WO2022124544A1 - 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법 - Google Patents

면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법 Download PDF

Info

Publication number
WO2022124544A1
WO2022124544A1 PCT/KR2021/013746 KR2021013746W WO2022124544A1 WO 2022124544 A1 WO2022124544 A1 WO 2022124544A1 KR 2021013746 W KR2021013746 W KR 2021013746W WO 2022124544 A1 WO2022124544 A1 WO 2022124544A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
mimicking
dendritic cell
cell
dendritic
Prior art date
Application number
PCT/KR2021/013746
Other languages
English (en)
French (fr)
Inventor
홍진기
하상준
최다희
강태건
김태현
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210104313A external-priority patent/KR20220080681A/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to EP21903591.2A priority Critical patent/EP4292589A1/en
Publication of WO2022124544A1 publication Critical patent/WO2022124544A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464838Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5184Virus capsids or envelopes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/64Medicinal preparations containing antigens or antibodies characterised by the architecture of the carrier-antigen complex, e.g. repetition of carrier-antigen units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/10011Arenaviridae
    • C12N2760/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a nanostructure that mimics immune cells using dendritic cells and a method for manufacturing the same.
  • Cancer is the number one cause of death in Korea.
  • Representative cancer treatment methods may include surgery to remove cancer, radiation therapy, and chemical drug treatment, but these treatment methods have a problem that the prognosis is poor and serious side effects follow.
  • the main cause of cancer development is tumor formation of cancer cells that cannot be removed according to an immune response due to reduced immunity or immune evasion action of cancer cells. Therefore, immunotherapy that can help cancer treatment by increasing the patient's own immune response can be a fundamental cancer treatment. Most of the currently developed immunotherapy drugs are directly injected with drugs that increase immune function, but drug injection still has limitations in that delivery efficiency is very low and additional side effects may exist. Accordingly, research is focused on the development of therapeutic agents that can dramatically increase cancer treatment efficiency, reduce relapse rate and side effects, and increase immune function.
  • the nanoparticle-cellization technology is a technology that physically cloaks the surface of nanoparticles by using the entire cell membrane of a specific cell as a coating material. It is possible to implement the characteristics of a specific cell as it is.
  • doxorubicin After loading doxorubicin on the PLGA core, it is coated with an erythrocyte membrane to remove a solid tumor by manufacturing an immunocompatible nanocarrier, or Nanoparticles with a hybrid cell membrane by simultaneously coating the red blood cell membrane and the cell membrane of cancer cells on melanin nanoparticles Studies have been reported to increase the circulation time in the body and to increase the tumor targeting ability.
  • the present invention aims to realize the effect of cancer treatment according to the increase of the immune response using cells having an antigen-presenting function, out of the material limitations of the prior art. Specifically, by manufacturing a nanostructure that mimics dendritic cells, it directly activates cytotoxic T cells according to the antigen-presenting function of dendritic cells in the body to induce selective death of cancer cells, and enhances the immune response to achieve excellent immunotherapy effects. will provide In addition, it aims to provide a more enhanced immunotherapy effect by using the targeting and photothermal effect of nanoparticles.
  • An object of the present invention is to provide a method for preparing a dendritic cell-mimicking nanostructure that is thermodynamically very stable and is optimized for promoting proliferation and differentiation of T cells during long-term residence in the body.
  • the present invention provides a dendritic cell-mimicking nanostructure using a nanoparticle-cellularization technology. specifically nanoparticle core; and a shell comprising a cell membrane of lipid molecules derived from dendritic cells, wherein the shell includes a bilayer of the lipid molecule.
  • the thickness of the shell may be 5 to 20 nm.
  • the surface coverage of the nanostructure may be 70% or more, preferably the surface coverage is 85% or more.
  • the absolute value of the surface potential of the nanostructure may be smaller than the absolute value of the surface potential of the lipid molecule derived from dendritic cells.
  • the nanostructure may be a fusion of the nanoparticles and the liposome prepared by ultrasonication of the dendritic cell-derived cell membrane.
  • the nanostructure may be prepared by co-extrusion of the liposome and nanoparticles.
  • the particle diameter of the liposome may be 200 nm or less.
  • the surface zeta potential of the nanostructure may be -35 to -25 mV.
  • the present invention also provides a method for manufacturing a dendritic cell mimicking nanostructure, specifically purifying the cell membrane from dendritic cells; forming a cell membrane suspension by treating the cell membrane with ultrasound; filtering the cell membrane suspension through a membrane filter to obtain liposomes; After mixing the nanoparticles and the liposome, filter-compressed to obtain nanoparticles into which the cell membrane is introduced; may include.
  • the nanoparticles and the liposome may be mixed in a volume ratio of 1:150 to 1:300.
  • the step of pulsing the antigen to the nanoparticles introduced into the cell membrane may further include.
  • the antigen may be a peptide or protein derived from a tumor antigen.
  • the average particle diameter of the liposome may be 200 nm or less.
  • the nanoparticles into which the cell membrane is introduced may have a smaller absolute value of the surface potential compared to the nanoparticles before the introduction of the cell membrane.
  • the present invention provides an immunotherapeutic agent comprising the above-described dendritic cell mimicry nanostructure.
  • the present invention provides a pharmaceutical composition for the treatment of cancer comprising the above-described dendritic cell-mimicking nanostructure.
  • the present invention provides a dendritic cell-mimicking nanostructure prepared according to the above-described manufacturing method.
  • the dendritic cell-mimicking nanostructure according to the present invention introduces the antigen-presenting ability of dendritic cells to the surface of nanoparticles as it is, while preserving the antigen-presenting function of dendritic cells and does not die, but additionally increases the targeting function and photothermal effect function of nanoparticles It is possible to provide an immunotherapeutic effect of enhanced function.
  • the dendritic cell-mimicking nanostructure according to the present invention mimics immune cells using dendritic cells, and by introducing a dendritic cell-derived cell membrane as a shell, it stays in the body for a long time and continuously induces proliferation and differentiation of antigen-specific T cells. It can provide the effect of enhancing the immune response.
  • the dendritic cell-mimicking nanostructure according to the present invention can minimize side effects because it utilizes the patient's own immune system, compared to conventional chemotherapy or radiation therapy-based anticancer treatment methods, and is difficult to diagnose micro-sized cancer cells or metastases Cancer cells can be selectively eliminated.
  • the dendritic cell-mimicking nanostructure according to the present invention has anticancer activity by itself and can be used as an immunotherapeutic agent, and stronger anticancer activity can be expected through combination with other anticancer agents, thereby minimizing side effects and showing strong anticancer effect. It can be usefully used in the development of new anticancer drugs.
  • FIG. 1 (a) is a schematic diagram showing a process for producing a dendritic cell-mimicking nanostructure by filter-extruding activated dendritic cells and gold nanoparticles through a nanoparticle-cellization technique
  • (b) is a dendritic cell according to the present invention It is a schematic diagram showing that mimic nanostructures enhance the immune response through binding to T cells.
  • FIG. 2 is a schematic diagram showing the degree of surface coating according to the mixing ratio of nanoparticles and liposomes of the present invention.
  • Figure 3 shows the SEM image and surface coverage of the dendritic cell-mimicking nanostructures prepared according to Example 1 and Comparative Example 1 of the present invention.
  • Example 4 is a graph showing the surface zeta potential of the dendritic cell-mimicking nanostructures prepared according to Example 1 and Comparative Example 1 of the present invention.
  • FIG. 5 is a graph showing the expression rates of CTV, CD44, IFNg, TNF ⁇ , and IL-2 as a result of co-culturing the dendritic cell-mimicking nanostructure according to Experimental Example 1 of the present invention with antigen-specific T cells.
  • FIG. 6 is a graph showing the melting temperature of the dendritic cell-mimicking nanostructure according to Experimental Example 1 of the present invention.
  • NPs gold nanoparticle
  • DCm extracted dendritic cell membrane
  • DCm-NP dendritic cell mimicry nanostructure
  • Antigen pulsed An electron microscope image of a dendritic cell mimicking nanostructure (DCm-NP/Ag (Antigen)) is shown.
  • Gold NP gold nanoparticle
  • DCm dendritic cell membrane
  • DCm-NP dendritic cell mimicry nanostructure
  • DCm-NP/ It is a graph showing the surface zeta potential value of Ag).
  • CD80, CD86, MHC class I, II which are major surface proteins of dendritic cells, on the surface of the dendritic cell-mimicking nanostructure according to Experimental Example 3 of the present invention through FACS.
  • 11a and 11b are a group in which the antigen of each of dendritic cell-mimicking nanostructures (DCm-NP) and bone marrow-derived dendritic cells was not pulsed, the group in which the OVA 257-264 antigen was pulsed, according to Experimental Example 3-5 of the present invention;
  • the T cell proliferation and differentiation efficiencies of the GP 33-41 antigen-pulsed group were shown through an in vitro test.
  • DCm-NP dendritic cell-mimicking nanostructures
  • a dendritic cell-mimicking nanostructure according to the present invention a method for preparing the same, and a dendritic cell-mimicking nanostructure prepared according to the method for preparing the same, and an immunotherapeutic agent and a pharmaceutical composition for cancer treatment comprising the same will be described in detail.
  • the present invention provides a dendritic cell-mimicking nanostructure using a nanoparticle-cellularization technique.
  • Nanoparticle-cellularization technology proceeds in three representative steps. (1) extract the cell membrane of living cells without damage, (2) generate nanoliposomes of a predetermined size using a filter extruder, and (3) apply physical force by repeating filter extrusion with nanoparticles to be coated. The entire cell membrane can be transferred to the surface of nanoparticles.
  • nanoparticles that mimic specific cells can be manufactured as desired regardless of cell membranes and types of nanoparticles.
  • the cancer antigen is expressed in dendritic cells differentiated from monocytes in the patient's blood, and then injected back into the cancer patient to activate cancer antigen-specific T cells in the cancer patient's body. strategy was used.
  • this type of dendritic cell cancer treatment vaccine did not show a clear anticancer effect due to limitations such as the short survival period of the injected dendritic cells and the weak ability to stimulate T cells.
  • the present invention is to provide a new type of immunotherapeutic agent to overcome this limitation, and unlike the prior art, it has a long survival period in the body, structural stability is guaranteed even during long-term storage, and has a significantly improved effect in T cell activation ability.
  • the present invention specifically relates to a nanoparticle core; and a shell comprising a cell membrane of lipid molecules derived from dendritic cells, wherein the shell comprises a bilayer of lipid molecules.
  • the nanoparticles have biocompatibility, and preferably have a property of absorbing light in the near-infrared region to generate heat.
  • it may be metal nanoparticles, organic polymer nanoparticles, melanin nanoparticles, graphene nanoparticles, inorganic nanoparticles, or a combination thereof that can exhibit a photothermal effect, but is not necessarily limited thereto.
  • the nanoparticles may be gold nanoparticles having a high reduction potential, which can maintain a safe state in the body, and facilitate surface modification.
  • DCs Dendritic cells
  • APCs antigen presenting cells
  • MHC I/II major histocompatibility complex I/II
  • co-stimulatory molecules such as CD80 and CD86
  • cell adhesion molecules such as ICAM-1 molecules
  • dendritic cells are present in peripheral tissues, receive an activation signal by an external stimulus signal, and mature.
  • foreign protein antigens are presented to MHC class I and II in the form of peptides.
  • the dendritic cells migrate to the draining lymph node, bind to T cells carrying the T cell receptor (TCR) capable of binding to the MHC-peptide complex on the surface of dendritic cells, and include CD80 and CD86 expressed in dendritic cells.
  • TCR T cell receptor
  • the costimulatory ligand adjuvantly binds to CD28, a costimulatory receptor expressed on T cells, and activates T cells completely.
  • Activated T cells proliferate and differentiate, migrate from lymph nodes to peripheral tissues, and eliminate foreign antigen-expressing cells (eg, cancer cells).
  • the present invention introduces a dendritic cell-derived cell membrane to the surface of nanoparticles in order to implement the antigen-presenting function of dendritic cells.
  • the cell membrane of lipid molecules derived from dendritic cells comprises a bilayer of lipid molecules, wherein the first layer of lipid molecules facing the outside of the shell is oriented to exhibit an electrically stronger negative charge compared to the second layer of lipid molecules facing the surface of the nanoparticles it is preferable to have
  • the first lipid molecular layer facing the outside of the shell is the second lipid molecular layer facing the nanoparticle surface It can be oriented to exhibit a stronger negative charge electrically compared to .
  • the dendritic cell-mimicking nanostructure according to the present invention is prepared by extracting the cell membrane of activated dendritic cells and extruding the filter together with the nanoparticles to induce the cell membrane to be introduced into the surface of the nanoparticles.
  • the average thickness of the shell including the cell membrane of the lipid molecule is preferably in the range of 2 to 50 nm, preferably 5 to 20 nm, and is preferably coated thinly and uniformly on the surface of the nanoparticle core.
  • the surface coverage is 70% or more, preferably 85% or more, more preferably 90% or more is thermodynamically stable, and the stability of the nanostructure may be excellent.
  • the dendritic cell-mimicking nanostructure according to the present invention is prepared by fusing liposomes and nanoparticles prepared by ultrasonically treating a dendritic cell-derived cell membrane, and the fusion means co-extrusion by mixing liposomes and nanoparticles. can do.
  • the dendritic cell-derived cell membrane is sonicated and then filtered through a nano-sized membrane filter to obtain liposomes having a particle diameter of 200 nm or less.
  • the particle diameter of the liposome may be preferably 50 to 150 nm.
  • the surface zeta potential of the dendritic cell mimicking nanostructure according to the present invention may be -40 to -20 mV, specifically -35 to -25 mV.
  • the present invention may further include a step of pulsing an antigen to nanoparticles coated with a cell membrane for antigen presentation, thereby completing a nanostructure that functions as a dendritic cell.
  • FIG. 1 (a) shows a schematic diagram for preparing a dendritic cell mimic nanostructure according to an embodiment of the present invention.
  • Bone marrow-derived dendritic cells can be extracted from mice to induce intrinsic and adaptive immune responses. Specifically, when the cell membrane purified from dendritic cells is mixed with a predetermined amount of nanoparticles and subjected to filter extrusion, the outer cell membrane having a relatively high negative zeta potential and the nanoparticles having a negative charge are subjected to electrostatic repulsion ( electrostatic repulsion), the portion having a relatively low negative charge zeta potential interacts with the nanoparticle surface and is adsorbed, and the coating is made according to the right-side-out orientation method, that is, the cell membrane is in a preferred direction.
