WO2022127937A1 - 压缩制冷系统及冷藏冷冻装置 - Google Patents

压缩制冷系统及冷藏冷冻装置 Download PDF

Info

Publication number
WO2022127937A1
WO2022127937A1 PCT/CN2022/070748 CN2022070748W WO2022127937A1 WO 2022127937 A1 WO2022127937 A1 WO 2022127937A1 CN 2022070748 W CN2022070748 W CN 2022070748W WO 2022127937 A1 WO2022127937 A1 WO 2022127937A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration system
insertion section
flow direction
exhaust
refrigerant flow
Prior art date
Application number
PCT/CN2022/070748
Other languages
English (en)
French (fr)
Inventor
万彦斌
陈建全
刘建如
刘山山
任志伟
Original Assignee
沈阳海尔电冰箱有限公司
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳海尔电冰箱有限公司, 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 沈阳海尔电冰箱有限公司
Publication of WO2022127937A1 publication Critical patent/WO2022127937A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures

Definitions

  • the invention relates to the technical field of compression refrigeration, in particular to a compression refrigeration system and a refrigeration and freezing device.
  • the compressor In the compression refrigeration system, the compressor is the power supply part of the refrigeration system, and also provides mass flow and energy flow during the periodic cycle of the entire pipeline.
  • the exhaust noise is always reduced.
  • a big problem with noise In particular, under the mixed refrigerant, the pressure pulsation at the discharge end of the compressor is relatively large, which affects the user experience.
  • An object of the present invention is to provide a compression refrigeration system that solves at least the above-mentioned problems.
  • a further object of the present invention is to eliminate compressor noise.
  • the present invention first provides a compression refrigeration system, which includes: a compressor and a condenser, an exhaust pipe, an intake pipe and a muffler pipe.
  • the inlet end is connected to the exhaust end of the compressor
  • the outlet end of the intake pipe is connected to the intake end of the condenser
  • the muffler pipe is located between the compressor and the condenser, and has Chamber;
  • the exhaust line has an exhaust insertion section inserted into the chamber from the first end of the muffler tube adjacent to the compressor, and the intake line has a section from the muffler tube adjacent to the condenser.
  • the second end is inserted into the intake insertion section in the chamber, and the outlet end of the exhaust insertion section is spaced apart from the inlet end of the intake insertion section by a predetermined distance.
  • the length of the chamber in the refrigerant flow direction is L
  • the length of the exhaust insertion section in the refrigerant flow direction the intake insertion section in the refrigerant flow direction
  • the value range of the length in the direction is 0 to 0.5L.
  • the length of the exhaust insertion section in the refrigerant flow direction is 0.5L, and the length of the intake air insertion section in the refrigerant flow direction is 0.25L.
  • the length of the exhaust insertion section in the refrigerant flow direction is 0.25L, and the length of the intake air insertion section in the refrigerant flow direction is 0.5L.
  • the muffler tube includes sequentially in the refrigerant flow direction:
  • the second conical section is tapered from the first cylindrical section toward the refrigerant flow direction to connect with the second end.
  • the cone angles of the first cone segment and the second cone segment are 15° ⁇ 90°.
  • the section of the muffler tube between the first end and the second end has a waist-shaped cross section along the long axis direction of the muffler tube.
  • the refrigeration system further includes:
  • the vibration damping glue is coated on the outer periphery of the muffler pipe.
  • the refrigeration system further includes:
  • a capillary tube and an evaporator the inlet end of the capillary tube is communicated with the outlet end of the condenser through a first refrigeration pipeline, and the outlet end of the capillary tube is communicated with the inlet end of the evaporator through a second refrigeration pipeline, and the evaporation
  • the outlet end of the compressor is communicated with the inlet end of the compressor through a third refrigeration pipeline.
  • the present invention also provides a refrigerating and freezing device, comprising the compression refrigeration system described in any one of the foregoing.
  • a muffler pipe with a cavity is arranged between the compressor and the condenser, and part of the exhaust pipe and the intake pipe are inserted into the cavity of the muffler pipe, and the exhaust pipe is inserted into the cavity of the muffler pipe.
  • the section is not connected with the intake insertion section, so that after the refrigerant pulsation noise reaches the muffler tube, a buffer is generated in the cavity of the muffler tube, thereby improving the refrigerant pulsation noise and reducing the compressor vibration noise.
  • the length of the chamber, the insertion depth of the exhaust pipe and the insertion depth of the intake pipe directly correspond to the main noise frequency of the compressor, which can eliminate the single noise of the compressor. frequency noise.
  • the special structure of the muffler pipe further enhances the noise reduction effect.
  • FIG. 1 is a schematic diagram of the connection of a compression refrigeration system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the outline structure of an exhaust pipe, a muffler pipe and an intake pipe in a compression refrigeration system according to an embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of an exhaust pipe, a muffler pipe, and an intake pipe in a compression refrigeration system according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional structural diagram of an exhaust pipe, a muffler pipe, and an intake pipe in a compression refrigeration system according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • This embodiment provides a compression refrigeration system, which can be applied to a refrigerating and freezing apparatus or other refrigeration equipment.
