WO2022131388A1 - 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템 - Google Patents

이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템 Download PDF

Info

Publication number
WO2022131388A1
WO2022131388A1 PCT/KR2020/018307 KR2020018307W WO2022131388A1 WO 2022131388 A1 WO2022131388 A1 WO 2022131388A1 KR 2020018307 W KR2020018307 W KR 2020018307W WO 2022131388 A1 WO2022131388 A1 WO 2022131388A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
management system
robot
platform
safety management
Prior art date
Application number
PCT/KR2020/018307
Other languages
English (en)
French (fr)
Inventor
박병강
Original Assignee
주식회사 현성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현성 filed Critical 주식회사 현성
Publication of WO2022131388A1 publication Critical patent/WO2022131388A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a management site safety management system that receives data transmitted from a management site such as a tunnel-type public facility through a communication network such as 5G and processes it based on artificial intelligence to perform necessary measures.
  • a safety management system for solving the above problems, a sensing platform for detecting environmental data including temperature, humidity, and gas concentration of a management site using a plurality of fixed sensors and a mobile robot, and from the sensing platform It includes a data platform that receives, classifies, and stores environmental data, and a control platform that predicts risks through artificial intelligence learning and inference based on the data secured by the data platform and performs countermeasures to dangerous situations.
  • the sensing platform is composed of an optical sensor, a CCTV, an environmental sensor, and a mobile rail robot.
  • the mobile robot moves along the rail of the management site and monitors the management site in real time. It acquires images with a vision camera and a thermal imaging camera, and measures the gas concentration including temperature, humidity and carbon monoxide with a plurality of heterogeneous environmental sensors. It is detected and transmitted to the data platform in real time. In addition, the operating power is supplied through the rail, and the collected data is transmitted and the control command is received through the power line communication (PLC).
  • PLC power line communication
  • the mobile robot includes a vision camera and a thermal imaging camera for acquiring images and thermal images, and an environmental sensor for detecting temperature, humidity, oxygen, carbon monoxide, carbon dioxide, nitrogen dioxide, and hydrogen sulfide, SiH 4 , NH 3 , N 2 O, CF 4 , NF 3 It may further include a special sensor to detect.
  • the control platform implements an artificial intelligence server for learning and inference based on the data secured by the data platform, a risk management/control server that takes action to respond to dangerous situations, and a digital twin to visualize the management site and command the manager It includes a presentation server that receives the input.
  • the artificial intelligence server reflects and analyzes the season, time, and equipment characteristics of the data based on the time series data-based LSTM RNN future prediction model, and learns risk prediction and safety area based on the future prediction data-based DQN reinforcement learning model perform and infer.
  • the risk management/control server defines disaster response management as a business-based process, and accordingly performs step-by-step early response to risk situations in the common district.
  • a safety management system that automatically monitors, analyzes, diagnoses, predicts damage, reports results, and performs necessary actions through a mobile unmanned monitoring device for information that is difficult to confirm with the naked eye of an operator.
  • FIG. 1 is a service concept diagram of a safety management system according to a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram of a safety management system according to a preferred embodiment of the present invention.
  • FIG 3 is an exemplary view illustrating an installation example of a detection sensor in a tunnel-type facility according to the present invention.
  • FIG. 4 is a network configuration diagram of a safety management system according to the present invention.
  • FIG 5 is an explanatory view of the structure of the rail robot according to the present invention.
  • 6 and 7 are diagrams illustrating additional functions of the rail robot according to the present invention.
  • FIG. 8 is a view for explaining an artificial intelligence-based accident prediction according to the present invention.
  • FIG. 9 is a diagram for explaining an AI model of an artificial intelligence server according to the present invention.
  • FIG. 10 is a flowchart of a data processing process according to the present invention.
  • 11 is an exemplary diagram of the corresponding procedure of the safety management system according to the present invention.
  • each component, functional blocks or means may be composed of one or more sub-components, and the electrical, electronic, and mechanical functions performed by each component are electronic circuits.
  • an integrated circuit, an ASIC (Application Specific Integrated Circuit), etc. may be implemented with various well-known devices or mechanical elements, and may be implemented separately or two or more may be integrated into one.
  • the safety management of tunnel-type facilities will be described as a main example, but the area to which the present invention is applied encompasses various management target sites such as bridges, underground pits, factories, and distribution warehouses.
  • FIG. 1 is a service conceptual diagram of a management site safety management system for tunnel-type public facilities, etc. according to the present invention.
  • an artificial intelligence-based real-time safety accident prevention response service that collects data in real time and performs real-time monitoring and artificial intelligence precision monitoring and risk control through this.
  • FIG. 2 is a conceptual diagram of a safety management system according to the present invention.
  • a sensing platform 100 As shown, it consists of a sensing platform 100 , a data platform 200 , and a control platform 300 .
  • the sensing platform 100 includes a mobile unmanned detection device (mobile rail robot) 110 and a controller (not shown) for controlling them, a fixed video camera and/or a thermal imaging camera 120 , temperature, humidity, oxygen, carbon monoxide, carbon dioxide , a gas sensor 130 including a sensor for detecting nitrogen dioxide and hydrogen sulfide, a temperature/humidity sensor 140, and a plurality of optical sensors 150 fixedly disposed in a tunnel-type facility.
  • the fixed smoke detection sensor, SiH 4 , NH 3 , N 2 O, CF 4 , NF 3 It may further include a special sensor for detecting.
  • the rail robot 110 moves along the track installed in the tunnel-type facility and detects the above-described video camera and/or thermal imaging camera, temperature, humidity, oxygen, carbon monoxide, carbon dioxide, nitrogen dioxide, and hydrogen sulfide.
  • Gas sensor including a sensor, temperature / Humidity sensor, smoke sensor, SiH 4 , NH 3 , N 2 O, CF 4 , NF 3 Special sensors that detect , and some or all of LiDAR sensors are built-in to periodically monitor tunnel-type facilities and , in case of emergency, it is dispatched to the site and performs real-time monitoring and necessary measures. It is desirable to have a dustproof/waterproof function (IP65 or higher) in consideration of the operating environment such as a lot of dust, high temperature, and high humidity according to the environmental characteristics of the tunnel type facility.
  • IP65 dustproof/waterproof function
  • the optical sensor 150 is installed inside the tunnel to detect the temperature of the road surface and the temperature change for each section in case of a vehicle fire over the entire length of the tunnel, and detects noise, and plays an important role in determining whether or not there is a safety accident.
  • the amount of change in the wavelength of light measured by the fiber optic sensor is about 10 pm or more. Therefore, since it is necessary to check the temperature change of 1 degree or less, a wavelength change of 5 pm or more is required for a 1 degree change. do.
  • the sound detection optical sensor detects vibrations for each frequency and detects the speed of a vehicle or vehicle or an accident sound generated during an accident in real time. Since the frequency of the sound generated by a vehicle collision inside the tunnel is less than 500 Hz (the sound signal generated during a sudden stop is a signal of about 1 kHz or higher), and when there is a lot of traffic, about 90 dB of noise is generated. . In addition, it can be used to determine whether a normal operation / abnormal operation by detecting the operation noise of the facility in the facility.
  • the video/thermal image sensor 120 is constructed so that the intelligent CCTV can be installed at each entrance and at an appropriate place in the facility to control the entry and exit of vehicles or people. If there is a place where external intrusion such as ventilation is possible depending on the environmental conditions of the site, change the installation place and install it.
  • FIG. 3 illustrates an example of installation in a tunnel of various sensors according to the present invention.
  • the data platform 200 processes, collects, categorizes, and stores the data transmitted by the sensing platform 100 .
  • a plurality of collection servers for collecting data from other sensors may be provided.
  • the control platform 300 is based on artificial intelligence and based on the data secured by the data platform 200, prevents/predicts safety accidents, performs early accident response, and displays the situation for facility management and control, etc. Safety of tunnel-type facilities It handles the overall work related to management.
  • the image server 310 analyzes the images transmitted from a plurality of image capturing sources, such as the rail robot 110 installed in the tunnel or the fixed image sensor 120, and detects the object to be recognized within the allowed delay time, thereby preventing safety accidents smoothly. and configured to be able to respond.
  • the artificial intelligence server 320 predicts/detects safety accidents by analyzing various data collected such as images, gas, sound, temperature, humidity, etc., and continuously improves accuracy by repeatedly performing learning through machine learning. It functions to enable high-accuracy risk prediction service through optimal AI deep learning model and learning based on data by location, facility, and environment information.
  • the environment information collected and accumulated by autonomous driving of the rail robot 110 builds an optimal risk prediction neural network through artificial intelligence model learning, and provides a service by determining risk information for environment information transmitted in real time.
  • the risk management/control server 330 identifies fire failures, facility failures, sensor failures, traffic flow failures, robot failures, etc. control, patrol management, etc.).
  • the facility registration/management server 340 performs robot registration/management, stationary sensor registration/management, public facility management, operation management, and the like.
  • the decision making and reporting server 350 performs accident/situation management, accident site support, emergency system management, and report inquiry and management tasks.
  • control kernel is based so that the manager can directly control and manage rail robots, CCTVs, and external environmental sensors in multiple environments serially. It may include a presentation server 360 that builds a system of and manages a situation board that provides functions to enable integrated control.
  • the presentation server 360 builds a digital twin-based 3D virtual space for tunnel-type facilities and provides a function to enable virtual inspection service in connection with the on-site mobile rail robot 110 and intelligent CCTV 120. desirable. Based on the image information from the image sensor and/or lidar sensor of the rail robot 110 and image information from the stationary CCTV, the modeling level of the digital twin-based 3D virtual space is established to LOD 3 or higher, and detailed object modeling of the tunnel type facility It is built so that it can be enlarged, separated, and controlled through the
