WO2022127136A1 - 一种水力埋设监测土体位移的设备及其使用方法 - Google Patents

一种水力埋设监测土体位移的设备及其使用方法 Download PDF

Info

Publication number
WO2022127136A1
WO2022127136A1 PCT/CN2021/110602 CN2021110602W WO2022127136A1 WO 2022127136 A1 WO2022127136 A1 WO 2022127136A1 CN 2021110602 W CN2021110602 W CN 2021110602W WO 2022127136 A1 WO2022127136 A1 WO 2022127136A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber cable
mud
channel
hydraulic
Prior art date
Application number
PCT/CN2021/110602
Other languages
English (en)
French (fr)
Inventor
高洪梅
纪展鹏
王志华
汪源
衣睿博
孙晋晶
申志福
张鑫磊
刘璐
夏云刚
Original Assignee
南京工业大学
南京吉欧地下空间科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学, 南京吉欧地下空间科技有限公司 filed Critical 南京工业大学
Priority to AU2021398759A priority Critical patent/AU2021398759A1/en
Publication of WO2022127136A1 publication Critical patent/WO2022127136A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ

Definitions

  • the invention relates to the field of geotechnical engineering, in particular to a soil displacement monitoring device utilizing hydraulic burial and a method for using the same.
  • inclinometers are used to monitor soil displacement in engineering.
  • the main measurement components of inclinometers used at home and abroad are the use of fluxgate sensors or mechanical gyroscopes as angular velocity sensors combined with accelerometers to measure azimuth and tilt angles.
  • Using this kind of inclinometer requires pre-drilled holes to drive the inclinometer pipe, the installation process is cumbersome, and each monitoring point needs to be manually measured and read for each monitoring point, which cannot be monitored in real time and automatically, and the inclinometer is expensive.
  • the present invention proposes a device for monitoring soil displacement using hydraulic burial and a method for using the same.
  • the high-pressure water flow jetted by the hydraulic device is used to disperse the soil and form mud, and the mud is sucked to the surface through a mud suction pipe, thereby It solves the technical problem that the equipment for monitoring the displacement of the soil is not installed in the hard soil area and the depth of the soil is too shallow to monitor the displacement of the soil.
  • a device for monitoring soil displacement by hydraulic burying comprising a casing, a hydraulic device and a pointed-cone steel shoe, wherein the upper end of the hydraulic device is fixedly connected with the casing, and the lower end is connected with the pointed-cone steel shoe by pressure contact;
  • the inside of the hydraulic device is provided with a water inlet channel that penetrates to the bottom on both sides, and a mud channel that penetrates to the bottom in the middle. Between the water inlet channels and the mud channel, there are respectively optical fiber cable grooves running through the bottom, and the optical fiber cable grooves are used to place the optical fiber cables; the bottom end of the hydraulic device is provided with two front and rear opposite openings, and the openings It is located between two optical fiber cable grooves and is used to suck the mud into the mud channel; the inside of the two sides of the pointed steel shoe is provided with a water flow channel corresponding to the position of the water inlet channel, and a water flow channel corresponding to the position of the optical fiber cable groove.
  • U-shaped optical fiber cable groove; the sleeve is used to encapsulate and protect the optical fiber cable, the water delivery pipe and the suction pipe.
  • the pointed cone steel shoe is composed of a cone tip and a limit block, the limit block is placed on the top plane end of the cone tip, and the water flow channel runs through the limit block and the cone tip; the bottom end of the hydraulic device A limit slot is provided, and the limit slot and the limit block connect the pointed steel shoe and the hydraulic device in pressure contact; a U-shaped optical fiber cable groove is arranged in the middle of the limit block, and the U-shaped optical fiber cable groove Located between the two water flow channels, the U-shaped insert is inserted into the U-shaped optical fiber cable groove for fixing the optical fiber cable.
  • the upper end of the water flow channel is in the shape of a cone, and the lower end is in the shape of a cylinder.
  • the bottom end of the mud channel is sleeved with a mud suction nozzle
  • the top end of the mud suction nozzle has a circular interface
  • the bottom end has a groove corresponding to the opening position of the bottom end of the hydraulic device
  • the circular interface shown is sleeved on the bottom end of the hydraulic device.
  • the groove opening shown is facing the opening at the bottom end of the hydraulic device.
  • the upper end of the water inlet channel is provided with a water pipe joint
  • the upper end of the mud channel is provided with a mud suction pipe joint
  • the water delivery pipe and the water pipe joint are detachably connected
  • the mud suction pipe and the mud suction pipe joint are detachably connected
  • the casing is composed of a pair of C-shaped channel steels and a pair of connecting steel plates, the open ends of the C-shaped channel steel in the C-shaped channel steel pair are opposite, and the number of the C-shaped channel steel pairs is N and is arranged in a straight line from bottom to top , N is a natural number greater than 1; the adjacent C-shaped channel steel pairs are bridged with each other by connecting steel plates and their open ends are closed; the top four corners of the hydraulic device are provided with fixing pieces, the fixing pieces and the most The following C-shaped channel steel pair and connecting steel plate pair are bolted to connect the upper end of the hydraulic device to the casing.
  • the connecting steel plate has two lengths, wherein the short connecting steel plate and the fixing plate are connected by bolts, and the long connecting steel plate is located above the short connecting steel plate.
  • the present invention also provides a method for using hydraulic embedment monitoring soil displacement equipment, comprising the following steps:
  • Step 1 Level the site, place the reaction force device, and excavate the pit in advance at the surface monitoring point;
  • Step 2 Install the fiber optic cable: Bend the middle part of the fiber optic cable along the arc and put it into the U-shaped fiber optic cable groove of the pointed steel shoe.
  • the fiber optic cable and the U-shaped fiber optic cable groove are made of high elastic mold glue Fix or insert the U-shaped insert block into the groove of the U-shaped optical fiber cable for fixing;
  • Step 3 Connect the power unit: connect the top of the water delivery pipe with the high-pressure water pump, the bottom with the water pipe joint, the top of the suction pipe with the suction pump, and the bottom with the water pipe joint; connect the fiber optic cable installed in step 2 Put it into the groove of the optical fiber cable of the hydraulic device, and press the tapered steel shoe and the hydraulic device to connect with the limit groove through the limit block;
  • Step 4 Install the casing: First, place the open ends of a pair of C-shaped channel steels against each other, then close the open lower ends of the C-shaped channel steel pair with short connecting steel plates, and cover the above-mentioned casings with the optical fiber cable, the water pipe and the mud suction.
  • the tube and its bottom end and the fixing piece are fixed by bolts;
  • Step 5 Use the reaction force device to connect the top of the casing, put the pointed steel shoe vertically into the pit dug in step 1, start the high-pressure water pump, the high-pressure water jet will disperse the soil and form mud, and start the mud suction pump to suck the mud.
  • To the surface slowly press the equipment into the soil, stop the high-pressure water pump and mud pump when half the length of the short connecting steel plate enters the soil, and continue splicing the long connecting steel plate above the short connecting steel plate;
  • Step 6 Restart the high-pressure water pump and mud pump, slowly press the equipment into the soil, stop the high-pressure water pump and mud pump when half of the length of the long connecting steel plate enters the soil, continue splicing the long connecting steel plate, when the C-shaped channel steel is opposite to the height When it is less than the height of the connecting steel plate, the C-shaped channel steel pair is added;
  • Step 7 Repeat step 6.
  • the depth of the equipment reaches the design depth, judge whether the connecting steel plate pair at the top is close to the horizontal fiber optic cable. If the connecting steel plate pair is close to the horizontal fiber optic cable, immediately remove the connecting steel plate pair and adjust the reaction force device to connect to the casing. Connect the steel plate pair or C-shaped channel steel pair with a higher position in the middle, and then use the pair of reaction force devices to pull up the casing and hydraulic device at a constant speed. The hydraulic device is pulled up at a constant speed; the above process is repeated continuously, and the end of the optical fiber cable is connected to the optical fiber demodulator after the casing and the hydraulic device are completely pulled out;
