WO2022126695A1 - 一种基于激光诱导击穿光谱的在线粉末检测装置 - Google Patents

一种基于激光诱导击穿光谱的在线粉末检测装置 Download PDF

Info

Publication number
WO2022126695A1
WO2022126695A1 PCT/CN2020/138497 CN2020138497W WO2022126695A1 WO 2022126695 A1 WO2022126695 A1 WO 2022126695A1 CN 2020138497 W CN2020138497 W CN 2020138497W WO 2022126695 A1 WO2022126695 A1 WO 2022126695A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
detection
sample
push rod
long tube
Prior art date
Application number
PCT/CN2020/138497
Other languages
English (en)
French (fr)
Inventor
李祥友
占凯平
贺超
刘可
陈吉
汤志阳
李青洲
张闻
刘坤
朱晨薇
曾晓雁
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022126695A1 publication Critical patent/WO2022126695A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising

Definitions

  • the invention belongs to the field of atomic emission spectroscopy detection, and more particularly relates to an on-line powder detection device based on laser-induced breakdown spectroscopy.
  • Laser-induced breakdown spectroscopy is a type of atomic emission spectroscopy that uses laser pulses emitted by a laser to ablate matter and generate short-lived plasma. Element characteristic spectrum to achieve the purpose of detecting sample composition information. Powder samples are characterized by fluffy, weak interactions with each other, uneven density distribution, and no flat surface. When the laser pulse directly acts on the powder sample, the phenomenon of sample sputtering, low laser energy absorption efficiency and violent fluctuation of the spectral signal will occur, which will affect the stability and accuracy of the LIBS spectrum. Therefore, rapid preparation and meeting the requirements of laser ablation are the key factors to realize on-line detection of powder samples.
  • the present invention provides an online powder detection device based on laser-induced breakdown spectroscopy, which aims to improve the signal quality of laser-induced breakdown spectroscopy and at the same time simplify the preparation and inspection of powder samples process to improve the online detection capability of laser-induced breakdown spectroscopy technology for powder samples in industrial sites.
  • an on-line powder detection device based on laser-induced breakdown spectroscopy
  • the powder sample processing module comprising a confinement metal long tube, a power control unit and a pushing unit
  • the confinement metal long tube is open at both ends, the interior is hollow, and the side is provided with an injection port and a detection port, and the powder sample enters the confinement metal long tube through the injection port
  • the The pushing unit includes two pushing sub-units located at both ends of the constraining metal long tube and partially inserted into the constraining metal long tube
  • the power control unit is used to provide power for the pushing unit to push the
  • the two pushing subunits move relative to the constraining metal long tube to squeeze the powder sample into a sample column and push the sample column to the detection port
  • the spectrum detection module uses laser burning
  • the sample column at the detection port is etched to generate a light signal, and a detection result of the sample column is generated according to the spect
  • the power control unit includes an air compressor and two control branches connected with the air compressor;
  • the two pushing sub-units both include a cylinder, an inner rod in the cylinder and a push rod, and the pushing One end of the rod is connected to the inner rod of the cylinder, the other end of the push rod is inserted into the long constraining metal pipe, and the cylinder is connected with the control branch in one-to-one correspondence;
  • the two airflow branches generated by the air compressor After adjusting the speed and direction through the two control branches respectively, they enter into the cylinders connected to each of the control branches to push the rods and push rods in the cylinders to move relative to the constraining metal long tube.
  • the power control unit includes an air compressor, a hydraulic pump and two control branches connected to the hydraulic pump;
  • the two pushing sub-units both include a hydraulic cylinder, an inner rod of the hydraulic cylinder and a push rod.
  • one end of the push rod is connected to the inner rod of the hydraulic cylinder, the other end of the push rod is inserted into the constraining metal long pipe, and the hydraulic cylinder is connected with the control branch in one-to-one correspondence;
  • the two hydraulic branches After the two hydraulic branches are respectively adjusted in speed and direction through the two control branches, they enter into the hydraulic cylinders connected to each of the control branches to push the inner rod and the push rod of the hydraulic cylinder relative to the restraining metal. Long tube movement.
  • the power control unit includes an air compressor, two guide rails located at both ends of the constraining metal long tube, and a servo motor provided on each of the guide rails, and the servo motor can move on the guide rails;
  • Each of the two pushing sub-units includes a push rod, and the servo motor is connected with the push rod in a one-to-one correspondence to drive the push rod to move relative to the constraining metal long tube.
  • the nozzle also includes a flow meter and a nozzle; the nozzle is placed horizontally above the detection port side, and is connected to the air compressor through the flow meter; a third airflow branch generated by the air compressor After being adjusted by the flow meter, it enters the nozzle to blow away the dust generated during the laser ablation process.
  • the push rod is in contact with the inner cavity of the constraining metal long tube, and the central axis of the push rod coincides with the central axis of the constraining metal long tube.
  • a recovery port is opened on the side of the constraining metal long tube, and the detection port is located between the injection port and the recovery port; after the detection is completed, the pushing unit is also used to push the sample column. to the recovery port, so that the sample column falls from the recovery port under the action of gravity.
  • the spectrum detection module includes a laser, a focusing lens, a collection head, a spectrometer and a data processing unit; the focusing lens and the laser are sequentially located above the detection port, and the spectrometer, the collection head and the data processing unit are connected, the collection head is located above the detection port side.
  • the collection head collects the optical signal in a paraxial manner, and transmits the collected optical signal to the spectrometer through a multi-core optical fiber.
  • the detection port includes, from bottom to top, an opening with a vertical inner wall and an opening with an outwardly inclined inner wall.
  • the power control unit is used to drive the pushing unit to prepare the powder sample as a sample column in the confinement metal long tube and detect it, so as to realize the rapid preparation and inspection of the powder sample.
  • the structure of the device is simple, and the detection form of the sample column enhances the spectral signal. Strength and stability, improve detection accuracy, and well meet the needs of fast and accurate online detection of powder components in actual production;
  • the detection port is set as a "Y"-shaped opening in cross section, the vertical opening of the inner wall of the lower part has the effect of space confinement when the plasma expands, which can enhance the emission spectrum signal, and the opening of the upper part of the inner wall is inclined outwards The collection efficiency of the optical signal can be guaranteed.
  • FIG. 1 is a schematic structural diagram of an on-line powder detection device based on laser-induced breakdown spectroscopy provided by the first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an on-line powder detection device based on laser-induced breakdown spectroscopy provided by a second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an on-line powder detection device based on laser-induced breakdown spectroscopy provided by a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a detection port in an online powder detection device based on laser-induced breakdown spectroscopy provided by an embodiment of the present invention.
  • 1 is the constraining metal long tube
  • 101 is the injection port
  • 102 is the detection port
  • 103 is the recovery port
  • 2 is the power control unit
