WO2022127946A1 - Uso de composiciones vacunales basadas en el dominio de unión al receptor del virus sars-cov-2 en el desarrollo de una inmunidad protectora - Google Patents

Uso de composiciones vacunales basadas en el dominio de unión al receptor del virus sars-cov-2 en el desarrollo de una inmunidad protectora Download PDF

Info

Publication number
WO2022127946A1
WO2022127946A1 PCT/CU2021/050014 CU2021050014W WO2022127946A1 WO 2022127946 A1 WO2022127946 A1 WO 2022127946A1 CU 2021050014 W CU2021050014 W CU 2021050014W WO 2022127946 A1 WO2022127946 A1 WO 2022127946A1
Authority
WO
WIPO (PCT)
Prior art keywords
rbd
sars
cov
use according
vaccine
Prior art date
Application number
PCT/CU2021/050014
Other languages
English (en)
French (fr)
Inventor
Vicente Guillermo Verez Bencomo
Yury VALDÉS BALBÍN
Dagmar GARCÍA RIVERA
Rolando OCHOA AZZE
Yanet CLIMENT RUIZ
Humberto GONZÁLEZ RODRÍGUEZ
Ivette OROSA VAZQUEZ
Mariannis DÍAZ HERNÁNDEZ
Belinda SÁNCHEZ RAMÍREZ
Eduardo OJITO MAGAZ
Kalet LEÓN MONZÓN
Consuelo Milagro MACIAS ABRAHAM
Arturo CHANG MONTEAGUDO
Delia Esther PORTO GONZÁLEZ
Marta DUBED ECHEVERRÍA
Mireida RODRÍGUEZ ACOSTA
Original Assignee
Instituto Finlay De Vacunas
Centro De Inmunología Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Finlay De Vacunas, Centro De Inmunología Molecular filed Critical Instituto Finlay De Vacunas
Priority to CA3202603A priority Critical patent/CA3202603A1/en
Priority to KR1020237024030A priority patent/KR20240035738A/ko
Priority to CN202180093131.7A priority patent/CN117440825A/zh
Priority to EP21854867.5A priority patent/EP4265272A1/en
Priority to AU2021404744A priority patent/AU2021404744A1/en
Priority to US18/266,486 priority patent/US20240042013A1/en
Priority to JP2023536891A priority patent/JP2024510065A/ja
Publication of WO2022127946A1 publication Critical patent/WO2022127946A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • A61K2039/55594Adjuvants of undefined constitution from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention is related to Biotechnology and Medicine. Particularly, with the use of vaccine compositions based on the Receptor Binding Domain of the SARS-COV-2 virus in the treatment of patients recovered from COVID19 and in those vaccinated subjects where protective immunity does not develop, in which it has decreased or no significant natural protective antibody response was induced.
  • the COVID19 disease is of very recent appearance, in Wuhan, China in December 2019, where serious cases of pneumonia of unknown etiology began to be reported.
  • the disease caused by the SARS-CoV-2 virus is characterized by rapid spread between people, mainly with the appearance of symptoms such as fever, cough, runny nose, sore throat and difficulty breathing, in symptomatic cases, which represent less than fifty %.
  • the disease is asymptomatic, this being an important element in the spread of the disease and an epidemiological challenge for its control (WHO Coronavirus disease (COVID-2019) situation reports. https://www.who .int/emergencies/diseases/novel-coronavirus 2019/situation-reports (Accessed 13 August 2020).
  • SARS-CoV-2-like coronaviruses known as MERS and SARS
  • MERS and SARS have been causative agents of similar epidemics in previous decades.
  • SARS has greater homology with SARS-CoV-2, and one of the elements of similarity is that both viruses use the ACE2 protein as a receptor to penetrate human cells. Therefore, in SARS as in SARS-CoV-2, the interaction between the receptor binding domain (RBD) of the viral protein S1 and the ACE2 protein (angiotensin-converting enzyme 2 ) is decisive for infection with the virus in humans.
  • RBD receptor binding domain
  • This RBD domain of the S protein or also known as the Spike of the SARS-CoV-2 virus is a fragment of approximately 195 amino acids (corresponding to the sequence 333-527) that contains the receptor binding motif (RBM). motive) that constitutes the region through which the virus interacts with the ACE2 receptor.
  • RBM receptor binding motif
  • the RBD It also contains 4 intramolecular bisulfide bridges between Cisternae 336-361, 379-432, 391-525 and 480-488, respectively, which generates a very compact and stable structure (Lan and cois (2020), Nature https://doi .Org/10.1038/s41586-020-2180-5).
  • the RBD is a small molecule, whose molecular mass ranges between 25-27 kDa depending on the host where it is expressed and the carbohydrates incorporated, mainly in the asparagines N331 and N343 (Chen, WH et al (2017) Journal of Pharmaceutical Sciences 106: 1961 -1970).
  • Vaccine strategies have gone from using the inactivated virus, through genetic constructions that contain the genetic material of the virus incorporated either in adenovirus or as messenger RNA, to subunit vaccines obtained by molecular biology in hosts.
  • the preferred molecules for this purpose are the S protein, or a fragment of its structure: the RBD.
  • the present invention describes for the first time, the use of vaccine compositions based on the receptor binding domain of the SARS-CoV-2 virus, in the treatment of patients recovered from COVID19 in whom there has been a decrease or no induced significant natural protective antibody response. Additionally, they can be used in individuals previously vaccinated with an adenovirus or RNA-type vaccine technology.
  • the vaccine compositions described are also being tested in uninfected individuals, but now show for the first time their ability to efficiently re-stimulate a strong immune response with neutralizing capacity in convalescent patients.
  • both vaccine strategies are based on a small recombinant protein of the SARS-CoV-2 virus, the RBD, may give particular advantages in this field of application.
  • a highly targeted response against the RBM which determines the natural interaction of the virus with the ACE2 receptor on host cells, is amplified/potentiated.
  • This protective response is an advantage when compared to other vaccine strategies such as attenuated virus vaccines, those based on the entire S protein or those based on viral vectors.
  • the present invention relates to the use of vaccine compositions that comprise the receptor binding domain (RBD) of the SARS-CoV-2 virus in the treatment of patients recovered from COVID19.
  • said recovered patients have humoral immunity characterized by at least one of the following conditions: response titer against RBD less than 1/1000, inhibition capacity of the RBD-ACE2 protein interaction less than 50% in a 1/100 dilution or SARS-CoV-2 neutralizing antibody titer below 1/160.
  • the present invention relates to the aforementioned use of vaccine compositions characterized in that they comprise a covalent conjugate between RBD and a carrier protein selected from the group comprising: tetanus toxoid, diphtheria toxoid and CRM197 .
  • Other vaccine compositions used in the use claimed in the present invention are those that comprise RBD as antigen, either in the form of monomer or dimer absorbed in AIOH 3 .
  • Other claimed vaccine compositions include the use of immunopotentiators such as the outer membrane vesicle of Neisseria meningitidis.
  • the above vaccine compositions are administered to patients recovered from COVID-19 in an intramuscular or subcutaneous immunization scheme that comprises a dose range between 1-100 pg of RBD, in a range of 1 to 3 immunizations, at intervals between 21 to 28 days.
  • the object of the present invention is the use according to the previous immunization scheme to obtain hyperimmune plasma with a high neutralizing capacity for SARS-CoV-2.