  • Step 8 After the lateral displacement is stable, reset the demodulator to zero, and then the lateral displacement of the soil at the monitoring point can be monitored in real time.
  • step 1 before connecting the lower end of the hydraulic device and the tapered steel shoe by pressure contact, the mud suction nozzle is sleeved to the bottom end of the mud channel and the high pressure water nozzle is sleeved to the bottom end of the water inlet channel.
  • step 7 after the casing and the hydraulic device are completely pulled out, the optical fiber cable continues to be laid to the next monitoring point, repeating steps 1 to 7 to complete the laying of the optical fiber cable at multiple monitoring points, and the end of the optical fiber cable at the last monitoring point. Connect with fiber optic demodulator.
  • the high-pressure water jet ejected by the hydraulic device passes through the water flow channel to disperse the soil on the contact surface of the tapered steel shoe and form mud, and the mud is sucked to the surface through the mud suction pipe; the combination of the reaction force device can effectively increase the penetration of the fiber optic cable into the soil Depth, which solves the technical problem that the equipment for monitoring soil displacement can not reach the depth of monitoring soil displacement when the device is installed in a hard soil area.
  • the tapered steel shoe is used as the bottom member of the equipment, and the tapered tip makes it easier for the equipment to enter the soil; when the equipment is buried to the design depth, the hydraulic device is pulled out with the casing using the reaction force device, and the fiber optic cable follows the tapered steel shoe. Left in the soil, the tapered steel shoe has the function of fixing the lower end of the optical fiber and stabilizing it;
  • the hydraulic device adopts a fiber optic cable channel with a slotted design in the whole body, which can be connected to the equipment at any position of the fiber optic cable and lowered to the monitoring point.
  • the fiber optic cable that affects the horizontal position can be buried in multiple monitoring points, and the soil displacement of multiple monitoring points can be measured by one fiber optic demodulator, which reduces manpower and costs.
  • FIG. 1 is a schematic diagram of an apparatus in an embodiment of the present invention.
  • Fig. 2 is the schematic diagram of the equipment after removing the casing of Fig. 1;
  • Fig. 3 is the left side view and sectional view of Fig. 2; Wherein Fig. 3a is the left side view of Fig. 2, Fig. 3b is the B-B sectional view of Fig. 3a;
  • FIG. 4 is a schematic diagram of the assembly of a pointed steel shoe, a hydraulic device, and an optical fiber cable in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a hydraulic device in an embodiment of the present invention.
  • Fig. 6 is the schematic diagram of the tapered steel shoe in Fig. 1;
  • FIG. 7 is a schematic diagram of a mud suction nozzle according to an embodiment of the present invention.
  • Fig. 8 is the schematic diagram of the steel plate casing in Fig. 1;
  • Fig. 9 is the schematic diagram of C-shaped channel steel pair in Fig. 8.
  • FIG. 10 is a schematic diagram of a short connecting steel plate and a connecting steel plate in an embodiment
  • 11 is a schematic diagram of a circuit for monitoring soil displacement at multiple monitoring points using one optical fiber cable and one optical fiber demodulator in an embodiment
  • a device for monitoring soil displacement by hydraulic burial provided in this implementation includes a casing 3 , a hydraulic device 1 and a pointed steel shoe 2 .
  • the upper end of the hydraulic device 1 and the casing are 3 Fixed connection, lower end and pointed steel shoe 2 pressure contact connection;
  • the hydraulic device 1 is provided with water inlet channels 1-9 running through the bottom on both sides, and a mud channel 1-7 running through the bottom in the middle.
  • the water inlet channels 1-9 Used to connect the water pipe 5, the mud channel 1-7 is used to connect the mud suction pipe 6; the two water inlet channels 1-9 and the mud channel 1-7 are respectively provided with fiber optic cable grooves through the bottom 1-4, the optical fiber cable groove 1-4 is used to place the optical fiber cable 4; the bottom end of the hydraulic device 1 is provided with two front and rear opposite openings 1-10, and the openings 1-10 are located in the two optical fiber cables.
  • the grooves 1-4 are used for sucking the mud into the mud channels 1-7; the inside of the two sides of the tapered steel shoes 2 are provided with water flow channels 2-1,
  • the U-shaped fiber optic cable groove 2-3 corresponding to the position of the fiber optic cable groove 1-4; the fiber optic cable 4 and the fiber optic cable groove 1-4 are fixed by a high elastic modulus adhesive, and the sleeve 3 is used for It is used to encapsulate and protect the optical fiber cable 4, the water pipe 5 and the suction pipe 6.
  • the upper end of the water inlet channel 1-9 is provided with a water pipe joint 1-2
  • the upper end of the mud channel 1-7 is provided with a mud suction pipe 6 joint 1-3
  • the water delivery pipe 5 and the water pipe joint 1- 2 Removable connection the suction pipe 6 and suction pipe joints 1-3 are detachably connected, for example, threaded connection or snap connection can be used;
  • the casing 3 is made of C-shaped channel steel to 3 -1 and a pair of connecting steel plates 3-2, the open ends of the C-shaped channel steel in the C-shaped channel steel pair 3-1 are opposite to each other, and the number of the C-shaped channel steel pair 3-1 is N, and the shape is from bottom to top.
  • N is a natural number greater than 1; the adjacent C-shaped channel steel pairs 3-1 are bridged with each other by connecting steel plates and closed ends of their openings 1-10; the top four corners of the hydraulic device 1 are provided with Fixing pieces 1-5, the C-shaped channel steel has channel steel bolt holes 3-111, the connecting steel plate has steel plate bolt holes 3-211, the fixing pieces 1-5 are L-shaped and each side has fixing piece bolt holes 1- 51, the fixing piece 1-5 and the bottom C-shaped channel steel pair 3-1 and the connecting steel plate pair 3-2 are bolted to connect the upper end of the hydraulic device 1 and the casing 3, and the bolts are sequentially passed through the steel plate bolts. Hole 3-211, channel steel bolt hole 3-111 and fixing plate bolt hole 1-51.
  • the high-pressure water flow through the water pipe 5 and the water flow channel 2-1 is used to disperse the soil on the contact surface of the pointed steel shoe 2 to form mud, and the mud is sucked to the surface through the mud suction pipe 6, which solves the problem of monitoring monitoring.
  • Soil displacement equipment installed in hard soil area is too shallow to reach the technical problem of monitoring soil displacement;
  • the pointed-cone steel shoe 2 is composed of a cone-tip 2-2 and a limit block 2-4, and the limit block 2-4 is placed on the top plane end of the cone-tip 2-2.
  • the water flow channel 2-1 runs through the limit block 2-4 and the cone tip 2-2; as shown in FIG.
  • the limit block 2-4 is clamped to connect the tapered steel shoe 2 and the hydraulic device 1 in pressure contact; as shown in Figure 4, the limit block 2-4 is provided with a U-shaped optical fiber cable groove 2 in the middle -3, the U-shaped fiber optic cable groove 2-3 is located between the two water flow channels 2-1, and the U-shaped plug 2-5 is inserted into the U-shaped fiber optic cable groove 2-3 to further fix the U-shaped fiber optic cable groove 2-3.
  • the upper end of the water flow channel 2-1 is in a conical shape, and the lower end is in a cylindrical shape, and the conical water flow channel 2-11 and the cylindrical water flow channel 2-12 in the water flow channel 2-1 are
  • the bottom end of the water inlet channel 1-9 is provided with a conical high-pressure water nozzle 1-1, and the bottom end of the high-pressure water nozzle 1-1 and the water inlet channel 1-9 can be
  • the integral molding can be a socket connection, and the high-pressure water nozzle 1-1 is embedded in the upper end of the water flow channel 2-1; the bottom end of the water inlet channel 1-9 and the upper end of the water flow channel 2-1 are sealed by the high-pressure water nozzle 1-1
  • the water flow pressure from the water flow channel 2-1 of the tapered steel shoe 2 is increased, and the energy efficiency of the water flow to disperse the soil on the contact surface of the tapered steel shoe 2