  • 201 is the air compressor
  • 202 is the hydraulic pump
  • 203 is the first solenoid valve
  • 204 is the first solenoid valve.
  • Two solenoid valves 205 is the first speed regulating valve, 206 is the second speed regulating valve, 207 is the first guide rail, 208 is the second guide rail, 209 is the first servo motor, 210 is the second servo motor, 3 is the push Unit, 301 is the first cylinder, 302 is the second cylinder, 303 is the first cylinder rod, 304 is the second cylinder rod, 305 is the first push rod, 306 is the second push rod, 307 is the first hydraulic cylinder , 308 is the second hydraulic cylinder, 309 is the first hydraulic cylinder rod, 310 is the second hydraulic cylinder rod, 4 is the flow meter, 5 is the nozzle, 601 is the laser, 602 is the focusing lens, 603 is the collection head, 604 is a spectrometer, 605 is a data processing unit, 701 is a first fixed base, 702 is a second fixed base, 703 is a third fixed base, 704 is a fourth fixed base, 705 is a first platform,
  • the embodiments of the present invention provide an online powder detection device (hereinafter referred to as detection device) based on laser-induced breakdown spectroscopy.
  • the detection device includes a powder sample processing module and a spectrum detection module.
  • the powder sample processing module is used to process powder samples into sample columns.
  • the powder sample processing module includes a confinement metal long tube 1 , a power control unit 2 and a pushing unit 3 .
  • the constraining metal long tube 1 is open at both ends, the interior is hollow, and the side is provided with a sample inlet 101 and a detection port 102 , and the powder sample enters the confinement metal long tube 1 through the sample inlet 101 .
  • the pressing unit 3 includes two pressing subunits located at both ends of the constraining metal long tube 1 , and the partial structures of the two pressing subunits are inserted into the constraining metal long tube 1 .
  • the power control unit 2 is used to provide power for the two pushing sub-units of the pushing unit 3 to push the two pushing sub-units to move relative to the constraining metal long tube 1 to squeeze the powder sample in the constraining metal long tube 1 Press the sample column and push the sample column to the detection port 102 .
  • the spectral detection module uses laser to ablate the sample column at the detection port 102 to generate an optical signal, and generates a detection result of the sample column according to the spectral information corresponding to the optical signal.
  • FIG. 1 to FIG. 3 In the embodiment of the present invention, three specific detection device structures are provided, as shown in FIG. 1 to FIG. 3 respectively. Referring to Figures 1 to 4, the structures of the three detection devices will be described in detail.
  • the power control unit 2 includes an air compressor 201 and two control branches connected to the air compressor 201 .
  • one of the control branches includes a first solenoid valve 203 and a first speed regulating valve 205.
  • the input end of the first solenoid valve 203 is connected to the first airflow branch of the air compressor 201, and the first solenoid valve
  • the output end of 203 is connected to the input end of the first speed regulating valve 205 .
  • the other control branch includes a second solenoid valve 204 and a second speed regulating valve 206.
  • the input end of the second solenoid valve 204 is connected to the second airflow branch of the air compressor 201, and the output end of the second solenoid valve 204 is connected to the second air flow branch of the air compressor 201.
  • the input of the speed control valve 206 is connected to the second solenoid valve 204.
  • the air compressor 201 is the driving source of the powder sample processing module, which can provide a maximum pressure of seven atmospheres and an airflow of 90 L/min.
  • the main path of the output air flow is divided into three branches, which are respectively delivered to the interface of the nozzle 5 , the first cylinder 301 and the second cylinder 302 .
  • the two pushing sub-units include a cylinder, an inner rod in the cylinder and a push rod.
  • One end of the push rod is connected to the inner rod of the cylinder, and the other end of the push rod is inserted into the constraining metal long pipe 1.
  • the cylinder is connected with the control branch in one-to-one correspondence.
  • the air cylinder is a standard air cylinder, and one end of the push rod and the inner rod of the cylinder are sleeved together, for example, by threads.
  • one of the pushing sub-units includes a first cylinder 301 , a first cylinder inner rod 303 and a first push rod 305 , the first cylinder 301 communicates with the output end of the first speed regulating valve 205 , and the first cylinder inner rod 303 One end of the first cylinder 301 is inserted into the first cylinder 301, the other end of the first cylinder rod 303 is connected to one end of the first push rod 305, and the other end of the first push rod 305 is inserted into the constraining metal long tube 1.
  • the push subunit is, for example, On the left side of the restraining metal long tube 1.
  • Another pushing sub-unit includes a second cylinder 302, a second cylinder inner rod 304 and a second push rod 306, the second cylinder 302 is communicated with the output end of the second speed regulating valve 206, and one end of the second cylinder inner rod 304 is inserted In the second cylinder 302, the other end of the rod 304 in the second cylinder is connected to one end of the second push rod 306, and the other end of the second push rod 306 is inserted into the constraining metal long tube 1, the push sub-unit is, for example, located in the constraining metal Right side of long tube 1.
  • first cylinder 301 is fixed on the outermost side of the first platform 705 by the first fixing base 701 and the second fixing base 702; the second cylinder 302 is fixed on the second platform 705 by the third fixing base 703 and the fourth fixing base 704 On the outermost side of the platform 706 ; the constraining metal long tube 1 is fixed on the first platform 705 and the second platform 706 , and is located between the first cylinder 301 and the second cylinder 302 .
  • the two air flow branches generated by the air compressor 201 are respectively adjusted in speed and direction by the two control branches, and then enter into the cylinders connected to each control branch to push the rods and push rods in the cylinder to move relative to the constraining metal long tube 1 , thereby extruding the powder sample into a sample column.
  • the push rod is in contact with the inner cavity of the constraining metal long tube 1 , and the central axis of the push rod coincides with the central axis of the constraining metal long tube 1 .
  • the powder sample can be extruded into a sample column with a certain strength due to the restriction effect of the inner wall of the constrained metal long tube 1 and the extrusion effect of the push rod.
  • the constraining metal long tube 1 is hollow inside and has a smooth inner wall, the first push rod 305 and the second push rod 306 are in close contact with the inner cavity of the constraining metal long tube 1, the first cylinder rod 303, the second cylinder rod 306 304, the first push rod 305, the second push rod 306, and the central axis of the constraining metal long tube 1 coincide.
  • the detection device also includes a flow meter 4 and a nozzle 5 .
  • the nozzle 5 is, for example, a small nozzle and is placed horizontally above the detection port 102 near the detection port 102 , and is finally connected to the air compressor 201 through the flow meter 4 .
  • the third airflow branch generated by the air compressor 201 enters the nozzle 5 after being adjusted by the flow meter 4, so as to blow the dust generated during the laser ablation away from the detection port 102, so as to prevent the dust from blocking the absorption of ablation energy and affecting the plasma Collection of radiant light and contamination of optics.
  • a recovery port 103 is opened on the side of the constraining metal long tube 1 .
  • the recovery port 103 can be formed by removing a segment of the arc surface on the side of the constraining metal long tube 1 .
  • the detection port 102 is located between the injection port 101 and the recovery port 103 . After the detection is completed, the pushing unit 3 is also used to push the sample column to the recovery port 103 , so that the sample column falls from the recovery port 103 under the action of gravity.
