WO2022127397A1 - 射频收发系统及通信设备 - Google Patents

射频收发系统及通信设备 Download PDF

Info

Publication number
WO2022127397A1
WO2022127397A1 PCT/CN2021/127212 CN2021127212W WO2022127397A1 WO 2022127397 A1 WO2022127397 A1 WO 2022127397A1 CN 2021127212 W CN2021127212 W CN 2021127212W WO 2022127397 A1 WO2022127397 A1 WO 2022127397A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
port
transceiver
antenna
receiving
Prior art date
Application number
PCT/CN2021/127212
Other languages
English (en)
French (fr)
Inventor
王国龙
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21905326.1A priority Critical patent/EP4254812A4/en
Publication of WO2022127397A1 publication Critical patent/WO2022127397A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of radio frequency technology, and in particular, to a radio frequency transceiver system and communication equipment.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • a plurality of RF front-end modules are arranged in the receiving path of an RF system to cooperate with an antenna array to improve the channel capacity of the system, which is costly and occupies a large area of the substrate.
  • a radio frequency transceiver system and a communication device are provided.
  • a radio frequency transceiver system comprising:
  • an antenna group including a first antenna, a second antenna, a third antenna and a fourth antenna, for transmitting and receiving radio frequency signals;
  • a radio frequency LFEM device the radio frequency LFEM device is configured with a plurality of transceiver ports, a first antenna port for connecting to a first antenna, a second antenna port for connecting to a second antenna, and a third antenna port for connecting to a third antenna an antenna port, a fourth antenna port for connecting a fourth antenna, and a plurality of receiving ports for connecting the radio frequency transceiver, the radio frequency LFEM device is used for supporting dual-channel reception of radio frequency signals of at least two frequency bands;
  • a first radio frequency PA Mid device which is connected to a transceiver port of the radio frequency transceiver and the radio frequency LFEM device respectively, and is used to support the transmission and reception of radio frequency signals of multiple frequency bands;
  • a second radio frequency PA Mid device is respectively connected to a transceiver port of the radio frequency transceiver and the radio frequency LFEM device, and is used to support the transmission and reception of radio frequency signals of multiple frequency bands.
  • a communication device includes the above-mentioned radio frequency transceiver system.
  • 1a is a schematic diagram of a transmission application scenario of a communication device feedback channel information according to an embodiment
  • FIG. 1b is a second schematic diagram of a transmission application scenario of a communication device feedback channel information according to an embodiment
  • FIG. 2 is a schematic diagram of a mode of alternate transmission of SRS antennas according to an embodiment
  • FIG. 3 is a schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 4 is one of the schematic structural diagrams of the radio frequency LFEM device according to an embodiment
  • FIG. 5 is a second schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • FIG. 6 is a second schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 7 is a third schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • FIG. 8 is a third schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 9 is a fourth schematic structural diagram of a radio frequency LFEM device according to an embodiment.
  • FIG. 10a is a fifth schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • 10b is a sixth schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • FIG. 11 is a fourth schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 12 is a seventh schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • FIG. 13 is a fifth schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 14 is the eighth schematic structural diagram of the radio frequency LFEM device according to an embodiment
  • 15 is a sixth schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • Fig. 16a is a schematic diagram of the package pins of the radio frequency LFEM device in Fig. 7;
  • Fig. 16b is a schematic diagram of the package pins of the radio frequency LFEM device in Fig. 10;
  • Fig. 16c is a schematic diagram of the package pins of the radio frequency LFEM device in Fig. 12;
  • FIG. 16d is a schematic diagram of the package pins of the RF LFEM device in FIG. 14 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plural means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • severeal means at least one, such as one, two, etc., unless expressly and specifically defined otherwise.
  • the radio frequency transceiver system involved in the embodiments of the present application can be applied to a communication device with a wireless communication function.
  • a communication device with a wireless communication function.
  • UE user equipment
  • MS mobile station
  • Network devices may include base stations, access points, and the like.
  • the radio frequency transceiver system in the embodiment of the present application can support the fifth generation mobile communication technology (5G or 5G technology for short).
  • 5G fifth generation mobile communication technology
  • the performance goals of 5G are high data rates, reduced latency, energy savings, lower costs, increased system capacity, and massive device connectivity.
  • 5G is divided into two modes: Standalone Access (NA) and Non-Standalone Access (NSA).
  • NA Standalone Access
  • NSA Non-Standalone Access
  • the non-standalone networking is to anchor the 5G control signaling on the 4G base station
  • the independent networking is that the 5G base station directly accesses the 5G core network, and the control signaling does not depend on the 4G network.
  • the 5G network supports beamforming technology, which can transmit directionally to communication devices. If the base station wants to transmit in a directional manner, it must first detect the location of the communication device, the quality of the transmission path, etc., so that the resources of the base station can be allocated to each communication device more accurately.
  • PMI Precoding Matrix Indicator
  • SRS Sounding Reference Signal
  • the SRS information sent by the communication device is the method used by the base station to detect the terminal position and channel quality; the SRS antenna rotation is shown in Figure 2, and the details are as follows:
  • 1T1R fixed at the first antenna to feed back information to the base station, and does not support SRS rotation;
  • 1T4R SRS information is transmitted from the first antenna to the fourth antenna in turn, and only one antenna is selected for transmission at a time.
  • this mode is adopted for non-independent networking
  • 2T4R SRS information is transmitted from the first antenna to the fourth antenna in turn, and two antennas are selected for simultaneous transmission at each time.
  • this mode is adopted for independent networking.
  • the SA mode can complete the channel estimation faster than the NSA mode and improve the network channel. estimated speed.
  • the radio frequency transceiver system includes: a radio frequency transceiver 40 , an antenna group, a radio frequency LFEM device 30 , and a first radio frequency PA Mid device 10 and the second radio frequency PA Mid device 20.
  • the radio frequency transceiver 40 may include a transmitter (such as a transmitter TX) and a receiver (such as a receiver RX), or may contain only a receiver (eg, receiver RX) or only a transmitter (eg, transmit device TX).
  • the radio frequency transceiver 40 may be used to implement frequency conversion processing between radio frequency signals and baseband signals, or/and, to implement frequency conversion processing of signals in different frequency bands, and so on.
  • the antenna group at least includes a first antenna Ant1, a second antenna Ant2, a third antenna Ant3 and a fourth antenna Ant4.
  • the first antenna Ant1, the second antenna Ant2, the third antenna Ant3, and the fourth antenna Ant4 may be used to receive and transmit radio frequency signals in the N41, N77, and N79 frequency bands. That is, the first antenna Ant1, the second antenna Ant2, the third antenna Ant3, and the fourth antenna Ant4 are all antennas capable of supporting 5GNR signals.
  • each antenna in the antenna group may be a directional antenna or a non-directional antenna.
  • each antenna within an antenna group may be formed using any suitable type of antenna.
  • each antenna within an antenna group may include an antenna with resonating elements formed from the following antenna structures: array antenna structures, loop antenna structures, patch antenna structures, slot antenna structures, helical antenna structures, strip antennas, monopoles At least one of an antenna, a dipole antenna, etc.
  • antennas can be used for different frequency band combinations of RF signals.
  • the radio frequency LFEM device 30 is understood as a low noise amplifier front-end module (Low Noise AmPlifier-Front-End Modules), which is used to support dual-channel reception of radio frequency signals of at least two frequency bands.
  • the radio frequency LFEM device 30 is also used to support the transmission and transmission of radio frequency signals, and can support the 4*4 MIMO function in conjunction with the first antenna Ant1, the second antenna Ant2, the third antenna Ant3 and the fourth antenna Ant4.
  • the radio frequency LFEM device 30 is configured with a first antenna port ANT1, a second antenna port ANT2, a third antenna port ANT3, a fourth antenna port ANT4 and a plurality of receiving ports RX for connecting the radio frequency transceiver 40, for example RX1, RX2, RX3, RX4.
  • the radio frequency LFEM device 30 can be understood as a packaged chip, and the first antenna port ANT1, the second antenna port ANT2, the third antenna port ANT3, and the fourth antenna port are configured in the device.
  • ANT4, the transceiver port TRX, and the receive port RX can be understood as the radio frequency pin terminals of the radio frequency LFEM device 30, which are used to connect with various external devices.
  • the first antenna port ANT1 can be used to connect with the first antenna Ant1;
  • the second antenna port ANT2 can be used to connect with the second antenna Ant2;
  • the third antenna port ANT3 can be used to connect with the third antenna Ant3;
  • the fourth antenna port ANT4 Can be used to connect with the fourth antenna Ant4.
  • the receive port RX can be used to connect with the radio frequency transceiver 40 .
  • a plurality of transceiver ports TRX can be used to connect with the first radio frequency PA Mid device 10 and the second radio frequency PA Mid device 20.
  • the first antenna port ANT1 may input the radio frequency signal received by the first antenna Ant1 to the radio frequency LFEM device 30, or may transmit the radio frequency signal processed by the radio frequency LFEM device 30 through the first antenna Ant1.
  • the second antenna port ANT2 can input the radio frequency signal received by the second antenna Ant2 to the radio frequency LFEM device 30, and can also transmit the radio frequency signal processed by the radio frequency LFEM device 30 through the second antenna Ant2.
  • the third antenna port ANT3 can input the radio frequency signal received by the third antenna Ant3 to the radio frequency LFEM device 30, or can transmit the radio frequency signal processed by the radio frequency LFEM device 30 through the third antenna Ant3.
  • the fourth antenna port ANT4 can input the radio frequency signal received by the fourth antenna Ant4 to the radio frequency LFEM device 30, and can also transmit the radio frequency signal processed by the radio frequency LFEM device 30 through the fourth antenna Ant4.
  • the receiving port RX can process the radio frequency signals received by the radio frequency LFEM device 30 through the first antenna port ANT1, the second antenna port ANT2, the third antenna port ANT3 and the fourth antenna port ANT4 and output it to the radio frequency transceiver 40 to realize the detection of the radio frequency signal.
  • the receiving control, the transceiver port TRX can receive the radio frequency signal output by the radio frequency transceiver 40 to the first radio frequency PA Mid device 10 or the second radio frequency PA Mid device 20, so that the radio frequency LFEM device 30 can realize the received radio frequency signal. transmit transmission.
  • the radio frequency signal may be a 5G signal, such as a 5G signal in the N41 frequency band, a radio frequency signal in the N77 (N78) frequency band, a radio frequency signal in the N79 frequency band, and the like.
  • the working frequency band of N41 is 496MHz-2690MHz
  • the working frequency band of N77 is 3.3GHz-4.2GHz
  • the working frequency band of N78 is 3.3GHz-3.8GHz
  • the working frequency band of N79 is 4.4GHz-5.0GHz.
  • the working frequency band of N77 covers the working frequency band of N78. That is, when the radio frequency LFEM device 30 can support the transmission and reception of radio frequency signals in the N77 frequency band, it can also support the transmission and reception of radio frequency signals in the N78 frequency band.
  • the first radio frequency PA Mid device 10 (Power AmPlifier Modules including DuPlexers, including a power amplifier module of a duplexer) is used to support the amplification and transceiver control of radio frequency signals in multiple frequency bands. That is, the first radio frequency PA Mid device 10 can control the reception and transmission of radio frequency signals in multiple frequency bands.
  • the first radio frequency PA Mid device 10 is a packaged chip, and the device is configured with a receiving path for receiving radio frequency signals and a transmitting path for transmitting radio frequency signals, so as to realize the control of sending and receiving radio frequency signals.
  • the second radio frequency PA Mid device 20 is also used to support transceiver amplification control of radio frequency signals in multiple frequency bands.
  • the second radio frequency PA Mid device 20 can realize the control of reception and transmission of radio frequency signals in multiple frequency bands.
  • the second radio frequency PA Mid device 20 is a packaged chip, and the device is configured with a receiving path for receiving radio frequency signals and a transmitting path for transmitting radio frequency signals, so as to realize the control of sending and receiving radio frequency signals.
  • MIMO technology refers to the use of multiple transmit and receive antennas at the transmit port and receive port, respectively, to make full use of space resources, and to achieve multiple transmissions and multiple receptions through multiple antennas. Improving system channel capacity shows obvious advantages and is regarded as the core technology of next-generation mobile communication.
  • the terminal and the base station can form 2*2MIMO or 4*4MIMO.
  • all 4 receiving channels are also connected to the instrument.
  • Four channels constitute the downlink of MIMO, all of which receive the signals sent by the uplink base station to improve the performance of the receiver.
  • the above-mentioned radio frequency transceiver system and communication equipment realize dual-channel reception of at least two frequency bands of radio frequency signals through the radio frequency LFEM device 30, and the two receiving channels of each frequency band signal are integrated and packaged in the same chip, which can save the space occupied by each device on the substrate. space, freeing up physical space for performance optimization of other modules, and reducing costs.
  • the RF LFEM device 30 cooperates with the antenna group, the first RF PA Mid device 10 and the second RF PA Mid device 20 to realize the 4*4 MIMO function in the 2T4R mode. Improve the system channel capacity, and improve the accuracy and efficiency of channel estimation.
  • the radio frequency LFEM device 30 includes two first receiving circuits 310 , two second receiving circuits 320 and a first switching unit 330 .
  • the multiple first terminals of the first switch unit 330 are respectively connected to the input terminals of the two first receiving circuits 310 , the input terminals of the two second receiving circuits 320 , and the multiple transceiver ports TRX in a one-to-one correspondence.
  • the four second ends of the unit 330 are respectively connected to the first antenna port ANT1 , the second antenna port ANT2 , the third antenna port ANT3 and the fourth antenna port ANT4 in a one-to-one correspondence, and are used for connecting to the first antenna port ANT1 and the second antenna port ANT1 and the second antenna port ANT4.
  • the port ANT2, the third antenna port ANT3 and the fourth antenna port ANT4 transmit and receive radio frequency signals, and are also used to transmit radio frequency signals transmitted by the radio frequency transceiver 40 through the transceiver port TRX, so as to selectively conduct the first antenna port ANT1 and the second antenna
  • the port ANT2, the third antenna port ANT3 and the fourth antenna port ANT4 are connected to the receiving path of the radio frequency LFEM device 30, or selectively conduct the first antenna port ANT1, the second antenna port ANT2, the third antenna port ANT3 and the first antenna port ANT1.