  • electrostatic repulsion electrostatic repulsion
  • the dendritic cell-mimicking nanostructure according to the present invention not only effectively increases the activity of T cells present in the body, but also can stay in inflammatory sites including lymph nodes as well as tumors due to excellent permeability and long-term stable residence, and at this time,
  • near-infrared irradiation has the advantage of more effectively removing cancer cells and inflammatory cells due to the photothermal effect of nanoparticles.
  • the step of purifying the cell membrane from dendritic cells may be performed through rapid freeze-thaw and centrifugation.
  • a cell membrane suspension of several hundred nanometers or several micrometers can be formed.
  • cell membrane liposomes of a desired size can be obtained.
  • the cell membrane liposomes and nanoparticles can be mixed and filtered to obtain nanoparticles into which the cell membrane is introduced. That is, a form in which the cell membrane of dendritic cells is coated on the surface of the nanoparticles is obtained. At this time, the coated surface coverage can be freely controlled by varying the concentrations of nanoparticles and liposomes.
  • the mixing ratio of nanoparticles and liposomes can be expressed by the value of Equation 1 below, which is expressed as the ratio of the surface area of the cell membrane to the surface area of the nanoparticles.
  • X DM in Formula 1 may be 0.7 to 1.8. More preferably, X DM may be 0.9 to 1.3. In this case, most of the surface of the nanoparticles is coated with a cell membrane, indicating a high surface coverage of 70% or more or 85% or more. However, in the case of having a value of X DM ⁇ 2, overcoating may occur and, on the contrary, thermodynamic stability may be deteriorated.
  • the mixing ratio of nanoparticles and dendritic cell-derived liposomes can be determined according to the type of nanoparticles, the average particle size, and the concentration of dendritic cells. At this time, since the dendritic cells have a radial shape with twig-shaped projections developed, it is preferable to calculate the surface area from the liposome shape.
  • the optimal mixing ratio of nanoparticles and dendritic cell-derived liposomes can be calculated by comprehensively considering the concentration of nanoparticles and liposomes, and the surface area according to the types and sizes of nanoparticles.
  • the number concentration ratio (A) may mean a ratio of the number of nanoparticles and liposomes included per 1 ml. That is, if there is one liposome in 1 ml, it indicates that a number of nanoparticles is included in 1 ml. More precisely, one liposome may be defined as 1 ⁇ 10 6 individuals.
  • the unit surface area ratio (B) is calculated based on the nanoparticles by obtaining the surface area of each unit of nanoparticles and liposomes. At this time, nanoparticles and liposomes were considered spherical, and calculated according to 4 ⁇ r 2 from the average particle diameter of nanoparticles and liposomes.
  • the total surface area ratio is a value obtained by multiplying the number concentration ratio (A) and the unit surface area ratio (B), and the total surface area ratio is a:b.
  • the nanoparticles may be treated with ultrasonic waves to increase the dispersion power before performing coextrusion with the liposome cell membrane filter.
  • it may be preferable to process the ultrasonic waves so that 2-3 nanoparticles can become unit particles. Therefore, in order to realize the ideal surface coverage in Equation 1, it is preferable that the mixing ratio of the ultrasonically treated unit nanoparticles and the liposome be substantially b/3a: 1 to b/2a: 1.
  • the optimal mixing ratio of the nanoparticles and the dendritic cell-derived liposome makes it possible to implement a dendritic cell-mimicking nanostructure having a surface coverage of 100% so that the cell membrane can be coated on the surface of all nanoparticles according to Equation 1 above.
  • the step of pulsing the antigen to the nanoparticles into which the cell membrane is introduced is a step in which the antigen is mounted on the cell membrane by exposing the nanoparticles into dendritic cells to the antigen. It can induce potent antigen-specific T cell activation.
  • the antigen may be a peptide or protein derived from a tumor antigen, and the tumor antigen may be a tumor-associated antigen or a tumor-specific antigen.
  • the tumor antigen may be a protein or peptide derived from ovalbumin (OVA), Lymphocytic choriomeningitis mammarenavirus (LCMV) glycoprotein, and retrovirus protein. More specifically, it may be a cancer antigen peptide or protein of OVA 257-264 , GP 33-41 , and p15E models.
  • HER2/Neu tyrosinase
  • gp100 a tumor-specific antigen
  • MART HPV E6/E7
  • EBV EBNA-1 carcinoembryonic antigen
  • a-fetoprotein GM2, GD2
  • testis antigen prostate antigen
  • CD20 It may be a peptide or protein derived from a tumor-specific antigen including a tumor-associated antigen, including (2) a neoantigen, which may be produced by various mutations.
  • the antigen may be one or two or more different peptides of the aforementioned cancer antigen peptide.
  • the pulsing is performed by mixing and incubating with a tumor antigen-derived peptide or protein for 0.5 to 6 hours in 5% CO 2 and 37 ° C. humidified conditions.
  • the antigen when treating OVA 257-264 , GP 33-41 antigen, 0.1 to 0.3 ⁇ g/ml, and p15E antigen is treated at a concentration of 2 to 7 ⁇ g/ml, and After treatment, the antigen can be pulsed by storing in a 37 °C incubator for 30 min.
  • the antigen-pulsed dendritic cell-mimicking nanostructure has excellent cancer-targeting function due to its nanosize size (negative targeting), is stable, and can easily contact T cells because it has a large surface area to volume ratio. Therefore, it is possible to induce an effective anticancer immune response through the activation of the dendritic cell-mimicking nanostructure and thus the specific T cell response. In addition, since there is no risk of death in the body, there is an advantage that the circulation time in the body is very long.
  • the manufacturing process of the dendritic cell-mimicking nanostructure according to the present invention is simple and has the advantage of being able to induce T-cell activation without an intermediate process by mimicking immune cells that have already undergone an immune response in a direct method.
  • the photothermal effect of nanoparticles is added, the tumor suppression effect is increased, so it can be widely used as an immunotherapeutic agent.
  • the present invention provides a pharmaceutical composition for the treatment of cancer comprising the dendritic cell-mimicking nanostructure.
  • the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier.
  • the composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations, but is preferably a parenteral formulation. In the case of formulation, it is prepared using commonly used diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and such solid preparations include one or more compounds and at least one excipient, for example, starch, calcium carbonate, sucrose or lactose, gelatin, etc.
  • Liquid preparations for oral administration include suspensions, internal solutions, emulsions, syrups, etc.
  • simple diluents such as water and liquid paraffin
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories.
  • Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • injectable esters such as ethyl oleate.
  • base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like can be used.
  • the pharmaceutical composition is any selected from the group consisting of tablets, pills, powders, granules, capsules, suspensions, solutions, emulsions, syrups, sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations and suppositories It may have one formulation.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally. When administered parenterally, it is possible to administer it through various routes such as intravenous injection, intranasal inhalation, intramuscular administration, intraperitoneal administration, transdermal absorption, etc. .
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level refers to the type and severity of the subject, age, sex, and activity of the drug. , sensitivity to the drug, administration time, administration route and excretion rate, duration of treatment, factors including concomitant drugs, and other factors well known in the medical field.
  • the pharmaceutical composition of the present invention may be administered in a dose of 0.1 mg/kg to 1 g/kg, more preferably in a dose of 1 mg/kg to 500 mg/kg.
  • the dosage may be appropriately adjusted according to the age, sex, and condition of the patient.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or may be administered in combination with other anticancer agents, and may be administered sequentially or simultaneously with conventional anticancer agents. and may be administered single or multiple. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • the present invention may provide a method for treating cancer in an individual comprising administering the dendritic cell mimicking nanostructure or a pharmaceutical composition comprising the same to an individual suffering from cancer.
  • administering the pharmaceutical composition to a subject it is possible to induce a tumor-specific immune response in the subject or treat and/or alleviate symptoms of cancer in the subject.
  • the subject may be a human or a non-human mammal.
  • Figure 1 (b) shows an image for T cell stimulation of the prepared dendritic cell-mimicking nanostructure according to the present invention. It has been shown that nanostructures of MHC class I, II/CD80, and CD86 bind to T cell receptor (TCR)/CD28 of T cells, respectively, to induce T cell proliferation and T cell differentiation.
  • TCR T cell receptor
  • Differentiated dendritic cells were extracted from bone marrow cells isolated from the femur of 6 to 8-week-old Naive B6 mice (Orient Bio), and centrifuged at 2,000 rpm for 5 minutes to obtain pure dendritic cells. Thereafter, Protease Inhibitor Tablet-PBS buffer was treated and dispersed at a concentration of 1 to 2 ⁇ 10 6 cells/ml. Then, only the cell membrane was purified through rapid freezing at -70 °C, thawing at room temperature, and centrifugation.
  • ultrasonic waves (VC505, Sonics & materials) were treated with an amplitude of 20%, 3 seconds on/off, and a total of 60 cycles of 3 seconds with a cooler of 2 seconds between cycles to obtain a micro-unit cell membrane suspension.
  • a polycarbonate membrane pore size of 1 ⁇ m, 400 nm, and 100 nm
  • nano-size filter to generate nano-liposomes having a diameter of each pore size.
  • a dendritic cell-mimicking nanostructure and an antigen-pulsed dendritic cell-mimicking nanostructure were prepared in the same manner as in Example 1, except that 60 nm gold nanoparticles were used as the nanoparticles.
  • the dendritic cell mimicking nanostructure was measured to be approximately 80 nm in size.
  • Example 2 Except for the mixing ratio described in Table 2 below, the same method as in Example 1 was performed to prepare a dendritic cell-mimicking nanostructure.
  • a dendritic cell-mimicking nanostructure was prepared in the same manner as in Example 2, except that the cell membrane suspension obtained using the lysis buffer was used without sonication from the dendritic cells.
  • the surface coverage of the dendritic cell-mimicking nanostructures prepared according to Example 1 and Comparative Example 1 of the present invention was evaluated using a scanning electron microscope (7610F-plus, JEOL). The results are shown in FIG. 3 . It can be seen that the higher the X DM value, the higher the surface coverage.
  • PL (photoluminescence) intensity was measured using a fluorescence spectrophotometer (FP-8300, JASCO).
  • Dendritic cell-mimicking nanostructures prepared according to Example 1 and Comparative Example 1 using 2 ⁇ 10 5 CD8 T cells and 4 ⁇ 10 4 DCs isolated from P14 mouse in a 96 well U bottom plate (DCm-NP) ) was put into the same well through 200 ⁇ l of 10% RPMI, and co-cultured at 37° C. for 3 days. After 3 days, the plate was recovered from the incubator, stained with a fluorescent antibody, and the activation degree of CD8 T cells was analyzed through flow cytometry. The results are shown in FIG. 5 .
  • Example 5 is a graph of FACS data, and in the case of Example 1 in which X DM is 1, when CTV was performed, CD44, IFNg, TNF ⁇ , and IL-2 all showed the highest expression rates. It can be confirmed that the T cell proliferation and activation effect of the dendritic cell-mimicking nanostructure is excellent by the optimized mixing ratio according to the present invention.
  • Figure 6 (a) shows a graph for detailed analysis in the range of 40 to 150 °C.
  • X DM 0
  • T m bilayer transition temperature
  • FIG. 6(b) shows a graph for detailed analysis in the range of 250 to 500 °C.
  • the surface zeta potential of the dendritic cell-mimicking nanostructures prepared according to Example 2 and Comparative Example 2 of the present invention was analyzed.
  • the dendritic cell-mimicking nanostructure is to coat the cell membrane on the surface of gold nanoparticles having a strong negative zeta potential, as the cell membrane is well coated on the surface of the gold nanoparticles, the strong negative zeta potential of the gold nanoparticles decreases, resulting in a relatively low Assuming that a negative zeta potential value will appear, it can be seen that the dendritic cell-mimicking nanostructure according to the present invention has a uniform cell membrane coating.
  • AuNPs gold nanoparticles
  • DCm-NP dendritic cell membranes
  • DCm-NP+GP 33-41 antigen-pulsed dendritic cell-mimicking nanostructures
  • Gold nanoparticles have a strong negative zeta potential because they are dispersed in citric acid, and cell membrane liposomes also exhibit a negative zeta potential due to their phospholipid structure. It was confirmed that the dendritic cell-mimicking nanostructure had a relatively lower negative zeta potential value compared to that of the gold nanoparticles because the cell membrane was coated on the surface of the gold nanoparticles having a strong negative zeta potential.
  • the zeta potential value increases due to a weak positive charge in the amino acid sequence (Lys-Ala-Val-Tyr-Asn-Phe-Ala-Thr-Cys) of GP-33. It can be confirmed that, as a result, it can be indirectly proved that the coated dendritic cell nanostructure was successfully prepared.
  • Protein size distribution confirmation was performed to confirm whether immune-related proteins present in the dendritic cell membrane were aggregated or denatured during the process of extracting the dendritic cell membrane, sonication, and filter extrusion.
  • CD80 the main immune-related membrane protein of the prepared dendritic cell-mimicking nanostructure, was used to confirm that the cell membrane was coated on the gold nanoparticles in right-side-out membrane orientation during the filter extrusion of the gold nanoparticles and the dendritic cell membrane together.
  • CD86, and the presence or absence of MHC class I and II were confirmed by flow cytometry (FACS). The results are shown in FIG. 10 .
  • DCm-NP dendritic cell-mimicking nanostructures
  • CD8 T cells After isolation of CD8 T cells from P14 mice with congenic marker (Thy1.1), adoptive transfer was performed to naive recipient mice, and after 24 hours, dendritic cells or dendritic cell-mimicking nanostructures were treated differently for each group. Adoption immune cell transfection was carried out as a condition. After 48 hours had elapsed, immune cells were isolated from the mouse spleen, stained with a fluorescent antibody, and the activation degree of CD8 T cells was analyzed through flow cytometry. The results are shown in Figs. 12A and 12B.
  • G1 is a group containing only CD8 T cells
  • G2 is a group containing dendritic cells and CD8 T cells not treated with GP 33-41
  • G3 is a group containing GP 33-41 treated dendritic cells and CD8 T cells.
  • G4 is a group to which dendritic cell-mimicking nanostructures and CD8 T cells were not treated with GP 33-41
  • G5 is a group to which GP 33-41 -treated dendritic cell-mimicking nanostructures and CD8 T cells were added.
  • the dendritic cell mimicry nanostructure (DCm-NP) prepared according to Example 2 is stored at room temperature after freeze-drying, refrigerated (4 °C) and frozen (-20 °C) in a dispersed state in PBS, and centrifuged to pellet state
  • the antigen was pulsed after 10 days, 20 days, and 30 days, respectively, stored in a refrigerator (4 °C) and frozen (-20 °C) in a furnace.
  • T cell proliferation and differentiation efficiency was evaluated with the group in which the antigen was pulsed to the dendritic cell mimicking nanostructure (DCm-NP) and the group in which the antigen was pulsed/not pulsed to bone marrow-derived dendritic cells. The results are shown in FIG. 13 . It was confirmed that the dendritic cell-mimicking nanostructure (DCm-NP) according to the present invention maintains structural stability for more than 30 days and at the same time preserves the antigen-presenting function of dendritic cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 수지상세포 모방 나노구조체, 이의 제조방법에 관한 것으로서, 상세하게는 수지상세포의 표면 항원제시능을 이용하기 위하여 나노입자 코어에 수지상세포 유래 지질 분자의 세포막을 포함하는 쉘을 도입한 나노구조체이며, 체내에서 사멸하지 않고 표적화가 가능하여, 효과적인 면역 반응을 유도하는 효과를 제공할 수 있다.