  • the detection port 102 includes, from bottom to top, an opening with a vertical inner wall and an opening with an outwardly inclined inner wall, as shown in FIG. 4 .
  • the vertical opening on the inner wall has the effect of space confinement during plasma expansion, which can enhance the emission spectrum signal, and its aperture diameter is, for example, 2 mm; the outwardly inclined opening on the inner wall is used to ensure the collection efficiency of paraxial collection of optical signals.
  • the opening of the injection port 101 is upward and the diameter is large, which is convenient for fast sample injection;
  • the opening of the detection port 102 is upward but the diameter is small, and its cross section is " Y" shape, and the inclined inner wall forms an included angle of, for example, a 30° angle with the horizontal direction;
  • the recovery port 103 is formed by a missing half-arc surface, with the opening facing down and a large diameter, which is convenient for the sample column to escape from the restraining metal under the action of its own gravity Long tube 1 and recovered.
  • the spectrum detection module includes a laser 601 , a focusing lens 602 , a collection head 603 , a spectrometer 604 and a data processing unit 605 .
  • the focusing lens 602 and the laser 601 are sequentially located above the detection port 102
  • the spectrometer 604 is connected with the acquisition head 603 and the data processing unit 605
  • the acquisition head 603 is located above the side of the detection port 102 .
  • the acquisition head 603 collects signals paraxially at an angle of, for example, about 30° from the vertical direction;
  • the laser 601 emits a high-energy pulsed laser, and the high-energy pulsed laser ablates the sample column vertically through the detection port 102 under the converging action of the focusing lens 602, and the resulting optical signal is constrained and enhanced by the vertical inner wall of the lower part of the detection port 102, Then the collection head 603 collects the optical signal in a paraxial manner, and transmits the collected optical signal to the spectrometer 604 through the multi-core optical fiber. The spectral information is finally processed by the data processing unit 605 to obtain the corresponding detection result.
  • the air compressor 201 works, the air pressure difference generated inside the first cylinder 301 and the second cylinder 302 makes the first cylinder rod 303 and the second cylinder rod 304 start to move, and drives the first push rod 305 to move to the initial position Point C drives the second push rod 306 to move to the initial position point D, as shown in FIG. 1 . Adjust the flow meter 4 so that the blowing speed of the nozzle 5 is controlled at 5L/min and is always in working condition.
  • a pulverized coal sample with a weight of about 15 g is taken and injected into the confinement metal long tube 1 from the injection port 101 .
  • the first push rod 305 is fixed, and the second push rod 306 reciprocates under the control of the second solenoid valve 204 .
  • the second push rod 306 starts to move toward the first push rod 305, the powdered coal sample will be continuously squeezed in the confinement metal long tube 1, and finally shaped into a coal pillar with a length of about 40mm.
  • the second push rod 306 needs several rapid movements to obtain a larger impact force, and is finally kept in a state of pressing force.
  • the first solenoid valve 203 controls the first push rod 305 to start moving to the left, and the speed is controlled by the first speed regulating valve 205 to be 4 mm/s. Due to the unbalanced force, the second push rod 306 moves to the left synchronously with the first push rod 305, and entrains the coal pillar to move at the same speed under the detection port 102, thereby completing the transfer of the sample.
  • the laser 601 starts to emit pulsed laser light, and through focusing penetration, the coal pillar is converged and ablated until the second push rod 306 moves to the position C.
  • the ablation of the coal pillar is completed.
  • the first speed control valve 205 controls the first push rod 305 to move at a speed of 8 mm/s to the position point A and stops, and the second speed control valve 206 controls the first push rod 305 to keep moving at a speed of 4 mm/s, pushing The coal pillar falls at the recovery port 103 and is recovered, and finally the first push rod 305 stops at the position point B.
  • the first push rod 305 will reciprocate quickly and repeatedly to clean up the residual coal powder in the restraining metal long tube 1 . Then, the first push rod 305 and the second push rod 306 return to their original positions, and stay at the position point C and the position point D, respectively, to prepare for the next cycle of sample preparation.
  • the acquisition head 603 efficiently collects the radiation optical signal through the inclined opening on the upper part of the detection port 102. Further, the spectrometer 604 performs spectroscopic and photoelectric conversion processing on the transmitted optical signal, and the generated spectral data is extracted by the data processing unit 605. The model outputs detection results in real time.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the power control unit 2 includes an air compressor 201, a hydraulic pump 202, and two control branches connected to the hydraulic pump 202.
  • the structure of the control branch is the same as that of the control branch in the first embodiment.
  • the two push sub-units include a hydraulic cylinder, an inner rod of the hydraulic cylinder and a push rod. One end of the push rod is connected to the inner rod of the hydraulic cylinder, and the other end of the push rod is inserted into the constraining metal long pipe 1.
  • the hydraulic cylinder and the control branch are one by one. Correspondingly connected, as shown in Figure 2.
  • the two hydraulic branches generated by the hydraulic pump 202 are respectively adjusted in speed and direction by the two control branches, and then enter into the hydraulic cylinders connected to each control branch, so as to push the inner rod and push rod of the hydraulic cylinder relative to the restraining metal long pipe 1 . sports.
  • the driving source in the power control unit 2 is replaced with the hydraulic pump 202; the driving device in the pushing unit 3 is replaced with the first hydraulic cylinder 307 and the second hydraulic cylinder 308, and correspondingly the first hydraulic pressure
  • the cylinder 307 and the second hydraulic cylinder 308 configure a first hydraulic cylinder inner rod 309 and a second hydraulic cylinder inner rod 310 .
  • the drive source and drive device can provide greater pressure, and are more suitable for scenarios that require high molding pressure and control accuracy, but low requirements for movement speed.
  • Other structures of the detection device in this embodiment are the same as those in the first embodiment, and are not repeated here.
  • the power control unit 2 includes an air compressor 201 , two guide rails located at both ends of the constraining metal long tube 1 , and a servo motor arranged on each guide rail, and the servo motor can move on the guide rail.
  • the above two pushing sub-units both include push rods, and the servo motors are connected to the push rods in one-to-one correspondence, as shown in FIG. 3 , to drive the push rods to move relative to the restraining metal long tube 1 .
  • the driving source in the power control unit 2 is replaced with the first guide rail 207, the second guide rail 208, the first servo motor 209, and the second servo motor 210; only the driving device in the pressing unit 3 is retained putter.
  • the driving source and the driving device can provide faster movement speed and higher control accuracy, the device is simpler as a whole and can be easily automated, and is suitable for scenarios where the detection speed is high and the sample itself is easy to form.
  • Other structures of the detection device in this embodiment are the same as those in the first embodiment, and are not repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于激光诱导击穿光谱的在线粉末检测装置,属于原子发射光谱检测领域,包括:约束金属长管,侧面设置有进样口和检测口,粉末样品经进样口进入管中;推压单元,包括位于约束金属长管两端且部分插入其内部的两个推压子单元;动力控制单元,为推压单元提供动力,推动推压子单元相对于约束金属长管运动,以将粉末样品挤压为样品柱,并将样品柱推至检测口处;光谱检测模块,利用激光烧蚀样品柱以产生光信号,并根据光信号对应的光谱信息生成样品柱的检测结果。装置结构简单,实现粉末样品的快速制备与送检,样品柱的检测形式增强光谱信号的强度与稳定性,提升检测准确度,很好地满足实际生产中对粉末成分快速、准确的在线检测需求。

