WO2022124532A1 - 지능형 센서와 이것을 이용한 지능형 센싱방법 - Google Patents

지능형 센서와 이것을 이용한 지능형 센싱방법 Download PDF

Info

Publication number
WO2022124532A1
WO2022124532A1 PCT/KR2021/011632 KR2021011632W WO2022124532A1 WO 2022124532 A1 WO2022124532 A1 WO 2022124532A1 KR 2021011632 W KR2021011632 W KR 2021011632W WO 2022124532 A1 WO2022124532 A1 WO 2022124532A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
information
change
unit
risk level
Prior art date
Application number
PCT/KR2021/011632
Other languages
English (en)
French (fr)
Inventor
박지만
Original Assignee
(주)엘센
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘센 filed Critical (주)엘센
Priority to US17/623,410 priority Critical patent/US20220319296A1/en
Publication of WO2022124532A1 publication Critical patent/WO2022124532A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3065Monitoring arrangements determined by the means or processing involved in reporting the monitored data
    • G06F11/3072Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves data filtering, e.g. pattern matching, time or event triggered, adaptive or policy-based reporting
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3089Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3466Performance evaluation by tracing or monitoring

Definitions

  • the present invention relates to an intelligent sensor and an intelligent sensing method using the same, and more particularly, to an intelligent sensor and an intelligent sensing method using the same for quickly discriminating faulty diagnosis, danger, and normal situation in the sensor itself.
  • the user acquires an accurate and stable sensor value and analyzes the signal received from the sensor to analyze various situations and respond to emergency.
  • the measured sensor value is transmitted from the sensor device to the server through the communication gateway, and the server analyzes the sensor data and appropriately provides the information to the relevant person to perform various services.
  • the hyper-connected system most of the sensor data is transmitted to the server and processed in various forms according to the analyzed information. During this communication process, the response time may be delayed, and communication may become poor, resulting in data loss.
  • An object of the present invention is to solve the problems of the prior art, and to provide an intelligent sensor and an intelligent sensing method using the same for quickly determining faulty diagnosis, danger, and normal situation in the sensor itself.
  • the intelligent sensor includes one or more sensing units for collecting change information in the field; a communication unit that transmits the collected change information in time series order; a sensing storage unit storing the characteristic information of the sensing unit, reference information to be compared with the change information or information based on the characteristic information, and the change information; and calculating at least the sensing change rate information among the sensing change rate information of the change information according to the sensing time of the change information, the sensing pattern information according to the change information, and the sensing characteristic change information changed according to the field characteristics, and a control unit that compares and analyzes information based on change information with the reference information.
  • the sensing storage unit may include: a sensor characteristic unit storing characteristic information of the sensing unit, wherein the characteristic information of the sensing unit includes an effective period of the sensing unit; a reference storage unit for storing the reference information, wherein the reference information includes a risk level serving as an evaluation index, event information for each risk level, critical information for each risk level, critical time for each risk level, and threshold change rate information for each risk level; and a temporary storage unit for storing the period of use of the sensing unit, the change information, the sensing time of the change information, and the sensing change rate information of the change information according to the sensing time.
  • control unit may include: an event management unit for generating an event by comparing the event information with the change information; a time counter for calculating the period of use of the sensing unit and counting the sensing time of the change information according to the occurrence of the event; a sensing value analysis unit that compares the threshold information for each risk level with the change information and analyzes whether safety is present according to the risk level; a sensing value change calculation unit for calculating sensing change rate information of the change information according to the sensing time; a sensing value change analysis unit that compares the threshold change rate information for each risk level with the sensed change rate information and analyzes whether safety according to the risk level is present; and an validity period analysis unit that compares the validity period of the sensing unit with the period of use of the sensing unit and analyzes whether safety according to the risk level is present.
  • the reference information further includes standard pattern information according to the threshold information and a standard analysis time for the standard pattern information, and in the temporary storage unit, a sensing pattern according to the change information based on the standard analysis time. More information is stored.
  • control unit the sensing pattern calculation unit for calculating the sensing pattern information based on the standard analysis time; and a sensing pattern analysis unit that compares the standard pattern information and the sensing pattern information to analyze whether safety is present according to the risk level.
  • the characteristic information of the sensing unit further includes unique information of the sensing unit
  • the reference information further includes standard characteristic change information based on the unique information of the sensing unit
  • the temporary storage unit includes the field Sensing characteristic change information that is changed according to the characteristic is further stored.
  • control unit may include: a sensing characteristic change calculator configured to calculate the sensing characteristic change information that is changed according to the field characteristic; and a sensing characteristic change analysis unit that compares the standard characteristic change information with the sensing characteristic change information to analyze whether safety is present according to the risk level.
  • the intelligent sensing method is an intelligent sensing method using an intelligent sensor according to the present invention, comprising: a sensing step of collecting the change information in the field through the sensing unit; a time counting step of counting the sensing time of the change information according to the sensing step; a sensing value comparison step of comparing the change information with the threshold information for each risk level among the reference information; a first change calculation step of calculating sensing change rate information of the change information according to the sensing time after the sensing value comparison step; a first comparison step of comparing the threshold change rate information for each risk level and the sensing change rate information among the reference information; a period calculation step of calculating the period of use of the sensing unit after the first comparison step; and a period comparison step of comparing the validity period of the sensing unit and the usage period of the sensing unit among the characteristic information of the sensing unit.
  • the sensing value comparison step when the risk level is included in the preset safe assumption range, a temporary safety signal is generated, the first change calculation step is performed, and the comparison result of the first comparison step , when the risk level is included in the preset first safety range, a first safety signal is generated, the period calculation step is performed, and as a result of the comparison of the period comparison step, the period of use of the sensing unit is a characteristic of the sensing unit If the information is included in the valid period of the sensing unit, a third safety signal is generated and the process returns to the sensing step.
  • the sensing value comparison step when the risk level is out of the preset safe assumption range, a temporary danger signal is generated, the first change calculation step is performed, the comparison result of the first comparison step, When the risk level is out of the first safety range, a first danger signal is generated, the period calculation step is performed, and as a result of the comparison of the period comparison step, the period of use of the sensing unit is selected from the characteristic information of the sensing unit.
  • the sensing unit exceeds the validity period, a third danger signal is generated, and when at least one of the temporary danger signal, the first danger signal, and the third danger signal is generated, communication with the intelligent sensor Sends the corresponding danger signal to the server.
  • the intelligent sensing method includes: a time checking step of comparing a standard analysis time for standard pattern information according to the threshold information and a sensing time of the change information after the first comparison step; a pattern calculation step of calculating sensing pattern information according to the change information based on the standard analysis time when the sensing time of the change information is equal to or greater than the standard analysis time as a result of the comparison of the time checking step; and a pattern comparison step of comparing the standard pattern information with the sensing pattern information after the pattern calculation step.
  • the sensing time of the change information is smaller than the standard analysis time, the change information collected according to the time series is updated and stored, and then the sensing step is returned.
  • the intelligent sensing method comprises: a second change calculation step of calculating the sensing characteristic change information that is changed according to the field characteristics after the period comparison step; and a characteristic change comparison step of comparing the standard characteristic change information with the sensing characteristic change information after the second conversion calculation step.
  • the intelligent sensing method generates a fourth danger signal when the risk level is out of a preset fourth safety range as a result of the comparison of the characteristic change comparison step, and a field verification step for inducing verification of the field further includes ;
  • the intelligent sensing method is an intelligent sensing method using an intelligent sensor according to the present invention, comprising: a sensing step of collecting the change information in the field through the sensing unit; a time counting step of counting the sensing time of the change information according to the sensing step; a sensing value comparison step of comparing the change information with the threshold information for each risk level among the reference information; a first change calculation step of calculating sensing change rate information of the change information according to the sensing time after the sensing value comparison step; a first comparison step of comparing the threshold change rate information for each risk level and the sensing change rate information among the reference information; a time checking step of comparing a standard analysis time for standard pattern information according to the threshold information and a sensing time of the change information after the first comparison step; a pattern calculation step of calculating sensing pattern information according to the change information based on the standard analysis time when the sensing time of the change information is equal to or greater than the standard analysis time as a result of the comparison of the time checking step; and a pattern
  • the sensing value comparison step when the risk level is included in the preset safe assumption range, a temporary safety signal is generated, the first change calculation step is performed, and the comparison result of the first comparison step , when the risk level is included in the preset first safety range, a first safety signal is generated, the period calculation step is performed, and as a result of the comparison of the pattern comparison step, the risk level is a preset second safety range When included in , a second safety signal is generated.
  • the intelligent sensor and the intelligent sensing method using the intelligent sensor according to the present invention it is possible to quickly determine a faulty diagnosis, a danger, and a normal situation from the sensor itself.
  • the present invention configures a simple algorithm and is mounted on the sensor itself, it is possible to cope with the situation with a quick response.
  • contextual information according to a situational response is transmitted to a server having excellent computing power, and the server can precisely determine the contextual information by matching it with information transmitted from other sensors.
  • the senor itself can quickly determine faulty diagnosis, risk, and normal situation.
  • the present invention can improve the judgment power of the sensor itself based on the standard pattern information added through the detailed configuration of the sensing storage unit and the control unit.
  • the present invention can improve the judgment power of the sensor itself based on the standard characteristic change information added through the detailed configuration of the sensing storage unit and the control unit.
  • the present invention can clearly determine the situation in the sensor itself by selecting a priority from the change information collected by two or more sensing units through the target setting unit.
  • the present invention counts the abnormality of the sensing characteristic change information through the sensing abnormality counter, and can induce a smooth verification in the field.
  • the present invention further includes an event step, it is possible to clarify the sensing step for comparative analysis in the sensor itself, and prevent deterioration of the operation of the sensor itself.
  • sequential comparative analysis is performed based on critical information for each risk level, threshold change rate information for each risk level, and the validity period of the sensing unit. And it can be made to spread quickly.
  • change information can be stably collected in time-series order corresponding to the standard analysis time, and change information can be stably collected according to the risk level.
  • the comparative analysis is sequentially performed based on the standard characteristic change information, it is possible to improve the judgment on the normal situation in the sensor itself in response to the safety signal.
  • the present invention counts the abnormality of the sensing characteristic change information through the abnormality frequency counting step, and can induce a smooth verification in the field.
  • the present invention facilitates replacement in response to at least a defect in the sensing unit, and at least the sensing unit can stably maintain a normal condition.
  • FIG. 1 is a block diagram illustrating a communication structure of an intelligent sensor according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a storage unit in an intelligent sensor according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a control unit in an intelligent sensor according to an embodiment of the present invention.
  • FIG. 4 is a graph showing threshold information for each sensing time in response to change information of an intelligent sensor according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram for comparison of standard pattern information and sensing pattern information in an intelligent sensor according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the sensing intensity for each analysis time in the intelligent sensor according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an intelligent sensing method according to an embodiment of the present invention.
  • the intelligent sensor 100 may include a sensing unit 10 , a communication unit 20 , a storage unit 40 , and a control unit 50 .
  • a sensing unit 10 may include a sensing unit 10 , a communication unit 20 , a storage unit 40 , and a control unit 50 .
  • reference numeral 30 denotes a display unit for disseminating information to the user so that the user can check the operation state of the sensing unit, the operation state of the storage unit, and the operation state of the control unit through any one of visual, auditory, and tactile senses.
  • the sensing unit 10 collects change information in the field.
  • One or more sensing units 10 may be provided.
  • the communication unit 20 transmits the collected change information in time series order.
  • the communication unit 20 may transmit the collected change information through at least one of wired communication and wireless communication.
  • the change information transmitted from the communication unit 20 is transmitted to the server 300 through the gateway 200 , and the server 300 can monitor the change information.
  • the communication unit 20 may transmit information stored in the temporary storage unit 43 of the sensing storage unit 40 to be described later to the server 300 , and the server 300 collects information transmitted through the communication unit 20 . While managing, you can monitor the collected information.
  • the communication unit 20 may receive information stored in the reference storage unit 42 among the sensing storage units 40 to be described later from the server 300 , and the reference storage unit 42 receives information transmitted from the server 300 . It is possible to update the existing information by updating them.
  • the sensing storage unit 40 stores the characteristic information of the sensing unit 10 , change information, or reference information and change information, which are comparison objects of information based on the characteristic information.
  • the sensing storage unit 40 includes a sensor characteristic unit 41 in which characteristic information of the sensing unit 10 is stored, a reference storage unit 42 in which reference information is stored, and a temporary storage unit 43 in which change information is stored.
  • a sensor characteristic unit 41 in which characteristic information of the sensing unit 10 is stored
  • a reference storage unit 42 in which reference information is stored
  • a temporary storage unit 43 in which change information is stored.
  • the characteristic information of the sensing unit 10 may include an effective period of the sensing unit 10 .
  • the reference information may include a risk level serving as an evaluation index, event information for each risk level, critical information for each risk level, critical time for each risk level, and threshold change rate information for each risk level.
  • the temporary storage unit 43 may further store the period of use of the sensing unit 10 , change information, sensing time of change information, and sensing change rate information of change information according to the sensing time.
  • the reference information may further include standard pattern information according to the threshold information and a standard analysis time for standard pattern information.
  • the temporary storage unit 43 may further store sensing pattern information according to the change information based on the standard analysis time.
  • the characteristic information of the sensing unit 10 may further include unique information of the sensing unit 10 .
  • the unique information of the sensing unit 10 may include unique characteristics and errors of the sensing unit 10 .