  • the present invention contemplates the use of the vaccine compositions referred to herein, in the immunization of subjects vaccinated with vaccine platforms other than subunit vaccines and who have not developed effective protective immunity or when it has decreased over time and It is not recommended to give a booster dose with the same vaccine used in primary immunization, as is the case with Adenovirus, inactivated Virus, attenuated Virus and mRNA vaccines.
  • An effective protective immunity according to the present invention is when at least one of the following conditions are met: response titer against RBD greater than 1/1000, inhibition capacity of the RBD-ACE2 protein interaction greater than 50% in a 1 dilution /100 or SARS-CoV-2 neutralizing antibody titer above 1/160.
  • the present invention describes the use of vaccine compositions based on the receptor-binding domain of the SARS-CoV-2 virus in recovered (convalescent) patients from COVID19, in whom there are no longer significant levels of natural anti-RBD antibodies that confer capacity neutralizing.
  • these vaccine compositions may contain dimeric and/or monomeric forms of the RBD absorbed in AIOH 3 , with or without an immunopotentiator, or be more complex, such as those described in detail in patent applications CU-2020-0057 and CU-2020-0057. 2020-0069, without being limited to these.
  • anti-RBD antibody titer below 1/1000 measured by ELISA, or neutralizing antibody titer of SARS affectivity -CoV-2 less than 1/160 measured by assays using the live virus or a pseudo virus, or inhibition capacity of the molecular interaction between the RBD and the ACE2 protein less than 50% at a serum dilution of 1/100 measured by a competitive ELISA.
  • the vaccine preparations induce the activation of the memory immune response against the virus, guaranteeing the existence of high titers of RBD antibodies, mostly with neutralizing capacity for several months (at least 6 months).
  • an additional booster dose may be administered to restore protection.
  • the vaccine compositions referred to in of the present invention can be used in the immunization of subjects vaccinated with vaccine platforms other than subunit vaccines that have not developed effective protective immunity or once immunity declines and a booster dose is required. It is reported in the literature that with vaccine platforms based on adenovirus vectors, subjects can only be immunized between 1-2 times, because after the first injection the organism produces antibodies against the adenoviral vector itself that can make the second dose ineffective. . (Casimiro, DR et al. (2003) J. Virol., 77: 7663-7668).
  • the vaccine preparations are administered to convalescent patients in an intramuscular or subcutaneous immunization scheme that includes a dose range between 1-100 pg of RBD, preferably between 30-60 pg, in a range of 1 to 3 immunizations, at regular intervals. between 21 -28 days.
  • the present invention also contemplates a method for obtaining hyperimmune plasma with neutralizing capacity for the SARS-CoV-2 virus, with the antibodies produced by convalescent patients from COVID19 after vaccination.
  • Hyperimmune plasma is useful for the treatment of moderate, severe or critical COVID19 patients, as has been shown by multiple authors (Bloch EM et al. (2020) J Clin Invest. 130:2757-65, Casadevall A. (2020) JAMA 324:455-7).
  • donors must be symptom-free, negative for SARS-CoV-2 detection by real-time PCR, and have a neutralizing antibody titer of at least 1/160, according to recommendations. from the EDA (US Department of Health and Human Services Food and Drug Administration.
  • Figure 2 Percentage values of inhibition of the RBD-ACE2 interaction of sera from subjects six months after receiving immunization scheme with mRNA vaccine and after applying booster dose with RBD vaccine.
  • B Concentration of anti-RBD antibodies detected in subjects immunized with inactivated virus vaccine who received booster doses with RBD vaccine.
  • Example 1 Variability of anti-RBD titers and inhibitory capacity of the RBD-ACE2 interaction in Cuban patients recovered from COVID19.
  • NUNC Maxisorp 96-well microtiter plates were coated with 50 pL of RBD at a concentration of 5 pg/mL in phosphate-buffered saline (PBSS) pH 7.0, incubated for 1 hour at 37°C , and at the end the assays were blocked. uncoated sites using 150 pL of a blocking solution (SSTF, Tween 20 (0.05%) [v:v] and 4% skimmed milk) for 30 minutes at 37 ° C. Then the sera dissolved in solution were added.
  • PBSS phosphate-buffered saline
  • Sera from these same 39 convalescents were used in an ELISA to determine their ability to inhibit the interaction of RBD and ACE2.
  • the plates coated with human ACE2-Fc (5 pg/mL) were blocked and the mouse RBD-Fc mixture with serum from convalescent individuals was added to them. dilutions from 1:100 to 1:10,000, which had been previously incubated for 1 h at 37 ° C.
  • 41% had inhibition values less than 30% and anti-RBD antibody titers less than 1/800.
  • the correlation was analyzed by the Spearman correlation method
  • both patients were immunized with 50 pg of dimeric RBD absorbed in AIOH3 and after 14 days of the immunization blood was drawn and with the serum obtained, the anti-RBD antibody titer and inhibition capacity of the RBD-ACE2 protein interaction and SARS-CoV-2 neutralizing antibody titer were determined again.
  • Table 1 shows the results of the two patients for the determinations made at time 0 (before immunization) and 14 days after immunization. As can be seen, both patients showed high titers of anti-RBD antibodies after a single immunization, values of inhibition of RBD-ACE2 protein interaction greater than 80%, and neutralizing antibody titers much higher than 1/160. It is important to note that the neutralizing titers increase to a greater extent than the anti-RBD titers, which supports that the applied immunization preferentially enriches the serum/plasma in antibodies with neutralizing capacity.
  • Example 3 Increase in the concentration of anti-RBD antibodies and inhibitory capacity of the RBD-ACE2 interaction in subjects previously immunized with inactivated vaccine and mRNA receiving booster doses with a vaccine composition comprising RBD.
  • FIG. 2 shows the inhibitory capacity of sera from individuals vaccinated with mRNA vaccine and given a booster dose of a vaccine composition containing the outer membrane vesicle RBD of Neisseria meningitidis adsorbed on AIOH3 (Fig. 2A).
  • the inhibition values are below 65%, and after immunization with the booster dose, these values increase above 90% for all subjects. evaluated.
  • Example 4 Increase in the concentration of anti-RBD antibodies in subjects previously immunized with the RBD vaccine, receiving booster doses with a vaccine composition comprising RBD conjugated to tetanus toxoid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La presente invención se relaciona con el campo de la Biotecnología y la Medicina. Describe el uso de composiciones vacunales basadas en el dominio de unión al receptor del virus SARS-CoV-2 en el tratamiento de pacientes recuperados de COVID19 y en aquellos sujetos vacunados con plataformas vacunales diferentes a las vacunas de subunidades que no logran desarrollar una inmunidad protectora efectiva o cuando esta haya disminuido en el tiempo y no sea recomendable dar una dosis de refuerzo con la misma vacuna usada en la primoinmunización. En particular se describe dicho uso para las composiciones vacunales que comprenden un conjugado covalente entre el dominio de unión al receptor (RBD) y una proteína portadora como el toxoide tetánico, el toxoide diftérico y CRM197, las composiciones vacunales que tienen como antígeno el RBD ya sea con o sin el inmunoestimulante de vesículas derivadas de la membrana externa de Neisseria meningitidis grupo B.