  • the bottom end of the mud channel 1-7 is sleeved with a mud suction nozzle 1-8, the top end of the mud suction nozzle 1-8 has a circular interface 1-81, and the bottom end has a circular interface 1-81.
  • the groove 1-82 corresponding to the position of the opening 1-10 at the bottom end of the hydraulic device 1, the circular interface 1-81 shown is sleeved on the bottom end of the mud channel 1-7, the groove 1-82 shown is facing the hydraulic The opening 1-10 at the bottom end of the device 1; the mud suction nozzle 1-8 is used to protect the bottom end of the mud channel 1-7.
  • the connecting steel plate is provided with several steel plate bolt holes 3-211, and the connecting steel plate has two lengths, in which the short connecting steel plate 3-21 and the fixing plate 1-5 are connected by bolts , the long connecting steel plate 3-22 is located above the short connecting steel plate 3-21.
  • the overall size of the hydraulic device 1 is 150mm in length, 50mm in width, and 100mm in height.
  • the dimensions are small, wherein the inner diameter of the water pipe joint 1-2 is 20mm, the inner diameter of the suction pipe joint 1-3 is 30mm, and the tubular mud channel 1- 7 has an inner diameter of 30mm and a height of 8cm, and the two front and rear opposite openings 1-10 at the bottom end of the hydraulic device 1 are trapezoids with a height of 20mm, which are used to suck the mud from the mud channel 1-7 along the mud generated during the flushing process of the equipment.
  • the pipe 6 is discharged to the surface; the diameter of the water inlet channel 1-9 is 20mm, the outer diameter of the bottom end of the high-pressure water nozzle 1-1 is 5mm, and the outer diameter of the cylindrical water flow channel 2-12 at the lower end of the water flow channel 2-1 is 5mm,
  • the optical fiber cable grooves 1-4 are cylindrical grooves with a diameter of 10 mm, and the U-shaped optical fiber cable grooves 2-3 are semicircular spaces with a width of 10 mm and a radius of 35 mm; the fixing pieces 1-5 are welded to the hydraulic device 1 At the four corners of the top, each fixing piece 1-5 is two steel pieces whose sides are perpendicular to each other, and there are fixing piece bolt holes 1-51 with a diameter of 8mm in the center of the steel piece.
  • the two steel pieces are welded sideways to each other.
  • the diameters of bolt holes 3-211 and channel steel bolt holes 3-111 are both 8mm; the limit grooves 1-6 are located in the outer ring of the bottom end of the hydraulic device 11 to form a convex structure and a hollow groove formed inside, and the size is
  • the length is 150mm, the width is 50mm, the height is 20mm, and the wall thickness of the groove is 2mm.
  • the limit blocks 2-4 inches of the pointed steel shoe 2 are 146mm long, 46mm wide and 20mm high.
  • the size of the groove 1-82 of the mud suction nozzle 1-8 and the two front and rear opposite openings 1-10 at the bottom end of the hydraulic device 1 are the same, and the length of the groove 1-82 is 50mm is the same as the width of the hydraulic device 1, the outer diameter of the circular interface 1-81 of the mud suction nozzle 1-8 is 30mm, and the circular interface 1-81 is just embedded in the bottom end of the mud channel 1-7; the C-shaped channel steel is 1m long, waist height 150mm, leg width 20mm, long connecting steel plate 3-22 is 1m long and 50mm wide, short connecting steel plate 3-21 is 0.5m long and 50mm wide; The pressure of the water flow out is more than 20MPa.
  • the present invention also provides a method for using hydraulic embedment monitoring soil displacement equipment, comprising the following steps:
  • Step 1 Level the site, place the reaction force device (in this embodiment, the reaction force device is the main engine, cross arm, and ground anchor of the static probe), and excavate in advance at the surface monitoring point position 10cm deep, 15cm long, and 15cm wide. 5cm pit and trenches, and 20cm deep fiber optic cable trenches are dug along the line at the monitoring point;
  • the reaction force device in this embodiment, the reaction force device is the main engine, cross arm, and ground anchor of the static probe
  • Step 2 Install the fiber optic cable 4: Prepare the fiber optic cable 4 with twice the monitoring depth of the monitoring point and a length of 2m, bend the middle part of the fiber optic cable 4 along the arc and put it into the U of the tapered steel shoe 2 In the groove 2-3 of the U-shaped fiber optic cable, the fiber optic cable 4 and the U-shaped fiber optic cable groove 2-3 are made of high elastic mold adhesive or the U-shaped plug 2-5 is inserted into the U-shaped fiber optic cable groove 2-3 Fix it to ensure that the optical fiber cable 4 is fixed with the tapered steel shoe 2;
  • Step 3 Connect the power unit: connect the top of the water delivery pipe 5 to the high-pressure water pump, the bottom end to the water pipe joint 1-2 for threaded connection or snap connection, the top of the suction pipe 6 to connect to the suction pump, and the bottom end to the water pipe joint 1 -2 screw connection or snap connection; put the optical fiber cable 4 installed in step 2 into the optical fiber cable groove 1-4 of the hydraulic device 1 from the channel of the optical fiber cable 4, and put the tapered steel shoe 2 and the hydraulic device 1 through the limit Blocks 2-4 are pressed against the limit grooves 1-6;
  • Step 4 Install the sleeve 3: First, the openings 1-10 of a pair of C-shaped channel steels are opposite to each other, and then the open lower ends of the C-shaped channel steel pair 3-1 are closed with a short connecting steel plate 3-21, and the above-mentioned sleeves are closed. 3. Cover the optical fiber cable 4, the water pipe 5 and the suction pipe 6, and the bottom end and the fixing pieces 1-5 are fixed by bolts;
  • Step 5 Use the reaction force device to connect the top of the casing 3, vertically enter the pointed steel shoe 2 into the pit excavated in step 1, start the high-pressure water pump, the high-pressure water jet will disperse the soil and form mud, start the suction pump to The mud is sucked to the surface, and the equipment is slowly pressed into the soil.
  • the reaction force device to connect the top of the casing 3, vertically enter the pointed steel shoe 2 into the pit excavated in step 1, start the high-pressure water pump, the high-pressure water jet will disperse the soil and form mud, start the suction pump to The mud is sucked to the surface, and the equipment is slowly pressed into the soil.
  • half the length of the short connecting steel plate 3-21 enters the soil, stop the high-pressure water pump and the mud pump, and continue to splice the long connecting steel plate 3-22 above the short connecting steel plate 3-21.
  • Step 6 Restart the high-pressure water pump and mud pump, slowly press the equipment into the soil, stop the high-pressure water pump and mud pump when half the length of the long connecting steel plate 3-22 enters the soil, and continue splicing the long connecting steel plate 3-22.
  • the height of C-shaped channel steel pair 3-1 is less than the height of the connecting steel plate, increase the C-shaped channel steel pair 3-1;
  • Step 7 Repeat Step 6. When the equipment submerged into the soil reaches the design depth, judge whether the connecting steel plate pair 3-2 at the top is close to the horizontal fiber optic cable 4. If the connecting steel plate pair 3-2 is close to the horizontal fiber optic cable 4, immediately remove the connecting steel plate pair 3.
  • Step 8 Set the demodulator to zero to monitor the lateral displacement of the soil at the monitoring point in real time.
  • step 1 before connecting the lower end of the hydraulic device 1 and the tapered steel shoe 2 by pressure contact, sleeve the mud suction nozzles 1-8 to the bottom end of the mud channel 1-7 and connect the high-pressure water nozzle 1-1 to the bottom end of the mud channel 1-7.
  • the sleeve is connected to the bottom end of the water inlet channel 1-9.
  • step 7 after the casing 3 and the hydraulic device 1 are completely pulled out, the optical fiber cable 4 continues to be laid to the next monitoring point, and repeats step 1 to step 7 to complete the optical fiber cable 4 of multiple monitoring points. Buried, the fiber optic cable is 500m long as a node, and the end of the fiber optic cable 4 of the last monitoring point within the range of each node is connected to the fiber optic demodulator 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Soil Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种水力埋设监测土体位移的设备及其使用方法,包括水力装置、尖锥钢靴、套管,还包括在套管内的输水管、吸泥管、光纤光缆;该设备利用水力装置喷出的高压水射流经过水流通道冲散尖锥钢靴接触面的土体并形成泥浆,通过吸泥管将泥浆吸至地表,解决了在土质坚硬地区监测装置入土深度较浅达不到监测土体位移的技术问题;采用可拆卸的套管和开槽的光纤光缆凹槽,方便了光纤光缆放入设备的同时保证了套管及水力装置在安装和移除时不影响相邻两侧水平位置的光纤光缆,因此可以实现一条光纤光缆在多个监测点的埋设,实现了利用一个光纤解调仪对多个监测点土体位移的测量,减少人力,降低了成本。