  • the connection of the four antenna ports ANT4 to the transmit path of the radio frequency LFEM device 30 .
  • the receiving path of the radio frequency LFEM device 30 can be understood as the first receiving path between the first antenna port ANT1 and any receiving port RX or the transceiver port TRX, and the second antenna port ANT2 and any receiving port RX or the transceiver port TRX
  • the transmit path of the radio frequency LFEM device 30 can be understood as the transmit path between any antenna port and the transceiver port TRX.
  • the input ends of the two first receiving circuits 310 and the input ends of the two second receiving circuits 320 are respectively connected to the four first ends of the first switching unit 330 in a one-to-one correspondence, and the output ends of the two first receiving circuits 310 and the output ends of the two second receiving circuits 320 are respectively connected to the four receiving ports RX in a one-to-one correspondence.
  • the first receiving circuit 310 is used for receiving and amplifying the radio frequency signal of the first frequency band
  • the second receiving circuit 320 is used for receiving and amplifying the radio frequency signal of the second frequency band.
  • the first antenna receives a radio frequency signal of the first frequency band, it can be input to the first switch unit 330 through the first antenna port ANT1, and the first switch unit 330 is switched to any first receiving circuit 310 to be turned on, and the radio frequency signal After being amplified by the first receiving circuit 310, it is output to the radio frequency transceiver 40 through the receiving port; if the first antenna receives the radio frequency signal of the second frequency band, it can be input to the first switching unit 330 through the first antenna port ANT1, and the first The switch unit 330 switches to any second receiving circuit 320 to be turned on, and after the radio frequency signal is amplified by the second receiving circuit 320, it is output to the radio frequency transceiver 40 from the receiving port, and the same is true for other antennas.
  • the first receiving circuit 310 includes a first low-noise amplifier LNA1 , and an input end of the first low-noise amplifier LNA1 is connected to a first end of the first switch unit 330 , and the first The output end of the low noise amplifier LNA1 is connected to a receiving port RX.
  • the first low noise amplifier LNA1 is used for amplifying the received radio frequency signal of the first frequency band.
  • the second receiving circuit 320 includes a second low noise amplifier LNA2, the input end of the second low noise amplifier LNA2 is connected to the other first end of the first switching unit 330, and the output end of the second low noise amplifier LNA2 is connected to another receiving port RX connection.
  • the second low noise amplifier LNA1 is used for amplifying the received radio frequency signal of the second frequency band.
  • the first receiving circuit 310 further includes a first filtering unit 311
  • the second receiving circuit 320 further includes a second filtering unit 321 .
  • the first filtering unit 311 and the second filtering unit 321 may be respectively disposed in the receiving path of the radio frequency signal of the first frequency band and the receiving path of the radio frequency signal of the second frequency band, and are used for filtering the received radio frequency signal.
  • the first filter unit 311 is arranged at the front end of the first switch unit 330, that is, the first filter unit 311 is arranged between the input end of the first low noise amplifier LNA1 and the first switch unit 330.
  • the second filter unit 321 is arranged at the front end of the first switch unit 330 , that is, the second filter unit 321 is arranged between the input end of the second low noise amplifier LNA2 and the first switch unit 330 .
  • the radio frequency signal of the first frequency band and the radio frequency signal of the second frequency band are 5G signals of the N77 and N79 frequency bands, respectively. It can be understood that the radio frequency signal of the first frequency band and the radio frequency signal of the second frequency band may also be 5G signals of the N79 and N77 frequency bands, respectively.
  • the first radio frequency PA Mid device 10 is configured with a radio frequency transmit port RFIN, a radio frequency receive port RXOUT and a radio frequency antenna port ANT, and the radio frequency transmit port RFIN of the first radio frequency PA Mid device 10 is configured with It is connected with the radio frequency transceiver 40 to receive the first frequency band radio frequency signal and the second frequency band radio frequency signal transmitted by the radio frequency transceiver 40; the radio frequency receiving port RXOUT of the first radio frequency PA Mid device 10 is used for connecting with the radio frequency transceiver 40, to Output the received radio frequency signal of the first frequency band and the radio frequency signal of the second frequency band to the radio frequency transceiver 40, and the radio frequency antenna port ANT of the first radio frequency PA Mid device 10 is connected to the first transceiver port TRX1 for supporting the sending and receiving of the first frequency band and the first frequency band.
  • the second radio frequency PA Mid device 20 is configured with a radio frequency transmit port RFIN, a radio frequency receive port RXOUT and a radio frequency antenna port ANT, and the radio frequency transmit port RFIN of the second radio frequency PA Mid device 20 is used to connect with the radio frequency transceiver 40 to receive the radio frequency transceiver
  • the radio frequency signal of the first frequency band and the radio frequency signal of the second frequency band transmitted by 40; the radio frequency receiving port RXOUT of the second radio frequency PA Mid device 20 is used to connect with the radio frequency transceiver 40 to connect the received radio frequency signal of the first frequency band and the radio frequency of the second frequency band.
  • the signal is output to the radio frequency transceiver 40, and the radio frequency antenna port ANT of the second radio frequency PA Mid device 20 is connected to the second transceiver port TRX2 for supporting the sending and receiving of radio frequency signals of the first frequency band and the second frequency band.
  • the radio frequency transceiver system based on the above embodiment can support the 4*4 MIMO function and the SRS function of the four-antenna 2T4R.
  • the radio frequency transceiver system can support the 4*4 MIMO function and the SRS function of the four-antenna 2T4R.
  • Figure 6 as an example to analyze the working principle of the 4*4 MIMO function of the N77 frequency band:
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the first radio frequency PA Mid device 10 through the TX1 UHB 5GLM port of the radio frequency transceiver 40, and the radio frequency signal is switched to the power amplifier PA through the SPDT#1 radio frequency switch, and after being amplified by the power amplifier PA, To SPDT#3 RF switch, switch to single port through SPDT#3 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path1 path, from the first transceiver port TRX1 of RF LFEM device 30 to the first The switch unit 330 (4P6T RF switch), the first switch unit 330 switches to the Path3 path, and outputs from the first antenna port ANT1 to the first antenna Ant1 for transmission.
  • To SPDT#3 RF switch switch to single port through SPDT#3 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path1 path, from the first transceiver port TRX1 of RF
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the second radio frequency PA Mid device 20 through the TX2 UHB 5GLM port of the radio frequency transceiver 40, and the radio frequency signal is switched to the power amplifier PA through the SPDT#1 radio frequency switch, and after being amplified by the power amplifier PA, To SPDT#3 RF switch, switch to single port through SPDT#3 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path2 path, from the second transceiver port TRX2 of RF LFEM device 30 to the first The switch unit 330 (4P6T RF switch), the first switch unit 330 switches to the Path5 path, and outputs from the third antenna port ANT3 to the third antenna Ant3 for transmission.
  • To SPDT#3 RF switch switch to single port through SPDT#3 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path2 path, from the second transceiver port TRX2 of RF
  • the received radio frequency signal enters from the first antenna Ant1, goes to the first antenna port ANT1 of the radio frequency LFEM device 30 via the Path3 path, switches to the first transceiver port TRX1 via the first switch unit 330 (4P6T radio frequency switch), and goes to the first transceiver port TRX1 via the Path1 path.
  • the radio frequency antenna port ANT of a radio frequency PA Mid device 10 is switched to the contact 1 by the DP3T radio frequency switch in the first radio frequency PA Mid device 10, and then to the SPDT#3 radio frequency switch after being filtered by a filter, and the SPDT#3 radio frequency switch is switched to
  • the receiving path is amplified by the low noise amplifier LNA and sent to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX17 port.
  • the received RF signal enters from the second antenna Ant2, goes through the Path4 path to the second antenna port ANT2 of the RF LFEM device 30, switches to the contact 1 through the first switch unit 330 (4P6T RF switch), and is filtered by the first filter unit 311 . After being amplified by the first low noise amplifier LNA1, it goes to the receiving port RX1, and enters the radio frequency transceiver 40 from the SDR DRX17 port.
  • the received radio frequency signal enters from the third antenna Ant3, goes to the third antenna port ANT3 of the radio frequency LFEM device 30 via the Path5 path, switches to the second transceiver port TRX2 via the first switch unit 330 (4P6T radio frequency switch), and goes to the second transceiver port TRX2 via the Path2 path.
  • the RF antenna port ANT of the second RF PA Mid device 20 is switched to the contact 1 by the DP3T RF switch in the second RF PA Mid device 20, and then to the SPDT#3 RF switch after being filtered by the filter, and the SPDT#3 RF switch is switched to
  • the receiving path is amplified by the low noise amplifier LNA and sent to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX15 port.
  • the received RF signal enters from the fourth antenna Ant4, goes through the Path6 path to the fourth antenna port ANT4 of the RF LFEM device 30, is switched to the contact 3 through the first switch unit 330 (4P6T RF switch), and is filtered by the first filter unit 311 , After being amplified by the first low noise amplifier LNA1, it goes to the receiving port RX2, and enters the radio frequency transceiver 40 from the SDR DRX16 port.
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the first radio frequency PA Mid device 10 through the TX1 UHB 5GLM port of the radio frequency transceiver 40, and the radio frequency signal is switched to the power amplifier PA through the SPDT#1 radio frequency switch, and after being amplified by the power amplifier PA, To SPDT#3 RF switch, switch to single port through SPDT#3 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path1 path, to the first transceiver port TRX1 of RF LFEM device 30, through the first transceiver port TRX1 of RF LFEM device 30 A switch unit 330 (4P6T RF switch) is switched to the first antenna port ANT1, and is output to the first antenna Ant1 via the Path3 path;
  • the first switch unit 330 switches to the Path4 path, and outputs from the second antenna Ant2;
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the second radio frequency PA Mid device 20 through the TX2 UHB 5GLM port of the radio frequency transceiver 40, and the radio frequency signal is switched to the power amplifier PA through the SPDT#1 radio frequency switch, and after being amplified by the power amplifier PA, To SPDT#3 RF switch, switch to single port through SPDT#3 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path2 path, to the second transceiver port TRX2 of RF LFEM device 30, through the first A switch unit 330 is switched to the third antenna port ANT3, through the Path5 path, to the output of the third antenna Ant3;
  • the first switch unit 330 switches to the Path6 path, and outputs from the fourth antenna Ant4.
  • the SRS function transmitted by the N79 is similar to that of the N77, and will not be repeated here.
  • the specific SRS path configuration is shown in Table 1:
  • the radio frequency LFEM device 30 further includes a fifth switch unit 340 for switching the received radio frequency signal to any one of the receiving ports for output.
  • the four first terminals of the fifth switch unit 340 are respectively connected to the four receiving ports in a one-to-one correspondence
  • the four second terminals of the fifth switch unit 340 are respectively connected to the outputs of the two first receiving circuits 310 in a one-to-one correspondence. terminal and the output terminals of the two second receiving circuits 320 are connected.
  • the radio frequency LFEM device 30 further includes a plurality of fourth filter units 361, and each fourth filter unit 361 is respectively disposed between the front end of the first switch unit 330 and each transceiver port, It is used to filter the received radio frequency signal.
  • the number of transceiving ports is two
  • the number of fourth filtering units 361 is two, which are respectively disposed between the two transceiving ports and the front end of the first switching unit 330 .
  • the dual-channel reception of dual-band radio frequency signals is realized through the radio frequency LFEM device 30, and the four reception channels are integrated and packaged in the same chip, which saves the area of the substrate occupied by each device, and is used for other devices.
  • the module performs performance optimization to free up physical space and reduce costs.
  • the first radio frequency PA Mid device 10 and the second radio frequency PA Mid device 20 the 4*4 MIMO function in 2T4R mode can be realized, which can improve the system channel capacity and improve the channel capacity. Estimation accuracy and efficiency.
  • the internal space of the radio frequency LFEM device 30 can be further saved, the cost can be saved, and the complexity of the internal logic control of the radio frequency LFEM device 30 can be simplified.
  • the radio frequency LFEM device 30 further includes two third receiving circuits 370, which are used to support the receiving and amplifying processing of the radio frequency signal of the third channel.
  • the radio frequency transceiver system further includes a transceiver selection module 50 .
  • the transceiver selection module 50 is respectively connected with the radio frequency transceiver 40 , the radio frequency LFEM device 30 , the first antenna, the second antenna, the third antenna and the fourth antenna.
  • the transceiver selection module 50 can transmit the radio frequency signal of the third frequency band transmitted by the radio frequency transceiver 40 through any antenna in the antenna group, and can also receive the radio frequency signal of the third frequency band received by any antenna in the antenna group, and transmit it to the radio frequency transceiver. 40, so that the radio frequency transceiver system can realize the 4*4MIMO function of the three-band radio frequency signal.
  • the radio frequency signal of the third frequency band transmitted by the transceiver selection module 50 may be directly transmitted to any antenna for transmission, or may be transmitted to any antenna through the radio frequency LFEM device 30.
  • the third receiving circuit 370 includes a third low noise amplifier LNA3, the input end of the third low noise amplifier LNA3 is connected to a transceiver port TRX, and the output of the third low noise amplifier LNA3 The terminal is connected to a receiving port RX.
  • the third low noise amplifier LNA3 is used for amplifying the received radio frequency signal of the third frequency band.
  • the third receiving circuit 370 further includes a third filtering unit 371 .
  • the third filtering unit 371 is disposed in the receiving path of the radio frequency signal of the third frequency band, and is used for filtering the received radio frequency signal of the third frequency band.
  • the number of the transceiver ports TRX configured on the radio frequency LFEM device 30 is four, which are the first transceiver port TRX1 , the second transceiver port TRX2 , the third transceiver port TRX3 and the fourth transceiver port TRX4 .
  • the first transceiver port TRX1 and the second transceiver port TRX2 are respectively connected to two of the first ends of the first switch unit 330.
  • the first transceiver port TRX1 is also connected to the radio frequency antenna port ANT of the first radio frequency PA Mid device 10.
  • the two transceiver ports are also connected to the radio frequency antenna port ANT of the second radio frequency PA Mid device 20 , and the third transceiver port TRX3 and the fourth transceiver port TRX4 are respectively connected to the input ends of the two third receiving circuits 370 .
  • the first switch unit 330 includes six first ends. Except for the two first ends respectively connected to the first transceiver port TRX1 and the second transceiver port TRX2, the other four first ends correspond one-to-one with the two first ends respectively.