  • the compression refrigeration system of this embodiment will be described in detail below with reference to FIGS. 1 to 4 .
  • FIG. 1 is a schematic diagram of the connection of a compression refrigeration system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the external structure of the exhaust pipe 130 , the muffler pipe 150 and the intake pipe 140 in the compression refrigeration system according to an embodiment of the present invention
  • 3 is a schematic cross-sectional view of the exhaust pipe 130, the muffler pipe 150 and the intake pipe 140 in a compression refrigeration system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a compression refrigeration system according to another embodiment of the present invention.
  • the compression refrigeration system of this embodiment includes a compressor 110 , a condenser 120 , an exhaust pipe 130 , an intake pipe 140 and a muffler pipe 150 , and the inlet end of the exhaust pipe 130 is connected to the compressor
  • the exhaust end of the compressor 110 is connected
  • the outlet end of the intake pipe 140 is connected to the intake end of the condenser 120
  • the muffler pipe 150 is located between the compressor 110 and the condenser 120, and has a chamber 150a.
  • the exhaust pipe 130 has an exhaust insertion section 131 inserted into the chamber 150a by a first end 151 of the muffler pipe 150 adjacent to the compressor 110 , and the intake pipe 140 has a second end of the muffler pipe 150 adjacent to the condenser 120 152 is inserted into the intake insertion section 141 in the chamber 150a, and the outlet end of the exhaust insertion section 131 is spaced apart from the outlet end of the intake insertion section 141 by a preset distance.
  • the muffler pipe 50 can be used to reduce the vibration and noise of the compressor 110 .
  • the outer periphery of the muffler tube 150 may be covered with vibration damping glue (not shown), which can achieve better noise reduction effect.
  • the length of the cavity 150a of the muffler pipe 150 in the refrigerant flow direction is L
  • the length of the exhaust insertion section 131 in the refrigerant flow direction the intake air insertion section 141 in the refrigerant flow direction
  • the length in the direction can be 0 to 0.5L.
  • the lengths of the chambers of the exhaust pipe 130, the intake pipe 140 and the muffler pipe 150 have the above-mentioned specific relationship, which can ensure the insertion length of the exhaust pipe 130 and the intake pipe 140, so that the length of the chamber 150a can be ensured.
  • the length, the insertion depth of the exhaust pipe 130 and the insertion depth of the intake pipe 140 can directly correspond to the main noise frequency of the compressor 110 , which can eliminate the single-frequency noise of the compressor 110 and improve the noise reduction effect.
  • the refrigerant may be a single refrigerant or a plurality of mixed refrigerants.
  • the length of the exhaust insertion section 131 in the refrigerant flow direction is 0.5L, and the length of the intake insertion section 141 in the refrigerant flow direction is 0.25L.
  • the length of the exhaust insertion section 131 in the refrigerant flow direction is 0.25L, and the length of the intake air insertion section 141 in the refrigerant flow direction is 0.5L.
  • the muffler tubes 150 with different structures have different noise reduction effects.
  • the inventors of the present application have designed two muffler tubes 150 with better noise reduction effects.
  • the muffler pipe 150 sequentially includes a first conical section 153 , a first cylindrical section 154 and a second conical section 155 in the refrigerant flow direction, and the first conical section 153
  • the first end portion 151 of the muffler pipe 150 gradually expands toward the refrigerant flow direction.
  • the first cylindrical section 154 extends from the first conical section to the refrigerant flow direction and is parallel to the exhaust insertion section 131.
  • the second conical section 155 Then, the first cylindrical section 154 tapers toward the refrigerant flow direction to connect with the second end 152 of the muffler tube 150 .
  • the muffler tube in this embodiment has the above-mentioned specially designed structure, which can stably introduce sound waves into the muffler tube 150, and reflect and diffract the sound waves, thereby achieving a better noise reduction effect.
  • the cone angles of the first conical section 153 and the second conical section 155 may be 15° ⁇ 90°, and it has been verified by experiments that the muffler tube 150 satisfying the foregoing conditions has a better noise reduction effect.
  • the section of the muffler tube 150 between the first end portion 151 and the second end portion 152 has a waist-shaped cross section along the long axis direction of the muffler tube 150.
  • the section between the first end 151 and the second end 152 of the muffler tube 150 along the long axis direction of the muffler tube 150 includes the first semicircle section 156 , the second semicircle section 158 and the first semicircle section 156 .
  • the muffler tube 150 constructed in this way can also stably introduce sound waves into the muffler tube 150, thereby achieving a better noise reduction effect.
  • the compression refrigeration system may further include a capillary tube 160, an evaporator 170, etc.
  • the outlet end of the condenser 120 is connected to the inlet end of the capillary tube 160 through a first refrigeration pipeline (not numbered).
  • the outlet end is connected to the inlet end of the evaporator 170 through a second refrigeration pipeline (not numbered), and the outlet end of the evaporator 170 is connected to the inlet end of the compressor 110 through a third refrigeration pipeline (not numbered).
