WO2022124633A1 - 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법 - Google Patents

극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2022124633A1
WO2022124633A1 PCT/KR2021/017164 KR2021017164W WO2022124633A1 WO 2022124633 A1 WO2022124633 A1 WO 2022124633A1 KR 2021017164 W KR2021017164 W KR 2021017164W WO 2022124633 A1 WO2022124633 A1 WO 2022124633A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
pressure vessel
steel plate
cryogenic
Prior art date
Application number
PCT/KR2021/017164
Other languages
English (en)
French (fr)
Inventor
홍순택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202180082475.8A priority Critical patent/CN116685705A/zh
Priority to JP2023535047A priority patent/JP2023554296A/ja
Priority to US18/265,122 priority patent/US20240002970A1/en
Priority to EP21903679.5A priority patent/EP4261312A1/en
Publication of WO2022124633A1 publication Critical patent/WO2022124633A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet for a pressure vessel having excellent cryogenic toughness and a method for manufacturing the same.
  • High-strength high-strength steel plate for low-temperature use must be able to be used as a structural material for cryogenic use itself during construction, so high-strength and cryogenic toughness properties are required.
  • a high-strength hot-rolled steel manufactured through a normal normalizing process has a mixed structure of ferrite and pearlite, and as an example of the prior art, the invention described in Korean Patent Application Laid-Open No. 2012-0011289 can be cited.
  • Patent Document 0001 Republic of Korea Patent Publication No. 2012-0011289 (2012.02.07)
  • An object of the present invention is to provide a steel sheet for a cryogenic pressure vessel having high strength and excellent cryogenic toughness and a method for manufacturing the same.
  • the present invention relates to a steel sheet for a cryogenic pressure vessel having a tensile strength of 750 MPa class, and having strength and lateral expansion characteristics that can be used stably at a cryogenic temperature of -150° C. or less, and a method for manufacturing the same.
  • One aspect of the present invention for achieving the above object is by weight%, C: 0.05 to 0.15%, Si: 0.20 to 0.35%, Mn: 0.5 to 1.5%, P: 0.012% or less, S: 0.015% or less, Al Reheating the slab containing: 0.02 to 0.10%, Ni: 6.01 to 6.49%, Mo: 0.2 to 0.4%, Cr: 0.05 to 0.25%, and the balance of Fe and unavoidable impurities; hot rolling and air cooling the reheated steel sheet; First heat-treating the air-cooled steel sheet at 800 to 880° C. for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness (mm) of the slab] and first water cooling; The first water-cooled steel sheet at 700 to 780 ° C. ⁇ 2.4 ⁇ t +
  • It relates to a method for manufacturing a steel plate for a container.
  • C 0.05 to 0.15%
  • Si 0.20 to 0.35%
  • Mn 0.5 to 1.5%
  • P 0.012% or less
  • S 0.015% or less
  • Al 0.02 to 0.10%
  • Ni 6.01 to 6.49%
  • Mo 0.2 to 0.4%
  • Cr 0.05 to 0.25%
  • the steel microstructure is 1 to 9.5% of retained austenite based on area fraction
  • It relates to a steel sheet for a cryogenic pressure vessel consisting of a three-phase mixed structure of tempered bainite 40 to 80%, and the remainder tempered martensite.
  • the method for manufacturing a steel sheet for a cryogenic pressure vessel according to the present invention according to the present invention is performed by performing a process of heat-treating an air-cooled steel sheet twice at a temperature of 800 to 880°C and 700 to 780°C after hot rolling, thereby remaining based on area fraction
  • a steel sheet for a cryogenic pressure vessel having a steel microstructure of a three-phase mixed structure of austenite 1 to 9.5%, tempered bainite 40 to 80%, and the remainder tempered martensite can be manufactured.
  • the steel sheet for cryogenic pressure vessel may have strength and lateral expansion characteristics that can be used stably at a cryogenic temperature of -150° C. or less.
  • the steel sheet for cryogenic pressure vessels has excellent strength characteristics of yield strength of 610 MPa or more and tensile strength of 750 MPa or more, and has excellent cryogenic toughness characteristics of 190J or more of Charpy impact energy at -195°C.
  • the steel sheet for cryogenic pressure vessels is composed of a three-phase mixed structure of retained austenite 1 to 9.5%, tempered bainite 40 to 80%, and the remainder tempered martensite, so it can have excellent lateral expansion characteristics of 30% or more of elongation. .
  • One aspect of the present invention is by weight%, C: 0.05 to 0.15%, Si: 0.20 to 0.35%, Mn: 0.5 to 1.5%, P: 0.012% or less, S: 0.015% or less, Al: 0.02 to 0.10%, Reheating the slab containing Ni: 6.01 to 6.49%, Mo: 0.2 to 0.4%, Cr: 0.05 to 0.25%, and the balance Fe and unavoidable impurities; hot rolling and air cooling the reheated steel sheet; First heat-treating the air-cooled steel sheet at 800 to 880° C. for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness (mm) of the slab] and first water cooling; Secondary heat treatment for the first water-cooled steel sheet at 700 to 780 ° C.