Description

一种基于激光诱导击穿光谱的在线粉末检测装置 【技术领域】
本发明属于原子发射光谱检测领域,更具体地,涉及一种基于激光诱导击穿光谱的在线粉末检测装置。
【背景技术】
激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)是一种原子发射光谱,其利用激光器发出的激光脉冲烧蚀物质并产生短暂生命周期的等离子体,通过采集等离子体演变过程中辐射出的元素特征光谱来达到检测样品成分信息的目的。粉末样品具有蓬松状、彼此间作用力弱、密度分布不均匀以及无平整表面的特点。当激光脉冲直接作用于粉末样品时,会出现样品溅射、激光能量吸收效率低以及光谱信号剧烈波动的现象,进而影响LIBS光谱的稳定性与准确性。因此,快速制备并满足激光烧蚀要求是实现粉末样品在线检测的关键因素。
目前对粉末样品的检测,通常利用气流输送并产生粉末颗粒流或粉末气溶胶,来得到较为连续、平整的待检测表面。这种方式在检测过程中不能保证均匀输送样品,且气流中粉末样品体积占比低,会引发烧蚀量波动、烧蚀位置点变化以及显著的空气击穿效应等问题,使得信号强度、稳定性、准确度整体比较差。此外,现有技术中还引入大型制样设备在模具内将粉末样品成型为较为致密的饼状样品。但其却需要额外制备样品,配备有模压装置,并且制备好的样品需要传送到专门的检测平台上,使得检测系统整体结构复杂、体积庞大、流程繁琐、耗时长,不利于粉末样品的在线实时检测。
【发明内容】
针对现有技术的缺陷和改进需求,本发明提供了一种基于激光诱导击 穿光谱的在线粉末检测装置,其目的在于提高激光诱导击穿光谱信号质量的同时,简化粉末样品的制备与送检流程,提升激光诱导击穿光谱技术对工业现场内粉末样品的在线检测能力。
为实现上述目的,按照本发明的一个方面,提供了一种基于激光诱导击穿光谱的在线粉末检测装置,包括粉末样品处理模块和光谱检测模块,所述粉末样品处理模块包括约束金属长管、动力控制单元和推压单元;所述约束金属长管两端开口,内部中空,侧面设置有进样口和检测口,粉末样品经所述进样口进入所述约束金属长管中;所述推压单元包括位于所述约束金属长管两端且部分插入所述约束金属长管中的两个推压子单元;所述动力控制单元用于为所述推压单元提供动力,推动所述两个推压子单元相对于所述约束金属长管运动,以将所述粉末样品挤压为样品柱,并将所述样品柱推至所述检测口处;所述光谱检测模块利用激光烧蚀所述检测口处的样品柱以产生光信号,并根据所述光信号对应的光谱信息生成所述样品柱的检测结果。
更进一步地,所述动力控制单元包括空压机以及与所述空压机相连的两条控制支路;所述两个推压子单元均包括气缸、气缸内杆和推杆,所述推杆的一端连接所述气缸内杆,所述推杆的另一端插入所述约束金属长管中,气缸与所述控制支路一一对应连通;所述空压机产生的两条气流支路分别经所述两条控制支路调整速度和方向后,进入各所述控制支路连通的气缸中,以推动所述气缸内杆和推杆相对于所述约束金属长管运动。
更进一步地,所述动力控制单元包括空压机、液压泵以及与所述液压泵相连的两条控制支路;所述两个推压子单元均包括液压缸、液压缸内杆和推杆,所述推杆的一端连接所述液压缸内杆,所述推杆的另一端插入所述约束金属长管中,液压缸与所述控制支路一一对应连通;所述液压泵产生的两条液压支路分别经所述两条控制支路调整速度和方向后,进入各所述控制支路连通的液压缸中,以推动所述液压缸内杆和推杆相对于所述约 束金属长管运动。
更进一步地,所述动力控制单元包括空压机、位于所述约束金属长管两端的两个导轨、以及各所述导轨上设置的伺服电机,所述伺服电机可在所述导轨上移动;所述两个推压子单元均包括推杆,所述伺服电机与推杆一一对应连接,以驱动所述推杆相对于所述约束金属长管运动。
更进一步地,还包括流量计和喷嘴;所述喷嘴在所述检测口侧上方水平放置,并通过所述流量计连接至所述空压机;所述空压机产生的第三气流支路经所述流量计调速后进入所述喷嘴,以吹散激光烧蚀过程中产生的粉尘。
更进一步地,所述推杆与所述约束金属长管的内腔相接触,且所述推杆的中心轴线与所述约束金属长管的中心轴线相重合。
更进一步地,所述约束金属长管侧面开设有回收口,所述检测口位于所述进样口与回收口之间;检测完成后,所述推压单元还用于将所述样品柱推至所述回收口处,使得所述样品柱在重力作用下从所述回收口处掉落。
更进一步地,所述光谱检测模块包括激光器、聚焦透镜、采集头、光谱仪和数据处理单元;所述聚焦透镜和激光器依次位于所述检测口上方,所述光谱仪与所述采集头和数据处理单元连接,所述采集头位于所述检测口侧上方。
更进一步地,所述采集头以旁轴的方式对所述光信号进行采集,并通过多芯光纤将采集到的光信号传输至所述光谱仪中。
更进一步地,所述检测口自下往上包括内壁竖直的开口和内壁向外倾斜的开口。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)利用动力控制单元驱动推压单元在约束金属长管内将粉末样品制备为样品柱并进行检测,实现粉末样品的快速制备与送检,装置结构简单, 样品柱的检测形式增强光谱信号的强度与稳定性,提升检测准确度,很好地满足实际生产中对粉末成分快速、准确的在线检测需求;
(2)提供三种不同动力控制单元来提供不同的驱动力,从而实现不同的样品柱制备效果,满足不同的检测需求,用于不同的应用场景,适用范围广;
(3)设置喷嘴将激光烧蚀过程中产生的粉尘吹离检测口,避免粉尘阻挡烧蚀能量的吸收、影响等离子体辐射光的采集以及污染光学元件;
(4)将检测口设置为横截面为“Y”字型的开口,下部分内壁竖直的开口在等离子膨胀时具有空间约束的作用,可以增强发射光谱信号,上部分内壁向外倾斜的开口可以保证光信号的采集效率。
【附图说明】
