土交通省令に従い実施する。具体的には、コーンカロリーメーターで所定の条件で、必要母数に従った個数を測定する。コーンカロリーメーター試験結果と注入ロット毎注入量の相対関係記録を作成することによって、工程管理の精度を高めることができる。
・薬剤注入量管理=薬剤注入前後の薬剤量の管理(頻度=生産ロット毎)を行う。具体的には、注入前後の台車に乗せた材料の重量を測定し、その差を計算して木材体積で割り、当該ロットのm当りの平均注入薬剤量とする。
この実施の形態に係るコア単板32は、1枚物の板材を実施することもできるし、複数枚の木材を羽目板11の長手方向に並べたものとして実施することもできる。
準不燃木材製品における最大の問題点が、不燃薬剤は木材中に均一に注入されていなくて品質がバラバラであり有効な量の薬剤注入がされていない製品が散見されたり、薬剤を注入しすぎた白華が発生したりするなど、品質の安定性に関する問題である。納入業者は『木材は生き物の材料だから元々品質がバラバラなので仕方ありません。』というような無責任な回答をして、品質不良の材料を平気で納入してくるとの話を、建築業界の関係者から聞くこともある。
一方では2050年には日本のCO2放出量を0にするという政府の方針もあり木造建築に対する関心が急速に深まっている現状において、本発明を実施することによって、品質の安定した準不燃羽目板を量産し低コストで供給することができる。
以下、発明の理解を高めるために実施例を示すが、本発明はこの実施例に限定して理解されるべきではない。
(実施例に係る試料1・2の作成)
ポプラを原木として、前述の(木材11の製造)の記載に従って、ロータリーレースを用いて厚さ:1.7mmの単板材料を製造し、この単板材料に切断積層等の必要な加工を施し、所定の単板繊維方向S、Tを備えた単板21、32が積層された試料1及び試料2に係る羽目板11を製造した。その際、辺材部A、白線帯B、心材熟成部C及び心材未熟成部Dは、区別せずに用いた。
試料1に係る羽目板11の寸法:12mm×110mm×1200mm
試料2に係る羽目板11の寸法:12mm×300mm×1200mm
注入量は樹種・単板厚さなどで変り、実用上は薬剤濃度調節で変更が可能ではあるが、本実施例では前述の(薬剤の注入)の記載に従って、試料1及び試料2に係る羽目板11に下記の条件で減圧加圧注入缶を使って薬剤を注入した後、乾燥養生を行って、試料1及び試料2を完成させた。
薬剤注入条件
注入薬剤:丸菱油化株式会社製のリン・チッソ系化合物系難燃剤W2-50、濃度20%
減圧:0.1気圧、1時間
加圧:8.0気圧、1時間
(注入量の確認)
得られた試料1及び試料2の羽目板それぞれ30枚の薬剤注入量を重量測定及び統計処理によりそれぞれのバラツキ(平均、標準偏差(σ)及び平均―3σ)を確認し、その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
表1において、単位は何れもkg/m3である。
試料1全体(30枚)は、30枚の資料1について全体(母数30)のバラツキを示す。
試料1長手方向10分割(30枚×10)は、全ての試料1を長手方向に等間隔で10分割して、それら(母数300)のバラツキを示す。
試料2全体(30枚)は、30枚の資料2について全体のバラツキを示す。
試料2左右両側部(30枚×2)は、全ての試料2を巾方向に等間隔で3分割して、左右両側部(母数60)のバラツキを示す。
試料2中央部(30枚×1)は、全ての試料1を長手方向に等間隔で10分割して、中央部(母数30)のバラツキを示す。
(考察)
結果として、長手方向及び中央部、両側部の薬剤注入量とそのバラツキに関しては有意差が無いことが確認された。従って、薬剤が実施例の羽目板全体に亘って均一に注入されていることが確認された。
詳しくは平均―3σは、99.7%以上の試料が当該数値以上であるという数値であり、一般的には実質上の最低保証値になっている。従って、試料1の評価として、全体並びに単板の長手方向において、99.7%が±約11%の範囲内あることが確認された。また、試料2の評価として、全体並びに単板の幅方向において、平均値、標準偏差、最低保証値の全てに有意差がないことが確認された。
よって、本発明の羽目板では、樹種・単板厚さにより注入薬剤濃度を調節することで薬剤注入量を任意に設定することが可能で、厚さ・長さ・巾方向のどの部分をとっても同じ性能を保証することが、実施例によって確認された。よって、例えば厚さ:12mm~30mm、巾:310mm、長さ:4100mmのサイズで乾燥した既製品を生産して在庫を保管しておき、顧客から注文があった時点で注文サイズにカットして納入すると言うビジネスモデルを実行しても、その納入した羽目板全体に薬剤が均一に注入されているものであって、同じ性能を保証することが可能になることが確認された。 
11…羽目板
12…表裏面
13…左右側面
14…前後端面
21…表裏単板
31…コア単板層
32…コア単板
A…辺材部
B…白線帯
C…心材熟成部
D…心材未熟成部
S…表裏単板の単板繊維方向
T…コア単板の単板繊維方向