  • the reference information may further include standard characteristic change information based on the unique information of the sensing unit 10 .
  • the temporary storage unit 43 may further store sensing characteristic change information that is changed according to field characteristics.
  • the control unit 50 calculates at least sensing change rate information among sensing change rate information of change information according to the sensing time of change information, sensing pattern information according to change information, and sensing characteristic change information changed according to field characteristics, and change information Compare and analyze the information based on the reference information.
  • control unit 50 compares the event information with the change information to calculate the usage period of the event management unit 51 and the sensing unit 10 that generate an event, while measuring the sensing time of the change information according to the occurrence of the event.
  • a time counter 52 to count, a sensing value analysis unit 61 that compares the threshold information and change information for each risk level to analyze whether safety according to the risk level, and the sensing change rate information of the change information according to the sensing time
  • the sensing value change calculation unit 53, the sensing value change analysis unit 62 that compares the critical change rate information for each risk level and the sensing change rate information to analyze whether safety according to the risk level, and the validity period of the sensing unit 10 and It may include an expiration date analysis unit 64 that compares the period of use of the sensing unit 10 and analyzes whether it is safe according to the level of risk.
  • control unit 50 includes a sensing pattern calculation unit 54 that calculates sensing pattern information based on the standard analysis time, and a sensing pattern analysis that compares the standard pattern information with the sensing pattern information to analyze whether safety is determined according to the level of risk.
  • a unit 63 may be further included.
  • control unit 50 compares the sensing characteristic change calculation unit 56 for calculating the sensing characteristic change information that is changed according to the field characteristics, and the standard characteristic change information and the sensing characteristic change information, and analyzes whether safety according to the level of risk. It may further include a sensing characteristic change analysis unit 65 to
  • the risk level can be divided into three types.
  • the risk level may be divided into a first risk level corresponding to at least one of critical information, critical change rate information, and standard pattern information, and a second risk level corresponding to standard characteristic change information.
  • a risk level is divided into 5 stages for each type.
  • the present invention is not limited thereto, and various settings such as any one of steps 2, 3, and 6 to 10 may be used.
  • the first risk level can be divided into five levels corresponding to at least one of threshold information, threshold change rate information, and standard pattern information.
  • the first stage is a case where the risk probability is 15% or less and represents a safe situation.
  • the second stage is a case where the risk probability is 30% or less, and represents a situation in which safety is changed.
  • the third stage is a case where the risk probability is 45% to 55% or less, and represents a situation close to a dangerous situation.
  • the fourth stage is a case where the probability of danger is 90% or less, indicating a dangerous situation, and while the operator goes to the site to check the condition, the dangerous situation can be spread quickly to managers, workers, and related organizations.
  • Step 5 is a case where a dangerous situation occurs, and according to the occurrence of an accident, it is possible to quickly spread the dangerous situation to managers, workers, and related organizations so that emergency treatment can be carried out quickly at the site.
  • the risk probability is evaluated as the similarity between the critical information and the change information according to the comparison of the critical information and the change information, the higher the similarity, the higher the risk probability, and the lower the similarity, the lower the risk probability.
  • the risk probability is evaluated as the similarity between the critical change rate information and the sensing change rate information according to the comparison of the critical change rate information and the sensing change rate information, and the higher the similarity, the greater the risk probability and the lower the similarity, the greater the risk. the probability becomes smaller
  • the risk probability is evaluated as the similarity between the standard pattern information and the sensing pattern information according to the comparison of the standard pattern information and the sensing pattern information, and the higher the similarity, the higher the risk probability and the lower the similarity The higher the risk, the lower the risk.
  • the second risk level can be divided into five levels in response to the standard characteristic change information.
  • the first stage is a case where the risk probability is 10% or less, and the abnormal rate of the sensing characteristic change information that is changed according to the field characteristics in response to the unique information of the sensing unit 10 is 10% or less, indicating a normal situation.
  • the second stage is a case where the risk probability is 15% to 20% or less, and the abnormal rate of the sensing characteristic change information, which is changed according to the field characteristics in response to the unique information of the sensing unit 10, is 15% to 20% or less, and is normal This indicates a changing situation.
  • the risk level is included in the preset safety range and a safety signal is generated.
  • the risk level is out of a preset safety range to generate a danger signal, and the sensing unit 10 and the standard Enables comparative analysis of sensors to be performed.
  • the third stage is a case where the risk probability is 25% to 30% or less, and the abnormal rate of the sensing characteristic change information, which is changed according to the field characteristics in response to the unique information of the sensing unit 10, is 25% to 30% or less, Indicates a situation that enters a state.
  • the state of the sensing unit 10 is checked in the field, and the state of the sensing unit 10 is checked through on-site comparative analysis of the sensing unit 10 and the standard sensor, and then the standard sensor and the If a problem is found between the sensing units, the sensing unit is replaced.
  • the sensing unit 10 is determined to be normal, and the third stage to the above-described first risk level If it is determined as any one of the fifth steps, it is determined that the sensing unit 10 is defective.
  • the fourth stage is a case where the risk probability is 35% to 40% or less, and the abnormal rate of the sensing characteristic change information, which is changed according to the field characteristics in response to the unique information of the sensing unit 10, is 35% to 40% or less, indicate the situation.
  • the state of the sensing unit 10 must be checked in the field, while on-site comparative analysis between the sensing unit 10 and the standard sensor is performed, and the intelligent sensor 100 according to the result of field comparison analysis ) can be decided whether to replace or not.
  • the sensing unit 10 is determined to be normal, and the third stage to the above-described first risk level If it is determined as any one of the fifth steps, it is determined that the sensing unit 10 is defective.
  • the fifth step is a case where the risk probability is 45% or more, and the abnormal rate of the sensing characteristic change information that is changed according to the field characteristics corresponding to the unique information of the sensing unit 10 is 45% or more, and the sensing unit 10 is defective. indicate the situation.
  • the fifth step is determined, the state of the sensing unit 10 must be checked in the field, and the sensing unit 10 can be replaced unconditionally in the field.
  • the danger signal is transmitted to the server 300 so that a follow-up action for the relevant sensing unit 10 is performed quickly.
  • the safety signal may also be transmitted to the server 300 , and the state of the related sensing unit 10 may be stably monitored.
  • the risk probability is evaluated as the degree of similarity between the standard characteristic change information and the sensing characteristic change information according to the comparison of the standard characteristic change information and the sensing characteristic change information. The lower it is, the higher the risk.
  • the control unit 50 may further include a target setting unit 66 for selecting a priority for analysis with respect to two or more sensing units 10 . Then, the information stored in the sensor characteristic unit 41 and the reference storage unit 42 can be extracted based on the sensing unit 10 selected by the target setting unit 66 , and the control unit 50 uses each of the calculation units and analysis units can perform calculation and comparative analysis based on the corresponding sensing unit 10 .
  • the control unit 50 may further include a sensing abnormality counter 57 for counting the number of abnormalities of the sensing characteristic change information corresponding to the period of use. Then, the sensing abnormality counter 57 may clarify the sensing characteristic change information in response to the abnormality frequency, and perform on-site verification according to the abnormality frequency.
  • the intelligent sensing method is an intelligent sensing method using the intelligent sensor 100 according to an embodiment of the present invention, and a sensing step (S2) of collecting change information in the field through the sensing unit 10 ), a time counting step (S21) of counting the sensing time of change information according to the sensing step (S2), and a sensing value comparison step (S3) of comparing the change information with the threshold information for each risk level among the reference information,
  • a period calculation step (S63) of calculating the period of use of the sensing unit 10 after the comparison step (S4) and the first comparison step (S4), and the sensing unit 10 among the characteristic information of the sensing unit 10 It may include a period comparison step (S7) of comparing the validity period of the sensor 10 and
  • the intelligent sensing method generates a temporary safety signal (S31) when, as a result of the comparison of the sensing value comparison step (S3), the risk level is included in the preset safe assumption range, (S31), and the first A change calculation step (S33) may be performed.
  • the intelligent sensing method generates a first safety signal (S41) when, as a result of the comparison of the first comparison step (S4), the risk level is included in the preset first safety range,
  • the period calculation step (S63) may be carried out.
  • the period of use of the sensing unit 10 is the effective period of the sensing unit 10 among the characteristic information of the sensing unit 10 .
  • a third safety signal is generated (S71), and the process returns to the sensing step (S2).
  • an event step (S1) of monitoring whether an event occurs in response to event information for each risk level that is an evaluation index among the reference information ) may be further included. Then, as a result of the event step (S1), when an event occurs as change information is included in the event information, the sensing step (S2) is performed. In addition, as a result of the event step (S1), if an event does not occur, the event step (S1) is repeated continuously.
  • the intelligent sensing method generates a temporary danger signal (S32) when, as a result of the comparison of the sensing value comparison step (S3), the risk level is outside the preset safe assumption range,
  • the first change calculation step (S33) may be performed.
  • the temporary danger signal is transmitted (S91) to the server 300 to be managed by the server 300.
  • the intelligent sensing method generates a first danger signal (S42) when, as a result of the comparison in the first comparison step (S4), the risk level is out of a preset first safety range, and a period A calculation step (S63) may be performed.
  • the first danger signal is transmitted to the server 300 (S92) to be managed by the server 300.
  • the period of use of the sensing unit 10 is the effective period of the sensing unit 10 among the characteristic information of the sensing unit 10 . If it is out of , a third danger signal S72 may be generated. The third danger signal is transmitted to the server 300 ( S94 ) and managed by the server 300 .
  • the server communicating with the intelligent sensor 100 according to an embodiment of the present invention Since the corresponding danger signal is transmitted to 300 ( S91 , S92 , S94 ), the server 300 can monitor the intelligent sensor 100 .
  • the intelligent sensing method checks the time for comparing the sensing time of the change information with the standard analysis time for standard pattern information according to the threshold information after the first comparison step (S4)
  • the sensing time of the change information is equal to or greater than the standard analysis time as a result of comparing the step S5 and the time check step S5
  • the pattern calculation step of calculating the sensing pattern information according to the change information based on the standard analysis time (S53) ) and a pattern comparison step (S6) of comparing the standard pattern information and the sensing pattern information after the pattern calculation step (S53) may be further included.
  • the intelligent sensing method generates a second safety signal (D61) when, as a result of the comparison of the pattern comparison step (S6), the risk level is included in the preset second safety range (D61), A calculation step (S63) may be performed.
  • the intelligent sensing method updates and stores the change information collected according to the time series when, as a result of the comparison of the time check step (S5), the sensing time of the change information is smaller than the standard analysis time After (S51), it is possible to return to the sensing step (S2).
  • the sensing step (S2) is returned, the sensing time is counted while continuously collecting change information.
  • the intelligent sensing method generates a second danger signal (S62) when, as a result of the comparison of the pattern comparison step (S6), the risk level is outside the preset second safety range, and , the period calculation step (S63) may be performed.
  • the second danger signal is transmitted to the server 300 ( S93 ) and managed by the server 300 .
  • the corresponding danger signal is transmitted to the server 300 communicating with the intelligent sensor 100 ( S93 ), so that the server 300 can monitor the intelligent sensor 100 .
  • the intelligent sensing method includes a second change calculation step (S73) of calculating sensing characteristic change information that is changed according to field characteristics after the period comparison step (S7); After the second change calculation step (S73), the method may further include a characteristic change comparison step (S8) of comparing the standard characteristic change information with the sensing characteristic change information.
  • the intelligent sensing method generates a fourth safety signal (S81) when, as a result of the comparison of the characteristic change comparison step (S8), the risk level is included in the preset fourth safety range, It is possible to return to the initial stage of the sensing step (S2) or the event step (S1). And as the sensing step (S2) or the event step (S1) is returned, the temporary storage unit 43 is initialized to store new information in the temporary storage unit 43 . Although not shown, prior to initialization, information in the temporary storage unit 43 may be transmitted to the server 300 to manage the corresponding intelligent sensor 100 in the server 300 .
  • the intelligent sensing method generates a fourth danger signal when, as a result of the comparison of the characteristic change comparison step (S8), the risk level is outside the preset fourth safety range (S82) and may further include a field verification step (S11) for inducing verification of the field.
  • the fourth danger signal is transmitted (S95) to the server 300 to be managed by the server 300.
  • the intelligent sensor ( 100) can be decided whether or not to be replaced.
  • the sensing step (S2) which is an initial step, as described above Alternatively, the process returns to the event step (S1).
  • the sensing unit 10 of the intelligent sensor 100 in the field to be replaced S12
  • the intelligent sensor 100 may be initialized, and change information may be collected from the new sensing unit 10 by returning to the sensing step S2 or the event step S1.
  • the intelligent sensing method may further include an anomaly counting step (S10) of counting the frequency of occurrence of anomalies prior to the on-site verification step (S11).
  • the counted abnormal occurrence frequency is transmitted to the server 300 and can be utilized as big data for management of the intelligent sensor 100 .
  • the safety signals generated in the above description may also be transmitted to the server 300 to monitor the intelligent sensor 100 in the server 300 .
  • the information collected on the intelligent sensor may be converted into big data and managed, and the reference information may be updated and transmitted to the intelligent sensor 100 .
  • the intelligent sensing method includes a sensing step (S2), a time counting step (S21), a sensing value comparison step (S3), a first change calculation step (S33), and a first comparison step It may include (S4), a time check step (S5), a pattern calculation step (S53), and a pattern comparison step (S6).
  • the intelligent sensing method according to another embodiment of the present invention may further include a period calculation step (S63) and a period comparison step (S7).
  • the intelligent sensing method according to another embodiment of the present invention may further include a second change calculation step (S73) and a characteristic change comparison step (S8).
  • Steps or detailed steps added to another embodiment of the present invention are considered to be substantially the same as each step mentioned in one embodiment of the present invention.
  • the intelligent sensor and the intelligent sensing method using the above-described intelligent sensor it is possible to quickly determine a faulty diagnosis, a danger, and a normal situation from the sensor itself.
  • the context information according to the situation response is transmitted to the server 300 having excellent computing power, and the server 300 can precisely determine the context information by matching it with information transmitted from other sensors.
  • the senor itself detects defects, risks, and normal situations. can be quickly identified.
  • the sensing step (S2) for comparative analysis in the sensor itself can be made clear, and the operation of the sensor itself can be prevented from being deteriorated.
  • change information can be stably collected in time series in response to the standard analysis time, and change information can be stably collected according to the level of risk.
  • gateway 300 server
  • sensing unit 20 communication unit 30: display unit
  • control unit 51 event management unit
  • sensing characteristic change calculation unit 57 sensing abnormality counter
  • sensing value analysis unit 62 sensing value change analysis unit
  • sensing pattern analysis unit 64 validity period analysis unit
  • sensing characteristic change analysis unit 66 target setting unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Alarm Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