Description

면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법
본 발명은 수지상세포를 이용하여 면역세포를 모방하는 나노구조체 및 이의 제조방법에 관한 것이다.
암은 우리나라 국민 사망원인 중 1위를 차지하고 있다. 대표적인 암 치료방법은 암을 절제하는 외과적 수술, 방사선 치료, 화학약물 치료가 있을 수 있는데, 이들 치료방법은 예후가 불량하고 심각한 부작용이 뒤따른다는 문제점이 있다.
암 발생은 면역력 감소 또는 암세포의 면역회피 작용으로 인해 면역반응에 따라 제거되지 못한 암세포의 종양 형성을 주요 원인으로 들 수 있다. 따라서 환자 본인의 면역 반응을 증대시켜 암 치료를 도울 수 있는 면역항암치료제는 근본적인 암 치료법이 될 수 있다. 현재 개발된 면역항암치료제는 면역기능을 높이는 약물을 직접 주입하는 것이 대부분인데, 약물 주입술은 전달 효율이 매우 낮고, 추가 부작용이 존재할 수 있다는 점에서 여전히 한계가 존재한다. 이에 따라 암 치료 효율을 획기적으로 높이고, 재발율 및 부작용을 낮추면서 면역기능을 증대시킬 수 있는 치료제의 개발에 연구가 집중되고 있다.
한편, 나노기술을 바이오 의료 분야에 접목한 나노-바이오 융합기술에 대한 연구가 지속되어 오고 있다. 하지만 대부분의 나노재료는 합성을 통해 얻어지며, 나노재료를 이용한 표면 개질 시, 합성물이 첨가되는 과정이 수반되므로 체내 독성, 원치 않는 면역반응 유도, 암 유발 등의 부작용이 생길 수 있다. 그러므로 생체를 직접 모사하는 방식의 표면 개질 방법을 사용하여 부작용을 최소화하고, 생체특성에 따라 다양한 기능을 구현할 수 있도록 함으로써 기존 나노기술이 가진 한계점을 극복할 수 있다.
특히 나노입자-세포화 기술은 특정 세포의 전체 세포막을 코팅 재료로 활용하여 나노입자 표면을 물리적으로 클로킹(Cloaking)하는 기술로 단백질, 지질 및 탄수화물과 함께 세포막의 복합적 성질을 유지할 수 있어 나노입자 표면에 특정 세포의 특성을 그대로 구현할 수 있다.
2015년 University of California 의 Liangfang Zhang연구팀에서 처음으로 혈소판을 PLGA(poly(lactic-co-glycolic) acid) 입자 표면에 도입한 기술을 바탕으로, 현재까지 다양한 세포에 적용되고 있다.
PLGA 코어에 독소루비신(doxorubicin)을 담지한 후, 적혈구 막으로 코팅하여 면역적합성 나노캐리어를 제조해 고형 종양을 제거하거나, 적혈구 막과 암세포의 세포막을 멜라닌 나노입자에 동시에 코팅하여 하이브리드 세포막을 지닌 나노입자를 제조해 체내 순환시간을 증가시키고 종양 표적능을 증대시킨 연구가 보고되었다.
하지만 종래의 세포막 코팅 기술은 대부분 암세포, 혈액세포 위주로 진행되었고, 그 응용 역시 혈액 내 안정적 전달 등을 목표로 하는 연구들이 주를 이루었다. 또한 암세포막을 항원으로 직접 도입하여 체내에 전달하는 경우, 항원 내성으로 인한 면역반응 저하, 암세포 유래 물질에 대한 거부감 등의 단점이 존재한다. 따라서 직접적인 항원제시 면역세포의 기능을 가질 수 있는 면역치료제를 개발하여 중간 과정 없이 T 세포의 분화 및 증식을 유도하는 것이 매우 필요하다.
[선행기술문헌]
비특허문헌
Hu, Che-Ming J., et al. Nature, 2015, 526 (7571) 118-12
Brian T. Luk et al., Theranostics. 2016, 6(7), 1004-101
Q. Jiang et al., Biomaterials 2019, 192, 292-308
본 발명은 종래기술의 재료적인 한계에서 벗어나 항원제시 기능을 가지는 세포를 사용하여 면역반응 증대에 따른 암치료 효과를 구현하고자 한다. 구체적으로 수지상세포를 모방하는 나노구조체를 제작하여, 체내에서 수지상세포의 항원제시 기능에 따라 세포독성 T 세포를 직접 활성화하여 암세포의 선택적 사멸을 유도하고, 면역 반응을 증대시켜 우수한 면역항암치료 효과를 제공하는 것이다. 아울러 나노입자의 표적화 및 광열효과를 이용하여 한층 강화된 면역항암치료 효과를 제공하는 것을 목적으로 한다.
본 발명은 열역학적으로 매우 안정하여, 체내에서 장기 체류함에 따라 T 세포의 증식 및 분화 촉진에 최적화된 수지상세포 모방 나노구조체를 제조하는 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명에서는 나노입자-세포화 기술 (nanoparticle-cellularization technology)을 이용한 수지상세포 모방 나노구조체를 제공한다. 구체적으로 나노입자 코어; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 나노구조체로서, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 할 수 있다.
본 발명의 일 양태에 있어서, 상기 쉘의 두께는 5 내지 20 ㎚일 수 있다.
본 발명의 일 양태에 있어서, 상기 나노구조체의 표면 커버리지는 70% 이상, 바람직하게는 표면 커버리지는 85% 이상일 수 있다.
본 발명의 일 양태에 있어서, 상기 나노구조체의 표면 전위의 절대값은 수지상세포로부터 유래된 지질 분자의 표면 전위의 절대값보다 작은 것일 수 있다.
본 발명의 일 양태에 있어서, 상기 나노구조체는 상기 나노입자 및 상기 수지상세포 유래의 세포막을 초음파 처리하여 제조된 리포좀이 융합된 것일 수 있다.
본 발명의 일 양태에 있어서, 상기 나노구조체는 상기 리포좀 및 나노입자를 공압출하여 제조한 것일 수 있다.
본 발명의 일 양태에 있어서, 상기 리포좀의 입경은 200 ㎚ 이하일 수 있다.
본 발명의 일 양태에 있어서, 상기 나노구조체의 표면 제타전위는 -35 내지 -25 ㎷일 수 있다.
또한 본 발명은 수지상세포 모방 나노구조체 제조방법을 제공하며, 구체적으로 수지상세포로부터 세포막을 정제하는 단계; 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계; 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 나노입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 나노입자를 수득하는 단계;를 포함할 수 있다.
본 발명의 일 양태에 있어서, 상기 나노입자 및 리포좀은 1:150 내지 1:300의 부피비율로 혼합될 수 있다.
본 발명의 일 양태에 있어서, 상기 세포막이 도입된 나노입자에 항원을 펄싱하는 단계;를 더 포함할 수 있다.
본 발명의 일 양태에 있어서, 상기 항원은 종양 항원 유래 펩타이드 또는 단백질일 수 있다.
본 발명의 일 양태에 있어서, 상기 리포좀의 평균 입경은 200 ㎚ 이하일 수 있다.
본 발명의 일 양태에 있어서, 상기 세포막이 도입된 나노입자는 세포막 도입 전 나노입자와 대비하여 표면전위의 절대값이 작을 수 있다.
또한 본 발명은 상술한 수지상세포 모방 나노구조체를 포함하는 면역항암치료제를 제공한다.
또한 본 발명은 상술한 수지상세포 모방 나노구조체를 포함하는 암 치료용 약학적 조성물을 제공한다.
아울러 본 발명은 상술한 제조방법에 따라 제조된 수지상세포 모방 나노구조체를 제공한다.
본 발명에 따른 수지상세포 모방 나노구조체는 수지상세포의 항원제시능을 그대로 나노입자 표면에 도입하여, 수지상세포의 항원제시기능은 보존함과 동시에 사멸하지 않고 나노입자의 표적화 기능 및 광열효과 기능을 추가적으로 부여하여 강화된 기능의 면역항암치료 효과를 제공할 수 있다.
본 발명에 따른 수지상세포 모방 나노구조체는 수지상세포를 이용하여 면역세포를 모방한 것으로서, 수지상세포 유래 세포막을 쉘로 도입함으로써, 장기간 체내에서 체류하며 항원 특이적 T 세포의 증식 및 분화를 지속적으로 유도함으로써 면역반응을 증대시키는 효과를 제공할 수 있다.
본 발명에 따른 수지상세포 모방 나노구조체는 기존의 화학 요법이나 방사선 요법 기반 항암 치료방법에 비하여, 환자 자신의 면역 시스템을 활용하기 때문에 부작용을 최소화할 수 있고, 진단이 어려운 미세 크기의 암세포 또는 전이된 암세포를 선택적으로 제거할 수 있다.
본 발명에 따른 수지상세포 모방 나노구조체는 그 자체로도 항암활성을 가져 면역항암치료제로 사용될 수 있으며, 다른 항암제와의 병용을 통해 더욱 강한 항암활성을 기대할 수 있으므로 부작용을 최소화하고 강력한 항암효과를 나타내는 새로운 항암제 개발에 유용하게 활용될 수 있다.
도 1 (a)는 활성화된 수지상세포와 금 나노입자를 나노입자-세포화 기술을 통해 필터압출하여 수지상세포 모방 나노구조체를 제조하는 과정을 나타낸 모식도이고, (b)는 본 발명에 따른 수지상세포 모방 나노구조체가 T 세포와의 결합을 통해 면역 반응을 증대시키는 것을 나타낸 모식도이다.
도 2는 본 발명의 나노입자 및 리포좀의 혼합비율에 따른 표면 코팅정도를 나타낸 모식도이다.
도 3은 본 발명의 실시예 1 및 비교예 1에 따라 제조된 수지상세포 모방 나노구조체의 SEM 이미지 및 표면 커버리지를 나타낸 것이다.
도 4는 본 발명의 실시예 1 및 비교예 1에 따라 제조된 수지상세포 모방 나노구조체의 표면 제타전위를 나타낸 그래프이다.
도 5는 본 발명의 실험예 1에 따른 수지상세포 모방 나노구조체를 항원 특이적 T 세포와 공배양한 결과로, CTV, CD44, IFNg, TNFα, IL-2의 발현율을 나타낸 그래프이다.
도 6은 본 발명의 실험예 1에 따른 수지상세포 모방 나노구조체의 용융온도를 나타낸 그래프이다.
도 7은 본 발명의 비교예 2에 따라 초음파를 처리하는 과정 없이 제조한 수지상세포 모방 나노구조체의 공압출 전(Membrane suspension), 후(Extrusion)의 표면 제타전위를 나타낸 것이다.
도 8은 본 발명의 실험예 3에 따라 금 나노입자(gold nanoparticle (NPs)), 추출한 수지상세포막(Dendritic cell membrane (DCm)), 수지상세포 모방 나노구조체(DCm-NP), 및 항원을 펄싱한 수지상세포 모방 나노구조체(DCm-NP/Ag (Antigen))의 전자현미경 이미지를 나타낸 것이다.
도 9는 본 발명의 실험예 3에 따라 금 나노입자(Gold NP), 수지상세포막(DCm), 수지상세포 모방 나노구조체(DCm-NP), 항원을 펄싱한 수지상세포 모방 나노구조체(DCm-NP/Ag)의 표면 제타전위 값을 나타낸 그래프이다.
도 10은 본 발명의 실험예 3에 따라 수지상세포 모방 나노구조체 표면에 수지상세포의 주요 표면 단백질인 CD80, CD86, MHC class I, II의 유무를 FACS를 통해 확인한 데이터이다.
도 11a 및 도 11b는 본 발명의 실험예 3-5에 따라 수지상세포 모방 나노구조체(DCm-NP)와 골수 유래 수지상세포 각각의 항원을 펄싱하지 않은 그룹, OVA257-264 항원을 펄싱한 그룹, GP33-41 항원을 펄싱한 그룹의 T세포 증식 및 분화 효율을 In vitro 시험을 통해 나타낸 것이다.
도 12a 및 도 12b는 본 발명의 실험예 3-6에 따라 수지상세포 모방 나노구조체(DCm-NP)와 골수 유래 수지상세포 각각의 항원을 펄싱하지 않은 그룹, GP33-41 항원을 펄싱한 그룹의 T세포 증식 및 분화 효율을 In vivo 시험을 통해 나타낸 것이다.
도 13은 본 발명의 실험예 3-7에 따른 수지상세포 모방 나노구조체(DCm-NP)의 안정성 테스트 결과로서, 10일, 20일 및 30일 경과에 따른 T 세포 증식 및 분화 효율의 변화를 나타낸 것이다.
이하에서 본 발명에 대하여 구체적으로 설명한다.
본 명세서에서 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 본 발명의 설명에서 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.
본 명세서의 실시예 및 첨부된 도면은 통상의 지식을 가진 자가 본 발명을 쉽게 이해하고 실시하기 위한 것으로서, 실시예 및 도면에서 발명의 요지를 흐릴 수 있는 내용은 생략될 수 있으며, 본 발명이 실시예 및 도면으로 한정되는 것은 아니다. 본 발멸의 기술적 사상을 변화시키지 않는 범위 내에서 다른 형태로 구체화될 수 있다.