图1为本发明第一实施例提供的基于激光诱导击穿光谱的在线粉末检测装置的结构示意图;
图2为本发明第二实施例提供的基于激光诱导击穿光谱的在线粉末检测装置的结构示意图;
图3为本发明第三实施例提供的基于激光诱导击穿光谱的在线粉末检测装置的结构示意图;
图4为本发明实施例提供的基于激光诱导击穿光谱的在线粉末检测装置中检测口的横截面示意图。
在所有附图中,相同的附图标记用来表示相同的元件或者结构,其中:
1为约束金属长管,101为进样口,102为检测口,103为回收口,2为动力控制单元,201为空压机,202为液压泵,203为第一电磁阀,204为第二电磁阀,205为第一调速阀,206为第二调速阀,207为第一导轨,208为第二导轨,209为第一伺服电机,210为第二伺服电机,3为推压单元,301为第一气缸,302为第二气缸,303为第一气缸内杆,304为第二气缸内杆,305为第一推杆,306为第二推杆,307为第一液压缸,308为第二 液压缸,309为第一液压缸内杆,310为第二液压缸内杆,4为流量计,5为喷嘴,601为激光器,602为聚焦透镜,603为采集头,604为光谱仪,605为数据处理单元,701为第一固定底座,702为第二固定底座,703为第三固定底座,704为第四固定底座,705为第一平台,706为第二平台。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明中,本发明及附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明实施例提供了一种基于激光诱导击穿光谱的在线粉末检测装置(以下简称为检测装置)。检测装置包括粉末样品处理模块和光谱检测模块。粉末样品处理模块用于将粉末样品处理为样品柱。具体地,粉末样品处理模块包括约束金属长管1、动力控制单元2和推压单元3。约束金属长管1两端开口,内部中空,侧面设置有进样口101和检测口102,粉末样品经进样口101进入约束金属长管1中。推压单元3包括位于约束金属长管1两端的两个推压子单元,且这两个推压子单元的部分结构插入约束金属长管1中。动力控制单元2用于为推压单元3的两个推压子单元提供动力,推动这两个推压子单元相对于约束金属长管1运动,以将约束金属长管1内的粉末样品挤压为样品柱,并将样品柱推至检测口102处。光谱检测模块利用激光烧蚀检测口102处的样品柱以产生光信号,并根据光信号对应的光谱信息生成样品柱的检测结果。
本发明实施例中,提供了三种具体的检测装置结构,分别如图1-图3所示。参阅图1-图4,对这三种检测装置结构进行详细说明。
实施例一:
本实施例中,动力控制单元2包括空压机201以及与空压机201相连的两条控制支路。具体地,参阅图1,其中一条控制支路包括第一电磁阀203和第一调速阀205,第一电磁阀203的输入端连接空压机201的第一气流支路,第一电磁阀203的输出端连接第一调速阀205的输入端。另一条控制支路包括第二电磁阀204和第二调速阀206,第二电磁阀204的输入端连接空压机201的第二气流支路,第二电磁阀204的输出端连接第二调速阀206的输入端。
空压机201为粉末样品处理模块的驱动源,可以提供最大七个大气压的压强以及90L/min的气流量。通过气动快速接头的转换,输出的气流主干路被分为三个支路,分别输送到喷嘴5、第一气缸301和第二气缸302的接口处。
两个推压子单元均包括气缸、气缸内杆和推杆,推杆的一端连接气缸内杆,推杆的另一端插入约束金属长管1中,气缸与控制支路一一对应连通。气缸为标准气缸,推杆的一端与气缸内杆例如通过螺纹套接在一起。具体地,其中一个推压子单元包括第一气缸301、第一气缸内杆303和第一推杆305,第一气缸301与第一调速阀205的输出端连通,第一气缸内杆303的一端插入在第一气缸301内,第一气缸内杆303的另一端连接第一推杆305的一端,第一推杆305的另一端插入约束金属长管1中,该推压子单元例如位于约束金属长管1左侧。另一个推压子单元包括第二气缸302、第二气缸内杆304和第二推杆306,第二气缸302与第二调速阀206的输出端连通,第二气缸内杆304的一端插入在第二气缸302内,第二气缸内杆304的另一端连接第二推杆306的一端,第二推杆306的另一端插入约束金属长管1中,该推压子单元例如位于约束金属长管1右侧。
进一步地,第一气缸301通过第一固定底座701和第二固定底座702固定在第一平台705的最外侧上;第二气缸302通过第三固定底座703和 第四固定底座704固定在第二平台706的最外侧上;约束金属长管1固定在第一平台705和第二平台706上,且位于第一气缸301和第二气缸302之间。
空压机201产生的两条气流支路分别经两条控制支路调整速度和方向后,进入各控制支路连通的气缸中,以推动气缸内杆和推杆相对于约束金属长管1运动,从而将粉末样品挤压为样品柱。
根据本发明实施例,推杆与约束金属长管1的内腔相接触,且推杆的中心轴线与约束金属长管1的中心轴线相重合。由此,受约束金属长管1内壁的限制作用以及推杆的挤压作用,可以将粉末样品挤压成型为具备一定强度的样品柱。具体地,约束金属长管1内部中空且内壁光滑,第一推杆305和第二推杆306均与约束金属长管1的内腔紧密接触,第一气缸内杆303、第二气缸内杆304、第一推杆305、第二推杆306、约束金属长管1的中心轴线相重合。
检测装置还包括流量计4和喷嘴5,喷嘴5例如为一小型喷口并在检测口102侧上方贴近检测口102水平放置,最后通过流量计4连接至空压机201。空压机201产生的第三气流支路经流量计4调速后进入喷嘴5,以将激光烧蚀过程中产生的粉尘吹离检测口102,避免粉尘阻挡烧蚀能量的吸收、影响等离子体辐射光的采集以及污染光学元件。