  • each of the above-described servers is divided from the point of view of functions for convenience of explanation and enhancement of understanding. In actual implementation, it may be integrated into one server, or may be configured to be distributed over two or three servers. is of course That is, throughout this specification including the claims, "... group”, “... part”, “... server”, etc. do not limit the implementation aspect of H/W.
  • FIG. 4 is a network configuration diagram of a safety management system according to an embodiment of the present invention.
  • the rail robot 110 performs power line data communication (PLC) through the track, and each fixed sensor is transmitted to the control platform 300 through the G/W through the FBGI and dedicated switch.
  • PLC power line data communication
  • the rail robot 110 of the sensing platform 100 moves along the rail 105 in an underground tunnel or the like and monitors the management site in real time.
  • An image is acquired by a vision camera and a thermal imaging camera, temperature, humidity, carbon monoxide concentration, etc. are detected with a plurality of heterogeneous environmental sensors and transmitted to the data platform 200 in real time.
  • the rail robot 110 receives operating power through the rail, transmits data collected through power line communication (PLC), and receives a control command.
  • PLC power line communication
  • large-scale data such as images or thermal images can be configured to be transmitted through a separate communication network. For safety inspection of facilities inside the tunnel and prevention and response to safety accidents, it is recommended to shoot more than 30 frames continuously for 10 minutes on a weekly basis and transmit the video in real time.
  • the rail robot 110 is equipped with a fire extinguishing function, and when a fire occurs in the management site, it moves to the fire site and extinguishes the fire before firefighters arrive. In this way, the damage is minimized by completely extinguishing the fire at an early stage or by suppressing the spread of the fire until firefighters arrive.
  • the rail robot 110 is controlled by a separate local controller (a kind of edge computer) located in a tunnel-type facility, and a plurality of rail robots 110 may be collectively controlled.
  • the controller controls the plurality of rail robots 110 to move to a location where a fire has occurred in the management site and perform fire-fighting operations simultaneously or sequentially to suppress the fire or suppress the expansion.
  • the robot controller for controlling the rail robot 110 may be a separate local controller located in the tunnel-type facility as described above, and the data collection server 210 or the image server 310 or the risk management/control server without a local controller 330 and the like may be configured to serve as a robot controller that performs robot control.
  • a local controller is located in or near the tunnel to control the robot 110 by judging itself in an emergency situation, and in a general situation, the data collection server 210 or the image server 310 or risk management/control It follows the edge computing model of transmitting robot 110 status information to a remote server such as the server 330, receiving a command from the remote server, and controlling the robot accordingly.
  • Table 1 below summarizes the robot control items of the robot controller.
  • robot Control Robot movement control (specific point, etc.), up/down/left/right, and zoom in/out - Collects video and environmental information while the robot is moving.
  • robot status information Lookup - Information inquiry on the robot's operating equipment (power, camera, and other components).
  • Robot location information management installation area and management point information
  • Robot location check Inspection of robot operation status (used for periodic periodic inspection)
  • View status information on robot components (camera, thermal image, etc.) and basic information (power, etc.)
  • one rail robot 110 on patrol detects an abnormality
  • other nearby rail robots are moved to an abnormal place to detect the situation. It can be operated to be regarded as an occurrence.
  • the actual environment is estimated from the sensor detection values of the plurality of rail robots 110 by moving an additional rail robot.
  • the detection value is estimated by an average of multiple detection values, a weighted average, or a majority vote method.
  • the movement of the rail robot 110 is a method of moving along the rail 105 as described above. It moves along one linear rail extending to both ends of the tunnel-type management site, or both ends of two linear rails. It moves along the closed-loop rail connected by a curve.
  • the rail robot 110 normally patrols each rail robot by repeating forward and backward for each rail section. When a dangerous situation is detected or fire suppression is required, other rail robots move to the appropriate place to detect or extinguish a fire. operated in a way that participates in
  • the installation cost of the closed-loop rail is relatively high, the mobility of the robot 110 can be expanded so that a plurality of rail robots can be assembled to a corresponding place more quickly.
  • the closed-loop rail may be operated in a manner in which a plurality of rail robots 110 continuously travel in one direction and patrol as well as forward and backward movement patrol within a section.
  • the operation control of the rail robot 110, the reliability evaluation of the detection value, and the cooperative fire suppression are performed by the remote manager in the digital twin environment by adjusting the zoom in/out of the video camera and thermal imaging camera, determining the detection value, and the cooperative fire suppression method. It is configured to select and control movement directly, and it is desirable to configure it to be automatically performed under the control of a controller in the management site that functions as an edge computer in normal mode.
  • the controller adjusts the usual patrol schedule of the plurality of rail robots according to environmental conditions such as climate. For example, if the management site is hot and dry and the risk of fire is greater than usual, the rail robot patrols at a faster speed to increase the patrol cycle.
  • the rail robot 110 waiting station (not shown) when it is determined that the rail robot 110 waiting station (not shown) is placed at a predetermined position on the rail to wait for an extra rail robot, and it is determined that the patrol speed should be further increased in normal times, the rail robot of the waiting station is put into patrol to patrol. The cycle is further increased, and if it is determined that the currently running rail robot is not enough for the robot to be dispatched in case of emergency, it controls to add the waiting rail robot to the waiting area.
  • the robot controller determines the rail robots to move when moving the plurality of rail robots to the corresponding place for the verification of the reliability of the sensed value.
  • the controller notifies the facility registration/management server 340 if there is a rail robot determined to be a sensor abnormality as a result of the detection value reliability evaluation.
  • the faulty rail robot is equipped with an anti-collision IR sensor as shown in FIG. 6 to avoid a collision with a worker or another moving object or obstacle, or generate an LED light or melody when detecting a worker to induce the operator's attention.
  • maintenance convenience can be improved by pulling to the exit using a rail robot for towing as shown in FIG. 7 .
  • information (temperature, humidity, nitrogen, oxygen, carbon monoxide, carbon dioxide concentration value, etc.) transmitted in real time from the rail robot 110 and/or the environmental sensor is converted into real-time information through an artificial intelligence risk prediction model.
  • analysis and risk prediction Detects anomalies through situation prediction and real-time data anomaly detection through artificial intelligence risk prediction model for information collected by point or section ”, “risk”, etc.
  • the artificial intelligence server 320 reflects and analyzes the season, time, and equipment characteristics of the data based on the time-series data-based LSTM RNN future prediction model.
  • a 7-layer LSTM RNN model is built, and for risk judgment, a safe area is learned based on the future-predictive data-based DQN reinforcement learning model, and a 9-layer DNN neural network is constructed for this purpose (FIG. 9). That is, in the present invention, based on the time series data-based LSTM RNN future prediction model, the season, time, and equipment characteristics of the data are reflected and analyzed, and based on this, the risk prediction and safety area based on the future prediction data-based DQN reinforcement learning model are analyzed. learn and reason about
  • FIG. 10 is a diagram showing the overall flow of artificial intelligence learning and inference according to the present invention.
  • data detected by the robot 110 and the stationary sensors 120 to 150 are collected, the characteristics of these data are analyzed, the data structure is defined, the future prediction model is defined, the learning data is constructed, and the data Learning and reasoning are performed in the following order: preprocessing, predictive model learning, predictive neural network construction, risk judgment model definition, risk judgment data construction, risk judgment neural network construction, risk judgment model learning, and artificial intelligence test and operation.
  • 11 is a view showing step by step the entire process of data collection and artificial intelligence risk prediction and response performed by the safety management system according to the present invention.
  • the risk management/control server 330 issues a fire alarm, and the presentation server 360 displays the situation.
  • the robot controller commands the rail robot 110 to dispatch and extinguish the first fire, and continuously collects on-site information.
  • the command for the rail robot 110 may be directly issued by an administrator in the digital twin environment provided by the presentation server 360 .
  • the risk management/control server 330 continuously performs on-site situation analysis and judgment to command secondary fire suppression if fire suppression is not completed, and transmits field situation information to a disaster response organization.
  • the rail robot 110 When a disaster response agency is dispatched, the rail robot 110 maintains a safe distance and monitors the site, and the risk management/control 330 continuously monitors it. At this time, the presentation server 360 displays the current situation in the digital twin environment in real time.
  • the risk management/control server 330 defines disaster response management as a business-based process as a center, and accordingly performs step-by-step early response to the dangerous situation of tunnel-type facilities.
  • the decision/report server 350 stores and reports the accident cause data analysis.
  • the collected video data is provided to control centers such as facility managers and disaster situation rooms in real time, and the data collected through environmental sensors is visualized and monitored in real time.
  • the AI-based safety accident response platform monitors and prevents safety accidents based on accumulated data, and when an accident occurs, a robot is dispatched to the site to determine the type and severity of the accident and provide information to the manager.
  • Multi-channel network configuration using LTE/5G, optical communication, and PLC communication provides services to enable operation in various tunnel environments.
  • a robot In case of an accident, a robot is used to evacuate the person in need, and the service is provided so that the person can approach the site and command the accident.
  • the present invention can be applied to the safety management of tunnel-type facilities such as tunnels and subway routes, factories, logistics warehouses, and safety accident management sites such as underground common areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Mining & Mineral Resources (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Educational Administration (AREA)
  • Emergency Management (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Geology (AREA)
  • Development Economics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Alarm Systems (AREA)