Description

一种水力埋设监测土体位移的设备及其使用方法 技术领域
本发明涉岩土工程领域,尤其涉及一种利用水力埋设的监测土体位移设备及其使用方法。
背景技术
目前在工程中监测土体位移是使用测斜仪。国内外使用的测斜仪的主要测量部件是利用磁通门传感器或机械陀螺仪作为角速度传感器与加速度计结合,测量方位角和倾斜角。使用这种测斜仪需要预钻孔打入测斜管,安装工序繁琐,每次监测都需要对每个监测点进行人工测量读数,不能实时、自动监测,且测斜仪价格昂贵。
分布式光纤传感技术是近年来在国内外的工程项目中逐渐崭露头角的一项新型技术,以其全分布、准实时、抗干扰、高耐久性等优点,成为目前岩土体监测研究中的一项热点技术。经检索,申请日为2019年2月3日,公开号为CN109655001A,名称为“一种原位监测土体侧向位移的装置及其使用方法”的中国发明专利申请公开了一种原位监测土体侧向位移的装置,该装置通过静压贯入机将粘附光纤的钢带打入土中,在土质良好地区入土深度浅,但是对于土质坚硬地区装置入土深度较浅达不到监测土体位移的目的,因此急需一种用于监测土质坚硬地区土体位移的设备。
发明内容
为了上述问题,本发明提出一种利用水力埋设监测土体位移的设备及其使用方法,利用水力装置喷射的高压水流冲散土体并形成泥浆,并通过吸泥管将泥浆吸至地表,从而解决了监测土体位移的设备在土质坚硬地区装置入土深度较浅达不到监测土体位移的技术问题。
为了实现以上目的,本发明采取的一种技术方案是:
一种水力埋设监测土体位移的设备,包括套管、水力装置及尖锥钢靴,所述水力装置的上端和套管固定连接、下端和尖锥钢靴压触连接;
所述水力装置内部两侧设有贯通到底的进水通道、中间设有贯通到底的泥浆通道,所述进水通道用于连接输水管,所述泥浆通道用于连接吸泥管;所述两个进水通道和泥浆通道之间分别设有贯通到底的光纤光缆凹槽,所述光纤光缆凹槽用于放置光纤光缆;所述水力装置底端设有两个前后相对的开口,所述开口位于两个光纤光缆凹槽之间用于将泥浆吸入泥浆通道中;所述尖锥钢靴两侧内部设有和进水通道位置对应的贯通到底的水流通道、和光纤光缆凹槽位置对应的U型光纤光缆凹槽;所述套管用于将光纤光缆、输水管及吸泥管进行封装保护。
进一步地,所述尖锥钢靴由锥尖及限位块组成,所述限位块置于锥尖的顶部平面端,所述水流通道贯穿限位块及锥尖;所述水力装置底端设有限位槽,所述限位槽和限位块将尖锥钢靴和水力装置进行压触连接;所述限位块中间设有U型光纤光缆凹槽,所述U型光纤光缆凹槽位于两个水流通道之间,所述U型插块插入U型光纤光缆凹槽用于固定光纤光 缆。
进一步地,所述水流通道上端成圆锥形状,下端成圆柱形状,所述进水通道底端设有圆锥形状的高压水喷头,所述高压水喷头嵌入水流通道的上端。
进一步地,所述泥浆通道底端套接吸泥嘴,所述吸泥嘴顶端具有圆形接口,底端具有和水力装置底端的开口位置相对应的凹槽,所示圆形接口套接于泥浆通道底端,所示凹槽口正对水力装置底端的开口。
进一步地,所述进水通道上端设有水管接头、泥浆通道上端设有吸泥管接头,所述输水管和水管接头可拆卸连接、所述吸泥管和吸泥管接头可拆卸连接;所述套管由C型槽钢对及连接钢板对组成,所述C型槽钢对中的C型槽钢开口端相对,所述C型槽钢对的数量为N且从下至上呈直线排列,N为大于1的自然数;所述各相邻的C型槽钢对之间通过连接钢板相互桥接并封闭其开口端;所述水力装置的顶端四角设有固定片,所述固定片和最下面的C型槽钢对及连接钢板对螺栓连接将水力装置的上端和套管固定连接。
进一步地,所述连接钢板上设有若干个钢板螺栓孔。
进一步地,所述连接钢板上具有2种长度,其中短连接钢板和固定片螺栓连接,长连接钢板位于短连接钢板上方。
本发明还提供一种水力埋设监测土体位移设备的使用方法,包括如下步骤:
步骤一:平整场地,安放反力装置,在地表监测点位置预先开挖坑槽;
步骤二:安装光纤光缆:将光纤光缆中间部分沿着弧度弯折并放入尖锥钢靴的U型光纤光缆凹槽内,所述光纤光缆和U型光纤光缆凹槽采用高弹模胶合剂固定或者将U型插块插入U型光纤光缆凹槽进行固定;
步骤三:连接动力装置:将输水管的顶端与高压水泵相连、底端与水管接头相连,吸泥管的顶端与吸泥泵相连、底端与水管接头相连;将步骤二安装好的光纤光缆放入水力装置的光纤光缆凹槽,并将尖锥钢靴与水力装置通过限位块与限位槽压触对接;
步骤四:安装套管:首先将一对C型槽钢的开口端相对,接着用短连接钢板将C型槽钢对的开口下端封闭,将上述套管套住光纤光缆、输水管及吸泥管且其底端和固定片通过螺栓固定;
步骤五:利用反力装置连接套管的顶端,将尖锥钢靴垂直进入步骤一开挖的坑槽,启动高压水泵,高压水射流冲散土体并形成泥浆,启动吸泥泵将泥浆吸至地表,将设备缓慢压入土体,当短连接钢板的一半长度进入土体时停止高压水泵与泥浆泵,在短连接钢板上方继续拼接长连接钢板;
步骤六:重新启动高压水泵和泥浆泵,将设备缓慢压入土体,当长连接钢板的一半长度进入土体时停止高压水泵与泥浆泵,继续拼接长连接钢板,当C型槽钢对高度小于连接钢板高度时增加C型槽钢对;
步骤七:重复步骤六,当设备入土深度达到设计深度时,判断顶端的连接钢板对是否接近水平光纤光缆,如果连接钢板对接近水平光纤光缆立即拆除连接钢板对同时调整反力装置连接至套管中位置较高的连接钢板对或C型槽钢对,接着使用反力装置对将套管及水力装置匀速拉升,如果连接钢板对远离水平光纤光缆,继续使用反力装置对将套管及水力装置匀速拉升;不断重复上述过程,待套管及水力装置完全拔出后将光纤光缆末端和光纤解调器连接;
步骤八:待侧向位移稳定后,将解调器归零,即可实时监测监测点的土体侧向位移。
进一步地,步骤一中在将水力装置的下端和尖锥钢靴进行压触连接之前,将吸泥嘴套接到泥浆通道底端及将高压水喷头套接到进水通道底端。
进一步地,步骤七中待套管及水力装置完全拔出后光纤光缆继续往下一个监测点铺设,重复步骤一到步骤七完成多个监测点的光纤光缆埋设,最后一个监测点的光纤光缆末端和光纤解调器连接。
本发明的有益效果在于:
1、利用水力装置喷出的高压水射流经过水流通道冲散尖锥钢靴接触面的土体并形成泥浆,通过吸泥管将泥浆吸至地表;结合反力装置可有效增加光纤光缆的入土深度,解决了监测土体位移的设备在土质坚硬地区装置入土深度较浅达不到监测土体位移的技术问题,本发明尺寸小、重量轻、方便携带,耐久性强可重复利用;