根据本发明实施例,约束金属长管1侧面开设有回收口103。可以通过在约束金属长管1侧面去除一段弧面形成回收口103。检测口102位于进样口101与回收口103之间。检测完成后,推压单元3还用于将样品柱推至回收口103处,使得样品柱在重力作用下从回收口103处掉落。
检测口102自下往上包括内壁竖直的开口和内壁向外倾斜的开口,如图4所示。内壁竖直的开口在等离子膨胀时具有空间约束的作用,可以增强发射光谱信号,其口径直径例如为2mm;内壁向外倾斜的开口用于保证旁轴采集光信号的采集效率。
本实施例中,以约束金属长管1水平放置为例,进样口101开口朝上且口径较大,便于实现快速进样;检测口102开口朝上但口径较小,其横截面为“Y”字型,且倾斜内壁与水平线方向例如成30°夹角;回收口103由一缺失的半弧面形成,开口朝下且口径较大,便于样品柱在自身重力的作用下脱离约束金属长管1并被回收。
光谱检测模块包括激光器601、聚焦透镜602、采集头603、光谱仪604和数据处理单元605。聚焦透镜602和激光器601依次位于检测口102上方,光谱仪604与采集头603和数据处理单元605连接在一起,采集头603位于检测口102的侧上方。进一步地,采集头603与竖直方向例如约成30°的角度旁轴采集信号;光谱仪604例如为覆盖测量波长为200nm-1000nm的多通道光谱仪。
激光器601发出高能量脉冲激光,高能量脉冲激光在聚焦透镜602的汇聚作用下透过检测口102垂直烧蚀样品柱,随之产生的光信号被检测口102下部分的竖直内壁约束增强,然后采集头603以旁轴的方式对光信号进行采集,并通过多芯光纤将采集到的光信号传输至光谱仪604中,光谱仪604对接收到的光信号进行分光与光电转换处理,从而生成对应的光谱信息,最终由数据处理单元605处理得到对应的检测结果。
以燃煤电厂的粉状入炉煤为例,说明本实施例中检测装置的工作流程。首先空压机201工作,第一气缸301和第二气缸302内部产生的气压差分别使得第一气缸内杆303和第二气缸内杆304开始运动,并带动第一推杆305运动到初始位置C点,带动第二推杆306运动到初始位置D点,如图1所示。调节流量计4,使得喷嘴5的吹气速度控制在5L/min并一直处于工作状态。
取重量约为15g的粉末煤样从进样口101处注入到约束金属长管1中。开始时第一推杆305固定不动,第二推杆306在第二电磁阀204的控制下往复运动。当第二推杆306向着第一推杆305开始运动时,粉末煤样会在 约束金属长管1内被不断受力挤压,最终塑形为长度约40mm的煤柱。为进一步保证成型强度,第二推杆306需要多次快速运动来获得较大的冲击力,并最后保持为挤压受力状态。
完成煤样制备后,第一电磁阀203控制第一推杆305开始向左运动,速度由第一调速阀205控制在4mm/s。由于失去平衡作用力第二推杆306会同步与第一推杆305向左运动,并夹带着煤柱在检测口102下方以同样的速度移动,从而完成样品的传送。
当煤柱的初始端运动到检测口102时,激光器601开始发出脉冲激光,经由聚焦透,602汇聚并烧蚀煤柱,直到第二推杆306运动到位置点C时煤柱烧蚀完毕。随后第一调速阀205控制第一推杆305以8mm/s的速度运动到位置点A停下,第二调速阀206则控制第一推杆305继续保持4mm/s的速度运动,推动煤柱在回收口103处掉落被回收,最终第一推杆305停在位置点B处。
完成煤柱的回收后,第一推杆305会快速多次往复运动,将约束金属长管1内残留的煤粉清理干净。然后,第一推杆305和第二推杆306恢复到初始位置,分别停留在位置点C和位置点D,准备下个周期的样品制备。
检测口102处烧蚀产生的等离子体在膨胀时,会受到检测口102下部竖直内壁的约束作用,产生的反向冲击波促使粒子碰撞程度加剧,光谱信号得到增强。采集头603透过检测口102上部的倾斜张口高效采集辐射光信号,进一步地,光谱仪604对传输的光信号进行分光与光电转换处理,产生的光谱数据由数据处理单元605进行特征提取,代入预测模型实时输出检测结果。
实施例二:
本实施例中,动力控制单元2包括空压机201、液压泵202以及与液压泵202相连的两条控制支路,该控制支路与实施例一中控制支路的结构相同,此处不再赘述。两个推压子单元均包括液压缸、液压缸内杆和推杆, 推杆的一端连接液压缸内杆,推杆的另一端插入约束金属长管1中,液压缸与控制支路一一对应连通,如图2所示。液压泵202产生的两条液压支路分别经两条控制支路调整速度和方向后,进入各控制支路连通的液压缸中,以推动液压缸内杆和推杆相对于约束金属长管1运动。
本实施例中,将动力控制单元2中的驱动源更换为液压泵202;将推压单元3中的驱动装置更换为第一液压缸307和第二液压缸308,并相应地为第一液压缸307和第二液压缸308配置第一液压缸内杆309和第二液压缸内杆310。该驱动源和驱动装置能够提供更大压力,更适用于对成型压力与控制精准度要求高、而对运动速度要求低的场景。本实施例中检测装置的其他结构与实施例一相同,此处不再赘述。
实施例三:
本实施例中,动力控制单元2包括空压机201、位于约束金属长管1两端的两个导轨、以及各导轨上设置的伺服电机,伺服电机可在导轨上移动。上述两个推压子单元均包括推杆,伺服电机与推杆一一对应连接,如图3所示,以驱动推杆相对于约束金属长管1运动。
本实施例中,将动力控制单元2中的驱动源更换为第一导轨207、第二导轨208、第一伺服电机209、和第二伺服电机210;将推压单元3中的驱动装置仅保留推杆。该驱动源和驱动装置能够提供更快的运动速度和更高的控制精度,装置整体更为简单并且容易实现自动化,适用于对检测速度要求高、样品自身易于成型的场景。本实施例中检测装置的其他结构与实施例一相同,此处不再赘述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,包括粉末样品处理模块和光谱检测模块,所述粉末样品处理模块包括约束金属长管(1)、动力控制单元(2)和推压单元(3);