Abstract

본 발명에 따른 안전관리 시스템은, 복수의 고정식 센서 및 이동식 로봇을 이용하여 관리현장의 온도, 습도, 가스 농도를 포함하는 환경 데이터를 감지하는 센싱 플랫폼과, 상기 센싱 플랫폼으로부터 환경 데이터를 전달받아 분류, 저장하는 데이터 플랫폼과, 상기 데이터 플롯폼이 확보한 데이터를 기반으로 인공지능 학습 및 추론을 통해 위험을 예측하고 위험상황에 대응 조치를 수행하는 인공지능 플랫폼을 포함한다.

Description

이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템
본 발명은 터널형 공공시설물 등의 관리현장으로부터 5G 등 통신네트워크를 통해 전송된 데이터를 수신하고 인공지능 기반으로 처리하여 필요 조치를 수행하는 관리현장 안전관리 시스템에 관한 것이다.
지난 수년간 국내 교통사고 데이터 분석 결과, 도로교통시설중 터널구간에서의 사고발생건당 사망률은 전체 구간 대비 2배 이상 높은 수치를 보이는 것으로 나타났다. 지상의 터널 뿐 아니라, 지하철 운행로, 교량, 공장, 물류창고, 지하공동구 등의 관리대상 현장(이하 줄여서, '관리현장')에 문제가 발생한 경우 조치를 위하여 작업자의 현장 방문이 불가피하며, 그런 한편 사고나 화재 등 유사시에 현장의 위치를 작업자가 육안으로 확보하기 어렵고 문제 발생 현장의 상태정보를 정확히 확인하고 판단하기에 현실적으로 어려움이 있다.
터널이나 지하철 운행로 내에서 발생하는 설비고장 또는 화재 등을 실시간으로 모니터링하고 분석할 수 있는 시스템을 갖추고 있지 못하므로, 터널 내의 안전사고와 관련된 정보 및 상황을 정확하게 파악하기 위해서는 순찰 인력 또는 업무 담당자가 직접 현장으로 이동하여 육안으로 확인해야 하기 때문에 실시간성을 확보할 수 없는 문제점을 가지고 있고, 유사시에는 정확한 육안 파악조차 용이하지 않다.
터널형 공공시설물 등 관리현장의 안전사고 예방을 위해서는 24시간 실시간 모니터링(AI 기반), 데이터수집 및 분석을 통한 사고발생 예측, 사고 발생시 현장상황의 원거리 통제 등이 필요한바, 본 발명은 관리현장 내 감시체계를 구축하여 인력의 한계를 극복하고 관리현장에서 발생 가능한 안전사고와 관련된 모든 데이터를 수집 분석하여 자동으로 안전사고를 예측 감시하고, 관련 데이터를 이용하여 관리현장내 긴급 및 특이사항 발생시 조속한 대처가 가능하도록 상시 안전 망 감시 체계를 구축하는 것을 목적으로 한다.
특히 관리현장 내의 각종 센서, CCTV 및 지능형 궤도 로봇과 연동되는 사물인터넷과 초고속 무선네트워크(5G), 인공지능과 빅데이터 기술을 적용한 실시간 데이터 수집 및 분석을 통해 터널내의 사고발생 예측과 필요한 예방조치의 실행, 사고 발생시 피해 최소화 및 신속하고 능동적인 조치를 지원하는 “터널형 공공시설물 안전사고 예방대응 플랫폼”기술의 제공하고자 한다.
상기 과제를 해결하기 위한 본 발명에 따른 안전관리 시스템은, 복수의 고정식 센서 및 이동식 로봇을 이용하여 관리현장의 온도, 습도, 가스 농도를 포함하는 환경 데이터를 감지하는 센싱 플랫폼과, 상기 센싱 플랫폼으로부터 환경 데이터를 전달받아 분류, 저장하는 데이터 플랫폼과, 상기 데이터 플롯폼이 확보한 데이터를 기반으로 인공지능 학습 및 추론을 통해 위험을 예측하고 위험상황에 대응 조치를 수행하는 관제 플랫폼을 포함한다.
상기 센싱 플랫폼은, 광센서, CCTV, 환경센서 및 이동식 레일로봇으로 구성된다.
상기 이동식 로봇은, 관리현장의 레일을 따라 이동하며 관리현장을 실시간으로 감시하는 것으로서, 비전카메라 및 열화상카메라로 영상을 획득하고 복수의 이종 환경센서로 온도, 습도 및 일산화탄소를 포함하는 가스 농도를 감지하여 실시간으로 상기 데이터 플랫폼으로 전송한다. 또한, 레일을 통하여 동작전력을 공급받으며, 전력선통신(PLC)를 통해 수집된 데이터를 송신하고 제어명령을 수신한다.
아울러, 소화 기능을 탑재하여 관리현장 내 화재가 발생한 경우, 화재 현장으로 이동하여 소방인력이 도착하기 전에 화재진압을 수행한다.
일 실시예에서, 상기 이동식 로봇은, 영상 및 열화상을 획득하는 비전카메라 및 열화상카메라와, 온도, 습도, 산소, 일산화탄소, 이산화탄소, 이산화질소, 황화수소를 감지하는 환경센서를 포함하며, SiH4, NH3, N2O, CF4, NF3를 감지하는 특수센서를 더 포함할 수 있다.
상기 관제 플랫폼은, 상기 데이터 플랫폼이 확보한 데이터를 기반으로 학습 및 추론을 위한 인공지능 서버, 위험상황에 대응 조치를 수행하는 위험관리/통제 서버, 디지털 트윈을 구현하여 관리현장을 가시화하고 관리자 명령을 입력받는 프리젠테이션 서버를 포함한다.
상기 인공지능 서버는, 시계열 데이터 기반 LSTM RNN 미래예측 모델을 기반으로 데이터의 계절, 시간, 장비 특성을 반영하여 분석하고, 미래예측 데이터 기반 DQN 강화학습 모델을 기반으로 위험 예측 및 안전영역에 대한 학습을 수행하고 추론한다.
상기 위험관리/통제 서버는, 재난사고 대응관리를 업무기반 프로세스 중심으로 정의하고 이에 따라 공동구의 위험상황에 대한 단계별 조기대응을 수행한다.
본 발명에 따르면, 작업자의 육안으로 확인하기 어려운 정보를 이동식 무인감시장치를 통해 자동 감시, 분석, 진단, 피해 예측, 결과보고를 수행하고 필요 조치를 수행하는 안전관리 시스템이 제공된다.
터널, 지하철, 교량, 지중시설, 공장, 물류창고 등 안전관리 대상 현장 또는 설비에 문제가 발생한 경우 이를 신속히 파악하고 대응조치를 선수행함으로써 피해를 줄이고 신속한 문제 해결이 가능하다.
도 1은 본 발명의 바람직한 일 실시예에 따른 안전관리 시스템의 서비스 개념도.
도 2는 본 발명의 바람직한 일 실시예에 따른 안전관리 시스템의 구성도.
도 3은 본 발명에 따른 터널형 시설물 내 감지 센서의 설치례를 도시한 예시도.
도 4는 본 발명에 따른 안전관리 시스템의 네트워크 구성도.
도 5는 본 발명에 따른 레일로봇 구조 설명도.
도 6 및 7는 본 발명에 따른 레일로봇의 부가기능 설명 예시도이다.
도 8은 본 발명에 따른 인공지능 기반 사고예측을 설명하기 위한 도면.
도 9은 본 발명에 따른 인공지능 서버의 AI 모델을 설명하기 위한 도면.
도 10은 본 발명에 따른 데이터 처리 과정에 대한 흐름도.
도 11은 본 발명에 따른 안전관리 시스템의 대응 절차 예시도.
본 발명의 목적 및 효과는 이상에서 언급한 것으로 제한되지 않으며, 본 발명의 목적 및 효과, 그리고 그것들을 달성하기 위한 기술적 구성들은 첨부 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 이하의 각 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명의 범위를 제한하고자 하는 것이 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 또는 "구비"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...유닛", "...장치", "...디바이스", "...부" 또는 "...모듈", "...수단", "...서버" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 즉, 본 명세서의 '~부', '~모듈', '~수단', '...서버' 등의 용어는 본 발명의 기술적 사상에 대한 이해의 증진과 설명의 편의를 위하여 구분한 것으로서, 이러한 기능이 구현될 H/W 구성의 형태를 한정하거나 제한하는 의미로 쓰인 것은 아니다.