Description

USO DE COMPOSICIONES VACUNALES BASADAS EN EL DOMINIO DE UNIÓN AL RECEPTOR DEL VIRUS SARS-COV-2 EN EL DESARROLLO DE UNA INMUNIDAD PROTECTORA
CAMPO DE LA TÉCNICA
La presente invención se relaciona con la Biotecnología y la Medicina. Particularmente, con el uso de composiciones vacunales basadas en el Dominio de Unión al Receptor del virus SARS-COV-2 en el tratamiento de pacientes recuperados de COVID19 y en aquellos sujetos vacunados donde no se desarrolla una inmunidad protectora, en los que ha disminuido o no se indujo una significativa respuesta natural protectora de anticuerpos.
ESTADO DE LA TÉCNICA ANTERIOR
La enfermedad COVID19 es de muy reciente aparición, en Wuhan, China en diciembre de 2019, donde comenzaron a reportarse casos graves de neumonías de etiología desconocida. La enfermedad causada por el virus SARS-CoV-2 se caracteriza por una rápida difusión entre personas, principalmente con la aparición de síntomas como fiebre, tos, rinorrea, dolor de garganta y dificultad para respirar, en los casos sintomáticos, que representan menos del 50 %. En el resto de las personas la enfermedad cursa de forma asintomática, siendo este un elemento importante en la diseminación de la enfermedad y un reto epidemiológico para su control (WHO Coronavirus disease (COVID-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus 2019/situation-reports. Consultado el 13 de agosto de 2020).
Coronavirus similares a SARS-CoV-2, conocidos como MERS y SARS, han constituido agentes causantes de epidemias similares en décadas anteriores. El SARS tiene mayor homología con el SARS-CoV-2, y uno de los elementos de similitud es que ambos virus utilizan la proteína ACE2 como receptor para penetrar en las células humanas. Por tanto, en el SARS como en el SARS-CoV-2, la interacción entre el dominio de unión al receptor (RBD, del inglés receptor binding domain) de la proteína viral S1 y la proteína ACE2 (del inglés angiotensin-converting enzyme 2) es decisiva para la infección con el virus en el ser humano. (Walls A y cois. (2020) Cell:180 281-292). Este dominio RBD de la proteína S o también conocida como Spike del virus SARS-CoV-2, es un fragmento de aproximadamente 195 aminoácidos (correspondiente la secuencia 333-527) que contiene el motivo de unión al receptor (RBM, del inglés receptor binding motive) que constituye la región por la cual el virus interacciona con el receptor ACE2. El RBD contiene, además, 4 puentes bisulfuros intramoleculares entre las Cisternas 336-361 , 379-432, 391 -525 y 480-488 respectivamente lo que genera una estructura muy compacta y estable (Lan y cois (2020), Nature https://doi.Org/10.1038/s41586-020-2180- 5).
El RBD es una molécula pequeña, cuya masa molecular oscila entre 25-27 kDa en función del hospedero donde se expresa y los carbohidratos incorporados, fundamentalmente en las asparaginas N331 y N343 (Chen, WH y cois (2017) Journal of Pharmaceutical Sciences 106: 1961 -1970).
Las estrategias de las vacunas han pasado desde utilizar el virus inactivado, pasando por construcciones genéticas que contienen el material genético del virus incorporado ya sea en adenovirus o como ARN mensajero, hasta vacunas de subunidades obtenidas por biología molecular en hospederos. Las moléculas preferidas para este fin son la proteína S, o un fragmento de su estructura: el RBD.
La utilización de estas moléculas tiene como ventaja principal su seguridad pues las mismas se acercan más al campo de las vacunas evaluadas hasta ahora, al mismo tiempo el reto fundamental de estas estrategias es lograr inducir una respuesta inmune suficiente para proteger de la infección viral.
Hasta el 2 de diciembre de 2020 estaban declarados en evaluación preclínica 163 candidatos vacunales contra el SARS-CoV-2 y 51 en fase de ensayos clínicos. De ellos, al menos 13 candidatos (5 en fase clínica y 8 en fase preclínica), utilizan el RBD como antígeno específico (DRAFT landscape of COVID-19 candidate vaccines -2 de diciembre 2020, disponible en: https://www.who. int/publications/m/item/draft-landscape- of-co vid- 19-candidate- vaccines) .
A vahos meses de iniciada la pandemia, se empieza a conocer mejor los impactos en el sistema inmune de los pacientes que han padecido el COVID19. La enfermedad, en especial en sus estadios graves y críticos cursa con un fuerte componente híper- inflamatoho desencadenando una tormenta de citoquinas (de la Rica, R; Borges M; Gonzalez-Freire, M (2020) Front. Immunol, https://doi.org/10.3389/fimmu.2020.558898; Riva y cols. (2020) Critical Care. 24:549), el cual puede Hegar a contribuir con la letalidad, si no se controla de forma apropiada (Tisoncik, J y cols. (2012) Microbiology and Molecular Biology. 76(1 ):16-32). De hecho, vahos medicamentos están siendo desarrollados con tal fin, algunos de los cuales se empiezan a introducir en los protocolos médicos de actuación en Cuba (Martínez y cois. (2020) Anales de la Academia de Ciencias de Cuba. 10(2)
Figure imgf000004_0001
Consultado el 2 de diciembre de 2020) y en el mundo (Xu, X y cois. (2020) Military Medical Research. 7:22). Por otra parte, varios estudios demuestran la aparición natural de anticuerpos anti-RBD, que son neutralizantes del SARS-CoV-2, en pacientes que se han recuperado de la enfermedad (convalecientes). Los niveles de anticuerpos resultan ser variables entre los individuos, apreciándose cierta correlación entre los títulos alcanzados y la severidad de la enfermedad sufrida (menor en asintomáticos, que en pacientes con enfermedad modera, grave o crítica) (Seow, J y cois. (2020) Nature Microbiology doi: 10.1038/S41564-020-00813-8; Bosnjak, B y cols. (2020) Cell Mol Immunol, doi: 10.1038/s41423-020-00573-9). También se ha documentado que existe una correlación entre el título de anticuerpos anti-RBD en los convalecientes que correlaciona muy bien con la capacidad de neutralizar la infección viral por SARS-CoV-2 de células in vitro (Tan, C y cois. (2020) Nature Biotechnology https://doi.org/10.1038/s41587-020-0631 - z).