  • the method for manufacturing a steel sheet for a cryogenic pressure vessel performs a process of heat-treating an air-cooled steel sheet twice at a temperature of 800 to 880°C and 700 to 780°C after hot rolling, so that residual austen A steel sheet for a cryogenic pressure vessel having a steel microstructure of a three-phase mixed structure of nitrite 1 to 9.5%, tempered bainite 40 to 80%, and the remainder tempered martensite can be manufactured.
  • the steel sheet for cryogenic pressure vessel may have strength and lateral expansion characteristics that can be used stably at a cryogenic temperature of -150° C. or less. Specifically, the steel sheet for cryogenic pressure vessel has excellent strength characteristics of yield strength of 610 MPa or more and tensile strength of 750 MPa or more, and Charpy impact energy at -195 ° C. It can have excellent cryogenic toughness characteristics of 190J or more.
  • the steel sheet for cryogenic pressure vessels is composed of a three-phase mixed structure of retained austenite 1 to 9.5%, tempered bainite 40 to 80%, and the remainder tempered martensite, so it can have excellent lateral expansion characteristics of 30% or more of elongation. .
  • the unit is % by weight.
  • the content of carbon (C) may be 0.05 to 0.15%. This is because, when the content of C is less than 0.05%, the strength of the matrix itself is lowered, and when it exceeds 0.15%, the weldability of the steel sheet is greatly impaired.
  • a more preferable lower limit may be 0.07%, and a more preferable upper limit may be 0.13%.
  • the content of silicon (Si) may be 0.20 to 0.35%.
  • Si is a component added for the deoxidation effect, the solid solution strengthening effect, and the impact transition temperature increasing effect, and it is preferable to add 0.20% or more in order to achieve such an additive effect.
  • a more preferable lower limit may be 0.23%, and a more preferable upper limit may be 0.32%.
  • the content of manganese (Mn) may be 0.5 to 1.5%.
  • Mn forms MnS, which is a non-metallic inclusion stretched together with S, to reduce room temperature elongation and low temperature toughness, so it is preferable to manage it at 1.5% or less.
  • the amount of Mn added is preferably limited to 0.5 to 1.5%.
  • a more preferable lower limit may be 0.52%, and a more preferable upper limit may be 1.2%.
  • the content of aluminum (Al) may be 0.02 to 0.10%.
  • Al is one of the strong deoxidizers in the steelmaking process together with Si, and when it is less than 0.02%, the effect is insignificant, and when 0.10% or more is added, the manufacturing cost increases, so it is preferable to limit the content to 0.02 to 0.10%.
  • a more preferable lower limit may be 0.025%, and a more preferable upper limit may be 0.09%.
  • phosphorus (P) is an element that impairs low-temperature toughness, but it requires an excessive cost to remove it in the steelmaking process, so it is desirable to manage it within the range of 0.012% or less.
  • sulfur (S) is also an element that adversely affects low-temperature toughness along with P, but like P, it may take an excessive cost to remove it in the steelmaking process, so 0.015% or less It is appropriate to manage within.
  • the content of nickel (Ni) may be 6.01 to 6.49%.
  • Ni is the most effective element for improving low-temperature toughness.
  • the addition amount is less than 6.01%, it causes a decrease in low-temperature toughness, and if it is added in excess of 6.49%, it causes an increase in manufacturing cost, so it is preferably added within the range of 6.01 to 6.49%.
  • a more preferable lower limit may be 6.08%, and a more preferable upper limit may be 6.45%.
  • molybdenum (Mo) is a very important element for improving hardenability and strength, and addition of less than 0.2% cannot expect the effect, and since it is an expensive element, 0.2 to 0.4% It is preferable to limit it to More preferably, it may be 0.32% or less.
  • chromium (Cr) is an important element capable of securing strength even at low temperature and room temperature. Since the addition of less than 0.05% cannot expect the effect and is an expensive element, it is preferable to limit it to 0.05 to 0.25%. A more preferable upper limit may be 0.22%.
  • the remaining component is iron (Fe).
  • Fe iron
  • the steel sheet for cryogenic pressure vessel according to the present invention is subjected to two heat treatment processes, and thus retained austenite 1 to 9.5%, tempered bainite 40 to 80%, and the remainder tempered martens based on the area fraction It may have a steel microstructure consisting of a three-phase mixed structure of the site. Through this, it is possible to secure a steel sheet for cryogenic pressure vessels with excellent strength and low-temperature toughness characteristics.
  • the area fraction of tempered bainite is less than 40%, the amount of tempered martensite may be excessive, so that the low-temperature toughness of the steel sheet may be deteriorated, and it may be difficult to secure an elongation of 30% or more.
  • the area fraction of tempered bainite exceeds 80%, it may be difficult to secure the target strength of the steel sheet.
  • the area fraction of retained austenite is less than 1.0%, low-temperature toughness properties may be impaired and it may be difficult to secure an elongation of 30% or more.
  • it exceeds 9.5% the strength is lowered, so it is preferable to limit it to a range of 1.0 to 9.5%.
  • the method for manufacturing a steel sheet for a cryogenic pressure vessel comprises the steps of reheating the slab; hot rolling and air cooling the reheated steel sheet; First heat-treating the air-cooled steel sheet at 800 to 880° C. for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness (mm) of the slab] and first water cooling; Secondary heat treatment for the first water-cooled steel sheet at 700 to 780 ° C. for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness (mm) of the slab] and secondary water cooling; and tempering the secondary water-cooled steel sheet.