한편, 본 발명의 각 실시예에 있어서, 각 구성요소들, 기능 블록들 또는 수단들은 하나 또는 그 이상의 하부 구성요소로 구성될 수 있으며, 각 구성요소들이 수행하는 전기, 전자, 기계적 기능들은 전자회로, 집적회로, ASIC(Application Specific Integrated Circuit) 등 공지된 다양한 소자들 또는 기계적 요소들로 구현될 수 있으며, 각각 별개로 구현되거나 2 이상이 하나로 통합되어 구현될 수도 있다.
이하, 도면을 참조하여 본 발명에 따른 관리현장 안전관리 시스템에 대해 설명한다.
각 실시예의 설명에서 터널형 시설물의 안전관리를 주된 예시로 설명할 것이나, 본 발명이 적용되는 영역은 교량, 지하 공동구, 공장, 물류창고 등 제반 관리대상 현장을 아우름은 물론이다.
도 1은 본 발명에 따른 터널형 공공시설물 등의 관리현장 안전관리 시스템의 서비스 개념도이다.
도시된 바와 같이, 실시간으로 데이터를 수집하고, 이를 통한 실시간 모니터링 및 인공지능 정밀 감시 및 위험 통제를 수행하는, 인공지능 기반의 실시간 안전사고 예방대응 서비스를 제공한다.
도 2는 본 발명에 따른 안전관리 시스템의 구성 개념도 이다.
도시된 바와 같이, 센싱 플랫폼(100), 데이터 플랫폼(200), 관제 플랫폼(300)으로 구성된다.
센싱 플랫폼(100)은 이동식 무인탐지장치(이동식 레일로봇)(110)와 이들을 제어하는 제어기(미도시), 고정식 영상 카메라 및/또는 열화상 카메라(120), 온도, 습도, 산소, 일산화탄소, 이산화탄소, 이산화질소, 황화수소를 감지센서를 포함하는 가스센서(130), 온도/습도 센서(140), 터널형 시설물에 고정식으로 배치되는 다수의 광센서(150)를 포함한다. 그 외에, 고정식 연기감지센서와, SiH4, NH3, N2O, CF4, NF3를 감지하는 특수센서를 더 포함할 수 있다.
레일로봇(110)은 터널형 시설물 내 설치된 궤도를 따라 이동하면서 전술한 영상 카메라 및/또는 열화상 카메라, 온도, 습도, 산소, 일산화탄소, 이산화탄소, 이산화질소, 황화수소를 감지센서를 포함하는 가스센서, 온도/습도 센서, 연기센서, SiH4, NH3, N2O, CF4, NF3를 감지하는 특수센서, 및 라이다(LiDAR) 센서 중 일부 또는 전부를 내장하여 주기적으로 터널형 시설물을 감시하고, 유사시 현장으로 출동하여 실시간 감시 및 필요한 조치를 수행한다. 터널형 시설물의 환경적 특성에 따른 많은 먼지·고온·다습 등의 운영환경을 고려하여 방진/방수 기능(IP65 등급 이상)을 가지는 것이 바람직하다.
광센서(150)는 터널 내부에 설치되어 터널의 전구간에 걸쳐 노면의 온도와 차량 화재시 구간별 온도 변화를 감지, 소음의 감지를 수행하여 안전사고 유무를 판단하는데 중요한 역할을 한다.
광섬유 센서(FBG)를 이용한 온도 측정시 온도 1도 변화시 광섬유 센서로 측정되는 빛의 파장 변화량은 약 10pm이상이다. 따라서 1도 이하의 온도변화를 확인해야하기 때문에 1도 변화 시 5pm이상의 파장 변화량이 필요하며, 약 0.5도 변화측정이 가능하기 위해서는 이때 측정 광센서 측정 장비의 파장 측정 반복도는 3pm이하로 유지되어야 한다.
사운드 검출 광센서는 주파수별 진동을 감지하여 차량이나 차량의 속도나 사고시 발생하는 사고음 실시간으로 감지한다. 터널내부에서 차량충돌에 의해 발생되는 음향의 주파수는 500Hz이하(급정거 시 발생되는 소리신호는 약 1kHz이상의 신호), 교통량이 많은 경우 약 90dB 크기의 소음이 발생되기 때문에 90dB이상의 소리감지 성능이 필요하다. 또한, 시설물 내 설비의 운전 소음을 감지하여 정상 동작/이상 동작 여부를 판단하는데 이용될 수 있다.
영상/열화상 센서(120)은 지능형 CCTV는 각 출입구, 시설물 내 적당한 장소에 설치하여 차량이나 사람의 진출입통제가 가능하도록 구축한다. 현장의 환경 여건에 따라 환기구 등의 외부 침입이 가능한 장소가 존재할 경우 설치장소를 변경하여 설치한다.
도 3에 본 발명에 따른 각종 센서의 터널내 설치례를 예시하였다.
데이터 플랫폼(200)은 센싱 플랫폼(100)이 송신한 데이터를 처리하여 수집, 분류, 저장한다. 아울러, 다른 시설물(바람직하게는 유사 시설물)에서 감지된 데이터를 수신하고 이를 취합하여 다량의 빅데이터를 구축할 수 있다. 안정적인 센서데이터 수집을 위해 레일로봇 소정수(예컨대, 4대) 당 수집서버(210) 1대를 배정하여 센서데이터를 수집하고 정보관리서버를 통해 하나 이상의 데이터베이스에 저장 및 관리할 수 있도록 구축함이 바람직하다. 기타 다른 센서로부터의 데이터를 수집하는 수집서버들을 다수 구비할 수 있다.
관제 플랫폼(300)은 인공지능 기반으로 데이터 플랫폼(200)이 확보한 데이터를 기반으로 안전사고를 예방/예측하고 조기 사고 대응을 수행하며, 시설물 관리, 관제를 위한 상황 표시 등 터널형 시설물의 안전관리에 관한 종합적 업무를 처리한다.
영상 서버(310)는 터널 내부에 설치된 레일로봇(110)이나 고정식 영상센서(120) 등 복수의 영상 촬영 소스로부터 전송된 영상을 분석하여 허용된 지연 시간내에 인식 대상물을 검출함으로써, 원활한 안전사고 예방 및 대응이 가능하도록 구성한다.
인공지능 서버(320)는 영상, 가스, 사운드, 온도, 습도 등 수집된 다양한 데이터를 분석하여 안전사고를 예측/감지하며, 머신러닝을 통하여 학습을 반복 수행함으로서 정확도를 지속적으로 높인다. 위치별, 시설별, 환경정보별 데이터를 기반으로 최적의 인공지능 딥러닝 모델 및 학습을 통하여 정확도 높은 위험예측서비스가 가능하도록 기능한다.
레일로봇(110)의 자율주행에 의해 수집 및 누적된 환경정보를 인공지능 모델 학습을 통해 최적의 위험예측 신경망을 구축하고 실시간 전송되는 환경정보에 대해 위험정보를 판단하여 서비스 제공한다.
위험관리/통제 서버(330)는 화재장애, 시설장애, 센서장애, 교통흐름장애, 로봇장애 등을 파악하고 그에 해당하는 조치(사고통보, 관련센터연계, 전광판 안내, 대피안내방송 실시,로봇 교체 제어, 순찰관리 등)를 수행한다.
시설 등록/관리 서버(340)는 로봇 등록/관리, 고정식 센서 등록/관리, 공공시설관리, 운영관리 등을 수행한다.
의사결정 및 보고 서버(350)는 사고/상황 관리, 사고현장지원, 응급체계 관리, 보고서 조회 및 관리 업무를 수행한다.
추가로 관리자의 현장상황 파악 및 시설물의 직접 제어를 위하여 영상 및 각종 감지 데이터를 표시하고 관리자가 다중환경의 레일로봇, CCTV, 외부환경센서 등을 직렬적으로 바로 제어하고 관리할 수 있도록 컨트롤 커널 기반의 시스템을 구축하고 통합제어가 가능하도록 기능 제공하는 상황판을 관리하는 프리젠테이션 서버(360)를 포함할 수 있다.
한편 프리젠테이션 서버(360)는 터널형 시설물을 대상으로 디지털 트윈 기반 3D 가상공간을 구축하고 현장의 이동식 레일로봇(110) 및 지능형 CCTV(120)와 연계하여 가상점검서비스가 가능하도록 기능 제공하는 것이 바람직하다. 레일로봇(110)의 영상 센서 및/또는 라이다 센서로부터의 이미지 정보와 고정식 CCTV로부터의 이미지 정보를 토대로 디지털 트윈 기반 3D 가상공간의 모델링 수준을 LOD 3 이상으로 구축하고 터널형 시설물의 상세 객체 모델링을 통해 확대, 분리, 제어 할수 있도록 구축하며, 아울러 외부지도, GIS와 연계할 수 있다.