또한 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 효과 및 구성에 대한 설명은 생략한다.
또한 본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
또한 본 발명의 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도될 수 있다.
이하 본 발명에 따른 수지상세포 모방 나노구조체, 이의 제조방법 및 이의 제조방법에 따라 제조된 수지상세포 모방 나노구조체 및 이를 포함하는 면역항암치료제 및 암 치료용 약학적 조성물에 관하여 상세히 설명한다.
본 발명은 나노입자-세포화 기술을 이용한 수지상세포 모방 나노구조체를 제공한다. 수지상세포의 항원제시능을 그대로 나노입자 표면에 도입하여, (1) 수지상세포의 항원제시기능을 보존함과 동시에, (2) 나노입자의 표적화 기능과 광열 효과를 통해 현저히 증대된 면역항암치료 효과를 발휘할 수 있다.
나노입자-세포화 기술은 3가지 대표적인 단계로 진행된다. (1) 살아있는 세포의 세포막을 손상 없이 추출하고 (2) 필터 압출기를 이용하여 소정 사이즈의 나노 리포좀을 생성한 뒤, (3) 코팅하고자 하는 나노입자와의 필터 압출을 반복함으로써 물리적인 힘을 가해 세포막 전체를 나노입자 표면에 옮길 수 있다. 또한, 세포막 및 나노입자의 종류에 상관없이 원하는 대로 특정 세포를 모방하는 나노입자를 제조할 수 있다는 점에서 파생되는 기술이 다양하다.
수지상세포를 이용한 암치료백신의 경우 환자의 혈액 내 단핵세포 (monocyte)로부터 분화시킨 수지상세포에 암 항원을 발현시키게 한 후 해당 암환자에게 다시 주입함으로써 암환자 체내 암항원 특이적 T 세포를 활성화시키는 전략을 사용하였다. 하지만 이러한 형태의 수지상세포 암치료백신은 주입한 수지상세포의 짧은 생존기간 및 약한 T 세포 자극 능력 등의 한계로 인해 뚜렷한 항암효과를 나타내지 못했다.
또한 면역항암치료 이외에도 류마티스 관절염을 포함한 자가면역질환의 치료를 위해서 면역관용(immune tolerance)이 유도된 수지상세포를 치료제로 사용하고자 하는 노력들이 있었으나, 마찬가지로 면역관용 수지상세포의 짧은 생존기간 및 약한 면역억제 능력 등으로 인해 충분한 치료효과를 나타내지 못했다.
본 발명은 이러한 한계를 극복하기 위한 새로운 형태의 면역치료제를 제공하고자 하는 것이며, 종래 기술들과는 달리 체내 생존기간이 길고, 장기 보관시에도 구조적 안정성이 담보되며, T 세포 활성화능에서도 현저히 향상된 효과를 나타낼 수 있다.
본 발명은 구체적으로, 나노입자 코어; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 나노구조체로서, 상기 쉘은 지질 분자의 이중층을 포함하는 것을 특징으로 한다.
상기 나노입자는 생체적합성을 가지며, 바람직하게는 근적외선 영역의 빛을 흡수하여 발열하는 성질을 가진 것이 좋다. 구체적으로 예를 들면, 광열 효과를 나타낼 수 있는 금속 나노입자, 유기 고분자 나노입자, 멜라닌 나노입자, 그래핀 나노입자, 무기 나노입자 또는 이들의 조합일 수 있으나, 이에 반드시 한정되는 것은 아니다. 다만, 본 발명의 바람직한 일 실시 형태에 있어서, 상기 나노입자는 환원전위가 높아 체내에서 안전한 상태를 유지할 수 있고, 표면 개질이 용이한 금 나노입자일 수 있다.
수지상세포(Dendrictic cell:DC)는 강력한 항원제시 세포(antigen presenting cells: APC)로서, 체내 면역반응 유도 및 면역 조절에 중요한 역할을 담당한다. 항원과 접한 적이 없는 원시 T 세포(naive T cell)를 활성화시켜, 일차면역반응(primary immune response)을 유도할 수 있으며, 항원 특이적인 후천성 기억면역을 유도할 수 있는 면역세포로 기능한다.
또한 세포막 표면에 주조직 적합성 복합체(major histocompatibility complex I/II: MHC I/II)뿐만 아니라, CD80 및 CD86과 같은 보조자극인자(co-stimulatory molecules) 및 ICAM-1과 같은 세포부착 분자(cell adhesion molecules)가 고도로 발현되어 있고, T 세포 활성화와 관련된 인터페론, IL-12, IL-18 등의 다양한 사이토카인을 다량 분비함으로써, 강력한 항원제시 기능을 나타낸다.
구체적으로 수지상세포가 체내 T 세포를 분화시키고, 면역반응을 활성화하여 항원성 물질을 제거하는 일련의 과정은 다음과 같다.
먼저, 수지상세포는 말초 조직에 존재하여, 외부자극 신호에 의해 활성 신호를 받게 되어 성숙된다. 동시에 외부 단백질 항원을 펩타이드 형태로 MHC class I, II 에 제시한다. 이후, 수지상세포는 배수 림프절(draining lymphnode)로 이동하여, 수지상세포 표면의 MHC-펩타이드 복합체와 결합가능한 T 세포 수용체(TCR)을 보유한 T 세포와 결합하고, 수지상세포에서 발현되는 CD80, CD86과 같은 공동자극 리간드가 T 세포에서 발현되는 공동자극 수용체인 CD28과 보조적으로 결합하여 T 세포를 완전하게 활성화한다. 활성화된 T 세포는 증식 및 분화하여 림프절에서 말초조직으로 이동하며, 외부 항원을 발현하는 세포(예. 암세포)를 제거한다.
본 발명은 수지상세포의 상기 항원제시 기능을 구현하기 위하여, 수지상세포 유래의 세포막을 나노입자 표면에 도입한다. 수지상세포로부터 유래된 지질 분자의 세포막은 지질 분자의 이중층을 포함하고, 이때 쉘 외부를 향한 제1 지질 분자층은 나노입자 표면을 향한 제2 지질 분자층에 비하여 전기적으로 더 강한 음전하를 나타내도록 배향된 것이 바람직하다. 후술할 본 발명에 따른 수지상세포 모방 나노구조체 제조방법에 있어서, 수지상세포 유래의 지질 분자의 세포막을 초음파 처리함으로써, 상기 쉘 외부를 향한 제1 지질 분자층이 나노입자 표면을 향한 제2 지질 분자층에 비하여 전기적으로 더 강한 음전하를 나타내도록 배향되게 할 수 있다.
본 발명에 따른 수지상세포 모방 나노구조체는 활성화된 수지상세포의 세포막을 추출하고, 나노입자와 함께 필터압출하여 세포막이 나노입자 표면에 도입되도록 유도하는 방식에 따라 제조된다.
상기 지질 분자의 세포막을 포함하는 쉘의 평균 두께는 2 내지 50 ㎚, 좋게는 5 내지 20 ㎚의 범위로 나노입자 코어 표면에 얇고 균일하게 코팅되는 것이 바람직하다. 이때 표면 커버리지는 70% 이상, 바람직하게는 85% 이상, 보다 바람직하게는 90% 이상인 것이 열역학적으로 안정하고, 나노구조체의 안정성이 우수하게 나타날 수 있다.
본 발명에 따른 수지상세포 모방 나노구조체는 수지상세포 유래의 세포막을 초음파 처리하여 제조된 리포좀(liposome)과 나노입자를 융합하여 제조한 것으로서, 상기 융합은 리포좀 및 나노입자를 혼합하여 공압출하는 것을 의미할 수 있다.
구체적으로 상기 수지상세포 유래의 세포막을 초음파 처리한 후, 나노사이즈의 멤브레인 필터를 통해 여과하여, 입경 200 ㎚이하의 리포좀을 수득할 수 있다. 상기 리포좀의 입경은 바람직하게 50 내지 150 ㎚일 수 있다.
본 발명에 따른 수지상세포 모방 나노구조체의 표면 제타전위는 -40 내지 -20 ㎷, 구체적으로 -35 내지 -25 ㎷일 수 있다.
이하, 본 발명에 따른 수지상세포 모방 나노구조체 제조방법에 대하여 상세히 설명한다.
구체적으로, (a) 수지상세포로부터 세포막을 정제하는 단계; (b) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계;(c) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및 (d) 나노입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 나노입자를 수득하는 단계;를 포함한다.
나아가 본 발명은 항원 제시를 위하여 세포막이 코팅된 나노입자에 항원을 펄싱하는 단계;를 더 포함하여, 수지상세포의 기능을 하는 나노구조체를 완성할 수 있다.
도 1 (a)는 본 발명의 일 실시예에 따른 수지상세포 모방 나노구조체를 제조하는 모식도를 나타낸 것이다. 골수 유래 수지상세포를 마우스로부터 추출하여 내재면역반응 및 적응면역반응을 유도할 수 있다. 구체적으로, 수지상세포로부터 정제된 세포막을 소정의 나노입자와 적절한 비율로 혼합하여 필터 압출을 실시하면, 상대적으로 높은 음전하의 제타전위를 가지는 바깥부분의 세포막과 음전하를 가지는 나노입자는 정전기적 반발(electrostatic repulsion)을 나타내므로, 상대적으로 낮은 음전하의 제타전위를 가지는 부분이 나노입자 표면과 상호작용하여 흡착되면서 right-side-out orientation 방식에 따라, 즉 세포막이 바람직한 방향으로 코팅이 이루어진다.
본 발명에 따른 수지상세포 모방 나노구조체는 체내에 존재하는 T 세포의 활성을 효과적으로 증대시킬 뿐 아니라, 우수한 투과성 및 장기간 안정적인 체류로 인해 림프절 뿐만 아니라 종양을 포함한 염증 부위에 머물 수 있으며, 이때 해당 부위에 추가로 근적외선을 조사하면 나노입자의 광열효과로 인해 암세포 및 염증세포를 더 효과적으로 제거할 수 있는 이점이 있다.
구체적으로, 수지상세포로부터 세포막을 정제하는 단계는 급속 냉동-해동 및 원심분리를 통하여 진행될 수 있다. 상기 정제된 세포막에 초음파를 처리하면 수백 나노 또는 수 마이크로 단위의 세포막 현탁액을 형성할 수 있다. 이후 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하면 원하는 크기의 세포막 리포좀을 수득할 수 있다. 상기 세포막 리포좀 및 나노입자를 혼합하고, 필터압축하여 세포막이 도입된 나노입자를 수득할 수 있다. 즉, 수지상세포의 세포막이 상기 나노입자 표면에 코팅된 형태가 얻어진다. 이때 나노입자 및 리포좀의 농도를 달리하여 코팅되는 표면 커버리지를 자유자재로 조절할 수 있다.
나노입자 및 리포좀의 혼합비율은 나노입자의 표면적에 대한 세포막의 표면적의 비로 표시되는 하기 식 1의 값으로 표현할 수 있다. 구체적으로 예를 들어, 하기 식 1의 XDM은 0.7 내지 1.8일 수 있다. 보다 바람직하게는 XDM은 0.9 내지 1.3일 수 있다. 이 경우 나노입자의 표면 대부분이 세포막으로 코팅되어 70% 이상 또는 85% 이상의 높은 표면 커버리지를 나타낸다. 다만, XDM ≒ 2의 값을 가지는 경우 overcoating되어, 오히려 열역학적 안정성이 떨어질 수 있다.
[식 1]
Figure PCTKR2021013746-appb-img-000001
상기 식 1에 따를 때, 나노입자의 종류, 평균 입경 및 수지상세포의 농도에 따라 나노입자 및 수지상세포 유래의 리포좀의 혼합비율을 결정할 수 있다. 이때 수지상세포는 나뭇가지 모양의 돌기가 발달된 방사형의 형태를 가지므로 리포좀 형태로부터 표면적을 산출하는 것이 바람직하다.
본 발명 개시 내용에 따라 나노입자 및 리포좀의 농도, 나노입자의 종류 및 사이즈에 따른 표면적을 종합적으로 고려하여 나노입자 및 수지상세포 유래의 리포좀의 최적 혼합비율을 산출할 수 있다.
구체적으로 하기 표 1에 기재된 바에 따라 설계될 수 있다.
[표 1]
Figure PCTKR2021013746-appb-img-000002
상기 개수 농도 비(A)는 1 ㎖당 포함된 나노입자 및 리포좀의 개수의 비를 의미할 수 있다. 즉, 1 ㎖에 리포좀이 한 개 있다고 한다면, 나노입자는 1 ㎖에 a개가 포함된 것을 가리킨다. 보다 정확하게는 상기 리포좀 한 개는 1×106개인 것으로 정의될 수 있다.
상기 단위 표면적 비(B)는 나노입자 및 리포좀 하나 단위 각각의 표면적을 구하여 나노입자를 기준으로 비율을 산정한 것이다. 이 때 나노입자 및 리포좀은 구형으로 간주하여, 나노입자 및 리포좀의 평균 입경으로부터 4πr2에 따라 계산하였다. 또한 총 표면적 비는 개수 농도 비(A)와 단위 표면적 비(B)를 곱한 값으로서, 총 표면적의 비는 a:b가 된다.