No obstante, todo lo anterior, los estudios recientes han demostrado que el título de anticuerpos anti-RBD y su capacidad neutralizante del SARS-CoV-2, se reduce progresivamente en los individuos recuperados de la infección (Lee, W y cois. (2020) The Journal of Infectious Diseases, DOI: 10.1093/infdis/jiaa673). Adicionalmente, comienzan a parecer más y más evidencias en la literatura de reinfección de pacientes, con casos donde la segunda infección ha sido incluso más severa que la primera (Qu, YM y Cong HY (2020) Travel Med Infect Dis. 34:101619; Lan L y cols. (2020) JAM. 323:1502-3; Tillett, R y cols. (2020) Lancet Infect Dis. https://doi.org/10.1016/S1473- 3099(20)30764-7). Estos datos han llamado la atención a la comunidad científica internacional sobre la necesidad de estudiar mejor estos pacientes y desarrollar estrategias para garantizar su efectiva protección (Overbaugh, J (2020) Nature, 26 1678-1685).
Dado que el sistema inmune de los pacientes que sufrieron el SARS-CoV-2 ha tenido un encuentro previo con los antígenos virales, en un contexto inmunológico muy particular (sui-generis), no resulta evidente que las vacunas o estrategias vacunales que se han desarrollado para la población general (individuos que no se han puesto en contacto con el virus); sean apropiadas o eficaces en generar o potenciar la protección a reinfección, sin generar efectos adversos indeseados como por ejemplo una reactivación de la tormenta de citocinas o la estimulación de anticuerpos que causen el fenómeno conocido como ADE (del inglés antibody denpendend enhancement) de la infección viral (Arvin, AM y cois. (2020) Nature 584(7821 ):353-363). Adicionalmente, no se conoce la duración de la protección inducida por las diferentes tecnologías de vacunas que se evalúan hoy en el mundo, y que de ser necesaria una dosis de refuerzo, algunas de esas vacunas no podrían ser utilizadas como refuerzo. La presente invención describe por primera vez, el uso de composiciones vacunales basadas en el dominio de unión al receptor del virus SARS-CoV-2, en el tratamiento de pacientes recuperados de COVID19 en los que se ha producido una disminución o no se indujo una significativa respuesta natural protectora de anticuerpos. Adicionalmente, pueden ser utilizadas en individuos previamente vacunados con una tecnología vacunal tipo adenovirus o RNA. Las composiciones vacunales descritas, están siendo también ensayadas en individuos no infectados, pero muestran ahora por primera vez su capacidad de re-estimular eficientemente en pacientes convalecientes una fuerte respuesta inmune con capacidad neutralizante. El hecho de que ambas estrategias vacunales se basan en una proteína recombinante pequeña del virus SARS-CoV-2, el RBD, puede dar ventajas particulares en este campo de aplicación. En particular, se amplifica/potencia una respuesta muy dirigida contra el RBM, que determina la interacción natural del virus con el receptor ACE2 en las células del huésped. Estimular mayoritariamente esta repuesta protectora, con un buen perfil de seguridad, es una ventaja al comparar con otras estrategias vacunales como las vacunas de virus atenuados, las basadas en toda la proteína S o las basadas en vectores virales.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
En una realización la presente invención se relaciona con el uso de composiciones vacunales que comprenden el dominio de unión al receptor (RBD) del virus SARS-CoV- 2 en el tratamiento de pacientes recuperados de COVID19. Particularmente dichos pacientes recuperados tienen una inmunidad humoral caracterizada por al menos una de las siguientes condiciones: título de respuesta contra el RBD inferiores a 1/1000, capacidad de inhibición de la interacción RBD-proteína ACE2 inferior al 50% en una dilución 1/100 o título de anticuerpos neutralizantes del SARS-CoV-2 por debajo de 1/160.
En una realización particular, la presente invención se relaciona con el uso anteriormente referido de composiciones vacunales que se caracterizan porque comprenden un conjugado covalente entre el RBD y una proteína portadora que se selecciona del grupo que comprende: el toxoide tetánico, el toxoide diftérico y CRM197. Otras composiciones vacunales utilizadas en el uso reclamado en la presente invención son las que comprende como antígeno el RBD ya sea en forma de monómero o dímero absorbido en AIOH3. Otras composiciones vacunales reclamadas comprende en uso de inmunopotenciadores como la vesícula de membrana externa de Neisseria meningitidis. En una realización particular las composiciones vacunales anteriores son administradas a los pacientes recuperados de COVID-19 en un esquema de inmunización por vía intramuscular o subcutánea que comprende un rango de dosis entre 1 -100 pg de RBD, en un rango de 1 a 3 inmunizaciones, a intervalos entre 21 a 28 días. Es objeto de la presente invención, el uso según el esquema de inmunización anterior para obtener plasma hiperimmune con alta capacidad neutralizante del SARS-CoV-2.
En otra realización, la presente invención contempla el uso de las composiciones vacunales aquí referidas, en la inmunización de sujetos vacunados con plataformas vacunales diferentes a las vacunas de subunidades y que no hayan desarrollado una inmunidad protectora efectiva o cuando esta haya disminuido en el tiempo y no sea recomendable dar una dosis de refuerzo con la misma vacuna usada en la primoinmunización, como es el caso de las vacunas de Adenovirus, Virus inactivados, Virus atenuados y de mRNA. Una inmunidad protectora efectiva según la presente invención es cuando se cumplen al menos una de las siguientes condiciones: título de respuesta contra el RBD superiores a 1/1000, capacidad de inhibición de la interacción RBD-proteína ACE2 superior al 50% en una dilución 1/100 o título de anticuerpos neutralizantes del SARS-CoV-2 por encima de 1/160.
DESCRIPCION DETALLADA DE LA INVENCIÓN
La presente invención describe el uso de composiciones vacunales basadas en el dominio de unión al receptor del virus SARS-CoV-2 en pacientes recuperados (convalecientes) de COVID19, en los que ya no existen niveles significativos de anticuerpos naturales anti-RBD que confieren capacidad neutralizante. Particularmente, estas composiciones vacunales pueden contener formas diméricas y/o monoméricas del RBD absorbidas en AIOH3, con o sin inmunopotenciador, o ser más complejas como las que se describen de forma detallada en las solicitudes de patente CU-2020-0057 y CU-2020-0069, sin limitarse a estas.