  • a slab satisfying the above-described composition is prepared.
  • Molten steel whose composition is adjusted to the above-mentioned composition in the steelmaking step can be manufactured into a slab through continuous casting. Since the slab composition and content have been described above, the overlapping description will be omitted.
  • the manufactured slab is reheated.
  • the subsequent hot rolling process can be smoothly performed, and the slab can be homogenized.
  • Slab reheating temperature may be 1000 to 1200 °C. When the reheating temperature is less than 1000°C, it is difficult to dissolve the solute atoms, whereas when it exceeds 1200°C, the austenite grain size becomes too coarse, which is undesirable because it impairs the physical properties of the steel.
  • the heated slab is hot-rolled to manufacture a hot-rolled steel sheet.
  • hot rolling is performed at a reduction ratio of 5 to 30% per pass, and rolling can be finished at a temperature of 780° C. or higher.
  • the end of rolling is preferably completed at a temperature of 780°C or higher.
  • the upper limit of the rolling end temperature is not particularly limited, but may be 900°C.
  • Hot-rolled steel sheet after hot rolling can be air-cooled.
  • the air cooling method is not particularly limited, and it is sufficient if it is carried out under the conditions used in the art.
  • the air-cooled steel sheet may be subjected to primary heat treatment, specifically, heated at 800 to 880° C. for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness of the slab (mm)], and primary water cooling will go through a process If the heat treatment temperature before water cooling is less than 800°C, austenitization does not occur, making it difficult to secure target strength and elongation. If it exceeds 880°C, the grain size is too coarse, which impairs toughness.
  • the primary water cooling is performed at a temperature of 150° C. or less, and when the water cooling temperature exceeds 150° C., the strength of the steel sheet may be reduced.
  • the water-cooled steel sheet may be subjected to secondary heat treatment, specifically, heated at 700 to 780° C. for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness of the slab (mm)], and secondary water cooling will go through a process If the heat treatment temperature before water cooling is less than 700°C, it is difficult to re-dissolve solid-solute elements, making it difficult to secure target strength and elongation.
  • the secondary water cooling is also performed at a temperature of 150° C. or less, and when the water cooling temperature exceeds 150° C., the strength of the steel sheet may be reduced.
  • the secondary water-cooled steel sheet can be tempered, and specifically, it can be tempered for ⁇ 2.4 ⁇ t + (10 to 40) ⁇ minutes [t: thickness (mm) of the slab] in a temperature range of 600 to 750 ° C. have. If the temperature during the tempering treatment is less than 600 °C, it is difficult to precipitation of fine precipitates, so it is difficult to secure the target strength.
  • the holding time is less than ⁇ (2.4 ⁇ t)+10 ⁇ minutes during the tempering treatment in the above temperature range, it is difficult to homogenize the tissue, whereas if it exceeds ⁇ (2.4 ⁇ t)+40 ⁇ minutes, it is not preferable because it impairs productivity. Can not do it.
  • the air-cooled sheet material was subjected to primary heat treatment, secondary heat treatment and tempering at the temperature and time shown in Table 2 below to obtain a steel sheet for a cryogenic pressure vessel.
  • water cooling treatment was performed at 150 ° C. or less.
  • the notched specimen was subjected to a Charpy impact test and evaluated as a Charpy impact energy (Ec, charpy impact energy, J) value.
  • Ec Charpy impact energy
  • the steel microstructure after tempering treatment had an area fraction of 1.0 to 9.5% of retained austenite. (RO) and a three-phase mixed structure of 40-80% tempered bainite (TB) and the remainder tempered martensite (TM) can be obtained, and yield strength and tensile strength are about 100 MPa compared to Comparative Example It was found that the elongation was improved by more than 5% while being high, and the cryogenic impact energy at -195°C was also increased by more than 150J.
  • RO area fraction of 1.0 to 9.5% of retained austenite.
  • TB tempered bainite
  • TM remainder tempered martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 중량%로, C: 0.05 내지 0.15%, Si: 0.20 내지 0.35%, Mn: 0.5 내지 1.5%, P: 0.012% 이하, S: 0.015% 이하, Al: 0.02 내지 0.10%, Ni: 6.01 내지 6.49%, Mo: 0.2 내지 0.4%, Cr: 0.05 내지 0.25% 및 잔부의 Fe와 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계; 상기 재가열된 강판을 열간압연하고 공냉하는 단계; 상기 공냉된 강판을 800 내지 880℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 1차 열처리하고 1차 수냉하는 단계; 상기 1차 수냉된 강판을 700 내지 780℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 2차 열처리하고 2차 수냉하는 단계; 및 상기 2차 수냉된 강판을 템퍼링(tempering)하는 단계;를 포함하는 극저온 압력용기용 강판의 제조방법, 및 이로부터 제조된 극저온 압력용기용 강판에 관한 것이다.

Description

극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법
본 발명은 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법에 관한 것이다.
저온용 고강도 후판강 재료는 시공 시 그 자체가 극저온용 구조재로 이용될 수 있어야 하므로 고강도 및 극저온 인성 특성이 요구된다.