  • the input ends of the first receiving circuits 310 and the input ends of the two second receiving circuits 320 are connected.
  • the first switch unit 330 is used to selectively conduct the channel between the antenna port and any first receiving circuit 310, any second receiving circuit 320, the first transceiving port TRX1 or the second transceiving port TRX2, so as to selectively conduct the radio frequency of the first frequency band.
  • the radio frequency LFEM device 30 can be understood as a packaged chip, and the first antenna port ANT1, the second antenna port ANT2, the third antenna port ANT3, and the fourth antenna port are configured in the device.
  • ANT4, the first transceiver port TRX1, the second transceiver port TRX2, the third transceiver port TRX3, the fourth transceiver port TRX4, and the receiving port RX can be understood as the radio frequency pin terminals of the radio frequency LFEM device 30, which are used to connect with various external devices .
  • the transceiver selection module 50 includes a first combiner 561 , a second combiner 562 , a third combiner 563 , a fourth combiner 564 , and a first selection switch 540, the second selection switch 550, the second switch unit 530, the third radio frequency PA Mid device 510 and the fourth radio frequency PA Mid device 520, wherein the third radio frequency PA Mid device 510 and the fourth radio frequency PA Mid device 520 are both configured with RF antenna port.
  • the two first ends of the first selection switch 540 are respectively connected to the third transceiving port TRX3 and a second end (eg, terminal 2 ) of the second switch unit 530 , and the second end of the first selection switch 540 and the second The antenna ports ANT2 are connected to the second antenna via the second combiner 562 respectively.
  • the two first ends of the first and second selection switches 550 are respectively connected to the fourth transceiving port and the other second end (for example, terminal 4) of the second switch unit 530.
  • the second end of the second selection switch 550 and the fourth The antenna ports ANT4 are respectively connected to the fourth antenna Ant4 through the fourth combiner 564 .
  • the two first ends of the second switch unit 530 are respectively connected to the radio frequency antenna port ANT of the third radio frequency PA Mid device 510 and the radio frequency antenna port ANT of the fourth radio frequency PA Mid device 520 in a one-to-one correspondence.
  • a second end (such as terminal 1) and the first antenna port ANT1 are respectively connected to the first antenna Ant1 through the first combiner 561, and another second end (such as terminal 3) of the second switch unit 530 and the third antenna
  • the ports ANT3 are respectively connected to the third antenna Ant3 through the third combiner 563 .
  • the third radio frequency PA Mid device 510 is further configured with a radio frequency transmit port RFIN and a radio frequency receive port RXOUT, and the radio frequency transmit port RFIN of the third radio frequency PA Mid device 510 is used to connect with the radio frequency transceiver 40 to receive the first radio frequency transmitted by the radio frequency transceiver 40 .
  • Three-band radio frequency signal; the radio frequency receiving port RXOUT of the third radio frequency PA Mid device 510 is used to connect with the radio frequency transceiver 40 to output the received radio frequency signal of the third frequency band to the radio frequency transceiver 40.
  • the radio frequency antenna port ANT is connected to a first end (eg, terminal 5 ) of the second switch unit 530 , and is used to support receiving and transmitting radio frequency signals of the third frequency band.
  • the fourth radio frequency PA Mid device 520 is further configured with a radio frequency transmitting port RFIN and a radio frequency receiving port RXOUT. Three-band radio frequency signal; the radio frequency receiving port RXOUT of the fourth radio frequency PA Mid device 520 is used to connect with the radio frequency transceiver 40 to output the received radio frequency signal of the third frequency band to the radio frequency transceiver 40, and the fourth radio frequency PA Mid device 520 has a radio frequency signal.
  • the radio frequency antenna port ANT is connected to the other first end (eg, terminal 6 ) of the second switch unit 530 , and is used to support receiving and transmitting radio frequency signals of the third frequency band.
  • the radio frequency signal of the third frequency band is a 5G signal of the N41 frequency band.
  • the radio frequency transceiver system based on the above embodiment can support the 4*4 MIMO function and the SRS function of the four-antenna 2T4R.
  • the transmitted radio frequency signal is output to the radio frequency transmission port RFIN of the third radio frequency PA Mid device 510 through the TX1 HB1 port of the radio frequency transceiver 40.
  • the radio frequency signal is amplified by the power amplifier PA, it is switched to the filter through the SPDT radio frequency switch, and filtered by the filter. Then it goes to the RF antenna port ANT, goes to the second switch unit 530 (DP4T RF switch) via the Path1 path, switches to the Path3 path via the second switch unit 530, and goes to the first antenna Ant1 output via the first combiner 561.
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the fourth radio frequency PA Mid device 520 through the TX1 HB2 port of the radio frequency transceiver 40.
  • the radio frequency signal is amplified by the power amplifier PA, it is switched to the filter through the SPDT radio frequency switch, and filtered by the filter. Then it goes to the RF antenna port ANT, goes to the second switch unit 530 (DP4T RF switch) via Path2, switches to Path5 via the second switch unit 530, and outputs to the third antenna Ant3 via the third combiner 563.
  • the received radio frequency signal enters from the first antenna Ant1, goes to the first combiner 561, passes through the Path3 path to the second switch unit 530, and the second switch unit 530 switches to the Path1 path, and is transmitted by the radio frequency antenna of the third radio frequency PA Mid device 510.
  • the port ANT enters, and after being filtered by the filter, it goes to the SPDT radio frequency switch, and the SPDT radio frequency switch is switched to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX7 port.
  • the received RF signal enters from the second antenna Ant2, goes to the second combiner 562, and goes through the Path9 path to the first selection switch 540 (SPDT RF switch), and the first selection switch 540 switches to the Path7 path to the RF LFEM device 30.
  • the third transceiver port TRX3 is filtered by the third filter unit 371 and amplified by the third low noise amplifier LNA3, and then sent to the receiving port RX1 of the radio frequency LFEM device 30, and then enters the radio frequency transceiver 40 from the SDR DRX7 port.
  • the received radio frequency signal enters from the third antenna Ant3, goes to the third combiner 563, passes through the Path5 path to the second switch unit 530, and the second switch unit 530 switches to the Path2 path, and is transmitted by the radio frequency antenna of the fourth radio frequency PA Mid device 520.
  • the port ANT enters, and after being filtered by the filter, it goes to the SPDT radio frequency switch, and the SPDT radio frequency switch is switched to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX5 port.
  • the received RF signal enters from the fourth antenna Ant4, goes to the fourth combiner 564, and goes through the Path10 path to the second selection switch 550 (SPDT RF switch), and the second selection switch 550 switches to the Path8 path to the RF LFEM device 30.
  • the fourth transceiver port TRX4 is filtered by the third filter unit 371 and amplified by the third low noise amplifier LNA3, and then sent to the receiving port RX2 of the radio frequency LFEM device 30, and enters the radio frequency transceiver 40 from the SDR DRX5 port.
  • the transmitted radio frequency signal is output from the TX1 HB1 port of the radio frequency transceiver 40 to the radio frequency transmitting port RFIN of the third radio frequency PA Mid device 510.
  • the radio frequency signal After being amplified by the power amplifier PA, the radio frequency signal is sent to the SPDT switch, and then switched to the filter for filtering by the SPDT switch.
  • the RF antenna port ANT of the third RF PA Mid device 510 goes through the Path1 path to the second switch unit 530, and is switched to the Path3 path through the second switch unit 530, to the first combiner 561, and through the first combiner After 561 is combined, it is output to the first antenna Ant1;
  • the second switch unit 530 switches to the Path4 path, to the first selection switch 540, the first selection switch 540 switches to the Path9 path, via the second combiner 562 to the second antenna Ant2 output ;
  • the transmitted radio frequency signal is output from the TX1 HB2 port of the radio frequency transceiver 40 to the radio frequency transmitting port RFIN of the fourth radio frequency PA Mid device 520.
  • the radio frequency signal is sent to the SPDT switch, and then switched to the filter for filtering by the SPDT switch.
  • the RF antenna port ANT of the fourth RF PA Mid device 520 goes to the second switch unit 530 via Path2, switches to Path5 via the second switch unit 530, goes to the third combiner 563, and passes through the third combiner After 563 is combined, it is output to the third antenna Ant2;
  • the second switch unit 530 is switched to the Path6 path, to the second selection switch 550, the second selection switch 550 is switched to the Path10 path, via the fourth combiner 564 to the fourth antenna Ant4 output .
  • the SRS function transmitted by N77 and N79 is similar to that of N41, and will not be repeated here.
  • the specific SRS path configurations of SA and NAS are shown in Table 2 and Table 3:
  • the radio frequency LFEM device 30 realizes dual-channel reception of radio frequency signals in three frequency bands, and the six reception channels are integrated and packaged in the same chip, which can save the area of the substrate occupied by each device, and save the area of the substrate for other modules. Perform performance optimization to free up physical space, reduce costs, and simplify wiring difficulty, which is beneficial to signal integrity on the substrate and reduces mutual interference between signals.
  • the radio frequency LFEM device 30 cooperates with the antenna group and the first radio frequency PA Mid device. 10 and the second radio frequency PA Mid device 20 can realize the 4*4 MIMO function of the 2T4R mode, improve the system channel capacity, and improve the accuracy and efficiency of channel estimation.
  • the radio frequency LFEM device 30 is further configured with a fifth antenna port ANT5 and a sixth antenna port ANT6, and the radio frequency LFEM device 30 is configured with three transceiver ports, which are the first A transceiver port TRX1, a second transceiver port TRX2 and a third transceiver port TRX3, wherein the first transceiver port TRX1 is connected to the radio frequency antenna port ANT of the first radio frequency PA Mid device 10, and the second transceiver port TRX2 is connected to the second radio frequency PA Mid
  • the radio frequency antenna port ANT of the device 20 is connected.
  • the radio frequency LFEM device 30 further includes a third switch unit 380 .
  • the three first ends of the third switch unit 380 are respectively connected to the input ends of the two third receiving circuits 370 and the third transceiver port TRX3 in a one-to-one correspondence, and the two second ends of the third switch unit 380 are respectively connected to the fifth antenna
  • the port ANT5 and the sixth antenna port ANT6 are connected correspondingly.
  • the radio frequency LFEM device 30 can be understood as a packaged chip, and the first antenna port ANT1, the second antenna port ANT2, the third antenna port ANT3, and the fourth antenna port are configured in the device.
  • ANT4, the fifth antenna port ANT5, the sixth antenna port ANT6, the first transceiving port TRX1, the second transceiving port TRX2, the third transceiving port TRX3 and the receiving port RX can be understood as the radio frequency pin terminals of the radio frequency LFEM device 30 for Connect to various external devices.
  • the transceiver selection module 50 includes a first combiner 561 , a second combiner 562 , a third combiner 563 , a fourth combiner 564 , and a fourth switch unit 570, the third radio frequency PA Mid device 510 and the fourth radio frequency PA Mid device 520; wherein, the third radio frequency PA Mid device 510 and the fourth radio frequency PA Mid device 520 are both configured with radio frequency antenna ports, and the fifth antenna port ANT5 is connected to the second radio frequency antenna port ANT5.
  • the antenna port ANT2 is connected to the second antenna Ant2 through the second combiner 562 respectively, and the sixth antenna port ANT6 and the fourth antenna port ANT4 are connected to the fourth antenna Ant4 through the fourth combiner 564 respectively.
  • the two first ends of the fourth switch unit 570 are respectively connected to the radio frequency antenna port of the third radio frequency PA Mid device 510 and the radio frequency antenna port of the fourth radio frequency PA Mid device 520 in a one-to-one correspondence.
  • the fourth switch unit 570 is configured to switch on the transceiving path of the third radio frequency PA Mid device 510 and the transceiving path of the fourth radio frequency PA Mid device 520.
  • the third radio frequency PA Mid device 510 is configured with a radio frequency transmit port RFIN, a radio frequency receive port RXOUT and a radio frequency antenna port ANT, and the radio frequency transmit port RFIN of the third radio frequency PA Mid device 510 is used for connecting with the radio frequency transceiver 40 to receive radio frequency transceivers
  • the radio frequency signal of the third frequency band transmitted by the device 40; the radio frequency receiving port RXOUT of the third radio frequency PA Mid device 510 is used to connect with the radio frequency transceiver 40 to output the received radio frequency signal of the third frequency band to the radio frequency transceiver 40, and the third radio frequency
  • the radio frequency antenna port ANT of the PA Mid device 510 is connected to a first end of the fourth switch unit 570, and is used to support sending and receiving radio frequency signals of the third frequency band.
  • the fourth radio frequency PA Mid device 520 is configured with a radio frequency transmit port RFIN, a radio frequency receive port RXOUT and a radio frequency antenna port ANT, and the radio frequency transmit port RFIN of the fourth radio frequency PA Mid device 520 is used for connecting with the radio frequency transceiver 40 to receive radio frequency transceivers
  • the radio frequency signal of the third frequency band transmitted by the device 40; the radio frequency receiving port RXOUT of the fourth radio frequency PA Mid device 520 is used to connect with the radio frequency transceiver 40 to output the received radio frequency signal of the third frequency band to the radio frequency transceiver 40, and the fourth radio frequency
  • the radio frequency antenna port ANT of the PA Mid device 520 is connected to the other first end of the fourth switch unit 570, and is used to support sending and receiving radio frequency signals of the third frequency band.
  • the radio frequency transceiver system based on the above embodiment can support the 4*4 MIMO function and the SRS function of the four-antenna 2T4R.
  • the transmitted radio frequency signal is output to the radio frequency transmission port RFIN of the third radio frequency PA Mid device 510 through the TX1 HB1 port of the radio frequency transceiver 40.
  • the radio frequency signal is amplified by the power amplifier PA, it is switched to the filter through the SPDT radio frequency switch, and filtered by the filter. Then it goes to the RF antenna port ANT, goes to the fourth switch unit 570 (DP3T RF switch) via the Path1 path, switches to the Path3 path via the fourth switch unit 570, and goes to the first antenna Ant1 output via the first combiner 561.
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the fourth radio frequency PA Mid device 520 through the TX1 HB2 port of the radio frequency transceiver 40.
  • the radio frequency signal is amplified by the power amplifier PA, it is switched to the filter through the SPDT radio frequency switch, and filtered by the filter. Then it goes to the RF antenna port ANT, goes to the fourth switch unit 570 (DP3T RF switch) via Path2, switches to Path4 via the fourth switch unit 570, and outputs to the third antenna Ant3 via the third combiner 563.
  • the received radio frequency signal enters from the first antenna Ant1, goes to the first combiner 561, passes through the Path3 path to the fourth switch unit 570, and the fourth switch unit 570 switches to the Path1 path, and is transmitted by the radio frequency antenna of the third radio frequency PA Mid device 510.
  • the port ANT enters, and after being filtered by the filter, it goes to the SPDT radio frequency switch, and the SPDT radio frequency switch is switched to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX7 port.