  • the role of the compressor 110 in the refrigeration system is mainly to absorb the low-temperature and low-pressure refrigerant vapor from the evaporator 170, and finally become high-temperature and high-pressure vapor after adiabatic compression by the compressor 110; the condenser 120 is used in the refrigeration system.
  • the role played by the compressor 110 is to introduce the high-temperature and high-pressure steam in the compressor 110 into the condenser, to condense the refrigerant vapor under the same pressure, and to dissipate heat to the surrounding medium at the same time, turning it into a high-pressure and low-temperature refrigerant cold liquid ;
  • the function of the capillary 160 in the refrigeration system is mainly to convert the high-pressure and low-temperature refrigerant cold liquid into the low-temperature and low-pressure refrigerant vapor after the medium-enthalpy throttling of the capillary 160, and then send the refrigerant vapor to the evaporator.
  • the evaporator 170 in the refrigeration system mainly boils the low-temperature and low-pressure refrigerant vapor passing through the capillary 160 under the condition of equal pressure in the evaporator 170, and the refrigerant vapor will absorb the surrounding medium during the boiling process. The heat eventually becomes the dry saturated vapor of the low temperature and low pressure refrigerant.
  • the refrigerant dry saturated gas in the refrigeration system is compressed into superheated refrigerant vapor of high temperature and high pressure when passing through the compressor 110, and then enters the condenser 120 through the exhaust pipe of the expansion valve piston of the compressor 110, and the high temperature and high pressure
  • the refrigerant vapor is condensed into a high-pressure and low-temperature liquid in the condenser 120, and then the liquid enters a filter (not shown) and passes through the capillary 160, where the medium-enthalpy throttle becomes a low-temperature and low-pressure refrigerant in the capillary 160
  • the low-temperature and low-pressure refrigerant boils in the equal-pressure evaporator 170 and absorbs a large amount of external heat to become saturated steam to realize the refrigeration process.
  • the refrigerant is sucked into the compressor 110 again for a cold cycle.
  • the aforesaid filter is not shown in the drawings, one of its functions is to filter out the sundries in the refrigeration system, such as metal chips, various oxides and dust, etc., so as to prevent the sundries from clogging the capillary tube or damaging the compressor.
  • These impurities come from the incomplete cleaning of parts and the lax assembly process, etc., which cause external impurities to enter the refrigeration pipeline and cause chemical reactions with moisture, air or acidic substances in the system. Once these impurities enter the compressor, the piston, cylinder, bearing, etc.
  • Another function of the filter is to absorb the residual water in the refrigeration system to prevent ice blockage and reduce the corrosive effect of water on the refrigeration system.
  • FIG. 5 is a schematic structural diagram of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • This embodiment also provides a refrigerating and freezing device including the compression refrigeration system of any of the foregoing embodiments.
  • the refrigerating and freezing device may be a refrigerator 10 , a freezer, or other equipment with refrigerating and freezing functions.
  • the refrigerating and freezing device can be direct-cooling or air-cooling.
  • the direct-cooling refrigerating and freezing device means that the evaporator directly absorbs the heat in the air inside the storage compartment to reduce the temperature of the storage compartment.
  • the refrigeration device relies on the fan to blow the cold air around the evaporator into the storage compartment, and makes the air flow return from the storage compartment to the evaporator room to form an air circulation to reduce the temperature of the storage compartment.
  • FIG. 5 exemplarily shows a schematic diagram of the external structure of the refrigerator 10.
  • the refrigerator 10 includes a side-to-side door-type first storage compartment located at the top, and a second storage compartment located below the first storage compartment. A storage compartment and a third storage compartment below the second storage compartment.
  • the first storage compartment is a refrigerating compartment
  • the second storage compartment is a changing room
  • the third storage compartment is a freezing compartment.
  • the volume of the first storage compartment is larger than that of the third storage compartment.
  • the volume of the third storage compartment is larger than that of the second storage compartment.
  • the changing room can generally be used for refrigeration or freezing.
  • the second storage compartment and the third storage compartment are all drawer-type structures.
  • a muffler pipe 150 with a cavity 150a is arranged between the compressor 110 and the condenser 120, and part of the exhaust pipe 130 and the intake pipe 140 are inserted into the muffler pipe 150, and the exhaust insertion section 131 is not connected to the intake insertion section 141, so that after the refrigerant pulsating airflow reaches the muffler pipe 150, a buffer is generated in the cavity 150a of the muffler pipe 150, which can improve the refrigerant pulsation noise. , while reducing the vibration noise of the compressor 110 .
  • the exhaust insertion section 131 of the exhaust pipe 130, the intake insertion section 141 of the intake pipe 140, and the cavity 150a of the muffler pipe 150 satisfy a special relationship
  • the length of the chamber 150a, the insertion depth of the exhaust pipe 130 and the insertion depth of the intake pipe 140 can directly correspond to the main noise frequency of the compressor 110, so that the single frequency noise of the compressor 110 can be eliminated.
  • the muffler pipe 150 has a special structure, which further enhances the noise reduction effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressor (AREA)