본 발명에 있어서, 나노입자는 세포막 리포좀과 필터 공압출을 수행하기 전, 분산력 증대를 위하여 초음파를 처리할 수 있다. 이 경우 초음파는 나노입자 2~3개가 단위입자가 될 수 있을 정도로 처리하는 것이 바람직할 수 있다. 따라서 상기 식 1에서 이상적인 표면 커버리지를 구현하기 위하여 상기 초음파 처리된 단위 나노입자 및 리포좀의 혼합비율은 실질적으로 b/3a : 1 내지 b/2a : 1인 것이 좋다.
상기 나노입자 및 수지상세포 유래의 리포좀의 최적의 혼합비율은 상기 식 1에 따라 모든 나노입자 표면에 세포막이 코팅될 수 있도록 100%의 표면 커버리지를 갖는 수지상세포 모방 나노구조체를 구현하는 것을 가능케 한다.
본 발명에 따른 수지상세포 모방 나노구조체 제조방법에 있어서, 상기 세포막이 도입된 나노입자에 항원을 펄싱하는 단계는 수지상세포화된 상기 나노입자를 항원에 노출시킴으로써 항원이 세포막에 탑재되는 단계로서, 이를 통해 강력한 항원 특이적 T 세포의 활성화를 유도할 수 있다.
상기 항원은 종양 항원 유래 펩타이드 또는 단백질일 수 있고, 상기 종양 항원은 종양 연관 항원 또는 종양 특이 항원일 수 있다. 구체적으로 예를 들면, 생쥐 암 모델에 있어서, 오브알부민(ovalbumin, OVA), LCMV(Lymphocytic choriomeningitis mammarenavirus) glycoprotein, retrovirus protein 유래의 단백질 또는 펩타이드일 수 있다. 보다 구체적으로 OVA257-264, GP33-41, p15E 모델의 암 항원 펩타이드 또는 단백질일 수 있다.
또한 인간 암 항원에 있어서, (1) HER2/Neu, tyrosinase, gp100, MART, HPV E6/E7, EBV EBNA-1, carcinoembryonic antigen, a-fetoprotein, GM2, GD2, testis antigen, prostate antigen, 및 CD20를 포함하는 종양 연관 항원 및 (2) 다양한 돌연변이에 의해 생성될 수 있는 신생항원(neoantigen)을 포함하는 종양 특이 항원으로부터 유래된 펩타이드 또는 단백질일 수 있다. 바람직하게는 상기 항원은 상술한 암 항원 펩타이드 1종 또는 2종 이상의 상이한 펩타이드일 수 있다.
상기 펄싱은 당업계에 알려진 다양한 펄싱 프로토콜이 가능하나, 보다 좋게는 5% CO2 및 37 ℃ 가습 조건에서 0.5 내지 6 시간 동안 종양 항원 유래 펩타이드 또는 단백질과 혼합 배양하여 펄싱을 수행하는 것일 수 있다.
구체적으로 본 발명의 비제한적인 일 예로서, OVA257-264, GP33-41 항원을 처리하는 경우 0.1 내지 0.3 ㎍/㎖, p15E 항원을 처리하는 경우 2 내지 7 ㎍/㎖의 농도로 처리하며, 처리 후 30분간 37 ℃ 인큐베이터에서 보관함으로써 상기 항원을 펄싱할 수 있다.
항원이 펄싱된 수지상세포 모방 나노구조체는 나노사이즈의 크기로 인하여 암 표적기능이 매우 뛰어나며(negative targeting), 안정적이고, 부피 대비 넓은 표면적을 가지고 있기 때문에 T 세포와 쉽게 접촉할 수 있다. 따라서 수지상세포 모방 나노구조체의 활성화 및 그에 따른 특이적인 T 세포 반응의 활성화를 통해 효과적인 항암 면역반응을 유발할 수 있다. 또한, 체내에서 사멸의 위험이 없기 때문에 체내 순환 시간이 굉장히 길다는 장점이 있다.
본 발명에 따른 수지상세포 모방 나노구조체의 제조과정은 단순하며, 직접적 방법으로 면역반응이 이미 진행된 면역세포를 모방하여 중간 과정 없이 T 세포의 활성화를 유도할 수 있는 장점이 있다. 또한, 나노입자의 광열효과가 더해지는 경우 종양 억제 효능이 증대되기 때문에 면역항암치료제로 널리 활용될 수 있다.
또한 본 발명은 상기 수지상세포 모방 나노구조체를 포함하는 암 치료용 약학적 조성물을 제공한다.
본 발명의 약학적 조성물은 약학적으로 허용 가능한 담체를 더 포함할 수 있다. 약학적으로 허용 가능한 담체를 포함하는 상기 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있으나, 비경구를 위한 제형인 것이 바람직하다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제, 예를 들면 전분, 탄산칼슘, 수크로오스 또는 락토오스, 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 등과 같은 윤활제들도 사용될 수 있다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
상기 약학적 조성물은 정제, 환제, 산제, 과립제, 캡슐제, 현탁제, 용액제, 유제, 시럽제, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제 및 좌제로 이루어진 군으로부터 선택되는 어느 하나의 제형을 가질 수 있다. 본 발명의 약학적 조성물은 경구 또는 비경구로 투여될 수 있는데, 비경구로 투여되는 경우, 정맥 내 주사, 비강 내 흡입, 근육 내 투여, 복강 내 투여, 경피 흡수 등 다양한 경로를 통해 투여하는 것이 가능하다.
상기 본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여된다. 본 발명에서 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학분야에 잘 알려진 요소에 따라 결정될 수 있다.
본 발명의 약학적 조성물은 0.1 mg/kg 내지 1 g/kg의 용량으로 투여될 수 있으며, 더 바람직하게는 1 mg/kg 내지 500 mg/kg의 투여량으로 투여된다. 상기 투여량은 환자의 나이, 성별 및 상태에 따라 적절히 조절될 수 있다.
본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 항암제와 병용하여 투여될 수 있고, 종래의 항암제와 순차적 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.
아울러 본 발명은 상기 수지상세포 모방 나노구조체 또는 이를 포함하는 약학적 조성물을 암에 걸린 개체에 투여하는 단계를 포함하는 개체의 암 치료방법을 제공할 수 있다. 상기 약학적 조성물을 개체에 투여함으로써 개체에서 종양 특이적 면역 반응을 유도하거나 개체에서 암의 증상을 치료 및/또는 완화시킬 수 있다. 이때 상기 개체는 인간 또는 비인간 포유동물일 수 있다.
도 1 (b)는 제조된 본 발명에 따른 수지상세포 모방 나노구조체의 T 세포 자극에 대한 이미지를 나타낸 것이다. 나노구조체의 MHC class I, II/ CD80, CD86이 T 세포의 T cell receptor (TCR)/CD28과 각각 결합하여 T 세포의 증식과 더불어 T 세포의 분화를 유도할 수 있음을 보여주고 있다.
이하 실시예 및 실험예를 들어 발명을 더 자세히 설명한다.
실시예 1. 수지상세포 모방 나노구조체의 제조
6주~8주령 Naive B6 마우스(Orient Bio)의 대퇴골에서 분리된 골수세포로부터 분화된 수지상세포를 추출하여, 2,000 rpm에서 5분간 원심분리하여 순수한 수지상세포를 수득하였다. 이후, Protease Inhibitor Tablet-PBS buffer를 처리하여 1~2×106 cells/㎖ 농도로 분산시켰다. 그리고 -70 ℃에서 급속 냉동, 상온에서의 해동 과정 및 원심분리를 거쳐 세포막만을 정제하였다. 이후 20%의 진폭으로, 3초 켜기/끄기 및 사이클간 2초의 냉각기를 갖는 3초 1회전을 총 60회 수행하는 초음파(VC505, Sonics & materials)를 처리하여, 마이크로 단위의 세포막 현탁액을 확보하였으며, 이를 나노 사이즈의 필터를 갖는 폴리카보네이트 막(기공크기 1㎛, 400 ㎚, 100 ㎚)으로 걸러내 각 기공 크기의 직경을 갖는 나노 리포좀을 생성하였다. 나노입자 표면 상에 코팅되는 세포막의 표면적을 고려하여, 나노입자 및 리포좀이 최적화된 혼합비율을 가지는 경우를 XDM=1로 전제하였다.
[식 1]
Figure PCTKR2021013746-appb-img-000003
이에 따라, 상기 XDM = 1이 되도록 폴리스타이렌(PS) 나노입자 5 ㎕ 및 리포좀 1 ㎖을 혼합한 후, 함께 필터압축 (filter extrusion)하여, 수지상세포 모방 나노구조체를 제조하였다. 상기 제조된 수지상세포 모방 나노구조체에 0.2 ㎍/㎖의 GP-33 항원을 약 30분간 37 ℃에서 처리함으로써 MHC class I, II 표면에 항원을 제시할 수 있도록 유도하여, 항원이 펄싱된 수지상세포 모방 나노구조체를 제조하였다.
실시예 2. 수지상세포 모방 나노구조체의 제조
나노입자를 60 ㎚의 금 나노입자를 사용한 것을 제외하면, 상기 실시예 1과 동일한 방법을 수행하여 수지상세포 모방 나노구조체 및 항원이 펄싱된 수지상세포 모방 나노구조체를 제조하였다. 상기 수지상세포 모방 나노구조체는 크기가 대략 80 ㎚로 측정되었다.
비교예 1. 나노입자 및 리포좀의 혼합비율을 달리한 수지상세포 모방 나노구조체 제조
하기 표 2에 기재된 혼합비율인 것을 제외하면, 실시예 1과 동일한 방법을 수행하여 수지상세포 모방 나노구조체를 제조하였다.
[표 2]
Figure PCTKR2021013746-appb-img-000004
비교예 2. 초음파 처리 없이, 수지상세포 모방 나노구조체 제조
수지상세포로부터 초음파 처리 없이, lysis buffer를 이용하여 수득한 세포막 현탁액을 사용한 것을 제외하면, 실시예 2와 동일한 방법을 수행하여 수지상세포 모방 나노구조체를 제조하였다.
실험예 1. 본 발명의 실시예 1 및 비교예 1에 따른 수지상세포 모방 나노구조체의 특성 평가
1-1. 표면 커버리지 분석
본 발명의 실시예 1 및 비교예 1에 따라 제조된 수지상세포 모방 나노구조체의 표면 커버리지를 주사전자현미경(7610F-plus, JEOL)을 이용하여 평가하였다. 그 결과는 도 3에 나타내었다. XDM 값이 커질수록 표면 커버리지도 높게 나타나는 것을 확인할 수 있다.
1-2. 표면 제타전위 및 PL 강도 분석
동적광산란식 나노입도분석기(DLS, SZ100, Horiba)를 이용하여, 본 발명의 실시예 1 및 비교예 1에 따라 제조된 수지상세포 모방 나노구조체의 표면 제타전위를 측정하였다.
또한 형광분광광도계(FP-8300, JASCO)를 이용하여 PL(photoluminescence) 강도를 측정하였다.
1-3. T 세포 증식 및 분화 유도 분석
96 well U bottom plate에 P14 mouse로부터 분리한 CD8 T 세포 2×105개, DC를 4×104개를 활용하여 실시예 1 및 비교예 1에 따라 제조된 수지상세포 모방 나노구조체(DCm-NP)를 같은 well에 배양액 10% RPMI 200 ㎕을 통해 넣고, 37 ℃에서 3일간 공배양하였다. 3일 후, 해당 플레이트를 인큐베이터에서 회수하여 형광이 달린 항체를 통해 염색을 진행하고 유세포 분석기를 통하여 CD8 T 세포의 활성화 정도를 분석하였다. 그 결과는 도 5에 나타내었다.
도 5는 FACS 데이터를 그래프화한 것으로서, XDM이 1인 실시예 1의 경우 CTV를 진행하였을 때, CD44, IFNg, TNFα, IL-2 모두 가장 높은 발현율을 나타냈다. 이는 본 발명에 따른 최적화된 혼합비율에 의할 때, 수지상세포 모방 나노구조체의 T 세포의 증식 및 활성화 효과가 우수함을 확인할 수 있다.
1-4. SDT 데이터 분석
동시 DSC/TGA 분석기(SDT 650, TA instruments) 장비를 사용해 XDM = 0, 0.25, 0.5, 1, 2 각각의 열적 안정성을 평가하였다. 30 ~ 1000 ℃ 까지 10 ℃/min의 속도로 N2 환경에서, Tm (bilayer transition temperature), Tg (Glass transition temperature), Tm (melting temperature)를 측정하여, 하기 표 3 및 도 6에 그 결과를 나타내었다.