본 발명은 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별하기 위한 지능형 센서와 이것을 이용한 지능형 센싱방법에 관한 것이다. 이를 위해, 지능형 센서는 현장에서 변화정보를 수집하는 하나 이상의 센싱부와, 수집된 변화정보를 시계열 순으로 송출하는 통신부와, 센싱부의 특성정보, 변화정보 또는 특성정보를 바탕으로 하는 정보들의 비교 대상이 되는 기준정보, 변화정보가 저장되는 센싱저장부와, 변화정보의 센싱시간에 따른 변화정보의 센싱변화율정보와, 변화정보에 따른 센싱패턴정보와, 현장 특성에 따라 변화되는 센싱특성변화정보 중 적어도 센싱변화율정보를 계산하고, 변화정보를 바탕으로 하는 정보를 기준정보와 비교 분석하는 제어부를 포함한다.

Description

지능형 센서와 이것을 이용한 지능형 센싱방법
본 발명은 지능형 센서와 이것을 이용한 지능형 센싱방법에 관한 것으로, 보다 구체적으로는 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별하기 위한 지능형 센서와 이것을 이용한 지능형 센싱방법에 관한 것이다.
일반적으로, 수많은 센서가 존재한다. 이 센서에서 이용자는 정확하고 안정된 센서값을 획득하고 센서로부터 들어는 신호를 분석하여 다양한 상황을 분석하여 응급 대처할 수 있도록 하고 있다.
여기서, 통신 시스템이 발달한 지금 측정 센서 값은 센서 디바이스에서 통신 케이트웨이를 통해 서버까지 전달되고, 서버에서 센서 데이터를 분석하여 그 정보를 적절하게 관계자에게 제공하여 다양한 서비스를 수행한다.
초연결 시스템에서 대부분의 센서 데이터를 서버까지 전송하고 분석한 정보에 의하여 다양한 형태로 대응 처리한다 이러한 통신 과정 중에서 대응하는 시간이 지연될 수 있고, 통신이 불량이 되어 데이터 손실 등이 발생할 수 있다.
이러한 경우, 현장의 위험 응급 상황이라면 심각한 문제가 발생할 수 있다. 즉, 서비스에 따라 다르지만 생명 및 재산에 심각한 피해를 줄 수 있다.
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별하기 위한 지능형 센서와 이것을 이용한 지능형 센싱방법을 제공함에 있다.
상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 지능형 센서는 현장에서 변화정보를 수집하는 하나 이상의 센싱부; 수집된 변화정보를 시계열 순으로 송출하는 통신부; 상기 센싱부의 특성정보, 상기 변화정보 또는 상기 특성정보를 바탕으로 하는 정보들의 비교 대상이 되는 기준정보, 상기 변화정보가 저장되는 센싱저장부; 및 상기 변화정보의 센싱시간에 따른 상기 변화정보의 센싱변화율정보와, 상기 변화정보에 따른 센싱패턴정보와, 상기 현장 특성에 따라 변화되는 센싱특성변화정보 중 적어도 상기 센싱변화율정보를 계산하고, 상기 변화정보를 바탕으로 하는 정보를 상기 기준정보와 비교 분석하는 제어부;를 포함한다.
여기서, 상기 센싱저장부는, 상기 센싱부의 특성정보가 저장되되, 상기 센싱부의 특성정보에는 상기 센싱부의 유효기간이 포함되는 센서특성부; 상기 기준정보가 저장되되, 상기 기준정보에는 평가 지표가 되는 위험수준, 상기 위험수준별 이벤트정보, 상기 위험수준별 임계정보, 상기 위험수준별 임계시간, 상기 위험수준별 임계변화율정보가 포함되는 기준저장부; 및 상기 센싱부의 사용기간, 상기 변화정보, 상기 변화정보의 센싱시간, 상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보가 저장되는 임시저장부;를 포함한다.
이와 더불어 상기 제어부는, 상기 이벤트정보와 상기 변화정보를 비교하여 이벤트를 발생시키는 이벤트관리부; 상기 센싱부의 사용기간을 계산하는 한편, 상기 이벤트의 발생에 따라 상기 변화정보의 센싱시간을 카운트하는 시간카운터; 상기 위험수준별 임계정보와 상기 변화정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱값분석부; 상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보를 계산하는 센싱값변화계산부; 상기 위험수준별 임계변화율정보와 상기 센싱변화율정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱값변화분석부; 및 상기 센싱부의 유효기간과 상기 센싱부의 사용기간을 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 유효기간분석부;를 포함한다.
여기서, 상기 기준정보에는, 상기 임계정보에 따른 표준패턴정보, 상기 표준패턴정보를 위한 표준분석시간이 더 포함되고, 상기 임시저장부에는, 상기 표준분석시간을 기준으로 상기 변화정보에 따른 센싱패턴정보가 더 저장된다.
이와 더불어 상기 제어부는, 상기 표준분석시간을 기준으로 상기 센싱패턴정보를 계산하는 센싱패턴계산부; 및 상기 표준패턴정보와 상기 센싱패턴정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱패턴분석부;를 더 포함한다.
여기서, 상기 센싱부의 특성정보에는, 상기 센싱부의 고유정보가 더 포함되고, 상기 기준정보에는, 상기 센싱부의 고유정보를 바탕으로 하는 표준특성변화정보가 더 포함되며, 상기 임시저장부에는, 상기 현장 특성에 따라 변화되는 센싱특성변화정보가 더 저장된다.
이와 더불어 상기 제어부는, 상기 현장 특성에 따라 변화되는 상기 센싱특성변화정보를 계산하는 센싱특성변화계산부; 및 상기 표준특성변화정보와 상기 센싱특성변화정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱특성변화분석부;를 더 포함한다.
본 발명에 따른 지능형 센싱방법은 본 발명에 따른 지능형 센서를 이용한 지능형 센싱방법이고, 상기 센싱부를 통해 상기 현장에서 상기 변화정보를 수집하는 센싱단계; 상기 센싱단계를 거침에 따라 상기 변화정보의 센싱시간을 카운트하는 시간카운팅단계; 상기 기준정보 중 상기 위험수준별 임계정보와 상기 변화정보를 비교하는 센싱값비교단계; 상기 센싱값비교단계를 거친 다음, 상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보를 계산하는 제1변화계산단계; 상기 기준정보 중 상기 위험수준별 임계변화율정보와 상기 센싱변화율정보를 비교하는 제1비교단계; 상기 제1비교단계를 거친 다음, 상기 센싱부의 사용기간을 계산하는 기간계산단계; 및 상기 센싱부의 특성정보 중 상기 센싱부의 유효기간과 상기 센싱부의 사용기간을 비교하는 기간비교단계;를 포함한다.
여기서, 상기 센싱값비교단계의 비교 결과, 상기 위험수준이 기설정된 안전가정범위에 포함되는 경우, 임시안전신호를 생성하고, 상기 제1변화계산단계를 실시하며, 상기 제1비교단계의 비교 결과, 상기 위험수준이 기설정된 제1안전범위에 포함되는 경우, 제1안전신호를 생성하고, 상기 기간계산단계를 실시하고, 상기 기간비교단계의 비교 결과, 상기 센싱부의 사용기간이 상기 센싱부의 특성정보 중 상기 센싱부의 유효기간에 포함되는 경우, 제3안전신호를 생성하고, 상기 센싱단계로 복귀한다.
여기서, 상기 센싱값비교단계의 비교 결과, 상기 위험수준이 기설정된 안전가정범위를 벗어나는 경우, 임시위험신호를 생성하고, 상기 제1변화계산단계를 실시하며, 상기 제1비교단계의 비교 결과, 상기 위험수준이 기설정된 제1안전범위를 벗어나는 경우, 제1위험신호를 생성하고, 상기 기간계산단계를 실시하고, 상기 기간비교단계의 비교 결과, 상기 센싱부의 사용기간이 상기 센싱부의 특성정보 중 상기 센싱부의 유효기간을 벗어난 경우, 제3위험신호를 생성하며, 상기 임시위험신호와 상기 제1위험신호와 상기 제3위험신호 중 적어도 어느 하나의 위험신호가 생성되는 경우, 상기 지능형 센서와 통신하는 서버에 해당 위험신호를 송출한다.
본 발명에 따른 지능형 센싱방법은 상기 제1비교단계를 거친 다음, 상기 임계정보에 따른 표준패턴정보를 위한 표준분석시간과 상기 변화정보의 센싱시간을 비교하는 시간확인단계; 상기 시간확인단계의 비교 결과, 상기 변화정보의 센싱시간이 상기 표준분석시간과 같거나 큰 경우, 상기 표준분석시간을 기준으로 상기 변화정보에 따른 센싱패턴정보를 계산하는 패턴계산단계; 및 상기 패턴계산단계를 거친 다음, 상기 표준패턴정보와 상기 센싱패턴정보를 비교하는 패턴비교단계;를 더 포함한다.
여기서, 상기 패턴비교단계의 비교 결과, 상기 위험수준이 기설정된 제2안전범위에 포함되는 경우, 제2안전신호를 생성하고, 상기 기간계산단계를 실시한다.
여기서, 상기 시간확인단계의 비교 결과, 상기 변화정보의 센싱시간이 상기 표준분석시간보다 작은 경우, 시계열에 따라 수집된 상기 변화정보를 갱신 저장한 다음, 상기 센싱단계로 복귀한다.
여기서, 상기 패턴비교단계의 비교 결과, 상기 위험수준이 기설정된 제2안전범위를 벗어나는 경우, 제2위험신호를 생성하고, 상기 기간계산단계를 실시하는 것을 특징으로 하는 지능형 센싱방법.
본 발명에 따른 지능형 센싱방법은 상기 기간비교단계를 거친 다음, 상기 현장 특성에 따라 변화되는 상기 센싱특성변화정보를 계산하는 제2변화계산단계; 및 상기 제2변환계산단계를 거친 다음, 상기 표준특성변화정보와 상기 센싱특성변화정보를 비교하는 특성변화비교단계;를 더 포함한다.
여기서, 상기 특성변화비교단계의 비교 결과, 상기 위험수준이 기설정된 제4안전범위에 포함되는 경우, 제4안전신호를 생성하고, 초기단계로 복귀한다.
본 발명에 따른 지능형 센싱방법은 상기 특성변화비교단계의 비교 결과, 상기 위험수준이 기설정된 제4안전범위를 벗어나는 경우, 제4위험신호를 생성하고, 상기 현장을 검증하도록 유도하기 위한 현장검증단계;를 더 포함한다.
본 발명에 따른 지능형 센싱방법은 본 발명에 따른 지능형 센서를 이용한 지능형 센싱방법이고, 상기 센싱부를 통해 상기 현장에서 상기 변화정보를 수집하는 센싱단계; 상기 센싱단계를 거침에 따라 상기 변화정보의 센싱시간을 카운트하는 시간카운팅단계; 상기 기준정보 중 상기 위험수준별 임계정보와 상기 변화정보를 비교하는 센싱값비교단계; 상기 센싱값비교단계를 거친 다음, 상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보를 계산하는 제1변화계산단계; 상기 기준정보 중 상기 위험수준별 임계변화율정보와 상기 센싱변화율정보를 비교하는 제1비교단계; 상기 제1비교단계를 거친 다음, 상기 임계정보에 따른 표준패턴정보를 위한 표준분석시간과 상기 변화정보의 센싱시간을 비교하는 시간확인단계; 상기 시간확인단계의 비교 결과, 상기 변화정보의 센싱시간이 상기 표준분석시간과 같거나 큰 경우, 상기 표준분석시간을 기준으로 상기 변화정보에 따른 센싱패턴정보를 계산하는 패턴계산단계; 및 상기 패턴계산단계를 거친 다음, 상기 표준패턴정보와 상기 센싱패턴정보를 비교하는 패턴비교단계;를 더 포함한다.