2、采用尖锥钢靴作为设备的最底部构件,锥尖使设备更容易入土;当设备入土到设计深度后,利用反力装置将水力装置随套管拔出,光纤光缆随尖锥钢靴留在土中,尖锥钢靴具有固定光纤下端稳定的作用;
3、水力装置采用通体开槽设计的光纤光缆通道,可在光纤光缆任意位置接入设备下放到监测点位置,并且采用可拆卸的套管保证了套管及水力装置在安装和移除时不影响水平位置的光纤光缆,因此可以实现一条光纤光缆在多个监测点的埋设,实现了利用一个光纤解调仪对多个监测点土体位移的测量,减少人力,降低了成本。
附图说明
图1是本发明一实施例中设备示意图;
图2是图1拆除套管后的设备示意图;
图3是图2左视图及剖面图;其中图3a是图2左视图,图3b是图3a的B-B剖面图;
图4是本发明一实施例中尖锥钢靴、水力装置、光纤光缆装配示意图;
图5是本发明一实施例中水力装置示意图;
图6是图1中尖锥钢靴示意图;
图7是本发明一实施例的吸泥嘴示意图;
图8是图1中钢板套管示意图;
图9是图8中C型槽钢对示意图;
图10是一实施例中短连接钢板及连接钢板示意图;
图11是一实施例中利用一根的光纤光缆及一台光纤解调器监测多个监测点土体位移的线路示意图;
图中标号:1、水力装置,1-1、高压水喷头,1-2、水管接头,1-3、吸泥管接头,1-4、光纤光缆凹槽,1-5、固定片,1-51、固定片螺栓孔、1-6、限位槽,1-7、泥浆通道,1-8、吸泥嘴,1-81、圆形接口,1-82、凹槽;1-9、进水通道,1-10、开口,2、尖锥钢靴,2-1水流通道,2-11、圆锥型水流通道,2-12、圆柱水流通道,2-2、锥尖,2-3、U型光纤光缆凹槽,2-4、限位块,2-5、U型插块,3、套管,3-1、C型槽钢对,3-111、槽钢螺栓孔,3-2、连接钢板对,3-21、短连接钢板,3-211钢板螺栓孔A,3-22、长连接钢板,4、光纤光缆,5、输水管,6、吸泥管,7、光纤解调器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1及图2所示,本实施中提供的一种水力埋设监测土体位移的设备,包括套管3、水力装置1及尖锥钢靴2,所述水力装置1的上端和套管3固定连接、下端和尖锥钢靴2压触连接;
如图3a及图3b所示,所述水力装置1内部两侧设有贯通到底的进水通道1-9、中间内部设有贯通到底的泥浆通道1-7,所述进水通道1-9用于连接输水管5,所述泥浆通道1-7用于连接吸泥管6;所述两个进水通道1-9和泥浆通道1-7之间分别设有贯通到底的光纤光缆凹槽1-4,所述光纤光缆凹槽1-4用于放置光纤光缆4;所述水力装置1底端设有两个前后相对的开口1-10,所述开口1-10位于两个光纤光缆凹槽1-4之间用于将泥浆吸入泥浆通道1-7中;所述尖锥钢靴2两侧内部设有和进水通道1-9位置对应的贯通到底的水流通道2-1、和光纤光缆凹槽1-4位置对应的U型光纤光缆凹槽2-3;所述光纤光缆4和光纤光缆凹槽1-4之间通过高弹模胶合剂固定,所述套管3用于将光纤光缆4、输水管5及吸泥管6进行封装保护。
如图4所示,所述进水通道1-9上端设有水管接头1-2、泥浆通道1-7上端设有吸泥管6接头1-3,所述输水管5和水管接头1-2可拆卸连接、所述吸泥管6和吸泥管接头1-3可拆卸连接,比如可以采用螺纹连接或者卡接;如图8所示,所述套管3由C型槽钢对3-1及连接钢板对3-2组成,所述C型槽钢对3-1中的C型槽钢开口端相对,所述C型槽钢对3-1的数量为N且从下至上呈直线排列,N为大于1的自然数;所述各相邻的C型槽钢对3-1之间通过连接钢板相互桥接并封闭其开口1-10端;所述水力装置1的顶端四角设有固定片1-5,所述C型槽钢具有槽钢螺栓孔3-111、连接钢板具有钢板螺栓孔3-211、固定片1-5成L型且每条边具有固定片螺栓孔1-51,所述固定片1-5和最下面的C型槽钢对3-1及连接钢板对3-2螺栓连接将水力装置1的上端和套管3固定连接,所述螺栓依次通过钢板螺栓孔3-211、槽钢螺栓孔3-111及固定片螺栓孔1-51。
本实施例中,利用经过输水管5、水流通道2-1的高压水流冲散尖锥钢靴2接触面的土体并形成泥浆,并通过吸泥管6将泥浆吸至地表,解决了监测土体位移的设备在土质坚硬地区装置入土深度较浅达不到监测土体位移的技术问题;
进一步地,如图6所示,所述尖锥钢靴2由锥尖2-2及限位块2-4组成,所述限位块2-4置于锥尖2-2的顶部平面端,所述水流通道2-1贯穿限位块2-4及锥尖2-2;如图5所示,所述水力装置1底端四角设有限位槽1-6,所述限位槽1-6和限位块2-4卡接将尖锥钢靴2和水力装置1进行压触连接;如图4所述,所述限位块2-4中间设有U型光纤光缆凹槽2-3,所述U型光纤光缆凹槽2-3位于两个水流通道2-1之间,所述U型插块2-5插入U型光纤光缆凹槽2-3用于进一步固定了U型光纤光缆凹槽2-3内的光纤光缆4。
进一步地,如图3b所示,所述水流通道2-1上端成圆锥形状,下端成圆柱形状,所述水流通道2-1中的圆锥型水流通道2-11及圆柱水流通道2-12是一体成型,如图5所示,所述进水通道1-9底端设有圆锥形状的高压水喷头1-1,所述高压水喷头1-1和进水通道1-9底 端可以是一体成型可以是套接,所述高压水喷头1-1嵌入水流通道2-1的上端;利用高压水喷头1-1将进水通道1-9底端和水流通道2-1的上端进行密封连接,同时通过减小水流通道2-1的下端尺寸从而增加了从尖锥钢靴2水流通道2-1出来的水流压力,增加了水流冲散尖锥钢靴2接触面土体的能效。
进一步地,如图2和图7所示,所述泥浆通道1-7底端套接吸泥嘴1-8,所述吸泥嘴1-8顶端具有圆形接口1-81,底端具有和水力装置1底端的开口1-10位置相对应的凹槽1-82,所示圆形接口1-81套接于泥浆通道1-7底端,所示凹槽1-82口正对水力装置1底端的开口1-10;所述吸泥嘴1-8用于保护泥浆通道1-7的底端。
如图9和图10所示,所述连接钢板上设有若干个钢板螺栓孔3-211,所述连接钢板上具有2种长度,其中短连接钢板3-21和固定片1-5螺栓连接,长连接钢板3-22位于短连接钢板3-21上方。