[표 3]
Figure PCTKR2021013746-appb-img-000005
도 6(a)는 40 내지 150 ℃ 범위에서의 세부적인 분석을 위한 그래프를 도시한 것이다. XDM = 0의 경우, XDM = 0.25, 0.5, 1, 2 에서 보인 약 80 ℃ 에서 피크는 형성되지 않은 것으로 보아, 80 ℃ 부근에서 피크는 세포막에 의해 나타난 피크로 보여진다.
80 ℃ 부근에서 피크를 나타낸 XDM = 0.25, 0.5, 1, 2 중에서 XDM = 1 의 피크가 가장 저온(79.83 ℃)에서 형성된 것을 확인할 수 있다. 이중결합의 수가 증가할수록 Tm(bilayer transition temperature)은 낮아지기 때문에 이는 XDM = 1 의 경우, 막을 구성하고 있는 지방산에 이중결합이 가장 많이 분포되어 있다는 것을 의미하며, 입자 표면을 거의 100% 감싸고 있기에 curvature가 가장 커 가장 저온에서 피크가 형성된 것으로 해석된다. 즉, XDM = 1일 때 세포막이 가장 안정적으로 입자 표면 위에 형성돼 있음을 알 수 있다.
104 ℃ 내지 112 ℃ 부근에서는 모든 그룹에서 피크가 형성되었다. 따라서 이는 PS(폴리스타이렌) 입자로 인한 피크이며, PS의 Tg(Glass transition temperature)의 변화를 확인할 수 있다. XDM = 0의 경우, 111.52 ℃ 에서 피크가 형성되었는데 이는 알려진 PS의 Tg (Glass transition temperature) 범위에 해당한다. XDM = 0.25, 0.5, 1, 2의 경우 Tg 값이 XDM = 0 보다 낮은데, 이는 세포막이 코팅되었기 때문인 것으로 보여진다. XDM = 1일 때 가장 고온(106.99 ℃)에서 피크가 형성된 것을 볼 때, XDM = 1 이 가장 열역학적으로 안정한 것을 확인할 수 있다.
도 6(b)는 250 내지 500 ℃ 범위에서의 세부적인 분석을 위한 그래프를 도시한 것이다. XDM = 0, 0.25, 0.5, 1, 2 모두에서 피크가 형성되어, 이는 PS입자로 인한 피크이며, Tm(melting temperature)을 나타낸다. XDM = 0, 0.25, 0.5, 1, 2 각각을 비교해보면, XDM = 1 일 때 Tm(melting temperature)이 가장 고온(418.95 ℃) 에서 형성되어, 열역학적으로 가장 안정적이라고 해석된다. 이는 XDM = 0 보다도 높은 온도로서, XDM = 1의 구조적 안정성이 굉장히 높음을 시사한다.
실험예 2. 본 발명의 실시예 2 및 비교예 2에 따른 수지상세포 모방 나노구조체의 특성 평가
본 발명의 실시예 2 및 비교예 2에 따라 제조된 수지상세포 모방 나노구조체의 표면 제타전위를 분석하였다.
[표 4]
Figure PCTKR2021013746-appb-img-000006
도 6에 도시된 바와 같이, 초음파를 처리하지 않고 공압출 과정을 거친 비교예 2에 따라 제조된 나노구조체는 표면 제타전위의 값에 거의 변함이 없고, variation이 크게 나타났다. 특히, 제타전위의 variation이 20.7로서 매우 큰 수치이다. 이는 공압출 후, 금 나노입자에 세포막 유래 리포좀이 코팅된 나노구조체와 코팅되지 않은 나노입자가 공존하는, 나노입자에 세포막의 균일한 코팅이 이루어지지 않은 상태임을 확인할 수 있다.
반면 초음파를 처리한 실시예 2에 따라 제조된 나노구조체는 표면 제타전위의 절대값이 52.7에서 31.7로 현저히 감소된 것을 확인할 수 있다. 세포막 유래 리포좀 또한 인지질 구조로 인하여 음의 제타 전위를 가지지만, 금 나노입자는 시트르산으로 분산되어 있어, 보다 강한 음의 제타 전위를 가진다. 수지상세포 모방 나노구조체는 강한 음의 제타전위를 가지는 금 나노입자 표면에 세포막을 코팅하는 것이므로 세포막이 금 나노입자의 표면에 잘 코팅될수록 금 나노입자의 강한 음의 제타전위는 감소하여, 상대적으로 낮은 음의 제타전위 값이 나타날 것임을 가정하면, 본 발명에 따른 수지상세포 모방 나노구조체는 세포막 코팅이 균일하게 잘 이루어졌음을 알 수 있다.
실험예 3. 실시예 2에 따라 제조된 수지상세포 모방 나노구조체 특성 분석
실시예 2에 따른 수지상세포 모방 나노구조체가 제대로 제조되었는지를 확인하기 위해 물리화학적 및 생물학적인 분석을 진행하였다.
3-1. TEM 이미지 분석
도 8은 수지상세포 모방 나노구조체를 제조한 후, TEM으로 분석한 결과이다. 금 나노입자(gold NP)는 높은 분산력을 가지며, 80 nm 정도의 크기를 가지는 것을 확인하였으며, 추출한 세포막(DCm)은 낮은 전자밀도로 인해 선명하지는 않지만, 약 100 nm 정도의 리포좀들이 형성됨을 확인할 수 있다. 수지상세포 모방 나노구조체(DCm-NP)의 경우, 약 10-20 nm 정도의 두께를 가지면서 코팅이 이루어져 수지상세포 모방 나노구조체가 안정적으로 형성되었음을 확인할 수 있다.
3-2. 제타전위 측정
금 나노입자(AuNPs), 수지상세포막(DC vesicle), 수지상세포 모방 나노구조체(DCm-NP), 항원 펄싱된 수지상세포 모방 나노구조체(DCm-NP+GP33-41)의 제타전위 측정을 통해 표면 전하를 확인하였고, 그 결과는 도 9에 도시되었다.
금 나노입자는 시트르산으로 분산되어 있기 때문에 강한 음의 제타 전위를 가지며, 세포막 리포좀은 역시 인지질 구조로 인하여 음의 제타 전위를 나타낸다. 수지상세포 모방 나노구조체는 강한 음의 제타전위를 가지는 금 나노입자 표면에 세포막이 코팅되어, 금 나노입자와 비교하여 상대적으로 낮아진 음의 제타전위 값을 가지는 것을 확인할 수 있었다. 또한 표면에 항원인 GP-33을 로딩시킬 경우, GP-33의 아미노산 서열(Lys-Ala-Val-Tyr-Asn-Phe-Ala-Thr-Cys) 내의 약한 양의 전하로 인해 제타전위 값이 증가하는 것을 확인할 수 있으며, 결과적으로 코팅된 수지상세포 나노구조체가 성공적으로 제조되었음을 간접적으로 증명할 수 있다.
3-3. 수지상세포막 단백질 분포 확인
수지상세포막을 추출하는 과정 및 초음파 처리 및 필터압출 과정에서 수지상세포막에 존재하는 면역 관련 단백질들이 응집되거나 변성되지 않았는지를 확인하기 위해 단백질 크기 분포 확인 (SDS-PAGE)을 진행하였다.
수지상세포 모방 나노구조체의 제조 과정에서 발생할 수 있는 단백질 변성을 확인함과 동시에 나노입자 표면에 안정적으로 세포막이 코팅되었는지 여부를 확인하고자 SDS-PAGE를 통하여 총 단백질 분포정도를 확인하였다. 나노구조체 제조 중간 단계에서 진행하는 초음파 처리 전후 단백질 분포에 큰 변화가 없음을 통하여 제조단계에서 단백질의 변성은 크게 일어나지 않음을 확인할 수 있었다. 최종적으로 제조된 나노구조체의 단백질 분포 또한 세포막의 단백질 분포 정도와 일치하는 것을 통해 나노구조체에 성공적으로 수지상세포의 세포막이 존재하는 것을 확인할 수 있었다.
3-4. 수지상세포 막 단백질의 분석
금 나노입자와 수지상세포 유래 세포막을 함께 필터압출하는 과정에서 세포막이 right-side-out membrane orientation으로 금 나노입자에 코팅되었는지 확인하기 위해, 제조한 수지상세포 모방 나노구조체의 면역 관련 주요 막 단백질들인 CD80, CD86, MHC class I, II의 유무를 유세포 분석기로(FACS)를 통해 확인하였다. 그 결과를 도 10에 나타내었다.
대표적인 막 단백질인 CD80, CD86, MHC class I, II을 형광이 달린 항체를 통해 분석하였을 때, 수지상세포 모방을 하지 않은 그룹에 비해 수지상세포 모방 나노구조체(DCm-NP)를 제조하여 항체를 붙인 경우, positive한 형광시그널을 확인하였으며, 이를 통하여 입자 표면에 막 단백질들이 정상적으로 존재하는 것을 확인할 수 있었다.
3-5. In vitro 상에서 T 세포 증식 및 분화 유도
실험예 1-3과 동일한 방식으로 수지상세포 모방 나노구조체의 T 세포 증식 및 분화 유도 효과를 평가하기 위한 T 세포와의 공배양 분석을 수행하였고, 그 결과는 도 11a 및 도 11b에 도시되었다.
수지상세포 모방 나노구조체에 GP-33를 처리하지 않고 CD8 T 세포와 공배양을 진행한 경우에는 T 세포 증식척도인 CTV가 늘어나지 않는 것을 확인할 수 있었으며, 마찬가지로 해당 그룹에서 활성화 척도인 CD44나, 기능성 사이토카인인 IFNg, IL-2, TNFa 등도 CD8 T 세포에서 거의 나오지 않는 것을 확인할 수 있었다. 반면에, 수지상세포 모방 나노구조체에 GP-33을 처리하여 P14에서 분리한 CD8 T 세포의 T 세포 수용체에 결합할 수 있도록 처리한 결과, CTV가 진행되어 CD8 T 세포가 증식한 것을 확인할 수 있었으며, 높은 CD44 발현을 통해 CD8 T 세포가 활성화된 것을 확인할 수 있었다. 더불어 IFNg와 TNFα가 현저하게 많이 CD8 T 세포로부터 나오는 것 또한 확인할 수 있었다. 이를 통해, 수지상세포의 세포막만 분리하여 이를 모방하는 나노구조체를 제조하더라도 in vitro 상에서 항원특이적인 CD8 T 세포의 증식과 활성화에 기여하는 것을 확인할 수 있었다.
3-6. In vivo 상에서 T 세포 증식 및 분화 유도
congenic marker(Thy1.1)가 달린 P14 mouse에서 CD8 T 세포를 분리한 후 naive recipient mouse에 양자면역세포이입(adoptive transfer)를 해주고, 24시간 후 수지상세포 또는 수지상세포 모방 나노구조체를 각 그룹마다 다른 조건으로 양자면역세포이입을 진행하였다. 그 후 48시간이 경과한 다음, 마우스의 비장에서 면역세포를 분리하여, 형광이 달린 항체를 통해 염색을 진행하고 유세포 분석기를 통하여 CD8 T 세포의 활성화 정도를 분석하였다. 그 결과는 도 12a 및 도 12b에 도시되었다.
G1은 CD8 T 세포만 넣어준 그룹, G2는 GP33-41을 처리하지 않은 수지상세포 및 CD8 T 세포를 넣어준 그룹, G3은 GP33-41을 처리한 수지상세포 및 CD8 T 세포를 넣어준 그룹, G4는 GP33-41을 처리하지 않은 수지상세포 모방 나노구조체 및 CD8 T 세포를 넣어준 그룹, G5는 GP33-41을 처리한 수지상세포 모방 나노구조체 및 CD8 T 세포를 넣어준 그룹이다. GP-33을 처리하지 않은 G2와 G4의 경우, negative control인 G1과 마찬가지로 CD8 T 세포 활성화 지표들이 모두 나타나지 않은 것을 확인할 수 있었던 반면, G3에서는 CTV를 통해 CD8 T 세포의 증식 및 CD44을 통한 활성화, 그리고 기능성 사이토카인인 IFNg와 TNFα의 분비를 확인할 수 있었다. G5의 경우, G3에 비해서 그 정도가 약하기는 하지만 negative control에 비해서는 어느 정도 CD8 T 세포가 활성화 되고 증식되는 것을 확인할 수 있었다. 이를 통해 in vivo 상에서는 GP-33를 처리한 수지상세포 모방 나노구조체가 CD8 T 세포를 활성화시킬 수 있는 것을 확인할 수 있었다.
3-7. 안정성 테스트
실시예 2에 따라 제조된 수지상세포 모방 나노구조체(DCm-NP)를 동결건조 후 상온에서 보관, PBS에 분산된 상태로 냉장(4 ℃) 및 냉동(-20 ℃) 보관, 원심분리하여 펠릿 상태로 냉장(4 ℃) 및 냉동(-20 ℃) 보관하여 각각 10일, 20일, 30일 경과 후 항원을 펄싱하였다. 상기 수지상세포 모방 나노구조체(DCm-NP)에 항원을 펄싱한 그룹 및 골수 유래 수지상세포에 항원을 펄싱한/하지 않은 그룹과 함께 T 세포 증식 및 분화 효율을 평가하였다. 그 결과는 도 13에 도시되었다. 본 발명에 따른 수지상세포 모방 나노구조체(DCm-NP)는 30일 이상 구조적 안정성을 유지함과 동시에 수지상세포의 항원제시기능 또한 보존됨을 확인할 수 있었다.
본 발명은 실시예 및 실험예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 이로부터 다양한 변형 및 균등한 다른 실시예 및 실험예가 가능하다.