한편, 전술한 각 서버는 설명의 편의와 이해의 증진을 위하여 기능 관점에서 구분을 한 것으로서, 실제 구현시에는 하나의 서버에 통합될 수도 있고, 2개 또는 3개의 서버에 분산되어 구성될 수도 있음은 물론이다. 즉, 특허청구범위를 포함하는 본 명세서 전반에 걸쳐서 "...기", "...부", "...서버" 등은 H/W 적인 구현 양태를 제한하는 것이 아니다.
도 4는 본 발명의 일 실시예에 따른 안전관리 시스템의 네트워크 구성도이다.
레일로봇(110)은 궤도를 통해 전력선 데이터 통신(PLC)을 하고, 각 고정센서들은 FBGI, 전용 스위치를 거처 G/W를 통해 관제 플랫폼(300)으로 전달된다.
이하, 각 주요 구성에 대하여 보다 상세히 설명한다.
도 5에 도시된 바와 같이, 센싱 플랫폼(100)의 레일로봇(110)은 지하공동구 등에 레일(105)을 따라 이동하며 관리현장을 실시간으로 감시한다. 비전카메라 및 열화상카메라로 영상을 획득하고 복수의 이종 환경센서로 온도, 습도, 일산화탄소 농도 등을 감지하여 실시간으로 데이터 플랫폼(200)으로 전송한다. 레일로봇(110)은 레일을 통하여 동작전력을 공급받으며, 전력선통신(PLC)를 통해 수집된 데이터를 송신하고 제어명령을 수신한다. 물론 영상 또는 열영상과 같은 대규모 데이터는 별도의 통신망을 통해 송신하도록 구성할 수 있다. 터널 내부의 시설물의 안전검사 및 안전사고 예방 및 대응을 위해서는 주간 기준으로 10분간 연속 30프레임 이상을 촬영하여 영상을 실시간으로 송신하는 것이 좋다.
특히, 본 발명의 일 실시예에 따른 레일로봇(110)은 소화 기능을 탑재하여, 관리현장 내 화재가 발생한 경우, 화재 현장으로 이동하여 소방인력이 도착하기 전에 화재진압을 수행한다. 이럼으로써 조기에 화재를 완전 진압하거나 또는 소방인력이 도착하기 전까지 화재가 번지는 것을 억제하여 피해를 최소화한다.
레일로봇(110)은 터널형 시설물에 위치하는 별도의 로컬 제어기(일종의 에지 컴퓨터)에 의하여 제어되고 복수의 레일로봇(110)이 군집제어될 수 있다. 예컨대, 제어기는 관리현장 내 화재가 발생한 위치에 복수의 레일로봇(110)이 이동하여 동시에 또는 순차적으로 소화 작업을 수행하여 화재를 진압하거나 확장을 억제하도록 제어한다.
레일로봇(110)을 제어하는 로봇 제어기는 전술한 바와 같이 터널형 시설물에 위치하는 별도의 로컬 제어기일 수 있고, 로컬 제어기 없이 데이터 수집 서버(210)나 영상 서버(310) 또는 위험관리/통제 서버(330)등이 로봇 제어를 수행하는 로봇 제어기 역할을 수행하도록 구성될 수 있다.
바람직한 일 실시예로서, 터널 내 또는 부근에 로컬 제어기가 위치하여 긴급한 상황은 스스로 판단하여 로봇(110)을 제어하고, 일반 상황에서는 데이터 수집 서버(210)나 영상 서버(310) 또는 위험관리/통제 서버(330) 등 원격의 서버로 로봇(110) 상태 정보를 송신하고 원격의 서버로부터 명령을 받아 그에 따라 로봇을 제어하는 에지 컴퓨팅 모델을 따른다.
로봇 제어기의 로봇 제어 항목에 대해서 아래의 표 1에 정리하였다.
구 분 기능명 기능설명
로봇
제어
로봇
초기화
- 각 로봇별 운영 중 장애 및 이상 발생 시 초기화할 수 있는 기능
(기점으로 이동, 운영 중 모든 동작 초기화, reboot 기능, 등)
- 이슈 발생 시 정상 동작하기 위한 초기화
- 단 PLC 접점을 불량으로 인해 reboot 후 재기동에 문제 발생 시에는 관리자가 직접 현장에서 reboot 함(1~2회/100회 정도는 PLC 접점에 문제 발생 가능)
로봇
운영모드
관리
- 로봇의 운영 모드를 운영, 정지, 점검, 등의 모드로 구분하며, 점검모드 시 정보수집(환경정보)을 제한.
운영/정지 모드에서의 영상수집은 옵션으로 처리할 수 있도록 지원.
점검모드의 경우에도 영상 및 사진은 정상 수집
로봇
제어
- 로봇의 이동(특정 지점, 등), 상하좌우 및 Zoomin/Out 등 로봇 동작 제어
- 로봇의 이동중에도 영상 및 환경정보를 수집함.
(환경설정으로 제어)
로봇
상태정보
조회
- 로봇의 운영 장비(전원, 카메라, 등 각종 구성장치)들에 정보 조회.
로봇의 위치 정보 관리(설치 구역 및 관리 지점 정보)
- 로봇의 실시간 위치정보 및 현 위치에서의 환경정보 수집
(API를 통한 요청시)
로봇
상태점검
- 로봇의 동작상태 점검(주기적인 정기점검용으로 활용)
- 로봇의 구성품(카메라, 열화상, 등) 및 기본정보(전원 등)에 대한 상태정보 조회
- APP에서 NVR에 JSON으로 로봇의 상태정보를 조회한다. 로봇의 경우 기존의 기능을 활용하며, 센서의 경우 실시간으로 들어오는 정보에서 최근 10초(예시)간 수집된 정보가 없을 경우 해당 센서에 문제로 인지하여 상태정보를 제공함. URL로 요청 Response는 JSON으로 제공
센서
제어
센서관리 로봇으로부터 전송되는 (온도, 습도, 이산화질소, 일산화탄소, 이산화탄소)등의 센서 정보를 운영모드 시점에 따라 일정시간마다 데이터 저장처리
센서
상태점검
- 센서의 동작상태 점검(주기적인 정기점검용으로 활용)
로봇에 부착된 센서별 동작 상태 점검
- 로봇의 상태점검과 통합하여 로봇의 상태점검 요청시 센서의 상태점검 정보를 제공함
아울러 순찰 중인 한 레일로봇(110)이 이상을 감지한 경우, 감지 신뢰성을 확보하기 위하여 주변의 다른 레일로봇에게 이상 장소로 이동하여 상황을 감지하도록 하여 두 레일로봇의 감지결과가 동일할 경우 이상상황 발생으로 간주하도록 운용될 수 있다.
만약 두 레일로봇의 감지결과가 상이하면 추가의 레일로봇을 이동시켜서 복수의 레일로봇(110) 센서 감지값으로부터 실제 환경을 추정한다. 예컨대 복수 감지값의 평균, 가중평균, 다수결 방식등으로 감지값을 추정한다.
레일로봇(110)의 이동은 전술한 바와 같이 레일(105)을 따라 이동하는 방식인데, 터널형 관리현장의 양 끝단까지 연장된 하나의 선형 레일을 따라 이동하거나, 두 개의 선형 레일의 양 끝단을 곡선으로 연결한 폐루프 레일을 따라 이동한다.
레일로봇(110)은 평상시는 각 레일 구간별로 각 레일로봇(110)이 전후진을 반복하여 순찰하다가 위험상황을 감지하거나 화재진압이 필요할 때, 다른 레일로봇 들이 해당 장소로 이동하여 감지하거나 화재 진압에 동참하는 방식으로 운영된다.
폐루프 레일은 설치비용이 상대적으로 높지만, 로봇(110)의 이동성을 확장하여 더욱 신속히 복수의 레일로봇이 해당 장소로 집결할 수 있다. 또한, 폐루프 레일은 구간내 전후진 이동 순찰은 물론이고 복수의 레일로봇(110)이 한 방향으로 지속적으로 주행하면서 순찰하는 방식으로 운용할 수도 있다.
이러한 레일로봇(110)의 운행제어 및 감지값 신뢰도 평가, 협업 화재진압 등은 원격의 관리자가 디지털 트윈 환경에서 영상카메라 및 열화상 카메라의 줌 인/아웃 조정, 감지값 결정, 협업 화재진압 방식을 선택하고 직접 이동 제어를 할 수 있도록 구성되며, 평상시 일반 모드에서는 에지 컴퓨터로 기능하는 관리현장 내 제어기의 제어에 의하여 자동으로 수행되도록 구성함이 바람직하다.