在一具体实施例中,水力装置1整体尺寸为长150mm、宽50mm、高100mm尺寸较小,其中,水管接头1-2内径20mm,吸泥管接头1-3内径30mm,管状泥浆通道1-7的内径30mm、高8cm,所述水力装置1底端两个前后相对的开口1-10为20mm高的梯形,用于将设备冲水过程中产生的泥浆从泥浆通道1-7沿吸泥管6排至地表;所述进水通道1-9直径20mm,高压水喷头1-1的底端外径5mm,所述水流通道2-1下端的圆柱水流通道2-12外径为5mm,光纤光缆凹槽1-4为直径10mm圆柱型凹槽,所述U型光纤光缆凹槽2-3为宽10mm、半径35mm的半圆形空间;所述固定片1-5焊接于水力装置1顶端四角位置,每块固定片1-5为两片侧边相互垂直的钢片且钢片中心开有直径8mm的固定片螺栓孔1-51,两片钢片侧向相互焊接,所述钢板螺栓孔3-211及槽钢螺栓孔3-111的直径均为8mm;所述限位槽1-6位于水力装置11底端外圈成凸起结构与内部形成的空心凹槽,尺寸大小为长150mm、宽50mm、高20mm,槽壁厚2mm,所述尖锥钢靴2的限位块2-4寸为长146mm、宽46mm、高20mm,所述限位块2-4正好嵌入到限位槽1-6中;所述吸泥嘴1-8的凹槽1-82口和水力装置1底端两个前后相对的开口1-10尺寸一致,且凹槽1-82的长度为50mm和水力装置1的宽度一致,所述吸泥嘴1-8的圆形接口1-81的外径为30mm,所述圆形接口1-81正好嵌入泥浆通道1-7底端;所述C型槽钢长1m、腰高150mm、腿宽20mm,长连接钢板3-22长1m、宽50mm,短连接钢板3-21长0.5m,宽50mm;从尖锥钢靴2水流通道2-1出来的水流压力达20MPa以上。
本发明还提供一种水力埋设监测土体位移设备的使用方法,包括如下步骤:
步骤一:平整场地,安放反力装置(本实施例中反力装置为静力触探仪的主机、横担、地锚杆),在地表监测点位置预先开挖深10cm、长15cm、宽5cm的坑槽,并在监测点沿线方向开挖20cm深的光纤光缆沟槽;
步骤二:安装光纤光缆4:预先准备好该监测点位置监测深度的两倍再多2m长度的光纤光缆4,将光纤光缆4中间部分沿着弧度弯折并放入尖锥钢靴2的U型光纤光缆凹槽2-3内,所述光纤光缆4和U型光纤光缆凹槽2-3采用高弹模胶合剂或者将U型插块2-5插入U型光纤光缆凹槽2-3进行固定,保证光纤光缆4与尖锥钢靴2固定;
步骤三:连接动力装置:将输水管5的顶端与高压水泵相连、底端与水管接头1-2螺纹连接或者卡接,吸泥管6的顶端与吸泥泵相连、底端与水管接头1-2螺纹连接或者卡接;将步骤二安装好的光纤光缆4从光纤光缆4通道放入水力装置1的光纤光缆凹槽1-4,并将尖锥钢靴2与水力装置1通过限位块2-4与限位槽1-6压触对接;
步骤四:安装套管3:首先将一对C型槽钢的开口1-10端相对,接着用短连接钢板3-21将C型槽钢对3-1的开口下端封闭,将上述套管3套住光纤光缆4、输水管5及吸泥管6且其底端和固定片1-5通过螺栓固定;
步骤五:利用反力装置连接套管3的顶端,将尖锥钢靴2垂直进入步骤一开挖的坑槽,启动高压水泵,高压水射流冲散土体并形成泥浆,启动吸泥泵将泥浆吸至地表,将设备缓慢压入土体,当短连接钢板3-21的一半长度进入土体时停止高压水泵与泥浆泵,在短连接钢板3-21上方继续拼接长连接钢板3-22;
步骤六:重新启动高压水泵和泥浆泵,将设备缓慢压入土体,当长连接钢板3-22的一半长度进入土体时停止高压水泵与泥浆泵,继续拼接长连接钢板3-22,当C型槽钢对3-1高度小于连接钢板高度时增加C型槽钢对3-1;
步骤七:重复步骤六,当设备入土深度达到设计深度时,判断顶端的连接钢板对3-2是否接近水平光纤光缆4,如果连接钢板对3-2接近水平光纤光缆4立即拆除连接钢板对3-2同时调整反力装置连接至套管3中位置较高的连接钢板对3-2或C型槽钢对3-1,接着使用反力装置对将套管3及水力装置1匀速拉升,如果连接钢板对3-2远离水平光纤光缆4,继续使用反力装置对将套管3及水力装置1匀速拉升;不断重复上述过程,待套管3及水力装置1完全拔出后将光纤光缆4一端和光纤解调器7连接;
步骤八:将解调器归零,即可实时监测监测点的土体侧向位移。
进一步地,步骤一中在将水力装置1的下端和尖锥钢靴2进行压触连接之前,将吸泥嘴1-8套接到泥浆通道1-7底端及将高压水喷头1-1套接到进水通道1-9底端。
进一步地,如图11所示,步骤七中待套管3及水力装置1完全拔出后光纤光缆4继续往下一个监测点铺设,重复步骤一到步骤七完成多个监测点的光纤光缆4埋设,光纤光缆以500m长度为一节点,每一节点范围内的最后一个监测点的光纤光缆4末端和光纤解调器7连接。
以上所述仅为本申请的部分优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种水力埋设监测土体位移的设备,其特征在于,包括套管(3)、水力装置(1)及尖锥钢靴(2),所述水力装置(1)的上端和套管(3)固定连接、下端和尖锥钢靴(2)压触连接;
    所述水力装置(1)内部两侧设有贯通到底的进水通道(1-9)、中间设有贯通到底的泥浆通道(1-7),所述进水通道(1-9)用于连接输水管(5),所述泥浆通道(1-7)用于连接吸泥管(6);所述两个进水通道(1-9)和泥浆通道(1-7)之间分别设有贯通到底的光纤光缆凹槽(1-4),所述光纤光缆凹槽(1-4)用于放置光纤光缆(4);所述水力装置(1)底端设有两个前后相对的开口(1-10),所述开口(1-10)位于两个光纤光缆凹槽(1-4)之间用于将泥浆吸入泥浆通道(1-7)中;所述尖锥钢靴(2)两侧内部设有和进水通道(1-9)位置对应的贯通到底的水流通道(2-1)、和光纤光缆凹槽(1-4)位置对应的U型光纤光缆凹槽(2-3);所述套管(3)用于将光纤光缆(4)、输水管(5)及吸泥管(6)进行封装保护。
  2. 根据权利要求1所述的一种水力埋设监测土体位移的设备,其特征在于,所述尖锥钢靴(2)由锥尖(2-2)及限位块(2-4)组成,所述限位块(2-4)置于锥尖(2-2)的顶部平面端,所述水流通道(2-1)贯穿限位块(2-4)及锥尖(2-2);所述水力装置(1)底端设有限位槽(1-6),所述限位槽(1-6)和限位块(2-4)将尖锥钢靴(2)和水力装置(1)进行压触连接;所述限位块(2-4)中间设有U型光纤光缆凹槽(2-3),所述U型光纤光缆凹槽(2-3)位于两个水流通道(2-1)之间,所述U型插块(2-5)插入U型光纤光缆凹槽(2-3)用于固定光纤光缆(4)。