Claims (4)

  1. 複数の単板が積層された羽目板であって、
    羽目板の表裏を構成する表裏単板と、
    前記表裏単板の間に積層されたコア単板層とを備え、
    前記表裏単板は、その単板繊維方向が前記羽目板の長さ方向と略平行であり、
    前記コア単板層は、複数枚のコア単板が厚み方向に重ねられた層であり、
    これらの全ての前記コア単板は、その単板繊維方向が前記羽目板の長さ方向と略直交しており、
    前記表裏単板は、厚さ1.5mm~4.0mmであり、
    前記コア単板層の厚さは、前記表裏単板の厚さ合計以上であり、
    全ての前記表裏面単板には、単板裏割れや単板加工時に発生した微小な割れ目を水溶液で経由して板目面から浸潤した不燃薬剤がその全体に存在し、
    全ての前記コア単板には、道管又は仮道管に沿ってできた単板裏割れ内を前記単板繊維方向に沿って流体移動した不燃処理薬剤がその全体に存在することを特徴とする準不燃羽目板。
  2. 前記コア単板は、ロータリー単板であり、
    羽目板全体の厚さが12mm~30mm、巾が100mm~310mm、長さが2000mm~4500mmであることを特徴とする請求項1に記載の準不燃羽目板。
  3. 請求項1又は2に記載の準不燃羽目板を製造する方法において、
    前記準不燃羽目板と積層構造及び厚みが同一であり、巾寸法と長さ寸法との少なくともいずれか一方が前記準不燃羽目板よりも大きな在庫用羽目板原材を作成し、前記在庫用羽目板原材に対して不燃処理薬剤を注入して在庫用準不燃羽目板を製造し、
    前記在庫用準不燃羽目板の巾寸法と長さ寸法とのいずれか一方を切断して前記準不燃羽目板を製造することを特徴とする準不燃羽目板の製造方法。
  4. 前記在庫用準不燃羽目板は厚さが30mm以内、巾が310mm以内であり、
    前記在庫用準不燃羽目板の表裏を構成する前記表裏単板の厚さが1.5mm~4.0mmであることを特徴とする請求項3に記載の準不燃羽目板の製造方法。
PCT/JP2021/035316 2020-12-15 2021-09-27 準不燃羽目板とその製造方法 WO2022130727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022569720A JPWO2022130727A1 (ja) 2020-12-15 2021-09-27
CN202180042844.0A CN115803166A (zh) 2020-12-15 2021-09-27 半不燃壁板及其制造方法
US18/267,360 US20240091978A1 (en) 2020-12-15 2021-09-27 Semi-incombustible panel board and method for producing same
EP21906092.8A EP4265385A1 (en) 2020-12-15 2021-09-27 Semi-incombustible panel board and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020207585 2020-12-15
JP2020-207585 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022130727A1 true WO2022130727A1 (ja) 2022-06-23

Family

ID=82059008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035316 WO2022130727A1 (ja) 2020-12-15 2021-09-27 準不燃羽目板とその製造方法

Country Status (5)