여기서, 상기 센싱값비교단계의 비교 결과, 상기 위험수준이 기설정된 안전가정범위에 포함되는 경우, 임시안전신호를 생성하고, 상기 제1변화계산단계를 실시하며, 상기 제1비교단계의 비교 결과, 상기 위험수준이 기설정된 제1안전범위에 포함되는 경우, 제1안전신호를 생성하고, 상기 기간계산단계를 실시하고, 상기 패턴비교단계의 비교 결과, 상기 위험수준이 기설정된 제2안전범위에 포함되는 경우, 제2안전신호를 생성한다.
본 발명에 따른 지능형 센서와 이것을 이용한 지능형 센싱방법에 따르면, 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별할 수 있다.
또한, 본 발명은 간단한 알고리즘을 구성하여 센서 자체에 탑재되므로, 빠른 응답으로 상황을 대처할 수 있다.
또한, 본 발명에서 상황 대처에 따른 상황정보는 컴퓨팅 능력이 뛰어난 서버로 전송되고, 서버는 다른 센서로부터 전송된 정보들과 매칭시켜 상황정보에 대해 정밀하게 판단할 수 있다.
또한, 본 발명은 저장부와 제어부의 세부 구성을 통해 위험수준별 임계정보와 위험수준별 임계변화율정보 그리고 센싱부의 유효기간을 바탕으로 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별할 수 있다.
또한, 본 발명은 센싱저장부와 제어부의 세부 구성을 통해 부가된 표준패턴정보를 바탕으로 센서 자체에서의 판단력을 향상시킬 수 있다.
또한, 본 발명은 센싱저장부와 제어부의 세부 구성을 통해 부가된 표준특성변화정보를 바탕으로 센서 자체에서의 판단력을 향상시킬 수 있다.
또한, 본 발명은 대상설정부를 통해 둘 이상의 센싱부가 수집하는 변화정보에서 우선 순위를 선정하여 센서 자체에서의 상황 판단을 명확하게 할 수 있다.
또한, 본 발명은 센싱이상카운터를 통해 센싱특성변화정보의 이상을 카운트하고, 현장에서의 검증이 원활하게 이루어지도록 유도할 수 있다.
또한, 본 발명은 위험수준별 임계정보와 위험수준별 임계변화율정보 그리고 센싱부의 유효기간을 바탕으로 순차적인 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 정상 상황을 빠르게 판별할 수 있다.
또한, 본 발명은 이벤트단계를 더 포함하므로, 센서 자체에서의 비교 분석을 위한 센싱단계를 명확하게 하고, 센서 자체의 동작이 저하되는 것을 방지할 수 있다.
또한, 본 발명은 위험수준별 임계정보와 위험수준별 임계변화율정보 그리고 센싱부의 유효기간을 바탕으로 순차적인 비교 분석이 이루어지므로, 위험신호에 대응하여 센서 자체에서의 불량 진단 및 위험 상황을 빠르게 판별할 수 있고, 신속한 전파가 이루어지도록 할 수 있다.
또한, 본 발명은 표준패턴정보를 바탕으로 순차적인 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 정상 상황에 대한 판단력을 향상시킬 수 있다.
또한, 본 발명은 표준분석시간에 대응하여 변화정보를 시계열 순으로 안정되게 수집할 수 있고, 위험수준에 따라 변화정보를 수집을 안정화시킬 수 있다.
또한, 본 발명은 표준패턴정보를 바탕으로 순차적인 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 불량 진단 및 위험 상황에 대한 판단력을 향상시킬 수 있다.
또한, 본 발명은 표준특성변화정보를 바탕으로 순차적이 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 정상 상황에 대한 판단력을 향상시킬 수 있다.
또한, 본 발명은 표준특성변화정보를 바탕으로 순차적이 비교 분석이 이루어지므로, 위험신호에 대응하여 센서 자체에서의 불량진단 및 위험 상황에 대한 판단력을 향상시킬 수 있다.
또한, 본 발명은 이상빈도카운팅단계를 통해 센싱특성변화정보의 이상을 카운트하고, 현장에서의 검증이 원활하게 이루어지도록 유도할 수 있다.
또한, 본 발명은 현장검증단계의 결과에 따라 적어도 센싱부의 불량에 대응하여 교체를 원활하게 하고, 적어도 센싱부가 안정되게 정상 상황을 유지시킬 수 있도록 한다.
도 1은 본 발명의 일 실시예에 따른 지능형 센서의 통신 구조를 도시한 블럭도이다.
도 2는 본 발명의 일 실시예에 따른 지능형 센서에서 저장부를 도시한 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 지능형 센서에서 제어부를 도시한 블럭도이다.
도 4는 본 발명의 일 실시예에 따른 지능형 센서의 변화정보에 대응하여 센싱시간별 임계정보를 도시한 그래프이다.
도 5는 본 발명의 일 실시예에 따른 지능형 센서에서 표준패턴정보와 센싱패턴정보의 비교를 위한 모식도이다.
도 6은 본 발명의 일 실시예에 따른 지능형 센서에서 분석시간별 센싱강도를 도시한 그래프이다.
도 7은 본 발명의 일 실시예에 따른 지능형 센싱방법을 도시한 순서도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 지능형 센서와 이것을 이용한 지능형 센싱방법의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.
도 1 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 지능형 센서(100)는 센싱부(10)와, 통신부(20)와, 저장부(40)와, 제어부(50)를 포함할 수 있다.
여기서, 도면부호 30은 센싱부의 동작 상태, 저장부의 동작 상태, 제어부의 동작 상태에 대응하여 사용자가 시각적, 청각적, 촉각적 중 어느 하나의 감각으로 확인하도록 사용자에게 전파하기 위한 표시부이다.
센싱부(10)는 현장에서 변화정보를 수집한다. 센싱부(10)는 하나 이상이 구비될 수 있다.
통신부(20)는 수집된 변화정보를 시계열 순으로 송출한다. 통신부(20)는 유선 통신과 무선 통신 중 적어도 어느 하나의 통신 방식으로 수집된 변화정보를 송출할 수 있다. 통신부(20)에서 송출되는 변화정보는 게이트웨이(200)를 거쳐 서버(300)에 전달되고, 서버(300)에서는 변화정보를 모니터링할 수 있다.
통신부(20)는 후술하는 센싱저장부(40) 중 임시저장부(43)에 저장되는 정보들을 서버(300)에 전달할 수 있고, 서버(300)에서는 통신부(20)를 통해 전송되는 정보들을 수집 관리하는 한편, 수집된 정보들을 모니터링할 수 있다.
통신부(20)는 후술하는 센싱저장부(40) 중 기준저장부(42)에 저장되는 정보들을 서버(300)로부터 전달받을 수 있고, 기준저장부(42)에서는 서버(300)로부터 전송되는 정보들로 갱신하여 기존의 정보들을 업데이트할 수 있다.
센싱저장부(40)는 센싱부(10)의 특성정보, 변화정보 또는 특성정보를 바탕으로 하는 정보들의 비교 대상이 되는 기준정보, 변화정보가 저장된다.
센싱저장부(40)는 센싱부(10)의 특성정보가 저장되는 센서특성부(41)와, 기준정보가 저장되는 기준저장부(42)와, 변화정보가 저장되는 임시저장부(43)를 포함할 수 있다.
센싱부(10)의 특성정보에는 센싱부(10)의 유효기간이 포함될 수 있다. 또한, 기준정보에는 평가 지표가 되는 위험수준, 위험수준별 이벤트정보, 위험수준별 임계정보, 위험수준별 임계시간, 위험수준별 임계변화율정보가 포함될 수 있다. 또한, 임시저장부(43)에는 센싱부(10)의 사용기간, 변화정보, 변화정보의 센싱시간, 센싱시간에 따른 변화정보의 센싱변화율정보가 더 저장될 수 있다.
여기에 부가하여, 기준정보에는 임계정보에 따른 표준패턴정보, 표준패턴정보를 위한 표준분석시간이 더 포함될 수 있다. 또한, 임시저장부(43)에는 표준분석시간을 기준으로 변화정보에 따른 센싱패턴정보가 더 저장될 수 있다.
여기에 부가하여, 센싱부(10)의 특성정보에는 센싱부(10)의 고유정보가 더 포함될 수 있다. 센싱부(10)의 고유정보에는 센싱부(10)의 고유특성, 오차 등이 포함될 수 있다. 또한, 기준정보에는 센싱부(10)의 고유정보를 바탕으로 하는 표준특성변화정보가 더 포함될 수 있다. 또한, 임시저장부(43)에는 현장 특성에 따라 변화되는 센싱특성변화정보가 더 저장될 수 있다.
제어부(50)는 변화정보의 센싱시간에 따른 변화정보의 센싱변화율정보와, 변화정보에 따른 센싱패턴정보와, 현장 특성에 따라 변화되는 센싱특성변화정보 중 적어도 센싱변화율정보를 계산하고, 변화정보를 바탕으로 하는 정보를 기준정보와 비교 분석한다.
좀더 자세하게, 제어부(50)는 이벤트정보와 변화정보를 비교하여 이벤트를 발생시키는 이벤트관리부(51)와, 센싱부(10)의 사용기간을 계산하는 한편 이벤트의 발생에 따라 변화정보의 센싱시간을 카운트하는 시간카운터(52)와, 위험수준별 임계정보와 변화정보를 비교하여 위험수준에 따른 안전성 여부를 분석하는 센싱값분석부(61)와, 센싱시간에 따른 변화정보의 센싱변화율정보를 계산하는 센싱값변화계산부(53)와, 위험수준별 임계변화율정보와 센싱변화율정보를 비교하여 위험수준에 따른 안전성 여부를 분석하는 센싱값변화분석부(62)와, 센싱부(10)의 유효기간과 센싱부(10)의 사용기간을 비교하여 위험수준에 따른 안전성 여부를 분석하는 유효기간분석부(64)를 포함할 수 있다.
또한, 제어부(50)는 표준분석시간을 기준으로 센싱패턴정보를 계산하는 센싱패턴계산부(54)와, 표준패턴정보와 센싱패턴정보를 비교하여 위험수준에 따른 안전성 여부를 분석하는 센싱패턴분석부(63)를 더 포함할 수 있다.
또한, 제어부(50)는 현장 특성에 따라 변화되는 센싱특성변화정보를 계산하는 센싱특성변화계산부(56)와, 표준특성변화정보와 센싱특성변화정보를 비교하여 위험수준에 따른 안전성 여부를 분석하는 센싱특성변화분석부(65)를 더 포함할 수 있다.