통상의 노말라이징(normalizing) 처리를 통하여 제조된 고강도 열연강재는 페라이트와 펄라이트의 혼합조직을 가지며, 이에 대한 종래기술의 일 예로 대한민국 공개특허 제2012-0011289호에 기재된 발명을 들 수 있다.
상기 공개특허에는, 중량%로, C: 0.08 ~ 0.15%, Si: 0.2 ~ 0.3%, Mn: 0.5 ~ 1.2%, P: 0.01 ~ 0.02%, S: 0.004 ~ 0.006%, Ti: 0% 초과 내지 0.01% 이하, Mo: 0.05 ~ 0.1%, Ni: 3.0 ~ 5.0% 및 나머지 Fe과 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 500 ㎫급 LPG용 고강도 강재를 제시하고 있으며, 그 강 조성 성분에서 Ni과 Mo를 첨가함을 특징으로 하고 있다.
그런데 상기 공개특허에 기재된 발명은 통상의 노말라이징을 통하여 제조된 강재이므로 비록 Ni 등을 첨가하여도 강재의 극저온 횡팽창 특성이 충분하지 못한 문제가 있다.
이에 따라, 극저온 충격인성 특성이 우수하면서도 극저온 횡팽창 특성이 향상된 강재의 개발에 대한 요구가 대두되고 있다.
[선행기술문헌]
(특허문헌 0001) 대한민국 공개특허공보 제2012-0011289호(2012.02.07)
본 발명이 이루고자 하는 기술적 과제는 고강도 및 우수한 극저온 인성을 가지는 극저온 압력용기용 강판 및 그 제조방법을 제공함에 그 목적이 있다.
보다 구체적으로 본 발명은 인장강도 750 ㎫급을 확보할 수 있으면서, -150℃ 이하의 극저온에서 안정적으로 사용이 가능한 강도 및 횡팽창 특성을 가지는 극저온 압력용기용 강판 및 그 제조 방법에 관한 것이다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 일 양태는 중량%로, C: 0.05 내지 0.15%, Si: 0.20 내지 0.35%, Mn: 0.5 내지 1.5%, P: 0.012% 이하, S: 0.015% 이하, Al: 0.02 내지 0.10%, Ni: 6.01 내지 6.49%, Mo: 0.2 내지 0.4%, Cr: 0.05 내지 0.25% 및 잔부의 Fe와 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계; 상기 재가열된 강판을 열간압연하고 공냉하는 단계; 상기 공냉된 강판을 800 내지 880℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 1차 열처리하고 1차 수냉하는 단계; 상기 1차 수냉된 강판을 700 내지 780℃에서 {2.4×t +
(10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 2차 열처리하고 2차 수냉하는 단계;
및 상기 2차 수냉된 강판을 템퍼링(tempering)하는 단계;를 포함하는 극저온 압력
용기용 강판의 제조방법에 관한 것이다.
또한, 본 발명의 다른 일 양태는 중량%로, C: 0.05 내지 0.15%, Si: 0.20 내지 0.35%, Mn: 0.5 내지 1.5%, P: 0.012% 이하, S: 0.015% 이하, Al: 0.02 내지 0.10%, Ni: 6.01 내지 6.49%, Mo: 0.2 내지 0.4%, Cr: 0.05 내지 0.25%, 및 잔부의 Fe와 불가피한 불순물을 포함하며, 강 미세조직은 면적분율 기준 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직으로 이루어진 극저온 압력용기용 강판에 관한 것이다.
본 발명에 따른 본 발명에 따른 극저온 압력용기용 강판의 제조방법은 열간압연 후 공냉된 강판을 800 내지 880℃의 온도 및 700 내지 780℃의 온도에서 두 번 열처리하는 공정을 수행함으로써 면적분율 기준 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직의 강 미세조직을 가진 극저온 압력용기용 강판을 제조할 수 있다.
상기 극저온 압력용기용 강판은 -150℃ 이하의 극저온에서 안정적으로 사용이 가능한 강도 및 횡팽창 특성을 가질 수 있다. 구체적으로, 상기 극저온 압력용기용 강판은 항복강도 610 ㎫ 이상 및 인장강도 750 ㎫ 이상의 우수한 강도 특성을 가지며, -195℃에서의 샤르피 충격 에너지 190J 이상의 뛰어난 극저온 인성 특성을 가질 수 있다.
특히 상기 극저온 압력용기용 강판은 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직으로 이루어져 연신율 30% 이상의 뛰어난 횡팽창 특성을 가질 수 있다.
이하 본 발명에 따른 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법에 대하여 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 양태는 중량%로, C: 0.05 내지 0.15%, Si: 0.20 내지 0.35%, Mn: 0.5 내지 1.5%, P: 0.012% 이하, S: 0.015% 이하, Al: 0.02 내지 0.10%, Ni: 6.01 내지 6.49%, Mo: 0.2 내지 0.4%, Cr: 0.05 내지 0.25% 및 잔부의 Fe와 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계; 상기 재가열된 강판을 열간압연하고 공냉하는 단계; 상기 공냉된 강판을 800 내지 880℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 1차 열처리하고 1차 수냉하는 단계; 상기 1차 수냉된 강판을 700 내지 780℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 2차 열처리하고 2차 수냉하는 단계; 및 상기 2차 수냉된 강판을 템퍼링(tempering)하는 단계;를 포함하는 극저온 압력용기용 강판의 제조방법에 관한 것이다.