Abstract

一种压缩制冷系统及冷藏冷冻装置,其中的制冷系统包括压缩机、冷凝器、排气管路、进气管路及消音管,排气管路的进口端与压缩机的排气端连接,进气管路的出口端与冷凝器的进气端连接,消音管位于压缩机和冷凝器之间,具有腔室,排气管路具有由消音管临近压缩机的第一端部插入腔室内的排气插入段,进气管路具有由消音管临近冷凝器的第二端部插入腔室内的进气插入段,且排气插入段的出口端与进气插入段的出口端间隔预设距离,可改善制冷剂脉动噪声和降低压缩机的振动噪音。

Description

压缩制冷系统及冷藏冷冻装置 技术领域
本发明涉及压缩制冷技术领域,特别是涉及一种压缩制冷系统及冷藏冷冻装置。
背景技术
在压缩制冷系统中,压缩机是制冷系统动力提供部分,同时也为整个管路周期性循环过程中提供质量流、能量流,但是压缩机在周期性运行过程中,排气噪声大一直是降噪的一大难点。特别地,在混合制冷剂下,压缩机排气端压力脉动较大,影响用户体验。
发明内容
本发明的一个目的是要提供一种至少解决上述问题的压缩制冷系统。
本发明一个进一步的目的是消除压缩机的噪音。
特别地,根据本发明的一个方面,本发明首先提供了一种压缩制冷系统,其包括:压缩机和、冷凝器、排气管路、进气管路及消音管,所述排气管路的进口端与所述压缩机的排气端连接,所述进气管路的出口端与所述冷凝器的进气端连接,所述消音管位于所述压缩机和所述冷凝器之间,具有腔室;
所述排气管路具有由所述消音管临近所述压缩机的第一端部插入所述腔室内的排气插入段,所述进气管路具有由所述消音管临近所述冷凝器的第二端部插入所述腔室内的进气插入段,且所述排气插入段的出口端与所述进气插入段的进口端间隔预设距离。
可选地,所述腔室在所述制冷剂流动方向上的长度为L,所述排气插入段在所述制冷剂流动方向上的长度、所述进气插入段在所述制冷剂流动方向上的长度的取值范围均为0~0.5L。
可选地,所述排气插入段在所述制冷剂流动方向上的长度为0.5L,所述进气插入段在所述制冷剂流动方向上的长度为0.25L。
可选地,所述排气插入段在所述制冷剂流动方向上的长度为0.25L,所述进气插入段在所述制冷剂流动方向上的长度为0.5L。
可选地,所述消音管在所述制冷剂流动方向上依次包括:
第一圆锥段,由所述第一端部向所述制冷剂流动方向渐扩;
第一圆柱段,由所述第一圆锥段向所述制冷剂流动方向延伸,与所述排气插入段平行;
第二圆锥段,由所述第一圆柱段向所述制冷剂流动方向渐缩至与所述第二端部相接。
可选地,所述第一圆锥段、所述第二圆锥段的锥角为15°~90°。
可选地,所述消音管在所述第一端部与所述第二端部之间的区段沿所述消音管的长轴方向的剖面呈腰圆形。
可选地,制冷系统还包括:
减振胶泥,包覆于所述消音管的外周。
可选地,制冷系统还包括:
毛细管和蒸发器,所述毛细管的进端通过第一制冷管路与所述冷凝器的出端连通,所述毛细管的出端通过第二制冷管路与蒸发器的进端连通,所述蒸发器的出端通过第三制冷管路与所述压缩机的进端连通。
根据本发明的另一方面,本发明还提供了一种冷藏冷冻装置,包括前述任一项所述的压缩制冷系统。
本发明的压缩制冷系统及冷藏冷冻装置中,压缩机与冷凝器之间设置具有腔室的消音管,排气管路、进气管路均有部分管段插入消音管的腔室内,且排气插入段与进气插入段不连接,使得制冷剂脉动噪声到达消音管后,在消音管的腔室内产生缓冲,从而可改善制冷剂脉动噪声,同时降低压缩机振动噪音。
进一步地,本发明的压缩制冷系统及冷藏冷冻装置,腔室的长度、排气管路的插入深度和进气管路的插入深度直接对应于压缩机的主要噪声频率,如此可消除压缩机的单频噪声。
更进一步地,本发明的压缩制冷系统及冷藏冷冻装置,消音管的特别构造,进一步增强了降噪效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域 技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的压缩制冷系统的连接示意图;