상술한 설명에서 위험수준은 3 가지 종류로 구분할 수 있다. 위험수준은 임계정보와 임계변화율정보와 표준패턴정보 중 적어도 어느 하나에 대응하는 제1위험수준과, 표준특성변화정보에 대응하는 제2위험수준으로 구분할 수 있다. 본 발명의 일 실시예에서 이러한 위험수준은 각 종류별로 5단계로 구분되는 것으로 설명한다. 하지만, 여기에 한정하는 것은 아니고, 2단계, 3단계, 6단계 내지 10단계 중 어느 하나 등, 다양하게 설정할 수 있다.
첫째, 제1위험수준은 임계정보와 임계변화율정보와 표준패턴정보 중 적어도 어느 하나에 대응하여 5단계로 구분할수 있다.
제1단계는 위험확률이 15% 이하인 경우이고, 안전한 상황을 나타낸다. 제2단계는 위험확률이 30% 이하인 경우이고, 안전이 변화되는 상황을 나타낸다. 제3단계는 위험확률이 45%~55% 이하인 경우이고, 위험한 상황에 근접한 상황을 나타낸다.
제4단계는 위험확률이 90% 이하인 경우이고, 위험한 상황을 나타내고, 작업자가 현장에 출동하여 상태를 체크하는 한편, 관리자와 작업자 및 관련 기관에 위험한 상황을 신속하게 전파할 수 있다. 제5단계는 위험한 상황이 발생된 경우이고, 사고의 발생에 따라 현장에서 응급 처리가 신속하게 이루어지도록 관리자와 작업자 및 관련 기관에 위험한 상황을 신속하게 전파할 수 있다.
일예로, 제1위험수준에 있어서, 위험확률은 임계정보와 변화정보의 비교에 따른 임계정보와 변화정보의 유사도로 평가되고, 유사도가 높을수록 위험확률이 크고 유사도가 낮을 수록 위험확률이 작아진다.
다른 예로, 제1위험수준에 있어서, 위험확률은 임계변화율정보와 센싱변화율정보의 비교에 따른 임계변화율정보와 센싱변화율정보의 유사도로 평가되고, 유사도가 높을수록 위험확률이 크고 유사도가 낮을수록 위험확률이 작아진다.
또 다른 예로, 제1위험수준에 있어서, 위험확률은 표준패턴정보와 센싱패턴정보의 비교에 따른 표준패턴정보와 센싱패턴정보의 유사도로 평가되고, 유사도가 높을수록 위험확률이 높아지고, 유사도가 낮을 수록 위험확률이 작아진다.
상술한 설명에서 제1단계 내지 제3단계 중 어느 하나의 단계인 경우에는, 위험수준이 기설정된 안전범위에 포함되는 것으로 판단하여 안전신호를 생성하도록 한다. 또한, 제4단계 또는 제5단계인 경우에는, 위험수준이 기설정된 안전범위를 벗어난 것으로 판단하여 위험신호를 생성하도록 한다.
둘째, 제2위험수준은 표준특성변화정보에 대응하여 5단계로 구분할 수 있다.
제1단계는 위험확률이 10% 이하인 경우이고, 센싱부(10)의 고유정보에 대응하여 현장 특성에 따라 변화되는 센싱특성변화정보의 이상율이 10% 이하를 나타내며, 정상인 상황을 나타낸다. 제2단계는 위험확률이 15%~20% 이하인 경우이고, 센싱부(10)의 고유정보에 대응하여 현장 특성에 따라 변화되는 센싱특성변화정보의 이상율이 15%~20% 이하를 나타내며, 정상이 변화되는 상황을 나타낸다.
제1단계 또는 제2단계인 경우에는, 위험수준이 기설정된 안전범위에 포함되는 것으로 판단하여 안전신호를 생성하도록 한다. 또한, 후술하는 제3단계 내지 제5단계 중 어느 하나의 단계인 경우에는, 위험수준이 기설정된 안전범위를 벗아나는 것으로 판단하여 위험신호를 생성하도록 하고, 현장에서 센싱부(10)와 표준 센서의 비교 분석을 실시할 수 있도록 한다.
제3단계는 위험확률이 25%~30% 이하인 경우이고, 센싱부(10)의 고유정보에 대응하여 현장 특성에 따라 변화되는 센싱특성변화정보의 이상율이 25%~30% 이하를 나타내고, 이상 상태로 접어드는 상황을 나타낸다. 제3단계로 판단되면, 현장에서 센싱부(10)의 상태를 확인하는 한편, 센싱부(10)와 표준 센서의 현장 비교 분석을 통해 센싱부(10)의 상태를 점검한 다음, 표준 센서와 센싱부 사이에서 문제가 발견되면, 센싱부를 교체하게 된다. 이때, 현장 비교 분석의 결과, 상술한 제1위험수준에 대해 제1단계 또는 제2단계로 판단되면, 센싱부(10)의 정상으로 판단하고, 상술한 제1위험수준에 대해 제3단계 내지 제5단계 중 어느 하나의 단계로 판단되면, 센싱부(10)의 불량으로 판단하게 된다.
제4단계는 위험확률이 35%~40% 이하인 경우이고, 센싱부(10)의 고유정보에 대응하여 현장 특성에 따라 변화되는 센싱특성변화정보의 이상율이 35%~40% 이하를 나타내고, 이상 상황을 나타낸다. 제4단계로 판단되면, 반드시 현장에서 센싱부(10)의 상태를 확인하는 한편, 센싱부(10)와 표준 센서와의 현장 비교 분석을 실시하고, 현장 비교 분석의 결과에 따라 지능형 센서(100)의 교체 여부를 결정할 수 있다. 이때, 현장 비교 분석의 결과, 상술한 제1위험수준에 대해 제1단계 또는 제2단계로 판단되면, 센싱부(10)의 정상으로 판단하고, 상술한 제1위험수준에 대해 제3단계 내지 제5단계 중 어느 하나의 단계로 판단되면, 센싱부(10)의 불량으로 판단하게 된다.
제5단계는 위험확률이 45% 이상인 경우이고, 센싱부(10)의 고유정보에 대응하여 현장 특성에 따라 변화되는 센싱특성변화정보의 이상율이 45% 이상을 나타내고, 센싱부(10)의 불량 상황을 나타낸다. 제5단계로 판단되면, 반드시 현장에서 센싱부(10)의 상태를 확인하는 한편, 현장에서 무조건 센싱부(10)를 교체할 수 있도록 한다.
특히, 상술한 설명에서 위험신호는 서버(300)에 전송되어 관련 센싱부(10)에 대한 후속조치가 신속하게 이루어지도록 한다. 도시되지 않았지만, 상술한 설명에서 안전신호도 서버(300)에 전송될 수 있고, 관련 센싱부(10)의 상태가 안정되게 모니터링되도록 할 수 있다.
제2위험수준에 있어서, 위험확률은 표준특성변화정보와 센싱특성변화정보의 비교에 따른 표준특성변화정보와 센싱특성변화정보의 유사도로 평가되고, 유사도가 높을수록 위험확률이 낮아지고, 유사도가 낮을수록 위험확률이 높아진다.
제어부(50)는 둘 이상의 센싱부(10)에 대해 분석을 위한 우선 순위를 선정하는 대상설정부(66)를 더 포함할 수 있다. 그러면, 대상설정부(66)에서 선정된 센싱부(10)를 기준으로 센서특성부(41)와 기준저장부(42)에 저장된 정보를 추출할 수 있고, 제어부(50)에서 각각의 계산부들과 분석부들이 해당 센싱부(10)를 기준으로 계산과 비교 분석을 실시할 수 있게 된다.
제어부(50)는 사용기간에 대응하여 센싱특성변화정보의 이상 횟수를 카운트하는 센싱이상카운터(57)를 더 포함할 수 있다. 그러면, 센싱이상카운터(57)는 이상 빈도에 대응하여 센싱특성변화정보를 명확하게 하고, 이상 빈도에 따라 현장 검증이 이루어지도록 할 수 있다.
지금부터는 도 7을 참조하여 본 발명의 일 실시예에 따른 지능형 센싱방법에 대하여 설명한다.
본 발명의 일 실시예에 따른 지능형 센싱방법은 본 발명의 일 실시예에 따른 지능형 센서(100)를 이용한 지능형 센싱방법이고, 센싱부(10)를 통해 현장에서 변화정보를 수집하는 센싱단계(S2)와, 센싱단계(S2)를 거침에 따라 변화정보의 센싱시간을 카운트하는 시간카운팅단계(S21)와, 기준정보 중 위험수준별 임계정보와 변화정보를 비교하는 센싱값비교단계(S3)와, 센싱값비교단계(S3)를 거친 다음 센싱시간에 따른 변화정보의 센싱변화율정보를 계산하는 제1변화계산단계(S33)와, 기준정보 중 위험수준별 임계변화율정보와 센싱변화율정보를 비교하는 제1비교단계(S4)와, 제1비교단계(S4)를 거친 다음 센싱부(10)의 사용기간을 계산하는 기간계산단계(S63)와, 센싱부(10)의 특성정보 중 센싱부(10)의 유효기간과 센싱부(10)의 사용기간을 비교하는 기간비교단계(S7)를 포함할 수 있다.
그러면, 본 발명의 일 실시예에 따른 지능형 센싱방법은 센싱값비교단계(S3)의 비교 결과, 위험수준이 기설정된 안전가정범위에 포함되는 경우, 임시안전신호를 생성(S31)하고, 제1변화계산단계(S33)를 실시할 수 있다.
또한, 본 발명의 일 실시예에 따른 지능형 센싱방법은 제1비교단계(S4)의 비교 결과, 위험수준이 기설정된 제1안전범위에 포함되는 경우, 제1안전신호를 생성(S41)하고, 기간계산단계(S63)를 실시를 실시할 수 있다.
또한, 본 발명의 일 실시예에 따른 지능형 센싱방법은 기간비교단계(S7)의 비교 결과, 센싱부(10)의 사용기간이 센싱부(10)의 특성정보 중 센싱부(10)의 유효기간에 포함되는 경우, 제3안전신호를 생성(S71)하고, 센싱단계(S2)로 복귀하도록 한다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 센싱단계(S2)에 앞서, 기준정보 중 평가 지표가 되는 위험수준별 이벤트정보에 대응하여 이벤트의 발생 여부를 감시하는 이벤트단계(S1)를 더 포함할 수 있다. 그러면, 이벤트단계(S1)의 결과, 변화정보가 이벤트정보에 포함됨에 따라 이벤트가 발생되는 경우, 센싱단계(S2)를 실시하게 된다. 또한, 이벤트단계(S1)의 결과, 이벤트가 발생되지 않으면, 계속해서 이벤트단계(S1)를 반복 실시하게 된다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 센싱값비교단계(S3)의 비교 결과, 위험수준이 기설정된 안전가정범위를 벗어나는 경우, 임시위험신호를 생성(S32)하고, 제1변화계산단계(S33)를 실시할 수 있다. 임시위험신호는 서버(300)에 전송(S91)되어 서버(300)에서 관리되도록 한다.
또한, 본 발명의 일 실시예에 따른 지능형 센싱방법은 제1비교단계(S4)의 비교 결과, 위험수준이 기설정된 제1안전범위를 벗어나는 경우, 제1위험신호를 생성(S42)하고, 기간계산단계(S63)를 실시할 수 있다. 제1위험신호는 서버(300)에 전송(S92)되어 서버(300)에서 관리되도록 한다.
또한, 본 발명의 일 실시예에 따른 지능형 센싱방법은 기간비교단계(S7)의 비교 결과, 센싱부(10)의 사용기간이 센싱부(10)의 특성정보 중 센싱부(10)의 유효기간을 벗어난 경우, 제3위험신호(S72)를 생성할 수 있다. 제3위험신호는 서버(300)에 전송(S94)되어 서버(300)에서 관리되도록 한다.
그리고 임시위험신호와 제1위험신호와 제3위험신호 중 적어도 어느 하나의 위험신호가 생성(S32, S42, S72)되는 경우, 본 발명의 일 실시예에 따른 지능형 센서(100)와 통신하는 서버(300)에 해당 위험신호를 송출(S91, S92, S94)하므로, 서버(300)에서는 지능형 센서(100)를 모니터링할 수 있다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 제1비교단계(S4)를 거친 다음 임계정보에 따른 표준패턴정보를 위한 표준분석시간과 변화정보의 센싱시간을 비교하는 시간확인단계(S5)와, 시간확인단계(S5)의 비교 결과 변화정보의 센싱시간이 표준분석시간과 같거나 큰 경우 표준분석시간을 기준으로 변화정보에 따른 센싱패턴정보를 계산하는 패턴계산단계(S53)와, 패턴계산단계(S53)를 거친 다음 표준패턴정보와 센싱패턴정보를 비교하는 패턴비교단계(S6)를 더 포함할 수 있다.