이와 같이, 본 발명에 따른 극저온 압력용기용 강판의 제조방법은 열간압연 후 공냉된 강판을 800 내지 880℃의 온도 및 700 내지 780℃의 온도에서 두 번 열처리하는 공정을 수행함으로써 면적분율 기준 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직의 강 미세조직을 가진 극저온 압력용기용 강판을 제조할 수 있다.
상기 극저온 압력용기용 강판은 -150℃ 이하의 극저온에서 안정적으로 사용이 가능한 강도 및 횡팽창 특성을 가질 수 있다. 구체적으로, 상기 극저온 압력용기용 강판은 항복강도 610 ㎫ 이상 및 인장강도 750 ㎫ 이상의 우수한 강도특성을 가지며, -195℃에서의 샤르피 충격 에너지 190J 이상의 뛰어난 극저온 인성특성을 가질 수 있다.
특히 상기 극저온 압력용기용 강판은 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직으로 이루어져 연신율 30% 이상의 뛰어난 횡팽창 특성을 가질 수 있다.
이하, 본 발명의 일 예에서의 합금 성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 탄소(C)의 함량은 0.05 내지 0.15%일 수 있다. C의 함량이 0.05% 미만인 경우에는 기지 상의 자체 강도가 저하되고, 0.15%를 초과하는 경우에는 강판의 용접성을 크게 해치기 때문이다. 보다 바람직한 하한은 0.07%일 수 있으며, 보다 바람직한 상한은 0.13%일 수 있다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 규소(Si)의 함량은 0.20 내지 0.35%일 수 있다. Si은 탈산 효과, 고용 강화 효과 및 충격 천이 온도 상승 효과를 위하여 첨가되는 성분으로서, 이러한 첨가 효과를 달성하기 위해서는 0.20% 이상 첨가하는 것이 바람직하다. 하지만, 0.35%를 초과하여 첨가되면 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성되므로 그 함량을 0.20 내지 0.35%로 제한함이 바람직하다. 보다 바람직한 하한은 0.23%일 수 있으며, 보다 바람직한 상한은 0.32%일 수 있다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 망간(Mn)의 함량은 0.5 내지 1.5%일 수 있다. Mn은 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 1.5% 이하로 관리하는 것이 바람직하다. 그러나, 본 발명의 성분 특성상 Mn이 0.5% 미만이 되면 적절한 강도를 확보하기 어려우므로 Mn의 첨가량은 0.5 내지 1.5%로 제한함이 바람직하다. 보다 바람직한 하한은 0.52%일 수 있으며, 보다 바람직한 상한은 1.2%일 수 있다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 알루미늄(Al)의 함량은 0.02 내지 0.10%일 수 있다. Al은 Si와 더불어 제강 공정에서 강력한 탈산제의 하나이며, 0.02% 미만에서는 그 효과가 미미하고 0.10% 이상의 첨가 시에는 제조원가가 상승하므로 그 함량을 0.02 내지 0.10%로 한정함이 바람직하다. 보다 바람직한 하한은 0.025%일 수 있으며, 보다 바람직한 상한은 0.09%일 수 있다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 인(P)은 저온인성을 해치는 원소이나 제강 공정에서 제거하는데 과다한 비용이 소요되므로 0.012% 이하의 범위 내에서 관리함이 소망스럽다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 황(S) 역시 P와 더불어 저온 인성에 악영향을 주는 원소이지만 P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로 0.015% 이하의 범위 내에서 관리함이 적절하다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 니켈(Ni)의 함량은 6.01 내지 6.49%일 수 있다. Ni은 저온 인성의 향상에 가장 효과적인 원소이다. 그러나 그 첨가량이 6.01% 미만이면 저온인성의 저하를 초래하고, 6.49%를 초과하여 첨가하면 제조비용의 상승을 가져오므로 6.01 내지 6.49%의 범위 내에서 첨가함이 바람직하다. 보다 바람직한 하한은 6.08%일 수 있으며, 보다 바람직한 상한은 6.45%일 수 있다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 몰리브덴(Mo)은 소입성 및 강도 향상에 아주 중요한 원소로 0.2% 미만의 첨가는 그 효과를 기대할 수 없고, 고가원소이므로 0.2 내지 0.4%로 제한하는 것이 바람직하다. 보다 바람직하게는 0.32% 이하일 수 있다.
본 발명의 일 예에 따른 극저온 압력용기용 강판에 있어, 크롬(Cr)은 저온 및 상온에서도 강도를 확보할 수 있는 중요한 원소이다. 0.05% 미만의 첨가는 그 효과를 기대할 수 없고 고가 원소이므로 0.05 내지 0.25%로 제한하는 것이 바람직하다. 보다 바람직한 상한은 0.22%일 수 있다.