Para su uso en pacientes convalecientes de COVID19, se debe verificar que se cumplen al menos una de las siguientes condiciones: título de anticuerpos anti-RBD por debajo de 1/1000 medido por ELISA, o título de anticuerpos neutralizantes de la ¡afectividad del SARS-CoV-2 inferior a 1/160 medido por ensayos que usen el virus vivo o un pseudo virus, o capacidad inhibición de la interacción molecular entre el RBD y la proteína ACE2 inferior al 50% a una dilución de suero de 1/100 medido por un ELISA de competencia. Los preparados vacunales inducen la activación de la respuesta inmune de memoria contra el virus, garantizando la existencia de altos títulos de anticuerpos RBD, mayoritariamente con capacidad neutralizante por vahos meses, (6 meses como mínimo). En el caso que los títulos decaigan nuevamente en el paciente, se podrá administrar una dosis de refuerzo adicional para recuperar la protección. Dada la amplia seguridad de los preparados vacunales los mismos podrán administrarse por vahos años consecutivos, entre 2-5 años. Además, las composiciones vacunales referidas en la presente invención, se pueden emplear en la inmunización de sujetos vacunados con plataformas vacunales diferentes a las vacunas de subunidades que no hayan desarrollado una inmunidad protectora efectiva o una vez que la inmunidad disminuya y se requiera una dosis de refuerzo. Está reportado en la literatura que con las plataformas vacunales basadas en vectores de adenovirus solo se puede inmunizar entre 1 -2 veces a los sujetos, pues después de la primera inyección el organismo produce anticuerpos contra el propio vector adenoviral que pueden hacer inefectiva la segunda dosis. (Casimiro, DR y cois. (2003) J. Virol., 77: 7663-7668).
Los preparados vacunales son administrados a los pacientes convalecientes en un esquema de inmunización por vía intramuscular o subcutánea que comprende un rango de dosis entre 1 -100 pg de RBD preferentemente entre 30-60 pg, en un rango de 1 a 3 inmunizaciones, a intervalos entre 21 -28 días.
La presente invención además contempla un método para la obtención de plasma hiperinmune con capacidad neutralizante del virus SARS-CoV-2, con los anticuerpos producidos por los pacientes convalecientes de COVID19 después de la vacunación. El plasma hiperinmune es útil para el tratamiento de pacientes moderados, graves o críticos de COVID19, como ha sido mostrado por múltiples autores (Bloch EM y cois. (2020) J Clin Invest. 130:2757-65, Casadevall A. (2020) JAMA 324:455-7). Para ello, de forma convencional, los donantes deben estar libre de síntomas, ser negativos a la detección del SARS-CoV-2 por PCR en tiempo real y tener un título de anticuerpos neutralizantes de al menos 1/160, de acuerdo a las recomendaciones de la EDA (US Department of Health and Human Services Food and Drug Administration. Investigational COVID-19 convalescent plasma: guidance for industry. Rockville, MD: FDA, 2020). El método de la presente invención permite obtener el plasma hiperhinmune de convalecientes que naturalmente no han generado una buena respuesta inmune. Pare ello los convalecientes se inmunizan con el esquema aquí descrito hasta que alcancen los niveles de anticuerpos neutralizantes deseables (títulos >1/160) para la posterior obtención de plasma hiperinmune, útil para la transferencia pasiva de anticuerpos contra el SARS-CoV-2. El plasma para emplear en dicho método será procesado mediante los estándares de procesamiento de la sangre para tales fines.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Correlación entre los títulos de anticuerpos IgG totales detectados contra RBD y los valores de porcentaje de inhibición de los sueros a la dilución 1/100.
Figura 2. A: Valores de porcentaje de inhibición de la interacción RBD-ACE2 de sueros de sujetos seis meses después de recibir esquema de inmunización con vacuna mRNA y después de aplicada dosis de refuerzo con vacuna de RBD. B: Concentración de anticuerpos anti-RBD detectados en sujetos inmunizados con vacuna de virus inactivado que recibieron dosis de refuerzo con vacuna de RBD.
Figura 3. Concentración de anticuerpos anti-RBD detectados en sujetos inmunizados con vacuna de RBD que recibieron dosis de refuerzo con vacuna de RBD conjugado.
EJEMPLOS
Ejemplo 1. Variabilidad de títulos anti-RBD y capacidad de Inhibitoria de la interacción RBD-ACE2 en pacientes cubanos recuperados de la COVID19.
El suero de 39 individuos convalecientes a la COVID-19 se analiza mediante un ELISA indirecto para determinar el título de anticuerpos anti-RBD. Las placas de microtitulación de 96 pocilios NUNC Maxisorp se recubrieron con 50 pL de RBD a una concentración de 5 pg/mL en disolución salina tamponada en fosfato (SSTF) pH 7.0, se incubaron 1 hora a 37eC y al término se bloquearon los sitios no recubiertos empleando 150 pL de una disolución de bloqueo (SSTF, Tween 20 (0,05%) [v:v] y leche descremada al 4%) durante 30 minutos a 37eC. Luego se adicionaron los sueros disueltos en disolución de bloqueo en diluciones seriadas (1 :2), generalmente partiendo de 1/100 y en un volumen de 100 pL/pozo. Las placas se incubaron toda la noche a 4eC. A continuación, se lavaron tres veces con SSTF, Tween 20 (0,05%) [v:v] y se adicionaron 100 pL de una dilución de anti-inmunoglobulina G de humana conjugada a peroxidasa en solución de bloqueo (1 :5000) y se incubaron durante 1 hora a temperatura ambiente. Luego de un último paso de lavado, se aplicó 100 pL/pozo de la disolución sustrato para enzima peroxidasa. Se incubó en la oscuridad durante 20 minutos y se detuvo la reacción con disolución de H2SO4 2N 50 pL/pozo. Se leyó la absorbancia a 490 nm en un lector de ELISA. Para determinar el Título de IgG se realizó una regresión lineal con el rango de diluciones evaluadas y se interpoló utilizando como umbral dos veces el valor de la media de la absorbancia de un suero negativo obtenido previo a la COVID-19 diluido 1/100.
Los sueros provenientes de estos mismos 39 convalecientes se emplearon en un ELISA para determinar su capacidad de inhibición de la interacción del RBD y ACE2. Para la determinación del % de inhibición de la interacción RBD-ACE2, las placas recubiertas con ACE2-Fc de humano (5 pg/mL), se bloquearon y se les añadió la mezcla RBD-Fc de ratón con suero de individuos convalecientes, a diluciones desde 1 :100 a 1 :10000, que habían sido previamente incubados 1 h a 37eC. Para la detección del reconocimiento se utilizó un conjugado anti IgG de ratón-fosfatasa alcalina, diluido en tampón SSTF-T-leche al 0.2%. Luego de un último paso de lavado, se aplicó 50 pL/pozo de la pNPP (1 mg/mL) en tampón dietanolamina. Se incubó en la oscuridad durante 30 minutos y se detuvo la reacción con disolución de NaOH 3M 50 pL/pozo. Se leyó la absorbancia a 405 nm. Se calculó el porciento de inhibición mediante la siguiente fórmula: (1 -Abs405nm RBD Fe de ratón + suero de convaleciente/Abs405nm RBD Fe de ratón) *100.