그러면, 본 발명의 일 실시예에 따른 지능형 센싱방법은 패턴비교단계(S6)의 비교 결과, 위험수준이 기설정된 제2안전범위에 포함되는 경우, 제2안전신호를 생성(D61)하고, 기간계산단계(S63)를 실시할 수 있다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 시간확인단계(S5)의 비교 결과, 변화정보의 센싱시간이 표준분석시간보다 작은 경우, 시계열에 따라 수집된 변화정보를 갱신 저장(S51)한 다음, 센싱단계(S2)로 복귀할 수 있다.
그리고 센싱단계(S2)로 복귀함에 따라 연속해서 변화정보를 수집하면서 센싱시간을 카운트하게 된다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 패턴비교단계(S6)의 비교 결과, 위험수준이 기설정된 제2안전범위를 벗어나는 경우, 제2위험신호를 생성(S62)하고, 기간계산단계(S63)를 실시할 수 있다. 제2위험신호는 서버(300)에 전송(S93)되어 서버(300)에서 관리되도록 한다.
여기서, 제2위험신호가 생성되는 경우, 지능형 센서(100)와 통신하는 서버(300)에 해당 위험신호가 송출(S93)하므로, 서버(300)에서는 지능형 센서(100)를 모니터링할 수 있다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 기간비교단계(S7)를 거친 다음 현장 특성에 따라 변화되는 센싱특성변화정보를 계산하는 제2변화계산단계(S73)와, 제2변화계산단계(S73)를 거친 다음 표준특성변화정보와 센싱특성변화정보를 비교하는 특성변화비교단계(S8)를 더 포함할 수 있다.
그러면, 본 발명의 일 실시예에 따른 지능형 센싱방법은 특성변화비교단계(S8)의 비교 결과, 위험수준이 기설정된 제4안전범위에 포함되는 경우, 제4안전신호를 생성(S81)하고, 초기단계인 센싱단계(S2) 또는 이벤트단계(S1)로 복귀할 수 있다. 그리고 센싱단계(S2) 또는 이벤트단계(S1)로 복귀함에 따라 임시저장부(43)가 초기화되어 임시저장부(43)에 새로운 정보를 저장할 수 있다. 도시되지 않았지만, 초기화에 앞서, 임시저장부(43)의 정보들은 서버(300)로 전송되어 서버(300)에서 해당 지능형 센서(100)를 관리할 수 있다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 특성변화비교단계(S8)의 비교 결과, 위험수준이 기설정된 제4안전범위를 벗어나는 경우, 제4위험신호를 생성(S82)하고, 현장을 검증하도록 유도하기 위한 현장검증단계(S11)를 더 포함할 수 있다. 제4위험신호는 서버(300)에 전송(S95)되어 서버(300)에서 관리되도록 한다.
그러면, 현장검증단계(S11)에서는 현장에서 센싱부(10)의 상태를 확인하는 한편, 센싱부(10)와 표준 센서와의 현장 비교 분석을 실시하고, 현장 비교 분석의 결과에 따라 지능형 센서(100)의 교체 여부를 결정할 수 있다.
여기서, 현장검증단계(S11)의 결과, 양호(현장 비교 분석 결과, 제1위험수준에 대해 제1단계와 제2단계로 판단되는 것)하면, 상술한 바와 같이 초기 단계인 센싱단계(S2) 또는 이벤트단계(S1)로 복귀하도록 한다.
또한, 현장검증단계(S11)의 결과, 불량(제1위험수준에 대해 제3단계 내지 제5단계 중 어느 하나로 판단되는 것)이면, 현장에서 지능형 센서(100) 중 적어도 센싱부(10)를 교체(S12)할 수 있도록 한다. 적어도 센싱부(10)가 교체되면, 지능형 센서(100)를 초기화하고, 센싱단계(S2) 또는 이벤트단계(S1)로 복귀하여 신규한 센싱부(10)에서 변화정보를 수집할 수 있다.
여기에 부가하여, 본 발명의 일 실시예에 따른 지능형 센싱방법은 현장검증단계(S11)에 앞서, 이상발생빈도를 카운트하는 이상카운팅단계(S10)를 더 포함할 수 있다. 이렇게 카운트된 이상발생빈도는 서버(300)에 전송되어 지능형 센서(100)의 관리를 위한 빅데이터로 활용할 수 있다.
도시되지 않았지만, 상술한 설명에서 생성된 안전신호들도 서버(300)로 전송되어 서버(300)에서 지능형 센서(100)를 모니터링할 수 있다.
서버(300)에서는 지능형 센서에 대해 수집된 정보들을 빅데이터화하여 관리하고, 기준정보를 업데이트하여 지능형 센서(100)에 전송할 수 있다.
본 발명의 다른 실시예에 따른 지능형 센싱방법은 센싱단계(S2)와, 시간카운팅단계(S21)와, 센싱값비교단계(S3)와, 제1변화계산단계(S33)와, 제1비교단계(S4)와, 시간확인단계(S5)와, 패턴계산단계(S53)와, 패턴비교단계(S6)를 포함할 수 있다.
본 발명의 다른 실시예에 따른 지능형 센싱방법은 기간계산단계(S63)와, 기간비교단계(S7)를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 지능형 센싱방법은 제2변화계산단계(S73)와, 특성변화비교단계(S8)를 더 포함할 수 있다.
본 발명의 다른 실시예에 추가되는 단계 또는 세부 단계는 본 발명의 일 실시예에서 언급한 각 단계와 실질적으로 동일한 것으로 간주한다.
상술한 지능형 센서와 이것을 이용한 지능형 센싱방법에 따르면, 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별할 수 있다.
또한, 간단한 알고리즘을 구성하여 센서 자체에 탑재되므로, 빠른 응답으로 상황을 대처할 수 있다.
또한, 상황 대처에 따른 상황정보는 컴퓨팅 능력이 뛰어난 서버(300)로 전송되고, 서버(300)는 다른 센서로부터 전송된 정보들과 매칭시켜 상황정보에 대해 정밀하게 판단할 수 있다.
또한, 센싱저장부(40)와 제어부(50)의 세부 구성을 통해 위험수준별 임계정보와 위험수준별 임계변화율정보 그리고 센싱부(10)의 유효기간을 바탕으로 센서 자체에서 불량 진단, 위험, 정상 상황을 빠르게 판별할 수 있다.
또한, 센싱저장부(40)와 제어부(50)의 세부 구성을 통해 부가된 표준패턴정보를 바탕으로 센서 자체에서의 판단력을 향상시킬 수 있다.
또한, 센싱저장부(40)와 제어부(50)의 세부 구성을 통해 부가된 표준특성변화정보를 바탕으로 센서 자체에서의 판단력을 향상시킬 수 있다.
또한, 대상설정부(66)를 통해 둘 이상의 센싱부(10)가 수집하는 변화정보에서 우선 순위를 선정하여 센서 자체에서의 상황 판단을 명확하게 할 수 있다.
또한, 센싱이상카운터(57)를 통해 센싱특성변화정보의 이상을 카운트하고, 현장에서의 검증이 원활하게 이루어지도록 유도할 수 있다.
또한, 위험수준별 임계정보와 위험수준별 임계변화율정보 그리고 센싱부(10)의 유효기간을 바탕으로 순차적인 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 정상 상황을 빠르게 판별할 수 있다.
또한, 이벤트단계(S1)를 더 포함하므로, 센서 자체에서의 비교 분석을 위한 센싱단계(S2)를 명확하게 하고, 센서 자체의 동작이 저하되는 것을 방지할 수 있다.
또한, 위험수준별 임계정보와 위험수준별 임계변화율정보 그리고 센싱부(10)의 유효기간을 바탕으로 순차적인 비교 분석이 이루어지므로, 위험신호에 대응하여 센서 자체에서의 불량 진단 및 위험 상황을 빠르게 판별할 수 있고, 신속한 전파가 이루어지도록 할 수 있다.
또한, 표준패턴정보를 바탕으로 순차적인 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 정상 상황에 대한 판단력을 향상시킬 수 있다.
또한, 표준분석시간에 대응하여 변화정보를 시계열 순으로 안정되게 수집할 수 있고, 위험수준에 따라 변화정보를 수집을 안정화시킬 수 있다.
또한, 표준패턴정보를 바탕으로 순차적인 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 불량 진단 및 위험 상황에 대한 판단력을 향상시킬 수 있다.
또한, 표준특성변화정보를 바탕으로 순차적이 비교 분석이 이루어지므로, 안전신호에 대응하여 센서 자체에서의 정상 상황에 대한 판단력을 향상시킬 수 있다.
또한, 표준특성변화정보를 바탕으로 순차적이 비교 분석이 이루어지므로, 위험신호에 대응하여 센서 자체에서의 불량진단 및 위험 상황에 대한 판단력을 향상시킬 수 있다.
또한, 이상빈도카운팅단계(S10)를 통해 센싱특성변화정보의 이상을 카운트하고, 현장에서의 검증이 원활하게 이루어지도록 유도할 수 있다.
또한, 현장검증단계의 결과에 따라 적어도 센싱부(10)의 불량에 대응하여 교체를 원활하게 하고, 적어도 센싱부(10)가 안정되게 정상 상황을 유지시킬 수 있도록 한다.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.
[부호의 설명]
100: 지능형 센서 200: 게이트웨이 300: 서버
10: 센싱부 20: 통신부 30: 표시부
40: 센싱저장부 41: 센서특성부 42: 기준저장부
43: 임시저장부 50: 제어부 51: 이벤트관리부
52: 시간카운터 53: 센싱값변화계산부 54: 센싱패턴계산부
56: 센싱특성변화계산부 57: 센싱이상카운터
61: 센싱값분석부 62: 센싱값변화분석부
63: 센싱패턴분석부 64: 유효기간분석부
65: 센싱특성변화분석부 66: 대상설정부
S1: 이벤트단계 S2: 센싱단계 S21: 시간카운팅단계
S3: 센싱값비교단계 S31: 안전가정단계 S32: 위험가정단계
S33: 제1변화계산단계 S4: 제1비교단계 S41: 제1안전단계
S42: 제1위험단계 S5: 시간확인단계 S51: 갱신단계
S53: 패턴계산단계 S6: 패턴비교단계 S61: 제2안전단계
S62: 제2위험단계 S63: 기간계산단계 S7: 유효기간비교단계
S71: 제3안전단계 S72: 제3위험단계 S73: 제2변화계산단계
S8: 특성변화비교단계 S81: 제4안전단계 S82: 제4위험단계
S91, S92, S93, S94, S95: 알림단계
S10: 이상카운팅단계 S11: 현장검증단계 S12: 교체단계