Claims (18)

  1. 나노입자 코어; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 나노구조체로서, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 하는 수지상세포 모방 나노구조체.
  2. 제 1항에 있어서,
    상기 쉘의 두께는 5 내지 20 ㎚인, 수지상세포 모방 나노구조체.
  3. 제 1항에 있어서,
    상기 나노구조체의 표면 커버리지는 70% 이상인, 수지상세포 모방 나노구조체.
  4. 제 1항에 있어서,
    상기 나노구조체의 표면 커버리지는 85% 이상인, 수지상세포 모방 나노구조체.
  5. 제 1항에 있어서,
    상기 나노구조체는 상기 수지상세포 유래의 세포막을 초음파 처리하여 제조된 리포좀 및 상기 나노입자가 융합된 것인, 수지상세포 모방 나노구조체.
  6. 제 5항에 있어서,
    상기 나노구조체의 표면 전위의 절대값은 수지상세포로부터 유래된 지질 분자의 리포좀 표면 전위의 절대값보다 작은, 수지상세포 모방 나노구조체.
  7. 제 5항에 있어서,
    상기 나노구조체는 상기 리포좀 및 나노입자를 공압출하여 제조한 것인, 수지상세포 모방 나노구조체.
  8. 제 5항에 있어서,
    상기 리포좀의 입경은 200 ㎚ 이하인, 수지상세포 모방 나노구조체.
  9. 제 1항에 있어서,
    상기 나노구조체의 표면 제타전위는 -35 내지 -25 ㎷인, 수지상세포 모방 나노구조체.
  10. 수지상세포로부터 세포막을 정제하는 단계;
    상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계;
    상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및
    나노입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 나노입자를 수득하는 단계;를 포함하는 수지상세포 모방 나노구조체 제조방법.
  11. 제 10항에 있어서,
    상기 나노입자 및 리포좀은 1:150 내지 1:300의 부피비율로 혼합되는 것인, 수지상세포 모방 나노구조체 제조방법.
  12. 제 10항에 있어서,
    상기 세포막이 도입된 나노입자에 항원을 펄싱하는 단계;를 더 포함하는 수지상세포 모방 나노구조체 제조방법.
  13. 제 12항에 있어서,
    상기 항원은 종양 항원 유래 펩타이드 또는 단백질인, 수지상세포 모방 나노구조체 제조방법.
  14. 제 10항에 있어서,
    상기 리포좀의 평균 입경은 200 ㎚ 이하인, 수지상세포 모방 나노구조체 제조방법.
  15. 제 10항에 있어서,
    상기 세포막이 도입된 나노입자는 세포막 도입 전 나노입자와 대비하여 표면전위의 절대값이 작은, 수지상세포 모방 나노구조체 제조방법.
  16. 제 1항 내지 제 9항 중 어느 한 항에 따른 수지상세포 모방 나노구조체를 포함하는 면역치료제.`
  17. 제 1항 내지 제 9항 중 어느 한 항에 따른 수지상세포 모방 나노구조체를 포함하는 암치료용 약학적 조성물.
  18. 제 10항 내지 제 15항 중 어느 한 항의 제조방법에 따라 제조된 수지상세포 모방 나노구조체.
PCT/KR2021/013746 2020-12-07 2021-10-07 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법 WO2022124544A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21903591.2A EP4292589A1 (en) 2020-12-07 2021-10-07 Dendritic cell-mimicked nanostructure for application to cancer immunotherapy, and fabrication method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200169289 2020-12-07
KR10-2020-0169289 2020-12-07
KR10-2021-0104313 2021-08-09
KR1020210104313A KR20220080681A (ko) 2020-12-07 2021-08-09 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022124544A1 true WO2022124544A1 (ko) 2022-06-16