La Figura 1 muestra la capacidad inhibitoria de los sueros de individuos convalescientes, a la dilución de trabajo 1/100 en función del título de anticuerpos contra RBD (n=39). Se observa una correlación positiva (r=0.9178) entre los títulos de anticuerpos totales contra RBD y la capacidad de inhibición de los mismos, r=0.9178. Del total de individuos analizados, el 41 % tuvo valores de inhibición inferior al 30% y títulos de anticuerpos anti RBD inferiores a 1/800. La correlación fue analizada por el método de correlación de Spearman
La alta variabilidad observada en los convalecientes cubanos, tanto en los títulos de anticuerpos anti-RBD como en su capacidad de inhibición de la interacción molecular RBD-ACE2 es consistente con lo reportado en la literatura (Tan, C y cois. (2020) Nature Biotechnology https://doi.org/10.1038/s41587-020-0631 -z). La literatura avala también que en pacientes convalecientes de COVID19 existe una correlación positiva entre los títulos IgG anti-RBD y la capacidad del suero/plasma de neutralizar la infección por el virus vivo. Solo títulos altos de anticuerpos contra RBD superiores a 1/1350 predicen alta probabilidad (80%) de tener capacidad neutralizante a diluciones de 1/160 (Salazar, E y cois. (2020) bioRxiv. https://doi.org/10.1 101/2020.06.08.138990).
Ejemplo 2. Pacientes convalecientes de COVID19 que no muestran inmunidad humoral efectiva logran protección después de la inmunización.
A dos pacientes convalecientes de COVID19 se les realizó extracción de sangre a los 2 y 4 meses respectivamente después de mostrar un resultado negativo de PCR en tiempo real para la detección del SARS-CoV-2. Con la sangre obtenida se obtuvo el suero al que se le realizaron determinaciones para conocer el título de anticuerpos anti- RBD y capacidad de inhibición de la interacción RBD-proteína ACE2 mediante la técnica de ELISA descrita para tales propósitos en el Ejemplo 1 y título de anticuerpos neutralizantes del SARS-CoV-2 mediante un ensayo colorimétrico utilizando Rojo Neutro descrito en la solicitud de patente CU-2020-0069. Las técnicas anteriores se describen en detalle en las solicitudes de patente CU-2020-0057 y CU-2020-0069.
Al comprobar que en ambos casos tanto el título de anticuerpos anti-RBD como el título de anticuerpos neutralizantes se encontraban por debajo de los parámetros establecidos para una respuesta protectora, ambos pacientes se inmunizaron con 50 pg de RBD dimérico absorbido en AIOH3 y transcurridos 14 días de la inmunización se realizó extracción de sangre y con el suero obtenido se determinó nuevamente el título de anticuerpos anti-RBD y capacidad de inhibición de la interacción RBD-proteína ACE2 y título de anticuerpos neutralizantes del SARS-CoV-2.
La Tabla 1 muestra los resultados de los dos pacientes para las determinaciones realizadas a tiempo 0 (antes de la inmunización) y a los 14 días de inmunizados. Como se puede observar ambos pacientes mostraron después de una sola inmunización altos títulos de anticuerpos anti-RBD, valores de Inhibición de la interacción RBD-proteína ACE2 superiores al 80% y títulos de anticuerpos neutralizantes muy superiores a 1 /160. Es importante notar que los títulos neutralizantes aumentan en mayor medida que los títulos anti-RBD, lo que avala que la inmunización aplicada enriquece preferentemente el suero/plasma en anticuerpos con capacidad neutralizante.
Tabla 1. Determinaciones realizadas a pacientes convalecientes de COVID19 antes y después de la inmunización.
Figure imgf000011_0001
Es también importante resaltar que en ambos individuos se observó un buen perfil de seguridad al tratamiento. No se observaron eventos adversos significativos.
Ejemplo 3. Incremento de la concentración de anticuerpos anti-RBD y capacidad Inhibitoria de la interacción RBD-ACE2 en sujetos previamente inmunizados con vacuna inactivada y mRNA que reciben dosis de refuerzo con composición vacunal que comprende RBD.
A sujetos que recibieron esquema completo de dos dosis de la vacuna de virus inactivado o mRNA se les realizó extracción de sangre seis meses después para evaluar la duración de la respuesta generada por la primo vacunación. Estos sujetos recibieron una dosis de composiciones vacunales basadas en el RBD del virus SARS-CoV-2 y se evaluó la concentración de anticuerpos anti-RBD y la capacidad inhibitoria de la interacción RBD-proteína ACE2 entre 14 y 28 días después de la dosis de refuerzo. La Figura 2 muestra la capacidad inhibitoria de los sueros de individuos vacunados con vacuna de mRNA y que recibieron una dosis de refuerzo de una composición vacunal que contiene el RBD con vesícula de membrana externa de Neisseria meningitidis adsorbido en AIOH3 (Fig. 2A). Como se puede observar, después de seis meses de recibir el esquema completo, los valores de inhibición se encuentran por debajo de 65%, y después de la inmunización con la dosis de refuerzo esos valores se incrementan por encima de 90% para todos los sujetos evaluados.
Un incremento similar se observa al aplicar una composición vacunal que contiene el RBD adsorbido en AIOH3 en sujetos previamente inmunizados con dos dosis de vacuna de virus inactivado. Los sueros se evaluaron 21 días después de aplicado el esquema completo de la vacuna de virus inactivado y se observaron valores de concentración de anticuerpos anti-RBD con una media en 40 UA/mL que aumentaron a más de 200 UA/mL después de aplicar la dosis de refuerzo.
En ambos casos se demostró la capacidad de reforzar la inmunidad prexistente al aplicar una dosis en sujetos previamente vacunados.
Ejemplo 4. Incremento de la concentración de anticuerpos anti-RBD en sujetos previamente inmunizados con vacuna de RBD, que reciben dosis de refuerzo con composición vacunal que comprende RBD conjugado a toxoide tetánico.
Sujetos inmunizados con dos dosis de un candidato vacunal basado RBD recibieron a los 6 meses una dosis de refuerzo de una composición vacunal que comprende un conjugado covalente entre el RBD y el toxoide tetánico como proteína portadora. Como se puede observar en la figura 3, todos los sujetos mostraron incremento en los valores de concentración de anticuerpos después de aplicada una dosis de refuerzo con la composición vacunal que contiene el RBD conjugado.