Country Link
US (1) US20240091978A1 (ja)
EP (1) EP4265385A1 (ja)
JP (1) JPWO2022130727A1 (ja)
CN (1) CN115803166A (ja)
WO (1) WO2022130727A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138612A (ja) * 1990-11-27 1993-06-08 Matsushita Electric Works Ltd 改質木材の製法
JPH0612006U (ja) * 1992-07-22 1994-02-15 株式会社ノダ 建築用板
JPH08281203A (ja) 1995-04-18 1996-10-29 Yoshio Iishiba 改良木材
JPH11131635A (ja) 1997-10-29 1999-05-18 Hirota:Kk 角材組みによる建物構造体の壁体および角材組みによる建物構造体用壁体の製造方法
JP3344703B2 (ja) 1998-09-28 2002-11-18 株式会社住建産業 単板への薬液注入方法及びその装置
JP2007063749A (ja) 2005-08-29 2007-03-15 Fumitoshi Takeishi 桐材を用いた木製サッシ。
JP4221599B2 (ja) 2003-12-05 2009-02-12 秀友 関川 不燃木材板の製造方法
JP2020089978A (ja) 2018-12-03 2020-06-11 株式会社ユニウッドコーポレーション 準不燃又は難燃木材と、その生産方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138612A (ja) * 1990-11-27 1993-06-08 Matsushita Electric Works Ltd 改質木材の製法
JPH0612006U (ja) * 1992-07-22 1994-02-15 株式会社ノダ 建築用板
JPH08281203A (ja) 1995-04-18 1996-10-29 Yoshio Iishiba 改良木材
JPH11131635A (ja) 1997-10-29 1999-05-18 Hirota:Kk 角材組みによる建物構造体の壁体および角材組みによる建物構造体用壁体の製造方法
JP3344703B2 (ja) 1998-09-28 2002-11-18 株式会社住建産業 単板への薬液注入方法及びその装置
JP4221599B2 (ja) 2003-12-05 2009-02-12 秀友 関川 不燃木材板の製造方法
JP2007063749A (ja) 2005-08-29 2007-03-15 Fumitoshi Takeishi 桐材を用いた木製サッシ。
JP2020089978A (ja) 2018-12-03 2020-06-11 株式会社ユニウッドコーポレーション 準不燃又は難燃木材と、その生産方法

Also Published As

Publication number Publication date
EP4265385A1 (en) 2023-10-25
JPWO2022130727A1 (ja) 2022-06-23
CN115803166A (zh) 2023-03-14
US20240091978A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
Verma et al. Comparative study of mechanical properties of bamboo laminae and their laminates with woods and wood based composites
US8268430B2 (en) Manufactured wood product
US8372520B2 (en) Composite wood product and method for making the wood product
Bal Some technological properties of laminated veneer lumber produced with fast-growing Poplar and Eucalyptus
US20100119857A1 (en) Manufactured wood product and methods for producing the same
Diza Lestari et al. Physical and mechanical properties of glued laminated lumber of pine (Pinus merkusii) and jabon (Anthocephalus cadamba)
Mokhtar et al. Plywood from oil palm trunks
Wang et al. Development of structural laminated veneer lumber from stress graded short-rotation hem-fir veneer
JP6915885B2 (ja) 準不燃又は難燃木材と、その生産方法
Pröller An investigation into the edge gluing of green Eucalyptus grandis lumber using a one-component polyurethane adhesive
WO2022130727A1 (ja) 準不燃羽目板とその製造方法
JP4854518B2 (ja) 堅木ストランド製品
McGavin et al. A guide to the rotary veneer processing of coconut palms
Kozakiewicz et al. Influence of machining technologies and quality of logs on material losses of typical supply of Scots pine wood (Pinus sylvestris L.) destined for layered floorboards
JP2021133677A (ja) 不燃処理薬剤を含有する木材とその生産方法
US20210355673A1 (en) Fire-resistant bamboo structural building material
WO2022079950A1 (ja) 不燃処理薬剤を含有する木材とその生産方法
Wan et al. Evaluation of the performance of composite wood decking bonded with phenol resorcinol formaldehyde and polyurethane adhesives after accelerated aging tests
Huang Industry prospective of delamination in wood and wood products
RU65423U1 (ru) Многослойная деревянная шпала
US6202320B1 (en) Method of lumber preparation to improve drying and development of a new engineered wood composite
Tripathi Mechanical properties of cross-laminated timber (CLT) panels composed of treated dimensional lumber
AU753226B2 (en) Timber lamination
Sumardi et al. Bamboo hybrid laminate board (Gigantochloa apus) strip with falcata veneer (Paraserianthes falcataria) in selected fiber directions
Piao et al. Mechanical properties of finger-jointed wood from composite utility poles made of small diameter timber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569720

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18267360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906092

Country of ref document: EP

Effective date: 20230717