Claims (6)

  1. 현장에서 변화정보를 수집하는 하나 이상의 센싱부;
    수집된 변화정보를 시계열 순으로 송출하는 통신부;
    상기 센싱부의 특성정보, 상기 변화정보 또는 상기 특성정보를 바탕으로 하는 정보들의 비교 대상이 되는 기준정보, 상기 변화정보가 저장되는 센싱저장부; 및
    상기 변화정보의 센싱시간에 따른 상기 변화정보의 센싱변화율정보와, 상기 변화정보에 따른 센싱패턴정보와, 상기 현장 특성에 따라 변화되는 센싱특성변화정보 중 적어도 상기 센싱변화율정보를 계산하고, 상기 변화정보를 바탕으로 하는 정보를 상기 기준정보와 비교 분석하는 제어부;를 포함하는 것을 특징으로 하는 지능형 센서.
  2. 제1항에 있어서,
    상기 센싱저장부는,
    상기 센싱부의 특성정보가 저장되되, 상기 센싱부의 특성정보에는 상기 센싱부의 유효기간이 포함되는 센서특성부;
    상기 기준정보가 저장되되, 상기 기준정보에는 평가 지표가 되는 위험수준, 상기 위험수준별 이벤트정보, 상기 위험수준별 임계정보, 상기 위험수준별 임계시간, 상기 위험수준별 임계변화율정보가 포함되는 기준저장부; 및
    상기 센싱부의 사용기간, 상기 변화정보, 상기 변화정보의 센싱시간, 상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보가 저장되는 임시저장부;를 포함하고,
    상기 제어부는,
    상기 이벤트정보와 상기 변화정보를 비교하여 이벤트를 발생시키는 이벤트관리부;
    상기 센싱부의 사용기간을 계산하는 한편, 상기 이벤트의 발생에 따라 상기 변화정보의 센싱시간을 카운트하는 시간카운터;
    상기 위험수준별 임계정보와 상기 변화정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱값분석부;
    상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보를 계산하는 센싱값변화계산부;
    상기 위험수준별 임계변화율정보와 상기 센싱변화율정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱값변화분석부; 및
    상기 센싱부의 유효기간과 상기 센싱부의 사용기간을 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 유효기간분석부;를 포함하는 것을 특징으로 하는 지능형 센서.
  3. 제2항에 있어서,
    상기 기준정보에는, 상기 임계정보에 따른 표준패턴정보, 상기 표준패턴정보를 위한 표준분석시간이 더 포함되고,
    상기 임시저장부에는, 상기 표준분석시간을 기준으로 상기 변화정보에 따른 센싱패턴정보가 더 저장되며,
    상기 제어부는,
    상기 표준분석시간을 기준으로 상기 센싱패턴정보를 계산하는 센싱패턴계산부; 및
    상기 표준패턴정보와 상기 센싱패턴정보를 비교하여 상기 위험수준에 따른 안전성 여부를 분석하는 센싱패턴분석부;를 더 포함하는 것을 특징으로 하는 지능형 센서.
  4. 제1항 내지 제3항 중 어느 한 항에 기재된 지능형 센서를 이용한 지능형 센싱방법이고,
    상기 센싱부를 통해 상기 현장에서 상기 변화정보를 수집하는 센싱단계;
    상기 센싱단계를 거침에 따라 상기 변화정보의 센싱시간을 카운트하는 시간카운팅단계;
    상기 기준정보 중 상기 위험수준별 임계정보와 상기 변화정보를 비교하는 센싱값비교단계;
    상기 센싱값비교단계를 거친 다음, 상기 센싱시간에 따른 상기 변화정보의 센싱변화율정보를 계산하는 제1변화계산단계;
    상기 기준정보 중 상기 위험수준별 임계변화율정보와 상기 센싱변화율정보를 비교하는 제1비교단계;
    상기 제1비교단계를 거친 다음, 상기 센싱부의 사용기간을 계산하는 기간계산단계; 및
    상기 센싱부의 특성정보 중 상기 센싱부의 유효기간과 상기 센싱부의 사용기간을 비교하는 기간비교단계;를 포함하고,
    상기 센싱값비교단계의 비교 결과, 상기 위험수준이 기설정된 안전가정범위에 포함되는 경우, 임시안전신호를 생성하고, 상기 제1변화계산단계를 실시하며,
    상기 제1비교단계의 비교 결과, 상기 위험수준이 기설정된 제1안전범위에 포함되는 경우, 제1안전신호를 생성하고, 상기 기간계산단계를 실시하고,
    상기 기간비교단계의 비교 결과, 상기 센싱부의 사용기간이 상기 센싱부의 특성정보 중 상기 센싱부의 유효기간에 포함되는 경우, 제3안전신호를 생성하고, 상기 센싱단계로 복귀하는 것을 특징으로 하는 지능형 센싱방법.
  5. 제4항에 있어서,
    상기 센싱값비교단계의 비교 결과, 상기 위험수준이 기설정된 안전가정범위를 벗어나는 경우, 임시위험신호를 생성하고, 상기 제1변화계산단계를 실시하며,
    상기 제1비교단계의 비교 결과, 상기 위험수준이 기설정된 제1안전범위를 벗어나는 경우, 제1위험신호를 생성하고, 상기 기간계산단계를 실시하고,
    상기 기간비교단계의 비교 결과, 상기 센싱부의 사용기간이 상기 센싱부의 특성정보 중 상기 센싱부의 유효기간을 벗어난 경우, 제3위험신호를 생성하며,
    상기 임시위험신호와 상기 제1위험신호와 상기 제3위험신호 중 적어도 어느 하나의 위험신호가 생성되는 경우, 상기 지능형 센서와 통신하는 서버에 해당 위험신호를 송출하는 것을 특징으로 하는 지능형 센싱방법.
  6. 제4항에 있어서,
    상기 제1비교단계를 거친 다음, 상기 임계정보에 따른 표준패턴정보를 위한 표준분석시간과 상기 변화정보의 센싱시간을 비교하는 시간확인단계;
    상기 시간확인단계의 비교 결과, 상기 변화정보의 센싱시간이 상기 표준분석시간과 같거나 큰 경우, 상기 표준분석시간을 기준으로 상기 변화정보에 따른 센싱패턴정보를 계산하는 패턴계산단계; 및
    상기 패턴계산단계를 거친 다음, 상기 표준패턴정보와 상기 센싱패턴정보를 비교하는 패턴비교단계;를 더 포함하고,
    상기 패턴비교단계의 비교 결과, 상기 위험수준이 기설정된 제2안전범위에 포함되는 경우, 제2안전신호를 생성하고, 상기 기간계산단계를 실시하는 것을 특징으로 하는 지능형 센싱방법.
PCT/KR2021/011632 2020-12-07 2021-08-30 지능형 센서와 이것을 이용한 지능형 센싱방법 WO2022124532A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,410 US20220319296A1 (en) 2020-12-07 2021-08-30 Smart sensor and smart sensing method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200169363A KR102436370B1 (ko) 2020-12-07 2020-12-07 지능형 센서와 이것을 이용한 지능형 센싱방법
KR10-2020-0169363 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022124532A1 true WO2022124532A1 (ko) 2022-06-16