    所述约束金属长管(1)两端开口,内部中空,侧面设置有进样口(101)和检测口(102),粉末样品经所述进样口(101)进入所述约束金属长管(1)中;
    所述推压单元(3)包括位于所述约束金属长管(1)两端且部分插入所述约束金属长管(1)中的两个推压子单元;
    所述动力控制单元(2)用于为所述推压单元(3)提供动力,推动所述两个推压子单元相对于所述约束金属长管(1)运动,以将所述粉末样品挤压为样品柱,并将所述样品柱推至所述检测口(102)处;
    所述光谱检测模块利用激光烧蚀所述检测口(102)处的样品柱以产生光信号,并根据所述光信号对应的光谱信息生成所述样品柱的检测结果。
  2. 如权利要求1所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述动力控制单元(2)包括空压机(201)以及与所述空压机(201)相连的两条控制支路;
    所述两个推压子单元均包括气缸、气缸内杆和推杆,所述推杆的一端连接所述气缸内杆,所述推杆的另一端插入所述约束金属长管(1)中,气缸与所述控制支路一一对应连通;
    所述空压机(201)产生的两条气流支路分别经所述两条控制支路调整速度和方向后,进入各所述控制支路连通的气缸中,以推动所述气缸内杆和推杆相对于所述约束金属长管(1)运动。
  3. 如权利要求1所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述动力控制单元(2)包括空压机(201)、液压泵(202) 以及与所述液压泵(202)相连的两条控制支路;
    所述两个推压子单元均包括液压缸、液压缸内杆和推杆,所述推杆的一端连接所述液压缸内杆,所述推杆的另一端插入所述约束金属长管(1)中,液压缸与所述控制支路一一对应连通;
    所述液压泵(202)产生的两条液压支路分别经所述两条控制支路调整速度和方向后,进入各所述控制支路连通的液压缸中,以推动所述液压缸内杆和推杆相对于所述约束金属长管(1)运动。
  4. 如权利要求1所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述动力控制单元(2)包括空压机(201)、位于所述约束金属长管(1)两端的两个导轨、以及各所述导轨上设置的伺服电机,所述伺服电机可在所述导轨上移动;
    所述两个推压子单元均包括推杆,所述伺服电机与推杆一一对应连接,以驱动所述推杆相对于所述约束金属长管(1)运动。
  5. 如权利要求2-4任一项所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,还包括流量计(4)和喷嘴(5);所述喷嘴(5)在所述检测口(102)侧上方水平放置,并通过所述流量计(4)连接至所述空压机(201);
    所述空压机(201)产生的第三气流支路经所述流量计(4)调速后进入所述喷嘴(5),以吹散激光烧蚀过程中产生的粉尘。
  6. 如权利要求2-4任一项所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述推杆与所述约束金属长管(1)的内腔相接触,且所述推杆的中心轴线与所述约束金属长管(1)的中心轴线相重合。
  7. 如权利要求1所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述约束金属长管(1)侧面开设有回收口(103),所述检测口(102)位于所述进样口(101)与回收口(103)之间;
    检测完成后,所述推压单元(3)还用于将所述样品柱推至所述回收口 (103)处,使得所述样品柱在重力作用下从所述回收口(103)处掉落。
  8. 如权利要求1所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述光谱检测模块包括激光器(601)、聚焦透镜(602)、采集头(603)、光谱仪(604)和数据处理单元(605);所述聚焦透镜(602)和激光器(601)依次位于所述检测口(102)上方,所述光谱仪(604)与所述采集头(603)和数据处理单元(605)连接,所述采集头(603)位于所述检测口(102)侧上方。
  9. 如权利要求8所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述采集头(603)以旁轴的方式对所述光信号进行采集,并通过多芯光纤将采集到的光信号传输至所述光谱仪(604)中。
  10. 如权利要求7-9任一项所述的基于激光诱导击穿光谱的在线粉末检测装置,其特征在于,所述检测口(102)自下往上包括内壁竖直的开口和内壁向外倾斜的开口。
PCT/CN2020/138497 2020-12-15 2020-12-23 一种基于激光诱导击穿光谱的在线粉末检测装置 WO2022126695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011479566.9A CN112595705B (zh) 2020-12-15 2020-12-15 一种基于激光诱导击穿光谱的在线粉末检测装置
CN202011479566.9 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022126695A1 true WO2022126695A1 (zh) 2022-06-23