  • the received radio frequency signal enters from the second antenna Ant2, goes to the second combiner 562, goes to the fifth antenna port ANT5 of the radio frequency LFEM device 30 via Path6, and passes through the third switch unit 380 (DP3T radio frequency switch) to the third filter After filtering by the unit 371 and amplification by the third low noise amplifier LNA3, it is sent to the receiving port RX1 of the radio frequency LFEM device 30, and enters the radio frequency transceiver 40 from the SDR DRX7 port.
  • the third switch unit 380 D3T radio frequency switch
  • the received radio frequency signal enters from the third antenna Ant3, goes to the third combiner 563, passes through the Path4 path to the fourth switch unit 570, and the fourth switch unit 570 switches to the Path2 path, and is transmitted by the radio frequency antenna of the fourth radio frequency PA Mid device 520.
  • the port ANT enters, and after being filtered by the filter, it goes to the SPDT radio frequency switch, and the SPDT radio frequency switch switches to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX5 port.
  • the received radio frequency signal enters from the fourth antenna Ant4, goes to the fourth combiner 564, goes to the second antenna port ANT2 of the radio frequency LFEM device 30 via Path7, and goes to the third filter unit via the third switch unit 380 (DP3T radio frequency switch) After 371 filtering and amplification by the third low noise amplifier LNA3, it is sent to the receiving port RX2 of the radio frequency LFEM device 30, and enters the radio frequency transceiver 40 from the SDR DRX5 port.
  • the third switch unit 380 D3T radio frequency switch
  • the transmitted radio frequency signal is output from the TX1 HB1 port of the radio frequency transceiver 40 to the radio frequency transmit port RFIN of the third radio frequency PA Mid device 510.
  • the radio frequency signal is amplified by the power amplifier PA, it is sent to the SPDT switch, and then switched to the filter for filtering by the SPDT switch.
  • the RF antenna port ANT of the third RF PA Mid device 510 goes through the Path1 path to the fourth switch unit 570, and is switched to the Path3 path through the fourth switch unit 570, to the first combiner 561, and through the first combiner After 561 is combined, it is output to the first antenna Ant1;
  • the fourth switch unit 570 switches to the Path5 path, to the third transceiver port TRX3 of the radio frequency LFEM device 30, the third switch unit 380 switches to the fifth antenna port ANT5, via the Path6 path, via After the second combiner 562 is combined, it is output to the second antenna Ant2;
  • the transmitted radio frequency signal is output from the TX1 HB2 port of the radio frequency transceiver 40 to the radio frequency transmitting port RFIN of the fourth radio frequency PA Mid device 520.
  • the radio frequency signal After being amplified by the power amplifier PA, the radio frequency signal is sent to the SPDT switch, and then switched to the filter for filtering by the SPDT switch.
  • the RF antenna port ANT of the fourth RF PA Mid device 520 goes through the Path2 path to the fourth switch unit 570, and is switched to the Path4 path through the fourth switch unit 570, to the third combiner 563, and through the third combiner After 563 is combined, it is output to the third antenna Ant3;
  • the fourth switch unit 570 switches to the Path5 path, to the third transceiver port TRX3 of the RF LFEM device 30, the third switch unit 380 switches to the sixth antenna port ANT6, to the Path7 path, via After the fourth combiner 564 is combined, it is output to the fourth antenna Ant4.
  • the SRS functions transmitted by N77 and N79 are similar to those of N41, and will not be repeated here.
  • the specific SRS path configurations of SA and NAS are shown in Table 4 and Table 5:
  • the radio frequency LFEM device 30 realizes dual-channel reception of radio frequency signals in three frequency bands, and the six reception channels are integrated and packaged in the same chip, which can save the area of the substrate occupied by each device, which is used for other modules. Perform performance optimization to free up physical space, reduce costs, and simplify wiring difficulty, which is beneficial to signal integrity on the substrate and reduces mutual interference between signals.
  • the radio frequency LFEM device 30 cooperates with the antenna group and the first radio frequency PA Mid device. 10 and the second radio frequency PA Mid device 20 can realize the 4*4 MIMO function of the 2T4R mode, improve the system channel capacity, and improve the accuracy and efficiency of channel estimation.
  • the first selection switch 540 and the second selection switch 550 do not need to be provided, but are integrated into the radio frequency LFEM device 30 , which improves integration and further saves costs.
  • the number of transceiver ports configured on the radio frequency LFEM device 30 is four, which are the first transceiver port TRX1 , the second transceiver port TRX2 , the third transceiver port TRX3 , and the fourth transceiver port TRX3 .
  • Port TRX4; the number of the first ends of the first switch unit 330 is ten. Specifically, the ten first terminals of the first switch unit 330 correspond one-to-one with the input terminals of the two first receiving circuits 310 , the input terminals of the two second receiving circuits 320 , and the inputs of the two third receiving circuits 370 respectively.
  • the radio frequency LFEM device 30 is connected to the transceiving selection module 50 through the third transceiving port TRX3 and the fourth transceiving port.
  • the first switch unit 330 is used to select and conduct any receiving channel of the tri-band radio frequency signal, and is also used to select and conduct the transceiver channel between the first radio frequency PA Mid device 10 , the second radio frequency PA Mid device 20 , and the transceiver selection module 50 .
  • the radio frequency LFEM device 30 can be understood as a packaged chip, and the first antenna port ANT1, the second antenna port ANT2, the third antenna port ANT3, and the fourth antenna port are configured in the device.
  • ANT4, the first transceiver port TRX1, the second transceiver port TRX2, the third transceiver port TRX3, the fourth transceiver port TRX4, and the receiving port RX can be understood as the radio frequency pin terminals of the radio frequency LFEM device 30, which are used to connect with various external devices .
  • the transceiver selection module 50 includes a third radio frequency PA Mid device 510 and a fourth radio frequency PA Mid device 520 .
  • the third radio frequency PA Mid device 510 is configured with a radio frequency transmitting port RFIN, a radio frequency receiving port RXOUT and a radio frequency antenna port ANT, and the radio frequency transmitting port RFIN of the third radio frequency PA Mid device 510 is used for connecting with the radio frequency transceiver 40 to Receive the radio frequency signal of the third frequency band transmitted by the radio frequency transceiver 40; the radio frequency receiving port RXOUT of the third radio frequency PA Mid device 510 is used to connect with the radio frequency transceiver 40 to output the received radio frequency signal of the third frequency band to the radio frequency transceiver 40,
  • the radio frequency antenna port ANT of the third radio frequency PA Mid device 510 is connected to the third transceiver port TRX3, and is used to support transmitting and receiving radio frequency signals of the third frequency band.
  • the fourth radio frequency PA Mid device 520 is configured with a radio frequency transmit port RFIN, a radio frequency receive port RXOUT and a radio frequency antenna port ANT, and the radio frequency transmit port RFIN of the fourth radio frequency PA Mid device 520 is used for connecting with the radio frequency transceiver 40 to receive radio frequency transceivers
  • the radio frequency signal of the third frequency band transmitted by the device 40; the radio frequency receiving port RXOUT of the fourth radio frequency PA Mid device 520 is used to connect with the radio frequency transceiver 40 to output the received radio frequency signal of the third frequency band to the radio frequency transceiver 40, and the fourth radio frequency
  • the radio frequency antenna port ANT of the PA Mid device 520 is connected to the fourth transceiver port TRX4, and is used to support transmitting and receiving radio frequency signals of the third frequency band.
  • the radio frequency transceiver system based on the above embodiment can support the 4*4 MIMO function and the SRS function of the four-antenna 2T4R.
  • the transmitted radio frequency signal is output to the radio frequency transmission port RFIN of the third radio frequency PA Mid device 510 through the TX1 HB1 port of the radio frequency transceiver 40.
  • the radio frequency signal is amplified by the power amplifier PA, it is switched to the filter through the SPDT radio frequency switch, and filtered by the filter.
  • the RF antenna port ANT through the Path1 path, from the third transceiver port TRX3 of the RF LFEM device 30 to the first switch unit 330 (4P10T RF switch), through the first switch unit 330 Switch to the Path5 path, to the first antenna Ant1 output.
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the fourth radio frequency PA Mid device 520 through the TX1 HB2 port of the radio frequency transceiver 40.
  • the radio frequency signal is amplified by the power amplifier PA, it is switched to the filter through the SPDT radio frequency switch, and filtered by the filter.
  • the RF antenna port ANT through Path2
  • the fourth transceiver port TRX4 of the RF LFEM device 30 to the first switch unit 330, through the fourth switch unit 570 to switch to Path7, and output to the third antenna Ant3.
  • the received radio frequency signal enters from the first antenna Ant1, goes through the Path5 path, from the first antenna port ANT1 of the radio frequency LFEM device 30 to the first switch unit 330, the first switch unit 330 is switched to the contact 1, and goes through the Path1 path from the first antenna port ANT1 to the first switch unit 330.
  • the radio frequency antenna port ANT of the three-radio PA Mid device 510 enters, and after filtering by the filter, it goes to the SPDT radio frequency switch, and the SPDT radio frequency switch is switched to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX7 port.
  • the received radio frequency signal enters from the second antenna Ant2, goes through the Path6 path, from the second antenna port ANT2 of the radio frequency LFEM device 30 to the first switch unit 330, the first switch unit 330 is switched to the contact 3, and passes through the third filter unit 371 After filtering and amplification by the third low noise amplifier LNA3, it is sent to the receiving port RX1 of the radio frequency LFEM device 30, and enters the radio frequency transceiver 40 from the SDR DRX7 port.
  • the received radio frequency signal enters from the third antenna Ant3, goes through the Path7 path, from the third antenna port ANT3 of the radio frequency LFEM device 30 to the first switch unit 330, the first switch unit 330 is switched to the contact 2, and passes through the Path2 path, from the first switch unit 330.
  • the radio frequency antenna port ANT of the four radio frequency PA Mid device 520 enters, and after filtering by the filter, it goes to the SPDT radio frequency switch, the SPDT radio frequency switch is switched to the radio frequency receiving port RXOUT, and enters the radio frequency transceiver 40 from the SDR PRX5 port.
  • the received radio frequency signal enters from the fourth antenna Ant4, goes through the Path8 path, from the fourth antenna port ANT4 of the radio frequency LFEM device 30 to the first switch unit 330, the first switch unit 330 is switched to the contact 4, and passes through the third filter unit 371 After filtering and amplification by the third low noise amplifier LNA3, it is sent to the receiving port RX2 of the radio frequency LFEM device 30, and enters the radio frequency transceiver 40 from the SDR DRX5 port.
  • the transmitted radio frequency signal is output from the TX1 HB1 port of the radio frequency transceiver 40 to the radio frequency transmitting port RFIN of the third radio frequency PA Mid device 510.
  • the radio frequency signal After being amplified by the power amplifier PA, the radio frequency signal is sent to the SPDT switch, and then switched to the filter for filtering by the SPDT switch.
  • the path from the radio frequency antenna port ANT of the third radio frequency PA Mid device 510 to Path1 through the third transceiver port TRX3 of the radio frequency LFEM device 30 to the first switch unit 330, the first switch unit 330 is switched to the contact 11, from the An antenna port ANT1 goes through the Path5 path to the output of the first antenna Ant1;
  • the first switch unit 330 Via the Path1 path to the first switch unit 330, the first switch unit 330 is switched to the contact 12, from the second antenna port ANT2 via the Path6 path, to the output of the second antenna Ant2;
  • the transmitted radio frequency signal is output from the TX1 HB2 port of the radio frequency transceiver 40 to the radio frequency transmitting port RFIN of the fourth radio frequency PA Mid device 520.
  • the radio frequency signal is sent to the SPDT switch, and then switched to the filter for filtering by the SPDT switch.
  • the first switch unit 330 is switched to the contact 13, from the The three antenna ports ANT3 go through the Path7 path to the output of the third antenna Ant3;
  • the first switch unit 330 switches to the contact 14, and from the fourth antenna port ANT4 via Path8, to the output of the fourth antenna Ant4.
  • the SRS functions transmitted by N77 and N79 are similar to those of N41, and will not be repeated here.
  • the specific SRS path configurations of SA and NAS are shown in Table 6 and Table 7:
  • the radio frequency LFEM device 30 realizes dual-channel reception of radio frequency signals in three frequency bands, and the six receiving channels are integrated and packaged in the same chip, which can save the area of the substrate occupied by each device. Perform performance optimization to free up physical space, reduce costs, and simplify wiring difficulty, which is beneficial to signal integrity on the substrate and reduces mutual interference between signals.
  • the radio frequency LFEM device 30 cooperates with the antenna group and the first radio frequency PA Mid device. 10 and the second radio frequency PA Mid device 20 can realize the 4*4 MIMO function of the 2T4R mode, improve the system channel capacity, and improve the accuracy and efficiency of channel estimation.
  • the first switch unit 330 is used to replace the function of the peripheral radio frequency switch used to realize 2T4R, and at the same time, it is no longer necessary to use a combiner for By combining circuits, the area of the substrate occupied by the device is further reduced, and the cost is further saved.
  • the radio frequency LFEM device 30 further includes a first control unit 351 and a second control unit 352 .
  • the first control unit 351 can be used to control the first switch unit 330 to switch on the receiving channels of the radio frequency signals of each frequency band;
  • the second control unit 352 can be used to control the first switch unit 330 to switch and conduct the transmission of the radio frequency signals of each frequency band path.
  • the first control unit 351 and the second control unit 352 may be a mobile industry processor interface (Mobile Industry Processor Interface, MIPI)-radio frequency front end control interface (RF Front End Control Interface, RFFE) control unit or a radio frequency front end control interface (RF Front End Control Interface, RFFE) control unit, which conforms to the control protocol of the RFFE bus.
  • MIPI Mobile Industry Processor Interface
  • RF Front End Control Interface RF Front End Control Interface
  • RFFE radio frequency front end control interface
  • the radio frequency L-PA Mid device is also configured with the input pin CLK of the clock signal, the input of the unidirectional/bidirectional data signal Or bidirectional pin SDATAS, power supply pin VDD, reference voltage pin VIO and so on.
  • An embodiment of the present application further provides a communication device, where the radio frequency transceiver system in any of the foregoing embodiments is set on the communication device.
  • the radio frequency transceiver system By arranging the radio frequency transceiver system on the communication equipment, the integration degree of the radio frequency transceiver system is improved, the area of the substrate occupied by each device in the radio frequency transceiver system is reduced, and the power supply, logic control and PCB layout of the radio frequency LFEM device 30 can also be simplified. Layout and routing, saving costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频收发系统。该射频收发系统包括:射频收发器(40);天线组,包括第一天线(Ant1)、第二天线(Ant2)、第三天线(Ant3)和第四天线(Ant4),用于支持收发射频信号;射频LFEM器件(30),射频LFEM器件(30)被配置有多个收发端口、第一天线端口(ANT1)、第二天线端口(ANT2)、第三天线端口(ANT3)、第四天线端口(ANT4)和多个接收端口,射频LFEM器件(30)用于支持对至少两个频段射频信号的发射以及双通道接收;第一射频PA Mid器件(10),第一射频PA Mid器件(10)分别与射频收发器(40)及射频LFEM器件(30)的一收发端口连接,用于支持对多个频段的射频信号的收发;第二射频PA Mid器件(20),第二射频PA Mid器件(20)分别与射频收发器(40)及射频LFEM器件(30)的一收发端口连接,用于支持对多个频段的射频信号的收发。