图2是根据本发明一个实施例的压缩制冷系统中的排气管路、消音管和进气管路的外形结构示意图;
图3是根据本发明一个实施例的压缩制冷系统中的排气管路、消音管和进气管路的剖面示意图;
图4是根据本发明另一实施例的压缩制冷系统中的排气管路、消音管和进气管路的剖面结构示意图;以及
图5是根据本发明一个实施例的冷藏冷冻装置的结构示意图。
具体实施方式
本实施例提供了一种压缩制冷系统,其可应用于冷藏冷冻装置或其他制冷设备中,以下结合图1至图4对本实施例的压缩制冷系统进行详细描述。
图1是根据本发明一个实施例的压缩制冷系统的连接示意图,图2是根据本发明一个实施例的压缩制冷系统中的排气管路130、消音管150和进气管路140的外形结构示意图,图3是根据本发明一个实施例的压缩制冷系统中的排气管路130、消音管150和进气管路140的剖面示意图,图4是根据本发明另一实施例的压缩制冷系统中的排气管路130、消音管150和进气管路140的剖面结构示意图。
如图1至图4所示,本实施例的压缩制冷系统包括压缩机110、冷凝器120、排气管路130、进气管路140及消音管150,排气管路130的进口端与压缩机110的排气端连接,进气管路140的出口端与冷凝器120的进气端连接,消音管150位于压缩机110和冷凝器120之间,具有腔室150a。
排气管路130具有由消音管150临近压缩机110的第一端部151插入腔室150a内的排气插入段131,进气管路140具有由消音管150临近冷凝器120的第二端部152插入腔室150a内的进气插入段141,且排气插入段131的出口端与进气插入段141的出口端间隔预设距离。
当制冷剂脉动气流到达消音管150后,在消音管150的腔室150a内产生缓冲,从而可改善制冷剂脉动噪声。同时,由于排气管路130、进气管路140均具有插入段,可利用消音管50降低压缩机110的振动噪音。
考虑到消音管150本身的腔室150a就是一个共振腔,为降低消音管150 的振动,消音管150的外周可包覆有减振胶泥(未示出),可获更佳的降噪效果。
在其中一个实施例中,若消音管150的腔室150a在制冷剂流动方向上的长度为L,则排气插入段131在制冷剂流动方向上的长度、进气插入段141在制冷剂流动方向上的长度均可为0~0.5L。
本实施例中,排气管路130、进气管路140与消音管150的腔室的长度具有上述特定关系,可保证排气管路130、进气管路140的插入长度,使得腔室150a的长度、排气管路130的插入深度和进气管路140的插入深度可直接对应于压缩机110的主要噪声频率,如此可消除压缩机110的单频噪声,提升降噪效果。
其中,图2、图4的箭头指向为制冷剂流动方向,制冷剂可以为单一制冷剂或多种混合制冷剂。
进一步地,在可选实施例中,排气插入段131在制冷剂流动方向上的长度为0.5L,进气插入段141在制冷剂流动方向上的长度为0.25L。
在另一可选实施例中,排气插入段131在制冷剂流动方向上的长度为0.25L,进气插入段141在制冷剂流动方向上的长度为0.5L。
排气插入段131、进气插入段141和消音管150满足前述关系时,降噪效果更好。
不同构造的消音管150会起到不同的降噪效果,本申请发明人设计了两种降噪效果较好的消音管150。
具体地,在其中一个实施例中,如图2所示,消音管150在制冷剂流动方向上依次包括第一圆锥段153、第一圆柱段154和第二圆锥段155,第一圆锥段153由消音管150的第一端部151向制冷剂流动方向渐扩,第一圆柱段154由第一锥形段向制冷剂流动方向延伸,并与排气插入段131平行,第二圆锥段155则由第一圆柱段154向制冷剂流动方向渐缩至与消音管150的第二端部152相接。
本实施例的对消音管的具有如上特别设计的构造,可将声波稳定地引入消音管150内,并对声波进行反射、衍射,起到较好的降噪效果。
在可选实施例中,第一圆锥段153,第二圆锥段155的锥角可为15°~90°,经过实验验证,满足前述条件的消音管150的降噪效果更好。