제어기는 기후 등 환경조건에 따라 복수의 레일로봇들의 평상시 순찰 스케쥴을 조절한다. 예컨대, 관리 현장이 고온 건조한 상태여서 화재 위험성이 평상시 보다 크다면 보다 빠른 속도로 레일로봇이 순찰하도록 하여 순찰 주기를 높인다.
유사시 1차 화재 진압 등 현장 출동을 해야할 경우, 화재의 크기와 각 레일로봇의 위치를 확인하여 현장으로 출동할 레일로봇의 수를 정하고 각 레일로봇의 이동 경로를 결정하여 가장 짧은 시간에 필요한 수의 레일로봇에 집결할 수 있도록 한다.
한편, 레일로봇의 이동속도는 초속 수미터 정도가 한계이므로, 순찰주기를 높이거나 유사시 충분한 수의 레일로봇이 현장 출동하는 시간을 단축하는데 고정된 수의 레일로봇만으로는 부족할 수 있다.
따라서 다른 실시예로서, 레일의 소정 위치에 레일로봇(110) 대기소(미도시)를 두어 여분의 레일로봇을 대기시키다가 평상시 순찰 속도를 더욱 높여야 된다고 판단한 경우 대기소의 레일로봇을 순찰에 투입시켜 순찰 주기를 더욱 높이고, 유사시 출동할 로봇이 현재 레일 중에 운행중인 레일로봇만으로는 부족하다고 판단하면 대기소에 대기중인 레일로봇을 추가 투입하도록 제어한다.
또한, 로봇 제어기는 감지값 신뢰도 검증을 위한 복수의 레일로봇을 해당 장소로 이동시킬 때, 이동할 레일로봇들을 결정한다. 또한 제어기는 감지값 신뢰도 평가 결과 센서 이상으로 판단된 레일로봇이 있으면 이를 시설물 등록/관리 서버(340)로 통지한다.
고장 레일로봇은 도 6과 같이 충돌방지 IR 센서를 탑재하여 작업자 또는 다른 이동체나 장애물과의 충돌을 회피하거나 또는 작업자를 감지하면 LED 라이트나 멜로디를 발생시켜 작업자의 주의를 유도한다. 또한, 도 7과 같이 견인용 레일로봇을 이용하여 출구까지 견인하여 유지보수 편의성을 향상시킬 수 있다.
이하, 도 8 내지 도 10를 참조하여, 인공지능 서버(320)의 사고위험 예측에 대하여 설명한다.
도 8에 도시된 바와 같이, 레일로봇(110) 및/또는 환경센서에서 실시간 전송되는 정보(온도, 습도, 질소, 산소, 일산화탄소, 이산화탄소 농도값 등)를 정보를 인공지능 위험예측모델을 통해 실시간으로 분석 및 위험예측한다. 지점별 또는 구간별 수집정보를 인공지능 위험예측모델을 통하여 상황예측과 실시간 데이터의 이상 감지를 통한 이상징후 탐지하고, 이상징후 탐지 상황을 표 2와 같이, “정상”, “주의”, “경고”, “위험”등의 단계로 분류한다.
구 분 내 용
정상 실시간 열화상 및 환경정보 데이터의 정상 예측 범위 유지
주의 실시간 열화상 및 환경정보 데이터의 정상 예측 범위 이탈 시작
경고 실시간 열화상 및 환경정보 데이터의 정상 예측 범위 이탈 및 격차심화
위험 실시간 열화상 및 환경정보 데이터의 정상 예측 범위 현격한 편차심화
본 발명에 따른 인공지능 서버(320)는 시계열 데이터 기반 LSTM RNN 미래예측 모델을 기반으로 데이터의 계절, 시간, 장비 특성을 반영하여 분석한다. 이를 위해서 7층의 LSTM RNN 모델을 구축하고, 위험판단을 위하여 미래예측 데이터 기반 DQN 강화학습 모델을 기반으로 안전영역에 대한 학습을 수행하며 이를 위하여 9층의 DNN 신경망을 구축한다(도 9). 즉, 본 발명에서는 시계열 데이터 기반 LSTM RNN 미래예측 모델을 기반으로 데이터의 계절, 시간, 장비 특성을 반영하여 분석하고, 이를 기초로 미래예측 데이터 기반 DQN 강화학습 모델을 기반으로 위험 예측 및 안전영역에 대한 학습을 수행하고 추론한다.
도 10은 본 발명에 따른 인공지능 학습 및 추론에 관한 전체 흐름을 도시한 도면이다. 도시된 바와 같이, 로봇(110) 및 고정식 센서(120~150)가 감지한 데이터를 수집하여, 이들 데이터의 특성을 분석하고, 데이터의 구조를 정의한 후, 미래예측모델 정의, 학습데이터 구축, 데이터 전처리, 예측모델 학습, 예측 신경망 구축, 위험판단모델 정의, 위험판단 데이터 구축, 위험판단신경망 구축, 위험판단모델 학습, 인공지능 시험 및 운영의 순서로 학습 및 추론을 수행한다.
도 11은 본 발명에 따른 안전관리 시스템이 수행하는 데이터 수집 및 인공지능 위험 예측 및 대응을 하는 전과정을 단계적으로 도시한 도면이다.
데이터를 수집하고, 인공지능을 통해 이상 징후를 감지하면 이를 보다 정밀하게 감지하고, 사고를 인지하면 이에 대한 대응 및 상황 종료 절차를 수행한다.
만약 화재를 감지하면 위험관리/통제 서버(330)는 화재경보를 발하고, 프리젠테이션 서버(360)는 상황을 표출한다.
로봇 제어기는 레일로봇(110)에 출동 및 1차 화재진압을 명령하고, 지속적으로 현장정보를 수집한다. 레일로봇(110)에 대한 명령은 프리젠테이션 서버(360)가 제공하는 디지털 트윈 환경에서 관리자가 직접 하달할 수도 있다.
위험관리/통제 서버(330)는 지속적인 현장상황 분석 및 판단을 수행하여 화재 진압이 완료되지 않았다면 2차 화재 진압을 명령하고, 현장상황정보를 재난대응기관에 전달한다.
재난대응기관이 출동하면 레일로봇(110)은 안전거리를 유지하며 현장을 모니터링하고 위험관리/통제(330)가 이를 지속적으로 모니터링한다. 이 때, 프리젠테이션 서버(360)는 디지털 트윈 환경에 현상상황을 실시간으로 표출한다.
즉, 위험관리/통제 서버(330)는 재난사고 대응관리를 업무기반 프로세스로 중심으로 정의하고 이에 따라 터널형 시설물의 위험상황에 대한 단계별 조기대응을 수행한다.
상황이 종결되면 의사결정/보고 서버(350)은 사고원인 데이터 분석을 수행하여 이를 저장하고 리포트한다.
본 발명에 따른 관리현장 안전관리 시스템에 대하여 전술한 설명을 정리하면 아래와 같다.
터널형 공공시설물(지상 및 지하) 등 관리현장에 지능형 궤도 로봇 및 광센서, CCTV, 환경센서를 설치하여 터널 내부에 설치된 시설물과 터널을 통과하는 대상물(차량, 일반인, 동물, 유지보수 인력 등)에 대한 상태정보 데이터를 실시간으로 수집한다.
수집된 영상 데이터는 시설물 관리자 및 재난상황실 등 관제센터에 실시간으로 제공하고, 환경센서를 통하여 수집된 데이터는 시각화하여 실시간으로 모니터링 할 수 있도록 서비스를 제공한다.
인공지능 기반의 안전사고 대응 플랫폼은 축적된 데이터를 바탕으로 안전사고를 감시 예방하고, 사고 발생 시 로봇을 현장에 출동시켜 사고유형 및 심각도를 판단하여 관리자에게 정보를 제공한다.
LTE/5G, 광통신, PLC 통신을 이용한 멀티 채널 네트워크 구성으로 다양한 터널 환경에서 운용이 가능하도록 서비스를 제공한다.
사고 발생시 로봇을 이용하여 요구조자를 대피시키고, 현장에 접근하여 사고를 지휘할 수 있도록 서비스를 제공한다.
인공지능 영상 분석 기술을 이용하여 터널 내부의 설비를 모니터링하고 터널을 이용하는 차량, 사람, 동물 등을 인식하고, 온도 변화, 소리의 변위, 연기, 위험 행위를 인공지능을 이용하여 높은 정확도로 검출하고 대응한다.
이상 몇몇 실시예를 들어 본 발명의 구성에 대하여 상세히 설명하였다. 그러나, 이는 예시에 불과한 것으로 본 발명의 기술적 사상의 범주 내에 다양한 변형과 변경이 가능함은 물론이다. 따라서, 본 발명의 권리범위는 이하의 특허청구범위의 기재에 의하여 정해져야 할 것이다.
본 발명은 터널, 지하철 운행로 등 터널형 시설물, 공장, 물류창고, 지하공동구 등의 안전사고 관리현장의 안전관리에 적용될 수 있다.