Description

射频收发系统及通信设备
相关申请的交叉引用
本申请要求于2020年12月16日提交中国专利局、申请号为2020114874425发明名称为“射频收发系统及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,特别是涉及一种射频收发系统及通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。一般,射频系统中的接收通路中会设置多个射频前端模块配合天线阵列来提高系统信道容量,成本高、占用基板的面积大。
发明内容
根据本申请的各种实施例,提供一种射频收发系统和通信设备。
一种射频收发系统,包括:
射频收发器;
天线组,包括第一天线、第二天线、第三天线和第四天线,用于收发射频信号;
射频LFEM器件,所述射频LFEM器件被配置有多个收发端口、用于连接第一天线的第一天线端口、用于连接第二天线的第二天线端口、用于连接第三天线的第三天线端口、用于连接第四天线的第四天线端口和用于连接所述射频收发器的多个接收端口,所述射频LFEM器件用于支持对至少两个频段射频信号的双通道接收;
第一射频PA Mid器件,所述第一射频PA Mid器件分别与所述射频收发器及所述射频LFEM器件的一收发端口连接,用于支持对多个频段的射频信号的收发;
第二射频PA Mid器件,所述第二射频PA Mid器件分别与所述射频收发器及所述射频LFEM器件的一收发端口连接,用于支持对多个频段的射频信号的收发。
一种通信设备,包括如上述的射频收发系统。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为一实施例的通信设备反馈信道信息的传输应用场景示意图之一;
图1b为一实施例的通信设备反馈信道信息的传输应用场景示意图之二;
图2为一实施例的SRS天线轮流发射的模式示意图;
图3为一实施例的射频收发系统的结构示意图之一;
图4为一实施例的射频LFEM器件的结构示意图之一;
图5为一实施例的射频LFEM器件的结构示意图之二;
图6为一实施例的射频收发系统的结构示意图之二;
图7为一实施例的射频LFEM器件的结构示意图之三;
图8为一实施例的射频收发系统的结构示意图之三;
图9为一实施例的射频LFEM器件的结构示意图之四;
图10a为一实施例的射频LFEM器件的结构示意图之五;
图10b为一实施例的射频LFEM器件的结构示意图之六;
图11为一实施例的射频收发系统的结构示意图之四;
图12为一实施例的射频LFEM器件的结构示意图之七;
图13为一实施例的射频收发系统的结构示意图之五;
图14为一实施例的射频LFEM器件的结构示意图之八;
图15为一实施例的射频收发系统的结构示意图之六;
图16a为图7中的射频LFEM器件的封装引脚示意图;
图16b为图10中的射频LFEM器件的封装引脚示意图;
图16c为图12中的射频LFEM器件的封装引脚示意图;
图16d为图14中的射频LFEM器件的封装引脚示意图。
具体实施方式
为了便于理解本申请,为使本申请的特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频收发系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User EquiPment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
本申请实施例中的射频收发系统可支持第五代移动通信技术(简称5G或5G技术),5G是最新一代蜂窝移动通信技术,也是即4G、3G、2G系统之后的延伸。5G的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接。5G分为支持独立组网(Standalone Access,NA)和非独立组网(Non Standalone Access,NSA)两种模式。其中,非独立组网是将5G控制信令锚定在4G基站上,独立组网是5G基站直接接入5G核心网,控制信令不依赖4G网络。
5G网络支持波束赋形技术,可以向通信设备定向发射。而基站要想定向发射,首先得探测到通信设备的位置、传输通路的质量等,从而使基站的资源更加精准地分配给每一个通信设备。
目前,通信设备反馈信道信息有预编码矩阵指示符(Precoding Matrix Indicator,PMI)和信道探测参考信号(Sounding Reference Signal,SRS)这两种不同的模式,信号传输分别图1a和1b所示。从标准定义上看,PMI是所有5G通信设备必须支持的功能,SRS则是可选功能。PMI是基站通过一种预先设定的机制,依靠终端测量后辅以各种量化算法,来估计信道信息和资源要求,并上报给基站;而SRS则是利用信道互易性让终端直接将信道信息上报给基站,显然后者更加精确。
通信设备发送SRS信息即是用于基站探测终端位置和信道质量的方式;其中SRS天线轮发如图2所示,具体说明如下:
其一,1T1R:固定在第一天线向基站反馈信息,不支持SRS轮发;
其一,1T4R:在第一天线到第四天线轮流发射SRS信息,每次只选择一个天线发射,目前非独立组网采用这种模式;
其三,2T4R:在第一天线到第四天线轮流发射SRS信息,每次选择两个天线同时发射,目前独立组网采用这种模式。
在SRS模式下,能够参与发送参考信号的天线数量越多,信道估计就越准,进而能获得的速率越高;天线数量相同时,SA模式比NSA模式更快地完成信道估计,提高网络信道估计速度。
本申请实施例中提供一种射频收发系统,如图3所示,在其中一个实施例中,射频收发系统包括: 射频收发器40、天线组、射频LFEM器件30、第一射频PA Mid器件10和第二射频PA Mid器件20。
示例性的,射频收发器40可以包括发射器(诸如发射器TX)和接收器(诸如接收器RX),或者可以仅包含接收器(例如,接收器RX)或者仅包含发射器(例如,发射器TX)。其中,射频收发器40可用于实现射频信号和基带信号之间的变频处理,或/和,用于实现不同频段信号的变频处理等等。
天线组,至少包括第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4。其中,第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4可以用于接收和发射N41、N77、N79频段的射频信号。即第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4均为能够支持5GNR信号的天线。在其中一个实施例中,天线组内的各天线可以为定向天线,也可以为非定向天线。示例性的,天线组内的各天线可以使用任何合适类型的天线形成。例如,天线组内的各天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
在本申请实施例中,射频LFEM器件30理解为低噪声放大器前端模块(Low Noise AmPlifier–Front-End Modules),用于支持对至少两个频段射频信号的双通道接收,在本申请实施例中射频LFEM器件30还用于支持射频信号的发射传输,配合第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4能够支持4*4MIMO功能。其中,射频LFEM器件30被配置有第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3、第四天线端口ANT4和用于连接所述射频收发器40的多个接收端口RX,例如RX1、RX2、RX3、RX4。
如图16a所示,在其中一个实施例中,射频LFEM器件30可以理解为封装芯片,该器件中配置的第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3、第四天线端口ANT4、收发端口TRX和接收端口RX可以理解为射频LFEM器件30的射频引脚端子,用于与各外部器件进行连接。具体的,第一天线端口ANT1可用于与第一天线Ant1连接;第二天线端口ANT2可用于与第二天线Ant2连接;第三天线端口ANT3可用于与第三天线Ant3连接;第四天线端口ANT4可用于与第四天线Ant4连接。该接收端口RX可用于与射频收发器40连接。多个收发端口TRX可用于与第一射频PA Mid器件10、第二射频PA Mid器件20连接。示例性的,第一天线端口ANT1可以将第一天线Ant1接收的射频信号输入至该射频LFEM器件30,也可以将射频LFEM器件30处理后的射频信号经第一天线Ant1发射出去。第二天线端口ANT2可以将第二天线Ant2接收的射频信号经输入至该射频LFEM器件30,也可以将射频LFEM器件30处理后的射频信号经第二天线Ant2发射出去。第三天线端口ANT3可以将第三天线Ant3接收的射频信号经输入至该射频LFEM器件30,也可以将射频LFEM器件30处理后的射频信号经第三天线Ant3发射出去。第四天线端口ANT4可以将第四天线Ant4接收的射频信号经输入至该射频LFEM器件30,也可以将射频LFEM器件30处理后的射频信号经第四天线Ant4发射出去。接收端口RX可以将射频LFEM器件30经第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3和第四天线端口ANT4接收的射频信号处理后输出至射频收发器40以实现对射频信号的接收控制,收发端口TRX可接收射频收发器40输出至第一射频PA Mid器件10或第二射频PA Mid器件20处理后的射频信号,以使射频LFEM器件30可实现对接收的射频信号的发射传输。
射频信号可以为5G信号,例如N41频段的5G信号、N77(N78)频段的射频信号、N79频段的射频信号等。具体地,N41的工作频段为496MHz-2690MHz,N77的工作频段为3.3GHz-4.2GHz,N78的工作频段为3.3GHz-3.8GHz,N79的工作频段为4.4GHz-5.0GHz。需要说明的是,N77的工作频段覆盖N78的工作频段。也即该射频LFEM器件30能够支持N77频段的射频信号的收发时,也可以对应支持对N78频段的射频信号的收发。
第一射频PA Mid器件10(Power AmPlifier Modules including DuPlexers,包括双工器的功率放大器模块),用于支持多个频段射频信号的放大收发控制。即,该第一射频PA Mid器件10可以实现对多个频段射频信号的接收和发射控制。示例性的,第一射频PA Mid器件10为封装芯片,该器件被配置有用于接收射频信号的接收通路和发射射频信号的发射通路,以实现对射频信号的收发控制。同样的,第二射频PA Mid器件20,也用于支持多个频段射频信号的收发放大控制。即,该第二射频PA Mid器件20 可以实现对多个频段射频信号的接收和发射控制。示例性的,第二射频PA Mid器件20为封装芯片,该器件被配置有用于接收射频信号的接收通路和发射射频信号的发射通路,以实现对射频信号的收发控制。
MIMO技术指在发射端口和接收端口分别使用多个发射天线和接收天线,充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。终端和基站可以构成2*2MIMO或者4*4MIMO。在泰尔协议测试接收性能时,也是将4个接收通道全部连接到仪表。4个通道构成MIMO的下行,全部接收上行基站发出的信号,提高接收机的性能。
上述射频收发系统和通信设备,通过射频LFEM器件30实现射频信号的至少两个频段的双通道接收,将每个频段信号的两个接收通道集成封装在同一芯片中,可以节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,射频LFEM器件30配合天线组、第一射频PA Mid器件10和第二射频PA Mid器件20能够实现2T4R模式的4*4MIMO功能,提高系统信道容量,并提升信道估计的准确性和效率。
如图4所示,在其中一个实施例中,射频LFEM器件30包括两个第一接收电路310、两个第二接收电路320和第一开关单元330。其中,第一开关单元330的多个第一端分别一一对应与两个第一接收电路310的输入端、两个第二接收电路320的输入端、多个收发端口TRX连接,第一开关单元330的四个第二端分别一一对应与第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3、第四天线端口ANT4连接,用于经第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3和第四天线端口ANT4收发射频信号,还用于经收发端口TRX发射射频收发器40发射的射频信号,以选择性地导通第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3和第四天线端口ANT4与射频LFEM器件30的接收通路的连接,或选择性地导通第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3和第四天线端口ANT4与射频LFEM器件30的发射通路的连接。其中,射频LFEM器件30的接收通路可以理解为第一天线端口ANT1与任意接收端口RX或收发端口TRX之间的第一接收通路、第二天线端口ANT2与任意接收端口RX或收发端口TRX之间的第二接收通路、第三天线端口ANT3与任意接收端口RX或收发端口TRX之间的第三接收通路,以及第四天线端口ANT4与任意接收端口RX或收发端口TRX之间的第四接收通路;射频LFEM器件30的发射通路可以理解为任意天线端口与收发端口TRX之间的发射通路。
两个第一接收电路310的输入端和两个第二接收电路320的输入端分别与第一开关单元330的其中四个第一端一一对应连接,两个第一接收电路310的输出端和两个第二接收电路320的输出端分别与四个接收端口RX一一对应连接。第一接收电路310用于支持对第一频段射频信号的接收放大处理,第二接收电路320用于对第二频段射频信号的接收放大处理。示例性的,第一天线若接收到第一频段的射频信号,可经第一天线端口ANT1输入至第一开关单元330,第一开关单元330切换至任意第一接收电路310导通,射频信号经第一接收电路310进行放大后,由接收端口输出至射频收发器40;第一天线若接收到第二频段的射频信号,可经第一天线端口ANT1输入至第一开关单元330,第一开关单元330切换至任意第二接收电路320导通,射频信号经第二接收电路320进行放大后,由接收端口输出至射频收发器40,其他天线同理。
如图5所示,在其中一个实施例中,第一接收电路310包括第一低噪声放大器LNA1,第一低噪声放大器LNA1的输入端与第一开关单元330的一第一端连接,第一低噪声放大器LNA1的输出端与一接收端口RX连接。第一低噪声放大器LNA1用于对接收的第一频段射频信号进行放大处理。第二接收电路320包括第二低噪声放大器LNA2,第二低噪声放大器LNA2的输入端与第一开关单元330的另一第一端连接,第二低噪声放大器LNA2的输出端与另一接收端口RX连接。第二低噪声放大器LNA1用于对接收的第二频段射频信号进行放大处理。
如图5所示,在其中一个实施例中,第一接收电路310还包括第一滤波单元311,第二接收电路320还包括第二滤波单元321。其中,第一滤波单元311和第二滤波单元321可以分别设置于第一频段射频信号的接收通路和第二频段射频信号的接收通路中,用于对接收的射频信号进行滤波处理。第一滤波单 元311设置于第一开关单元330的前端,即,第一滤波单元311设置在第一低噪声放大器LNA1的输入端与第一开关单元330之间。第二滤波单元321设置于第一开关单元330的前端,即,第二滤波单元321设置在第二低噪声放大器LNA2的输入端与第一开关单元330之间。在其中一个实施例中,第一频段的射频信号和第二频段的射频信号分别为N77和N79频段的5G信号。可以理解的是,第一频段的射频信号和第二频段的射频信号也可以分别为N79和N77频段的5G信号。
如图6所示,在其中一个实施例中,第一射频PA Mid器件10配置有射频发射端口RFIN、射频接收端口RXOUT和射频天线端口ANT,第一射频PA Mid器件10的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第一频段射频信号和第二频段射频信号;第一射频PA Mid器件10的射频接收端口RXOUT用于与射频收发器40连接,以将接收的第一频段射频信号和第二频段射频信号输出至射频收发器40,第一射频PA Mid器件10的射频天线端口ANT与第一收发端口TRX1连接,用于支持收发第一频段和第二频段的射频信号。第二射频PA Mid器件20配置有射频发射端口RFIN、射频接收端口RXOUT和射频天线端口ANT,第二射频PA Mid器件20的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第一频段射频信号和第二频段射频信号;第二射频PA Mid器件20的射频接收端口RXOUT用于与射频收发器40连接,以将接收的第一频段射频信号和第二频段射频信号输出至射频收发器40,第二射频PA Mid器件20的射频天线端口ANT与第二收发端口TRX2连接,用于支持收发第一频段和第二频段的射频信号。
基于上述实施例的射频收发系统,可以支持四天线2T4R的4*4MIMO功能和SRS功能。示例性的,以图6为例,分析N77频段的4*4MIMO功能工作原理:
TX0通路:
发射的射频信号经射频收发器40的TX1 UHB 5GLM端口输出至第一射频PA Mid器件10的射频发射端口RFIN,射频信号经SPDT#1射频开关切换至功率放大器PA,经功率放大器PA放大后,至SPDT#3射频开关,经SPDT#3射频开关切换至单端口,经滤波器滤波后至DP3T射频开关,DP3T射频开关切换至Path1路径,由射频LFEM器件30的第一收发端口TRX1至第一开关单元330(4P6T射频开关),第一开关单元330切换至Path3路径,从第一天线端口ANT1输出至第一天线Ant1发射。
TX1通路:
发射的射频信号经射频收发器40的TX2 UHB 5GLM端口输出至第二射频PA Mid器件20的射频发射端口RFIN,射频信号经SPDT#1射频开关切换至功率放大器PA,经功率放大器PA放大后,至SPDT#3射频开关,经SPDT#3射频开关切换至单端口,经滤波器滤波后至DP3T射频开关,DP3T射频开关切换至Path2路径,由射频LFEM器件30的第二收发端口TRX2至第一开关单元330(4P6T射频开关),第一开关单元330切换至Path5路径,从第三天线端口ANT3输出至第三天线Ant3发射。
PRX通路:
接收的射频信号从第一天线Ant1进入,经Path3路径至射频LFEM器件30的第一天线端口ANT1,经过第一开关单元330(4P6T射频开关)切换至第一收发端口TRX1,经Path1路径至第一射频PA Mid器件10的射频天线端口ANT,经第一射频PA Mid器件10内的DP3T射频开关切换至触点1,经过滤波器滤波后至SPDT#3射频开关,SPDT#3射频开关切换至接收通路,经低噪声放大器LNA放大后至射频接收端口RXOUT,从SDR PRX17端口进入射频收发器40。
DRX通路:
接收的射频信号从第二天线Ant2进入,经Path4路径至射频LFEM器件30的第二天线端口ANT2,经过第一开关单元330(4P6T射频开关)切换至触点1,经第一滤波单元311滤波、第一低噪声放大器LNA1放大后,至接收端口RX1,从SDR DRX17端口进入射频收发器40。
PRX MIMO通路:
接收的射频信号从第三天线Ant3进入,经Path5路径至射频LFEM器件30的第三天线端口ANT3,经过第一开关单元330(4P6T射频开关)切换至第二收发端口TRX2,经Path2路径至第二射频PA Mid器件20的射频天线端口ANT,经第二射频PA Mid器件20内的DP3T射频开关切换至触点1,经过滤波器滤波后至SPDT#3射频开关,SPDT#3射频开关切换至接收通路,经低噪声放大器LNA放大后至 射频接收端口RXOUT,从SDR PRX15端口进入射频收发器40。
DRX MIMO通路:
接收的射频信号从第四天线Ant4进入,经Path6路径至射频LFEM器件30的第四天线端口ANT4,经过第一开关单元330(4P6T射频开关)切换至触点3,经第一滤波单元311滤波、第一低噪声放大器LNA1放大后,至接收端口RX2,从SDR DRX16端口进入射频收发器40。
以图6为例,分析N77频段的SRS功能工作原理:
发射的射频信号经射频收发器40的TX1 UHB 5GLM端口输出至第一射频PA Mid器件10的射频发射端口RFIN,射频信号经SPDT#1射频开关切换至功率放大器PA,经功率放大器PA放大后,至SPDT#3射频开关,经SPDT#3射频开关切换至单端口,经滤波器滤波后至DP3T射频开关,DP3T射频开关切换至Path1路径,至射频LFEM器件30的第一收发端口TRX1,经第一开关单元330(4P6T射频开关)切换至第一天线端口ANT1,经Path3路径,至第一天线Ant1输出;
经Path1路径至第一开关单元330,第一开关单元330切换至Path4路径,从第二天线Ant2输出;
发射的射频信号经射频收发器40的TX2 UHB 5GLM端口输出至第二射频PA Mid器件20的射频发射端口RFIN,射频信号经SPDT#1射频开关切换至功率放大器PA,经功率放大器PA放大后,至SPDT#3射频开关,经SPDT#3射频开关切换至单端口,经滤波器滤波后至DP3T射频开关,DP3T射频开关切换至Path2路径,至射频LFEM器件30的第二收发端口TRX2,经第一开关单元330切换至第三天线端口ANT3,经Path5路径,至第三天线Ant3输出;
经Path2路径至第一开关单元330,第一开关单元330切换至Path6路径,从第四天线Ant4输出。
N79发射的SRS功能与N77相似,不再赘述,具体的SRS路径配置如表1所示:
表1 SRS详细路径配置表
  N77 N79
Channel0 Path1->Path3 Path1->Path3