Family

ID=81973681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011632 WO2022124532A1 (ko) 2020-12-07 2021-08-30 지능형 센서와 이것을 이용한 지능형 센싱방법

Country Status (3)

Country Link
US (1) US20220319296A1 (ko)
KR (1) KR102436370B1 (ko)
WO (1) WO2022124532A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140310407A1 (en) * 2013-04-11 2014-10-16 Huawei Technologies Co., Ltd. Terminal device
KR20150112357A (ko) * 2014-03-27 2015-10-07 (주)시엠아이코리아 센서 데이터 처리 시스템 및 방법
KR20190115953A (ko) * 2018-04-04 2019-10-14 한국전력공사 편차의 변화율을 이용한 발전 설비의 위험도 진단 시스템 및 방법
KR20200077349A (ko) * 2018-12-20 2020-06-30 홍성국 무선 복합센서 모듈
KR102167569B1 (ko) * 2018-12-31 2020-10-19 주식회사 네오세미텍 스마트 팩토리 모니터링 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200007741A1 (en) * 2002-06-04 2020-01-02 Ge Global Sourcing Llc Detection system and method
US7623028B2 (en) * 2004-05-27 2009-11-24 Lawrence Kates System and method for high-sensitivity sensor
US8471707B2 (en) * 2009-09-25 2013-06-25 Intel Corporation Methods and arrangements for smart sensors
KR102171592B1 (ko) 2014-01-02 2020-10-29 한국전자통신연구원 오류 가능성 감지에 의한 오류 예방 장치
US10508974B2 (en) * 2016-02-01 2019-12-17 Computational Systems, Inc. Storing analytical machine data based on change in scalar machine data indicating alert condition
NO20161424A1 (en) * 2016-09-07 2018-03-05 Stiftelsen Norsar A railway track condition monitoring system for detecting a partial or complete disruption of a rail of the railway track
KR20180039269A (ko) * 2016-10-08 2018-04-18 유태연 접이식 칸막이 커버 자동차 문짝
WO2019005905A1 (en) * 2017-06-27 2019-01-03 Nch Corporation SYSTEM AND METHOD FOR AUTOMATED PLUMBING SENSOR WARNING
US10895509B2 (en) * 2018-03-06 2021-01-19 Google Llc Dynamic scanning of remote temperature sensors
US10325472B1 (en) * 2018-03-16 2019-06-18 Palarum Llc Mount for a patient monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140310407A1 (en) * 2013-04-11 2014-10-16 Huawei Technologies Co., Ltd. Terminal device
KR20150112357A (ko) * 2014-03-27 2015-10-07 (주)시엠아이코리아 센서 데이터 처리 시스템 및 방법
KR20190115953A (ko) * 2018-04-04 2019-10-14 한국전력공사 편차의 변화율을 이용한 발전 설비의 위험도 진단 시스템 및 방법
KR20200077349A (ko) * 2018-12-20 2020-06-30 홍성국 무선 복합센서 모듈
KR102167569B1 (ko) * 2018-12-31 2020-10-19 주식회사 네오세미텍 스마트 팩토리 모니터링 시스템

Also Published As

Publication number Publication date
KR20220080348A (ko) 2022-06-14
KR102436370B1 (ko) 2022-08-25
US20220319296A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2018093076A1 (ko) 아날로그 계측 장비 관리 시스템, 그리고 이를 이용한 아날로그 계측 장비 관리 방법
WO2020048047A1 (zh) 系统故障的预警方法、装置、设备及存储介质
WO2019031683A1 (ko) 구동부의 정밀 예지 보전방법
WO2016085172A1 (ko) 설비의 예측 정비 시스템 및 방법
WO2013027970A1 (ko) 네트워크의 이상증후를 탐지하는 장치 및 방법
WO2017010821A1 (ko) 차체 조립 라인의 구동부 모니터링 방법 및 그 장치
WO2020141676A1 (ko) 스마트 팩토리 모니터링 시스템
WO2022131388A1 (ko) 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템
WO2016153164A1 (ko) 무대 시설물의 이상 감지 및 이를 이용한 고장 예측 시스템과, 그 방법
WO2021045576A1 (ko) 가스 센서를 이용한 배터리 보호 장치 및 방법
WO2019031682A1 (ko) 구동부의 정밀 예지 보전방법
WO2019168341A1 (ko) 통합 iot 모듈 및 이를 이용한 iot 기반의 설비 환경 통합 관리 시스템
WO2018044040A1 (ko) 기기 중요도와 경보 유효성 판단 프로세서를 포함한 원자력발전소 기기 이상징후 사전감지 방법 및 그 시스템
WO2018199659A1 (ko) 변전소 자산 관리 방법
CN108873795A (zh) 一种可自动报警的智能监控系统
WO2023090876A1 (ko) 선제적 풍력발전 유지관리 시스템
WO2019190049A1 (ko) 배전반 내 차단기 관리 시스템
WO2024071607A1 (ko) 산업현장 방폭검사용 스마트 플랫폼
WO2019177233A1 (ko) 구동부의 정밀 예지 보전방법
WO2021086002A1 (ko) 재난 안전형 스마트 수배전반 관리시스템
WO2021075855A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2019177241A1 (ko) 구동부의 정밀 예지 보전방법
WO2020138573A1 (ko) Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치
WO2022124532A1 (ko) 지능형 센서와 이것을 이용한 지능형 센싱방법
WO2018199656A1 (ko) 변전소의 자산 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903579

Country of ref document: EP

Kind code of ref document: A1