在另一实施例中,如图3所示,消音管150在第一端部151与第二端部 152之间的区段沿消音管150的长轴方向的剖面呈腰圆形。
也即是说消音管150第一端部151与第二端部152之间的区段沿消音管150的长轴方向的剖面包括第一半圆段156、第二半圆段158以及将第一半圆段156与第二半圆段158的端点进行连接的两个平行直段157。如此构造的消音管150也可将声波稳定地引入消音管150内,起到较好的降噪效果。
如本领域技术人员所熟知的,压缩制冷系统还可包括毛细管160和蒸发器170等,冷凝器120的出口端通过第一制冷管路(未标号)与毛细管160的进端连接,毛细管160的出端通过第二制冷管路(未标号)与蒸发器170的进端连接,蒸发器170的出端则通过第三制冷管路(未标号)与压缩机110的进端连接。
压缩机110在制冷系统中所起的作用主要是吸收来自蒸发器170中的低温低压的制冷剂蒸汽,经过压缩机110的绝热压缩之后最终变成了高温高压的蒸汽;冷凝器120在制冷系统中所起的作用是将压缩机110中高温高压蒸汽导入冷凝器中,在同等的压力下进行制冷剂蒸汽的冷凝,同时向周围的介质进行散热,将其变成高压低温的制冷剂冷液;毛细管160在制冷系统中所起的作用主要是将高压低温的制冷剂冷液在毛细管160中等焓节流之后,将其转变成为低温低压的制冷剂蒸汽,之后将制冷剂蒸汽送入蒸发器170中;蒸发器170在制冷系统中主要是起将通过毛细管160的低温低压的制冷剂蒸汽在蒸发器170等压的条件下使其沸腾,制冷剂蒸汽在沸腾的过程中会吸收周围介质的热量,最终变成低温低压的制冷剂干饱和的蒸汽。
综合而言,制冷系统中的制冷剂干饱和气体经过压缩机110时被压缩为高温高压的过热制冷剂蒸汽,经过压缩机110的膨胀阀活塞的排气管进入到冷凝器120中,高温高压的制冷剂蒸汽在冷凝器120中被冷凝为高压低温的液体,之后这一液体进入到过滤器(未示出)后经过毛细管160,在毛细管160中等焓节流变成低温低压的的制冷剂蒸汽,之后这一低温低压的制冷剂在等压的蒸发器170中沸腾大量的吸收外界的热量变成饱和的蒸汽,实现了制冷过程,最后制冷剂再次被压缩机110吸入进行冷循环。
前述过滤器在附图中未示出,其作用之一是滤去制冷系统中的杂物,如金属屑、各类氧化物和灰尘等,以防止杂物堵塞毛细管或损坏压缩机。这些杂物来源于零件清洁不彻底,装配过程不严格等,使外界杂质进入制冷管路与系统内存在水份、空气或酸性物质产生化学反应。这些杂质—旦进入压缩 机,便使活塞、气缸、轴承等严重磨损甚至卡死的可能;进人电机绕组成接线端子处,则可能破坏绕组线圈绝缘,产生短路、击穿;进入毛细管,由于毛细管内径很细,很可能造成堵塞而不制冷,因此过滤这些杂质显得十分必要。
过滤器的另一作用是吸收制冷系统中的残留水份,防止产生冰堵,减少水份对制冷系统的腐蚀作用。
图5是根据本发明一个实施例的冷藏冷冻装置的结构示意图。
本实施例还提供了一种包括前述任一实施例的压缩制冷系统的冷藏冷冻装置,如图5所示,冷藏冷冻装置可以是冰箱10、冷柜等具有冷藏、冷冻功能的设备。
冷藏冷冻装置可以为直冷式或风冷式,直冷式的冷藏冷冻装置是指蒸发器直接吸收储物间室内部空气中的热量,实现储物间室温度的降低,风冷式的冷藏冷冻装置是依靠风扇将蒸发器周围的冷空气吹入储物间室,并使得气流从储物间室回风到蒸发器室,形成气流循环,达到降低储物间室温度的目的。
图5示例性地给出了冰箱10的外形结构示意图,如图5所示,冰箱10包括位于最上方的对开门式的第一储物间室、位于第一储物间室下方的第二储物间室和位于第二储物间室下方的第三储物间室。一般地,第一储物间室为冷藏室,第二储物间室为变温室,第三储物间室为冷冻室,第一储物间室的容积大于第三储物间室,第三储物间室的容积大于第二储物间室。变温室一般可作为冷藏或冷冻使用,在图5所示中,第二储物间室、第三储物间室均为抽屉式结构。