Channel1 Path1->Path4 Path1->Path4
Channel2 Path2->Path5 Path2->Path5
Channel3 Path2->Path6 Path2->Path6
如图7和图8所示,在其中一个实施例中,射频LFEM器件30还包括第五开关单元340,用于切换接收到的射频信号至任意一个接收端口输出。具体的,第五开关单元340的四个第一端分别一一对应与四个接收端口连接,第五开关单元340的四个第二端分别一一对应与两个第一接收电路310的输出端、两个第二接收电路320的输出端连接。
如图9所示,在其中一个实施例中,射频LFEM器件30还包括多个第四滤波单元361,各第四滤波单元361分别设置于第一开关单元330的前端与各收发端口之间,用于对接收的射频信号进行滤波处理。示例性的,若收发端口的数量为两个,则第四滤波单元361的数量为两个,分别设置于两个收发端口与第一开关单元330的前端之间。
参考图6和图8所示的射频收发系统,通过射频LFEM器件30实现双频段射频信号的双通道接收,将四个接收通道集成封装在同一芯片中,节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,配合天线组、第一射频PA Mid器件10和第二射频PA Mid器件20能够实现2T4R模式的4*4MIMO功能,提高系统信道容量,并提升信道估计的准确性和效率。其中,图6所示的射频收发系统中,能够进一步节约射频LFEM器件30的内部空间,节约成本,简化了射频LFEM器件30内部逻辑控制的复杂度。
如图10a所示,在其中一个实施例中,射频LFEM器件30还包括两个第三接收电路370,用于支持对第三频道射频信号的接收放大处理。参考图11和图12所示,射频收发系统还包括收发选择模块50。收发选择模块50分别与射频收发器40、射频LFEM器件30、第一天线、第二天线、第三天线和第四天线连接。收发选择模块50能够将射频收发器40发射的第三频段射频信号通过天线组中的任意天线发射出去,也可以接收天线组中的任意天线接收的第三频段射频信号,并发射至射频收发器40,以使射频收发系统实现对三频段射频信号的4*4MIMO功能。具体的,收发选择模块50发射的第三频 段射频信号可以直接发射至任意天线进行发射,也可以经过射频LFEM器件30发射至任意天线。
如图10b所示,在其中一个实施例中,第三接收电路370包括第三低噪声放大器LNA3,第三低噪声放大器LNA3的输入端与一收发端口TRX连接,第三低噪声放大器LNA3的输出端与一接收端口RX连接。第三低噪声放大器LNA3用于对接收的第三频段射频信号进行放大处理。在其中一个实施例中,第三接收电路370还包括第三滤波单元371。第三滤波单元371设置于第三频段射频信号的接收通路中,用于对接收的第三频段射频信号进行滤波处理。
在其中一个实施例中,射频LFEM器件30上所配置的收发端口TRX的数量为四个,分别为第一收发端口TRX1、第二收发端口TRX2、第三收发端口TRX3和第四收发端口TRX4。其中第一收发端口TRX1、第二收发端口TRX2分别与第一开关单元330的其中两个第一端连接,第一收发端口TRX1还与第一射频PA Mid器件10的射频天线端口ANT连接,第二收发端口还与第二射频PA Mid器件20的射频天线端口ANT连接,第三收发端口TRX3和第四收发端口TRX4分别与两个第三接收电路370的输入端连接。其中,第一开关单元330包括六个第一端,除了分别与第一收发端口TRX1、第二收发端口TRX2连接的两个第一端之外,其他四个第一端分别一一对应与两个第一接收电路310的输入端、两个第二接收电路320的输入端连接。第一开关单元330用于选择导通天线端口与任意第一接收电路310、任意第二接收电路320、第一收发端口TRX1或第二收发端口TRX2的通路,以实现选择导通第一频段射频信号的接收、发射通路或第二频段射频信号的接收、发射通路。
如图16b所示,在其中一个实施例中,射频LFEM器件30可以理解为封装芯片,该器件中配置的第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3、第四天线端口ANT4、第一收发端口TRX1、第二收发端口TRX2、第三收发端口TRX3、第四收发端口TRX4和接收端口RX可以理解为射频LFEM器件30的射频引脚端子,用于与各外部器件进行连接。
如图11所示,在其中一个实施例中,收发选择模块50包括第一合路器561、第二合路器562、第三合路器563、第四合路器564、第一选择开关540、第二选择开关550、第二开关单元530、第三射频PA Mid器件510和第四射频PA Mid器件520,其中,第三射频PA Mid器件510和第四射频PA Mid器件520均配置有射频天线端口。其中,第一选择开关540的两个第一端分别与第三收发端口TRX3、第二开关单元530的一第二端(例如端子2)连接,第一选择开关540的第二端和第二天线端口ANT2分别经第二合路器562与第二天线连接Ant2。第一第二选择开关550的两个第一端分别与第四收发端口、第二开关单元530的另一第二端(例如端子4)连接,第二选择开关550的第二端和第四天线端口ANT4分别经第四合路器564与第四天线Ant4连接。第二开关单元530的两个第一端分别与第三射频PA Mid器件510的射频天线端口ANT、第四射频PA Mid器件520的射频天线端口ANT一一对应连接,第二开关单元530的另一第二端(例如端子1)和第一天线端口ANT1分别经第一合路器561与第一天线Ant1连接,第二开关单元530的又一第二端(例如端子3)和第三天线端口ANT3分别经第三合路器563与第三天线Ant3连接。第三射频PA Mid器件510还配置有射频发射端口RFIN、射频接收端口RXOUT,第三射频PA Mid器件510的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第三频段射频信号;第三射频PA Mid器件510的射频接收端口RXOUT用于与射频收发器40连接,以将接收的第三频段射频信号输出至射频收发器40,第三射频PA Mid器件510的射频天线端口ANT与第二开关单元530的一第一端(例如端子5)连接,用于支持收发第三频段的射频信号。第四射频PA Mid器件520还配置有射频发射端口RFIN、射频接收端口RXOUT,第四射频PA Mid器件520的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第三频段射频信号;第四射频PA Mid器件520的射频接收端口RXOUT用于与射频收发器40连接,以将接收的第三频段射频信号输出至射频收发器40,第四射频PA Mid器件520的射频天线端口ANT与第二开关单元530的另一第一端(例如端子6)连接,用于支持收发第三频段的射频信号。
在其中一个实施例中,第三频段的射频信号为N41频段的5G信号。
基于上述实施例的射频收发系统,可以支持四天线2T4R的4*4MIMO功能和SRS功能。示例性的,以图11为例,分析N41频段的4*4MIMO功能工作原理:
TX0通路:
发射的射频信号经射频收发器40的TX1 HB1端口输出至第三射频PA Mid器件510的射频发射端口RFIN,射频信号经功率放大器PA放大后,经SPDT射频开关切换至滤波器,经滤波器滤波后至射频天线端口ANT,经Path1路径至第二开关单元530(DP4T射频开关),经第二开关单元530切换至Path3路径,经第一合路器561至第一天线Ant1输出。
TX1通路:
发射的射频信号经射频收发器40的TX1 HB2端口输出至第四射频PA Mid器件520的射频发射端口RFIN,射频信号经功率放大器PA放大后,经SPDT射频开关切换至滤波器,经滤波器滤波后至射频天线端口ANT,经Path2路径至第二开关单元530(DP4T射频开关),经第二开关单元530切换至Path5路径,经第三合路器563至第三天线Ant3输出。
PRX通路:
接收的射频信号从第一天线Ant1进入,至第一合路器561,经Path3路径至第二开关单元530,第二开关单元530切换至Path1路径,由第三射频PA Mid器件510的射频天线端口ANT进入,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至射频接收端口RXOUT,从SDR PRX7端口进入射频收发器40。
DRX通路:
接收的射频信号从第二天线Ant2进入,至第二合路器562,经Path9路径至第一选择开关540(SPDT射频开关),第一选择开关540切换至Path7路径,至射频LFEM器件30的第三收发端口TRX3,经第三滤波单元371滤波、第三低噪声放大器LNA3放大后,至射频LFEM器件30的接收端口RX1,从SDR DRX7端口进入射频收发器40。
PRX MIMO通路:
接收的射频信号从第三天线Ant3进入,至第三合路器563,经Path5路径至第二开关单元530,第二开关单元530切换至Path2路径,由第四射频PA Mid器件520的射频天线端口ANT进入,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至射频接收端口RXOUT,从SDR PRX5端口进入射频收发器40。
DRX MIMO通路:
接收的射频信号从第四天线Ant4进入,至第四合路器564,经Path10路径至第二选择开关550(SPDT射频开关),第二选择开关550切换至Path8路径,至射频LFEM器件30的第四收发端口TRX4,经第三滤波单元371滤波、第三低噪声放大器LNA3放大后,至射频LFEM器件30的接收端口RX2,从SDR DRX5端口进入射频收发器40。
以图11为例,分析N41频段在SA模式下的SRS功能工作原理:
发射的射频信号从射频收发器40的TX1 HB1端口输出至第三射频PA Mid器件510的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT开关,经SPDT开关切换至滤波器进行滤波后,由第三射频PA Mid器件510的射频天线端口ANT经Path1路径至第二开关单元530,经第二开关单元530切换至Path3路径,至第一合路器561,经第一合路器561合路后,至第一天线Ant1输出;
经Path1路径至第二开关单元530,第二开关单元530切换至Path4路径,至第一选择开关540,第一选择开关540切换至Path9路径,经第二合路器562至第二天线Ant2输出;
发射的射频信号从射频收发器40的TX1 HB2端口输出至第四射频PA Mid器件520的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT开关,经SPDT开关切换至滤波器进行滤波后,由第四射频PA Mid器件520的射频天线端口ANT经Path2路径至第二开关单元530,经第二开关单元530切换至Path5路径,至第三合路器563,经第三合路器563合路后,至第三天线Ant2输出;
经Path2路径至第二开关单元530,第二开关单元530切换至Path6路径,至第二选择开关550,第二选择开关550切换至Path10路径,经第四合路器564至第四天线Ant4输出。
N77、N79发射的SRS功能与N41相似,不再赘述,具体的SA和NAS的SRS路径配置如表2和表3所示:
表2 SA SRS详细路径配置表
   N41 N77 N79
Channel0 Path1->Path3 Path11->Path13 Path11->Path13
Channel1 Path1->Path4->Path9 Path11->Path14 Path11->Path14
Channel2 Path2->Path5 Path12->Path15 Path12->Path15
Channel3 Path2->Path6->Path10 Path12->Path16 Path12->Path16
表3 NSA SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path3 Path11->Path13 Path11->Path13
Channel1 Path1->Path4->Path9 Path11->Path14 Path11->Path14
Channel2 Path1->Path5 Path11->Path15 Path11->Path15
Channel3 Path1->Path6->Path10 Path11->Path16 Path11->Path16
参考图11所示的射频收发系统,通过射频LFEM器件30实现三个频段射频信号的双通道接收,将六个接收通道集成封装在同一芯片中,可以节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,同时还能简化布线难度,有利于基板上的信号完整性,减小信号间的相互干扰,射频LFEM器件30配合天线组、第一射频PA Mid器件10和第二射频PA Mid器件20能够实现2T4R模式的4*4MIMO功能,提高系统信道容量,并提升信道估计的准确性和效率。
如图12所示,在其中一个实施例中,射频LFEM器件30还被配置有第五天线端口ANT5和第六天线端口ANT6,射频LFEM器件30所配置的收发端口数量为三个,分别为第一收发端口TRX1、第二收发端口TRX2和第三收发端口TRX3,其中,第一收发端口TRX1与第一射频PA Mid器件10的射频天线端口ANT连接,第二收发端口TRX2与第二射频PA Mid器件20的射频天线端口ANT连接。射频LFEM器件30还包括第三开关单元380。第三开关单元380的三个第一端分别与两个第三接收电路370的输入端、第三收发端口TRX3一一对应连接,第三开关单元380的两个第二端分别与第五天线端口ANT5、第六天线端口ANT6对应连接。
如图16c所示,在其中一个实施例中,射频LFEM器件30可以理解为封装芯片,该器件中配置的第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3、第四天线端口ANT4、第五天线端口ANT5、第六天线端口ANT6、第一收发端口TRX1、第二收发端口TRX2、第三收发端口TRX3和接收端口RX可以理解为射频LFEM器件30的射频引脚端子,用于与各外部器件进行连接。
如图13所示,在其中一个实施例中,收发选择模块50包括第一合路器561、第二合路器562、第三合路器563、第四合路器564、第四开关单元570、第三射频PA Mid器件510和第四射频PA Mid器件520;其中,第三射频PA Mid器件510和第四射频PA Mid器件520均配置有射频天线端口,第五天线端口ANT5与第二天线端口ANT2分别经第二合路器562与第二天线Ant2连接,第六天线端口ANT6与第四天线端口ANT4分别经第四合路器564与第四天线Ant4连接。具体的,第四开关单元570的两个第一端分别与第三射频PA Mid器件510的射频天线端口和第四射频PA Mid器件520的射频天线端口一一对应连接,第四开关单元570的其中一个第二端与第三收发端口TRX3连接,第四开关单元570的另一个第二端与第一天线端口ANT1分别经第一合路器561与第一天线Ant1连接,第四开关单元570的又一第二端与第三天线端口ANT3分别经第三合路器563与第三天线Ant3连接。第四开关单元570用于切换导通第三射频PA Mid器件510的收发通路和第四射频PA Mid器件520的收发通路。
第三射频PA Mid器件510,配置有射频发射端口RFIN、射频接收端口RXOUT和射频天线端口ANT,第三射频PA Mid器件510的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第三频段射频信号;第三射频PA Mid器件510的射频接收端口RXOUT用于与射频收发器40连接,以将接收的第三频段射频信号输出至射频收发器40,第三射频PA Mid器件510的射频天线端口ANT与第四开关单元570的一第一端连接,用于支持收发第三频段的射频信号。
第四射频PA Mid器件520,配置有射频发射端口RFIN、射频接收端口RXOUT和射频天线端口ANT,第四射频PA Mid器件520的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第三频段射频信号;第四射频PA Mid器件520的射频接收端口RXOUT用于与射频收发器40 连接,以将接收的第三频段射频信号输出至射频收发器40,第四射频PA Mid器件520的射频天线端口ANT与第四开关单元570的另一第一端连接,用于支持收发第三频段的射频信号。
基于上述实施例的射频收发系统,可以支持四天线2T4R的4*4MIMO功能和SRS功能。示例性的,以图13为例,分析N41频段的4*4MIMO功能工作原理:
TX0通路:
发射的射频信号经射频收发器40的TX1 HB1端口输出至第三射频PA Mid器件510的射频发射端口RFIN,射频信号经功率放大器PA放大后,经SPDT射频开关切换至滤波器,经滤波器滤波后至射频天线端口ANT,经Path1路径至第四开关单元570(DP3T射频开关),经第四开关单元570切换至Path3路径,经第一合路器561至第一天线Ant1输出。
TX1通路:
发射的射频信号经射频收发器40的TX1 HB2端口输出至第四射频PA Mid器件520的射频发射端口RFIN,射频信号经功率放大器PA放大后,经SPDT射频开关切换至滤波器,经滤波器滤波后至射频天线端口ANT,经Path2路径至第四开关单元570(DP3T射频开关),经第四开关单元570切换至Path4路径,经第三合路器563至第三天线Ant3输出。
PRX通路:
接收的射频信号从第一天线Ant1进入,至第一合路器561,经Path3路径至第四开关单元570,第四开关单元570切换至Path1路径,由第三射频PA Mid器件510的射频天线端口ANT进入,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至射频接收端口RXOUT,从SDR PRX7端口进入射频收发器40。
DRX通路:
接收的射频信号从第二天线Ant2进入,至第二合路器562,经Path6路径至至射频LFEM器件30的第五天线端口ANT5,经第三开关单元380(DP3T射频开关)至第三滤波单元371滤波和第三低噪声放大器LNA3放大后,至射频LFEM器件30的接收端口RX1,从SDR DRX7端口进入射频收发器40。
PRX MIMO通路:
接收的射频信号从第三天线Ant3进入,至第三合路器563,经Path4路径至第四开关单元570,第四开关单元570切换至Path2路径,由第四射频PA Mid器件520的射频天线端口ANT进入,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至射频接收端口RXOUT,从SDR PRX5端口进入射频收发器40。
DRX MIMO通路:
接收的射频信号从第四天线Ant4进入,至第四合路器564,经Path7路径至射频LFEM器件30的第二天线端口ANT2,经第三开关单元380(DP3T射频开关)至第三滤波单元371滤波和第三低噪声放大器LNA3放大后,至射频LFEM器件30的接收端口RX2,从SDR DRX5端口进入射频收发器40。
以图13为例,分析N41频段在SA模式下的SRS功能工作原理:
发射的射频信号从射频收发器40的TX1 HB1端口输出至第三射频PA Mid器件510的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT开关,经SPDT开关切换至滤波器进行滤波后,由第三射频PA Mid器件510的射频天线端口ANT经Path1路径至第四开关单元570,经第四开关单元570切换至Path3路径,至第一合路器561,经第一合路器561合路后,至第一天线Ant1输出;
经Path1路径至第四开关单元570,第四开关单元570切换至Path5路径,至射频LFEM器件30的第三收发端口TRX3,第三开关单元380切换至第五天线端口ANT5,经Path6路径,经第二合路器562合路后,至第二天线Ant2输出;
发射的射频信号从射频收发器40的TX1 HB2端口输出至第四射频PA Mid器件520的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT开关,经SPDT开关切换至滤波器进行滤波后,由第四射频PA Mid器件520的射频天线端口ANT经Path2路径至第四开关单元570,经第四开关单元570切换至Path4路径,至第三合路器563,经第三合路器563合路后,至第三天线Ant3输出;
经Path2路径至第四开关单元570,第四开关单元570切换至Path5路径,至射频LFEM器件30的第三收发端口TRX3,第三开关单元380切换至第六天线端口ANT6,至Path7路径,经第四合路器564合路后,至第四天线Ant4输出。
N77、N79发射的SRS功能与N41相似,不再赘述,具体的SA和NAS的SRS路径配置如表4和表5所示:
表4 SA SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path3 Path8->Path10 Path8->Path10
Channel1 Path1->Path5->Path6 Path8->Path11 Path8->Path11
Channel2 Path2->Path4 Path9->Path12 Path9->Path12
Channel3 Path2->Path5->Path7 Path9->Path13 Path9->Path13
表5 NSA SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path3 Path8->Path10 Path8->Path10