Claims (10)

  1. 복수의 고정식 센서 및 이동식 로봇을 이용하여 관리현장의 온도, 습도, 가스 농도를 포함하는 환경 데이터를 감지하는 센싱 플랫폼과,
    상기 센싱 플랫폼으로부터 환경 데이터를 전달받아 분류, 저장하는 데이터 플랫폼과,
    상기 데이터 플롯폼이 확보한 데이터를 기반으로 인공지능 학습 및 추론을 통해 위험을 예측하고 위험상황에 대응 조치를 수행하는 관제 플랫폼
    을 포함하는 안전관리 시스템.
  2. 제1항에 있어서, 상기 센싱 플랫폼은,
    광센서, CCTV, 환경센서 및 이동식 레일로봇을 포함하는 것인 안전관리 시스템.
  3. 제1항에 있어서, 상기 이동식 로봇은,
    관리현장의 레일을 따라 이동하며 관리현장을 실시간으로 감시하는 것으로서, 비전카메라 및 열화상카메라로 영상을 획득하고 복수의 이종 환경센서로 온도, 습도 및 일산화탄소를 포함하는 가스 농도를 감지하여 실시간으로 상기 데이터 플랫폼으로 전송하는 것인 안전관리 시스템.
  4. 제1항에 있어서, 상기 이동식 로봇은,
    레일을 통하여 동작전력을 공급받으며, 전력선통신을 통해 수집된 데이터를 송신하고 제어명령을 수신하는 것인 안전관리 시스템.
  5. 제1항에 있어서, 상기 이동식 로봇은,
    소화 기능을 탑재하여, 관리현장 내 화재가 발생한 경우, 화재 현장으로 이동하여 소방인력이 도착하기 전에 화재진압을 수행하는 것인 안전관리 시스템.
  6. 제1항에 있어서, 상기 이동식 로봇은,
    영상 및 열화상을 획득하는 비전카메라 및 열화상카메라와,
    온도, 습도, 산소, 일산화탄소, 이산화탄소, 이산화질소, 황화수소를 감지하는 환경센서를 포함하는 것인 안전관리 시스템.
  7. 제6항에 있어서, 상기 이동식 로봇은,
    SiH4, NH3, N2O, CF4, NF3를 감지하는 특수센서를 더 포함하는 것인 안전관리 시스템.
  8. 제1항에 있어서, 상기 관제 플랫폼은,
    상기 데이터 플랫폼이 확보한 데이터를 기반으로 학습 및 추론을 위한 인공지능 서버, 위험상황에 대응 조치를 수행하는 위험관리/통제 서버, 디지털 트윈을 구현하여 관리현장을 가시화하고 관리자 명령을 입력받는 프리젠테이션 서버를 포함하는 것인 안전관리 시스템.
  9. 제6항에 있어서, 상기 인공지능 서버는,
    시계열 데이터 기반 LSTM RNN 미래예측 모델을 기반으로 데이터의 계절, 시간, 장비 특성을 반영하여 분석하고, 미래예측 데이터 기반 DQN 강화학습 모델을 기반으로 위험 예측 및 안전영역에 대한 학습을 수행하고 추론하는 것인 안전관리 시스템.
  10. 제1항에 있어서, 상기 위험관리/통제 서버는,
    재난사고 대응관리를 업무기반 프로세스 중심으로 정의하고 이에 따라 터널형 시설물의 위험상황에 대한 단계별 조기대응을 수행하는 것인 안전관리 시스템.
PCT/KR2020/018307 2020-12-15 2020-12-15 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템 WO2022131388A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200174918A KR102554662B1 (ko) 2020-12-15 2020-12-15 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템
KR10-2020-0174918 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131388A1 true WO2022131388A1 (ko) 2022-06-23