本实施例的压缩制冷系统及冷藏冷冻装置,通过在压缩机110与冷凝器120之间设置具有腔室150a的消音管150,排气管路130、进气管路140均有部分管段插入消音管150的腔室内,且排气插入段131与进气插入段141不连接,使得制冷剂脉动气流到达消音管150后,在消音管150的腔室150a内产生缓冲,如此可改善制冷剂脉动噪声,同时降低压缩机110的振动噪音。
进一步地,本实施例的压缩制冷系统及冷藏冷冻装置,排气管路130的排气插入段131、进气管路140的进气插入段141、消音管150的腔室150a满足特别的关系,使得腔室150a的长度、排气管路130的插入深度和进气管路140的插入深度可直接对应于压缩机110的主要噪声频率,如此可消除 压缩机110的单频噪声。
更进一步地,本实施例的压缩制冷系统及冷藏冷冻装置,消音管150具有特别构造,进一步增强了降噪效果。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种压缩制冷系统,包括压缩机和冷凝器,其中,所述制冷系统还包括:
    排气管路、进气管路及消音管,所述排气管路的进口端与所述压缩机的排气端连接,所述进气管路的出口端与所述冷凝器的进气端连接,所述消音管位于所述压缩机和所述冷凝器之间,具有腔室;
    所述排气管路具有由所述消音管临近所述压缩机的第一端部插入所述腔室内的排气插入段,所述进气管路具有由所述消音管临近所述冷凝器的第二端部插入所述腔室内的进气插入段,且所述排气插入段的出口端与所述进气插入段的进口端间隔预设距离。
  2. 根据权利要求1所述的压缩制冷系统,其中
    所述腔室在制冷剂流动方向上的长度为L,所述排气插入段在制冷剂流动方向上的长度、所述进气插入段在制冷剂流动方向上的长度的取值范围均为0~0.5L。
  3. 根据权利要求2所述的压缩制冷系统,其中
    所述排气插入段在所述制冷剂流动方向上的长度为0.5L,所述进气插入段在所述制冷剂流动方向上的长度为0.25L。
  4. 根据权利要求2所述的压缩制冷系统,其中
    所述排气插入段在所述制冷剂流动方向上的长度为0.25L,所述进气插入段在所述制冷剂流动方向上的长度为0.5L。
  5. 根据权利要求1所述的压缩制冷系统,其中
    所述消音管在制冷剂流动方向上依次包括:
    第一圆锥段,由所述第一端部向制冷剂流动方向渐扩;
    第一圆柱段,由所述第一圆锥段向制冷剂流动方向延伸,与所述排气插入段平行;
    第二圆锥段,由所述第一圆柱段向制冷剂流动方向渐缩至与所述第二端部相接。
  6. 根据权利要求5所述的压缩制冷系统,其中
    所述第一圆锥段、所述第二圆锥段的锥角为15°~90°。
  7. 根据权利要求1所述的压缩制冷系统,其中
    所述消音管在所述第一端部与所述第二端部之间的区段沿所述消音管的长轴方向的剖面呈腰圆形。
  8. 根据权利要求1所述的压缩制冷系统,还包括:
    减振胶泥,包覆于所述消音管的外周。
  9. 根据权利要求1所述的压缩制冷系统,还包括:
    毛细管和蒸发器,所述毛细管的进端通过第一制冷管路与所述冷凝器的出端连通,所述毛细管的出端通过第二制冷管路与所述蒸发器的进端连通,所述蒸发器的出端通过第三制冷管路与所述压缩机的进端连通。
  10. 一种冷藏冷冻装置,包括:
    权利要求1至9中任一项所述的压缩制冷系统。
PCT/CN2022/070748 2020-12-18 2022-01-07 压缩制冷系统及冷藏冷冻装置 WO2022127937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202023069401.2 2020-12-18
CN202023069401.2U CN214536897U (zh) 2020-12-18 2020-12-18 压缩制冷系统及冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2022127937A1 true WO2022127937A1 (zh) 2022-06-23