이 외 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
한편, 전술한 바와 같이, 본 발명에 따른 극저온 압력용기용 강판은 두 번의 열처리 공정을 거침에 따라 면적분율 기준 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직으로 이루어진 강 미세조직을 가질 수 있다. 이를 통해 강도 및 저온 인성 특성이 우수한 극저온 압력용기용 강판을 확보할 수 있다. 반면, 템퍼드 베이나이트 면적분율이 40% 미만이면 템퍼드 마르텐사이트의 량이 과대해져서 강판의 저온 인성이 열화될 수 있으며 30% 이상의 연신율을 확보하기 어려울 수 있다. 반대로 템퍼드 베이나이트 면적분율이 80%를 초과하면 목표로 하는 강판의 강도를 확보할 수가 어려울 수 있다. 또한 잔류 오스테나이트 면적분율이 1.0% 미만이면 저온 인성 특성을 해치고 30% 이상의 연신율을 확보하기 어려울 수 있다. 반대로 9.5%를 초과하면 강도를 저하시키므로 1.0 내지 9.5%의 범위로 한정하는 것이 바람직하다.
이와 같은 면적분율을 만족하는 3상 혼합조직으로 이루어진 극저온 압력용기용 강판을 제조하기 위해서는 특히 열간압연 후 및 템퍼링 전, 두 번의 열처리 공정을 거치는 것이 중요하다.
전술한 바와 같이, 극저온 압력용기용 강판을 제조하기 위한 방법은, 슬라브를 재가열하는 단계; 상기 재가열된 강판을 열간압연하고 공냉하는 단계; 상기 공냉된 강판을 800 내지 880℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 1차 열처리하고 1차 수냉하는 단계; 상기 1차 수냉된 강판을 700 내지 780℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 2차 열처리하고 2차 수냉하는 단계; 및 상기 2차 수냉된 강판을 템퍼링(tempering)하는 단계;를 포함한다.
먼저, 전술한 조성을 만족하는 슬라브를 준비한다. 제강단계에서 전술한 조성으로 성분이 조정된 용강은 연속주조를 통하여 슬라브로 제조될 수 있다. 슬라브 조성 및 함량에 대해서는 전술하였으므로, 중복되는 설명은 생략한다.
그 후, 제조된 슬라브를 재가열한다. 재가열함으로써 후속되는 열간압연 공정을 원활히 수행하고, 슬라브를 균질화 처리할 수 있다. 슬라브 재가열 온도는 1000 내지 1200℃일 수 있다. 재가열 온도가 1000℃ 미만이면 용질원자의 고용이 어렵고, 반면 1200℃를 초과하게 되면 오스테나이트 결정립 크기가 너무 조대해져 강의 물성을 해치므로 바람직하지 못하다.
그 후, 가열된 슬라브를 열간압연하여 열연강판을 제조한다. 구체적으로, 패스당 5 내지 30%의 압하율로 열간압연하고, 780℃ 이상의 온도에서 압연을 종료할 수 있다.
상기 열간압연 시 패스당 압하율이 5% 미만이면 압연생산성의 저하로 제조비용이 상승하는 문제가 있다. 반면, 30%를 초과하게 되면 압연기에 부하를 발생시켜 설비에 치명적인 악영향을 끼칠 수 있으므로 바람직하지 못하다. 압연 종료는 780℃ 이상의 온도에서 종료하는 것이 바람직하다. 780℃ 이하의 온도까지 압연을 하게 되면 압연기의 부하를 초래하므로 바람직하지 못하다. 압연 종료 온도 상한은 특별히 한정하진 않으나 900℃일 수 있다.
열간압연이 끝난 열연강판은 공냉시킬 수 있다. 이때, 공냉 방법은 특별히 한정되는 것은 아니며, 당업계에서 사용되는 조건으로 실시하면 충분하다.
그 후, 공냉된 강판을 1차 열처리할 수 있으며, 구체적으로 800 내지 880℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 가열하고, 1차 수냉하는 공정을 거치게 된다. 수냉 전 열처리 온도가 800℃ 미만이면 오스테나이트화가 이루어지지 않아 목표로 하는 강도 및 연신율의 확보가 어려우며, 880℃를 초과하면 결정립 크기가 너무 조대하여 인성을 저해하게 된다.
상술한 온도 범위에서 1차 열처리 시 유지 시간이 {(2.4×t)+10}분 미만이면 조직의 균질화가 어렵고, 반면 {(2.4×t)+40}분을 초과하게 되면 생산성을 저해하므로 바람직하지 못하다.
한편, 상기 1차 수냉은 150℃ 이하의 온도로 수행되며, 수냉 온도가 150℃를 초과하면 강판의 강도가 저하될 수 있다.
그 후, 수냉된 강판을 2차 열처리할 수 있으며, 구체적으로 700 내지 780℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 가열하고, 2차 수냉하는 공정을 거치게 된다. 수냉 전 열처리 온도가 700℃ 미만이면 고용 용질 원소들의 재고용이 어려워 목표로 하는 강도 및 연신율의 확보가 어려우며, 반면 그 온도가 780℃를 초과하게 되면 결정립 성장이 일어나 저온 인성을 해칠 우려가 있다.
상술한 온도 범위에서 2차 열처리 시 유지 시간이 {(2.4×t)+10}분 미만이면 조직의 균질화가 어렵고, 반면 {(2.4×t)+40}분을 초과하게 되면 생산성을 저해하므로 바람직하지 못하다.