Claims

USO DE COMPOSICIONES VACUNALES BASADAS EN EL DOMINIO DE UNIÓN AL RECEPTOR DEL VIRUS SARS-COV-2 EN EL DESARROLLO DE UNA INMUNIDAD PROTECTORA REIVINDICACIONES
1 . Uso de una composición vacunal que comprende el dominio de unión al receptor (RBD) del virus SARS-CoV-2 en el tratamiento de pacientes recuperados de COVID19.
2. El uso según la reivindicación 1 donde los pacientes recuperados tienen una inmunidad humoral caracterizada por al menos una de las siguientes condiciones:
- título de respuesta contra el RBD inferiores a 1/1000,
- capacidad de inhibición de la interacción RBD-proteína ACE2 inferior al 50% en una dilución 1/100 o
- título de anticuerpos neutralizantes del SARS-CoV-2 por debajo de 1 /160.
3. El uso según la reivindicación 1 donde la composición vacunal se caracteriza porque comprende un conjugado covalente entre el RBD y una proteína portadora que se selecciona del grupo que comprende:
- el toxoide tetánico,
- el toxoide diftérico y
- CRM197.
4. El uso según la reivindicación 1 donde la composición vacunal se caracteriza porque comprende como antígeno el RBD absorbido en AIOH3.
5. La composición vacunal según la reivindicación 4 caracterizada porque adicionalmente comprende un inmunopotenciador.
6. La composición vacunal según la reivindicación 5 caracterizada porque el inmunopotenciador es la vesícula de membrana externa de Neisseria meningitidis.
7. El uso según la reivindicación 4 donde el RBD se encuentra en forma de monómero.
8. El uso según la reivindicación 4 donde el RBD se encuentra en forma de dímero.
9. El uso según cualquiera de las reivindicaciones 1 -8 donde las composiciones vacunales son administradas a los pacientes recuperados en un esquema de inmunización por vía intramuscular o subcutánea que comprende un rango de dosis entre 1 -100 pg de RBD, en un rango de 1 a 3 inmunizaciones, a intervalos entre 21 a 28 días.
10. El uso según la reivindicación 9 para obtener plasma hiperimmune con alta capacidad neutralizante del SARS-CoV-2.
1 1 . Uso de una composición vacunal que comprende el RBD del virus SARS-CoV-2 en el desarrollo de una inmunidad protectora efectiva en sujetos previamente inmunizados con vacunas que se seleccionan del grupo que comprende:
Adenovirus,
- Virus inactivados
- Virus atenuados
- mRNA
12. El uso según la reivindicación 1 1 donde se considera inmunidad protectora efectiva cuando se cumplen al menos una de las siguientes condiciones:
- título de respuesta contra el RBD superiores a 1/1000,
- capacidad de inhibición de la interacción RBD-proteína ACE2 superior al 50% en una dilución 1/100 o
- título de anticuerpos neutralizantes del SARS-CoV-2 por encima de 1/160.
13. El uso según la reivindicación 1 1 donde la composición vacunal se caracteriza porque comprende un conjugado covalente entre el RBD y una proteína portadora que se selecciona del grupo que comprende:
- el toxoide tetánico,
- el toxoide diftérico y
- CRM197.
14. El uso según la reivindicación 1 1 donde la composición vacunal se caracteriza porque comprende como antígeno el RBD absorbido en AIOH3. La composición vacunal según la reivindicación 14 caracterizada porque adicionalmente comprende un inmunopotenciador. La composición vacunal según la reivindicación 15 caracterizada porque el inmunopotenciador es la vesícula de membrana externa de Neisseria meningitidis. El uso según la reivindicación 14 donde el RBD se encuentra en forma de monómero. El uso según la reivindicación 14 donde el RBD se encuentra en forma de dímero.
PCT/CU2021/050014 2020-12-16 2021-12-14 Uso de composiciones vacunales basadas en el dominio de unión al receptor del virus sars-cov-2 en el desarrollo de una inmunidad protectora WO2022127946A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3202603A CA3202603A1 (en) 2020-12-16 2021-12-14 Use of vaccine compositions based on sars-cov-2 receptor binding domain in delivering protective immunity
KR1020237024030A KR20240035738A (ko) 2020-12-16 2021-12-14 Sars-cov-2 수용체 결합 도메인을 기반으로 한 백신 조성물의 보호 면역 전달 용도
CN202180093131.7A CN117440825A (zh) 2020-12-16 2021-12-14 基于SARS-CoV-2病毒的受体结合结构域的疫苗组合物在保护性免疫的发展中的用途
EP21854867.5A EP4265272A1 (en) 2020-12-16 2021-12-14 Use of vaccine compositions based on sars-cov-2 receptor binding domain in delivering protective immunity
AU2021404744A AU2021404744A1 (en) 2020-12-16 2021-12-14 Use of vaccine compositions based on sars-cov-2 receptor binding domain in delivering protective immunity
US18/266,486 US20240042013A1 (en) 2020-12-16 2021-12-14 Use of vaccine compositions based on sars-cov-2 receptor binding domain in delivering protective immunity
JP2023536891A JP2024510065A (ja) 2020-12-16 2021-12-14 防御免疫の送達における、sars-cov-2受容体結合ドメインに基づくワクチン組成物の使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2020-0101 2020-12-16
CU20200101 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022127946A1 true WO2022127946A1 (es) 2022-06-23

Family

ID=80445721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2021/050014 WO2022127946A1 (es) 2020-12-16 2021-12-14 Uso de composiciones vacunales basadas en el dominio de unión al receptor del virus sars-cov-2 en el desarrollo de una inmunidad protectora

Country Status (9)

Country Link
US (1) US20240042013A1 (es)
EP (1) EP4265272A1 (es)
JP (1) JP2024510065A (es)
KR (1) KR20240035738A (es)
CN (1) CN117440825A (es)
AU (1) AU2021404744A1 (es)
CA (1) CA3202603A1 (es)
CL (1) CL2023001722A1 (es)
WO (1) WO2022127946A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207599A1 (en) * 2020-04-10 2021-10-14 Akston Biosciences Corporation Antigen specific immunotherapy for covid-19 fusion proteins and methods of use
WO2021207281A2 (en) * 2020-04-06 2021-10-14 Eisai R&D Management Co., Ltd. Vaccines, adjuvants, and methods of generating an immune response
WO2022013324A2 (en) * 2020-07-14 2022-01-20 Riboxx Gmbh Post-exposure vaccination against viral respiratory infections

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207281A2 (en) * 2020-04-06 2021-10-14 Eisai R&D Management Co., Ltd. Vaccines, adjuvants, and methods of generating an immune response
WO2021207599A1 (en) * 2020-04-10 2021-10-14 Akston Biosciences Corporation Antigen specific immunotherapy for covid-19 fusion proteins and methods of use
WO2022013324A2 (en) * 2020-07-14 2022-01-20 Riboxx Gmbh Post-exposure vaccination against viral respiratory infections