Family

ID=78294779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070748 WO2022127937A1 (zh) 2020-12-18 2022-01-07 压缩制冷系统及冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN214536897U (zh)
WO (1) WO2022127937A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214536897U (zh) * 2020-12-18 2021-10-29 沈阳海尔电冰箱有限公司 压缩制冷系统及冷藏冷冻装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2306465Y (zh) * 1997-06-13 1999-02-03 海尔集团公司 可降低噪音的电冰箱制冷系统
CN203036178U (zh) * 2012-12-31 2013-07-03 海尔集团公司 一种消音器及冷柜
CN203908131U (zh) * 2014-05-06 2014-10-29 合肥晶弘电器有限公司 一种制冷系统及冰箱
CN205401143U (zh) * 2016-02-24 2016-07-27 格力电器(重庆)有限公司 一种消声器、制冷系统以及空调设备
CN206309551U (zh) * 2016-10-27 2017-07-07 黄石东贝电器股份有限公司 排气消音器以及制冷压缩机
CN209414089U (zh) * 2018-12-11 2019-09-20 珠海格力节能环保制冷技术研究中心有限公司 消音器结构及具有其的压缩机
CN214536897U (zh) * 2020-12-18 2021-10-29 沈阳海尔电冰箱有限公司 压缩制冷系统及冷藏冷冻装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2306465Y (zh) * 1997-06-13 1999-02-03 海尔集团公司 可降低噪音的电冰箱制冷系统
CN203036178U (zh) * 2012-12-31 2013-07-03 海尔集团公司 一种消音器及冷柜
CN203908131U (zh) * 2014-05-06 2014-10-29 合肥晶弘电器有限公司 一种制冷系统及冰箱
CN205401143U (zh) * 2016-02-24 2016-07-27 格力电器(重庆)有限公司 一种消声器、制冷系统以及空调设备
CN206309551U (zh) * 2016-10-27 2017-07-07 黄石东贝电器股份有限公司 排气消音器以及制冷压缩机
CN209414089U (zh) * 2018-12-11 2019-09-20 珠海格力节能环保制冷技术研究中心有限公司 消音器结构及具有其的压缩机
CN214536897U (zh) * 2020-12-18 2021-10-29 沈阳海尔电冰箱有限公司 压缩制冷系统及冷藏冷冻装置

Also Published As

Publication number Publication date
CN214536897U (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN108168131B (zh) 一级压缩二级节流降噪的制冷系统
WO2022127937A1 (zh) 压缩制冷系统及冷藏冷冻装置
KR101128531B1 (ko) 리퀴드 과냉 시스템
TW201932772A (zh) 降噪音裝置及具有該降噪音裝置之製冷設備
KR101525857B1 (ko) 차량용 공조장치의 소음기
JP4904970B2 (ja) 冷凍装置
KR101487202B1 (ko) 차량용 공조장치의 소음기
ITMI962739A1 (it) Un'apparecchiatura di scongelamento di uno scambiatore di calore ed un metodo che la utilizza per allontanare il ghiaccio
KR101935771B1 (ko) 차량용 공조장치의 소음기
KR20100078065A (ko) 다중 소음 차단기 및 이를 포함하는 냉동공조제품
CN105588375A (zh) 一种空调循环系统及空调器
WO2005040701A1 (ja) 冷却装置とそれを用いた冷蔵庫
KR101565426B1 (ko) 다중 소음 차단기 및 이를 포함하는 냉동공조제품
KR101519321B1 (ko) 압축기 흡입토출배관에 설치된 이중 소음 차단 머플러 및 이를 포함하는 냉동공조제품
WO2024140665A1 (zh) 节流装置和冷藏冷冻装置
CN214094726U (zh) 空调室外机及空调器
CN213955615U (zh) 一种增焓配管及空调系统
KR100437015B1 (ko) 냉장고의 진동저감구조
KR200348438Y1 (ko) 냉각장치용 소음기
CN217464935U (zh) 复叠式制冷系统和冰箱
KR20070025726A (ko) 냉장고
WO2021117254A1 (ja) スポットクーラー装置
KR100225632B1 (ko) 냉장고의 냉매관 연결장치
RU2018128786A (ru) Аппарат для лечения холодом
KR100261713B1 (ko) 공기 조화기의 교축장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22731035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22731035

Country of ref document: EP

Kind code of ref document: A1