Family

ID=81973702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013746 WO2022124544A1 (ko) 2020-12-07 2021-10-07 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법

Country Status (2)

Country Link
EP (1) EP4292589A1 (ko)
WO (1) WO2022124544A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070454A (ko) * 2002-02-25 2003-08-30 크레아젠 주식회사 면역 치료용 성숙화된 수지상 세포 백신의 제조방법
CN110090298A (zh) * 2019-05-09 2019-08-06 武汉大学 一种细胞膜肿瘤疫苗及制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070454A (ko) * 2002-02-25 2003-08-30 크레아젠 주식회사 면역 치료용 성숙화된 수지상 세포 백신의 제조방법
CN110090298A (zh) * 2019-05-09 2019-08-06 武汉大学 一种细胞膜肿瘤疫苗及制备方法与应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRIAN T. LUK ET AL., THERANOSTICS, vol. 6, no. 7, 2016, pages 1004 - 101
GAO WEIWEI, HU CHE-MING J., FANG RONNIE H., LUK BRIAN T., SU JING, ZHANG LIANGFANG: "Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes", ADVANCED MATERIALS, VCH PUBLISHERS, DE, vol. 25, no. 26, 12 July 2013 (2013-07-12), DE , pages 3549 - 3553, XP055939153, ISSN: 0935-9648, DOI: 10.1002/adma.201300638 *
GAO WEIWEI, ZHANG LIANGFANG: "Coating nanoparticles with cell membranes for targeted drug delivery", JOURNAL OF DRUG TARGETING, vol. 23, no. 7/8, 30 November 2014 (2014-11-30), GB , pages 619 - 626, XP009537290, ISSN: 1061-186X, DOI: 10.3109/1061186X.2015.1052074 *
HU, CHE-MING J. ET AL., NATURE, vol. 526, no. 7571, 2015, pages 118 - 12
LIU WEN-LONG, ZOU MEI-ZHEN, LIU TAO, ZENG JIN-YUE, LI XUE, YU WU-YANG, LI CHU-XIN, YE JING-JIE, SONG WEN, FENG JUN, ZHANG XIAN-ZHE: "Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells", NATURE COMMUNICATIONS, vol. 10, no. 1, 1 December 2019 (2019-12-01), XP055939119, DOI: 10.1038/s41467-019-11157-1 *
OCHYL LUKASZ J., MOON JAMES J.: "Dendritic Cell Membrane Vesicles for Activation and Maintenance of Antigen‐Specific T Cells", ADVANCED HEALTHCARE MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 8, no. 4, 1 February 2019 (2019-02-01), DE , pages 1801091, XP055939175, ISSN: 2192-2640, DOI: 10.1002/adhm.201801091 *
Q. JIANG ET AL., BIOMATERIALS, vol. 192, 2019, pages 292 - 308

Also Published As

Publication number Publication date
EP4292589A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
Qian et al. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy
Copland et al. Liposomal delivery of antigen to human dendritic cells
Clawson et al. Delivery of a peptide via poly (d, l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell–stimulatory capacity
EP1523990B1 (fr) Vésicule cellulaire dénommée 'exosome', leur préparation et utilisation dans la stimulation d'une réponse immunitaire
Waeckerle-Men et al. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly (lactide-co-glycolide) microspheres for immunotherapy
US20080044484A1 (en) Use of polymeric nanoparticles for vaccine delivery
WO2012165815A2 (ko) 종양 조직에서 유래한 나노소포체 및 이를 이용한 암 백신
US11278605B2 (en) Method for preparing an immunogenic lysate, the lysate obtained, dendritic cells loaded with such lysate and a pharmaceutical composition comprising the lysate or the dendritic cells
WO2019066535A1 (ko) 암 치료용 신규 재조합 원형질막-기반 소포체
WO2020038299A1 (zh) 一种基于外泌体的抗肿瘤疫苗
CA2504279A1 (en) Materials and method of modulating the immune response using t helper-antigen presenting cells
WO2021127814A1 (zh) 用于癌症治疗的光纳米疫苗及其制备方法和应用
CN112569207A (zh) 一种载脂蛋白修饰的仿生纳米肿瘤疫苗及其制备方法和用途
Abdel-Wahab et al. Human dendritic cells, pulsed with either melanoma tumor cell lysates or the gp100 peptide (280-288), induce pairs of T-cell cultures with similar phenotype and lytic activity
WO2022199138A1 (zh) 一种纳米人工抗原呈递细胞及其制备方法和应用
ES2353753T3 (es) Procedimiento para la producción de lisados de células tumorales inducidas por temperatura para usar como compuestos inmunógenos.
US20030082163A1 (en) Fused cells, methods of forming same, and therapies utilizing same
Shi et al. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance
JP2002539805A (ja) 樹状細胞・腫瘍細胞または樹状細胞・ウイルス細胞由来免疫原を用いた抗原特異的t細胞のインビトロ産生
WO2022124544A1 (ko) 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법
WO2004055053A1 (fr) Vaccin antitumoral
KR20220080681A (ko) 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법
Matsuoka et al. Importance of particle size of oligomannose-coated liposomes for induction of Th1 immunity
JP2003514522A (ja) 樹状細胞の微粒子ベースのトランスフェクションおよび活性化
Yotsumoto et al. Enhancement of IFN-γ production for Th1-cell therapy using negatively charged liposomes containing phosphatidylserine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021903591

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18552871

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021903591

Country of ref document: EP

Effective date: 20230707