Family

ID=82057597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018307 WO2022131388A1 (ko) 2020-12-15 2020-12-15 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템

Country Status (2)

Country Link
KR (1) KR102554662B1 (ko)
WO (1) WO2022131388A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760956A (zh) * 2023-08-21 2023-09-15 建元未来城市投资发展有限公司 一种城市综合管廊的智能监控管理系统以及方法
CN116906125A (zh) * 2023-09-06 2023-10-20 四川高速公路建设开发集团有限公司 基于数据同步传输算法的软岩隧道安全监测方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538548B1 (ko) * 2022-10-17 2023-05-31 김형주 딥러닝 기반의 객체 인식 및 모니터링 시스템
KR102541221B1 (ko) * 2022-11-08 2023-06-13 주식회사 경우시스테크 인공지능 기반 영상인식플랫폼을 포함하는 이동식 지능형 cctv 시스템
KR102553690B1 (ko) * 2023-01-16 2023-07-10 정미영 딥러닝을 이용한 송배전 전력구 내 재난위험 탐지 및 자동진압 시스템
KR102553692B1 (ko) * 2023-01-16 2023-07-10 정미영 전력구 내 재난위험을 탐지하는 딥러닝 시스템
KR102662035B1 (ko) * 2023-12-29 2024-04-30 유광산 IoT 및 ICT 기술을 이용한 터널 차폐 시스템
KR102662468B1 (ko) * 2023-12-29 2024-05-02 유광산 IoT 및 ICT 기술을 이용한 급속 터널 차폐 장치를 포함하는 터널 안전관리 시스템 및 급속 터널 차폐 공법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170107242A (ko) * 2016-03-15 2017-09-25 주식회사 지에스하이텍 특수환경 에서의 지능형 발화위치 추적 화재진압시스템 및 그 방법
KR20190121579A (ko) * 2018-04-18 2019-10-28 주봉녕 화재 감지 및 소화를 위한 소방 시스템 및 그 방법
KR102030006B1 (ko) * 2019-06-05 2019-11-11 주식회사 리트코이엔에스 도로 터널의 지능형 통합 화재소화시스템
KR102084884B1 (ko) * 2019-07-10 2020-03-04 에이치에스솔루션 주식회사 인공지능 기반의 화재 예방 감지 시스템
KR20200060606A (ko) * 2018-11-21 2020-06-01 주식회사 싸인랩 산업 현장 복합화재 감지 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949525B1 (ko) * 2017-11-16 2019-03-18 주식회사 아이오티봇 무인탐지장치를 이용한 현장 안전관리 시스템
KR102008519B1 (ko) * 2018-10-24 2019-10-21 주식회사 공간정보 크레인 안전작업용 실시간 무인영상전송시스템
KR102124067B1 (ko) * 2018-12-26 2020-06-17 한국건설기술연구원 사물인터넷 센서를 이용한 연기확산과 피난로 예측 시스템 및 그 방법
KR102176799B1 (ko) * 2020-01-31 2020-11-11 이쎌 주식회사 진동 신호를 기반으로 한 안전 진단 방법 및 이러한 방법을 수행하는 진동 센서
KR102161244B1 (ko) * 2020-02-26 2020-09-29 (주)윈텍 산업설비 및 장치 감시 경보 시스템 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170107242A (ko) * 2016-03-15 2017-09-25 주식회사 지에스하이텍 특수환경 에서의 지능형 발화위치 추적 화재진압시스템 및 그 방법
KR20190121579A (ko) * 2018-04-18 2019-10-28 주봉녕 화재 감지 및 소화를 위한 소방 시스템 및 그 방법
KR20200060606A (ko) * 2018-11-21 2020-06-01 주식회사 싸인랩 산업 현장 복합화재 감지 시스템
KR102030006B1 (ko) * 2019-06-05 2019-11-11 주식회사 리트코이엔에스 도로 터널의 지능형 통합 화재소화시스템
KR102084884B1 (ko) * 2019-07-10 2020-03-04 에이치에스솔루션 주식회사 인공지능 기반의 화재 예방 감지 시스템

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760956A (zh) * 2023-08-21 2023-09-15 建元未来城市投资发展有限公司 一种城市综合管廊的智能监控管理系统以及方法
CN116760956B (zh) * 2023-08-21 2023-10-20 建元未来城市投资发展有限公司 一种城市综合管廊的智能监控管理系统以及方法
CN116906125A (zh) * 2023-09-06 2023-10-20 四川高速公路建设开发集团有限公司 基于数据同步传输算法的软岩隧道安全监测方法及系统
CN116906125B (zh) * 2023-09-06 2023-12-29 四川高速公路建设开发集团有限公司 基于数据同步传输算法的软岩隧道安全监测方法及系统

Also Published As

Publication number Publication date
KR102554662B1 (ko) 2023-07-13
KR20220085125A (ko) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2022131388A1 (ko) 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템
WO2019098430A1 (ko) 무인탐지장치를 이용한 현장 안전관리 시스템
CN108830390A (zh) 一种用于充电站的智能运维系统以及方法
WO2023054813A1 (ko) 충전식 모바일로봇을 활용한 화재감지 및 조기대응시스템
CN112288984A (zh) 基于视频融合的三维可视化无人值守变电站智能联动系统
KR101093021B1 (ko) 정보 통합형 철도 시스템
WO2022071760A1 (ko) 화재 방호 방법 및 화재 방호 시스템
CN112520528B (zh) 一种自动监测电梯故障检测系统及其检测方法
WO2017090800A1 (ko) 로봇을 이용한 감시 및 보안 시스템
KR102233351B1 (ko) 3D LiDAR를 이용한 시설물 관리 시스템 및 방법
WO2023054838A1 (ko) 인공 지능 연동 지능형 재난 안전 관리 방법 이러한 방법을 수행하는 시스템
WO2021086002A1 (ko) 재난 안전형 스마트 수배전반 관리시스템
KR20230081235A (ko) 드론을 적용한 배전선로 감시 진단 시스템 및 방법
WO2020122663A1 (ko) Iot/ict를 이용한 스마트 제트팬 및 유지관리 통합시스템
WO2024215085A1 (ko) Ai 로봇을 이용한 건설 현장의 작업 공정별 상황 인식 및 안전 관리 시스템
CN112027841A (zh) 一种电梯系统
CN215867976U (zh) 一种基于多维传感的公路隧道智能化巡检机器人系统
KR102600722B1 (ko) Ai 기반 과열 방지 및 원격감시기능을 갖는 수배전반 및 이를 이용한 감시 방법
CN112650101A (zh) 一种基于多维传感的公路隧道智能化巡检机器人系统
CN116012784A (zh) 基于ai机器人识别的采煤过程巡检方法及系统
KR100753071B1 (ko) 역무용 무인국사 감시제어 시스템
WO2013191496A1 (ko) 목조전통건축물 재난 상황 조기 경보 시스템
CN114928164A (zh) 一种主子站协同互动的变电站运维系统
CN115100812A (zh) 一种智慧安防监控方法、系统、装置及电子设备
KR102683366B1 (ko) 이동식 무인탐지장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20966042

Country of ref document: EP

Kind code of ref document: A1