한편, 상기 2차 수냉 역시 150℃ 이하의 온도로 수행되며, 수냉 온도가 150℃를 초과하면 강판의 강도가 저하될 수 있다.
다음으로, 2차 수냉된 강판은 템퍼링할 수 있으며, 구체적으로 600 내지 750℃의 온도 구간에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)]동안 템퍼링할 수 있다. 상기 템퍼링 처리시 온도가 600℃ 미만이면 미세한 석출물의 석출이 어려워 목표로 하는 강도의 확보가 어려우며, 반면 750℃를 초과하게 되면 석출물의 성장이 일어나 강도 및 저온 인성을 저해할 우려가 있다.
상술한 온도 범위에서 템퍼링 처리시 유지 시간이 {(2.4×t)+10}분 미만이면 조직의 균질화가 어렵고, 반면 {(2.4×t)+40}분을 초과하게 되면 생산성을 저해하므로 바람직하지 못하다.
이하, 실시예를 통해 본 발명에 따른 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 % 단위는 중량%이며, 1 ppm은 0.0001 중량%이다.
[발명예 1 내지 6, 및 비교예 1 내지 8]
하기 표 1과 같은 합금 조성 및 함량을 만족하는 강슬라브를 각각 마련한 후, 이들 강슬라브를 1,100℃에서 2시간 동안 재가열하였다. 그리고 상기 재가열된 강판을 누적 압하율 30%로 열간 압연한한 후 표 2에 기재된 온도에서 압연을 종료하고, 실온에서 공냉하였다.
상기 공냉된 판재는 하기 표 2에 기재된 온도 및 시간으로 1차 열처리, 2차 열처리 및 템퍼링하여 극저온 압력용기용 강판을 수득하였다. 이때, 1차 열처리 및 2차 열처리 후 150 ℃ 이하에서 수냉 처리하였다.
Figure PCTKR2021017164-appb-img-000001
Figure PCTKR2021017164-appb-img-000002
상기 제조된 강판들에 대한 항복강도(YS, Yield Strength, ㎫), 인장강도(TS, Tensile Strength, ㎫) 및 연신율(EL, Elongation, %) 실험을 진행하였고, 저온 인성은 -195℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 샤르피 충격 에너지(Ec, charpy impact energy, J) 값으로 평가하였다. 충격 및 인장시험은 그 시험편에 관한 표준규격 ASTM A370에 준하였고, 시험방법은 각각 ASTM E23 및 ASTM E8에 따라 수행하였다.
Figure PCTKR2021017164-appb-img-000003
상기 표 1 내지 3에 나타난 바와 같이, 강조성 성분 및 제조공정 조건이 본 발명의 범위를 만족하는 발명예 1-6의 경우, 템퍼링처리 후 강 미세조직이 면적분율 1.0~9.5%의 잔류오스테나이트(RO)를 포함하고 40~80%의 템퍼드 베이나이트(TB)와 잔부 템퍼드 마르텐사이트(TM)의 3상 혼합조직을 얻을 수 있어, 항복강도 및 인장강도가 비교예 대비 약 100 ㎫ 정도 높으면서 연신율도 5% 이상 향상되고, -195℃에서의 극저온 충격에너지 역시 150J 이상 증가함을 알 수 있었다.
반면, 1차열처리 온도 또는 2차열처리 온도를 달리한 경우, 표 3에 기재된 바와 같이 미세조직의 면적분율이 본 발명에서 제시한 범위를 벗어나는 것을 알 수 있으며, 이에 따라 강도가 저하되거나 연신율 또는 저온 인성 특성이 저하되는 것을 확인할 수 있었다.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (2)

  1. 중량%로, C: 0.05 내지 0.15%, Si: 0.20 내지 0.35%, Mn: 0.5 내지 1.5%, P: 0.012% 이하, S: 0.015% 이하, Al: 0.02 내지 0.10%, Ni: 6.01 내지 6.49%, Mo: 0.2 내지 0.4%, Cr: 0.05 내지 0.25% 및 잔부의 Fe와 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계;
    상기 재가열된 강판을 열간압연하고 공냉하는 단계;
    상기 공냉된 강판을 800 내지 880℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 1차 열처리하고 1차 수냉하는 단계;
    상기 1차 수냉된 강판을 700 내지 780℃에서 {2.4×t + (10 내지 40)}분 [t: 슬라브의 두께(㎜)] 동안 2차 열처리하고 2차 수냉하는 단계; 및
    상기 2차 수냉된 강판을 템퍼링(tempering)하는 단계;
    를 포함하는 극저온 압력용기용 강판의 제조방법.
  2. 중량%로, C: 0.05 내지 0.15%, Si: 0.20 내지 0.35%, Mn: 0.5 내지 1.5%, P: 0.012% 이하, S: 0.015% 이하, Al: 0.02 내지 0.10%, Ni: 6.01 내지 6.49%, Mo: 0.2 내지 0.4%, Cr: 0.05 내지 0.25%, 및 잔부의 Fe와 불가피한 불순물을 포함하며,
    강 미세조직은 면적분율 기준 잔류 오스테나이트 1 내지 9.5%, 템퍼드 베이나이트 40 내지 80%, 및 잔부 템퍼드 마르텐사이트의 3상 혼합조직으로 이루어진 극저온 압력용기용 강판.