  3. 根据权利要求2所述的一种水力埋设监测土体位移的设备,其特征在于,所述水流通道(2-1)上端成圆锥形状,下端成圆柱形状,所述进水通道(1-9)底端设有圆锥形状的高压水喷头(1-1),所述高压水喷头(1-1)嵌入水流通道(2-1)的上端。
  4. 根据权利要求2所述的一种水力埋设监测土体位移的设备,其特征在于,所述泥浆通道(1-7)底端套接吸泥嘴(1-8),所述吸泥嘴(1-8)顶端具有圆形接口(1-81),底端具有和水力装置(1)底端的开口(1-10)位置相对应的凹槽(1-82),所示圆形接口(1-81)套接于泥浆通道(1-7)底端,所示凹槽口正对水力装置(1)底端的开口(1-10)。
  5. 根据权利要求1所述的一种水力埋设监测土体位移的设备,其特征在于,所述进水通道(1-9)上端设有水管接头(1-2)、泥浆通道(1-7)上端设有吸泥管接头(1-3),所述输水管(5)和水管接头(1-2)可拆卸连接、所述吸泥管(6)和吸泥管接头(1-3)可拆卸连接;所述套管(3)由C型槽钢对(3-1)及连接钢板对(3-2)组成,所述C型槽钢对(3-1)中的C型槽钢开口端相对,所述C型槽钢对(3-1)的数量为N且从下至上呈直线排列,N为大于1的自然数;所述各相邻的C型槽钢对(3-1)之间通过连接钢板相互桥接并封闭其开口端;所述水力装置(1)的顶端四角设有固定片(1-5),所述固定片(1-5)和最下面的C型槽钢对(3-1)及连接钢板对(3-2)螺栓连接将水力装置(1)的上端和套管(3)固定连接。
  6. 根据权利要求5所述的一种水力埋设监测土体位移的设备,其特征在于,所述连接钢板上设有若干个钢板螺栓孔(3-211)。
  7. 根据权利要求6所述的一种水力埋设监测土体位移的设备,其特征在于,所述连接钢板上具有2种长度,其中短连接钢板(3-21)和固定片(1-5)螺栓连接,长连接钢板(3-22)位于短连接钢板(3-21)上方。
  8. 一种水力埋设监测土体位移设备的使用方法,其特征在于,包括如下步骤:
    步骤一:平整场地,安放反力装置,在地表监测点位置预先开挖坑槽;
    步骤二:安装光纤光缆(4):将光纤光缆(4)中间部分沿着弧度弯折并放入尖锥钢靴(2) 的U型光纤光缆凹槽(2-3)内,所述光纤光缆(4)和U型光纤光缆凹槽(2-3)采用高弹模胶合剂固定或者将U型插块(2-5)插入U型光纤光缆凹槽(2-3)进行固定;
    步骤三:连接动力装置:将输水管(5)的顶端与高压水泵相连、底端与水管接头(1-2)相连,吸泥管(6)的顶端与吸泥泵相连、底端与水管接头(1-2)相连;将步骤二安装好的光纤光缆(4)放入水力装置(1)的光纤光缆凹槽(1-4),并将尖锥钢靴(2)与水力装置(1)通过限位块(2-4)与限位槽(1-6)压触对接;
    步骤四:安装套管(3):首先将一对C型槽钢的开口端相对,接着用短连接钢板(3-21)将C型槽钢对(3-1)的开口下端封闭,将上述套管(3)套住光纤光缆(4)、输水管(5)及吸泥管(6)且其底端和固定片(1-5)通过螺栓固定;
    步骤五:利用反力装置连接套管(3)的顶端,将尖锥钢靴(2)垂直进入步骤一开挖的坑槽,启动高压水泵,高压水射流冲散土体并形成泥浆,启动吸泥泵将泥浆吸至地表,将设备缓慢压入土体,当短连接钢板(3-21)的一半长度进入土体时停止高压水泵与泥浆泵,在短连接钢板(3-21)上方继续拼接长连接钢板(3-22);
    步骤六:重新启动高压水泵和泥浆泵,将设备缓慢压入土体,当长连接钢板(3-22)的一半长度进入土体时停止高压水泵与泥浆泵,继续拼接长连接钢板(3-22),当C型槽钢对(3-1)高度小于连接钢板高度时增加C型槽钢对(3-1);
    步骤七:重复步骤六,当设备入土深度达到设计深度时,判断顶端的连接钢板对(3-2)是否接近水平光纤光缆(4),如果连接钢板对(3-2)接近水平光纤光缆(4)立即拆除连接钢板对(3-2)同时调整反力装置连接至套管(3)中位置较高的连接钢板对(3-2)或C型槽钢对(3-1),接着使用反力装置对将套管(3)及水力装置(1)匀速拉升,如果连接钢板对(3-2)远离水平光纤光缆(4),继续使用反力装置对将套管(3)及水力装置(1)匀速拉升;不断重复上述过程,待套管(3)及水力装置(1)完全拔出后将光纤光缆(4)一端和光纤解调器(7)连接;
    步骤八:将解调器归零,即可实时监测监测点的土体侧向位移。
  9. 根据权利要求8所述的一种水力埋设监测土体位移设备的使用方法,其特征在于,步骤一中在将水力装置(1)的下端和尖锥钢靴(2)进行压触连接之前,将吸泥嘴(1-8)套接到泥浆通道(1-7)底端及将高压水喷头(1-1)套接到进水通道(1-9)底端。
  10. 根据权利要求8所述的一种水力埋设监测土体位移设备的使用方法,其特征在于,步骤七中待套管(3)及水力装置(1)完全拔出后光纤光缆(4)继续往下一个监测点铺设,重复步骤一到步骤七完成多个监测点的光纤光缆(4)埋设,最后一个监测点的光纤光缆(4)末端和光纤解调器(7)连接。
PCT/CN2021/110602 2020-12-17 2021-08-04 一种水力埋设监测土体位移的设备及其使用方法 WO2022127136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021398759A AU2021398759A1 (en) 2020-12-17 2021-08-04 Device for monitoring soil displacement by means of hydraulic burying, and use method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011492475.9A CN112921943B (zh) 2020-12-17 2020-12-17 一种水力埋设监测土体位移的设备及其使用方法
CN202011492475.9 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022127136A1 true WO2022127136A1 (zh) 2022-06-23