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
BLOCH EM, J CLIN INVEST, vol. 130, 2020, pages 2757 - 65
BOSNJAK, B, CELL MOL IMMUNOL. DOI: 10.1 038/S41423-020-00573-9, 2020
CASADEVALL A., JAMA, vol. 324, 2020, pages 455 - 7
CASIMIRO, DR, J. VIROL., vol. 77, 2003, pages 7663 - 7668
CHANG-MONTEAGUDO: "A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial", THE LANCET REGIONAL HEALTH -AMERICAS, 15 September 2021 (2021-09-15), pages 79, XP055909692, Retrieved from the Internet <URL:https://reader.elsevier.com/reader/sd/pii/S2667193X21000752?token=E96BE4CF4807CDCDC5D0A26A9A0CEA541A663D7C465560DCFB77F4E4EFD6E4F0AD8AD7C43893133328810830127BE521&originRegion=eu-west-1&originCreation=20220408120614> [retrieved on 20220406], DOI: 10.1016/j.lana.2021.10 *
CHEN, WH, JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 106, 2017, pages 1961 - 1970
DE LA RICA, RBORGES MGONZALEZ-FREIRE, M, FRONT. IMMUNOL., 2020, Retrieved from the Internet <URL:https://doi.org/10.3389/fimmu.2020.558898>
HANSEN JOHANNA ET AL: "Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail", SCIENCE, vol. 369, no. 6506, 21 August 2020 (2020-08-21), US, pages 1010 - 1014, XP055864281, ISSN: 0036-8075, Retrieved from the Internet <URL:https://www.science.org/doi/pdf/10.1126/science.abd0827?casa_token=nwcFDFSirxYAAAAA:gLprG5E4PhWD6flS0vrfFIRROvQu66E4Xx4ulVRklCrg7GxswfkjRmyrFpVLzNN3xZ6o-Sqlg2LAnQ> DOI: 10.1126/science.abd0827 *
KRAMMER FLORIAN: "SARS-CoV-2 vaccines in development", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 586, no. 7830, 23 September 2020 (2020-09-23), pages 516 - 527, XP037277122, ISSN: 0028-0836, [retrieved on 20200923], DOI: 10.1038/S41586-020-2798-3 *
LAN L, JAM, vol. 323, 2020, pages 1502 - 3
LEE, W, THE JOURNAL OF INFECTIOUS DISEASES, DOI: 10.1093/INFDIS/JIAA673, 2020
LOGUNOV DENIS Y ET AL: "Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia", THE LANCET, ELSEVIER, AMSTERDAM, NL, vol. 396, no. 10255, 4 September 2020 (2020-09-04), pages 887 - 897, XP086269562, ISSN: 0140-6736, [retrieved on 20200904], DOI: 10.1016/S0140-6736(20)31866-3 *
MARTÍNEZ, ANALES DE LA ACADEMIA DE CIENCIAS DE CUBA, vol. 10, no. 2, 2020, Retrieved from the Internet <URL:http://wwv.rovistaccuba.sld.cu>
MIRZAEI RASOUL ET AL: "Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine", INTERNATIONAL IMMUNOPHARMACOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 88, 24 August 2020 (2020-08-24), XP086319656, ISSN: 1567-5769, [retrieved on 20200824], DOI: 10.1016/J.INTIMP.2020.106928 *
OVERBAUGH, J, NATURE, vol. 584, no. 7821, 2020, pages 1678 - 1685
POLLET JEROEN ET AL: "SARS-CoV-2 RBD219-N1C1: A Yeast-Expressed SARS-CoV-2 Recombinant Receptor-Binding Domain Candidate Vaccine Stimulates Virus Neutralizing Antibodies and T-cell Immunity in Mice", BIORXIV : THE PREPRINT SERVER FOR BIOLOGY, 5 November 2020 (2020-11-05), United States, XP055824766, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.11.04.367359v2.full.pdf> [retrieved on 20210715], DOI: 10.1101/2020.11.04.367359 *
QU, YMCONG HY, TRAVEL MED INFECT DIS, vol. 34, 2020, pages 101619
RIVA, CRITICAL CARE, vol. 24, 2020, pages 549
SALAZAR, E, BIORXIV, 2020, Retrieved from the Internet <URL:https://doi.org/10.1101/2020.06.08.138990>
SEOW JEFFREY ET AL: "Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans", NATURE MICROBIOLOGY, NATURE PUBLISHING GROUP UK, LONDON, vol. 5, no. 12, 26 October 2020 (2020-10-26), pages 1598 - 1607, XP037298617, DOI: 10.1038/S41564-020-00813-8 *
SEOW, J, NATURE MICROBIOLOGY DOI: 10.1038/S41564-020-00813-8, 2020
TAN, C, NATURE BIOTECHNOLOGY, 2020, Retrieved from the Internet <URL:https://doi.org/10.1038/s41587-020-0631-z>
TILLETT, R, LANCET INFECT DIS, 2020, Retrieved from the Internet <URL:https://doi.org/10.1016/S1473-3099(20)30764-7>
TISONCIK, J, MICROBIOLOGY AND MOLECULAR BIOLOGY, vol. 76, no. 1, 2012, pages 16 - 32
WALLS A, CELL, vol. 180, 2020, pages 281 - 292
XU, X, MILITARY MEDICAL RESEARCH, vol. 7, 2020, pages 22
YANG JINGYUN ET AL: "A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity", NATURE, vol. 586, no. 7830, 29 July 2020 (2020-07-29), pages 572 - 577, XP037341143, ISSN: 0028-0836, DOI: 10.1038/S41586-020-2599-8 *

Also Published As

Publication number Publication date
EP4265272A1 (en) 2023-10-25
US20240042013A1 (en) 2024-02-08
CN117440825A (zh) 2024-01-23
AU2021404744A1 (en) 2023-07-06
JP2024510065A (ja) 2024-03-06
CL2023001722A1 (es) 2024-01-26
KR20240035738A (ko) 2024-03-18
CA3202603A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Bakhiet et al. SARS-CoV-2: Targeted managements and vaccine development
Blumberg et al. The immunogenicity of influenza virus vaccine in solid organ transplant recipients
Trifonova et al. Study of rubella candidate vaccine based on a structurally modified plant virus
US7943147B2 (en) dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
Aygün et al. Coronavirus infections in childhood and vaccine studies
Pavel et al. Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model
TW202202169A (zh) 預防嚴重急性呼吸症候群冠狀病毒第二型(sars-cov-2)感染的生物可降解奈米複合物疫苗及方法
Ismail et al. COVID-19 in children: Could pertussis vaccine play the protective role?
Cox et al. Non‐lethal viral challenge of influenza haemagglutinin and nucleoprotein DNA vaccinated mice results in reduced viral replication
Marta et al. COVID-19 vaccines: Update of the vaccines in use and under development
Mahallawi et al. Infection with SARS-CoV-2 primes immunological memory in human nasal-associated lymphoid tissue
Kasel et al. Human influenza: aspects of the immune response to vaccination
WO2022127946A1 (es) Uso de composiciones vacunales basadas en el dominio de unión al receptor del virus sars-cov-2 en el desarrollo de una inmunidad protectora
JP2007505836A (ja) 麻疹サブユニットワクチン
Deshpande et al. MMR vaccine and COVID-19: a myth or a low risk-high reward preventive measure?
KR20200053644A (ko) 보강제 제형 및 방법
BR112020001586A2 (pt) vacina contra malária
ES2557315T3 (es) Nuevo virus de la gripe
Bissett et al. Systemic prime mucosal boost significantly increases protective efficacy of bivalent RSV influenza viral vectored vaccine
Young et al. Immunologic characterization of a novel inactivated nasal mumps virus vaccine adjuvanted with Protollin
Yaqinuddin et al. Advantageous non-specific effects of live-attenuated vaccines in COVID-19 treatment.
Frieman et al. Enhancing the Protection of Influenza Virus Vaccines with BECC TLR4 Adjuvant in Aged Mice
Johnson et al. Recombinant vaccinia immunization in the presence of passively administered antibody
Burgess et al. 2751. Pragmatic Assessment of Influenza Vaccine Effectiveness in the DoD (PAIVED): Methods
Han et al. 2750. Sequential Influenza A H1N1 and Influenza A H3N2 Challenge Infections in Healthy Volunteers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536891

Country of ref document: JP

Ref document number: MX/A/2023/007165

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3202603

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011896

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021404744

Country of ref document: AU

Date of ref document: 20211214

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023011896

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230615

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021854867

Country of ref document: EP

Effective date: 20230717

WWE Wipo information: entry into national phase

Ref document number: 202180093131.7

Country of ref document: CN