PCT/KR2021/017164 2020-12-10 2021-11-22 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법 WO2022124633A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180082475.8A CN116685705A (zh) 2020-12-10 2021-11-22 具有优异的低温韧性的压力容器用钢板及其制造方法
JP2023535047A JP2023554296A (ja) 2020-12-10 2021-11-22 極低温靭性に優れた圧力容器用鋼板及びその製造方法
US18/265,122 US20240002970A1 (en) 2020-12-10 2021-11-22 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing same
EP21903679.5A EP4261312A1 (en) 2020-12-10 2021-11-22 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0172049 2020-12-10
KR1020200172049A KR102427046B1 (ko) 2020-12-10 2020-12-10 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022124633A1 true WO2022124633A1 (ko) 2022-06-16

Family

ID=81973760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017164 WO2022124633A1 (ko) 2020-12-10 2021-11-22 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20240002970A1 (ko)
EP (1) EP4261312A1 (ko)
JP (1) JP2023554296A (ko)
KR (1) KR102427046B1 (ko)
CN (1) CN116685705A (ko)
WO (1) WO2022124633A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109544A (ja) * 1993-10-08 1995-04-25 Nippon Steel Corp 靱性の良い低降伏比厚鋼板
KR20040054198A (ko) * 2002-12-18 2004-06-25 주식회사 포스코 저온인성이 우수한 고장력 강판의 제조방법
KR20120011289A (ko) 2010-07-28 2012-02-07 현대제철 주식회사 가공성이 용이한 500MPa급 LPG용 고강도 강재 제조방법 및 그 강재
KR20150023724A (ko) * 2012-07-23 2015-03-05 제이에프이 스틸 가부시키가이샤 Ni 함유 후강판
JP2015086403A (ja) * 2013-10-28 2015-05-07 Jfeスチール株式会社 低温用鋼板およびその製造方法
WO2019239761A1 (ja) * 2018-06-12 2019-12-19 Jfeスチール株式会社 極低温用高張力厚鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190201A1 (en) * 2012-12-13 2017-07-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel plate having excellent cryogenic toughness
KR102075206B1 (ko) * 2017-11-17 2020-02-07 주식회사 포스코 충격인성이 우수한 저온용 강재 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109544A (ja) * 1993-10-08 1995-04-25 Nippon Steel Corp 靱性の良い低降伏比厚鋼板
KR20040054198A (ko) * 2002-12-18 2004-06-25 주식회사 포스코 저온인성이 우수한 고장력 강판의 제조방법
KR20120011289A (ko) 2010-07-28 2012-02-07 현대제철 주식회사 가공성이 용이한 500MPa급 LPG용 고강도 강재 제조방법 및 그 강재
KR20150023724A (ko) * 2012-07-23 2015-03-05 제이에프이 스틸 가부시키가이샤 Ni 함유 후강판
JP2015086403A (ja) * 2013-10-28 2015-05-07 Jfeスチール株式会社 低温用鋼板およびその製造方法
WO2019239761A1 (ja) * 2018-06-12 2019-12-19 Jfeスチール株式会社 極低温用高張力厚鋼板およびその製造方法

Also Published As

Publication number Publication date
CN116685705A (zh) 2023-09-01
KR20220082290A (ko) 2022-06-17
JP2023554296A (ja) 2023-12-27
US20240002970A1 (en) 2024-01-04
KR102427046B1 (ko) 2022-07-28
EP4261312A1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2019117536A1 (ko) 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2011081350A2 (ko) 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
WO2017104969A1 (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
WO2017065371A1 (ko) 고강도 강판 및 그 제조방법
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
KR20110000395A (ko) 초고강도 강판 및 그 제조방법
CN112912532B (zh) 抗硫化物应力腐蚀开裂性优异的高强度钢材及其制造方法
WO2020111867A2 (ko) 우수한 저항복비 및 저온인성 특성을 가지는 구조용강 및 그 제조방법
KR102164110B1 (ko) 황화물 응력부식 균열 저항성이 우수한 고강도 강재 및 이의 제조방법
WO2022124633A1 (ko) 극저온 인성이 우수한 압력용기용 강판 및 이의 제조방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2021256590A1 (ko) 철근 및 그 제조방법
WO2021125563A1 (ko) 항복비가 우수한 고강도 열연강판 및 그 제조방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2014098301A1 (ko) 경도와 저온 충격특성이 우수한 스테인리스 열연강판
WO2021045425A1 (ko) 극저온 횡팽창이 우수한 압력용기용 강판 및 그 제조 방법
WO2024143832A1 (ko) 고강도 및 고성형성 강판 및 그 제조방법
WO2022131589A1 (ko) 열처리 특성 및 수소지연파괴 특성이 우수한 고강도 냉간압조용 선재, 열처리부품 및 이들의 제조방법
WO2024005283A1 (ko) 냉연 강판 및 그 제조방법
WO2024071522A1 (ko) 초고강도 강판 및 그 제조방법
KR102409896B1 (ko) 성형성이 우수한 고강도 후물 강판 및 그 제조방법
WO2024058312A1 (ko) 초고강도 냉연 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265122

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180082475.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023535047

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903679

Country of ref document: EP

Effective date: 20230710