Family

ID=75196071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138497 WO2022126695A1 (zh) 2020-12-15 2020-12-23 一种基于激光诱导击穿光谱的在线粉末检测装置

Country Status (2)

Country Link
CN (1) CN112595705B (zh)
WO (1) WO2022126695A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117589750A (zh) * 2024-01-18 2024-02-23 山东智谷碳素研究院有限公司 一种基于libs技术的石油焦成分分析检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928272A (zh) * 2012-10-24 2013-02-13 河南理工大学 型煤煤样制作工具及方法
CN106124481A (zh) * 2016-04-21 2016-11-16 天津智巧数据科技有限公司 一种适于奶粉多组分重金属无损检测方法
CN107219108A (zh) * 2017-07-13 2017-09-29 山东华唐环保科技有限公司 采制样传输检测一体化入炉煤在线智能检测系统
CN108333171A (zh) * 2018-04-23 2018-07-27 天津大学 基于激光诱导击穿光谱检测乳粉中微量元素含量的方法
CN210401222U (zh) * 2019-03-05 2020-04-24 南京奥能科技有限公司 一种新型的煤粉管道在线煤质分析仪

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964860A (zh) * 2015-06-26 2015-10-07 国电新能源技术研究院 一种煤质特性在线检测装置
CN104931299B (zh) * 2015-07-06 2017-05-17 山西大学 用于激光诱导检测的均匀连续工业粉末取样装置及方法
CN105241851A (zh) * 2015-09-25 2016-01-13 清华大学 基于激光诱导击穿光谱技术的固体粉末在线检测装置
CN105628438A (zh) * 2015-12-28 2016-06-01 中国科学院光电研究院 用于激光诱导等离子体光谱分析的冶炼在线取样设备
CN107271427A (zh) * 2017-06-29 2017-10-20 沈阳理工大学 一种激光诱导击穿固体光谱的增强装置及其使用方法
CN207396354U (zh) * 2017-11-09 2018-05-22 宜春学院 一种用于粉末成分在线检测的激光诱导击穿光谱装置
CN109557278A (zh) * 2018-12-30 2019-04-02 湖北凯瑞知行智能装备有限公司 一种libs煤质在线智能快速检测系统
CN110455782A (zh) * 2019-09-10 2019-11-15 中国科学院沈阳自动化研究所 一种固体样品元素成分快速检测系统
CN111458298A (zh) * 2020-06-05 2020-07-28 江西农业大学 饲料中铜锌含量同步精准限域libs快速绿色检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928272A (zh) * 2012-10-24 2013-02-13 河南理工大学 型煤煤样制作工具及方法
CN106124481A (zh) * 2016-04-21 2016-11-16 天津智巧数据科技有限公司 一种适于奶粉多组分重金属无损检测方法
CN107219108A (zh) * 2017-07-13 2017-09-29 山东华唐环保科技有限公司 采制样传输检测一体化入炉煤在线智能检测系统
CN108333171A (zh) * 2018-04-23 2018-07-27 天津大学 基于激光诱导击穿光谱检测乳粉中微量元素含量的方法
CN210401222U (zh) * 2019-03-05 2020-04-24 南京奥能科技有限公司 一种新型的煤粉管道在线煤质分析仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117589750A (zh) * 2024-01-18 2024-02-23 山东智谷碳素研究院有限公司 一种基于libs技术的石油焦成分分析检测装置
CN117589750B (zh) * 2024-01-18 2024-06-07 山东智谷碳素研究院有限公司 一种基于libs技术的石油焦成分分析检测装置

Also Published As

Publication number Publication date
CN112595705A (zh) 2021-04-02
CN112595705B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN101468393B (zh) 一种金属粉末激光成形系统的金属粉末送给装置
CN104816086B (zh) 一种管道内壁激光加工头
CN111037052B (zh) 电弧增材制造成形检测反馈补偿系统及检测反馈补偿方法
EP2951643B1 (en) Euv light source using cryogenic droplet targets in mask inspection
WO2022126695A1 (zh) 一种基于激光诱导击穿光谱的在线粉末检测装置
CN101148760B (zh) 激光加工成形制造光内送粉工艺与光内送粉喷头
CN109676135A (zh) 一种激光增材制造视觉灰度值差异在线监测与缺陷修复装置
JP6932020B2 (ja) レーザ加工方法及び装置
CN108098146A (zh) 一种非平整面高精度激光增材成形方法
CN109269985B (zh) 金属移动熔池内部缺陷的高频超声在线监测方法
CN101274390B (zh) 一种用于激光快速成形的同轴喷嘴系统
Liu et al. Keyhole behaviors influence weld defects in plasma arc welding process
CN216622173U (zh) 一种遥测式激光诱导击穿光谱检测系统
CN105904105B (zh) 一种改善孔锥度的激光打孔装置及方法
JP2016500026A (ja) 手操作可能な溶接ガン
CN106346145A (zh) 一种快速钻孔的二氧化碳激光钻孔设备
CN106425115A (zh) 一种激光加工设备及其检测激光穿孔的装置
CN111618435B (zh) 激光焊接的气体保护与除尘装置、焊接方法及控制系统
CN106191384B (zh) 基于导轨运动的金属板料激光喷丸成形动态自适应装备及方法
US20230304936A1 (en) Online detection device and method for underwater elements based on libs technology
CN106196110A (zh) 一种可调频声波发生装置
CN201168781Y (zh) 一种激光成形系统的金属粉末送给装置
CN106541213A (zh) 一种水射流与激光耦合木材切割方法
CN106033057A (zh) 一种硅片表面颗粒污染成分无损快速在线检测方法及系统
CN115046988A (zh) 一种基于libs技术的熔体浸入式探针及在线检测装置及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965708

Country of ref document: EP

Kind code of ref document: A1