Family

ID=76162489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110602 WO2022127136A1 (zh) 2020-12-17 2021-08-04 一种水力埋设监测土体位移的设备及其使用方法

Country Status (3)

Country Link
CN (1) CN112921943B (zh)
AU (1) AU2021398759A1 (zh)
WO (1) WO2022127136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043885A (zh) * 2022-12-23 2023-05-02 中铁广州工程局集团有限公司 一种大型双壁钢围堰振动吸泥下沉工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921943B (zh) * 2020-12-17 2022-06-10 南京工业大学 一种水力埋设监测土体位移的设备及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786848A (en) * 1987-07-27 1988-11-22 Davidson Textron Inc. Water jet trim head simulator
CN105484731A (zh) * 2015-12-11 2016-04-13 中国地质大学(武汉) 一种测斜孔施工方法
WO2017191564A1 (en) * 2016-05-05 2017-11-09 C.S.G. S.R.L. Apparatus for 2d/3d monitoring of geotechnical, geological-structural, hydrogeological and geophysical parameters of soils, rocks and structures in general
CN109655001A (zh) * 2019-02-03 2019-04-19 南京吉欧地下空间科技有限公司 一种原位监测土体侧向位移的装置及其使用方法
CN110439048A (zh) * 2019-08-29 2019-11-12 南京江北新区中心区发展有限公司 一种用于内支撑基坑工程的水力冲挖绞吸设备及方法
CN111441394A (zh) * 2020-02-24 2020-07-24 中交天津港湾工程研究院有限公司 一种深基坑深层水平位移监测用测斜管辅助安装方法
CN112921943A (zh) * 2020-12-17 2021-06-08 南京工业大学 一种水力埋设监测土体位移的设备及其使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786848A (en) * 1987-07-27 1988-11-22 Davidson Textron Inc. Water jet trim head simulator
CN105484731A (zh) * 2015-12-11 2016-04-13 中国地质大学(武汉) 一种测斜孔施工方法
WO2017191564A1 (en) * 2016-05-05 2017-11-09 C.S.G. S.R.L. Apparatus for 2d/3d monitoring of geotechnical, geological-structural, hydrogeological and geophysical parameters of soils, rocks and structures in general
CN109655001A (zh) * 2019-02-03 2019-04-19 南京吉欧地下空间科技有限公司 一种原位监测土体侧向位移的装置及其使用方法
CN110439048A (zh) * 2019-08-29 2019-11-12 南京江北新区中心区发展有限公司 一种用于内支撑基坑工程的水力冲挖绞吸设备及方法
CN111441394A (zh) * 2020-02-24 2020-07-24 中交天津港湾工程研究院有限公司 一种深基坑深层水平位移监测用测斜管辅助安装方法
CN112921943A (zh) * 2020-12-17 2021-06-08 南京工业大学 一种水力埋设监测土体位移的设备及其使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043885A (zh) * 2022-12-23 2023-05-02 中铁广州工程局集团有限公司 一种大型双壁钢围堰振动吸泥下沉工艺
CN116043885B (zh) * 2022-12-23 2024-04-16 中铁广州工程局集团有限公司 一种大型双壁钢围堰振动吸泥下沉工艺

Also Published As

Publication number Publication date
CN112921943B (zh) 2022-06-10
AU2021398759A8 (en) 2022-10-20
CN112921943A (zh) 2021-06-08
AU2021398759A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2022127136A1 (zh) 一种水力埋设监测土体位移的设备及其使用方法
WO2021017984A1 (zh) 一种微型钢管桩桩身土压力和位移监测系统及方法
CN102691286B (zh) 一种监测建筑基坑地下连续墙渗漏的方法及装置
CN103851257A (zh) 基于对电缆排管敷设中的托管施工工艺
CN110468888A (zh) 一种微型钢管桩桩身位移监测装置及方法
CN207113887U (zh) 可拆卸的基坑位移监测装置
CN205036963U (zh) 用于水下管线跟踪的巡线保护装置
CN217083734U (zh) 一种路基沉降观测板
CN110258528B (zh) 一种可装配插入自卡式预制空心地下连续墙及其施工方法
CN220647045U (zh) 管道支撑结构和管道系统
CN214657160U (zh) 一种地铁基坑的轻型井点
JP2001098882A (ja) 水抜き工法
CN206000497U (zh) 一种全方位清洗嵌岩桩桩底沉渣的装置
CN213302528U (zh) 一种孤石探测时高密度电法电极辅助安装装置
CN211200498U (zh) 一种用于钻孔埋设测斜管的自动固定装置
CN220291093U (zh) 一种接地装置
CN218118838U (zh) 一种非开挖水下管道施工设备
CN218813737U (zh) 一种新型建筑基坑支护结构
CN215252867U (zh) 一种流速水中钢管桩插打辅助垂直设备
CN218034982U (zh) 一种钻孔灌注桩砼导管位置检测装置
CN113774988B (zh) 一种深水取水头部装置及施工方法
CN215217904U (zh) 解决测压管人工和自动化观测互相干扰的装置
CN219733433U (zh) 一种注浆与矿压测量两用的注浆装置
CN113186925B (zh) 用于处治土石坝渗漏的可视化高聚物注浆施工工艺
CN216553806U (zh) 一种便于排水的地质钻探装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021398759

Country of ref document: AU

Date of ref document: 20210804

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905069

Country of ref document: EP

Kind code of ref document: A1