Channel1 Path1->Path5->Path6 Path8->Path11 Path8->Path11
Channel2 Path1->Path4 Path8->Path12 Path8->Path12
Channel3 Path1->Path5->Path7 Path8->Path13 Path8->Path13
参考图13所示的射频收发系统,通过射频LFEM器件30实现三个频段射频信号的双通道接收,将六个接收通道集成封装在同一芯片中,可以节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,同时还能简化布线难度,有利于基板上的信号完整性,减小信号间的相互干扰,射频LFEM器件30配合天线组、第一射频PA Mid器件10和第二射频PA Mid器件20能够实现2T4R模式的4*4MIMO功能,提高系统信道容量,并提升信道估计的准确性和效率。另外,图13所示的射频收发系统中,无需设置第一选择开关540和第二选择开关550,而是整合至射频LFEM器件30中,提高了集成度,进一步节约成本。
如图14所示,在其中一个实施例中,射频LFEM器件30所配置的收发端口数量为四个,分别为第一收发端口TRX1、第二收发端口TRX2、第三收发端口TRX3和第四收发端口TRX4;第一开关单元330第一端的数量为十个。具体的,第一开关单元330的十个第一端分别一一对应与两个第一接收电路310的输入端、两个第二接收电路320的输入端、两个第三接收电路370的输入端、第一收发端口TRX1、第二收发端口TRX2、第三收发端口TRX3、第四收发端口TRX4连接。射频LFEM器件30通过第三收发端口TRX3和第四收发端口与收发选择模块50连接。第一开关单元330用于选择导通三频段射频信号任意接收通道,还用于选择导通与第一射频PA Mid器件10、第二射频PA Mid器件20、收发选择模块50间的收发通路。
如图16d所示,在其中一个实施例中,射频LFEM器件30可以理解为封装芯片,该器件中配置的第一天线端口ANT1、第二天线端口ANT2、第三天线端口ANT3、第四天线端口ANT4、第一收发端口TRX1、第二收发端口TRX2、第三收发端口TRX3、第四收发端口TRX4和接收端口RX可以理解为射频LFEM器件30的射频引脚端子,用于与各外部器件进行连接。
如图15所示,在其中一个实施例中,收发选择模块50包括第三射频PA Mid器件510和第四射频PA Mid器件520。具体的,第三射频PA Mid器件510,配置有射频发射端口RFIN、射频接收端口RXOUT和射频天线端口ANT,第三射频PA Mid器件510的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第三频段射频信号;第三射频PA Mid器件510的射频接收端口RXOUT用于与射频收发器40连接,以将接收的第三频段射频信号输出至射频收发器40,第三射频PA Mid器件510的射频天线端口ANT与第三收发端口TRX3连接,用于支持收发第三频段的射频信号。
第四射频PA Mid器件520,配置有射频发射端口RFIN、射频接收端口RXOUT和射频天线端口ANT,第四射频PA Mid器件520的射频发射端口RFIN用于与射频收发器40连接,以接收射频收发器40发射的第三频段射频信号;第四射频PA Mid器件520的射频接收端口RXOUT用于与射频收发器40 连接,以将接收的第三频段射频信号输出至射频收发器40,第四射频PA Mid器件520的射频天线端口ANT与第四收发端口TRX4连接,用于支持收发第三频段的射频信号。
基于上述实施例的射频收发系统,可以支持四天线2T4R的4*4MIMO功能和SRS功能。示例性的,以图15为例,分析N41频段的4*4MIMO功能工作原理:
TX0通路:
发射的射频信号经射频收发器40的TX1 HB1端口输出至第三射频PA Mid器件510的射频发射端口RFIN,射频信号经功率放大器PA放大后,经SPDT射频开关切换至滤波器,经滤波器滤波后至射频天线端口ANT,经Path1路径,由射频LFEM器件30的第三收发端口TRX3至第一开关单元330(4P10T射频开关),经第一开关单元330切换至Path5路径,至第一天线Ant1输出。
TX1通路:
发射的射频信号经射频收发器40的TX1 HB2端口输出至第四射频PA Mid器件520的射频发射端口RFIN,射频信号经功率放大器PA放大后,经SPDT射频开关切换至滤波器,经滤波器滤波后至射频天线端口ANT,经Path2路径,由射频LFEM器件30的第四收发端口TRX4至第一开关单元330,经第四开关单元570切换至Path7路径,至第三天线Ant3输出。
PRX通路:
接收的射频信号从第一天线Ant1进入,经Path5路径,由射频LFEM器件30的第一天线端口ANT1至第一开关单元330,第一开关单元330切换至触点1,经Path1路径,由第三射频PA Mid器件510的射频天线端口ANT进入,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至射频接收端口RXOUT,从SDR PRX7端口进入射频收发器40。
DRX通路:
接收的射频信号从第二天线Ant2进入,经Path6路径,由射频LFEM器件30的第二天线端口ANT2至第一开关单元330,第一开关单元330切换至触点3,经第三滤波单元371滤波和第三低噪声放大器LNA3放大后,至射频LFEM器件30的接收端口RX1,从SDR DRX7端口进入射频收发器40。
PRX MIMO通路:
接收的射频信号从第三天线Ant3进入,经Path7路径,由射频LFEM器件30的第三天线端口ANT3至第一开关单元330,第一开关单元330切换至触点2,经Path2路径,由第四射频PA Mid器件520的射频天线端口ANT进入,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至射频接收端口RXOUT,从SDR PRX5端口进入射频收发器40。
DRX MIMO通路:
接收的射频信号从第四天线Ant4进入,经Path8路径,由射频LFEM器件30的第四天线端口ANT4至第一开关单元330,第一开关单元330切换至触点4,经第三滤波单元371滤波和第三低噪声放大器LNA3放大后,至射频LFEM器件30的接收端口RX2,从SDR DRX5端口进入射频收发器40。
以图15为例,分析N41频段在SA模式下的SRS功能工作原理:
发射的射频信号从射频收发器40的TX1 HB1端口输出至第三射频PA Mid器件510的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT开关,经SPDT开关切换至滤波器进行滤波后,由第三射频PA Mid器件510的射频天线端口ANT至Path1路径,经射频LFEM器件30的第三收发端口TRX3至第一开关单元330,第一开关单元330切换至触点11,由第一天线端口ANT1经Path5路径,至第一天线Ant1输出;
经Path1路径至第一开关单元330,第一开关单元330切换至触点12,由第二天线端口ANT2经Path6路径,至第二天线Ant2输出;
发射的射频信号从射频收发器40的TX1 HB2端口输出至第四射频PA Mid器件520的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT开关,经SPDT开关切换至滤波器进行滤波后,由第四射频PA Mid器件520的射频天线端口ANT至Path2路径,经射频LFEM器件30的第四收发端口TRX4至第一开关单元330,第一开关单元330切换至触点13,由第三天线端口ANT3经Path7路径,至第三天线Ant3输出;
经Path2路径至第一开关单元330,第一开关单元330切换至触点14,由第四天线端口ANT4经Path8路径,至第四天线Ant4输出。
N77、N79发射的SRS功能与N41相似,不再赘述,具体的SA和NAS的SRS路径配置如表6和表7所示:
表6 SA SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path5 Path3->Path5 Path3->Path5
Channel1 Path1->Path6 Path3->Path6 Path3->Path6
Channel2 Path2->Path7 Path4->Path7 Path4->Path7
Channel3 Path2->Path8 Path4->Path8 Path4->Path8
表7 NSA SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path5 Path3->Path5 Path3->Path5
Channel1 Path1->Path6 Path3->Path6 Path3->Path6
Channel2 Path1->Path7 Path3->Path7 Path3->Path7
Channel3 Path1->Path8 Path3->Path8 Path3->Path8
参考图15所示的射频收发系统,通过射频LFEM器件30实现三个频段射频信号的双通道接收,将六个接收通道集成封装在同一芯片中,可以节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,同时还能简化布线难度,有利于基板上的信号完整性,减小信号间的相互干扰,射频LFEM器件30配合天线组、第一射频PA Mid器件10和第二射频PA Mid器件20能够实现2T4R模式的4*4MIMO功能,提高系统信道容量,并提升信道估计的准确性和效率。另外,图15所示的射频收发系统中,通过进一步提高射频LFEM器件30的集成度,利用第一开关单元330替代用于实现2T4R的外设射频开关的功能,同时无需再使用合路器进行合路,进一步缩减器件占用基板的面积,并且进一步节约了成本。
参考图6-图8,在其中一个实施例中,射频LFEM器件30还包括第一控制单元351和第二控制单元352。其中,第一控制单元351可以用于控制第一开关单元330切换导通各频段射频信号的接收通路;第二控制单元352可以用于控制第一开关单元330切换导通各频段射频信号的发射通路。具体的,第一控制单元351、第二控制单元352可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)—射频前端控制接口(RF Front End Control Interface,RFFE)控制单元或射频前端控制接口(RF Front End Control Interface,RFFE)控制单元,其符合RFFE总线的控制协议。当第一控制单元351、第二控制单元352为MIPI-RFFE控制单元或RFFE控制单元时,其射频L-PA Mid器件还被配置有时钟信号的输入引脚CLK、单/双向数据信号的输入或双向引脚SDATAS、电源引脚VDD、参考电压引脚VIO等等。
本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频收发系统。通过在通信设备上设置该射频收发系统,提高了射频收发系统的集成度,减小了射频收发系统中各器件占用基板的面积,同时还可以简化射频LFEM器件30的供电、逻辑控制以及PCB的布局布线,节约了成本。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频收发系统,包括:
    射频收发器;
    天线组,包括第一天线、第二天线、第三天线和第四天线,用于支持收发射频信号;
    射频LFEM器件,所述射频LFEM器件被配置有多个收发端口、分别与第一天线、第二天线、第三天线、第四天线一一对应连接的第一天线端口、第二天线端口、第三天线端口、第四天线端口和与所述射频收发器连接的多个接收端口,所述射频LFEM器件用于支持对至少两个频段射频信号的发射以及双通道接收;
    第一射频PA Mid器件,所述第一射频PA Mid器件分别与所述射频收发器、所述射频LFEM器件的一收发端口连接,用于支持对多个频段的射频信号的收发;
    第二射频PA Mid器件,所述第二射频PA Mid器件分别与所述射频收发器、所述射频LFEM器件的一收发端口连接,用于支持对多个频段的射频信号的收发。
  2. 根据权利要求1所述的射频收发系统,所述射频LFEM器件至少包括:
    两个第一接收电路,用于支持对第一频段的射频信号的接收放大处理;
    两个第二接收电路,用于支持对第二频段的射频信号的接收放大处理;其中,所述两个第一接收电路的输出端和所述两个第二接收电路的输出端分别与四个所述接收端口一一对应连接;
    第一开关单元,所述第一开关单元的多个第一端分别一一对应与所述第一接收电路的输入端、第二接收电路的输入端、多个所述收发端口连接,所述第一开关单元的四个第二端分别一一对应与所述第一天线端口、第二天线端口、第三天线端口、第四天线端口连接。
  3. 根据权利要求2所述的射频收发系统,所述第一接收电路包括第一低噪声放大器,所述第一低噪声放大器的输入端与所述第一开关单元的一第一端连接,所述第一低噪声放大器的输出端与一所述接收端口连接;
    所述第二接收电路包括第二低噪声放大器,所述第二低噪声放大器的输入端与所述第一开关单元的另一第一端连接,所述第二低噪声放大器的输出端与另一所述接收端口连接。
  4. 根据权利要求3所述的射频收发系统,所述第一接收电路还包括第一滤波单元,所述第一滤波单元分别与所述第一低噪声放大器的输入端和所述第一开关单元的一第一端连接,用于对接收的第一频段的射频信号进行滤波处理以输出至所述第一低噪声放大器;
    所述第二接收电路还包括第二滤波单元,所述第二滤波单元分别与所述第二低噪声放大器的输入端和所述第一开关单元的一第一端连接,用于对接收的第二频段的射频信号进行滤波处理以输出至所述第二低噪声放大器。
  5. 根据权利要求2所述的射频收发系统,第一频段的射频信号和第二频段的射频信号分别为N77和N79频段的5G信号。
  6. 根据权利要求2所述的射频收发系统,所述射频LFEM器件还包括:两个第三接收电路,用于支持对第三频段的射频信号的接收放大处理,以使所述射频LFEM器件支持三个频段射频信号的双通道接收;
    所述射频收发系统还包括:
    收发选择模块,分别与所述射频收发器、射频LFEM器件、第一天线、第二天线、第三天线和第四天线连接,用于支持对第三频段的射频信号的收发选择,以使所述射频收发系统实现对三频段的射频信号的4*4MIMO功能。
  7. 根据权利要求6所述的射频收发系统,所述第三接收电路包括第三低噪声放大器,所述第三低噪声放大器的输入端与一所述收发端口连接,所述第三低噪声放大器的输出端与又一所述接收端口连接。
  8. 根据权利要求7所述的射频收发系统,所述第三接收电路还包括第三滤波单元,所述第三滤波单元分别与所述第三低噪声放大器的输入端和所述收发端口连接,用于对接收的第三频段的射频信号进行滤波处理以输出至所述第三低噪声放大器。
  9. 根据权利要求6所述的射频收发系统,所述收发端口的数量为四个,分别为第一收发端口、第二 收发端口、第三收发端口和第四收发端口;
    所述第一开关单元包括六个第一端,所述第一开关单元的六个第一端分别一一对应与两个第一接收电路的输入端、两个第二接收电路的输入端、第一收发端口、第二收发端口连接,其中,第一收发端口还与第一射频PA Mid器件的射频天线端口连接,第二收发端口还与第二射频PA Mid器件的射频天线端口连接;
    第三收发端口和第四收发端口分别与两个第三接收电路的输入端连接。
  10. 根据权利要求9所述的射频收发系统,所述收发选择模块包括:第一合路器、第二合路器、第三合路器、第四合路器、第一选择开关、第二选择开关、第二开关单元、第三射频PA Mid器件和第四射频PA Mid器件;其中,所述第三射频PA Mid器件和第四射频PA Mid器件均配置有射频天线端口,
    所述第一选择开关的一第一端通过所述第三收发端口与一第三接收电路的输入端连接,所述第一选择开关的第二端、第二天线端口分别经所述第二合路器与第二天线连接;
    所述第二选择开关的一第一端通过所述第四收发端口与另一第三接收电路的输入端连接,所述第二选择开关的第二端、第四天线端口分别经所述第四合路器与第四天线连接;
    所述第二开关单元包括两个第一端和多个第二端,所述第二开关单元的两个第一端分别与所述第三射频PA Mid器件的射频天线端口和第四射频PA Mid器件的射频天线端口一一对应连接;所述第二开关单元的其中两个第二端分别一一对应与第一选择开关的另一第一端、第二选择开关的另一第一端连接,所述第二开关单元的另一第二端、第一天线端口分别经所述第一合路器与第一天线连接,所述第二开关单元的又一第二端、第三天线端口分别经第三合路器与第三天线连接;其中,
    所述第三射频PA Mid器件和第四射频PA Mid器件还分别与所述射频收发器连接,均用于支持对第三频段的射频信号的收发处理。
  11. 根据权利要求6所述的射频收发系统,所述射频LFEM器件还被配置有第五天线端口、第六天线端口,所述收发端口的数量为三个,分别为第一收发端口、第二收发端口和第三收发端口,其中,第一收发端口与第一射频PA Mid器件的射频天线端口连接,第二收发端口与第二射频PA Mid器件的射频天线端口连接;
    所述射频LFEM器件还包括:
    第三开关单元,所述第三开关单元包括三个第一端及两个第二端,所述第三开关单元的三个第一端分别与两个第三接收电路的输入端、第三收发端口一一对应连接,所述第三开关单元的两个第二端分别与所述第五天线端口、第六天线端口对应连接。
  12. 根据权利要求11所述的射频收发系统,所述收发选择模块包括:第一合路器、第二合路器、第三合路器、第四合路器、第四开关单元、第三射频PA Mid器件和第四射频PA Mid器件;其中,所述第三射频PA Mid器件和第四射频PA Mid器件均配置有射频天线端口,
    所述第四开关单元包括两个第一端和三个第二端,所述第四开关单元的两个第一端分别与所述第三射频PA Mid器件的射频天线端口和第四射频PA Mid器件的射频天线端口一一对应连接;所述第四开关单元的其中一个第二端与所述第三收发端口连接;所述第四开关单元另一第二端、所述第一天线端口分别经第一合路器与第一天线连接;所述第四开关单元又一第二端、所述第三天线端口分别经第三合路器与第三天线连接;
    所述射频LFEM器件的第五天线端口与第二天线端口分别经第二合路器与第二天线连接,第六天线端口与第四天线端口分别经第四合路器与第四天线连接;其中,所述第三射频PA Mid器件和第四射频PA Mid器件还分别与所述射频收发器连接,均用于支持对第三频段的射频信号的收发处理。
  13. 根据权利要求6所述的射频收发系统,所述射频LFEM器件配置的收发端口数量为四个,分别为第一收发端口、第二收发端口、第三收发端口和第四收发端口;
    所述第一开关单元包括十个第一端,所述第一开关单元的十个第一端分别一一对应与两个第一接收电路的输入端、两个第二接收电路的输入端、两个第三接收电路的输入端、第一收发端口、第二收发端口、第三收发端口、第四收发端口连接,其中,第三收发端口和第四收发端口还与所述收发选择模块连接。
  14. 根据权利要求13所述的射频收发系统,所述收发选择模块包括:
    第三射频PA Mid器件,配置有射频天线端口,所述第三射频PA Mid器件的射频天线端口与所述第三收发端口连接,所述第三射频PA Mid器件还与所述射频收发器连接,用于支持收发第三频段的射频信号;
    第四射频PA Mid器件,配置有射频天线端口,所述第四射频PA Mid器件的射频天线端口与所述第四收发端口连接,用于支持收发第三频段的射频信号。
  15. 根据权利要求6所述的射频收发系统,所述第三频段的射频信号为N41频段的5G信号。
  16. 根据权利要求2所述的射频收发系统,所述第一射频PA Mid器件、第二射频PA Mid器件均被配置有射频发射端口、射频接收端口和射频天线端口;
    所述射频发射端口用于与射频收发器连接,以接收所述射频收发器发射的射频信号;
    所述射频接收端口用于与所述射频收发器连接,以将接收的射频信号输出至所述射频收发器;
    所述射频天线端口与所述射频LFEM器件的收发端口连接。
  17. 根据权利要求2所述的射频收发系统,所述射频LFEM器件还包括:
    第五开关单元,所述第五开关单元的多个第一端分别一一对应与各所述接收端口连接,所述第五开关单元的多个第二端分别一一对应与各所述第一接收电路的输出端及第二接收电路的输出端连接。
  18. 根据权利要求2所述的射频收发系统,所述射频LFEM器件还包括:
    多个第四滤波单元,所述第四滤波单元分别与所述收发端口、所述第一开关单元的第一端连接,用于对接收的射频信号进行滤波处理。
  19. 根据权利要求2所述的射频收发系统,所述射频LFEM器件还包括:第一控制单元,用于控制所述第一开关单元切换导通各频段射频信号的接收通路;
    第二控制单元,用于控制所述第一开关单元切换导通各频段射频信号的发射通路。
  20. 一种通信设备,包括如权利要求1至19任一项所述的射频收发系统。
PCT/CN2021/127212 2020-12-16 2021-10-29 射频收发系统及通信设备 WO2022127397A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21905326.1A EP4254812A4 (en) 2020-12-16 2021-10-29 RADIO FREQUENCY TRANSMISSION-RECEIVING SYSTEM AND COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011487442.5 2020-12-16
CN202011487442.5A CN114640371B (zh) 2020-12-16 2020-12-16 射频收发系统及通信设备

Publications (1)

Publication Number Publication Date
WO2022127397A1 true WO2022127397A1 (zh) 2022-06-23

Family

ID=81944602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127212 WO2022127397A1 (zh) 2020-12-16 2021-10-29 射频收发系统及通信设备

Country Status (3)

Country Link
EP (1) EP4254812A4 (zh)
CN (1) CN114640371B (zh)
WO (1) WO2022127397A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4380062A1 (en) * 2022-12-02 2024-06-05 Arcadyan Technology Corporation High-frequency switching extenders and quad-frequency switching extenders having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759963B (zh) * 2022-06-16 2022-09-09 龙旗电子(惠州)有限公司 Srs轮询方法、射频电路及电子设备
CN115225100B (zh) * 2022-07-01 2024-05-14 杭州逗酷软件科技有限公司 射频系统和客户前置设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282182A (zh) * 2017-12-25 2018-07-13 惠州Tcl移动通信有限公司 一种天线的射频前端电路及其电路板、终端
US20180331714A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Antenna diversity switching
CN108872925A (zh) * 2018-07-24 2018-11-23 广州比逊电子科技有限公司 四通道多频段卫星导航信号接收机
CN208608986U (zh) * 2018-12-14 2019-03-15 成都定为电子技术有限公司 一种高性能双通道宽带射频前端
CN109951207A (zh) * 2019-03-20 2019-06-28 Oppo广东移动通信有限公司 射频系统及电子设备
CN110174649A (zh) * 2019-05-07 2019-08-27 加特兰微电子科技(上海)有限公司 射频前端收发装置、车载雷达收发系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971655A1 (fr) * 2011-02-10 2012-08-17 Thomson Licensing Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes
CN108462499A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN109861734B (zh) * 2019-03-28 2022-04-29 Oppo广东移动通信有限公司 射频系统、天线切换控制方法、相关设备及存储介质
JP2020167449A (ja) * 2019-03-28 2020-10-08 株式会社村田製作所 フロントエンド回路および通信装置
KR20200117203A (ko) * 2019-04-03 2020-10-14 삼성전자주식회사 사운딩 기준 신호를 송신하기 위한 방법 및 그 전자 장치
CN110572178B (zh) * 2019-09-06 2021-09-24 维沃移动通信有限公司 一种网络射频结构、射频控制方法及电子设备
CN111294081B (zh) * 2020-01-22 2022-01-11 Oppo广东移动通信有限公司 射频系统和电子设备
CN211630163U (zh) * 2020-04-30 2020-10-02 维沃移动通信有限公司 一种射频电路和电子设备
CN211606531U (zh) * 2020-05-12 2020-09-29 维沃移动通信有限公司 一种信号处理电路和电子设备
CN113225095B (zh) * 2020-07-24 2023-02-28 锐石创芯(深圳)科技股份有限公司 一种射频前端架构、天线装置及通信终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331714A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Antenna diversity switching
CN108282182A (zh) * 2017-12-25 2018-07-13 惠州Tcl移动通信有限公司 一种天线的射频前端电路及其电路板、终端
CN108872925A (zh) * 2018-07-24 2018-11-23 广州比逊电子科技有限公司 四通道多频段卫星导航信号接收机
CN208608986U (zh) * 2018-12-14 2019-03-15 成都定为电子技术有限公司 一种高性能双通道宽带射频前端
CN109951207A (zh) * 2019-03-20 2019-06-28 Oppo广东移动通信有限公司 射频系统及电子设备
CN110174649A (zh) * 2019-05-07 2019-08-27 加特兰微电子科技(上海)有限公司 射频前端收发装置、车载雷达收发系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "All devices connected to the mobile Internet require RF front-end chips", 9 June 2020 (2020-06-09), XP055943266, Retrieved from the Internet <URL:www.sohu.com/a/400596621_472928> *
ANONYMOUS: "Lansus Technologies Unveils an Complete Solution for 5G RF Front End", 3 July 2020 (2020-07-03), XP055943268, Retrieved from the Internet <URL:www.mwrf.net/news/products/2020/26968.html> [retrieved on 20220715] *
HUANG ZHENSONG, ET AL.: "A High Integrated RF Receive Module", MODERN INFORMATION TECHNOLOGY, vol. 1, no. 4, 25 October 2017 (2017-10-25), pages 58 - 61, XP055943217, ISSN: 2096-4706 *
JEON JOOYOUNG; OH JUNHEE; JUNG JOOMIN; PAEK SEUNGWON: "Multimode multiband power amplifier module integrated duplexer for mobile applications", 2017 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), IEEE, 30 August 2017 (2017-08-30), pages 110 - 112, XP033155115, DOI: 10.1109/RFIT.2017.8048219 *
See also references of EP4254812A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4380062A1 (en) * 2022-12-02 2024-06-05 Arcadyan Technology Corporation High-frequency switching extenders and quad-frequency switching extenders having the same

Also Published As

Publication number Publication date
CN114640371B (zh) 2023-05-05
EP4254812A4 (en) 2024-05-29
EP4254812A1 (en) 2023-10-04
CN114640371A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2022062575A1 (zh) 射频系统和通信设备
WO2022247510A1 (zh) 射频系统、天线切换方法和通信设备
WO2022062585A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN212588326U (zh) 射频PA Mid器件、射频系统和通信设备
JP7065961B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
WO2022007821A1 (zh) 一种射频前端架构、天线装置及通信终端
WO2022127397A1 (zh) 射频收发系统及通信设备
CN212588327U (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN108599778B (zh) 多路选择开关、射频系统和无线通信设备
WO2022127404A1 (zh) 射频收发系统及通信设备
WO2023098201A1 (zh) 射频系统及通信设备
WO2022127402A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2023098110A1 (zh) 射频系统及通信设备
CN212811690U (zh) 射频l-drx器件、射频收发系统和通信设备
WO2022062586A1 (zh) 射频drx器件、射频系统和通信设备
WO2021238534A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
CN113726358A (zh) 射频PA Mid器件、射频系统和通信设备
CN108923791B (zh) 多路选择开关及相关产品
WO2021238430A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2022127360A1 (zh) 射频收发系统及通信设备
WO2022127394A1 (zh) 射频收发系统及通信设备
CN114614851A (zh) 信号收发电路、射频系统以及移动终端
WO2022127399A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2021238538A1 (zh) 射频l-drx器件、射频收发系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021905326

Country of ref document: EP

Effective date: 20230630

NENP Non-entry into the national phase

Ref country code: DE